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Abstract 
 

The concept of repeating artistic patterns, for instance spirals, waves, snail shells, 

tilings etc., have been in existence for centuries now. It was during 1900's that a 

noted Dutch graphic artist M.C. Escher worked extensively in this world of art 

which was inspired by mathematics. Escher painstakingly hand-drew such 

perceptive repeating patterns (which were mostly Euclidean in nature) and his 

famous hyperbolic patterns: Circle Limit I, II, III and IV which were based on 

regular tessellations. 

This research work concentrates on leveraging hyperbolic and Euclidean 

geometry in art, drawing inspiration from Escher's work. Various Euclidean, non-

Euclidean and spherical repeating patterns are special forms of tessellations. At the 

core of these patterns lies an idea, proposed by Dr. Dunham, that a small congruent 

sub-pattern, called a motif, which when reflected and rotated will generate the entire 

pattern. This work focuses on transforming the central polygon in a hyperbolic 

pattern to obtain its Euclidean counterpart. This counterpart will further tile a 

planar region to generate a Euclidean tiling. There are various interesting 

applications that allow the user to draw such repeating patterns programmatically, 

however none of them show the reverse mapping from a hyperbolic to a Euclidean 

pattern. We enhance an existing Java application by creating a bridge that connects 

hyperbolic patterns to their Euclidean equivalents and facilitates the user to work 

with tilings. The results are expected to show a transformation from hyperbolic to 

Euclidean patterns followed by tiling of the Euclidean pattern on a planar region. 
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1 Introduction 

 
The concept of repeating patterns have been used for centuries now and still 

strongly hold their relevance. These patterns are used in various parts of the world 

such as Europe, China, Arabia, etc., as designs for decorating walls, 3D objects 

and blocks, that vastly improve the aesthetic ambience of a place. Complex 

geometric art is the leitmotif in Islamic art, which involves creating beautiful 

patterns using simple regular/irregular shapes. A repeating pattern can be defined 

[1] as a pattern that remains invariant under transformations of a plane. The 

hyperbolic patterns are represented on a hyperbolic plane which can be visualized 

using a Poincaré disc model. 

It was the noted Dutch artist, M.C. Escher who revolutionized the idea of 

creating mathematically inspired art. It was during his travel in the Italian country 

side that captured his imagination for creating interlocking repeating patterns. 

Despite the lack of computers during that period of time, M.C. Escher hand-drew 

such geometrical intricacies, which turned out the most influential and respected 

work in the field of Mathematics. His famous work involved lithographs, 

woodcuts and wood engravings which were mostly Euclidean in nature, and the 

hyperbolic tessellations called: The Circle Limit I, II, III & IV. 

 This research work draws inspiration from the aforementioned work and 

involves working with algorithms proposed by Dr. Douglas Dunham [2], for 

creating such repeating patterns programmatically. There are many applications 
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that facilitate the user in drawing repeating patterns that are hyperbolic in nature, 

however none of them capture the mapping from a hyperbolic pattern to its 

Euclidean counterpart. This project revolves around the idea of constructing a 

bridge from the Poincaré model, that depicts central polygon of a hyperbolic 

pattern, to the Klein model showing its Euclidean format. The most interesting 

aspect about this work is that there can be many wallpaper group patterns that 

eventually can be made from the Euclidean polygon by tiling it on a planar region.  

A repeating pattern can also be defined as a tessellation of a plane, where 

tessellation means knitting small copies of a design together such that there are no 

overlaps or gaps. A regular tessellation is indicated by the Schläfli symbol {p, q}, 

which means a tiling of a plane is done by regular p-sided polygons meeting edge 

to edge and vertex to vertex, with q meeting at a vertex. If ( p-2 )( q-2 ) > 4, the 

tessellation is hyperbolic. Otherwise, if ( p-2 )( q-2 ) = 4, then the tessellation is 

Euclidean. The only Euclidean tessellations are {3, 6}, the tessellation by 

equilateral triangles, {4, 4}, the tessellation by squares, and {6, 3}, the tessellation 

by regular hexagons. The goal of this research is to transform hyperbolic patterns 

based on {p, q} tessellation to repeating Euclidean patterns where possible. This 

can be done in three cases. Hyperbolic patterns based on {3, q}, {4, q} and {6, q} 

can be transformed to {3, 6}, {4, 4} and {6, 3} patterns respectively. 

We have enhanced an existing Java application that allows the user to create a 

hyperbolic pattern and see its transformation to Euclidean geometry. The results are 

images that show the hyperbolic central polygon, its Euclidean format and finally a 

tiled wallpaper group image. Sample images from the application are shown below           
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1.1 Central polygon, a {4, 6} tessellation in its Hyperbolic form 

 

 

 

 

 

       
 

    1.2 Euclidean equivalent of the above polygon 
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1.3 Tiling the {4, 4} Euclidean polygon on a planar region 
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2 Kinds of Geometry 
 

Geometry was first used in the Egypt circa 2000 B.C.  It later evolved in 

Greece by Thales, a Greek mathematician, who introduced the concepts of edges, 

lines, points and positions. Geometry is a branch of mathematics which deals with 

the properties of geometric objects like points, curves, circles, polygons etc. 

Geometry is a Greek term, where in geo means earth and metron means measure. 

Geometry is medium through which we materialize the ideas of the physical world 

and can be used to resolve various inconsistencies.  

Diagrams, facts and axioms are important and indispensable tools of 

Geometry. For years now, geometry has been evolving and growing by addition of 

new procedures and concepts. There are different kinds of classical geometry that 

are most commonly used for the analysis of artistic patterns:  (i) Euclidean (or 

Planar) geometry, which is used in day-to-day life and deals primarily with two 

dimensional lines, circles and squares,  (ii) spherical geometry, which includes 

spherical lines and objects, (iii) hyperbolic geometry that depicts hyperbolic lines 

and curves. 

 

2.1 Euclidean Geometry 
 

Euclidean geometry is the most basic form of geometry used in every-day life 

for evaluating lengths, areas and volumes. Euclid’s (330 B.C.) geometry is a 

fundamental building block in the field of Mathematics. It is the study of flat space 

and is also known as an axiomatic system where in all the theorems have been 

derived from axioms. The five important postulates (or axioms) of Euclidean 
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geometry are listed below [4]: 

 

1. Between two points there can always be drawn a straight line. 

 

2. Interior angles in a triangle sum to 180°.  

 

3. With any point and at any distance (radius) from the point, a circle can be 

drawn.  

 

4. All right angles are congruent.  

 

5. If there are two lines intersecting another line such that the sum of the inner 

angles on one side is less than 180°, then the two lines invariably must meet 

each other on that particular side if they are stretched to an infinite length. 

This axiom also stands as the famous “parallel postulate”. The image below 

depicts this postulate: 

   

Euclidean geometry was the only known geometry existing for thousands of 

years. Many mathematicians have regarded the fifth postulate i.e., the parallel 

postulate, as something that is unique and is not comparable to the four other 

axioms. For decades, many mathematicians tried to invalidate and negate the 

parallel postulate i.e., they tried to show that the parallel postulate is inconsistent 

with the previous four axioms. Many mathematicians tried to prove that the fifth 

2.1 Parallel postulate in Euclidean Geometry 
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postulate can be rather be proved instead of calling it an axiom, but they couldn't 

arrive at such contradiction. However, this led to the birth of non-Euclidean 

geometry. 

 

2.2 Non - Euclidean  Geometry 
 

Three mathematicians, C. F Gauss from Germany, N. Lobachevsky from 

Russia, and J. Bolyai from Hungary are associated with the discovery of non-

Euclidean geometry. They tried to negate the fifth postulate of Euclidean geometry 

by trying to arrive at a conclusion that, through a point not on a line, there could be 

no lines or more than one line parallel to the particular line. But it was first 

discovered by Gauss that there could be no contradiction that can be obtained in 

this way. Gauss, recounted his discovery in a private note stating [5] that the 

assumption of sum of angles in a triangle to be less than 180° generates a curious 

and consistent geometry. Unfortunately, Gauss did not publish his work as he was 

skeptical about its acceptance in the local mathematical society. He was wary of 

their reaction to the negation of Euclid's geometry. However he introduced to the 

world, the term "Non-Euclidean" geometry. 

In the 30 years following Gauss's invention of non-Euclidean geometry, in an 

independent study it was J. Bolyai who negated the fifth postulate and published 

his work on non-Euclidean geometry as a book in 1932. In another independent 

study, Lobachevsky published a paper on new geometry in 1929, and it was not 

until years after his demise that his name was associated with non-Euclidean 

geometry.  

Non-Euclidean geometry is otherwise called as kinematic geometry. The two 

conventional branches of non-Euclidean geometry are hyperbolic geometry and 

elliptic geometry. 
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2.2.1 Hyperbolic  Geometry 
 

As a consequence to deny Euclid's fifth postulate or the parallel postulate, a 

new coherent and consistent geometry was invented, which stated [6]:  

"Given a line l and a point P not on it, there is more than one line passing 

through  P  that is parallel to l". Here, parallel lines means that the lines never 

intersect. 

In a two-dimensional plane, for any line l and a point A which doesn’t lie on l , 

there exists only one line through A which does not intersect l, whereas in 

Hyperbolic geometry there are two or more lines passing through  A which do not 

intersect l as depicted in the image below : 

 

 

 

 

 

 

 

 

 
     

 

 

 

2.2 Parallel postulate in Hyperbolic Geometry 

 

As shown in the figure, lines p and q pass through a point A, and are parallel to 

line B. This could be better visualized in different models used for showing 

Hyperbolic figures. There are three such models, namely: the Poincaré Disk, the 

Klein and the Weierstrass models explained in the sections ahead. Other important 

theorems of hyperbolic geometry are: 
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1. Rectangles, which is defined as four right angles, do not exist.  

2. All triangles have sum of their angles less than 180°. 

3. In reference to the second point, all the convex quadrilaterals have a sum of 

    angles that is less than 360°.  

4. If two triangles are similar then it implies that the triangles are congruent. 

2.2.2 Elliptic Geometry 

 
Elliptic geometry, also known as Riemannian geometry is a non-Euclidean 

geometry with positive curvature (because the surface swells out) and reinstates the 

parallel postulate of the Euclid’s geometry with the statement [7]: Within a two-

dimensional plane, for a given point P and a line l such that P does not lie on line l, 

then in the same plane there does not exist any line that is parallel to l passing 

through P. This implies that all lines in elliptic geometry intersect. Unlike the 

Euclidean or hyperbolic geometry, elliptic geometry is not a neutral geometry, 

which consists of Euclid's first four axioms. The architects of this geometry were 

Bernard Reimann and Ludwig Schläfli, who conceptualized the elliptic lines 

drawn like great circles that can be conceptualized as the longitudes of earth. 
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     2.3 Figure with a positive curvature 

There are certain unique properties of Elliptic geometry: 

 

1. The sum of angles in a triangle is greater than 180°.  

2. For any given two lines which are great circles, there are two intersecting 

points called poles or antipodal points. This notion was introduced by 

Felix Klein.  

 

 

 

2.4 Circles representing lines in Elliptic geometry. Colored dots represent antipodal points. 
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3. A line has no end points and has finite length.  

4. Any two triangles with same interior sum of angles have same area.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12  

3 Hyperbolic Geometry Models 

 
 Hyperbolic models are used to define a hyperbolic plane in which all the axioms 

of hyperbolic geometry can be asserted. These models can be used to visualize 

hyperbolic diagrams in a Euclidean 2D space. There are three different models, 

discussed in the sections ahead, that are commonly used, namely: the Poincaré disk 

model, the Klein model and the Weierstrass model. The first two are the models that 

encapsulate finite hyperbolic geometry defined in a Euclidean 2D space, whereas the 

latter is an infinite model placed in a 3D Euclidean space. We can convert an item from 

one model to another model using a process called isomorphism explained ahead in 

Section 3.4.  

 
3.1 Poincaré Disk Model 

 
The Poincaré disk model represents conformal mapping of hyperbolic 

geometry, which means that this model preserves angles and does not distort them 

during transformations. The Poincaré disk model [8] was invented by Henry 

Poincaré, a French mathematician and philosopher. This model is also known as 

the conformal disk model. Below are a few salient properties of this model: 

1. Any given point P(x, y) in this model is equivalent to a Euclidean plane 

and lies within a Euclidean unit circle, which is a circle of radius one 

unit. Point P(x, y) always satisfies the below condition: 

              

Euclidean points on the unit circle itself are also known as ideal points. 
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2. The lines in the model are drawn as arcs that meet the boundary 

orthogonally. Lines are categorized into two types: A chord or a 

segment passing through the centre of the Euclidean unit circle called a 

diameter, or an arc such that its ends points are perpendicular to the 

boundary of unit circle. Below is the diagram that shows arcs p, q, r, s 

and t and a diameter D, representing lines in this model.  

 

 

                      

                     3.1Lines in a Poincaré disk model 

 

3. The terms "lie on" and "between" are similar in meaning to the 

Euclidean geometry. 

4. Two intersecting lines can be parallel to the same line. 

5. Below are examples of a few objects when viewed in this model: 
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3.2 A square in the Poincaré model (the red strips are part of a design pattern) 

 

        3.3 A triangle in the Poincaré model (the red strips are part of a design pattern) 
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3.2 Klein Model 

 
 This model is a non-conformal disk model, meaning the angles are not 

accurately represented by this model, and the circles are distorted, as in a circular 

object in the Poincaré would be represented as an ellipse in this model. The Klein 

model is a projective disk model named after its inventor Felix Klein, a German 

mathematician. This model depicts a unit open disk in a Euclidean space where 

open chords correspond to hyperbolic lines. An open disc of radius r is a set of all 

points less than r from a fixed point in Euclidean space. 

  D (x, r)  is the mathematical symbol used to indicate an open disk. 

When x= 0 (origin) and r is 1, it is considered to be an open unit disk. Below are a 

few important features of this model: 

1. The points in the model are represented the interior of a unit disk, i.e.., 

a point P (x, y) satisfies the equations: 

              

2. The lines or segments are straight segments represented by open chords. 

An open chord [9] is defined as a closed chord having its end points 

removed. The figure shown below depict lines i.e., open chords p, q, r, 

& s in Klein model: 
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3.4  Lines(or open chords) in Klein model 

 

3. Similar to the Poincaré model, the terms "lie on" and "between" are 

carry similar sense as in the Euclidean geometry. 

4. Two lines are considered parallel if they fail to intersect. 

5. Below are the figures that are counterparts to the figures 3.2 and 3.3       
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    3.5 A square in Klein model 

                             
               

3.6 A triangle in the Klein model 
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3.3 Weierstrass Model 

 
 This model is used to represent the infinite model of hyperbolic geometry. The 

model is represented using a hyperbolic space projected onto the surface of a 

hyperboloid which can be extended up to infinite length in 3 dimensional space. This 

model can be easily projected, by making stereographic projections, onto the previous 

two models as it bears close relationship with them.  

 Given a vector X(x, y, z), the hyperboloid is this model can be represented 

mathematically as: 

   <X, X> =  x 
2 
+ y 

2 
- z

2
  = - k 

2  

 Note: Given two vectors X(x1, x2, x3) and Y(y1, y2, y3), then <X, Y> is defined as: 

     <X, Y> = x1 y1 + x2 y2 - x3 y3
  

 This divides the hyperboloid into two sheets [10]: the upper sheet and lower 

sheet. The lower sheet is nothing but a reflection of the upper sheet, hence the lower 

sheet is not usually considered. Hence the points in the single sheet of the hyperboloid is 

represented as:  

   <X, X> = -k
2
 and z > 0 

 A point in this model is represented as [11] the point that satisfies the equation 

for the upper sheet of the hyperboloid, which can also be written as: 

    x
 2 

+ y 
2 

- z
 2 

= -1 ,  z >= 1   

 Lines are the intersections of a Euclidean plane passing through the origin and 

the hyperboloid. A point L  lies on the plane if it satisfies the below equation: 

   <X, L>  = 0 and z > 0 

 A line l is generally represented by its pole using a 3 variable vector [ lx ly lz ] on 



19 

 

 

a hyperboloid satisfying the equation: lx 
2 

+ ly 
2
 - lz

 2
 = +1, then the line is a set of points 

satisfying the condition: 

            xlx + yly - zlz  = 0 

 A straight line, also called as geodisc is obtained by the slicing the hyperboloid 

using a plane that passes through its origin. The diagram below shows an plane P 

forming a line l (a hyperbola indicated in green). 

 

   

                                     3.7 Every line in a Weierstrass model is a hyperbola 

     

3.4 Isomorphisms 

 
  Isomorphism is a Greek word where in iso means equal and morphis 

means "to form". Isomorphism is the process of converting a object in model to its 

counterpart in another model by preserving the nature of relationship between the 
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elements in the objects i.e., by preserving its structure. The sections below explain the 

mechanism involved for different isomorphic relationships existing between the three 

aforementioned models.  

 

3.4.1 Weierstrass & Poincaré Disk Model Isomorphism 

 
  A simple mapping exists [11] from the Weierstrass model to the Poincaré 

disk model, which is a unit disk in the XY plane. A stereographic projection is made 

from the Weierstrass model toward (0, 0, -1) , which is the vertex of the lower sheet of 

the hyperboloid. The formula is given as follows:    

                             

  The inverse mapping from Poincaré to Weierstrass is given as follows: 

                                                           

                                      

 In this project, for drawing the hyperbolic central polygons, all the calculations 

are made in the Weierstrass model whereas the output is shown in the Poincaré model. 

 

3.4.2 Weierstrass & Klein Model Isomorphism 

 Objects from the Weierstrass model can be mapped onto the Klein model by 

stereographic projection of the Weierstrass model onto the Z = 1 plane towards the point 

(0, 0, 0) using the below formula:      

           
 

 
 
 

 
    

 Conversely, a point (x, y, 0) in Klein model can be mapped to Weierstrass model 
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using the formula:    

            
 

             
                 

 

3.4.3 Poincaré Disk & Klein Model Isomorphism 

 
 Both of these models are used to represent hyperbolic objects within a unit circle. 

Poincaré disk model represents a hyperbolic line using hyperbolic arcs orthogonal to the 

boundary of the circle, whereas the Klein model represents the same object using 

Euclidean line segments which are also called open chords.  

 A vector U in Poincaré disk model, can be converted to its corresponding vector 

V in Klein model using the below equation: 

      

   
  

       
 

 

 Similarly, a vector V in Klein model can be converted to its corresponding vector 

U in Poincaré model using the equation: 

         

    
 

        
 

      
 The above formula can also be written as: 

 

    
              

   
 

 
 This is an important isomorphic relationship with respect to this research focus, 

because the Euclidean counterparts of the hyperbolic images are generated by first 
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converting the points in the Poincaré disk model to the Klein model. Also, the arcs are 

converted to Euclidean line segments. 
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4 Euclidean Patterns 
 

 

 In this section we explain the terminology involved in the patterns we desire to 

create.  First, we explain the basic process of tessellation, and second, we explain the 

idea of fundamental region or motif, that forms the crux of the pattern creation. Lastly 

we discuss and define wallpaper groups. In the next chapter we discuss the methodology 

involved in creating the central Euclidean polygon and the subsequent step of tiling it. 

 

4.1 Tessellation 

 
 A tessellation or tiling is formed when a shape is repeatedly redrawn until the 

entire plane is filled leaving no gaps or holes. The shape could be translated into 

congruent pieces and repeated in a mosaic or checkered pattern. Tessellation is derived 

from a Greek word  "tesseres" which means "four" in English. This is because the very 

first patterns were made of squares.  A regular tessellation is indicated by the Schläfli 

symbol {p, q}, which means a tiling of a plane is done by regular p-sided polygons 

meeting edge to edge and vertex to vertex, with q meeting at a vertex.  

 If ( p-2 )( q-2 ) > 4, the tessellation is hyperbolic. The only Euclidean 

tessellations are {3, 6}, the tessellation by equilateral triangles, {4, 4}, the tessellation by 

squares, and {6, 3}, the tessellation by regular hexagons. The goal of this research is to 

transform hyperbolic patterns based on {p, q} tessellation to repeating Euclidean patterns 

where possible. This can be done in three cases. Hyperbolic patterns based on {3, q}, {4, 

q} and {6, q} can be transformed to {3, 6}, {4, 4} and {6, 3} patterns respectively.  
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4.2 Fundamental Region and Motif 
 

 A motif  is the smallest shape that is used to generate the center polygon. In fact, 

an entire repeating pattern can be created using congruent copies of fundamental pattern, 

also known as the motif. Reflection and rotation of the motif creates the central polygon, 

also called Fundamental region. We use the term p-gon to indicate a regular p-sided 

hyperbolic polygon. 

 

4.3 Wallpaper Group 

 
 A wallpaper group is created when a tessellation is made with congruent regular 

polygons on the Euclidean plane. The term "regular" means all the sides and the angles 

in the polygon are same and the term "congruent" means the copies of polygons used to 

create the tiling are all of same size and shape. A wallpaper group, also known as a plane 

crystallographic group, is a type of discrete group of isometries of the Euclidean plane. 

There are four kinds of isometries [14]: 

1. Translations, where in Euclidean plane is moved by a certain distance. 

2. Rotation, where in the plane is rotated by a certain angle of rotation about a 

point. 

3. Reflection, obtained by reflecting the plane about a particular axis. 

4. Glide reflections, is a combination of reflection and translation. 

 For this project, we focus our work on creating tilings for equilateral triangles, 

squares, and regular hexagons. 
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5 Implementation 

 
 This chapter involves discussion and explanation about the methodology 

involved in creating the central Euclidean polygon. We first explain the process of 

mapping objects from hyperbolic space to Euclidean space and then explain the 

algorithm, proposed by Dr. Dunham, to create the central Euclidean pattern. 

Subsequently, we describe the logic used in the creation of tiling the Euclidean patterns. 

 

5.1 Transforming Poincaré Model Points To Klein 

Model 
 

 

 The Poincaré points are mapped to the Klein model using the isomorphism 

technique explained in Section 3.5.3. The central polygon is divided into p isosceles 

triangles and they are drawn using Euclidean lines which forms the framework for the 

pattern. These Euclidean lines are approximations to the hyperbolic arcs in the Poincaré 

model. The images below show the three kinds of Euclidean polygons created for 

different triangles, squares and hexagons. These form the root for the actual pattern that 

is created, which is explained in the next section. 
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   5.1 The central Euclidean triangle divided into three isosceles triangles of similar size 

(indicated in brown) 

 

 
 

 

 

 
          5.2 The central Euclidean square divided into four isosceles triangles of similar size  

(indicated in brown) 
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  5.3 The central Euclidean hexagon divided into six equilateral triangles of similar size  

(indicated in brown) 

 

 

  

 Below is the logic involved in the creation of each of the above Euclidean polygons:

  

 

1. We iterate through the total number of sides of the polygon, .i.e., p. For every iteration i, 

starting from 1 until p, a total of 3 Euclidean polylines are drawn. Therefore a total of  3 

x p total lines drawn. This is because each subdivided isosceles triangle is composed of 

three lines segments. (refer to the example that immediately follows this algorithm) 

2. For every iteration  j starting from 0 until 3, the x-coordinate and y-coordinate (x, y)  of 

the Euclidean lines are calculated as follows: 
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where         and       for every i t
h 

iteration is calculated as follows: 

               
        

 
  

               
        

 
  

3. Two one dimensional matrices of size 4, for storing values of Xj and Yj , for j = 0 

to 3, are initially created. They are initialized as follows: 

                   Values for X0 to 3 :                              

        Values for Y0 to 3 :                            

   

4. The sequential calculations involved for                         
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 For the Figure 5.2, where p = 4, below are the sequence of diagrams created for every i
th    

  
iteration from 1 to 4: 

 

 

                          

5.4 Partially completed central Euclidean square, composed of three line segments,  

after the 1st iteration. This indicates the starting figure. 

     

      

5.5 Partially completed central Euclidean square after the 2nd iteration 
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5.6 Partially completed central Euclidean square after the 3rd iteration 

 

 

     
 

5.7 Fully completed central Euclidean square after the final(4th) iteration 

 

 Once the Euclidean polygon is drawn, the pattern for the object is drawn using 

the motif points by reflecting and rotating the motif. The algorithm is explained in the 

following sub-section. 

 

5.2 Generation Of Central Euclidean Pattern 

Algorithm 

 
 Different copies of the fundamental pattern are made based on the 

transformations involved, upon the framework created in previous step which acts as a 

scaffolding.  

 Transformations are of two types [12]: Reflection and rotation about the origin : 
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the p-gon center. The reflections are sub-divided into two types: Reflection across the p-

gon radius (or the hypotenuse) and reflection across the perpendicular bisector of a p-

gon edge. If there is no reflection symmetry, the fundamental pattern is rotated about the 

origin to fill the fundamental region. If the reflection symmetry exists, then the 

fundamental pattern is first reflected based on the symmetry and then the copies of this 

new pattern is rotated about the origin to create the central polygon. The diagrams below 

depict each of the three cases for creation of a central polygon: 
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                              (a)                                                                              (b) 

 

                                

        (c)                           (d) 

 

                                                    

5.8 Rotation (only) of motif about the origin starting from step (a) until (d) to create the central 

polygon. 
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        (a)                                                                                (b) 

 

 

                        

              (c)                                                                                    (d) 

                       

5.9 Reflection across the edge bisector. (a) Initial motif created.  

(b) Reflection of actual motif created in step a across the edge.  

(c) Motif created in step b is rotated about the origin. 

(d) Motif created in step b is rotated about the origin once again to complete the central polygon.  
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                 (a)                                                                               (b) 

 

 

 

      (c) 

 
5.10 Reflection across a hypotenuse. (a) Initial motif created   

(b) Reflection of motif created in step a about its hypotenuse.    

(c) Final polygon created by rotating motif created in step (b). 

 

 Next we describe the implementation of the logic involved in rotating and 

reflecting the points. We discuss the structures of different matrices that assist in 

creating the copies of reflected and rotated motifs. 

 Based on the number of sides next to the motif in the central region ( referred to 
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as s in the sample data file format given in Appendix A ) and the value of p from the 

input data file, the total number of rotations to be performed is calculated as: 

     numOfRotations = 
 

 
    

The points are transformed using the following algorithm: 

1. If the p-gon pattern is reflected across an edge bisector, go to step 2a., or if it can 

be reflected using its hypotenuse, then go to step to 2b, otherwise go to the step 

3. 

2. a. Reflect the motif by obtaining the new points using the following matrix 

multiplications: 

                                
  
   

    

b.  In this case, the new points are reflected using the below matrix 

multiplications : 

                                                             
            
             

    

     Calculations for       and       values are shown in section 5.1.  

3. Define                as  
  
  

         

4. For every iteration starting from i = 1:  

i. If i is less than or equal to numOfRotations, then to step ii, otherwise exit 

the loop. 

ii. Generate the motif about the origin by multiplying it with the 

               : 
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iii. Re-define the                using the below calculations : 

                                     
     

   

 
       

   

 
 

     
   

 
      

   

 
 

  

   where s is the number of sides in the central region described earlier. 

iv. Increment i by 1 i.e., i becomes i + 1, and go to step i. 

 

Once this algorithm is executed, we move to the tiling aspect of the process.

     

   

5.3 Tiling Euclidean polygons 

 
 

 Once the Euclidean pattern is drawn, we then tessellate it across the Euclidean 

plane to create different tiling patterns. In this section, we explain the process of creating 

such tilings starting off with equilateral triangles and then squares, followed by regular 

hexagons.  

 
5.3.1 Tiling Euclidean Polygon Of Type: Equilateral Triangle 

 
 Tiling a triangular Euclidean pattern (based on {3, 6}) is a three step process that 

primarily involves creation of copies of Euclidean pattern (using the process described 

in the above two sections), however the x-coordinate and the y-coordinate of every copy 

of the pattern is moved by a certain distance parameter.  

 The first step in this process is to rotate the original Euclidean pattern in 

clockwise direction by 90° to obtain the Euclidean pattern we wish to tile. For instance, 
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consider the triangle below:  

 

5.11 {3, 6} Euclidean triangle  

 This triangle is rotated by modifying the original x-coordinate and the y-

coordinate values of the motif as : 

                                             

                                          

 This would generate the below image: 

 

5.12 Rotated {3, 6} Euclidean triangle   

 

 Based on the logic explained in Section 5.1, let's say a triangle with points A, B 

& C is drawn on an XY plane as shown in the image below: 
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5.13 Euclidean triangle on an XY plane 

 The length of the triangle's base can be calculated using the x-coordinates of the 

points A and C as: 

                                             

 The height of the triangle is the y-coordinate of point B. Based on the these 

distances the algorithm below is used to create a tiling across the plane: 

1. Initialize parameters loopv = 0, looph = 0 

2. If loopv is less than or equal to 2, then re-assign looph = 0 and go to step 

3, otherwise exit out of the algorithm. 

3. Assign verticalDistanceToMove to            loopv ) 



39 

 

 

4. If looph is less than or equal to 3, then go to step 5, otherwise, go to step 

8. 

5. If loopv is 0 or 2, go to step 5a, other go to step 5b. 

6. a.  Assign horizontalDistanceToMove to               looph ) 

b. Assign horizontalDistanceToMove to               looph      ). 

The is because in the second layer we need to align the vertices. 

7. Redraw the Euclidean pattern by moving the original (x, y) values of the 

motif points to (xmove, ymove) as follows: 

             horizontalDistanceToMove 

            verticalDistanceToMove 

8. Increment the value of looph by 1, then go to step 4. 

9. Increment the value of loopv by 1, then go to step 2. 

  

 The values loopv and looph are used to keep a track of the outer and the inner 

loops respectively. The inner loop is for shifting the x-coordinate value, while the outer 

loop affects the y-coordinate.  

 Below is the intermediate tiling pattern created after completing the above 

algorithm: 
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5.14 Detailed intermediate result in tiling a {3, 6} triangle using the above algorithm. 

 

 The colored arrows indicate the fashion in which the (x, y) coordinates of the 

original Euclidean triangle ABC(highlighted in yellow), are incremented. The red dots 

indicate the gaps or holes in the pattern which are yet to be filled. 

 The second step involved in this process is to fill in the gaps created. The 

original points are modified such that an inverse of the original pattern is created about 

its base, as  shown below: 

      

  5.15 Inverse of the Euclidean pattern of shown in figure 5.10 

 

 This is obtained by modifying the original x-coordinate and the y-coordinate 
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values of the motif as : 

                                                

                                           

The algorithm to create inverse patterns and fill the gaps is slightly different compared 

to the previous one, because, the length of height and base of the triangle that we start 

from are different. For instance, below is the inverse of the Euclidean pattern in XY grid 

 

 

5.16 Detailed image of the inverse of the Euclidean triangle in XY plane 

 

 

 The dotted maroon triangle depicts the actual Euclidean pattern whereas the solid 

grey triangle represents its inverse that we have generated by changing its (x, y) 

coordinates. The inverse tiling should start from the position indicated by the dotted grey 
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triangle. The (+b, +h) values indicated are the distances to be added to the actual (x, y) 

values to level up the pattern, where b is the length of the base of the triangle and h is the 

absolute value of point B's y co-ordinate.  

 The length of the triangle's base can be calculated using the x-coordinates of the 

points A and C as: 

                                             

 Define height  as the absolute value y-coordinate of point B. Using these 

distances below is the algorithm used to create inverse tiling across the plane: 

1. Initialize parameters loopv = 0, looph = 0 

2. If loopv is less than or equal to 2, then re-assign looph = 0 and go to step 

3, otherwise exit out of the algorithm. 

3. Assign verticalDistanceToMove to                     height   

4. If looph is less than or equal to 3, then go to step 5, otherwise, go to step 

8. 

5. If loopv is 0 or 2, go to step 5a, otherwise go to step 5b. 

6. a.  Assign horizontalDistanceToMove to                  

      + 1) 

b. Assign horizontalDistanceToMove to               looph       

  ). The is done because in the second layer we need to align the vertices. 

7. Redraw the Euclidean pattern by moving the original (x, y) values of the 

motif points to (xmove, ymove) as follows: 

             horizontalDistanceToMove 

            verticalDistanceToMove 



43 

 

 

8. Increment the value of looph by 1, then go to step 4. 

9. Increment the value of loopv by 1, then go to step 2. 

  

 Similar to the previous algorithm described the values loopv and looph are used to 

keep a track of the outer and the inner loops respectively. The inner loop creates inverse 

copies of pattern horizontally, while the outer loop helps in shifting the pattern upward. 

Consider the below image: 

 

 

5.17 Inverse tiling of {3, 6} Euclidean triangle 

 

 The highlighted pattern in yellow with black lines, in the bottom-most row is the 

actual position from which the pattern is shifted after every iteration. The red arrows 

indicate the triangle's position after the first iteration, and the maroon arrows indicate the 

position after the second iteration. In a similar fashion, patterns in the second and third 

row are completed. However in the second row, the inverse pattern is created starting 
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from the left of the actual pattern, as indicated by a brown arrow. 

 

5.3.2 Tiling Euclidean Polygon Of Type: Square 

 

 
 The algorithm involved in the tiling Euclidean square patterns (i.e., based on {4, 

4}) is very much equivalent that of triangles. We do not have to work with the overhead 

of creating the inverse copies of pattern, because the original square is drawn, the 

subsequent copies are made in using the length of the side and moving the original 

points be adding values in an arithmetic progression as described below: 

Consider the Euclidean square in an XY plane:

 

5.18 Euclidean square in XY plane. 

The length of the size can be calculated as : 
 

                                                   
 

The tiling algorithm is then implemented as follows: 

  

1. Initialize parameters loopv = 0, looph = 0 
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2. If loopv is less than or equal to 2, then re-assign looph = 0 and go to step 

3, otherwise exit out of the algorithm. 

3. Assign verticalDistanceToMove to               loopv ) 

4. If looph is less than or equal to 3, then go to step 5, otherwise, go to step 

8. 

5. Assign horizontalDistanceToMove to              looph ) 

6. Redraw the Euclidean pattern by moving the original (x, y) values of the 

motif points to (xmove, ymove) as follows: 

             horizontalDistanceToMove 

            verticalDistanceToMove 

7. Increment the value of looph by 1, then go to step 4. 

8. Increment the value of loopv by 1, then go to step 2. 

 

Consider the Euclidean square below: 

 

 
5.19 A {4, 4} Euclidean square 

 

After tiling the above pattern, we obtain the image below: 
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     5.20 Detailed Tiling of {4, 5} Euclidean square 

  

 The values mentioned on the dotted arrows indicate the distances to be added to 

the (x, y) coordinates of the motif points to move the pattern into particular position the 

arrow is pointing towards, and l is length of the square's side. The position of the 

original pattern in its actual position is highlighted in yellow. 
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5.3.3 Tiling Euclidean Polygon Of Type: Regular Hexagon 

 
 The mechanism involved in tiling Euclidean patterns of type regular hexagon 

(based on {6, 3}) is quite similar to the previous mechanisms described for squares and 

triangles with slight variations. Consider the below Euclidean hexagon on an XY grid: 

 

5.21 Detailed hexagon on an XY grid 

 The solid black hexagon indicates the actual polygon. For every layer the motif 

points are moved by a certain distance. For this example, the way in which point B will 
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be moved to different positions is shown. The motif is replicated starting from each of 

these positions, and congruent copies are created horizontally. B", B"' are starting 

positions of the second and third row respectively. 4 copies of the motif are created for 

bottom-most & the top-most row & 5 copies of the motif are created in the middle row. 

The algorithm is explained as follows: 

1. Initialize the parameters:  

                                            

                                                       
               

   

                                                                     

                                                                 

                                  (
          

 
  

2. Initialize parameters loopv = 0, looph = 0 

3. If loopv is less than or equal to 2, then re-assign looph = 0 and go to step 3, 

otherwise exit out of the algorithm. 

4. If looph is less than or equal to 3 (if loopv is even) or 4(is loopv  is odd), then go to 

step 5, otherwise go to step 10. 

5. For the first row, i.e., loopv is 0, assign the following variables and go to step 8 

                                                     

  verticalDistanceToMove = 0 

6. For the second row, i.e., loopv is 1, assign the following variables & go to step 8 

                                                    

 verticalDistanceToMove =                   
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7. For the third row, i.e., loopv is 2, assign the following variables and go to step 8 

                                                         

 verticalDistanceToMove =                   

8. Redraw the Euclidean pattern by moving the original (x, y) values of the motif 

points to (xmove, ymove) as follows: 

             horizontalDistanceToMove 

            verticalDistanceToMove 

9. Increment the value of looph by 1, then go to step 4. 

10. Increment the value of loopv by 1, then go to step 3. 

 Below is a tiling pattern created for a {6, 3} hexagon: 

 

5.22 Tiling a {6, 3} Euclidean hexagon. 
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6 Graphical User Interface 

 
 In this section describe we describe the application that allows the user to load a 

data file and see the Hyperbolic to Euclidean transformations and perform tilings with it. 

The next few screenshots are for a walk through with the basic and newly added 

features. 

 

 

 

6.1 Opening a data file 
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6.2 The above selection prompts a dialog box for the user to choose a data file 
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 6.3 "Generate Euclidean Equivalent" & "Generate tiling" features under "Edit" menu section 

(Hyperbolic pattern drawn on the canvas after the file is loaded) 
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6.4 Clicking on "Generate Euclidean Equivalent" after loading the file 
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6.5 Clicking on "Generate Tiling" after loading the file 
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7 Results 

 
 In this chapter, we present the results generated by the enhanced program. The 

previous applications that were developed in C++ with Qt library by Christopher Becker 

[13] and in Java by Maneesha Veejendla [3], show objects only in Poincaré disk model. 

The current program, which is an enhancement of the Java application [3] that 

overcomes this shortcoming by implementing features that allow the user to see the 

Euclidean counterparts of their hyperbolic equivalent and furthermore allows the user to 

create various tiling patterns. 

 The algorithm involved in the creation of hyperbolic central pattern is the same 

as described in Section 5.2., where we mentioned that central Euclidean pattern is drawn 

by transforming the Poincaré points to the Klein model. However for creating the 

hyperbolic central pattern, the Poincaré points are converted to Weierstrass model for 

calculations, and then corresponding objects are displayed in the Poincaré disk model 

(within a unit circle). The next few pages show a set of three images for every object: 

i. The first image shows the central hyperbolic pattern. 

ii. The second image shows its equivalent Euclidean pattern. 

iii. The third image shows the final step of creating the tiling pattern of the 

Euclidean polygons on a planar region. 
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    ( a )         ( b )  

 

 

 

 

 
( c )  

 

 
7 . 1 {3,7} Triangle (a) in hyperbolic form (b) Euclidean counterpart (c) tiling pattern 
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           ( a )                                                          ( b )  

 

 

 
 

( c )  

 

 
7 . 2 {3,7} Butterfly triangle : (a) in hyperbolic form (b) Euclidean counterpart (c) tiling pattern 
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          ( a )           ( b )  

 

 

 

 
( c )  

 

 
7 . 3 {3,8} triangle : (a) In hyperbolic form (b) Euclidean counterpart (c) tiling pattern 
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          ( a )                                              ( b )  

 

 

 
 

 

( c )  

 
           7.4 {3, 24} triangle : (a) in hyperbolic form (b) Euclidean counterpart (c) tiling pattern 
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     ( a )                            ( b )  

 

 

 

 

 

 
 

 

 
7.5 Escher circle limit I {4, 6} square : (a) in hyperbolic form (b) Euclidean counterpart  

(c) tiling pattern 
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  (a)       (b) 

 

 This pattern is a special case wherein the square is rotated clockwise and 

counter-clockwise by 90° for every alternate position. 

 

 

 
 

               c) 
 

7.6 A special case: Escher circle limit IV {4, 5} square : (a) in hyperbolic form  

(b) Euclidean counterpart (c) tiling pattern 
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  ( a )             ( b )  

 

 

 

 

 

 
 

( c )  

 

 

 

 
7.7 {4, 6} frog square : (a) in hyperbolic form (b) Euclidean counterpart  

(c) tiling pattern 
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         (a)                                                (b) 

 

 

 
(c)  

 

 

7.8 {4, 5} fish square : (a) in hyperbolic form (b) Euclidean counterpart  

(c) tiling pattern 
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     (a)                     (b) 

      

 

  

         
(c) 

 

       

 

7.9 {4, 5} square : (a) in hyperbolic form (b) Euclidean counterpart  

(c) tiling pattern 
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                  ( a )                       ( b )  

 

 

 

 

 

 
 

( c )  

 

 
7.10 {4, 6} square : (a) in hyperbolic form (b) Euclidean counterpart  

(c) tiling pattern 
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       ( a )                ( b )  

 

 

 

 

 

 
 

 

( c )  

 

 

 
7.11 {6, 4} hexagon with woven ribbons : (a) in hyperbolic form (b) Euclidean counterpart  

(c) tiling pattern 
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      (a)         (b) 

 

 

 

 
 

      (c) 
 

 

7.12 Central polygon in Coxeter's figure - {6, 4} hexagon : (a) in hyperbolic form 

 (b) Euclidean counterpart (c) tiling pattern 
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         ( a )               ( b )  

 

 

 

 

   
           ( c )  

 

 
7.13 A {6, 4} hexagon with scattered strips of ribbon: (a) in hyperbolic form 

 (b) Euclidean counterpart (c) tiling pattern 
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      ( a )                   ( b )   

 

 

 

 

 

 
 

(c) 
 

 

7.14 {6, 4} hexagon : (a) in hyperbolic form (b) Euclidean counterpart (c) tiling pattern 
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8 Conclusion 

 
 The research focus aims to depict Euclidean objects using the Klein model of the 

hyperbolic geometry. Copies of central Euclidean region are made to create a perfect 

tiling on a planar region. Until now, most of the work has been done in Weierstrass 

model of hyperbolic geometry; using such a tiling might create holes or gaps, which is 

undesirable. We have extended the features of an existing Java application [3] for the 

user to see a mapping between objects in the Poincaré model and the Klein model, and 

eventually create different tilings that perfectly fit into a Euclidean region without any 

gaps in between. The program has been tested rigorously with different data files for 

triangles, squares and hexagons. 
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9 Future Work 

 
 The goal of this research work was to use regular Euclidean polygons that 

perfectly tile a planar region. The tilings are generated using equilateral triangles, or 

squares, or regular hexagons. This work could be extended to create semi-regular tilings 

using regular polygons. Also another direction of research would to be create tilings 

using non-regular polygons. 

 Currently the application allows the user to load the file and create tilings of 

fixed size. This can be extended to allow the user to generate the tilings of different size, 

and also let the user rotate the final product horizontally or vertically.  
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Appendix A 
 

  

Sample Data File Format 
 

The following section contains line by line explanation of the data file (tri46fil.dat) in 

reference to the Figure 1.1. The data file contents are: 

4 6 1 0 3 0 

1 2 3  

1 2 3  

1 1 2 3  

2 1 2 3  

3 1 2 3  

4 1 2 3  

4 

0.000000e+00 0.000000e+00 1 12 3 

3.178372e-01 0.000000e+00 1 13 3 

3.660254e-01 3.660254e-01 1 13 3 

0.000000e+00 0.000000e+00 1 14 3 

The first line : 4 6 1 0 3 0 is explained as follows: 

1. The first number is the value of p. Here it is a 4 sided polygon. 

2. The second number is the value of q, which indicates the type of tessellations{p, 

q} 

3. The third number (say s) : 1 indicated the number of sides in the central region 
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i.e., p divided by this number is the total number of copies to be made of the 

motif, to create the central polygon. In this case, there are 4 copies of the motif 

made. 

4. The fourth number is not used at all, it is only used to maintain consistency with 

the previous applications. 

5. The fifth number, 3, is the highest color number of the colors to be used. The 

different color numbers are:   

 1  Black 

 2 White 

 3 Red 

 4 Green 

 5 Blue 

 6 Cyan 

 7 Magenta 

 8 Yellow 

 9 Salmon 

 10 Brown 

6. The last number, 0, indicates the type of reflection symmetry the pattern has with 

respect to the central p-sided polygon. There are three possible values: 

 0 denotes there is only rotation symmetry and no reflection 

symmetry. 

 1 denotes there is a reflection symmetry across the perpendicular 

bisector of one of the edges of the p-sided polygon. 
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 2 indicates there is a reflection symmetry across the radius. 

The second line : 1 2 3, is the color permutation induced by rotation. 

The third line : 1 2 3, is the color permutation induced by reflection (if the number is 0 

on line 1, it is just the identity). 

The next p lines (4 in this case) consist a number followed by a color permutation. 

The first number of the first line represents the edge (edge 1 in this case) of the 

transformed pgon that should lie next to edge 1 of the central pgon. Generally, if the first 

number is positive, then the transformed pgon is rotated into position, otherwise if it's 

negative, a reflection is used to move the transformed pgon into position. The edges are 

numbered 1 to p. 

The values following the first number, 1 2 3 in this case, indicates the color permutation.   

The next line: a single number (2), denotes the total number of (x, y) points that generate 

the motif.  

The next 2 lines has the below structure with 5 space separated components: 

<x-coordinate> <y-coordinate> <color> <type of point> <number of layers> 

The above line is explained as follows: 

1. The x-coordinate & y-coordinate within the central polygon. 

2. Color is the number, explained earlier. 

3. Type of point is of the following: 

 1  “Move To"  

 2 “Draw To"  

 3 “Circle" (these should come in pair i.e., the next point type 

should also be 3) 
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  4 Start a Euclidean Filled Polygon  

  5 Continue a Euclidean Filled Polygon  

  6 Finish a Euclidean Filled Polygon  

  7 Hyperline (these should come in pair i.e., the next point type 

should also be 7)  

  8 Filled Circle (these should come in pair i.e., the next point type 

should    

 also be 8) 

  9 Start a Euclidean Polyline  

 10 Continue a Euclidean Polyline 

 11 Finish a Euclidean Polyline 

 12 Start a hyperbolic filled p-gon  

 13 Continue a hyperbolic filled p-gon  

 14 End a hyperbolic filled p-gon 

 

The  number of layers value is not used, it only exists to maintain reverse compatibility 

with the old application. 


