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Dedication

I dedicate this thesis to myself — I enjoyed working on this material, and I hope that

I can put some of this expertise to practical and profitable use in the future. Hopefully

this will amount to some kind of preparation or value-added for my new job teaching

financial engineering at Northern Illinois University.

Speaking of the subject matter, I find it far more interesting to envision one’s self as

a player of the game, rather than a passive observer of equilibria. People play and study

games because they want to win them. The individual-sequence approach to decision-

making pursued in these pages is simple, elegant, and completely general in the sense

that it requires no prior knowledge of the nature and extent of the opponents’ motives

and [ir]rationality. It leads at once back to the classical techniques of Zermelo, Von

Neumann, Wald, and Blackwell, and to combinatorial and computational amusements

of a very fundamental character.

The point of capitalism is to accumulate as much capital as possible in the long run.

The excitement comes from the fact that optimal capital accumulation requires one to

take a very precise level of risk: too little risk leads to practically no growth at all, but

too much risk leads to wild fluctuations of the bankroll that, apart from their intrinsic

undesirability, serve to destroy the asymptotic growth rate. Which is to say, missed

opportunities and false steps can both have equally disastrous consequences at infinity.

In practical life, one is almost always ignorant of the actual extent of the risks he

has taken — and he is often ignorant of the possible rewards as well. In the manner

of Donald Rumsfeld and his unknown unknowns, there is just as much risk from model

uncertainty as there is inherent in the random outcomes generated by the unknown

model. As far as I can see, then, hardly anthing could be more relevant than Cover’s

austere and brilliant theory of asymptotic capital accumulation. Evidently he was not
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exaggerating when he called it “universal.”
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Abstract

This thesis has three chapters.

Chapter 1 concentrates on a family of sequential portfolio selection algorithms called

multilinear trading strategies. A multilinear strategy is characterized by the fact that

its final wealth is linear separately in each period’s gross-return vector for the stock

market. These strategies are simple, intuitive, and general enough for many purposes

— and yet they retain a basic level of analytic and computational tractability. Thus,

instead of the usual method of specifying his portfolio vector each period as a function

of the return history, a trader can proceed differently. Rather, he selects a desired final

wealth function (which, however, must be feasible) and works backward to recover the

implied trading strategy.

I show that the class of multilinear strategies is general enough for superhedging

derivatives in discrete time. A superhedge for a derivative D is a self-financing trading

strategy that guarantees to generate cash flows greater than or equal to those of the

derivative in any outcome. In dominating D by a multilinear final wealth function, one

is able to put upper bounds on the no-arbitrage price of D. This is relevant to realistic

trading environments, which are hampered by transaction costs and the impossibility of

continuous-time trading. Superhedging is a possible solution: the cost of the cheapest

superhedge for D amounts to the greatest possible (model-independent) rational price

for the derivative.

Multilinear super-hedging amounts to interpolating D with a multilinear payoff, and

then dynamically replicating the interpolating form. If D is a convex function separately

of each period’s return vector, then there is a multilinear superhedge that is cheaper

than any other (multilinear or not). For this reason, I give a detailed guide to the

practical computation of multilinear strategies. The key requirement for tractibility is

that the form (or derivative) be symmetric in the sense that its final wealth depend only

on the numerical magnitudes of the return vectors xt, and not their order. For example,

if the daily returns of the U.S. stock market before, during, and after the crash of 1929

were re-ordered in some way, the final wealth of a symmetric multilinear strategy would

not have been affected.
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Chapter 1 concludes with an extensive study of the high-water mark of Cover’s

theory of “universal portfolios.” Universal portfolios are best understood as superhedges

(of varying efficiency) of a specific fictitious “lookback” derivative. The idea is this: a

trader imagines a derivative D whose payoff represents the final wealth of a non-causal

trading strategy, e.g. a trading strategy whose activities at t are in some way a function

of the future path of stock prices. In the manner of Biff’s sports almanac, the payoff

D has been rigged to “beat the market” by a significant margin. Obviously, the trader

himself cannot use such a strategy: his behavior can be conditioned on the past, but not

the future. However, what he can do is try to superhedge D. Cover found (1986, 1991,

1996, 1998) that D could be chosen so as to generate superhedges that (under some

tacit restrictions on market behavior) de facto “beat the market asymptotically.” Any

reasonably efficient superhedging strategy for this derivative will enjoy the asymptotic

optimality property, and it turns out that there is a large collection of such strategies.

The chapter then turns its attention to the question of just how long it takes to reach the

asymptote, and what the practical consequences are of increasing the trading frequency.

Chapter 2 studies a family of superhedging and trading strategies that are opti-

mal from the standpoint of sequential minimax. The concept is that, given a path

dependent-derivative, a multilinear superhedge (even the cheapest one) that was con-

ceived at t = 0 will not necessarily make credible choices for all variations of market

behavior. As the path of stock prices is slowly revealed to the trader, it (in everyday

cases) becomes apparent that actual cost of superhedging will ultimately prove to be

much lower than originally thought. This phenomenon is the result of the fact that su-

perhedging ultimately hinges upon planning for a set of worst-case scenarios, albeit ones

that will rarely occur in practice. When these worst cases fail to actually materialize,

it has irrevocable consequences for the final payoff of the path-dependent derivative. A

sophisticated superhedging strategy will exploit this to dynamically reduce the hedging

cost.

Instead of approximating D by a multilinear form and then hedging the approxima-

tion, I explicitly calculate a backward induction solution from the end of the investment

horizon. The superhedging strategies so-derived are the sharpest possible in all vari-

ations. Universal portfolios are the major impetus for the technique, the point being

to dynamically reduce the time needed to beat the market asymptotically. In addition
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to their greater robustness, the sequential minimax trading strategies derived in the

chapter are easier to calculate and implement than multilinear superhedges. This being

done, I extend the trading model to account for leverage and a priori linear restrictions

on the daily return vector in the stock market. In deriving a strategy that is robust to a

smaller, more reasonable set of outcomes, the trader is able to use leverage in a reliable

and perspicacious manner. In the sharpened model, the linear restrictions serve to nar-

row the set of nature’s choices, while simulateneously allowing the trader the privilege

of a richer set of (leveraged) strategies. To be specific, nature is required to choose the

stock market’s return vector from a given cone, and the trader is allowed to pick any

admissible (non-bankruptable) portfolio from the dual cone. a fortiori, this dynamic is

guaranteed to increase the superhedging efficiency, sometimes substantially. This point

is illustrated with many numerical examples. Again, the chapter studies the extent to

which this trick reduces the time needed to beat the market.

Chapter 2 concludes with a sequential minimax version of Cover’s (1996) universal

portfolio with side information. In this environment, a discrete-valued signal (the “side

information”) is available to the trader prior to each period’s trading session. The trader

starts the game in total ignorance of the meaning of the signal, and he strives to interpret

it in the most robust way possible. I provide a universal portfolio under “adversarial”

signals whose performance guarantees are a significant refinement to those in Cover

(1996). The idea is that a trader, making use of side information, should come to fear

the possibility that nature chooses the signal maliciously, intending to create dynamic

confusion vis-a-vis the exact meaning of the signal. This meaning is only ever revealed

in hindsight, and the trader comes to regret the fact that he was ignorant of the most

profitable interpretation of the signal. The trader plays to minimize this regret in the

worst case. On account of the complicated environment, the implied optimum trading

strategy is only practically computable for horizons on the order of 10-20 periods, and

thus is suitable chiefly as, say, an annual trading model.

Chapter 3 is a comprehensive study of universal sequential betting schemes, where

the bets are placed on the outcomes of discrete events (colloquially called “horse races”).

The Kelly horse race markets studied in the chapter get at the essential features that

drive both the multilinear and sequential minimax universal portfolios. The chapter

discusses the manner in which these two strategies particularize to one and the same
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thing under the Kelly horse race. In this connection, the two strategies just amount

to the universal source code of Shtarkov (1987), suitably reinterpreted. The sharp

performance of the minimax strategy is then compared to the horizon-free strategies that

result from particularizing the “Dirichlet-weighted” (1996) universal portfolios and the

“Empirical Bayes” (1986) portfolio. Careful attention is given to on-line computation

of the universal bets, and several numerical visualizations and simulations are provided.

The chapter ends with a sequential minimax refinement to the empirical Bayes stock

portfolio. Whereas Cover (1986) is a direct instantiation of Blackwell’s (1956) geometric

method for approaching a set of vector payoffs, the sequential minimax approach studied

here is, on a fixed horizon, the most robust possible strategy for approaching the set.

For convenient reference, a glossary of concepts and notation is given at the end of

the thesis.
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Chapter 1

Multilinear trading strategies

There are three related ways to envision the decision problem of a trader in the stock

market. In all three, stock prices (or equivalently, returns) are considered to be chosen

by “nature.” Firstly, we can consider a repeated game whereby in each period t, nature

picks the returns of all stocks while the trader simultaneously picks a portfolio vector.

This is the point of view adopted by Blackwell’s approachability theory and Cover’s

first (1986) universal portfolio. Second, we can consider a one-shot game whereby the

trader picks an entire portfolio selection algorithm, and nature simultaneously draws

the future price chart for all stocks. This is the point of view adopted in Cover’s more

evolved later work (1991, 1996, 1998) on universal portfolios. Finally, we can consider

a sequential interaction whereby the trader and nature choose their “moves” one at a

time. Each period, nature waits for the trader to pick his portfolio and then, having

observed this choice, nature picks the returns of all stocks. This back-and-forth happens

repeatedly until the end of the trader’s investment horizon. For instance, the binomial

option pricing model takes just this view. In that model, the trader is able to rig his

strategy so that his final wealth exactly replicates the payoff of some derivative, in every

possible variation of countermove.

1.1 Definitions and notation

Suppose there are m underlying assets (henceforth called “stocks”) that are traded in

T discrete sessions, called t ∈ {1, ..., T}. Let Stj be the price of stock j at the close
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of session t, and let xtj be the gross return on a $1 investment in stock j in session t.

That is, xtj =
Stj

St−1,j
, assuming that no dividends were paid in trading session t. More

generally, if each share of stock j receives a dividend of δtj at the end of session t, then

xtj =
Stj+δtj
St−1,j

.

We assume ourselves to be small in relation to the market, so that, at the start of

session t, it is possible to buy any number of shares of stock j at the opening price

S(t−1, j) (so long as we can afford it), and thereby participate fully in the gross return

xtj . The portfolio that we buy at the open of session t (= the close of session t − 1)

must be held until the open of session t+ 1, at which time our holdings in the various

stocks will be adjusted. It is presumed that this buying activity is too insignificant to

sway the behavior of the wider market. There are no taxes or transaction costs. The

gross-return vector in session t is denoted xt = (xt1, ..., xtj , ..., xtm). The return history

after session t is denoted xt = (x1, ..., xt). The T×m matrix xT = [xtj ] is denoted simply

X. In accordance with limited liability, we have all positive prices and gross returns,

e.g. Stj , xt ≥ 0

We take up the most general derivative security, which pays off an amount

D(x1, ..., xT ) at the close of session T . This allows for path-dependence, e.g. the possibil-

ity that D(·) is not expressible as a function solely of the final stock prices ST1, ..., STm.

The derivative is written (created and sold) by a primary-dealer at t = 0. In each

trading session thereafter, D is traded on the secondary market alongside the m stocks.

Note that in each session we have a continuum of possible outcomes xt ∈ Rm+ , so that

D not generally a redundant asset.

Example 1. Dj = Max
1≤s≤t≤T

Ssj − Stj

This is the maximum drawdown suffered by an investor who owns one share of

stock j for the duration 1 ≤ t ≤ T . Somebody who particularly hates drawdowns, for

instance, might be willing to pay a significant upfront fee in exchange for $Dj at T .

Example 2. Dj = Max
1≤s≤t≤T

Stj − Ssj

This is the profit that an investor could have realized from the single shrewdest trade

over 1 ≤ t ≤ T . That is, someone looks back at the chart of stock j, wishing he had

bought in s∗ and sold in t∗.
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Example 3. D = Max
1≤s≤t≤T

∑m
j=1 nj(Ssj − Stj)

Here, D represents the maximum drawdown suffered by an investor who bought an

initial portfolio with nj shares of each stock j, and held it throughout 1 ≤ t ≤ T . If

nj < 0, it means that asset j was sold short at the start of session 1, and covered at the

end of T .

Example 4. Dj = Max
1≤j≤m

STj

Dj gives the gross return on $1 invested in the best performing stock over 1 ≤ t ≤ T .

Unlike the foregoing examples, this D is path-independent.

In all these examples, the full expression for D(x1, ..., xT ) is gotten by substituting

Stj = S0jx1jx2j · · · xtj . In the sequel it will indeed prove convenient to deal with

returns instead of prices, chiefly because a greedy trader or gambler only ever cares

about returns, e.g. the factor by which he has multiplied his money on any given bet.

1.2 Self-financing trading strategies

We consider self-financing trading strategies, generally called θ(·). Literally, the strategy

finances its asset purchases internally, via the sales of other assets. A self-financing

strategy is not subject to any deposits or withdrawals, except for the initial deposit of

money into the strategy.

Thus, a trader deposits $1 into θ(·) at t = 0 and just “lets it ride.” Let θtj be

the fraction of wealth that the trader puts into stock j at the start of session t, where∑m
j=1 θtj = 1. Thus θtj = θtj(x1, ..., xt−1) = θtj(x

t−1). The trader’s portfolio vector in

session t is denoted θt = (θt1, ..., θtm).

For the time being we require that θtj ≥ 0, but this assumption will be relaxed in

Chapter 2. For simplicity, we will merely write θ(x1, ..., xt) ∈ ∆ for the trader’s portfolio

in session t + 1. Formally, then, θ : ∪∞t=1(Rm+ )t → ∆ is a mapping of return histories

into the portfolio simplex.

In the first trading session, when there is no data to speak of, a strategy must

specify some initial portfolio, which I denote by θ(h0), where h0 is the empty history.

For example, a common choice is θ(h0) = (1/m, ..., 1/m).
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In session t, θ(·) multiplies the trader’s wealth by the factor
∑m

j=1 θtj(x
t−1)xtj =

〈θt(xt−1), xt〉, the dot product of the portfolio vector and the return vector. After t

sessions, the trader’s initial dollar has grown into

Wθ(x1, ...., xt) = 〈θ(h0), x1〉〈θ(x1), x2〉 · · · 〈θ(x1, ..., xT−1), xT 〉. (1.1)

This equation formalizes the fact that θ(·) is self-financing. Notice how every self-

financing trading strategy θ induces a derivative Dθ(x1, ..., xT ) = Wθ(x1, ..., xT ).

We can consider the dynamic programming state after t periods to be ξt = (x1, ..., xt),

with concatenation as the transition law: ξt+1 = (ξt, xt+1). Thus, both the trader’s ac-

tion and the next state are functions of the current state. The strategies considered in

this thesis thus have infinite memory. In general, one can choose an arbitrary transition

law F (·) and state-dependent portfolio vector θ(·):

ξt+1 = F (ξt, xt+1) (1.2)

θt+1 = θ(ξt) (1.3)

Example 5. Helmbold’s (1998) “exponentiated gradient” strategy only ever cares to

remember yesterday’s return xt, and yesterday’s portfolio vector θt, the latter incorpo-

rating all the information about the return history that the strategy deems necessary.

The state is therefore ξt = (θt, xt) with new portfolio vector θt+1 = θ(ξt) and transition

law F (ξt, xt+1) = (θ(ξt), xt+1). Helmbold’s formula for the new portfolio vector is

θt+1,j =

θtj exp

(
η

xtj
〈θt,xt〉

)
∑m

k=1 θtk exp

(
η xtk
〈θt,xt〉

) , (1.4)

where η is a numerical parameter chosen by the practitioner. Here 〈θt, xt〉 =
∑m

j=1 θtjxtj

is the scalar product. The strategy is self-financing on account of the fact that∑m
j=1 θt+1,j = 1.

Definition 1. A derivative D(x1, ..., xT ) is said to be perfectly hedgeable (or replica-

ble) iff there is a self-financing trading strategy θ(·) and an initial deposit p such that

D = p ·Wθ. This (necessarily unique) θ is called the hedging (or replicating) strategy

corresponding to D(·). The (unique) initial deposit p is called the hedging cost.
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Example 6. The general price-weighted index (viz. the Dow) has value D(x1, ..., xt) =

λ(St1 + St2 + · · ·+ Stm)

Here, λ is some scale factor rigged to make the index a “nice” number. The perfor-

mance of the index is uniquely replicated by the strategy θ(St1, ..., Stm) =
1∑m

j=1 Stj
(St1, ..., Stm). In words, all you do is buy λ shares of each stock, and never trade

again. The hedging cost is the initial value of the index.

Example 7. The general market capitalization-weighted index (e.g. S&P, NASDAQ

Composite) has value λ(n1St1 +n2St2 + · · ·+nmStm), where nj is the number of shares

firm j has outstanding, and λ is a scale factor.

The cap-weighted index is replicated by θ(St1, ..., Stm) = 1∑m
j=1 njStj

(n1St1, ..., nmStm).

In words, all you do is buy a “market portfolio” that holds each asset in proportion to

its market capitalization, and never trade again. Notice how 〈θ(St1, ..., Stm), xt+1〉 =∑m
j=1 njS(t+1,j)∑m
j=1 njS(t,j)

, the ratio of the index value at the close of t + 1 to the index value at

the close of t.

Assuming that D = p ·Wθ can be hedged perfectly, the unique replicating strategy

is derived as follows. Start with

〈θ(xt), xt+1〉 =
Wθ(x

t+1)

Wθ(xt)
, (1.5)

and substitute xt+1 = ej , where ej is the jth unit basis vector. This gives θj(x
t) =

Wθ(xt,ej)
Wθ(xt) . Summing over j, we get Wθ(x

t) =
∑m

j=1Wθ(x
t, ej). Applying this last formula

repeatedly, one gets the formulas

Wθ(x
t) = Σ

(jt+1,...,jT )∈{1,...,m}T−t
Wθ(x

t, ejt+1 , ..., ejT ) (1.6)

θk(x
t) =

Σ
(jt+2,...,jT )∈{1,...,m}T−t−1

D(xt, ek, ejt+2 , ..., ejT )

Σ
(jt+1,...,jT )∈{1,...,m}T−t

D(xt, ejt+1 , ..., ejT )
(1.7)

Here θk(x
t) denotes the kth coordinate of θ(xt).

In general, the above formula for θ(·) in terms of D(·) may well be an extraneous

solution of the functional equation D = Wθ. Of course, one must substitute the strategy

θ so obtained back into the equation D = Wθ, and verify that it is a solution. This

phenomenon is illustrated below.
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Example 8. Consider a fictitious investor who has advance knowledge of all stock

prices. Each trading session, he puts all his money into the stock that will happen

have the greatest percentage increase in price, achieving a growth factor of Max
1≤j≤m

xtj.

His final wealth is then D(x1, ..., xT ) =
∏T
t=1

{
Max

1≤j≤m
xtj

}
. Obviously, this derivative

should not be perfectly replicable — and in fact, substituting it into the above yields the

extraneous solution θk(x
t) ≡ 1/m. Substituting into D = Wθ then leads to the false

statement

m−T
T∏
t=1

{ m∑
j=1

xtj

}
≡

T∏
t=1

{
Max

1≤j≤m
xtj

}
(1.8)

The upper and lower envelopes of the market are illustrated below for 100 days

in 2017, with m = 2 stocks (Amazon, Netflix). The value of the upper envelope at t

represents the wealth of somebody who, in each period 1 ≤ s ≤ t, was lucky enough

to have all of his wealth in the best-performing stock that period. That is, the upper

envelope after t periods is
∏t
s=1

{
Max

1≤j≤m
xsj

}
. Similarly, the value of the lower envelope,∏t

s=1

{
Min

1≤j≤m
xsj

}
represents the wealth of somebody who, in each period 1 ≤ s ≤ t,

was unlucky enough to have all his wealth in the worst-performing stock that period.

The wealth path of any trading strategy must lie between these two bounds. It is

not necessarily the case, however, that every path that lies between these two bounds

could have been generated as the wealth series of some trading strategy.
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Figure 1.1: The envelope of feasible wealth paths for 100 days in 2017, trading

Amazon and Netflix

However, this entire process has given an interesting argument in favor of the equal

weight index θ(xt) = (1/m, ..., 1/m). In any given trading session t, having no idea

what the best performing stock j will be, we spread our money evenly among the m

stocks, thereby guaranteeing that at least 1/m of our money will achieve the growth

factor ||xt||∞.

Theorem 1. A derivative D(x1, ..., xT ) can be exactly dynamically replicated if and

only if it satisfies the following functional equation, identically for all x1, ..., xT :

T∏
t=1

( Σ
(jt,...,jT )∈{1,...,m}T−t+1

D(xt−1, ejt , ..., ejT )xtjt

Σ
(jt,...,jT )∈{1,...,m}T−t+1

D(xt−1, ejt , ..., ejT )

)
≡ D(x1, ..., xT )

Σ
(j1,...,jT )∈{1,...,m}T

D(ej1 , ..., ejT )

(1.9)

Corollary 1. If D(·) can be hedged exactly, then the hedging cost is

p = Σ
j1,...,jT

D(ej1 , ..., ejT ).
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Corollary 2. If D(x1, ..., xT ) ≥ 0 is a multilinear form, e.g. it is linear separately in

each vector argument xt, then D can be replicated exactly.

To see this, we can write D(xt−1, ejt , ..., ejT )xtjt = D(xt−1, xtjtejt , ..., ejT ) on account

of the fact that D is homogeneous separately in each argument. We then sum this

equation over the indices jt = 1, 2, ...,m, and get D(xt, ejt+1 , ..., ejT ) on account of the

fact that D is additive separately in each vector argument. The product on the left-hand

side of the functional equation is now seen to be telescopic; it collapses exactly to the

ratio given on the right-hand side of the functional equation.

1.3 Multilinear derivatives

There are many examples of derivatives (or final wealth functions) that are linear sep-

arately in each of the vectors x1, ...., xT . In fact, any buy-and-hold strategy yields

a multilinear final wealth function: start with $1 and make some initial distribution

c = (c1, ..., cm) ∈ ∆ of wealth into the m stocks, and never trade again, yielding

W =
m∑
j=1

cjx1jx2j · · · xTj (1.10)

In particular, the familiar price- and capitalization-weighted indexes are multilinear

derivatives. Equal weight indexes are also multilinear, e.g.

W = m−T 〈1, x1〉〈1, x2〉 · · · 〈1, xT 〉, (1.11)

where 1 is a vector of ones.

We take up the problem of hedging multilinear derivatives D(x1, ..., xT ) ≥ 0. Let

θ be the corresponding hedging strategy. On account of the fact that Wθ = D
p , Wθ is

itself a positive multilinear form. We thus have the expansion

Wθ(x1, ..., xT ) = Σ
j1,...,jT

Wθ(ej1 , ...., ejT )x1j1x2j2 · · · xTjT , (1.12)

where the form’s coefficients Wθ(ej1 , ..., ejT ) are all positive and sum to 1. After some

careful substitutions and manipulations, and remembering that Wθ(·) is supposed to be
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multilinear, we recover the replicating strategy

θk(x
t) =

Σ
(j1,...,jt,jt+2,...,jT )∈{1,...,m}T−1

D(ej1 , ..., ejt , ek, ejt+2 , ..., ejT )x1j1x2j2 · · · xtjt

Σ
(j1,...,jT )∈{1,...,m}T

D(ej1 , ..., ejT )x1j1x2j2 · · · xtjt
(1.13)

The denominator (independent of k) is just the sum of the numerators for k = 1, ...,m.

The numerators are multilinear functions of the return data as it is known after t trading

sessions. In the kth numerator, the coefficient of the product x1j1 · · · xtjt is given by

α(j1, ..., jt) = Σ
jt+2,...,jT

D(ej1 , ..., ejt , ek, ejt+2 , ..., ejT ). (1.14)

For illustrative purposes, I give some additional discussion of the fact that this is not

an extraneous solution. The key thing to recognize is that, in the general derivation of

θ above, we took the equation

〈θ(xt), xt+1〉 =
Wθ(x

t, xt+1)

Wθ(xt)
, (1.15)

and made the m substitutions xt+1 = ej . For general derivatives this transforma-

tion is not reversible, but for multilinear D(·) it is. Given the equations θj(x
t) =

1
Wθ(xt)Wθ(x

t, ej), multiply both sides by xt+1,j and sum over j. The multilinearity of

W (·) then gives the desired result. A brute force verification can also be given as follows:

in the above formula given for θk(x
t), one multiplies both sides by xt+1,k, sums over k,

and then forms the product of the resulting equations for t = 0, 1, ..., T − 1. This last

product is telescopic, and evaluates to

D(x1, ..., xT )

Σ
j1,...,jT

D(ej1 , ..., ejT )
(1.16)

Definition 2. A self-financing trading strategy θ is called multilinear iff its induced

final wealth function Wθ(x1, ..., xT ) ≥ 0 is multilinear over the domain (Rm+ )T .

Thus, rather than specify θ directly, one can simply give (mT ) numerical coefficients

W (ej1 , ..., ejT ) that are nonnegative and sum to 1. The set of multilinear strategies can

be identified with the unit simplex in RmT .
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1.3.1 Interpretation of multilinear final wealth as a convex combina-

tion of the final wealths of extremal strategies

The general (normalized) multilinear strategy is characterized by its final wealth func-

tion W (x1, ..., xT ) = Σ
(j1,...,jT )∈{1,...,m}T

α(j1, ..., jT )x1j1x2j2 · · ·xTjT , where the coefficients

α(j1, ..., jT ) are positive numbers that sum to 1. This has a very simple, intuitive ex-

planation in terms of extremal trading strategies. Consider the trading strategy that, in

period 1, puts all its wealth into stock j1. Then in period 2, it puts all of its wealth into

j2, all into j3 in period 3, and so on. After t periods, a $1 investment in this strategy

grows into x1j1x2j2 · · · xtjt dollars. Now, imagine somebody who starts with a dollar

at t = 0, and distributes this money in some way among the mT extremal strategies.

Say, he puts an amount α(j1, ..., jT ) into the jT = (j1, ..., jT )th strategy. Then his final

wealth is precisely Σ
jT∈{1,...,m}T

α(jT )x1j1x2j2 · · · xTjT . The trick is that if m or T are

large, accounting for the performance of so many (mT ) strategies becomes intractable.

After t trading sessions, the (jT )th strategy has accumulated α(jT )x1j1x2j2 · · · xtjt
dollars, and the trader’s aggregate wealth is Σ

j1,...,jT
α(jT )x1j1 · · · xtjt . Note that the

coefficient of x1j1 · · · xtjt is Σ
jt+1,...,jT

α(j1, ..., jT ). To find the proportion of wealth

to bet on stock k after partial history x1, ..., xt, we consider the extremal strategies

(j1, ..., jt, k, jt+2, ..., jT ) that have their money in stock k in period t + 1. Thus, in ag-

gregate, Σ
(j1,...,jt,jt+2,...,jT )∈{1,...,m}T−1

α(j1, ..., jt, k, jt+2, ..., jT )x1j1 · · · xtjt dollars are bet

on stock k in period t+ 1. The final portfolio weight is thus

θk(x1, ..., xt) =

Σ
(j1,...,jt,jt+2,...,jT )∈{1,...,m}T−1

α(j1, ..., jt, k, jt+2, ..., jT )x1j1 · · · xtjt

Σ
j1,...,jT

α(jT )x1j1 · · · xtjt
(1.17)

Put differently, we can consider extremal strategies to be the recommendations of a

collection of mT “experts,” whereby Mr. jT is thinks that jt will be the best performing

stock in session t. Notice that the final wealth of one such expert jT will be the

upper envelope ||x1||∞ · · · ||xT ||∞ of the market. Correspondingly, one of the experts

will also fail miserably, achieving the lower envelope
∏T
t=1 Min

1≤j≤m
xtj of the market. A

multilinear trading strategy amounts to a prior distribution of wealth among these

experts. However, the number of experts is far to large to actually carry this out in

practice: instead we just do the accounting and calculate the portfolio vectors θt(x
t−1)
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implied by the prior distribution of wealth α(jT ).

Illustration

To illustrate the concept of an extremal strategy, I plot the daily price histories of

Amazon and Netflix, together with the bankrolls of a pair of extremal strategies jT =

(j1, ..., jT ) and kT = (k1, ..., kT ) drawn a priori at random from the set {1, 2}T . In

general, the designer of a multilinear trading strategy specifies in advance a (possibly

large) set of extremal strategies, along with an initial distribution of wealth among these

extremals.

Figure 1.2: Making an initial deposit of 50 cents into a pair of extremal

strategies, and letting it ride

1.4 Symmetric multilinear strategies and their computa-

tion

It becomes computationally onerous to carry out the accounting for mT experts when m

or T is large — some simplification must be made to the prior distribution α(j1, ..., jT ).
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For example, a buy-and-hold strategy only distributes wealth among m experts, e.g.

α(jT ) is only positive for jT = (k, k, ..., k) for some stock k. That is, buy-and-hold

strategies only consider experts Mr. k that recommend the same stock k each pe-

riod. For the sake of tractability, we will assume that the probability mass function

α(j1, ..., jT ) is symmetric in the indices j1, ..., jT . Thus, the only relevant information

about Mr. jT is the fact that he makes n1 total recommendations of stock 1, n2 total

recommendations of stock 2, ... , and stock nm total recommendations of stock m. The

numbers

n(jT ) = (n1(jT ), ..., nm(jT )) (1.18)

constitute the type of jT . Two experts jT and kT are considered equivalent (jT ∼ kT )

iff they have the same type. The possible experts (types) now correspond to solutions of

the equation n1+···+nm = T in nonnegative integers. This de facto reduces the number

of experts to
(
m+T−1
m−1

)
= O(Tm−1). The type class corresponding to (n1, ..., nm) is an

amalgamation of
(

T
n1 n2 ···nm

)
= T

n1!n2!···nm! experts. For a pairs trading strategy with 2

stocks, this amounts to just T + 1 experts to keep track of. The assumed symmetry of

the prior monetary distribution α(·) expresses an agnosticism with respect to time: the

trader has no a priori knowledge of the how the future will play out, and will learn on

the fly from the observed performance of the experts in managing money. If experts jT

and kT recommend Amazon and Netflix with the same sample frequencies, the designer

of a symmetric multilinear strategy has no prior basis on which to assume that one will

outperform the other. For instance, if somebody believes that the return vectors xt will

be independent and identically distributed across time (but he is ignorant of the CDF

F (·) from which these returns will be drawn), then it would be preposterous to use a

multilinear trading strategy that is not symmetric.

We will abuse notation and write α(n1, ..., nm) for the initial amount of money dis-

tributed to any given trader of type n. The type-n experts are thus given
(

T
n1,...,nm

)
α(n)

dollars in aggregate to manage. α(n) must then satisfy Σ
n1+···+nm=T

(
T

n1,...,nm

)
α(n) = 1.

It is a good idea to choose this function itself to be symmetric in the variables n1, ..., nm,

so that no stock is treated a priori in a way that is different from any other.

Example 9. α(n) = λnn1
1 nn2

2 · · ·nnmm , where λ =

{
Σ

n1+...+nm=T

(
T

n1,...,nm

)
nn1

1 · · ·nnmm
}−1

.

This is the prior distribution in Cover’s (1998) universal portfolio.
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Example 10. α(n) = λn1!n2! · · ·nm!, where λ =

{
Σ

n1+...+nm=T

(
T

n1,...,nm

)
n1! · · ·nm!

}−1

={(
m+T−1
m−1

)
T !
}−1

. Thus α(n) =

{(
m+T−1
m−1

)(
T

n1,...,nm

)}−1

. This is the prior distribution

in Cover’s (1991) universal portfolio. This strategy is thus characterized by the fact that

it distributes an equal amount of money into each type class.

1.4.1 Simplification of θk(x
t)

For a symmetric multilinear trading strategy, the numerator of θk(x
t) can be simplified

as follows. Let α(jt, k) = Σ
jt+1,...,jT

α(jt, k, jt+1, ..., jT ) be the marginal pmf obtained from

α by summing over the coordinates jt+1, ..., jT . This number depends only on k and

the type (N1, ..., Nm) of jt, where N1 + · · · + Nm = t. In fact, if jt has type N , then

α(jt, k) is equal to

Σ
n1+···+nm=T−t−1

(
T − t− 1

n1, ..., nm

)
α(N1 + n1, ..., Nk + nk + 1, , ..., Nm + nm). (1.19)

Denote this number by αtk(N1, ..., Nm). We then have

Σ
jt
α(jt, k)x1j1 · · · xtjt = Σ

N1+···+Nm=t
αtk(N) Σ

jt has typeN
x1j1 · · · xtjt . (1.20)

Let σ(N1, ..., Nm;xt) denote the number Σ
jt has typeN

x1j1 · · · xtjt . Effective calculation of

the numerator of θk(x
t) thus can be broken into three parts:

1. Calculate σ(N1, ..., Nm;xt) by a recursive method

2. Calculate αtk(N) by a recursive method (if α(·) allows) or else by direct summation

3. Explicitly add all the terms in

Σ
N1+···+Nm=t

αtk(N)σ(N ;xt) (1.21)

A recurrence for σ(N ;xt) is derived as follows. σ(N ;xt) =∑m
k=1

{
Σ

jt−1 has type (N1,...,Nk−1,...,Nm)
x1j1 · · · xt−1,jt−1

}
xtk =

Σm
k=1σ(N1, ..., Nk − 1, ..., Nm)xtk

= Σm
k=1σ(N1, ..., Nk − 1, ..., Nm;xt−1)xtk. (1.22)
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The recursion gradually reduces the numbers N1, ..., Nm until one of them (say, the kth)

is 1 and the rest are 0. The boundary conditions are then

σ(0, ..., 1
k
, ..., 0;x1) = x1k. (1.23)

Thus, calculating σ(N ;xt) requires m recursive calls, and the recursion tree is t − 1

levels deep. One is required to calculate all the numbers σ(r1, ..., rN ;xt) for which

rk ≥ 0 and 1 ≤ r1 + · · · + rm ≤ t − 1. This amounts to calculating and storing∑t−1
s=1

(
s+m−1
m−1

)
= O(tm) numbers, which is possible for small values of m. A direct re-

cursive implementation should not be attempted, as the recursion tree will involve enor-

mous duplication. Rather, the numbers σ(r1, ..., rN ;xt) should be tabulated according

to the “bottom up” approach. At step s, we tabulate all the numbers σ(r1, ..., rN ;xt)

for which r1 + · · ·+ rN = s, making use of all the numbers tabulated in step s−1. Once

step s is completed, the numbers tabulated in step s− 1 no longer need to be stored.

1.5 Cover’s (1991, 1996) horizon-free universal strategies

Cover’s horizon-free universal portfolio is a leading example of a symmetric multilinear

trading strategy. In addition to its being characterized as that symmetric multilinear

strategy that distributes its initial capital uniformly among the type classes of the

extremal strategies, it can also be understood as a distribution of wealth among a class

of experts whose recommendations are horizon-free in the sense that they are not tied

to a particular time or investment horizon. In Cover’s words, the strategy tries to locate

the “financial center of gravity” of the stockmarket. The portfolio in session t+1 is given

as a performance-weighted average of a set of simpler strategies, namely the constant

rebalancing rules.

Definition 3. A rebalancing rule is a constant trading strategy θ(xt) ≡ c = (c1, ..., cm) ∈
∆.

This means that, at the start of each trading session t, the trader puts a (fixed)

proportion cj ≥ 0 of his wealth into asset j, where
∑m

j=1 cj = 1. At the close of trading

session t (after xt is realized, but before the portfolio is rebalanced), the trader no longer

has exactly cj of his wealth in asset j — rather, he has the fraction

cjxtj∑m
k=1 ckxtk

(1.24)
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in asset j. In order to rebalance his portfolio back to the fixed fractions c = (c1, ..., cm),

the trader will have to sell some of his holdings in certain stocks j, and use the proceeds

to increase his holdings in some of the other stocks. He will have to buy additional

shares of stock j if the inequality

(1− cj)xtj <
∑
k 6=j

ckxtk (1.25)

is true; otherwise he will have to sell some shares of stock j. Let ntj denote the number

of shares of stock j the gambler holds at the end of session t. Then c-rebalancing dictates

that he buy

cj
Stj

m∑
k=1

ntkStk − ntj (1.26)

additional shares of stock j.

We have already met the equal weight index θ(xt) = 1/m. Generally speaking,

rebalancing rules provide mechanical procedures whereby one buys low and sells high.

Just as soon as some stock j starts to outperform, the trader lightens his load, rerout-

ing the profits into the (relatively cheaper) stocks −j. Empirical backtests are fairly

definitive on the value of rebalancing: most buy-and-hold investors stand to gain from

annual, semi-annual, or quarterly rebalancing. Most of the time, one finds that peri-

odic rebalancing leads to some combination of higher rates of return, lower risk, lower

max drawdowns, greater alpha, or higher Sharpe and Sortino ratios. The effect is most

pronounced when the portfolio consists of several volatile, uncorrelated stocks.

Notice that a fortiori, the final wealth 〈c, x1〉 · · · 〈c, xT 〉 from the c-rebalancing rule

is a symmetric multilinear form. After expansion, we have, using the terminology of the

prequel,

W (xt) = Σ
n1+···+nm=T

cn1
1 · · · c

nm
m σ(n1, ..., nm;xt) (1.27)

The rebalancing rules can be thought to constitute a continuum of experts c ∈ ∆,

with Mr. c recommending the portfolio θt = c each day. After T periods, some one of

these experts c∗(x1, ..., xT ) will wind up achieving a growth factor that is greater than

any other. In hindsight, we will regret not having used c∗(xT ) to begin with. The key

insight here is that someone should make an initial distribution of his dollar among the

continuum of rebalancing rules c ∈ ∆ and let it ride, in a vein similar to the extremal

strategies. For the sake of what follows, a “rebalancing rule” will mean a point of the
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set C = {(c1, ..., cm−1) ≥ 0 : c1 + · · ·+ cm−1 ≤ 1}, which is to say, the volume below the

set ∆ = {(c1, ..., cm) ≥ 0 : c1 + · · ·+ cm = 1} in the positive orthant.

Let F (·) be the CDF of this prior distribution of wealth. If F has a corresponding

density f(·), this means that the rebalancing rules in the vicinity of c have been dis-

tributed money at a rate of f(c) dollars per unit of volume; the total amount of money

distributed to this vicinity is f(c)dc1 · · · dcm−1 dollars. Assuming that f is positive and

continuous, the neighbordhood of c∗(xT ) is guaranteed to receive a positive amount of

money to manage. Of course, this is in spite of the fact that the location of c∗(xT ) is not

known in advance. Over time, the various rebalancing rules will grow their bankrolls

at different per-period geometric rates ρ∗(c). The aggregate wealth of all the experts

(read, the trader’s wealth) will come to be dominated by c∗(xT ).

For example, suppose that F (·) distributes the initial dollar among a finite number

of rebalancing rules, call them c1, ..., cr, ..., cR. Suppose that Mr. r grows his money at

the rate ρr, so that the growth factor he achieves after t periods is eρrt. Let f(cr) > 0

be the initial amount of money given to Mr. r to manage. Let r∗ be the index of the

rule with the highest geometric growth rate. Then the aggregate wealth after t periods

is
R∑
r=1

f(cr)e
ρrt = eρr∗ t

[
f(cr∗)− Σ

r 6=r∗
f(cr)e

(ρr−ρr∗ )t

]
, (1.28)

which grows at an asymptotic rate of ρr∗ . Notice that this holds good for any distribution

of money at all, so long as each rebalancing rule r gets a positive amount of money.

We see that there is no need (at least theoretically) to be satisfied with distributing

the initial dollar among a finite number of rebalancing rules. After t periods, the rules

in the vicinity of c have

〈c, x1〉〈c, x2〉 · · · 〈c, xt〉f(c)dc1 · · · dcm−1 (1.29)

dollars, so that the trader’s total wealth after t plays is∫
c∈C
〈c, x1〉〈c, x2〉 · · · 〈c, xt〉f(c)dc1 · · · dcm−1 (1.30)

Of course, we cannot in reality keep tabs on a continuum of rebalancing rules: we

must do the accounting and calculate the implied portfolio vectors θ(x1, ..., xt). What

proportion of wealth with the trader (in aggregate) have in stock k in trading session
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t + 1? Since Mr. c keeps the fixed fraction ck of his wealth in stock k at all times,

evidently the trader has, in total∫
c∈C

ck〈c, x1〉〈c, x2〉 · · · 〈c, xt〉f(c)dc1 · · · dcm−1 (1.31)

dollars invested in stock k. At last, we have the following compact formula for the

trader’s portfolio vector in period t+ 1:

θ(xt) =

∫
c∈C c〈c, x1〉〈c, x2〉 · · · 〈c, xt〉f(c)dc1 · · · dcm−1∫
c∈C〈c, x1〉〈c, x2〉 · · · 〈c, xt〉f(c)dc1 · · · dcm−1

. (1.32)

The trader’s initial portfolio (when there is no return data as yet) is
∫
c∈C cf(c)dc1 · · ·

dcm−1, e.g. the the mean vector of the distribution F (·). Note that the volume of C is
1

(m−1)! , so that the uniform density over C is f(c) = (m− 1)!. This constant matters for

direct calculation of the trader’s wealth after t plays, but is irrelevant to the formula

for θ(xt) as it cancels from the numerator and denominator. Under a uniform prior, the

initial portfolio is the centroid (1/m, ..., 1/m).

Notice that (by direct inspection) the final wealth is linear in each period’s return

vector xt, and obviously permuting the order of x1, ..., xT does not affect the final

wealth. Thus, every prior distribution F (·) over C leads to a symmetric multilinear

trading strategy. These strategies have the elegant feature that their behavior depends

only on the return data x1, ..., xt as it is known after t plays, without depending in any

specific way on a specific investment horizon T . More explicitly, W (xT ) is equal to

Σ
n1+···+nm=T

(∫
c∈C

cn1
1 · · · c

nm−1

m−1 (1− c1− ...− cm−1)nmf(c)dc1 · · · dcm−1

)
σ(n1, ..., nm;xT )

(1.33)

Recall that monomial functions over C can be integrated exactly: the number

cα1−1
1 · · · cαm−1−1

m−1

(
1−

m−1∑
j=1

cj

)αm−1

(1.34)

is the (unnormalized) multivariate Beta (or Dirichlet) density with parameter vector

α = (α1, ..., αm), and its integral is the multivariate Beta function,

B(α) =
Γ(α1)Γ(α2) · · · Γ(αm)

Γ(α1 + · · ·+ αm)
. (1.35)
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In the above formula for W (xT ) we have αj = nj + 1, so that the coefficient of

σ(n1, ..., nm;xT ) is (m− 1)! n1!···nm!
(m+T−1)! , which is indeed equal to

{(
m+T−1
m−1

)(
T

n1,...,nm

)}−1

,

as promised above.

As usual, let N = (N1, ..., Nm) be the type of jt. Similarly, let n = (n1, ..., nm) be

the type of (jt+2, ..., jT ). Then, making use of the notation established above, we have,

for the uniform prior over C,

αtk(N) =

Σ
N1+···+Nm=T−t−1

(
T−t−1
N1,...,Nm

)
(n1 +N1)! · · · (nk +Nk + 1)! · · · (nm +Nm)!(

T+m−1
m−1

)
T !

(1.36)

1.6 Multilinear superhedging

Examples 1-4 and Example 8 involved derivatives D(x1, ..., xT ) that, while not mul-

tilinear, were multiconvex, that is, convex separately as a function of each period’s

gross-return vector xt. For instance, D(x1, ..., xT ) = ||x1|| · · · ||xt|| has this property for

any choice of norm. In general, when exact replication is not possible, we can turn to

super- and sub-hedging:

Definition 4. A super-hedge (or super-replicating strategy) for D(·) is a self-financing

trading strategy θ(·) and an initial deposit p, such that p ·Wθ(x1, ..., xT ) ≥ D(x1, ..., xT )

for all x1, ..., xT . When the sense of the inequality is reversed, then (p, θ) is called a

sub-hedge for D.

In words, a super-hedge is a trading strategy that generates cash flows greater than

or equal to the derivative in any outcome. If (p, θ) is a super-hedge, then the price of

the derivative at h0 cannot exceed p: for otherwise, somebody could short the derivative

for, say, p + ε, pocket the ε, and then buy a super-hedge for p. This guarantees the

trader arbitrage profits of at least ε.

Definition 5. The superhedging cost (superhedging price) of a derivative at t = 0 is the

infimum of all p such that (p, θ) is a super-hedge for some θ. If no superhedge exists,

the superhedging price is therefore +∞.
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If D is convex separately in each xt, then, one derives the bound

D(x1, ..., xT ) ≤ Σ
j1,...,jT

D(ej1 , ..., ejT )x1j1 · · · xtjt . (1.37)

This means that one can make an initial distribution of D(ej1 , ..., ejT ) dollars to Mr. jT ,

and let it ride, and guarantee to have a final wealth at least as large as the derivative

liability D. The inequality is sharp: it holds with equality on sample paths xT =

(ej1 , ..., ejT ). The bound is proved simply by expanding each xt =
∑m

j=1 xtjej and

writing D(xt, x−t) ≤
∑m

jt=1D(ejt , x−t)xtjt . The general result follows by induction.

Thus, we have already found a good super-hedge for D, one that requires an initial

capital of p = Σ
j1,...,jT

D(ej1 , ..., ejT ). Thus, the super-hedging price, being the infimum

over all possible strategies, is no greater than this number. It is no less either: that is,

if D is multiconvex, then a minimum-cost super-hedge can always be found among the

multilinear trading strategies (generally super-hedges will not be unique).

Theorem 2. For every derivative D, the superhedging cost of D is at least

Σ
j1,...,jT

D(ej1 , ..., ejT ). If D is convex separately in each of its vector arguments, then the

bound holds with equality, and in fact there is a multilinear strategy (among others) that

achieves the bound. This strategy amounts to exact replication of the unique multilinear

form that interpolates D at the mT points (ej1 , ..., ejT ) ∈ RTm.

Proof. Start by writing p ·〈θ(xT−1), xT 〉Wθ(x
T−1) ≥ D(xT−1, xT ). Now substitute xT =

ej , and sum these inequalities over j. On account of the fact that
∑m

j=1 θj(x
T−1) = 1,

we have

p ·Wθ(x
T−1) ≥

m∑
j=1

D(xT−1, ej). (1.38)

Again, we may substitute xT−1 = ek, and then sum over k. Then xT−2 = el, sum over l,

and so forth. After T iterations we are left with p ≥ Σ
j1,...,jT

D(ej1 , ..., ejT ). Now, if D(·)
is multiconvex, then the multilinear strategy corresponding to the final wealth function

Σ
j1,...,jT

D(ej1 , ..., ejT )x1j1 · · ·xTjT is a superhedge that costs Σ
j1,...,jT

D(ej1 , ..., ejT ), thereby

achieving the bound.

Theorem 3. If D is any derivative at all, then its subhedging price at t = 0 is at

most Σ
j1,...,jT

D(ej1 , ..., ejT ). Thus, absent any prior knowledge of the joint distribution of

(x1, ..., xT ), Σ
j1,...,jT

D(ej1 , ..., ejT ) is a rational price for the derivative at t = 0.
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The proof that the subhedging price is at most Σ
j1,...,jT

D(ej1 , ..., ejT ) is the same as

that of Theorem 2, but with the inequalities reversed.

1.7 Specialization to Cover (1998)

We take up the derivative defined by

D(x1, ..., xT ) = Max
c∈∆

〈c, x1〉〈c, x2〉 · · · 〈c, xT 〉. (1.39)

This was already mentioned above in the discussion of horizon-free universal portfolios.

Not knowing what the maximizer c∗(x1, ..., xT ) will be in advance, one basically just

dumps a bunch of money throughout the simplex so as to guarantee that c∗ (wherever

he may be) has some money to manage. In spite of its simplicity, this function is of

extraordinary importance. The maximand amounts to the growth factor achieved by

the rebalancing rule θ(xt) ≡ c. Looking back over the price history, D(·) represents the

growth factor achieved by the most profitable rebalancing rule in hindsight. In passing,

we note that D is indeed convex separately in each xt, being that it is a pointwise max

of linear functions.

A fortiori, the best rebalancing rule c∗(x1, ..., xT ) in hindsight achieves a growth

factor greater than that of any individual stock. That is to say, the suboptimal choice c =

ej in the above optimization problem would have yielded the growth factor x1jx2j · · ·xTj
achieved from buying and holding stock j. Put another way, the continuum of experts

c ∈ ∆ includes a Mr. c whose recommendation is to maintain 100% of wealth in

stock j. The hindsight optimized rule c∗(x1, ..., xT ) therefore achieves more final wealth

than even the best performing stock in the market. It thus beats every buy-and-hold

portfolio, whose final growth factor is a convex combination of the growth factors of the

m individual stocks. Of course, our class of primitive experts c ∈ ∆ does not literally

include experts that advocate buy and hold strategies, other than the m vertices ej .

However, any buy-and-hold strategy can be synthesized by making the appropriate

initial distribution of wealth among the m experts e1, ..., em, and letting it ride. It

would thus be redundant to explicitly include the buy-and-hold strategies explicitly in

some expanded set E of experts. Thus, the target rebalancing rule c∗(x1, ..., xT ) beats

all the familiar price- and capitalization- weighted indices. By definition, it also beats
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the equal weight index c = (1/m, ..., 1/m) ∈ ∆. Naturally, then, the corresponding

super-hedging strategies θ are of great interest.

1.7.1 Interpretation of c∗(x1, ..., xT ) as an estimator of the Kelly rule

Assume for a moment that the xt are drawn iid from the CDF F : Rm → [0, 1]. We

can write 〈c, xt〉 = eρ(c), where ρ is the rate of continuous compounding over the time

interval [t, t + 1]. The trader’s per-period expected growth rate is then E[log 〈c, xt〉].
Naturally, somebody who knew F might seek to maximize the expected growth rate:

c∗(F ) = argmax
c∈∆

E[log 〈c, xt〉] (1.40)

c∗(F ) is called the Kelly rule. The maximum possible expected growth rate is called the

Kelly growth rate, which I denote ρ∗(F ). Somebody who uses the Kelly rule is called a

Kelly gambler. The realized growth rate of the Kelly gambler is∑T
t=1 log 〈c∗(F ), xt〉

T
→a.s. ρ∗(F ) (1.41)

by the law of large numbers. Suppose now that someone uses a non-Kelly rebalancing

rule, say c /∈ c∗(F ). For iid returns xt distributed over the orthant according to an

arbitrary CDF F (·), the per-period growth rate realized by c converges a.s. to the

expected per-period growth rate, by the Law of Large Numbers. By the definition of c,

this growth rate is less than ρ∗(F ). Thus, there is a T so large that for all t ≥ T , the

Kelly gambler has stricly more wealth than Mr. c. The ratio of Mr. c’s wealth to that of

the Kelly bettor will converge to 0. More or less, then, the main excuse for someone not

using c∗(F ) is not knowing what F is. Notice how, by definition, c∗(x1, ..., xT ) achieves

more wealth than c∗(F ) in any finite sample. That is to say, from the standpoint of

rebalancing rules, it is slightly better to know the realized price paths than it is to know

the distribution from which the returns are drawn.

c∗(x1, ..., xt) is a natural estimator for c∗(F ). Given data x1, ..., xt, the sample

analog of E[log 〈c, x〉] is
∑T
t=1 log 〈c,xt〉

T , and maximizing this quantity is equivalent to

maximizing 〈c, x1〉 · · · 〈c, xt〉. An immediate, natural idea is to use the trading strategy

θ(xt) = c∗(xt). In the sequel, we will see that super-hedging D(·) is deeper still: even

more than discovering what the Kelly rule is, the name of the game is to guarantee
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to compound one’s money at the same asymptotic rate as the Kelly gambler. The

strategy c∗(x1, ..., xt) may perform badly if the iid assumption is violated (anybody

who tries it on real return data can confirm this). Super-hedging D, on the other hand,

is model-independent, and has strong pointwise optimality properties.

1.7.2 Superhedging cost

The superhedging cost can be evaluated exactly, on account of the fact thatD(ej1 , ..., ejT )

turns out to have a closed form. If, as usual, (n1, ..., nm) is the type of (j1, ..., jT ), then

we have

D(n1, ..., nm) = Max
c∈∆

cn1
1 cn2

2 · · · c
nm
m (1.42)

This is a standard Cobb-Douglas optimization problem, the solution being c∗j =
nj
T , and

hence D(n1, ..., nm) = (n1
T )n1 · · · (nmT )nm . The tacit convention here is that “00 = 1”.

Let us call the superhedging price p(T,m). Then

p(T,m) = Σ
n1+···+nm=T

(
T

n1 n2 · · · nm

)(
n1

T

)n1

· · ·
(
nm
T

)nm
(1.43)

Example 11. For m = 2 assets, the superhedging cost is p(T, 2) =∑T
j=0

(
T
j

)( j
T

)j(
T−j
T

)T−j
=

2
∑dT

2
e−1

j=0

(
T
j

)( j
T

)j(
T−j
T

)T−j
+ 1{T is even}

(T
T
2

)
2−T .

Taking logs of the defining inequality for super-hedging, we therefore have

log D(x1, ..., xT )− logWθ(x1, ..., xT )

T
≤ log p(T,m)

T
, (1.44)

where θ is such that (p(T,m), θ) is a super-hedge for D. Let ρθ(x1, ..., xT ) be the

continuously compounded growth rate achieved by θ, and let ρ∗(x1, ..., xT ) be the growth

rate achieved by the best rebalancing rule in hindsight. Then

ρ∗(xT )− ρθ(xT ) ≤ log p(T,m)

T
(1.45)

holds for all x1, ..., xT .

Example 12. Considered as a pairs trading strategy that rebalances annually, on a

horizon of T = 30 years one can guarantee to achieve within 6.7% of the compound
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annual growth rate of the hindsight-optimized rebalancing rule for the relevant pair of

stocks. This guarantee is the best possible.

Example 13. Over the 10-year period 5/1/2007 to 5/1/2017, Amazon (AMZN) grew at

a continuously-compounded annual rate of 24%, and Netflix (NFLX) grew at 33.6%. The

best annual rebalancing rule in hindsight was to put (16%,84%) into (AMZN, NFLX).

The hindsight-optimized rule grew its wealth at a continuous annual rate of 38%. The

pairs strategy was guaranteed a priori to achieve within 15.4% of this rate, e.g. it would

have returned at least 22.6% per year, compounded continuously.

Figure 1.3: The best rebalancing rule in hindsight: annual pairs trading (Ama-

zon, Netflix) 2007-2017

Cover’s insight is that lim
T→∞

p(T,m) = 0. This is a beautiful result: it means that the

super-replicating strategy θ compounds its money at the same asymptotic rate as the

best rebalancing rule in hindsight. This convergence is uniform, on account of the fact

that the above bound is independent of the return path x1, ..., xT . The actual process

from which ω = (x1, ..., xT ) is drawn is rendered completely irrelevant. Now, if it so

happens that the xt are indeed drawn iid from F (·), then on account of the fact that

ρ∗(F ) ≤ ρ∗(x1, ..., xT ), the Kelly gambler’s excess growth rate (over and above that of

a trader who uses θ) converges uniformly to 0.
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On account of the fixed horizon T , the term uniform demands explanation. To be

quite correct, for any tolerance ε (say, 0.0001%, or whatever), there is a horizon Tε so

large that

ρ∗(x1, ..., xT )− ρθ(x1, ..., xT ) ≤ ε (1.46)

for all x1, ..., xT ∈ Rm+ .

It is edifying to express this result in Blackwell’s approachability terminology. Con-

sider the set of all (F, ρ) such that ρ ≥ EF [log 〈c∗(F ), xt〉], where c∗(F ) is the Kelly

rule corresponding to F . This set, called the Bayes envelope of the stockmarket, is a

convex set of vector payoffs, on account of it being the epigraph of the convex function

F 7→ EF [log 〈c∗(F ), xt〉]. In repeated play against the stock market, the trader can force

the empirical average (ρ, F ) to converge to the Bayes envelope, where ρ is the trader’s

realized per-period growth rate of capital, and F is the empirical CDF of the currently

known return history. Whereas the Blackwell theory concentrates on minimizing the

Euclidean distance to this envelope, the superhedging strategies seek to minimize the

vertical slackness EF [log 〈c∗(F ), xt〉]− ρ.

To give a simple proof of the fact that p(T,m) → 0, we note first the inequality(
T

n1 n2 ···nm
)
(n1
T )n1 · · · (nmT )nm ≤ 1. Granted this, we get that p(T,m) ≤ Σ

n1+···+nm=T
1 =(

T+m−1
m−1

)
= O(Tm−1), whence log p(T,m)

T → 0. The bound O(Tm−1) is not the best

possible. In fact, p(T,m) = O(T
m−1

2 ), e.g. for m = 2 stocks, the superhedging price

grows like
√
T .

For a given number of stocks m, and a tolerance ε, a practitioner is advised to select

the smallest horizon Tε such that log p(T,m)
T ≤ ε. Of course, he will only have to wait T

periods in a fictional worst case that amounts to wild market behavior, namely gross

return vectors xt that are unit basis vectors (or nearly so).

1.7.3 Efficient tabulation of p(T,m)

For the sake of exact solving the inequality log p(T,m)
T ≤ ε, I provide a simple recurrence

for p(T,m):

p(T,m) = 1 +
T−1∑
n=0

(
T

n

)
nn(T − n)T−n

T T
p(T − n,m− 1) (1.47)
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We have the boundary conditions p(1,m) = m and p(T, 1) = 1. This recurrence allows

one to rapidly tabulate p(T,m). To avoid numerical overflow on the machine, the

large powers and factorials should be calculated in log-space, and then exponentiated:

exp

(
log
(
T
n

)
+ n log n + (T − n)log (T − n) − T log T

)
. For large T and m this will

start to require the calculation of an enormous number of logarithms. Instead, the

logs Ln = log n should be precomputed and stored for 1 ≤ n ≤ T , along with the

log-factorials LFn = log n+ LFn−1. The numbers log
(
T
n

)
are then calculated easily by

LFT − LFn − LFT−n. These procedures were used to generate the figure below:

Figure 1.4: Guaranteed upper bounds on the excess per-period growth rate

of the best rebalancing rule in hindsight

Naturally, we have the fact that p(T,m) > p(T,m− 1). Reason: p(T,m) = Σ(terms for

which nm = 0)+Σ(terms for which nm > 0)= p(T,m− 1) + Σ(terms for which nm > 0).

It is also true that p(T,m) ≤ p(T + 1,m), e.g. the superhedging cost is increasing in

the horizon. To prove this, we need the fact that D(x1, ..., xt,1) = D(x1, ..., xt), where

1 is a vector of ones. We will also require the fact that D is sub-additive separately

in each vector argument, e.g. D(xt + yt, x−t) ≤ D(xt, x−t) + D(yt, x−t). This is true,

because D is a pointwise max of additive functions. With these two facts in hand, we
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get p(T,m) = Σ
j1,...,jT

D(ej1 , ..., ejT ,1) ≤ Σ
j1,...,jT+1

D(ej1 , ..., ejT+1) = p(T + 1,m), where

we have decomposed 1 = e1 + · · ·+ em and invoked the subadditivity.

For extremely large values of T and m (or for very small ε), direct calculation of

p(T,m) becomes unwieldy, even with the aid of the foregoing recurrences. Fortunately,

we can use Shtarkov’s (1987) bound, which is both very accurate and simple to calculate:

p(T,m) ≤
√
π

m∑
j=1

(
m

j

)
(T2 )

j−1
2

Γ( j2)
=

m∑
j=1

ajT
j−1
2 = O(T

m−1
2 ), (1.48)

where

aj =

√
π
(
m
j

)
Γ( j2) · 2

j−1
2

(1.49)

Figure 1.5: The accuracy of Shtarkov’s bound for m = 2 stocks

For example, with m = 2 stocks, a superhedging strategy with horizon T = 350 periods

will guarantee to compound its money at a per-period rate that is within 0.9% of the
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rate achieved by the best rebalancing rule in hindsight. As far as a practical method

for obtaining fast, accurate solutions of the inequality log p(T,m)
T < ε, one merely solves

the following fixed-point iteration in one variable:

T = g(T ) =
1

ε
log

( m∑
j=1

ajT
j−1
2

)
(1.50)

For large T , since log p(T,m) grows at an asymptotically negligible rate, we will need

to roughly double the horizon in order to cut ε in half. It is thus tempting to think

that one can “cheat” the situation by trading at a far higher frequency. But, realize

that getting within 1% of the compound annual growth rate of the best rebalancing rule

in hindsight under annual trading (T = 320 years if there are 2 stocks) is far different

from getting within 1% of the hindsight-optimized growth rate under, say, daily trading

(T = 320 days). No, the proper equivalence is that, under daily trading, one must

get within 1
252% of the daily growth rate (there are 252 trading days in a year). Daily

trading multiplies the horizon by 252, it’s true — but it also divides the required epsilon

by 252. Intuitively, it should be harder to get within 1
252% of the optimal daily growth

rate, on account of the fact that the hindsight-optimized rebalancing rule will perform

better than the hindsight-optimized rule under annual trading. In fact, for 2 stocks,

this will require 156,500 days, or 621 years. Now, a given trading day (8:30 am to 3

pm central time) lasts 6.5 hours, making for 13 half-hour sessions. Assuming we make

a trade every 30 minutes, we must get within 1
252·30% of the hindsight-optimized per-

session growth rate. This will require nearly 2.5 million half-hour periods, or 759 years.

In trading at a higher frequency, the gambler is accepting weaker guarantees about the

veracity of the growth-rate approximation, in exchange for approximating something

that hopefully has a higher CAGR. Of course, figures like 621 years represent fictional

worst cases that (in all probability) will not actually come to pass.
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Figure 1.6: Longest waiting time needed to get within 1% of the annualized

growth rate of the hindsight-optimized rebalancing rule that makes f trades

per day

Does the number of years required in this chart settle upon a finite limit as f → ∞?

The answer is no.

Theorem 4. Let f be the frequency (in trades per year) with respect to which we perform

the hindsight optimization over rebalancing rules. Let ε be the desired annual tolerance,

e.g. if ε = 0.01, we want to get within 1% of the annualized growth rate of the best

rebalancing rule in hindsight that makes trades at a rate of f per year. Then the number

of years of trading (at a rate of f trades per year) required to make this guarantee is

1
f Min

{
T ∈ N : log p(T,m)

T ≤ ε
f

}
, which tends to ∞ as f →∞.

To prove this, I bound the number Min

{
T ∈ N : log p(T,m)

T ≤ ε
f

}
from below,

as follows. On account of its asymptotic expansion, there is a constant A such that

P (T,m) ≥ A · T
m−1

2 , so that log p(T,m)
T ≥ log A+m−1

2
log T

T . Thus,

{
T ∈ N : log p(T,m)

T ≤

ε
f

}
⊂
{
T ≥ 1 :

log A+m−1
2
log T

T ≤ ε
f

}
. Let T ∗(f) denote the min of this latter set, so
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that
1

f
Min

{
T ∈ N :

log p(T,m)

T
≤ ε

f

}
≥ T ∗(f)

f
, (1.51)

where
log A+m−1

2
log T ∗(f)

T ∗(f) = ε
f . Thus, T ∗(f)

f =
log A+m−1

2
log T ∗(f)

ε , which tends to ∞ as

f →∞, since T ∗(f)→∞. This gives the desired result.

1.7.4 Beating the market asymptotically

A trading strategy θ that achieves the superhedging price can be said to “beat the

market asymptotically,” in the following sense. Let us assume that the return path

xTε = (x1, ..., xTε) is such that the best rebalancing rule in hindsight is able to grow its

money at a compound rate that is at least ε greater than a given index, such as the

S&P 500. Then, since θ achieves a growth rate within ε of the best rebalancing rule, θ

also beats the index. Let S(x1, ..., xT ) denote the growth factor achieved by, say, the

S&P 500 index. Then

logWθ − log S
T

=
logWθ − log D + log D − log S

T
> −ε+ ε = 0 (1.52)

Thus, under this restriction on the return path, we have Wθ(x1, ..., xT ) > S(x1, ..., xT ).

This seems to be a fairly reasonable assumption: witness the extent to which Amazon

or Netflix have crushed the S&P in the past decade. And D is guaranteed to outperform

every individual stock in the index. On the paths xT where Wθ underperforms S(·), the

worst that can happen is that θ compounds its money at a rate ε lower than the index.

Of course, it is not being claimed here that the S&P 500 (or any index) has been

dominated vis-a-vis final wealth. Any strategy θ that aspires to beat some benchmark

must of necessity expose itself to underperformance on certain paths xT , so that it may

win on the others.



Chapter 2

Sequential minimax trading

strategies

2.1 Introduction

The foregoing chapter considered self-financing trading strategies θ, together with an

initial deposit p, that could guarantee (at t = 0) to generate cash flows at T greater

than or equal to some derivative D(x1, ..., xT ), regardless of the outcome (x1, ..., xT ).

However, it is frequently the case that, on some partial history xt = (x1, ..., xt), it

becomes apparent that less money than p was needed to construct a super-hedge.

Equivalently, after observing xt, the trader may be able to dynamically guarantee that

p ·Wθ(x
t, xt+1, ..., xT ) ≥ D(x1, ..., xT ) + ε for some ε > 0. This is on account of the fact

that payoff of the general derivative D(·) is path-dependent.

Let p(x1, ..., xt) denote the cost of the cheapest super-hedge, conditional on having

observed the partial history xt. The interpretation is that someone shorts the derivative

after xt, collects some amount of money that is at least as large as the conditional super-

hedging cost, and uses some of the proceeds to buy a conditional super-hedge. Any left-

over money gets immediately pocketed as an arbitrage profit. In the foregoing chapter

we showed that if (p, θ) is a super hedge at t = 0, then p = p(h0) ≥ Σ
j1,...,jT

D(ej1 , ..., ejT ).

The proof of Theorem 2 actually showed more: if (p(xt), θ) is a conditional super hedge,

30
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then

p(xt) ≥ Σ
jt+1,...,jT

D(x1, ..., xt, ejt+1 , ..., ejT ) (2.1)

In the foregoing chapter, I showed that if D(xt, x−t) is convex separately as a function

of each xt, then there is always a (multilinear) super-hedge that achieves this bound.

This same logic already applies to the general situation.

After partial history xt, we consider the derivative δ(xt+1, ..., xT ) =

D(x1, ..., xt, xt+1, ..., xT ), which is just the restriction of D(·) to the set of all return

paths descended from xt. Then, as before, we simply use the multilinear bound

δ(xt+1, ..., xT ) ≤ Σ
jt+1,...,jT

δ(ejt+1 , ..., ejT )xt+1,jt+1 · · · xT,jT (2.2)

Based on the goings-on in Chapter 1, this already proves that the conditional super-

hedging price is Σ
jt+1,...,jT

D(x1, ..., xt, ejt+1 , ..., ejT ). The original superhedging strategy

at, say, t = 0 is not credible in all subgames xt: when we reach xt, we find occasion to

use a strategy that achieves the conditional superhedging price instead. In the language

of distributing money among extremal strategies, one makes an initial distribution of

wealth among the extremals jT , fully expecting to just “let it ride” so long as nature

plays all unit basis vectors. If xt was not a unit basis vector, then the trader starts

afresh. In the continuation game after xt, the extremal strategies now amount to all

possible sequences (jt+1, ..., jT ) ∈ {1, ...,m}T−t. Given nature’s sub-optimal play so far,

an entirely new distribution of current wealth α(jt+1, ..., jT ) among the extremals is

called for. Moving forward, the trader will “let it ride” so long as nature gets back on

the wagon and starts to play unit basis vectors. If xt+1 is not a unit basis vector, then

this process repeats itself.

2.2 Sequential minimax interpretation

To fully pursue this logic, we consider a full-blown sequential trading game against

nature. The trader is player 1, and he starts with $1. At the start of each trading

session t, nature (player 2) waits for the trader to make his “move” θt = θ(x1, ..., xt−1).

Nature then responds by picking the gross return vector xt ∈ Rm+ . The situation repeats

itself in periods t+ 1, t+ 2, ..., T , at which point the game is terminated. The position

of the game after t periods is denoted ht = (θ1, x1, θ2, x2, ..., θt, xt), with transition law
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ht+1 = (ht, θt+1, xt+1). The nodes where nature is on the move are denoted (ht, θt+1).

Final nodes are denoted hT , and the root of the game tree is called h0. The trader starts

with $1, and his wealth after t periods is denoted W (ht) = 〈θ1, x1〉〈θ2, x2〉 · · · 〈θt, xt〉,
with transition law W (ht+1) = W (ht)〈θt+1, xt+1〉. The trader’s final payoff at hT is

given by

Π(hT ) =
W (hT )

D(x1, ..., xT )
. (2.3)

Nature’s payoff is −Π(hT ). Π(hT ) is called the “competitive ratio.” The interpretation

is that the trader seeks, in the worst case, to guarantee that his $1 investment hedges

the greatest possible proportion of the derivative payoff at a final node.

Let V (ht) denote the greatest possible final payoff that the trader can guarantee at

final nodes hT ⊃ ht. At the same time, this number will represent the lowest possible

final payoff that nature can guarantee, conditional on having reached ht. Similarly for

the values V (ht, θt+1) where nature is on the move. At final nodes, the value of the

game is just V (hT ) = Π(hT ). We have the recurrences

V (ht) = Max
θt+1∈∆

V (ht, θt+1) (2.4)

V (ht, θt+1) = Min
xt+1∈Rm+−{0}

V (ht, θt+1, xt+1) (2.5)

We will assume that D(x1, ..., xT ) is positively homogeneous of degree 1 separately in

each argument xt, meaning that D(λxt, x−t) = λD(xt, x−t) for λ ≥ 0. As a consequence

of this assumption, the final payoff Π(hT ) is homogeneous of degree 0 separately in each

return vector xt. On account of this fact, we can assume without loss of generality that

||xt||1 = 1 for all t, e.g. that xt ∈ ∆.

The compact action sets, together with Berge’s max theorem, guarantee the exis-

tence of the value function, and of the subgame-perfect equilibrium strategies θ∗t+1(ht)

and x∗t+1(ht, θt+1). By its very definition, θ∗t+1(ht) is the sharpest possible superhedg-

ing strategy for D(·), and its behavior is credible in all subgames. If we assume that

D = D(xt, x−t) is convex and positively homogeneous as a function of each xt separately,

then it becomes possible to directly calculate the value function and the sequential min-

imax strategies by backward induction. I illustrate the first few steps below.
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At penultimate nodes (hT−1, θT ), we have

V (hT−1, θT ) = W (hT−1) Min
xT∈∆

〈θT , xT 〉
D(x1, ..., xT )

. (2.6)

Now, when viewed as a function of xT alone, the minimand is quasi-concave, it being

the ratio of a positive linear function to a positive convex function. Accordingly, its

minimum must be achieved at one of the extreme points e1, ..., em of the simplex, namely,

the unit basis vectors. Thus, we get

V (hT−1) = W (hT−1) Max
θT∈∆

Min
1≤j≤m

θTj
D(x1, ..., xT−1, ej)

(2.7)

We now have to maximize a piecewise linear function over the simplex, and the unique

solution is characterized by the fact that it equalizes all the numbers
θTj

D(x1,...,xT−1,ej)
, for

1 ≤ j ≤ m. Say, that θTj = B ·D(x1, ..., xT−1, ej) for all j. Then, summing over j, we

get

V (hT−1) =
W (hT−1)∑m

j=1D(x1, ..., xT−1, ej)
. (2.8)

Notice that V (hT−1) is itself quasi-concave when viewed as a function of xT−1 alone.

The same calculation repeats itself, and one gets

V (hT−2) =
W (hT−2)∑m

k=1

∑m
j=1D(x1, ..., xT−2, ek, ej)

. (2.9)

At each step we pick up an index of summation; in general, the denominator of V (ht)

will feature a sum with T − t indices of summation.

Theorem 5. For multiconvex derivatives D(·), the general formula for the value of the

hedging game is

V (ht) =
W (ht)

Σ
(jt+1,...,jT )∈{1,...,m}T−t

D(x1, ..., xt, ejt+1 , ..., ejT )
. (2.10)

We immediately recognize the denominator as the conditional superhedging cost

p(xt), so that V (ht) = W (ht)
p(xt) is the number of conditional superhedges the trader can

afford, given his current wealth W (ht).
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Theorem 6. The SPNE trading strategy θ∗t+1(ht) is characterized by the fact that it

equalizes the continuation values V (ht, θ∗t+1(ht), ej) for 1 ≤ j ≤ m:

θ∗t+1,k(h
t) =

Σ
(jt+2,...,jT )∈{1,...,m}T−t−1

D(xt, ek, ejt+2 , ..., ejT )

Σ
(jt+1,...,jT )∈{1,...,m}T−t

D(xt, ejt+1 , ..., ejT )
. (2.11)

This formula gives the proportion of wealth to put into stock k as a function of

the observed return data xt. Notice how it is homogeneous of degree 0 separately in

the variables x1, ..., xt. If D happens to be a symmetric derivative in the sense that

D(x1, ..., xT ) = D(xσ(1), ..., xσ(T )) for any permutation σ of the indices {1, ..., T}, then

the above portfolio weights will depend only on the numerical values of x1, ..., xt and

not their order.

Theorem 7. Nature’s SPNE gross-return policy is given by selecting a unit basis vector

ek∗ that minimizes the continuation value: x∗t+1(ht, θt+1) = ek∗(ht,θt+1), where

k∗(ht, θt+1) = argmin
1≤k≤m

θt+1,k

Σ
jt+1,...,jT

D(x1, ..., xt, ek, ejt+2 , ..., ejT )
. (2.12)

If θt+1 = θ∗(ht) is the correct (SPNE) portfolio vector given ht, then k∗(ht, θt+1) =

{1, ...,m}.

2.3 Illustration

I illustrate the difference between the sequential minimax and multilinear universal

portfolios for the case of T = 2 investment periods and m = 2 stocks. Both strategies

use the same initial portfolio vector (1/2, 1/2) in trading session 1. The superhedging

cost is∑2
j=0

(
2
j

)( j
2

)j(2−j
2

)2−j
= 1 + 2 · 1

2 ·
1
2 + 1 = 5

2 . The final wealth of a $1 deposit into

the multilinear superhedging strategy is

Wθ

(
(x11, x12), (x21, x22)

)
=

2

5
(x11x21 +

1

4
x11x22 +

1

4
x12x21 + x12x22) (2.13)

According to the formulas derived in the multilinear chapter, we have

θ1(x1) =
W (x1, e1)

W (x1, e1) +W (x2, e2)
=

2
5x11 + 1

10x12

1
2x11 + 1

2x12
=

4

5

(
x11

x11 + x12

)
+

1

5

(
x12

x11 + x12

)
(2.14)



35

θ2(x1) = 1− θ1(x1) =
1

5

(
x11

x11 + x12

)
+

4

5

(
x12

x11 + x12

)
(2.15)

Now assume that stock 1 outperforms stock 2 in period 1, say, by a wide margin. As

the relative performance x11
x12

becomes large, θ(x1) approaches the vector (4
5 ,

1
5). Thus,

no matter how well stock 1 performs in period 1, the multilinear universal portfolio will

bet no more than 4/5 of its wealth on stock 1 in period 2.

Consider a Shannon’s-Demon type situation whereby x1 = (2, 1
2), so that stock 1

has doubled in price and stock 2 has been cut in half. Both strategies now have wealth

W (h1) = 5
4 . Then the multilinear strategy plays the vector (16

25 ,
9
25) = (0.64, 0.36) in

trading session 2. By contrast, the subgame-perfect strategy uses the weights

θ1(x1) =

Max
0≤λ≤1

(λx11 + (1− λ)x12)λ

Max
0≤λ≤1

(λx11 + (1− λ)x12)λ+ Max
0≤λ≤1

(λx11 + (1− λ)x12)(1− λ)
(2.16)

θ2(x1) =

Max
0≤λ≤1

(λx11 + (1− λ)x12)(1− λ)

Max
0≤λ≤1

(λx11 + (1− λ)x12)λ+ Max
0≤λ≤1

(λx11 + (1− λ)x12)(1− λ)
(2.17)

Calculating these weights simply amounts to finding the vertices of two parabolas, using

corner solutions where appropriate. Having observed x1 = (2, 1/2), the sequential

minimax strategy uses the portfolio (0.75, 0.25). Notice that at the beginning of the

game, both strategies were guaranteed to achieve at least 40% of the final wealth of

the best rebalancing rule in hindsight. Now, conditional on observing nature’s play

x1 = (2, 1/2), the sequential minimax strategy is able to guarantee to achieve the

(greater) proportion

W (h1)

D(x1, e1) +D(x1, e2)
=

5/4

2 + 2/3
= 47%. (2.18)

Assume now that nature plays the same vector in session 2, e.g. x2 = x1 = (2, 0.5).

Then the final wealth of the best rebalancing rule in hindsight is $4, the final wealth

of the multilinear strategy is $1.82, and the final wealth of the sequential minimax

strategy is $2.03. The multilinear strategy achieved 45.5% of the target final wealth,

which is greater than the promised 40%. The sequential minimax strategy achieved

50.8% of the target wealth, which is greater than the initially promised (at t = 0) 40%,

and the revised promise of 47% at t = 1. Of course, the point of the illustration was
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not to claim that the sequential minimax strategy will always make more money than

the multilinear strategy. The point was that the sequential minimax strategy is always

revising its promises upward whenever nature fails to play a unit basis vector. The

revised promises are always the best possible.

Let us assume, then, that the shoe is on the other foot: x2 = (0.5, 2). Then

the hindsight-optimized wealth is $1.56. The sequential minimax trader’s final wealth

is $1.09, or 70% of the hindsight-optimized wealth, which again is greater than the

promised 40%.

2.4 Dynamic horizon adjustment

This example has illustrated the fact that the sequential minimax universal portfolio

can dynamically announce ever lower final growth rate spreads. However, one can

proceed differently. Rather than achieve a final growth-rate spread that is (significantly)

better than the originally promised ε, the strategy can dynamically reduce its horizon,

achieving the promise ε in a shorter amount of time than was originally thought.

Theorem 8. Given current history ht and tolerance ε for the excess per-period growth

rate of the best rebalancing rule in hindsight, let Tε(h
t) be the earliest date at which the

trader can guarantee that the spread is < ε. Then Tε(h
t) is the smallest solution T ∈ N

of the inequality

log Σ
jt+1,...,jT

D(x1, ..., xt, ejt+1 , ..., ejT )− logW (ht)

T
< ε. (2.19)

This generalizes the fact, noted earlier, that Tε(h
0) is the smallest solution T of the

inequality
log p(T,m)

T
< ε. (2.20)

Thus, the most perspicacious possible trading strategy proceeds as follows. After t

periods, the trader takes stock of his current wealth W (ht) and the observed return

history x1, ..., xt. He updates his termination date to Tε(h
t) ≤ Tε(h

t−1). The trader

then carries out a fresh backward induction from the new, smaller horizon, and uses the

sequential minimax portfolio vector θ(x1, ..., xt).
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The meaning of this trading strategy is best understood in relation to the terminol-

ogy of announced mates in Chess. The analogy is pursued in the table below.

Chess Trading

White Player 1 (the trader)

Black Player 2 (nature)

Ply θt

Re-ply xt

Black is checkmated on the tth move log D(x1, ..., xt)− logW (ht) < ε · t
Scoresheet after t moves ht

Board position after t moves Payoff-relevant state ξt =
(
xt,W (ht)

)
White announces “Mate in s” prior to the t+ 1st move Σ

jt+1,...,jt+s
D(xt, ejt+1 , ..., ejt+s) < W (ht)eε(t+s)

Quickest “Mate in s” that can be announced s = Tε(h
t)− t

Stiffest resistance by Black Unit basis vectors

Principal variation ht+1 =

(
ht, θ∗(ht), ek∗(ht,θ∗(ht)))

)

Table 2.1: Analogy between announced mates in Chess and the sequential

minimax trading strategy with dynamically adjusting horizon

The performance of the strategy with dynamically adjusting horizon is illustrated below

for monthly pairs trading of Amazon and Netflix shares. A tolerance of ε = 2% was used.

Note how the strategy starts to outperform the passive index as the mate gets nearer.

A 46% reduction in horizon was achieved from the original declared time-to-mate of 136

months.
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Figure 2.1: Checkmate after 73 moves: monthly pairs trading for Amazon

and Netflix with dynamically adjusting horizon and ε = 2%.
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Figure 2.2: Evolution of Tε(h
t) in subgame perfect, horizon-adjusted monthly

pairs trading

2.5 Efficient calculation of the hindsight-optimized wealth

It is clear from the foregoing illustration that effective on-line computation of the se-

quential minimax universal strategy will hinge upon how efficiently one computes the

hindsight-optimized wealth D(xT ) = Max
c∈∆

〈c, x1〉 · · · 〈c, xT 〉. This amounts to a log-

concave program over the simplex:

Max
c∈∆

φ(c) =
T∑
t=1

log 〈c, xt〉. (2.21)

The strategy calls for the summation of all possible values D(xt, ek, ejt+1 , ..., ejT ) =

D(xt;n1, ..., nm), where (n1, ..., nm) is the type of the sequence (k, jt+1, ..., jT ). The

numerator of the portfolio weight on stock k after partial history xt is then

Σ
n1+···+nm=T−t−1

(
T − t− 1

n1 · · · nm

)
D(xt;n1, ..., nk−1, nk + 1, nk+1, ..., nm) (2.22)

Notice that if nk > 0, then of necessity c∗j > 0, for otherwise the rebalancing rule

c∗ yields zero final wealth. Thus, the great majority of terms (n1, ..., nm) in the sum

will be correspond to interior solutions, regardless of the value of xt. After eliminating

Lagrange multipliers one has the first order conditions, for each i:

∂φ

∂ci
(c) =

T∑
t=1

xti
〈c, xt〉

= T. (2.23)

A solution of these FOCs will automatically satisfy the condition
∑m

i=1 ci = 1. Let H(c)

be the Hessian, e.g.

Hij(c) =
∂2φ

∂ci∂cj
(c) = −

T∑
t=1

xtixtj
〈c, xt〉2

(2.24)

If g(c) =

(
∂φ
∂c1

(c), ..., ∂φ
∂cm

(c)

)′
denotes the gradient, then the updates in Newton’s

method are given by c ← c + H−1(c)(T · 1 − g(c)). Here 1 = (1, ..., 1)′. The con-

vergence to c∗ will be very rapid, especially on account of the fact that the solver will

be provided with analytic formulas for the gradient and Hessian.
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Example 14. For m = 2 stocks, denote c = (c1, c2) by (λ, 1 − λ). After observing

partial history xt, and assuming a continuation path (ejt+1 , ..., ejT ) whereby e1 appears

n1 times and e2 appears n2 times, the hindsight-optimized wealth given by

D(xt;n1, ...nm) = Max
0≤λ≤1

{ t∏
s=1

(λxs1 + (1− λ)xs2)

}
λn1(1− λ)n2 (2.25)

is found by the Newton iteration

λ← λ+

∑t
s=1

xs1−xs2
xs2+λ(xs1−xs2) + n1

λ −
n2

1−λ∑t
s=1

[
xs1−xs2

xs2+λ(xs1−xs2)

]2

+ n1
λ2

+ n2
(1−λ)2

. (2.26)

The iterates converge to the (unconstrained) maximizer λ∗, which must be projected back

to the interval [0, 1] by taking Max

(
0,Min(1, λ∗)

)
.

2.5.1 A simple method for computing the terms that may correspond

to corner solutions

When dealing with terms (n1, ..., nm) for which some of the values nk are zero, we

no longer have a priori knowledge that c∗ has full support, e.g. that the hindsight-

optimized rebalancing rule is active in all the stocks. However, the maximizer can still

be found in a simple, practical way. Let jbest(c) be the stock with the greatest marginal

utility at the current iterate c, e.g.

jbest(c) ∈ argmax
1≤j≤m

∂φ

∂cj
(c). (2.27)

Similarly, let jworst be the stock in the current portfolio that has the lowest marginal

utility. That is,

jworst(c) ∈ argmin
j∈supp(c)

∂φ

∂cj
(c) (2.28)

We will transfer some amount of mass λ from stock jworst to the stock jbest, where

0 ≤ λ ≤ jworst. Define f(λ) = φ(c + λd), where d = (d1, ..., dm) is the direction of the

variation: djbest = 1, djworst = −1, and dk = 0 otherwise. The line search in direction d

is now easily resolved, again by Newton’s method. We have

f ′(λ) =
T∑
t=1

〈d, xt〉
〈c+ λd, xt〉

= 0 (2.29)
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f ′′(λ) = −
T∑
t=1

〈d, xt〉2

〈c+ λd, xt〉2
(2.30)

λ← λ− f ′(λ)

f ′′(λ)
(2.31)

In this line search, a corner solution corresponds to f ′(cjworst) ≥ 0. This means that

all of the mass currently on stock jworst is transferred to stock jbest. This technique

only changes c two coordinates at a time, but it makes the greediest possible transfer

from the worst stock to the best one, at least vis-a-vis the current portfolio c. The

convergence is extremely rapid in practice.

2.5.2 Log-barrier method

For the sake of reference and completeness, I provide the necessary formulas for suc-

cessful implementation of an alternative (interior-point) method, namely the log-barrier

method. This is a simple method whose iterates converge to c∗ through the interior

of the simplex. The idea is very straightforward. We choose a parameter η > 0, and

augment the objective function with a penalty term, as follows

φ(c) + η
m∑
j=1

log cj . (2.32)

This maintains the concavity, and on account of Inada conditions, forces an interior

solution c∗η. As η → 0, c∗(η) → c∗(0) = c∗. After eliminating the multiplier on the

constraint
∑m

j=1 cj = 1, we get the FOCs

∂φ

∂ci
−

m∑
k=1

ck
∂φ

∂ck
−mη +

η

ci
= 0 (2.33)

For the sake of Newton’s method, the Hessian is now

Hij =
∂2φ

∂ci∂cj
−

m∑
k=1

ck
∂2φ

∂ck∂cj
− ∂φ

∂cj
− η

c2
j

1{j=i} (2.34)

One can now find c∗η by iterating c← c−H−1(c)g(c).
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2.6 Leverage and polytope restrictions

So far, the core reason for allowing nature to choose any realization xt ∈ Rm+ − {0}
has been analytic tractability. In relaxing nature’s set of choices as much as possible,

we arrive at a simple situation where nature’s behavior is determined by a set of free

generators of the orthant, e.g. the unit basis vectors after normalization. As a bonus,

however, we obtain a trading strategy that is robust to all possible market behavior

under the sun. Note also that, if the xtj are lognormally distributed (as they would be

under geometric Brownian motion), then the support of xt is the entire orthant anyhow.

In reality, there is a large, but finite number of possible realizations xt ∈ X , where

X is the support of xt. For one thing, transaction prices are all rational numbers that

are only quoted to a finite degree of precision. For another, assuming that transactions

are settled in U.S. dollars, no transaction price can exceed the maximum amount of

dollars in any bank or brokerage account.

Given the a priori belief that every point of the orthant is a possible realization, the

trader cannot safely use leverage to any degree. A short sale of any amount of stock

j can potentially bankrupt the trader, just as soon as nature chooses a value xtj that

is large enough. From the standpoint of getting within ε of the hindsight-optimized

growth rate as quickly as possible, the ideal scenario is to reduce the set X of nature’s

choices, while at the same time allowing the trader to use leverage in so far as he can now

guarantee that he will never go bankrupt. The value of the game would then increase

on both fronts. The right generalization is to restrict X ⊂ Rm+ to be a convex cone, or,

after normalization, a polytope with m vertices that is contained in the unit simplex.

Accordingly, define A = co(A1, ..., Am), where Ai =
[
Ai1, ..., Aim

]
are the generators

of the convex cone. The m×m matrix of Aij is called simply A. We will assume that the

Ai are linearly independent (e.g. A is invertible), and their conic hull will be assumed

to contain the vector 1′ =
[
1, ..., 1

]
. In the case of the positive orthant, we formerly had

Ai = ei and A = I, the identity matrix, and A being equal to the unit simplex.

Dually, we will allow the trader to use any non-bankruptable portfolio θt ∈ P, where

P =

{
b ∈ Rm : 〈b, Ai〉 ≥ 0 for all i, and

m∑
j=1

bj = 1

}
. (2.35)
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These are precisely the (potentially leveraged) portfolios that make positive inner prod-

uct with all possible realizations xt ∈ A. In the former case we had P = ∆. As usual,

we will require that the derivative D(x1, ..., xT ) be subadditive and homogeneous sepa-

rately in each xt. When D(·) is homogeneous in each vector argument, we may assume

without loss that each Ai ∈ ∆, or equivalently, that A is a row-stochastic matrix.

The coordinate vector of
[
1, ..., 1

]
with respect to the basis A1, ..., Am will be denoted

ρ = (ρ1, ..., ρm) ≥ 0, e.g. ρ = 1′A−1. In the unrestricted case, we had ρ =
[
1, ..., 1

]
. The

intuition behind requiring 1′ to be in the conic hull of the Ai is that we leave nature

the option to have all assets perform equally well. In non-trivial situations, 1′ will be

an interior point of the convex cone generated by the Ai, and nature will therefore have

the option in any given period to have any asset j outperform all the others.

Under these assumptions, P will be a compact convex set. In fact, P is the convex

hull of the vectors {
A−1e1

ρ1
,
A−1e2

ρ2
, ...,

A−1em
ρm

}
. (2.36)

That is, the extreme points of P, are just the columns of A−1, but normalized so that

their coordinates sum to 1.

Example 15. Consider the daily gross return vectors for (Visa, Mastercard) over the

last five years. After normalization to the simplex, the most extreme realizations on

record are A1 = (0.5136, 0.4864) and A2 = (0.4766, 0.5234). We have ρ = (1.2636, 0.7364),

and the extreme points of P are (11.1992,−10.1992)′ and (−17.858, 18.858)′. That is to

say, for every dollar of wealth, one can potentially short $10.20 worth of Mastercard if

he puts all the proceeds into Visa; he can potentially short $17.86 worth of Visa if he

puts all the proceeds into Mastercard. This is illustrated in the figure below. So long as

the daily gross return vectors lie in the conic hull of A1 and A2, no convex combination

of these (extreme) leveraged portfolios can go bankrupt. On account of the small size of

the empirical support X , leverage ratios as high as 36 : 1 have become admissible.
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Figure 2.3: Less to worry about: the conic hull of the past five years of daily

gross return vectors for (Visa, Mastercard)

The general Bellman equations now become

V (ht) = Max
θt+1∈P

V (ht, θt+1) (2.37)

V (ht, θt+1) = Min
xt+1∈co(A1,...,Am)

V (ht, θt+1, xt+1), (2.38)

with the same boundary conditions as before. Mutatis mutandis, the explicit calculations

for the backward induction repeat themselves. Once again, in all subgames nature’s best

move is to play some extreme point Aj . The unique SPNE trading strategy θ∗(ht) is

characterized by the fact that it equalizes the continuation values V (ht, θ∗(ht), Aj) for

1 ≤ j ≤ m. Should nature fail to play an extreme point (which it often will in practice),

the continuation value of the game increases, to the advantage of the trader. It is also

quite obvious that the restricted game with action sets P,A has a higher value than

the unrestricted one. A fortiori, at each step of the sequential minimax, the trader

is maximizing over a larger set than before, and nature is minimizing over a smaller

one. Should nature fail to play an extreme point at any time, he should get back on
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the wagon immediately: after the partial return history xt = (x1, ..., xt), the only final

nodes that are relevant to the continuation game (in equilibrium) are (xt, Ajt+1 , ..., AjT ).

Theorem 9. The general formula for the value of the hedging game is

V (ht) =
W (ht)

Σ
jt+1,...,jT

ρjt+1ρjt+2 · · · ρjTD(xt, Ajt+1 , ..., AjT )
, (2.39)

and the SPNE portfolio vector for trading session t + 1 after observing history ht is

specified by

〈θ∗(ht), Ak〉 =

Σ
jt+2,...,jT

ρjt+2 · · · ρjTD(xt, Ak, Ajt+2 , ..., AjT )

Σ
jt+1,...,jT

ρjt+1 · · · ρjTD(xt, Ajt+1 , ..., AjT )
(2.40)

This is a system of m linear equations in the m unknowns θ∗k(h
t), 1 ≤ k ≤ m. It

has a unique solution on account of the fact that A is supposed to be invertible. A

fortiori we see that this θ∗(ht) is admissible: by its very definition, it makes positive

inner product with the extreme points of A, on account of the fact that ρ ≥ 0 and

D(·) > 0. We also observe that

1 =
m∑
k=1

ρk〈θ∗(ht), Ak〉 = 〈θ∗(ht),
m∑
k=1

ρkAk〉 = 〈θ∗(ht),1〉, (2.41)

so that the coordinates of the portfolio vector do indeed sum to 1. Following the general

logic of the prequel, the dynamic superhedging price of the derivative after xt is

pA(xt) = Σ
jt+1,...,jT

ρjt+1 · · · ρjTD(xt, Ajt+1 , ..., AjT ). (2.42)

Example 16. Assuming that D(xT ) is the hindsight-optimized wealth (vis-a-vis unlev-

ered rebalancing rules c), the superhedging price is

Σ
n1+···+nm=T

(
T

n1 · · · nm

){
ρn1

1 · · · ρ
nm
m ·Max

c∈∆
〈c, A1〉n1 · · · 〈c, Am〉nm

}
. (2.43)

For m = 2 stocks this reduces to

m∑
j=0

(
T

j

)
λ∗(j)j

(
1− λ∗(j)

)T−j
, (2.44)
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where

λ∗(j) = Min

(
Max

(
j

T
, ρ1Min(a11, 1− a11)

)
, ρ1Max(a11, 1− a11)

)
, (2.45)

and ρ1 = 2a22−1
a11+a22−1 . λ∗(j) is the point of the interval [ρ1Min(a11, 1−a11), ρ1Max(a11, 1−

a11)] that is nearest to j
T .

Example 17. Assume that A1 = (0.4, 0.6) and A2 = (0.6, 0.4). Then 0.4 ≤ xtj ≤ 0.6

for all t, j. No stock can ever account for more than 60% of the gross return in any one

trading session. This will be the case for the daily returns of practically all the stocks in

the S&P 500, for instance. Then, as is illustrated below, cognizance of this restriction

(plus the possibility of using leverage in certain variations of play) leads to significantly

sharper guarantees on the final growth rate spread, especially for shorter horizons.

Figure 2.4: Guaranteed final growth-rate spreads for levered and unlevered

versions of the subgame-perfect universal portfolio

The performance of the subgame-perfect universal portfolios is illustrated below for the

period (1/1/1987 to 1/1/2017), for the stocks (Apple, Microsoft) with annual rebal-

ancing. The generators of nature’s action set were taken to be A1 = (0.75, 0.25) and
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A2 = (0.25, 0.75). Obviously, the fact that the vanilla SPUP outperforms the polytope

SPUP in this particular case is not a black mark against the theory. The vanilla strategy

winds up beating both stocks outright, while the (theoretically much safer) polytope

version beats a performance-weighted index that makes an initial (0.5, 0.5) distribution

of wealth into the two stocks and lets it ride.

Figure 2.5: Performance of the subgame-perfect universal strategies over the

30-year period Jan 1987-Jan 2017. (Pairs trading of Apple and Microsoft

shares, with annual rebalancing)
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Figure 2.6: Shrewd: the SPUPs buy back into Apple at the turn of the

millenium

The optimized worst-case bounds on the excess compound annual growth rate of the

hindsight-optimized rebalancing rule are illustrated below. Notice how the polytope-

restricted version is capable of making very sharp guarantees at the outset: within

4% of the hindsight-optimized CAGR without having seen any data. However, the

levered/restricted bound falls more slowly than the vanilla bound. In this particular

example the vanilla SPUP winds up outperforming the more perspicacious version. Of

course, this in no way contradicts the fact that the levered SPUP has better worst-

case performance. In fact, we see at once that the polytope version is extraordinarily

conservative: how many of us would be willing to accept a CAGR spread that is more

than 2.5 percentage points higher in the worst case?
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Figure 2.7: Dynamically revised worst-case growth rate spreads announced by

the subgame-perfect universal portfolios (Apple and Microsoft 1987-2016)

Figure 2.8: Game history for annual pairs trading of Netflix and Sears

(1/1/2005 to 1/1/2017), with A1 = (0.9, 0.1) and A2 = (0.1, 0.9)
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Figure 2.9: The proportion of wealth bet on Netflix (paired with Sears),

annual pairs trading (1/1/2005 to 1/1/2017)
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Figure 2.10: The dynamically best possible guaranteed final excess growth

rate of the best rebalancing rule in hindsight (Netflix and Sears, 1/1/2005

to 1/1/2017)

2.7 Targeting the performance of the best levered rebal-

ancing rule in hindsight

Until now we have allowed the trader himself to use leverage, but the hindsight op-

timization was restricted to ordinary rebalancing rules c ∈ ∆. Empirically speaking,

from the foregoing examples, the polytope S.P.U.P. gaves better dynamic guarantees in

the middle of the game, but in practice this gap falls precipitously. Rather than use

leverage so as to better track the performance of the best unlevered rebalancing rule

in hindsight, the natural step is to allow the hindsight-optimization to use leverage as

well. This amounts to the derivative

D(x1, ..., xT ) = Max
c∈P

〈c, x1〉 · · · 〈c, xT 〉 (2.46)

All of the usual properties of D(·) (convex and homogeneous in each xt separately)

obtain. On account of the fact that both the hindsight-optimizer and the trader are

equally free to use leverage, the superhedging price remains what it was for the ordinary

universal portfolio. To calculate

D(n1, ..., nm) = Max
c∈P

〈c, A1〉n1 · · · 〈c, Am〉nm , (2.47)

we just make the substitution bj = ρj〈c, Aj〉 for 1 ≤ j ≤ m. On account of the fact that

this linear change of variable

(b1, ..., bm)′ = diag(ρ1, ..., ρm)A(c1, ..., cm)′ (2.48)

is a bijection of P onto the unit simplex, we get the same program

Max
b∈∆

bn1
1 · · · b

nm
m (2.49)

as before, with optimized value (n1
T )n1 · · · (nmT )nm . It follows at once that we can

compound our money at the same asymptotic rate as the best levered rebalancing rule
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in hindsight, on the exact same worst-case timeframe as the ordinary universal portfolio.

As we have seen, we can expect the subgame perfection to provide a significant dynamic

improvement to the initial superhedging cost of Σ
n1+···+nm=T

(
T

n1 ···nm
)
(n1
T )n1 · · · (nmT )nm .

Computation of the final wealth of the best levered rebalancing rule in

hindsight

No additional techniques are required to calculate D(x1, ..., xT ). On account of the fact

that

(c1, ..., cm)′ = A−1diag

(
1

ρ1
, ...,

1

ρm

)
(b1, ..., bm)′, (2.50)

we have 〈c, xt〉 = 〈A−1D−1b, xt〉 = 〈b, xtA−1D−1〉, where D = diag(ρ1, ..., ρm). Thus, all

we must do is linearly transform the row vector xt = (xt1, ..., xtm) and solve an ordinary

(unlevered) hindsight optimization problem for the new data set yt = xtA
−1D−1:

D(x1, ..., xT ) = Max
b∈∆

〈b, y1〉 · · · 〈b, yT 〉. (2.51)

All the numerical techniques discussed above therefore apply. Note that the matrix

A−1D−1 is just the result of normalizing the columns of A−1 so that they sum to 1.

The extreme points Ai (row vectors) get transformed to AiA
−1D−1 = ei

ρi
. In calculating

the numerator of the portfolio θk(x1, ..., xt), one must calculate the number

Max
b∈∆

〈c, y1〉 · · · 〈c, yt〉bn1
1 · · · b

nm
m . (2.52)

Thus, the full numerator is just

Σ
n1+···nm=T−t−1

(
T − t− 1

n1 · · · nm

)
D(y1, ..., yt;n1, ..., nm). (2.53)

Thus, the game with data (xt)
T
t=1 whereby both the trader and the hindsight-optimizer

lever is equivalent to the game where neither levers and the data is (yt)
T
t=1.

Example 18. If

A =

[
0.6 0.4

0.4 0.6

]
, (2.54)

then

[yt1, ..., ytm] = [xt1, ..., xtm]

[
3 −2

−2 3

]
(2.55)
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transforms the returns of the levered-levered game to the returns of the equivalent unlevered-

unlevered game. For instance, the vector [1.2 0.9] gets transformed into the (exxagerated)

figures [1.8 0.3]. If λ is the proportion of wealth bet on stock 1, then −2 ≤ λ ≤ 3.

Figure 2.11: Juiced: leveraged daily pairs trading of Visa and Mastercard

in 2017. Target wealth is that of the best leveraged rebalancing rule in

hindsight.
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Figure 2.12: Out of whack: the subgame-perfect universal strategy shorts Visa

and puts the proceeds into Mastercard over a period of 100 days in 2017.

Very high leverage ratios are possible on account of the high correlation (viz.

small support) of the two stocks’ daily returns
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Figure 2.13: Promises kept: the evolution of the worst-case final regret as

nature fails to play extreme points of the (Visa, Mastercard) return support

2.8 Multi-convex derivatives on a single stock

The superhedging framework we have developed is very flexible and general, and finds

use in a wide array of situations. For one thing, we can simply assume that asset 1 is

cash, say, with a constant gross return xt1 = 1+ r. We will assume that the single stock

(asset 2) has compact support xt2 ∈ [d, u], where d is the lowest possible gross return

on down days, and u is the greatest possible gross return on up days. This contradicts

the possibility of xt2 being, say, lognormally distributed, but nobody can deny that in

reality the support X of xt has a finite, if large, number of outcomes. Thorp said it

himself: the utility of continuous return distributions is that they make for good quality,

tractable approximations of this discrete reality. Notice that we have simply filled in

the usual binomial lattice model of price dynamics, which assumes xt2 ∈ {d, u}. But at

the end of the day everything will hinge for us on the extreme points anyhow. We have

A =

[
1 + r d

1 + r u

]
, A−1 =

1

(1 + r)(u− d)

[
u −d

−(1 + r) 1 + r

]
, (2.56)

ρ = 1′A−1 =
(u− (1 + r), (1 + r)− d]

(1 + r)(u− d)
(2.57)

A−1D−1 =

 u
u−(1+r)

−d
1+r−d

−(1+r)u
u−(1+r)

1+r
1+r−d

 (2.58)

Under the usual assumption that d < 1 + r < u, the vector (1, ..., 1) will then lie in the

conic hull of the rows of A, as required. Naturally, leverage will be used for the sake

of efficient superhedging. The admissible portfolios can have a weight on the stock no

greater than 1+r
1+r−d , and a weight no less than −d

1+r . Any purchase of shares on margin,

or any short sale, that violates these bounds has the potential to go bust. The dynamic

super-hedging price of a symmetric, multiconvex (but not necessarily homogeneous)
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derivative D(x1, ..., xt) can be read off from our general formulas: it is

1

(1 + r)T−t

T−t∑
j=0

(
T − t
j

)
pjqT−t−jD(xt; j, T − j), (2.59)

where p = u−(1+r)
u−d and q = 1 − p. These are just the risk-neutral probabilities implied

the usual binomial lattice {u, d}.

Theorem 10. For a symmetric multiconvex derivative over a single stock in discrete

time, assuming compact return support xt2 ∈ [d, u], the dynamic superhedging price is

exactly the price on the binomial lattice {d, u}.

For example, if S0 is the initial price of the stock, and a European call is written

that expires at T for a striking price of K, the dynamic superhedging price in this

environment is

pt(St) =
1

(1 + r)T−t

T−t∑
j=0

(
T − t
j

)
pjqT−tjMax(Stu

jdT−t−j −K, 0), (2.60)

where St = S0
∏t
s=1 xs2. Since this price is a convex function separately of each period’s

gross return vector xt, the greatest possible superhedging price after t periods would

have obtained for extreme realizations xt2 ∈ {d, u}. Any realizations strictly between

these two bounds constitutues off-path play by nature, which will have the effect of

reducing the superheding price.

2.8.1 Subgame-perfect universal portfolios over cash and one fund

Even simpler than trading pairs, one can simply construct a desired fund (say, the S&P

500 ETF) to make leveraged bets on. Ideally this fund will be selected to have a high

Sharpe or Sortino ratio, and the problem then becomes one of dynamically adjusting the

leverage ratio. In this connection, shorting cash amounts to buying additional shares of

the fund on margin. For example, in recent years there has been a bonanza of leveraged

and inverse ETFs that maintain a constant (2x,3x, etc) leverage ratio. Asymptotically

these ETFs will be beaten by levered subgame-perfect universal schemes. Note that

leveraged rebalancing rules have the reverse intuition and mechanics than do unlevered

ones. In the case of 50-50 rebalancing in Shannon’s Demon, say, some shares are sold
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every time the stock goes up, and some shares are bought every time it goes down. In

this new situation, suppose someone has a dollar of collateral and takes out a margin

loan of λ− 1 dollars for the sake of achieving a leverage ratio of λ : 1. Equivalently, the

trader aims for a debt to assets ratio of 1− 1
λ . If the stock now goes up, then the trader

must buy additional shares to preserve this ratio. The trader’s assets have increased

in value, although his cash debt to his broker has not changed. On account of the fact

that his debt
assets ratio is now lower, he borrows more. The reverse happens when the stock

goes down: the debt to assets ratio has increased, and the trader must sell some shares

to pay down some of the margin debt. If the 50-50 rebalancer buys low and sells high,

then, someone with a leveraged rebalancing rule (1− λ, λ) has set himself a mechanical

plan to buy high and sell low. The saving grace of such a strategy is that a good quality

asset like the S&P 500 will have a very strong drift relative to its volatility.

Figure 2.14: Leveraged bets on the S&P 500 index over the last 1000 days

(log scale on the vertical axis)
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Figure 2.15: Evolution of the subgame perfect leverage ratio for S&P 500

daily returns, assuming that cash earns zero interest

2.9 Extensive form with side information

Assume that each period, before the gross return vector xt is realized, the gambler is

able to observe a signal st ∈ {1, ..., S}. A state constant rebalancing rule is a mapping

c : {1, ..., S} → ∆. c(s) = cs ∈ ∆ will denote the rebalancing rule that is to be used

in state s, and csj will denote the proportion of wealth to bet on stock j in state

s. The signal history up to period t is denoted st = (s1, ..., st). The most profitable

state-constant rebalancing rule in hindsight is given by

D(xT , s1, ..., sT ) = Max
c1,...,cS∈∆

S∏
s=1

∏
t: st=s

〈cs, xt〉 =

S∏
s=1

D
(
(xt)st=s

)
, (2.61)

where D
(
(xt)st=s

)
denotes the optimized final growth factor of wealth achieved in state

s.

On account of this factorization, D(·) is still positive, subadditive, homogeneous,

(and therefore convex) in each xt, and putting xt = 1′ still deletes xt from the history.
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Among the times t for which signal s is observed, the xt can still be permuted; let nsj

be the number of times horse j won in state s. Then, by abuse of notation,

D([nsj ]) =

S∏
s=1

D(ns1, ..., nsm). (2.62)

Computing D(X, s1, ..., sT ) for general data is not much harder than before: we now

solve S log-concave programs, but the individual objective functions are cheaper to

compute.

We take up the general situation studied in the prequel, with vertices A1, ..., Am.

Before period t’s trading session, nature picks a public signal st ∈ {1, ..., S}. The

histories are ht = (s1, θ1, x1, ..., st, θt, xt), and the final competitive ratio is

Π(hT ) =
W (hT )

D(xT , sT )
. (2.63)

Backward induction takes place according to the Bellman equations

V (ht) = Min
st∈{1,...,S}

V (ht, st+1) (2.64)

V (ht, st+1) = Max
θt+1∈P

V (ht, st+1, θt+1) (2.65)

V (ht, st+1, θt+1) = Min
xt+1∈co(A1,...,Am)

V (ht, st+1, θt+1, xt+1) (2.66)

On account of the general properties that D(·) has retained, the backward induction

can still be carried out “explicitly,” although this “solution” is far less tractable than it

was before.

Theorem 11. In the extensive-form with adversarial signals, nature should always play

a vertex xt = Ai. After ht, the unique θ∗t+1 is characterized by making nature indifferent

among the vertices. The best guaranteed payoff after ht, V (ht), is given by

W (ht)

Max
st+1

∑
jt+1

ρjt+1 · · ·Max
sT−1

∑
jT−1

ρjT−1Max
sT

∑
jT
ρjTD(xt, Ajt+1 , ..., AjT ; s1, ..., sT )

.

(2.67)
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The trader’s policy is characterized by the numbers < θ∗(ht, st+1), Ak > for k = 1, ...,m,

which are given by

Max
st+2

· · ·Max
sT−1

∑
jT−1

ρjT−1Max
sT

∑
jT
ρjTD(xt, Ak, Ajt+2 , ..., AjT ; s1, ..., sT )∑

jt+1
ρjt+1Max

st+2

· · ·Max
sT−1

∑
jT−1

ρjT−1Max
sT

∑
jT
ρjTD(xt, Ajt+1 , ..., AjT ; s1, ..., sT )

.

(2.68)

The vertex policy is

j∗(ht, st+1, θt+1) = argmin
1≤k≤m

V (ht, st+1, θt+1, Ak)〈θt+1, Ak〉 (2.69)

The signal policy solves the auxiliary dynamic program

δ(xt; s1, ..., st) = Max
st+1

m∑
k=1

ρkδ(x
t, Ak; s1, ..., st+1), (2.70)

where δ(xT ; s1, ..., sT ) = D(xT ; s1, ..., sT )

For the sake of the asymptotic result, assume for the moment that there are no

restrictions on nature’s moves, e.g. Ak = ek. Let s∗1, ..., s
∗
T achieve the respective

maxima in the denominator of V (h0). I will simply factor V (h0)−1 into a product of

S sums, all of which are ≤ p(T,m), the superhedging price in the absence of signals or

leverage.

Let τs be the set of times at which signal s was realized. Sum s will have |τs| indices

of summation, denoted Js = (Js1 , ..., J
s
|τs|) ∈ {1, ...,m}

|τs|. We have

V (h0)−1 =
S∏
s=1

∑
Js

D(Js) =
S∏
s=1

p(|τs|,m) ≤ p(T,m)S . (2.71)

Here, the symbol D(Js) denotes the number D(eJs1 , ..., eJs|τs|
). Thus, the excess growth

rate of the best (state-constant) rebalancing rule over and above the sequential mini-

max trader is at most S·log p(T,m)
T → 0. The first few values of the exact finite-sample

improvement in worst-case growth spread are plotted below.
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Figure 2.16: The sequential minimax improvement to the Cover (1996) regret

bounds under S = 2 states of side information



Chapter 3

Universal horse race betting

3.1 Fundamental role of the unit basis vectors

Unit basis vectors have played a decisive role in the trading strategies disussed in this

thesis. Mathematically, this owes itself to the fact that the conic hull of the unit basis

vectors is the positive orthant. In the other interpretation, where the orthant has been

normalized to the unit simplex, the unit basis vectors comprise the extreme points on

which nature’s behavior is determined. Why have we allowed nature to choose any

return vector xt in the positive orthant, save the origin? The answer is that, in relaxing

nature’s decision problem as much as possible, we are able to obtain analytic solutions

for the value function and the SPNE trading strategy. Of course, it would be absurd

to think that unit basis vectors would ever be encountered in practice. The trader’s

insight is that, arithmetically, no realization can damage the competitive ratio as much

as the least favorable unit basis vector. In the case of universal portfolios, this method

of being robust to a larger set of outcomes than necessary has led to a very favorable

result. One is able to compound one’s money at the same asymptotic rate as the best

rebalancing rule in hindsight, under all possible types of market behavior, extreme or

not. In fact, the value-added of the sequential minimax universal portfolio is that it

can adapt to the fact that unit basis vectors have not actually been occuring, in so

much as this constrains the possible derivative payoffs D(xt, ejt+1 , ..., ejT ) at final nodes

descended from the current position.

However, it can be a little irritating to try to interpret the (normalized) gross return

62
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vector ej literally: it means that stock j provided 100% of the gross return in trading

session t. The other stocks must have collapsed in price to 0. The best way to think

about it is that stock j went through the roof relative to the others, which, say, collapsed

in price to ε. In this situation xt
||xt||1 will be very nearly a unit basis vector and hence, by

continuity, its effect on the competitive ratio will be nearly that of a unit basis vector.

This represents the most oscillatory and chaotic possible stockmarket.

3.2 Horse race interpretation

Assume that m horses run T races sequentially, 1 ≤ t ≤ T . The horses are called

j ∈ {1, ...,m}. A gambler arrives with no prior knowledge of the probability pj that

horse j wins any given race. In fact, this probability may change over time, in a manner

that is unknown to the gambler as well.

Before each race t, the bookie posts the odds Ot = (Ot1, ...,Otm). This means that

a $1 bet on horse j pays off a gross return of Otj if j wins the race, and $0 otherwise.

Implicitly, the bookie therefore believes that 1
Otj is the probability that horse j wins

race t, so that the expected gross return on a $1 bet is $1. We will assume that the

posted odds are “fair” in the sense that
∑m

j=1
1
Otj = 1. Of course, “fairness” here does

not mean that the bookie’s beliefs are necessarily correct.

Before each race, the gambler may distribute his wealth among a “portfolio” of bets

on the various horses, where θtj is the proportion of his wealth he bets on horse j in race

t. Note that if the gambler uses the portfolio θtj = 1
Otj , he has de facto just stored his

money for a period. For simplicity, then, we can assume that the gambler distributes

all of his wealth among the m horses, without leaving any in cash. In order for the

gambler to grow his money, his portfolio θt must diverge in some way from the bookie’s

estimates
(

1
Ot1 , ...,

1
Otm

)
.

The win history (data) from the first t − 1 races is denoted jt−1 = (j1, .., jt−1),

where js was the winner of race s. A betting strategy is denoted θt = θ(j1, ..., jt−1).

The gross-return vector for race t is Otjtejt , where jt is the winner of race t. After

normalization to the simplex, this is just ejt . The worst-case behavior in the stock

market thus corresponds to the payoff of a Kelly horse race. In this connection a

rebalancing rule c = (c1, ..., cm) corresponds to a fixed-fraction betting scheme whereby
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a gambler bets the proportion cj of his wealth on horse j every period. The hindsight-

optimized rebalancing rule is calculated by

D(j1, ..., jT ) = Max
c∈∆

〈c, ej1〉〈c, ej2〉 · · · 〈c, ejT 〉 = Max
c∈∆

cn1
1 cn2

2 · · · c
nm
m , (3.1)

where nk is the number of times horse k won on the path jT = (j1, ..., jT ). As discussed

in Chapter 1, the hindsight rule is given by c∗j =
nj
T , and the derivative payoff is

(n1
T )n1 · · · (nmT )nm . These quantities depend only the empirical distribution of wins for

the various horses, and not on the order in which the wins occur. Thus, a gambler who

adopts the SPNE trading strategy will compound his money at the same asymptotic

rate as the best fixed fraction betting scheme in hindsight. If it so happens that the

jt are drawn iid according to probabilities pk = P (jt = k), then the Kelly rule bets

these same proportions ck = pk, regardless of the posted odds. Let us assume now that

the odds do not vary with time, e.g. Otj ≡ Oj . In any finite sample, a fortiori, the

hindsight optimized rebalancing rule makes more money than the Kelly gambler. In

fact, the hindsight-optimized wealth is

On1
1 · · · O

nm
m

(
n1

T

)n1

· · ·
(
nm
T

)nm
, (3.2)

whereas the Kelly gambler’s wealth after T races is

On1
1 · · · O

nm
m pn1

1 · · · p
nm
m , (3.3)

However, they both have the same limiting continuously compounded per-period growth

rate of capital, namely
m∑
j=1

pjlog

(
pj

1/Oj

)
(3.4)

Let B = (B1, ...,Bm) denote the bookie’s beliefs, where Bj = 1
Oj . Then the Kelly growth

rate is simply the Kullback-Leibler divergence D(p||B) of the true distribution from the

bookie’s beliefs. Although the posted odds are irrelevant to the Kelly (and universal)

gambler’s strategy, they do determine the highest asymptotic growth rate the gambler

is able to achieve.

Example 19. Suppose there are m = 2 horses, with the true win probabilities being

p = (0.4, 0.6), e.g. horse 1 has a 40% chance of winning any given race. Suppose
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the bookie thinks the chances are B = (0.5, 0.5), and posts odds O = (2, 2). Then

the asymptotic growth rate achieved by the Kelly gambler (as well as the universal and

hindsight-optimized gamblers) is D(0.4, 0.6||0.5, 0.5) = 0.4 log 0.4
0.5 + 0.6 log 0.6

0.5 = 2% per

period. The gambler will roughly double his wealth every 35 races.

320 such races have been simulated below, under which the per-race growth rate

spread of the best rebalancing rule in hindsight over and above the universal gambler is

guaranteed to be less than 1% at the end of the horizon. The actual final growth rate

spread is 0.98%. Notice how the growth rate spread does not decrease to 0 monoton-

ically. The hindsight-optimized fixed fraction betting scheme achieves slightly higher

final wealth than a Kelly gambler, although his wealth can be lower at intermediate

times 1 < t < T . All three of these time series are converging to the same limit.

Figure 3.1: Simulation of T = 320 races with m = 2 horses, with win probabil-

ities p = (0.4, 0.6) and odds O = (2, 2)

We have shown in the horse race example that the excess growth rate of the hindsight

optimized rule over and above the Kelly gambler converges to 0 almost surely. With
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slightly more effort, this can be proved for the general stockmarket. Let D(x1, ..., xT )

be the hindsight optimized wealth, and let c∗(F ) be the Kelly rule against iid returns

drawn from the CDF F (·). We must show that the growth rate spread

S(x1, ..., xT ) =
log D(x1, ..., xT )−

∑T
t=1 log 〈c∗(F ), xt〉

T
→ 0. (3.5)

As usual, let Wθ(x1, ..., xT ) be the wealth of a (horizon-free) universal strategy, e.g. that

of Cover (1991). We have

log D(x1, ..., xT )− logWθ(x1, ..., xT )

T
+
logWθ(x1, ..., xT )−

∑T
t=1 log 〈c∗(F ), xt〉

T
(3.6)

By the universality of θ(·), the term on the left converges to 0 (everywhere). According to

Breiman’s theorem, no non-anticipating trading strategy θ can asymptotically dominate

the growth rate of the Kelly rule. That is, the lim sup of the term on the right is ≤ 0.

Thus, limsup
T→∞

S(x1, ..., xT ) = 0. On account of the fact that S(x1, ..., xT ) ≥ 0, we get

liminf
T→∞

S(x1, ..., xT ) ≥ 0 This proves that S(xT )→ 0 almost surely.

3.3 Variational approach to universal horse race gambling

Every universal portfolio algorithm, including the sequential minimax universal portfolio

of this chapter, gives a universal gambling scheme for horse races when we force nature

to choose axis vectors xt = Otjej , or ej after normalization. The empirical Bayes

portfolio (Cover 1986) and the horizon-free portfolios (Cover 1991, 1996) specialize

to different gambling schemes. Cover’s (1998) Max-Min portfolio and the sequential

minimax portfolio specialize to the same gambling scheme, which is the sharpest possible

for a fixed number of races T . The sequential minimax strategy only rears its head when

we step outside of the horse race markets.

In the concrete gambling situation a direct variational method can be substituted

for the backward induction. The method amounts to nothing more than Shtarkov’s

(1987) universal source code, re-interpreted for this new context. It was (presumably)

just this method that led cover to formulate his (1998) Max-Min portfolio in terms of

extremal strategies.

Let θk(j
t−1) be the proportion of one’s wealth to bet on horse k in race t, assuming

the current win history is jt−1 = (j1, ..., jt−1). As usual, let Wθ(j1, ..., jT ) be the induced
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final wealth function. According to principles discussed above, it is convenient to nor-

malize Otj ≡ 1. These are sub-fair odds: a $1 bet on the winning horse gets you your

dollar back. Any money bet on the other horses is lost. Again, this normalization is

possible because we are concerned with optimizing relative, not absolute performance.

We are already aware of the general fact that θ is completely characterized by Wθ.

One has, for all jT :

θj1(j0)θj2(j1) · · · θjT (jT−1) = Wθ(j
T ), (3.7)

where j1 ⊂ j2 ⊂ · · · ⊂ jT−1 are sub-histories of jT . From this we recover

θk(j
t) =

Σ
jt+2,...,jT

Wθ(j
t, k, jt+2, ..., jT )

Σ
jt+1,...,jT

Wθ(jt, jt+1, ..., jT )
. (3.8)

Of course this is old hat at this stage. Thus, we confine ourself to selecting final wealth

functions that satisfy Σ
j1,...,jT

W (jT ) = 1. In this context, a gambling strategy is merely

vector of numbers (W (jT ))jT∈{1,...,m}T in the mT -dimensional simplex.

We solve the problem

Max
W (·)∈∆

Min
jT

W (jT )

D(jT )
(3.9)

The issue of maximizing this piecewise linear function over the simplex is easily resolved.

Looking past the notation and high number of dimensions, it is just a Leontiev (perfect

complements) demand problem. Accordingly, we pick the vector W so as to equalize all

the numbers:
W (jT )

D(jT )
= C (3.10)

Multiplying through by D(jT ) and summing over all jT , we get C = 1
Σ
jT

D(jT )
and

W (jT ) = D(jT )
Σ
jT

D(jT )
.

The universal gambling scheme is therefore

θk(j
t) =

Σ
jt+2,...,jT

D(jt, k, jt+1, ..., jT )

Σ
jt+1,...,jT

D(jt, jt+1, ..., jT )
, (3.11)

where D(jT ) is the final wealth of the hindsight-optimized rebalancing rule correspond-

ing to the win history jT . I give simplified formulas for the (unnormalized) kth nu-

merator θk(j
T ). Then one just normalizes the vector of numerators to the simplex.
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Let (N1, ..., Nm) be the type of jt, e.g. horse 1 has won N1 races so far, horse 2 has

won N2 races, and so on. Let (n1, ..., nm) denote the type of the continuation history

(jt+1, ..., jT ), e.g. horse k wins nk races total in periods t + 1, t + 2, ..., T . Then the

numerator of the portfolio weight on horse k after jt is Σ
n1+···nm=T−t−1

(
T−t−1
n1 ···nm

)
×(

N1+n1
T

)N1+n1 · · ·
(
Nk+nk+1

T

)Nk+nk+1 · · ·
(
Nm+nm

T

)Nm+nm Just to avoid confusion, the

long product on the right is equal to(
Nk + nk + 1

T

)Nk+nk+1 ∏
j 6=k

(
Nj + nj

T

)Nj+nj
(3.12)

This accounts for the special role of index k in calculating the kth numerator.

Example 20. For m = 2 stocks, suppose that win history jt has been observed after t

races. Suppose that horse 1 has won N1 races, and horse 2 has won N2 races so far.

Then the numerator of the portfolio weight on stock 1 is

T−t−1∑
j=0

(
T − t− 1

j

)(
N1 + j + 1

T

)N1+j+1(T −N1 − j − 1

T

)T−N1−j−1

(3.13)

The numerator of the portfolio weight on stock 2 is

T−t−1∑
j=0

(
T − t− 1

j

)(
N1 + j

T

)N1+j(T −N1 − j
T

)T−N1−j
(3.14)

The portfolio of bets to use is then (Numerator1,Numerator2)
Numerator1+Numerator2

.

As an application of these formulas, I calculate a few portfolio weights under the

assumption that t = 10 and T = 100. The universal gambler is systematically more

conservative than somebody who just bets the empirical distribution of wins as known

after 10 races. However, the universal scheme gets more aggressive as it accumulates

data.
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N1 N2 Proportion of wealth to bet on horse 1 (T = 100)

1 9 13.5%

2 8 22.7%

3 7 31.8%

4 6 40.9%

5 5 50%

2 18 11.9%

4 16 21.4%

6 14 30.9%

8 12 40.4%

10 10 50%

Table 3.1: Fortune favors the paranoid: how to bet after observing N1 wins

for horse 1 and N2 wins for horse 2

3.4 Orderly computation of the universal bets

In general, we must compute values of the function

f(N1, ..., Nm;H) = Σ
n1+···+nm=H

(
H

n1 · · · nm

)(
N1 + n1

T

)N1+n1

· · ·
(
Nm + nm

T

)Nm+nm

,

(3.15)

where H stands for “horizon.” The formula for the (unnormalized) numerator of the

portfolio weight on stock k is now expressed as f(N1, ..., Nk−1, Nk+1, Nk+1, ..., Nm;T −
t− 1). We can use the recurrence

f(N1, ..., Nm;H) =
H∑
j=0

(
H

j

)(
Nm + j

T

)Nm+j

f(N1, ..., Nm−1;H − j). (3.16)

At each recursive step, the number of horses decreases by 1. We have the boundary

conditions f(N1;H) =
(
N1+H
T

)N1+H
and f(N1, ..., Nm; 0) =

(
N1
T

)N1 · · ·
(
Nm
T

)Nm . One

should also exploit the fact that f(N1, ..., Nm;H) is a symmetric function of the vari-

ables N1, ..., Nm. In the recursive function calls, every time a value f(N1, ..., Nm;H)

is calculated it should be stored for future reference. This number only needs to be

calculated once; every other request for f(N1, ..., Nm;H) in the function call tree should
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just look up the answer from memory. By symmetry, we need only ever calculate the

function for values N1, ..., Nm for which N1 ≥ N2 ≥ · · · ≥ Nm. Whenever f(·) is called

recursively, the input values should be re-ordered so that this condition is satisfied.

Example 21. Assume m = 4 horses and T = 100 races. Assume that after t =

10 races the win profile is (N1, N2, N3, N4) = (5, 2, 2, 1). Then the optimal (sequen-

tial minimax) portfolio of bets for race 11 is (45.9%, 20.8%, 20.8%, 12.5%). After 20

races, if the win profile is (10, 4, 4, 2) = 2 · (5, 2, 2, 1), then the optimal portfolio is

(47.7%, 20.5%, 20.5%, 11.3%). Thus, having twice the data, the universal gambler’s port-

folio has moved closer into line with the empirical win distribution as known after 20

races.

3.5 Comparison of the sequential minimax betting scheme

with horizon-free schemes

3.5.1 Dirichlet-Weighted Schemes

Having observed win history jt = (j1, ..., jt) of type (n1, ...nm), the uniformly weighted

horizon-free universal portfolio has the numerator of θk(j
t) equal to

∫
c1+···+cm−1≤1 c

n1
1 ·

· · cnk−1

k−1 c
nk+1
k c

nk+1

k+1 · · ·
(

1−
∑m−1

j=1 cj

)nm
dc1 · · · dcm−1 =

n1!···nk−1!(nk+1)!nk+1!···nm!
(t+m)! . After simplification, one has

θk(n1, ..., nm) =
nk + 1

t+m
(3.17)

Similarly, the (1/2, ..., 1/2)-Dirichlet weighted horizon-free universal portfolio makes the

bets

θk(n1, ..., nm) =
nk + 1

2

t+ m
2

, (3.18)

In general, the (α1, ..., αm)-Dirichlet weighted portfolio uses

θk(n1, ..., nm) =
nk + αk

t+
∑m

l=1 αl
(3.19)

where t is the number of races completed. This is Laplace’s generalized rule of succes-

sion. The practical performance of these strategies is illustrated below. Remember, of
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course, that although the horizon-free strategies may outperform the sequential mini-

max strategy in “practical” examples, their worst-case performance is inferior to that

of the sequential minimax strategy.

Figure 3.2: Performance of the horizon-free strategies under 320 simulated

iid horse races with O = (2, 2) and probabilities (0.4, 0.6).

The slight outperformance of the uniformly weighted (Dirichlet 1,1) scheme is typical.

The Dirichlet 1/2,1/2 scheme tracks the fixed-horizon strategy rather closely, and has

better worst case performance than the uniformly weighted betting system.

Example 22. Suppose the gambler has an a priori belief that rebalancing rules near the

centroid of the simplex will perform better. He decides to distribute his dollar among

the rebalancing rules C according to a density

d(c1, ..., cm−1) =

Min

(
Min

1≤j≤m−1
cj , 1−

∑m−1
j=1 cj

)
∫
b1+···+bm−1≤1Min

(
Min

1≤j≤m−1
bj , 1−

∑m−1
j=1 bj

) (3.20)

dollars per unit of volume. He then “lets it ride,” e.g. rebalancing rule c gets to manage
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this money forever. In the case of two stocks this amounts to

d(λ) =
Min(λ, 1− λ)∫ 1

0 Min(λ, 1− λ)dλ
= 4 ·Min(λ, 1− λ). (3.21)

The on-line proportion of wealth to bet on stock 1 after observing win counts (n1, n2) is

∫ 1
0 λ

n1+1(1− λ)n2Min(λ, 1− λ)dλ∫ 1
0 λ

n1(1− λ)n2Min(λ, 1− λ)dλ
(3.22)

Empirical Bayes Scheme

Cover (1986) gives an “empirical Bayes stock portfolio” that is universal for stock mar-

kets with finite support xt ∈ X . We can specialize this model to the Kelly horse race by

assuming that X = {O1e1, ...,Omem}, where Oj are the odds on horse j. The algorithm

keeps track of the empirical win distribution pt = (nt1T , ..., ntmT ) and the sample average

of the per race growth rates Gt =
∑t
s=1 log(Ojsθjs (j1,...,js−1))

t . Here ntj is the number of

races horse j has won after t races have been completed. Given the current empirical

win distribution p, the best available average growth rate in hindsight over 1 ≤ s ≤ t is

given by B(p) =
∑m

j=1 pjlog(pjOj), which would have been the result of betting the em-

pirical frequencies pj =
nj
t . The typical situation for 2 horses is illustrated in the figure

below. The curve {(p,B(p)) : p ∈ ∆} is called the Bayes envelope. Following Blackwell,

the objective of the algorithm is to force, in repeated plays, the convergence of the em-

pirical payoff vector (pt, Gt) to the Bayes envelope. This is achieved by finding the point

(q∗, B(q∗)) on the Bayes envelope that is nearest to (pt, Gt) in the Euclidean sense. On

the next play of the game, the algorithm uses the portfolio of bets θ(pt, Gt) = q∗, where

q∗ = argmin
q∈∆

||q − p||2 + (B(q)−Gt)2 (3.23)

= argmin
q∈∆

m∑
j=1

(
qj −

ntj
t

)2

+

( m∑
j=1

qjlog(qjOj)−Gt
)2

(3.24)

Intuitively, the purpose of this convex program is to provide a robust adjustment q∗ to

the currently known vector of empirical win frequencies pt.

Example 23. Given fixed odds O = (2, 2), if after t plays, the observed empirical

frequency of wins for horse 1 is 80%, and assuming that the gambler has achieved an
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average per-race growth rate of 0.1%, the empirical Bayes gambler bets about 76% of his

wealth on horse 1 in race t+ 1. Thus, there is a certain “disbelief” of the empirical win

frequency, a disbelief that weakens as the gambler’s performance approaches the Bayes

envelope.

Figure 3.3: Situation faced by an Empirical Bayes gambler who has measured

an empirical win frequency of 80% for horse 1 and has grown his wealth at

a rate of 0.1% per race

The manner in which the empirical Bayes gambler is able to force his way into the Bayes

envelope is illustrated below for 1000 iid races drawn from p = (0.4, 0.6) and O = (2, 2).
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Figure 3.4: Illustration of Blackwell’s approachability theory applied to the

Kelly horse race. The gambler is able to force convergence to the point

(40%, 2%) on the Bayes envelope.

Example 24. Consider the situation with 3 horses running iid races with true, unknown

win probabilities (0.5, 0.3, 0.2) and fixed odds O = (3, 3, 3). The Kelly growth rate is

6.9%. A gambler using the empirical Bayes scheme is able to force the sample average

(n1
T ,

n2
T , Gt) to converge to the point (0.5, 0.3, 0.069) on the Bayes envelope almost surely.

A sample path for 1000 such races is illustrated below.
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Figure 3.5: Approaching the Bayes envelope in a sample path of 1000 races

of 3 horses

3.6 A sequential minimax improvement to the

Cover/Blackwell method

The Blackwell/Cover method of projecting the current sample average (pt, Gt) onto the

Bayes envelope, and betting the “corrected” beliefs p∗ is simple and elegant, but it is

not strictly the best possible step that can be made toward the Bayes envelope E . One

naturally is led to consider the question: given the position (pt, Gt) after t plays, what

is the smallest numerical value of d
(
E , (pt+1, Gt)

)
we can guarantee to achieve after the

next play? The most perspicacious strategy would take into account the time (after

all it is the denominator of the sample average) and also the fact this problem will

repeat itself several times, e.g. it is important not only to make progress now, but to

set ourselves up well to make good progress in the future. Given an ultimate horizon

of T plays, what is the smallest distance to the Bayes envelope that we can guarantee?

Let Vt(p,G) denote the lowest final distance to E we can guarantee to achieve after T
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plays, given that the position after t plays is (p,G). Note that p can only take one of a

finite number of values after t plays, namely (n1
t , ...,

nm
t ), where the nk are nonnegative

integers summing to t. Let b = (b1, ..., bm) be the portfolio of bets chosen by the gambler,

and let j denote the index of the horse that wins the t + 1st race. We then have the

Bellman equation

Vt(p,G) = Min
b∈∆

Max
1≤j≤m

Vt+1

(
tp+ ej
t+ 1

,
tG+ log(bjOj)

t+ 1

)
(3.25)

and the boundary condition

VT (p,G) = d(E , (p,G)) = Min
q∈∆

√√√√||q − p||22 +

( m∑
j=1

qjlog(qjOj)−G
)2

. (3.26)



Appendix A

Glossary of concepts and notation

• Bayes envelope of a Kelly horse race: Given that a gambler has observed (af-

ter some indeterminate number of races) empirical win frequencies p = (p1, ..., pm),

where pj is the proportion of races won so far by horse j, the highest per-period

continuously compounded growth rate available to fixed-fraction betting schemes

in hindsight is B(p) =
∑m

j=1 pjlog(pjOj), where Oj are the (gross) odds paid for a

$1 bet on horse j. The (convex) epigraph {(p,G) : G ≥ B(p)} is called the Bayes

envelope. The gambler’s objective is to force convergence of the empirical average

payoff (p,G) to the envelope, where G is the gambler’s realized average per-period

growth rate.

• Best rebalancing rule in hindsight: at T , having observed the realized return

vectors x1, ..., xT , the rebalancing rule c∗(x1, ..., xT ) that would have yielded the

greatest final wealth W ∗(x1, ..., xT ) = Max
c∈∆

〈c, x1〉 · · · 〈c, xT 〉. W ∗(·) is a convex

function (separately) of each vector argument xt. Note that a fortiori, the best

rebalancing rule in hindsight makes more money in any finite sample than the

Kelly rule c∗(F ).

• Capitalization-weighted index: an index (like the S&P 500) that corresponds

to the (time-varying) portfolio weights cj =
CAPtj∑m
k=1 CAPtk

, where CAPtj is the aggre-

gate market value of firm j at the close of session t. In spite of the fact that these

weights are always changing, the performance of a capitalization-weighted index

77
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is replicated by purchasing an initial “market portfolio,” and “letting it ride” for-

ever. The numerical value of the index after t sessions is λ(CAPt1 + · · ·+CAPtm),

where λ is just a constant chosen to keep the index level within a “nice” interval

of numbers.

• Conditional super-hedge: conditional on the fact that the realizations x1, ..., xt

are already “baked in” to the return history, a conditional super-hedge for D(·)
is a trading strategy that constitutes a super hedge for the restricted derivative

δ(xt+1, ..., xT ) = D(xt, xt+1, ..., xT ) in the continuation game that occurs for peri-

ods t+ 1, t+ 2, ..., T .

• Conditional superhedging price: the cost p(x1, ..., xt) of the cheapest con-

ditional superhedge for D, given that x1, ..., xt have already occured. The corre-

sponding superhedging strategy θ(·) is initiated in period t+1, with initial deposit

p(xt).

• Equal weight index: the final wealth that accrues from the using the rebalancing

rule θ(xt) ≡ (1/m, ..., 1/m). An example of this is the Guggenheim/Rydex Equal

Weight S&P 500 ETF (ticker RSP) which is rebalanced quarterly. Empirically

speaking, over long periods, equal weight rebalancing achieves higher growth rates

and higher Sharpe and Sortino ratios than their “let it ride” counterparts.

• Extremal strategy: a trading strategy that puts all its wealth into some stock

j1 in period 1, then puts all the proceeds into stock j2 in period 2, et cetera, then

puts all the proceeds into stock jT in period T . The general extremal strategy is

characterized by a tuple (j1, ..., jT ) ∈ {1, ...,m}T . If xtj is the gross return of stock

j in period t, then the gross return on a $1 investment in the (j1, ..., jT )-extremal

strategy is x1j1x2j2 · · · xTjT . For example, the extremal strategy (1, 2, 1, 2, ..., 1, 2)

puts all its wealth into stock 1 in odd periods, and bets it all on stock 2 in even

periods. By contrast, the extremal strategy (1, ..., 1) corresponds to buying and

holding stock 1. The final wealth of every multilinear trading strategy is some

convex combination of the payoffs of the mT extremal strategies.

• Final wealth function: the function Wθ(x1, ..., xT ) that gives the final wealth

achieved by the self-financing strategy θ on the path x1, ..., xT . If η and θ are
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trading strategies such that Wη = Wθ, then η = θ.

• Fixed-horizon (or horizon T ) trading strategy: a strategy θ(·) that depends

in an essential way on a definite investment horizon T . Cover (1998) is a horizon-

T strategy, for example, but Cover (1991) is not. Fixed-horizon strategies have

the advantage of (possibly) being optimized for a particular horizon T , but have

the disadvantage of forcing the practitioner to commit to a course of action for a

large, fixed number of periods into the future. Somebody who is concerned about

his ability to stick to such a long range plan should use a horizon-free strategy.

• Horizon-free trading strategy: a strategy θ(·) that is calculated purely from

the available return data x1, ..., xt, without reference to any particular investment

horizon T . A good horizon-free strategy will not be optimal for any specific horizon

T , but will perform well for all horizons.

• Kelly growth rate: the greatest possible asymptotic growth rate ρ∗(F ) achiev-

able against return vectors xt drawn iid from cdf F (·). This achievement happens,

simply enough, by acting each period so as to maximize the expected log of one’s

capital.

• Kelly horse race: there are m horses that run T races sequentially, 1 ≤ t ≤ T .

Before race t starts, a bookie posts odds Ot = (Ot1, ...,Otm), where Otj are the

odds on horse j. This means that a $1 bet on horse j in race t will have a gross

payoff of Ojt dollars. Let jt denote the winner of race t. Then the gross-return

vector of this “horse race market” in period t is Otjtejt , where ejt is the unit basis

vector with a 1 in the jtht position. The stock market analog of this realization

has the following interpretation: all the stocks except jt collapsed in price to ε,

and the price of stock jt was unchanged.

• Kelly rule (or log-optimal portfolio): if the xt are distributed iid with cdf F ,

then the log-optimal portfolio c∗(F ) is that which maximizes the expected, conti-

nously compounded per-period growth rate of capital: argmax
c∈∆

EF [log 〈c, xt〉].

• Kullback-Leibler divergence D(p||B): in the Kelly horse race, let p = (p1, ..., pm)
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be the probabilities that the various horses win a given race. The bookie, un-

aware of p, has his own beliefs B = (B1, ...,Bm) ∈ ∆, which are implicit in the

posted odds. Then D(p||B) is the maximum possible asymptotic per-period capi-

tal growth rate that is achievable by a gambler who knows p (or uses a universal

betting strategy). We have D(p||B) =
∑m

j=1 pj log
pj
Bj . In general D(p||B) ≥ 0,

and = 0 if and only if p = B.

• “Let it ride”: the act of depositing some proportion of one’s wealth into a

strategy, asset, or portfolio, and never rebalancing. For example, if one puts half

of his wealth into stocks and half in bonds, and lets it ride, then 30 years later he

will in all probability have much more than half of his wealth invested in stocks.

• “Multi-convex” derivative: A derivativeD(x1, ..., xT ) that is convex separately

in each xt. That is, D(λxt + (1 − λ)yt, x−t) ≤ λD(xt, x−t) + (1 − λ)D(yt, x−t).

If D is also homogeneous separately in each xt, then D can be majorized by a

multilinear derivative:

D(x1, ..., xT ) ≤ Σ
j1,...,jT

D(ej1 , ..., ejT )x1j1 · · · xTjT (A.1)

If D is (jointly) convex in the variable ξ = (x1, ..., xT ) then it is multi-convex, but

not conversely.

• Multilinear hedging: the act of interpolating a derivative D(x1, ..., xT ) by the

unique multilinear form that passes through the mT points (ej1 , ..., ejT ), where

the ejt are unit basis vectors. A trader then uses the unique replicating strategy

corresponding to the interpolating form.

• Multilinear trading strategy: a self-financing trading strategy θ(·), and an

initial deposit p, that perfectly replicates the final payoff of a multilinear derivative

D(x1, ..., xT ). Every positive multilinear form corresponds to a unique replicating

strategy.

• Perfect hedge: a self-financing trading strategy θ(·) and an initial deposit p into

the strategy, that guarantees to generate cash flows at T that are precisely equal to

the payoff of some derivative D(x1, ..., xT ), regardless of the sample path x1, ..., xT .
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If D(·) is perfectly replicable, then the (p, θ) are unique. If the derivative sells for

some price other than p at t = 0, an arbitrage opportunity arises.

• Price-weighted index: an index (like the Dow-Jones) that corresponds to the

(time-varying) portfolio weights cj =
Stj∑m
k=1 Stk

, where Stj is the price of stock j at

the close of session t. In spite of the fact that these weights are always changing,

the performance of a price-weighted index is replicated by purchasing a single

share of each stock, and “letting it ride” forever. The numerical value of the index

after t sessions is λ(St1 + · · ·+Stm), where λ is just a constant chosen to keep the

index level within a “nice” interval of numbers.

• Rebalancing rule: a trading strategy that maintains constant proportions θ(xt) ≡
c = (c1, ..., cm) of wealth in each stock j. This requires trading every period: at

the start of each session t, the trader adjusts his portfolio so as to maintain the

constant proportions cj . Then the stocks move, and by the end of the session the

trader no longer has exactly cj of his wealth in each stock j. The portfolio must

be rebalanced at the start of the next trading session, and so on. By contrast, a

buy-and-hold strategy never trades, and so has a fluctuating proportion of wealth

in each stock.

• Self-financing trading strategy: a function that prescribes the the proportion

of wealth bet on each stock j in session t+1 after having observed the return history

x1, ..., xt. The portfolio vector is denoted θ(xt) = (θ1(xt), θ2(xt), ..., θm(xt)), and

θ is a mapping θ : ∪∞t=1(Rm+ )t → ∆. θ must also select a portfolio to use in t = 1

(when there is no data available), and this vector is denoted θ(h0), where h0 is

the empty history.

• Shannon’s Demon: In a famous lecture at MIT (attended by Samuelson),

Shannon considered a stock whose price St, each period, either doubles or gets

cut in half with 50% probability. Although E[St] = S0 · 1.25t → ∞, we have

E[log St] = log S0. Thus, the asymptotic per-period growth rate of the buy-and-

hold investor is 0. A Kelly gambler, by contrast, uses the 50− 50 rebalancing rule

and grows his wealth at an asymptotic rate of 6% per period. This is in spite of

taking half the risk of the buy-and-hold investor. Note the amusing “buy low and
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sell high” tactics being employed by the Kelly bettor. Assuming the Kelly gam-

bler starts with $1, his expected wealth after t periods is 1.125t, but his expected

log-wealth is 0.06t.

• Shtarkov’s Bound: an upper bound on the superhedging cost p(T,m) that

corresponds to the final wealth of the best rebalancing rule in hindsight, assuming

T periods and m stocks. The bound is very accurate, and simple in that it is

an m − 1st degree polynomial in the variable
√
T . Shtarkov studied the number

p(T,m) in connection with his universal source code in information theory. The

code is able to compress a stream of binary data to its Shannon (entropy) limit,

in spite of the fact that it starts with no prior distributional information about

the 0− 1 process. The Shannon limit is thus “universally achievable,” and so too

is the Kelly growth rate.

• Super-hedge: a self-financing trading strategy θ(·) and an initial deposit p into

the strategy, that guarantees to generate cash flows at T that are ≥ to the payoff

of some derivative D(x1, ..., xT ), regardless of the sample path x1, ..., xT . If the

price of the derivative were to exceed p, one could short the derivative and use

the proceeds to buy a super-hedge, guaranteeing a riskless profit at T .

• Superhedging price for a derivative D: the smallest amount of money p for

which a self-financing trading strategy θ exists such that (p, θ) is a super hedge for

D. This is the sharpest upper bound on the price of D that can be given without

specifying the distribution from which the path (x1, ..., xT ) is drawn.

• Symmetric derivative: a derivative D(x1, ..., xT ) whose final payoff is un-

changed if the input vectors xt are re-ordered. That is, D(xσ(1), ..., xσ(T )) =

D(x1, ..., xT ) for any permutation σ of the indices 1, ..., T .

• Symmetric trading strategy: a trading strategy θ whose induced final wealth

function Wθ(x1, ..., xT ) depends only on the numerical values of the xt, and not

their order. For example, a symmetric trading strategy would not have been

“tricked” by the ordering of the returns before, during, and after the crash of

1929.
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• Type class of jT = (j1, ..., jT ): let nk = nk(j
T ) be the number of k’s that

appear among the indices j1, ..., jT ∈ {1, ...,m}. If jT is regarded as a horse race

history, then, nk is the number of races won by horse k. The numbers (n1, ..., nm)

constitute the type of jT . Regarding two horse-race histories as equivalent if

they have the same type, the set {1, ...,m}T gets decomposed into type classes.

The type classes correspond to solutions of the equation n1 + · · · + nm = T in

nonnegative integers. There are
(
T+m−1
m−1

)
= O(Tm−1) possible types. The type

class (n1, ..., nm) contains
(

T
n1 n2 ···nm

)
sample paths jT . If f(jT ) is a function that

is to be summed over the sample paths, then we have the decomposition

Σ
jT
f(jT ) = Σ

n1+···+nm=T
Σ

jT :type(jT )=(n1,...,nm)
f(jT ). (A.2)

• Universal gambling scheme: a strategy for sequential gambling on horse races

that guarantees to compound its money at the same asymptotic rate as the best

fixed-fraction betting system in hindsight. Of necessity, any universal portfolio

will particularize to a universal gambling scheme.

• Universal portfolio: a non-anticipating trading strategy θ(·) that compounds

its money at the same asymptotic per-period rate as the best rebalancing rule

in hindsight. Against iid returns drawn from a CDF F (·), a universal strategy

compounds its money at the same asymptotic rate as the Kelly rebalancing rule

c∗(F ).
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