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Abstract

Pattern formation in nature has intrigued humans for centuries, if not millennia. In the

past few decades researchers have become interested in harnessing these processes to en-

gineer and manufacture self-organized and self-regulated devices at various length scales.

Since many natural pattern forming processes nucleate or grow from a homogeneous un-

stable state, they typically create defects, caused by thermal and other inherent sources

of noise, which can hamper effectiveness in applications. One successful experimental

method for controlling the pattern forming process is to use an external mechanism

which moves through a system, transforming it from a stable state to an unstable state

from which the pattern forming dynamics can take hold.

In this thesis, we rigorously study partial differential equations which model how such

triggering mechanisms can select and control patterns. We first use dynamical systems

techniques to study the case where a spatial trigger perturbs a pattern forming freely

invading front in a scalar partial differential equation. We study such perturbations

for the two generic types of scalar invasion fronts, known as pulled and pushed fronts,

which roughly correspond to fronts which invade either through a linear or nonlinear

mechanism. Our results give the existence of perturbed fronts and provide expansions in

the speed of the triggering mechanism for the wavenumber perturbation of the pattern

formed.

With the hope of moving towards the more complicated geometries which can arise

in two spatial dimensions, where many dynamical systems methods cannot be readily

applied, we also develop a functional analytic method for the study of Hopf bifurcation

in the presence of continuous spectrum. Our method, while still giving computable

information about the bifurcating solution, is more direct than previously proposed

methods. We develop this method in the context of a triggered Cahn-Hilliard equation,

in one spatial dimension, which has been used to study many triggered pattern forming

systems. Furthermore, we use these abstract results to characterize an explicit example

and also use our method to give a simplified proof of the bifurcation of oscillatory shock

solutions in viscous conservation laws.
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Chapter 1

Introduction

1.1 Introduction

Nature has a vast array of tools and processes by which it forms its many beautiful

coherent structures. Such processes have intrigued researchers in many fields of natural

science across the ages, from the study of nature’s “forms” by Plato and Pythagoras,

the artistic drawings of Ernst Haeckel showing the beauty and variety of marine life [71],

the investigations of D’arcy Wentworth Thompson describing natural forms with simple

mathematical equations [161], the chemical experiments of Raphael Liesegang [95], to

the mathematical investigations of biological morphogenesis by Alan Turing [154]. In

the past half century or so, the application of mathematical models and analysis has lead

to a deeper understanding of these processes in many different areas such as polymer

network formation [119, 118, 109], plant phylotaxis [113, 112] , chemical deposition

[140, 63, 62], fluid dynamics [31], animal coats [29, 159], and vegetation and population

patterns [143].1

With the recent advent of micro- and nano-meter scale devices in diverse areas such

as optics, thin-film solar cells, micro-fluid medical devices, and nano-electronics, much

interest has arisen from engineering communities to harness the natural pattern-forming

processes of nature to fabricate structures which are functionalized, self-organized, and

1This introductory chapter is a reformulation and unification of the introductions contained in the
works [65, 66, 64] which comprise this thesis.
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self-mediated; see for example [104, 145, 160]. The utilization of such processes could

lead to significant simplification of fabrication processes, cost reduction, and increased

structure complexity compared to existing techniques, such as lithography where one

typically has to use tools at the same length-scale of the desired structure. In short, the

main question is:

Can the pattern forming processes of nature be used to create complicated

and functional structures in a more cost effective and efficient manner?

Many of the pattern forming processes mentioned above form via the nucleation, growth,

and invasion of a localized instability into a homogeneous unstable state. This growth

leads to the formation of a traveling front which typically moves at a constant speed

c and leaves behind some sort of periodic pattern in its wake; see for example Fig.

1.2.1. The wavenumber of this periodic pattern is typically independent of the type of

perturbation and is selected by the nonlinear front propagation. There has been much

experimental, numerical, and theoretical work done in the past few decades to study

such pattern forming invasion fronts (see [156, 33, 11]) and front propagation remains

an active area of study today; see for example [43, 113, 52, 72, 166].

In practice and experiment, these fronts are typically difficult to control as the prepa-

ration of a homogeneous unstable state requires uniform suppression of random fluc-

tuations. Otherwise, such fluctuations will cause patches of spatial patterns to fill the

medium and collide with each other forming various types of defects; see Figure 1.1.1

for an example of this. Furthermore, even if such suppression is achieved, one must

have control of the internal system parameters to tune the type of pattern formed by

the invasion front. For these reasons, freely invading fronts are most likely of little use

in the engineering applications mentioned above.

One successful experimental method for controlling these pattern forming processes

is to use an external mechanism which moves through a stable system and spatially

progressively excites it into an unstable state. Once the latter state is established, the

pattern forming mechanisms inherent in the system can take hold. In this way, the

mechanism can be thought of as “triggering”, and subsequently mediating, a pattern

forming process. This is the primary type of trigger which we consider in this thesis

and the mantra which underlies the study at hand could be posed as follows:
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Figure 1.1.1: Evolution of the cubic Swift-Hohenberg equation in two spatial dimensions
from small random perturbations of the state u ≡ 0. Patches of coherent stripes form
which interact along various slowly evolving defects.

By controlling the spatially progressive way one excites a stable system into

an unstable state, one can control the pattern which is selected by the system.

A recent example of this method comes from the field of ion-milling. Here, a broad beam

of ions bombards a flat surface of metallic alloy and, instead of homogeneously eroding

it as might be expected, excites a secondary “sputtering” instability which creates a

variety of coherent structures; see [14, 165, 15, 59, 148, 75]) and Figure 1.1.2 for a few

examples. If the entire plate is bombarded at once, the whole surface becomes unstable,

leading to the formation of patches of patterns with defects at their domain boundaries.

If instead, the beam is masked and progressively moved across the surface, exciting

only a portion of the metal at a time, a sizeable reduction in the amount of defects is

observed [59].

Another example arises in the field of evaporative chemical deposition [151]. Here parti-

cles (on the micron to nanometer length scale depending on the situation) are deposited

on a surface via the progressive evaporation of a solvent. A household example of this

phenomenon is the formation of ring like stains formed when spilled coffee evaporates

on a tabletop. By controlling the evaporation process - typically by drawing the surface

out of the solvent in a controlled manner - a vast array of uniform spatial patterns can
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FIGURE 1 Example of diversity of pattern formation on Si (a, b, d–g, i, m) and Ge (c, h, k, l) surfaces by low-energy ion-beam erosion. Beginning with
top left, the following surface topographies measured by AFM are shown: (a) ultra-smooth surface, (b, c) meshworks of randomly arranged troughs, (d)
domains of hexagonally ordered dots, (e) highly ordered ripple pattern, (f) coexistence of dots and ripples, (g) long range square ordered dots on Si, (h) long
range hexagonally ordered dots, (i, k, l, m) curved ripples. The individual patterns are formed under various erosion conditions (ion energy between 500 eV
and 2000 eV; ion species used Ar+, Kr+, Xe+; ion incidence angle between 0◦ and 75◦ with respect to the surface normal, partly with simultaneous sample
rotation). All experiments were performed keeping the samples at room temperature

beam erosion was given. Depending on sputtering conditions,
features like holes, ripples, dots, and smooth surfaces can
evolve. However, from particular interest, the main subject of
the work was the formation of ripple and dot patterns.

As already described, for the given experimental condi-
tions ripple patterns can be formed for ion incidence angles
between ∼ 5◦ and 30◦, whereas dot patterns occur at 75◦ with
simultaneous sample rotation. For both cases the influences of
ion energy and ion fluence on the size of the structures and
their ordering were systematically investigated. The ion en-
ergy was varied between 500 and 2000 eV and ion fluences
up to 4 ×1019 cm−2 were applied. The ion fluence equals the
total number of ions hitting the surface per unit area. For
a given ion flux (typically a flux of 1.87 ×1015 cm−2 s−1 was
used), the ion fluence is equivalent to the sputter time or to the
thickness of the removed surface layer.

Summarizing these studies, the most important results are:
(i) the ion energy basically determines the size of the evolving
ripples and dots. The period or wavelength of the structures
increases with ion energy and their amplitudes also increase.
Typically, periods between 30 and 70 nm are measured. The
behavior is in accordance with theory, assuming that non-
thermal surface relaxation processes like ion-induced viscous
flow or ballistic drift mechanisms are dominant. Neverthe-

less, a definite identification of the smoothing process, solely
based on the limited energy range, was not possible. (ii) For
both types of patterns (ripples and dots, respectively) the in-
fluence of ion energy on the degree of ordering of the nanos-
tructure is negligible. As a measure of ordering the system
correlation length was used. This quantity has been calcu-
lated from the full width at half maximum of the first-order
peaks of the PSD curves (see also Fig. 2). Minor changes
in this correlation length are attributed to the secondary ion
beam parameters which are slightly changed with ion en-
ergy. (iii) For both types of pattern (ripples and dots, respec-
tively) the wavelength/size of the structures is constant with
respect to the ion fluence. In contrast, the amplitude of the
pattern exponentially grows until a saturation for ion fluences
of 1 ×1018 cm−2 is observed. The amplitude saturation is in
accordance with current models and points to nonlinear mech-
anisms that start to act for these fluences. (iv) Specific for
the time evolution of the dot pattern is a saturation of order-
ing with increasing ion fluence equivalent to the saturation
of the size of the individual domains. In contrast, the de-
fect density in the ripple pattern decreases continuously. For
the highest fluence applied in this work (4 ×1019 cm−2, cor-
responding to a total erosion time of 6 h) the pattern with
a ripple wavelength of 50 nm has an average defect density

(a)
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FIGURE 3 AFM images of 2000 eV Xe+ ion beam
eroded Si surfaces (ion fluence of 5.8×1018 cm−2) at
two different ion beam incidence angles: αion = 25◦
and αion = 26◦. At αion = 25◦ the AFM image shows
coexisting ripple and dot structures with ripple orien-
tation (dashed arrows) not perpendicular to the projec-
tion of the ion beam (broad white arrow). At αion = 26◦
an almost perfect square array of dots is formed ori-
ented along and perpendicular to the rotated ripples.
The corresponding FFT images are given in the in-
sets and emphasize the orientation and ordering of the
patterns

grid geometry as well as plasma parameters, the angular dis-
tribution under which the ions leave one aperture of the grid.
This was verified by performing simulations using the exper-
imentally determined ion current density profiles for different
Uacc as input data.

The consequence of this ion-beam parameter on the ex-
perimentally evolving pattern can be summarized in a so-
called topography diagram [64, 65]. The diagram shows the
variety of different patterns formed for different pairs of vari-
ates (αion, Uacc) and the transitions between the patterns. The
results clearly demonstrate the importance of the angular dis-
tribution of ions, which means the local angle under which the
ions hit the sample surface. In this way, the variation of Uacc
can be roughly considered as a fine adjustment of the average
ion incidence angle that is effective. The above discussion un-
derlines the importance of the secondary ion beam parameters
on the surface topography and shows that Uacc in broad-beam
ion sources can be used as an additional parameter during the
sputtering process for controlling the resulting surface topog-
raphy. The influence of Uacc is not only characteristic of Si
and Ge surfaces; on III/V semiconductors an influence of Uacc
was also reported [67].

At the end of this subsection the reader is referred to
a more lengthy report [65] for a compilation of further results
on self-organized pattern formation on Si and Ge by ion-beam
erosion.

3.2 Ion-beam smoothing of surfaces

As indicated in the discussion about the role of ion
incidence angle on the evolving surface topographies, gener-
ally, three different regions can be distinguished. In the first
region (extending from normal up to ∼ 30◦ ion incidence)
patterns develop on the surface. For ion incidence angles be-
tween ∼ 35◦ and ∼ 60◦ the surface remains smooth, nearly
independent of the ion energy and ion species used for the
experiments. For these ion incidence angles the surfaces are
stable against ion beam induced roughening. Finally, for ion
incidence angles of ∼ 65◦ and 85◦, the surface roughens again
and pronounced topographical changes are observed.

The existing windows of stability now offer an alternative
approach for the investigation of the smoothing behavior of
surfaces under ion bombardment. Therefore, systematic stud-
ies for the smoothing of Si surfaces have been started. Espe-
cially, the time evolution of the rms surface roughness and the
power spectral density (PSD) were analyzed. As an example,

Fig. 4 illustrates the time evolution of rms surface rough-
ness of a Si surface during ion-beam smoothing with Ar+

ions (Eion = 500 eV, αion = 45◦, jion = 300 µA cm−2, simul-
taneous sample rotation). Additionally, two AFM images for
the initial surface (before smoothing, t = 0 min) and after
smoothing (t = 180 min) are shown. The rms roughness was
reduced from Rq = 2.25 nm to Rq < 0.2 nm. From the an-
alysis of the PSD curves, using a model which follows the
approach of Bradley and Harper, it has been found that, in the
given case, the surface roughening by curvature-dependent
sputtering is (over-)compensated by an additional directed
flux of surface atoms arising from atomistic drift parallel to
the surface caused by momentum transfer. On the basis of this
model, the temporal evolution of the surface roughness can
be well explained (see ‘best-fit data’ in Fig. 4). The ballistic
drift mechanism was originally proposed by Carter and Vish-
nyakov to explain the absence of ripple formation at normal or
near-normal ion bombardment of Si surfaces with 10–40 keV
Xe+ ions [5]. Later, it was shown that this mechanism is
also responsible for the ultra-smoothness of diamond-like-
carbon coatings prepared by ion assisted thin film deposition
methods [68].

FIGURE 4 Time evolution of rms surface roughness of Si surface during
ion-beam smoothing (Ar+, Eion = 500 eV, αion = 45◦, jion = 300 µA cm−2,
simultaneous sample rotation). The two AFM images were taken from
the initial surface (before smoothing, t = 0 min) and after smoothing (t =
180 min). The rms roughness was reduced from Rq = 2.25 nm to Rq <
0.2 nm

(b)
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FIGURE 2 Temporal evolution of ripple pattern on Si (Kr+, Eion =
1200 eV, αion = 15◦, jion = 300 µA cm−2). The two AFM images show the
ripple pattern after erosion times of 3 min and 120 min, respectively. The
number of imperfections is reduced from more than 200 to 6. From the PSD
graph it is deduced that the ripple period is constant with time and the or-
dering improves with erosion time, which can be seen by the reduced width
of the first-order peak and the higher number of harmonics which becomes
visible

of ∼ 1 defects/µm2. A characteristic example for the tempo-
ral evolution of a ripple pattern on Si (Kr+, Eion = 1200 eV,
αion = 15◦, jion = 300 µA cm−2) is shown in Fig. 2.

In addition to the AFM investigations, some selected sam-
ples have been analyzed by GISAXS (grazing incidence small
angle X-ray scattering), GID (grazing incidence diffraction),
and TEM. Thus, main results of the AFM analysis could be
confirmed, e.g. the high degree of ordering or the asymmetric
shape of the ripples. Furthermore, it has been verified that in
all cases the surface is amorphous after ion-beam erosion. The
thickness of the amorphous layer is between ∼ 2 nm and 8 nm,
depending on the respective erosion parameters (i.e. ion inci-
dence angle and ion energy). These methods also proved that
the periodic modulations are continued at the interface from
the amorphus layer to the crystalline bulk.

All experimental results presented up to now illustrated
the influence of different ion-beam parameters on the evolu-
tion of the surface topography of Si and Ge. In this context, ba-
sically, two different generic types of self-organized patterns
during ion-beam erosion have been addressed: ripple and dot
patterns. In the case of ripples the orientation is determined by
the anisotropy in the surface topography evolution naturally
given by the projection of the ion-beam incidence. In con-
trast, hexagonal or square ordered dots were reported when

the ion beam induced anisotropy is relaxed. This can be ex-
perimentally realized for normal ion incidence or off-normal
ion incidence with simultaneous sample rotation. Under these
conditions domains with hexagonally close-packed dot arrays
are formed with a maximum domain size of ∼ 1 µm. The indi-
vidual domains themselves show a random azimuthal orienta-
tion to each other, resulting in a lack of long range ordering.

As will be shown next, there are two parameters of the
sputtering process that can contribute significantly to the
achievement of a long range ordering. These are the ion inci-
dence angle and the secondary ion beam parameters [64, 65].
A rather general discussion of the role of ion incidence angle
on the surface topography has already been given above.
However, small step variations of the ion incidence angle can
show a completely new phenomenon present on the surface.
Namely, a transition from ripples to dots with increasing ion
incidence angle. Additionally, the evolving dots have a large-
scale ordering, i.e. a spatial correlation over the whole irra-
diated sample area. In this context the specific role of beam
divergence and the angular distribution of ions within the
ion beam on the surface evolution will be introduced. Both
parameters, neglected up to now in the studies of nanostruc-
turing with ion beams, play a crucial role in surface evolution
processes.

As frequently mentioned, starting with ion incidence an-
gles of ∼ 5◦ ripples develop with an amplitude of ∼ 6 nm
and a wavelength of ∼ 70 nm. The ripple wave vector is ori-
ented parallel to the ion-beam direction. The characteristic
parallel mode ripple pattern is maintained up to ion incidence
angles of ∼ 23◦. With further increase of the ion incidence
angle additional new rotated ripples form with a ripple wave
vector no longer oriented parallel to the projection of the ion
beam. Moreover, curved ripples are observed connecting both
types of ripples. Further, ripples start to transform into dots
ordered along the previously existing ripples. A representa-
tive example of this scenario can be seen in the left-hand
part of Fig. 3 for an ion incidence angle of 25◦ and is also
reflected in the corresponding FFT image (see inset in the
AFM image). By increasing the ion incidence angle to 26◦

(right-hand part of Fig. 3), the topography is dominated by dot
structures appearing along and perpendicular to the rotated
ripples, respectively. The dots have an amplitude of 4 nm and
a periodicity of ∼ 50 nm. They form an almost perfect square
array of dots covering the whole sample area, i.e. not only
within particular domains. In the corresponding FFT image,
the equidistant square peaks are clearly visible. Additionally,
the image still shows domains of the preserved rotated rip-
ples on the surface. Further increase of the ion incidence angle
leads to a smooth surface. Based on these experiments, it can
be seen that small variations in the incidence angle can have
a strong effect on surface topography. Consequently, this sug-
gests that the spread in the local incidence angle caused by
the angular distribution of ions within the broad beam may
also influence the pattern evolution. This angular distribution
can be controlled by changing the voltages applied to the ge-
ometrically defined ion-optical elements of the broad-beam
ion source. For the given experimental setup (see Sect. 2), the
voltage Uscr applied to the screen grid determines the energy
of the ions, while the voltage applied to the accelerator grid
Uacc mainly controls, in a well-defined range depending on the

(c)

Figure 1.1.2: Examples of patterns formed by bombardment of surfaces (Germanium
and Silicon) with noble gas ions, Reprinted from [55], with permission of Springer.

be achieved such as stripes, dots, chevrons, and hexagons; see [151] and Figure 1.1.3.

Once the deposition front has receded from a given area of the
deposit, the liquid trapped inside it continues to evaporate, strain-
ing the material. As a result, cracks appear in the deposit, releasing
the stress induced by loss of volume [24–26,14]. Those cracks are
visible on Fig. 2c, and do not appear to have a correlation with
the surface pattern. Of course, if the deposit is thin enough, strain
will also be released through delamination, in which the deposit
leaves the substrate and curves itself: this is plainly visible using
the naked eye, but can also be seen on Fig. 2c. As a matter of fact,
interference fringes appear just after the cracks’ formation, reveal-

ing delamination of the deposit from the substrate [14]. This
delamination starts from the original contact line and progresses
towards the central region of the drop.

4. Fluorescence microscopy experiments

We were able to use fluorescence microscopy to harvest more
information on the deposit structure. The experiment was per-
formed using 50 nm fluorescent particles in a more dilute concen-
tration (1%). These particles cannot be tracked individually, but we
can have a fairly good approximation of their number using the
intensity of the fluorescent light received, since the thickness in-
volved is of the order of 100 lm. Using this intensity, we were able
to extract the profile of the deposit using MATLAB, as shown in
Figs. 4 and 5.

A typical profile is composed of two parts, as seen on Fig. 4: one
ascending part, close to the contact line, and one descending part,
close to the deposition front. The descending part could correspond
to two different structures as suggested by Fig. 4, which cannot be
discriminated using fluorescence microscopy: either the deposit
grows along the glass substrate, or along the liquid–air interface,
forming a colloidal skin (see Fig. 6).

In any case, these curves show us that there are two steps in the
deposition mechanism:

– at short times, the deposit grows as if one was building a wedge,
with a nearly constant angle: both its height and spatial extent
are increasing with time, keeping their ratio constant. This fea-
ture can be seen on Fig. 5b: by rescaling the fluorescent profiles
by dividing the fluorescence intensity by the maximal intensity
observed and the position by the position of this maximal inten-
sity, all profiles collapse together for the ascending part, with
the exception of the first measurement. However, Fig. 5c shows
that the position xmax of the maximal intensity Imax confirms this
behavior even at early times.

– at longer times, the growth seems different: the particles seem
to be no longer in sufficient number to fill a wedge, and the
maximal thickness of the deposit reaches at some time a max-
imum. Using the same rescaling as described above, we can see

Fig. 2. Drying of a solution of 50 nm particles observed with 40! objectives (each
image is 350 ! 350 lm): (a) Initial growth of the deposit (t = 440 s), the initial
contact line can be seen in white (with unwetted glass on its right) while a
deposition front appears and propagates to the center of the drop. Inset shows a
60! observation (25 ! 45 lm) of this deposition front. (b) Formation of a stripe
pattern, between the deposition front and the contact line (not visible on the
picture) with stripes oriented at 45! of the contact line (t = 5230 s). (c) Cracks and
delamination (visible from interference fringes) (t = 5497 s).

Fig. 3. Pattern observation using AFM microscopy.
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surface tension of the solution, thereby leading the solution to
spread to the region with higher concentration.[17] The condi-
tion for equilibrium between a wetting and a meniscus is the
equality of the capillary pressure and the disjoining pres-
sure,[24]

2cmeniscus
H

≅
A! !

6ph3 "3#

Substituting Equation 3 into Equation 2, the characteristic
wavelength of fingering instabilities, kF is, thus, given
by[24,26,27,32]

kF $ 2p
qm

$ 2p
6cmeniscus

chH

! "%1

2
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where cmeniscus is the surface tension of the meniscus in the
capillary bridge (i.e., the surface tension of toluene in the pre-
sent study, 29 mN/ m), c is the surface tension of the solute
(i.e., the surface tension of PS in present study, 40.7 mN/ m),
and H is the height of capillary bridge at the liquid/vapor in-
terface (Fig. 1) and can be calculated based on H ≈ X2/2R,
where R is the radius of curvature of the spherical lens
(R ∼ 2 cm), and X can be readily determined experimentally.
Substituting the height of the PS ring, determined by using
AFM measurements, and H into Equation 2 yields
kF = 29.6 lm at X = 3195 lm and kF = 26.3 lm at X = 3020 lm,
which are in good agreement with values measured experi-
mentally (i.e., 26.6 lm at X = 3195 lm in Fig. 3d and 25.3 lm
at X = 3020 lm in Fig. 3e). While optimized experimental
conditions are required to impart higher regularity of punch–
holelike structures (Fig. 3b and e), the present findings
suggest that a coupling of ‘stick-slip’ motion and fingering in-
stabilities due to unfavorable interfacial interaction between
the nonvolatile solute and the substrate (i.e., possessing a
positive A) may provide a unique means of organizing materi-
als into well-ordered structures in which regular microscopic
holes reside along concentric circles (Fig. 3e).

To further verify that unfavorable interfacial interaction
between PS and the Si substrate is crucial in forming fingering
instabilities, a lamellar-forming diblock copolymer of PS-b-
PMMA was employed as a nonvolatile solute in which PS
blocks were covalently linked with PMMA blocks at one end.
Figure 4 shows a surface pattern of PS-b-PMMA formed by
drying mediated self-assembly of a 0.25 mg mL–1 PS-b-
PMMA toluene solution in the sphere-on-Si geometry
(Fig. 1). Well-ordered gradient concentric rings of PS-b-
PMMA formed at the early stage of the solvent evaporation
were seen to transform into concentric rings with fingering in-
stabilities at their front at the final stage. The latter reflected a
delicate balance of competition of unfavorable interfacial in-
teraction between the PS block and Si and favorable interfa-
cial interaction between the PMMA block and Si. The obser-
vations of PS-b-PMMA fingers at the final stage contrast
significantly with those in homopolymer PMMA, in which

only minimal undulations were detected (Fig. 2). On the other
hand, as compared to the case of homopolymer PS (Fig. 3),
the punch–holelike structures are, however, not observed in
PS-b-PMMA. This can be attributed to favorable interaction
between the PMMA block and the Si substrate. Depending
on the affinity of the respective block for the substrate sur-
faces and the film thickness, the mircodomain of a block co-
polymer can be oriented normal to the surface of a film over a
large area.[33] A systematic study of microphase separation in
the PS-b-PMMA rings is currently underway.

In conclusion, we have developed a simple route to produce
well-ordered patterns in an easily controllable and cost-effec-
tive manner by allowing a drop to evaporate in a sphere-on-Si
geometry. The interfacial interaction between the solute and
the substrate effectively mediate the pattern formation. The
rings and punch-hole-like structures organized in a concentric
mode may offer possibilities for many applications, including
annular Bragg resonators for advanced optical-communica-
tion systems[34] and as tissue-engineering scaffolds.[35,36] The
present studies provide valuable insights into the rationale of
harnessing the flow and the evaporation process in confined
geometries and creating unprecedented regular patterns.

Experimental

Sample Preparation: 0.25 mg mL–1 of PS (Mn = 420 kg mol–1, the
polydispersity, PDI = 1.15), 0.25 mg mL–1 of PMMA
(Mn = 534 kg mol–1, PDI = 1.57), and 0.25 mg mL–1 of a lamellar-form-
ing diblock copolymer of PS-b-PMMA (Mn of PS = 130 kg mol–1, Mn
of PMMA= 133 kg mol–1, PDI = 1.10) toluene solutions were pre-
pared. All solutions were filtered by using a 200 nm filter. The spheri-
cal lenses and Si substrates were cleaned by using a mixture of sulfuric
acid and Nochromix. Subsequently, they were rinsed with deionized
water extensively and blow-dried with N2.

Confined Geometry: To construct a confined geometry, a spherical
lens made from fused silica with a radius of curvature of ca. 2 cm and
a Si wafer were used. The sphere and Si were firmly fixed at the top
and the bottom, respectively, of the sample holders. To implement a
confined geometry, an inchworm motor with a step motion of a few
micrometers was used to place the upper sphere into contact with the
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Figure 4. OM image of a gradient concentric surface pattern of a PS-b-
PMMA diblock copolymer formed from a 0.25 mg mL–1 PS-b-PMMA tolu-
ene solution. As the solution front progresses inward, the transition from
rings to the coexistence of rings with fingering instabilities are clearly evi-
dent. However, punch-hole-like structures are not observed.

(b)

Figure 1.1.3: Various examples of pattern formation via evaporated deposition. (a)
Reprinted from [13] (2012), with permission from Elsevier, (b) Reproduced from [82],
(2007) with permission from WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Here the evaporation line acts as a spatial trigger, inducing phase separative instabil-

ities as solvent evaporates from the particles. These evaporative processes have wide

application, and have been shown to deposit many different types of materials such as

polymers, nanoparticles, and biomaterials; see [73] for an especially interesting review.

Furthermore, such deposition processes are similar to recurrent precipitation patterns

that arise in the wake of a diffusion front to form banded ring-like patterns, as originally
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observed by Liesegang [95]. Models of these processes often include a simple bimolecular

reaction whose product feeds as a diffusive source term into a model for the precipitation

kinetics; see for instance [40, 87]. Lastly, we mention patterns produced through growth

and chemotaxis in bacterial colonies; see for instance [100]. In a first approximation, one

can envision patterns formed by chemotactic motion in the wake of a spatially spreading

growth process [2], with phenomena reminiscent of patterns in the wake of trigger fronts

in two-dimensional Cahn-Hilliard equations [54].

While the area of triggered pattern formation has been the focus of much experimental,

and numerical work, where evolutionary partial differential equations have been pro-

posed to model these phenomenon, little mathematically rigorous study has been per-

formed. Thus it is the goal of this thesis to rigorously investigate how spatial triggers,

which typically arise as some sort of spatial inhomogeneity in the equations modeling

the system, affect the patterns formed in a system. In particular, we wish to use tech-

niques from dynamical systems, partial differential equations, and functional analysis to

more deeply understand the known phenomena and predict new and interesting struc-

tures, with the hope that the deeper knowledge leads to the creation of new fabrication

techniques.

In its first two parts, this thesis mathematically contributes another drop to the ever

growing spring of research showing how dynamical systems techniques, such as spatial

dynamics, heteroclinic bifurcation theory, and geometric desingularization, can be used

to study evolutionary partial differential equations. In its third part, this work shows

how functional analytic methods could be used to “cut to the heart of the matter” and

study systems which have in the past resisted dynamical systems treatments. In partic-

ular, we develop a novel and direct approach for studying bifurcation in the presence of

essential spectrum. These methods, in addition to being somewhat more efficient than

the spatial dynamics approach, have the added benefit that they should allow for the

study of higher-dimensional spatial patterns (discussed briefly in Section 1.5 below).

In the rest of this introduction we will review the main results of this thesis, putting

them in context of the existing field of research, and briefly discussing the ingredients

of proof. Before doing these things, I will discuss and review the two generic types of

free invasion fronts, as the concepts permeate the rest of our work.
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1.2 Invasion and pattern formation into an unstable state

Since the external mechanisms discussed above often create patterns by mediating some

sort of invasion process, we must take some time to discuss front propagation into a

homogeneous unstable state. Invasion fronts of this type were first studied in the pi-

oneering works of Kolmorgorov, Petrovsky, and Piscunov [90], and Fisher [53] in the

first part of the 20-th century in the context of population models. In the mathemat-

ical community, work continued along this vein (in the context of nonlinear diffusion

equations) culminating in the outstanding work of Aronson and Weinberger [7] where

a certain type of monotonicity was taken advantage of to employ comparison principle

arguments and prove the existence and stability/robustness of nonlinear invasion fronts.

Recent studies of fronts have focused on such phenomenon in more complicated settings

such as nonlocal equations [72] as well as inhomogeneous, random, and stochastic media

[167, 12, 89, 164].

In the physics community, invasion processes have been studied in many different areas

over the past half-century. The first such studies arose in plasma physics [18] where

the propagation of electron streamers was considered. Later, studies were also done in

the context of the formation and selection of patterns in various physical systems such

as dendritic growth [33, 17], fluid flows [27, 26, 25], and in general nonlinear systems

[157, 155]. At present, significant amount of work is focused on studying pattern forming

invasion fronts in higher-dimensional spatial configurations where the leading edge of the

front interface forms a co-dimension one subspace in the spatial domain [54, 113, 37, 4].

As an explanatory example for this introduction consider the one-dimensional cubic-

quintic complex Ginzburg-Landau (cGL) equation,

At = (1 + iα)Axx +A+ (ρ+ iγ)A|A|2 − (β1 + iβ)A|A|4, x, t ∈ R, A ∈ C, (1.2.1)

with β1 > 0. This equation is a prototypical model for the emergence of self-organized,

regular spatio-temporal patterns in spatially extend systems and has been used as a

modulation equation to study the onset of coherent structures in many physical systems

([102, 3, 141]). Due to the gauge invariance A 7→ eiθA, this equation possesses explicit

periodic wave-trains of the form Ap(x, t) = rei(ωt−kx), where k, ω ∈ R, r ∈ R+ satisfy
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the nonlinear dispersion relation

1 = k2 − ρr2 + β1r
4,

ω = αk2 − γr2 + βr4, (1.2.2)

so that wave-trains can be parameterized by their temporal frequency ω. Pattern

forming free invasion fronts, Aff(x, t), arise as modulated traveling waves which sat-

isfy Aff(x, t) → Ap(x, t) as x → −∞ and Aff(x, t) → 0 as x → +∞, with an interface

which invades with some constant non-zero speed c.

Thus, we view (1.2.1) in the co-moving frame ξ := x− ct,

At = (1+iα)Aξξ+cAξ+A+(ρ+iγ)A|A|2−(β1+iβ)A|A|4, ξ, t ∈ R, A ∈ C. (1.2.3)

In this frame of reference, the dispersion relation is shifted

1 = k2 − ρr2 + β1r
4,

ω − ck = αk2 − γr2 + βr4. (1.2.4)

Pattern forming invasion fronts come in two generic types known as pulled and pushed.

These names, coined in the physics literature, correspond to whether the linear dynamics

of the homogeneous state ahead of the front determine the invasion speed, and hence

“pull” the front forward, or the nonlinearities in the system amplify perturbations faster

than the linear growth, “pushing” the front forward faster than the linear prediction for

the speed. Both of these types of fronts exist in (1.2.3) above for different parameter

ranges. We shall now briefly discuss their defining characteristics. For an excellent, and

much more detailed, review of these types of invasion fronts with a catalog of different

and interesting physical examples see [156].

1.2.1 Pulled fronts

Pulled fronts can be described to very good approximation by a linear analysis based on

branch points of a complex dispersion relation. The speed of such a front, known as the

linear spreading speed and which we denote as clin, is determined by a marginal stability
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criterion [33] which requires that the trivial state is point-wise marginally stable with

respect to localized perturbations in a frame moving with this speed. In other words,

when decreasing the speed c of the frame of observation, compactly supported initial

conditions grow exponentially point-wise. Such a stability criterion is best understood

by looking for singularities of the resolvent (L − λ)−1 of the linearization L of the

system about the unstable state in a co-moving frame of speed c. After using Fourier-

Laplace, the resolvent can be represented as a convolution with a point-wise Green’s

function Gλ(x, s). Since we only study local perturbations, bounded-invertibility of the

resolvent only requires the point-wise analyticity of Gλ(x, s) in λ. This last condition is

equivalent to being able to perturb the Laplace integration contour off of the imaginary

axis. Hence, instabilities will arise as singularities of Gλ which lie in the right half-plane.

Hence, the linear spreading speed is found as the speed at which such singularities cross

the imaginary axis. Moreover these singularities in many cases arise as double-roots of

the complex dispersion relation dc(λ, ν), found by inserting the ansatz eλt+νx into the

system linearized about the homogeneous state; see (1.2.5) and subsequent discussion

for an example in cGL. For a systematic study of front propagation from this viewpoint

see [80].

In the physics literature, as the frame of reference speed c decreases below clin, the

instability of the trivial state is said to change from convective to absolute. Furthermore,

the invasion of such fronts is governed by linear growth in the leading edge which then

saturates in the wake due to the nonlinearities of the system. Such nonlinear pulled

fronts are known to be very sensitive to disturbances in the leading edge. Convergence

towards, as well as relaxation of small perturbations to, pulled fronts is typically slow,

in fact algebraic in time. In a co-moving frame, this type of invasion can be either

stationary or oscillatory with frequency ωfr. This frequency is typically a fraction of

the frequency derived by the marginal stability criterion, ωfr = ωlin/`. The case of

strong resonance, ` = 1, is often referred to as node conservation in the leading edge.

Pulled fronts are named as such because the linearized dynamics of the unstable state

ahead of the front determine its propagation speed and, in a sense, “pull” it forward.

In (1.2.3), such fronts exist in the supercritical regime with ρ negative; see [157] for

specific parameter ranges.

In cGL, pulled fronts can be found in the supercritical regime with ρ < 0; see Fig. 1.2.1.
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The linear complex dispersion relation can be obtained by inserting the ansatz eλt+νx

into the linearization of (1.2.3) about the trivial state A ≡ 0 to obtain

dc(λ, ν) = (1 + iα)ν2 + 1− λ+ cν. (1.2.5)

The branch points can then be found by solving for double roots of dc,

dc(λ, ν) = 0,
d

dν
dc(λ, ν) = 0, (1.2.6)

These roots, which we denote as (λ∗(c), ν∗(c)), mediate the transition between absolute

and convective stability. The linear spreading speed, clin, is then determined as

clin = inf{c : Re{λ∗(c)} ≥ 0}

We denote the frequency where the branch point crosses as iωlin = λ∗(clin). In this

specific case we have

clin = 2
√

1 + α2, ωlin = α, νlin = − 1− iα√
1 + α2

. (1.2.7)

and in the generic case where there are no quintic terms, β = β1 = 0, and ρ = 1, studied

in Chapter 2 below, the spatial pattern A(x, t) =
√

1− k2
linei(ωlint+klinx) in the wake of

the free front Aff has wavenumber

klin =




−
√

1+γ2−
√

1+α2

γ−α , for γ 6= α

− α√
1+α2

, for γ = α.
(1.2.8)

We also note that the group velocity of wave trains in the wake of the invasion front

points away from the front interface,

cg :=
dΩ(k; clin)

dk

∣∣∣
k=klin

= −2
√

1 + γ2 < 0. (1.2.9)

In other words, the invasion front acts as a wave source in its co-moving frame; see

[132].
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We remark that in general such double roots must also satisfy certain genericity con-

ditions and a so-called “pinching condition” which requires that the spatial eigenvalues

ν, which split off from νlin as λ moves from iωlin, diverge to ±∞ respectively as λ is

taken to +∞ along some smooth curve. These conditions are trivially satisfied in this

case and we refer to [80] and [156] for more detail.

As it will be important in Chapter 2, we also remark that in many cases, including cGL

above, these branch points consist of the rightmost points in C of what is known as the

absolute spectrum. This is the limiting set for the eigenvalues of the linearization about

the background state (in this case A ≡ 0) when posed on a large, bounded domain

with separated boundary conditions [126]. Heuristically, this set corresponds to when

the projectivized linear dynamics about the background state in a spatial dynamics

formulation are relatively neutral; see Chapter 2 and also Section 4.4 for more discussion,

[124] for another schematic overview, and [126] for precise results. One could also see [80,

§8.3] for more discussion on the connection between absolute spectrum and spreading

speeds.

1.2.2 Pushed fronts

Pushed fronts arise when nonlinearities amplify linear growth sufficiently so that the

speed of propagation of disturbances exceeds the linear spreading speed clin. Their

leading edge decay is generally steeper and convergence towards them is fast, being

exponential in time. In fact, the Green’s function for the linearization at pushed fronts

exhibits simple poles associated with the neutral Goldstone modes, while the lineariza-

tion near pulled fronts exhibits a singularity with structure similar to the 3-dimensional

heat kernel [56]. In the language of spatial dynamical systems, such a pushed front

consists of a heteroclinic orbit which converges to an equilibrium along a strong-stable

invariant manifold. In general, much less in known about pushed fronts in comparison

to their pulled counterparts. Rigorous theoretical study has been limited to a small

number of mathematical models including the Nagumo equation [155], coupled-KPP

equations [79], Lotka-Volterra systems [78], and the Complex Ginzburg Landau equa-

tion (1.2.3) where pushed free fronts have been shown to exist in the weakly subcritical

regime with ρ sufficiently large.
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Furthermore, existence of pattern-forming pushed fronts has, to the authors’ knowledge,

only been proven in the last of the aforementioned systems. In this last equation, the

work of [157, Fig. 7+8, §4.2] uses phase-wavenumber variables, a spatial dynamics

framework, and dimension counting (of invariant manifolds) arguments to study these

fronts. When written as a four-dimensional real system, the equilibrium A ≡ 0 has a

two complex conjugate pairs of eigenvalues, νss, νss and νsu, νss with

Re{νss} < Re{νsu} < 0,

while Ap has one neutral and one unstable Floquet multiplier. The existence of invading

fronts is then obtained by finding intersections of the strong stable manifold of A ≡ 0

corresponding to νss, νss and the center-unstable manifold emanating from a wave-train

Ap. This gives existence for specific parameter ranges. See Figure 1.2.1 for a space-time

diagram of such a front where the front invades much quicker than the pulled speed

with a steeper leading edge and significantly different wavenumber.

Despite the relatively small amount of analytical results available, there has been an

abundance of numerical results exhibiting such fronts. One such interesting example

arises in the modeling of plant phyllotaxis where [113] used a Swift-Hohenberg model

to study the formation of Fibonacci spirals in seed growth on flowers. Such growth

was found to behave as a pushed front which invaded a circular domain with hexagons

spiraling in towards the center. Another example is given in Chapter 3 below, where

a modified Cahn-Hilliard equation is shown to exhibit pushed pattern forming fronts.

More examples can be found in [156]. We also remark that for systems of equations (i.e.

non-scalar equations), the pushed speed cp is not necessarily greater than the linear

speed clin; see for example [78].

1.3 Patterns in the wake of triggers in one spatial dimen-

sion

Many different mechanisms have been proposed and studied to spatially progressively

excite pattern forming systems. In this thesis, we consider mechanisms which travel

through a stable medium and locally excite it into an unstable state. We shall call such
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Figure 1.2.1: Pulled front on the left with ρ = −1 and invasion speed clin ≈ 2.09,
pushed front the right with ρ = 4 and invasion speed cp ≈ 2.66; both with α = 0.3, γ =
−0.2, β = 0.2, β1 = 1. Note the increased wavenumber, increased invasion speed, and
sharper decay in the pushed case.

a mechanism a trigger and the resulting front, which connects the unstable and stable

states, a preparation front. Once the unstable state is established, the mechanism which

governs the free front causes a uniformly patterned state to nucleate in the wake of the

trigger. We shall call the resulting pattern-forming front a trigger front ; see Figure

1.3.1 for a schematic of this process. The two most common, and in some sense simplest

when formulated mathematically, types of spatial triggers take the form of traveling

source terms and parameter ramps. These can both be exemplified in the Cahn-Hilliard

equation,

ut = −(uxx + u− u3)xx, x, t, u ∈ R, (1.3.1)

a phenomenological model first used to study phase-separation in a bi-metallic alloy

which undergoes under rapid quenching [20, 50, 107] and which has recently been used

to study many other pattern forming systems [152, 91].

Traveling source triggers In this context, a uniformly propagating source term

χ(x−ct) could be used to deposit mass into a stable homogeneous system, progressively

moving it into a unstable state with some speed c > 0,

ut = −(uxx + u− u3)xx + cχ(x− ct). (1.3.2)
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For example, the gaussian source term

χ(ξ) = (πδ)−1/2e−δ
−1(ξ)2

, 0 < δ � 1,

leads to the creation of a traveling front solution upr(x− ct) connecting the stable state

u ≡ −1 as x→∞ with the unstable u ≡ 0 as x→ −∞. This front is a preparation front

in our nomenclature. It is readily seen that upr is unstable and hence is a precursor to

the formation of a patterned state. By controlling the evolution of upr, the source term

χ mediates the pattern in the wake. The resulting front which connects the patterned

state as x → −∞ with the stable state u ≡ −1 is an example of a trigger front; see

Figure 4.1.3 for an example.

Such source terms arise in chemical deposition and precipitation systems where mass is

deposited, moving a stable medium into an unstable state. Specific examples include the

controlled evaporation, or “de-wetting” processes discussed above [151], and precipita-

tion systems like the Liesegang reaction [152, 40, 87, 146] where a bi-molecular reaction

front travels through a gel suspension creating a diffusive source term which deposits

precipitate into the system. Source term triggers also appear in combustive systems

where two combustive gases react [150], or in chemotactic aggregation of bacteria where

the creation of chemical gradient causes organisms to form interesting spatial patterns

[19, 2, 77].

Parameter ramp triggers Parameter ramps can also be studied in this setting by

introducing a inhomogeneous coefficient,

ut = −(uxx + χ(x− ct)u− u3)xx, χ(ξ) = − tanh(εξ), 0 < ε� 1. (1.3.3)

Here the preparation front is u∗(x) ≡ 0, as χ makes the homogeneous state u∗ stable for

ξ > 0 and unstable for ξ < 0. Since Cahn-Hilliard can be derived as an H−1-gradient

flow (see [50]) which minimizes the energy

E [u] =

∫
W (u) +

1

2
|ux|2dx, (1.3.4)
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with W (u) a double-well potential, χ be seen as changing or tilting the potential and

hence altering the phase separative dynamics. One of the main examples where this is

most evident, is in dip-coating experiments where a surfactant lying on top of a liquid

solvent is deposited onto a surface by the emersion and controlled withdrawal of the

surface [91, 92, 163]. In particular, a modified Cahn-Hilliard equation in the form of

(1.3.3) arises as a reduced model for thin film equations which govern these processes.

We also remark such experiments have many similarities to the patterned deposition

of chemical particles on surfaces via the controlled evaporation of a solvent [151, 73]

mentioned above.

These parameter ramps could also be used to study triggered patterns in the Ginzburg-

Landau example discussed above where the linear term is modified,

At = (1 + iα)Axx + χ(x− ct)A+ (ρ+ iγ)A|A|2 − (β1 + iβ)A|A|4, x, t ∈ R, A ∈ C,
(1.3.5)

and the homogeneous state A∗ ≡ 0 is excited. Since cGL is a universal modulation

equation for oscillatory instabilities at onset, the model (1.3.5) should be a prototypical

description for many typical triggered patterns. One example of such a system is the

formation of periodic vortices in open shear flows in fluids [22, 10]. Other examples

of such “triggered” systems arise in light-sensitive reaction-diffusion systems [99, 103],

phase-field systems [51, 60, 63], directional quenching experiments [54, 93], and the

ion-milling experiments mentioned above [59].

In these two types of triggers, the excitation speed c is the main parameter of control.

If c is much larger than the speed of the free invasion speed (i.e. clin or cp), then any

perturbation will grow and invade the unstable state in the wake of the preparation front

but at a slower rate than the preparation front. Hence the pattern will be selected by the

free invasion process. If c is lowered just below the free invasion speed then any pattern

forming instability will “catch up” with the trigger interface at ξ = 0 and lock with

it; see for example Figure 2.1.2 below. Heuristically, one can view this locking as the

trigger interface exerting a pressure on the patterned state which causes a perturbation

in the selected wavenumber. It is in this regime, c ∼ clin or c ∼ cp, that much of our

studies are focused on. Here the pattern forming front in the wake of the trigger forms

as a perturbation, or bifurcation, from the free invasion front; see Fig 1.3.1. Other
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Figure 1.2: Schematic depiction of the resulting bifurcation curves in wave-number k and trigger speed c for

both pulled (left) and pushed (right) trigger fronts. The solid line denotes where the pattern forming front

has locked to the trigger, while the dotted line shows where it detaches and closely resembles the free front.

this prototypical example, it was shown that the temporal frequency !, and thus the selected wave-number

k, are monotonic in the trigger speed c, satisfying an expansion of the form

! � !lin ⇠ K1 (c � clin) + K2 (c � clin)3/2,

where the coe�cient K1 is determined by the absolute spectrum of the unstable trivial state, and K2 is

determined by the projective distance between two invariant manifolds near the unstable homogeneous

equilibrium. Furthermore, it was found that the for trigger speeds higher than the linear spreading speed,

clin, the front unlocks from the trigger and is very similar to the free front; see also Figure 1.2.

Our Contributions: pushed case In this work, our goal is to study trigger fronts perturbed from

a pushed free front. Conceptually, our results are as follows. Assume that a one-dimensional, evolutionary

pattern forming system has the following properties:

• There exists a spatially oscillating pushed free front u↵ invading an unstable homogeneous equilib-

rium u⇤ with speed cp > 0.

• For speed cp, there exists a preparation front upr(x � cpt) formed in the wake of a spatial trigger

which connects u⇤ to a stable homogeneous state ũ⇤ as ⇠ := x � cpt increases from �1 to +1.

• The fronts u↵ and upr are generic. In other words, when viewed as heteroclinic orbits in a spatial

dynamics formulation using the co-moving frame variable ⇠, upr is transverse while u↵ is transversely

unfolded in parameters ! and c, where ! is the temporal frequency of the periodic pattern associated

with u↵ and c is the speed of the trigger.

• The inclination properties of the relevant invariant manifolds about upr are generic.

Then for trigger speeds close to the free invasion speed cp, there exists a family of pushed trigger

fronts connecting a spatially periodic orbit to the aforementioned stable state. Moreover, this family has

a bifurcation curve in the parameter space µ := (c � cp,! � !p) 2 R2, with the asymptotic form

µ(L) = Ke�⌫L(1 + O
�
e��L)

�
, (1.3)

where, L � 1, K is a linear mapping from C to R2, and �⌫ denotes the di↵erence of strong stable

eigenvalues associated with the decay of the free pushed front, and other weakly stable eigenvalues (see

Figure 1.4). For the precise result see Section 3.4.

If a pushed free front is oscillatory, the bifurcation curve, and hence the selected wave-number, of

pushed trigger fronts is non-monotonic and takes on a logarithmic spiral shape; see Figure 1.2 for a

schematic, and Figure 2.1 below for numerical results in (1.2). This leads to a variety of interesting

phenomena which do not occur in the pulled case mentioned above. Namely, such trigger fronts will

exhibit snaking behavior. This leads to the possibility of multi-stability of fronts, locking behavior for

4

Figure 1.3.1: Top: schematic of the ingredients of a trigger front, the trigger χ, prepa-
ration front upr, and the free front uff . Bottom: Behavior of selected wavenumber of
pattern when pulled (left) and pushed (right) patterns are triggered, the dotted lines
depict where the pattern “unlocks” from the trigger and the free front is selected. Ap-
peared originally in [66]

speed regimes, such as c ∼ 0, are very interesting and are the subject of current and

future research. We shall briefly discuss this regime, as well as other types of triggering

mechanisms, in Section 1.3.3 below.

In the next two sections we shall overview our results for c near the free invasion speed in

both the case where a trigger perturbs a pulled free invasion front, and the case where it

perturbs a pushed free invasion front. To reiterate, the basic mathematical ingredients

for control which we study are the following. Take a system in which there exists pattern

forming invasion fronts which invade a homogeneous unstable state and in which a

spatially progressive triggering mechanism exists which creates a front that connects

a stable homogeneous state to the unstable state. Then by mediating the triggering

mechanism, one can control the pattern in the wake. For a schematic description of this

approach see the top of Figure 1.3.1. Not only do our results give rigorous existence,

they also give expansions for how the wavenumber of the pattern changes as the speed

c is moved from clin or cp. Such expansions should hopefully give experimentalists more

information on how to design and fabricate a specific structure.
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1.3.1 Pulled trigger fronts

In Chapter 2 we study the case where a trigger perturbs a pulled free invasion front.

Our rigorous results there concern pulled trigger fronts in the complex Ginzburg Lan-

dau equation (1.2.3); see Theorem 2.1.1 below. We view these results as prototypical

for many pattern forming systems so that many features of our analysis can be im-

mediately transferred to more general pattern-forming systems, such as the examples

listed above. The advantage of the Ginzburg-Landau equation is that, due to the gauge

symmetry, periodic patterns are explicit and invasion as well as trigger fronts can be

found as heteroclinic orbits in a 4-dimensional traveling-wave equation, thus avoiding the

(well-understood) complications of infinite-dimensional, ill-posed systems for modulated

traveling waves [63, 84, 88, 130, 132]. On the other hand, the complex Ginzburg-Landau

equation is of interest since it approximately describes many pattern-forming systems

near onset.

After briefly describing our results, we outline how they could possibly be generalized

for a given system which possesses pattern forming pulled fronts.

Results in complex Ginzburg-Landau equation In this chapter, we set β1 =

β = 0 for simplicity as the associated quintic terms should only affect the selected

wavenumber and amplitude through the nonlinear dispersion relation. We use the gauge

invariance A 7→ eiθA to factor out temporal oscillations A 7→ eiωtA, allowing us to study

trigger fronts as heteroclinic orbits in the finite-dimensional non-autonomous dynamical

system

0 = (1+iα)Aξξ+cAξξ+(χ− iω)A+(ρ+iγ)A|A|2−(β1 +iβ)A|A|4, ξ, t ∈ R, A ∈ C,
(1.3.6)

which connect the periodic orbit Ap as ξ → −∞ and the homogeneous state A∗ = 0 as

ξ → +∞. Since χ is piecewise constant, the dynamical system is autonomous for ξ > 0

with χ ≡ −1, and for ξ < 0 with χ ≡ 1. Thus, trigger fronts can be found by overlaying

the two corresponding phase portraits and finding intersections between the unstable

manifold, W cu
− (Ap), of the periodic orbit in the χ ≡ 1 dynamics and the stable manifold,

W s
+(0), of the origin in the χ ≡ −1 dynamics; see Figure 2.2.1 below. In practice, this



17

can be viewed as a shooting problem, where trajectories in W cu
− (Ap) are evolved close

to the origin and then matched with the effective boundary condition created by W s
+(0)

by varying parameters c and ω.

To make the analysis more tractable, we use the gauge invariance of the system to obtain

invariant coordinates for the phase space which collapse periodic orbits to points. In

these coordinates we use the leading order scaling symmetry to blow-up the origin

into a 2-sphere, S2, so that the phase space becomes S2 × R+, where R+ denotes the

non-negative real half-line. The dynamics on this sphere, which are governed by a

complex Riccatti equation, exactly give the flow on the 2-Grassmannian induced by the

linearization about the origin. Since S2×{0} is a normally hyperbolic invariant manifold

in these reduced dynamics, we can employ Fenichel’s smooth foliation results [46, 47, 48]

to straighten fibers and project the dynamics down onto the sphere where we can almost

explicitly perform the desired matching for the shooting problem. This matching process

gives expansions for the frequency ω, and subsequently the wavenumber k, in the trigger

speed c near clin. These expansions compare quite well with numerics performed in both

direct simulations and AUTO computations; see Fig. 2.5.1.

Heuristically, one has the best chance for finding such connections when such Grass-

manian dynamics are relatively neutral and consist of rotations. Since the absolute

spectrum Σabs(c) of the state u∗ (when viewed in a co-moving frame ξ = x− ct) corre-

sponds exactly to such neutral projectivized linear dynamics, one then expects to find

intersections on S2 for frequencies near ω = ωabs(c) where {±iωabs(c)} := Σabs(c) ∩ iR
and c is near clin.

Indeed, for (ω, c) = (ωlin, clin), the dynamics on S2 consist of a family of homoclinic or-

bits converging to the equilibrium, denoted as zb, which corresponds to the eigenspace

of the branch point νlin; recall here that the equilibria in projectivized dynamics corre-

spond to eigenspaces of the linear dynamics. When c is decreased, and ω is varied along

ωabs(c), the branch point splits into two eigenvalues with the same real part, so that

the equilibrium zb splits into two centers z± and the dynamics on S2 consist of periodic

orbits; recall here that eigenvalues of projective equilibria are equal to differences in

eigenvalues of the linear system. If ω is perturbed slightly away from ωabs(c) then the

periodic orbits will break and slowly spiral into the two equilibria z+ and z− in forwards
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and backwards time. For a pictorial description of these dynamics see Figure 2.3.1.

General result We believe that these results are prototypical and have should have

broad application. A schematic framework of such a general result should go as follows.

Schematic result for pulled trigger fronts

In a scalar evolutionary pattern-forming PDE posed on x ∈ R assume the following,

• There exists a pulled invasion front uff which invades with the linear spreading

speed clin and connects a periodic wave-train uper as x → −∞ to a homogeneous

unstable state u∗ as x→ +∞.

• The free front uff satisfies the following decay condition, for some a∞, b∞ ∈ R
with a∞ 6= 0, in a co-moving frame ξ = x− clint,

uff(ξ) = a∞ξeνlinξ + b∞eνlinξ (1 + oξ(1)) , ξ → +∞, ,

where νlin is the spatial eigenvalue at the branch point λ∗(clin) discussed in Section

1.2.1 above.

• In the wake of a spatial trigger moving at any speed c ∼ clin, there exists a prepa-

ration front upr connecting a stable homogeneous state ũ∗ as x → ∞ and u∗ as

x→ +∞.

Then for trigger speeds c with 0 < clin−c << 1 there exists a trigger front solution which

connects a spatially periodic pattern to the state ũ∗. Moreover, the temporal frequency

ω of the periodic pattern has the following leading order expansion for c < clin:

ω − ωlin ∼ K1(c− clin) +K2(c− clin)3/2.

Here iωlin is the crossing location of the branch point λ∗(clin) defined above, K1 is de-

termined by the curvature of the absolute spectrum Σabs near the branch point, and K2

is determined by a projectivized distance between the unstable invariant manifold of u∗

and the stable manifold of ũ∗ when considered near the origin in a spatial dynamics

framework.
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From the temporal frequency ω, one can then determine the asymptotic wavenumber

through some sort of dispersion relation. In the case of Cahn-Hilliard, periodic patterns

are stationary in a stationary frame so that the temporal frequency, when considered

in a moving frame with speed c, is ω = ck. In the CGL example in (1.2.3) above,

k is determined by solving the nonlinear dispersion relation (1.2.4). The genericity

condition on the free front is most readily understood when viewed in a spatial dynamics

formulation. In particular, since uff is a heteroclinic orbit connecting a stable sink

equilibrium with a periodic orbit, this condition requires that the configuration of the

stable and unstable manifolds of these respective states are generic. That is, the unstable

manifold of the periodic orbit does not converge to u∗ along the strong stable manifold.

This theorem states that the wavenumber selection imposed by the trigger is monotonic

in the speed c to leading order; see Figure 1.3.1 for a schematic and Figure 2.4.1 for

numerical results. Furthermore, not only would such a result give rigorous existence of

these fronts, the information obtained from such a dynamical systems framework could

give experimentalists and engineers a prediction for how to select specific patterns in

their system.

Such a result should be able to be proved by employing a spatial dynamics formulation

in the co-moving frame variable ξ = x − ct to view the problem as a heteroclinic

bifurcation. As the periodic pattern left behind in the wake becomes time-periodic

in a co-moving frame, this formulation will yield an infinite-dimensional dynamical

system; unless one can factor out, or “de-tune” the temporal oscillations as in CGL.

In this system the fronts uff and upr will form a heteroclinic chain uper → u∗ → ũ∗.

For c ∼ clin, by varying the parameter ω one would then attempt find intersections

of the unstable manifold coming from a periodic orbit close to uper with the stable

manifold of the equilibrium arising from ũ∗. Existence of such manifolds in this infinite

dimensional system could be obtained in a tubular neighborhood of the heteroclinic

chain using exponential dichotomies arising from the linear variational equation along

the heteroclinics.

In order to exploit the linear information coming from uff one would look for such

intersections in a neighborhood of u∗, studying how these invariant manifolds and their

tangent spaces vary near the intermediate equilibrium u∗. As was done nearly explicitly

in the example of cGL discussed above, this corresponds to studying the projectivized



20

linear dynamics, or in other words, the dynamics on the Grassmannian induced by

linearized flow near u∗. One would either have to isolate relevant finite dimensional

subspaces to evolve on the Grassmannian or use the recent results [34] to study the

evolution of infinite dimensional subspaces. Just as in the example above, one would

need to look for connections in the Grassmannian dynamics for parameters near the

frequencies ωabs(c) for speed c near clin.

1.3.2 Pushed trigger fronts

In Chapter 3 of this thesis we study trigger fronts perturbed from a pattern forming

pushed free front. Due to the sharp oscillatory decay of such fronts, many interesting

phenomenon can be induced when they are perturbed by a spatial triggering mechanism.

In this chapter, we construct an abstract framework and sufficient hypotheses for the

existence of a pushed trigger front in a pattern forming system in one spatial dimension.

We also obtain expansions for temporal frequencies, and thus wave-numbers, in terms

of the trigger speed with coefficients dependent on the properties of the free front and

preparation front. We then use these results to study to specific examples, the first

being the cubic-quintic CGL equation (1.3.5) discussed above, and the second a modified

Cahn-Hilliard equation. Conceptually, our schematic result goes as follows.

Sketch of Theorem 3.3.2

Assume that a one-dimensional, evolutionary pattern forming system has the following

properties:

• There exists a spatially oscillating pushed free front uff invading an unstable ho-

mogeneous equilibrium u∗ with speed cp > 0.

• For speed cp, there exists a preparation front upr(x− cpt) formed in the wake of a

spatial trigger which connects u∗ to a stable homogeneous state ũ∗ as ξ := x− cpt

increases from −∞ to +∞.

• The fronts uff and upr are generic. In other words, when viewed as heteroclinic

orbits in a spatial dynamics formulation using the co-moving frame variable ξ, upr

is transverse while uff is transversely unfolded in parameters ω and c, where ω is
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the temporal frequency of the periodic pattern associated with uff and c is the speed

of the trigger.

• The inclination properties of the relevant invariant manifolds about upr are generic.

Then for trigger speeds close to the free invasion speed cp, there exists a family of pushed

trigger fronts connecting a spatially periodic orbit to the stable state ũ∗. Moreover, this

family has a bifurcation curve in the parameter space µ := (c − cp, ω − ωp) ∈ R2, with

the asymptotic form

µ(L) = Ke∆νL(1 +O
(

e−δL)
)
, L� 1, (1.3.7)

where K is a linear mapping from C to R2 (see Fig. 1.3.2), and ∆ν denotes the differ-

ence of strong stable eigenvalues associated with the decay of the free pushed front, and

other weakly stable eigenvalues (see Fig. 1.3.1 and 1.3.3).

e∆νL(1 + O
(
e−δL

)
)

µ(L)

K

ω − ωp

c − cp

C R2

Figure 1.3.2: Leading order bifurcation curve of pushed trigger fronts in µ-parameter
space.

If a pushed free front is oscillatory, the bifurcation curve, and hence the selected wave-

number, of pushed trigger fronts is non-monotonic and takes on a logarithmic spiral

shape; see Figures 1.3.1 and 1.3.2 for a schematic, and Figure 3.2.1 below for numerical

results in (1.3.5). This leads to a variety of interesting phenomena which do not occur in

the pulled case discussed above. Namely, such trigger fronts will exhibit snaking behav-

ior. This leads to the possibility of multi-stability of fronts, locking behavior for trigger

speeds higher than the free invasion speed cp, and finally hysteretic switching between

different wave-numbers. This last effect is particularly interesting as it could potentially
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be exploited in the design and control of self-organized patterning processes. Heuris-

tically, these non-monotonic behaviors are caused by the interaction of the oscillatory

exponentially small tail of the free front uff with the effective boundary condition cre-

ated by the trigger interface. Moreover, if this tail were not oscillatory, the bifurcation

curve would not exhibit the leading order spiraling behavior shown above.

The genericity assumptions above can also be formulated in terms of spectral informa-

tion. For uff , such hypotheses are equivalent to assuming that the Evans function [85]

associated with the linearization about the front has a zero of algebraic multiplicity two

at the origin, corresponding to the temporal and spatial translation symmetries of the

front. For upr, the associated Evans function has no zeros at the origin. We remark

that there is no spatial translation symmetry because of the spatial inhomogeneity in-

troduced by the triggering mechanism. We also note that the linear transformation

K above is determined by a matrix of Melnikov integrals corresponding to parameter

derivatives of the dynamical system evaluated along the front uff .

Outline of proof Technically, we use an abstract formulation motivated by the spatial

dynamics approach and employ heteroclinic matching techniques in the spirit of [120]

which used an alteration of Lin’s method [96] to study homoclinic orbits near a hete-

roclinic cycle consisting of a periodic orbit and equilibrium point in finite-dimensional

dynamical systems; see also [81] for an excellent review of such techniques. In particu-

lar, we use exponential dichotomies to glue solutions near the equilibrium u∗ and then

subsequently match them, in transverse sections to the heteroclinic orbits, with the

center-unstable manifold of the periodic orbit and the stable manifold of the equilib-

rium ũ∗; see Figure 3.4.1 for a schematic of this process. We prove existence of pushed

trigger fronts and give universal asymptotics for their frequency and wave-numbers. We

shall show that the front dynamics are, to leading order, governed by the spectral gap

∆ν = νss−νsu, between a leading strong-stable spatial eigenvalue νss, which governs the

asymptotic decay of the free pushed front, and the nearest weakly stable eigenvalue νsu.

As seen in Figure 1.3.3, the simplest form of such a gap may come in several varieties,

each of which may lead to different phenomena. We shall focus on the case depicted on

the left where the gap is determined by two complex conjugate pairs. The other cases

in this figure may also lead to many interesting phenomena and are briefly discussed in
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1
Figure 1.3.3: Depiction of different cases for splitting of spatial eigenvalues correspond-
ing to a free pushed front. The grey areas denote the rest of the spectrum of the
linearization of the spatial dynamics formulation. We study the case depicted in the
left plot, here the dotted lines denote the exponential weights we use to select relevant
solutions near the origin. Appeared originally in [66].

Section 3.5.2.

Application of results To elucidate our abstract results in this case, we consider two

prototypical examples. The first of these is the cubic-quintic complex Ginzburg-Landau

equation (cGL) already described above. We choose this relatively simple example to

demonstrate our results and motivate their application to more complicated systems. In

the same ways as in the pulled case, finding pushed trigger fronts in the cGL equation

can be reduced to a finite dimensional traveling-wave ODE in which all of the required

hypotheses for our result have been proven in previous studies, or can be obtained by

straightforward arguments; see Section 3.2.1 and Section 3.5.1.

The second example we consider is a modified Cahn-Hilliard (CH) equation. This

equation will serve as an illustration for how our results apply in the case where the

existence problem is inherently infinite-dimensional. While in this setting, it is not

straightforward to verify the required hypotheses (see Section 3.2.2 and Section 3.5.1),

we provide numerical evidence showing the predicted phenomenon, and also evidence

for one of our most important hypotheses: the existence of an oscilliatory pushed free

front; see Section 3.2.2 and Section 3.5.1.
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1.3.3 Slow triggers

In addition to the speed regimes c ∼ clin and c ∼ cp for pushed and pulled trigger fronts

respectively, the other interesting speed regime where a perturbative approach could

be used is the slow speed limit 0 < c � 1. While such results are not considered in

this thesis, we have recently found that in this regime it is advantageous to view the

trigger interface, which connects the patterned state with the stable homogeneous state,

as an effective boundary condition. This becomes more clear from a spatial dynamics

framework where the stable manifold of the homogeneous equilibrium for the dynamics

ahead of the trigger, ξ > 0, plays the role of the boundary subspace.

From this view point, the recent results of [106], which characterize how boundary

conditions affect the selection of phase and wavenumber of a stable periodic pattern

in both semi-infinite, x ∈ [−∞, 0], and bounded domains, x ∈ [−L,L], should give

information on how a slow trigger would perturb a pattern. The regime 0 < c � 1

can be viewed as a perturbation of this setting, where the spatial domain is now time

dependent, say [−∞, ct] or [−L − ct, L + ct]. Such non-adiabatic movements of the

boundary cause a periodic motion in the phase, composed of a slow drift where the phase

is locked to the boundary and the wavenumber slowly stretches, and followed by a fast

snapping where the phase jumps a half or full period. The recent work [61], uses a Cross-

Newell phase-diffusion approximation [30] and formal multi-scale asymptotic expansions

to obtain a “universal” leading order expansion for the wavenumber perturbation

∆k ∼ K̃1c
1/2 + K̃2c

3/4,

where the coefficients K̃1, K̃2 are determined by the behavior of the system at c = 0, the

effective diffusivity of the periodic pattern, and, somewhat amazingly, the evaluations

of the Riemann zeta function ζ(1/2), ζ(−1/2); see [61] for more detail.

In the context of slow spatial triggers, one would need to understand how the effective

boundary condition of the trigger interface affects the phase/wavenumber relationship

in the speed c = 0 case. This would then allow for the application of the aforemen-

tioned results to obtain expansions for the perturbed wavenumber. One such example

of this was explored numerically in [61] where a reaction-diffusion system with a small
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amplitude spatial trigger was found to behave as described above.

1.4 Stability and other types of triggers

1.4.1 Stability of triggered solutions

We expect many of the solutions discussed above to be stable. For example, in the

pushed and pulled cGL examples above, continuous spectrum, as well as point spectrum

coming from the absolute spectrum, would arise from the asymptotic linearizations at

ξ = ±∞. For speeds c ∼ cp or c ∼ clin, and parameters α, γ not too large, these

linearizations are stable. Hence instabilities would only arise from the interface of the

trigger. If this interface is sufficiently steep, or localized, we expect there to be no such

instabilities. In the Cahn-Hilliard equation, the asymptotic wave-trains are typically

unstable, and are typically invaded by a period-doubling coarsening front [139]

1.4.2 Other types of triggers

There are many types of triggers other than the parameter ramps and source terms with

discontinuous or steep interfaces which we have considered above. One such example

are triggers which slowly vary, so that |χ′| � 1, but are still asymptotically constant.

In this case, in addition to the instabilities studied above, we expect resonance poles

to arise corresponding to localized instabilities in the large interfacial region. Another

example, would be for a non-monotone trigger where, in (1.3.5) for example, χ ≡ a > 0

with a 6= 1 for ξ in some compact region. This would once again lead to resonance poles

and could significantly alter the front selection dynamics. Moreover, along the lines of

the types of trigger front used in Section 1.5, one could study a trigger of the form

χ(ξ) =




χ ≡ 1, ξ ∈ [−`, `]
χ ≡ −1, ξ 6∈ [−`, `].

Here we expect the analysis used above to still be applicable, especially in the ` � 1

limit. More examples include triggers which are temporally dependent, χ(ξ, t), creating

a triggered system which is forced. Such a regime is potentially an interesting line of
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inquiry and we expect studies such as [57, 58, 101] to be relevant and help in the anal-

ysis. Other examples arise in various types of “pre-patterning” where χ(ξ) is periodic,

representing an experimentalist preparing the medium before triggering the system; see

for example [162, 163, 111]. For more discussion on these types of triggers see Sections

2.5 and 3.5.3.

In these two chapters, we mostly focused on scalar partial differential equations (except

for the abstract formulation used in Chapter 3 in which a system of equations could still

be studied). We believe that our other results could be extended for systems in some

circumstances, but also remark that many other scenarios could be studied, possibly

leading to the observation of new and interesting phenomena. One interesting avenue

would be to study how a triggered instability could affect the “anomalous” spreading

in certain types of reaction-diffusion systems [79, 78] where various types of two-stage

invasion, and slow fronts (which invade slower than the linear spreading speed) have

been shown to exist.

1.5 Towards a general study of patterns in higher spatial

dimensions: an alternative approach

In spatial dimensions greater than one, triggering mechanisms are able to create a

plethora in interesting patterns in addition to the planar stripes studied in the one-

dimensional systems discussed above; see examples in Figures 1.1.2 and 1.1.3 above.

The symmetry of some of these structures allows for their study in a channel shaped

domain (x, y) ∈ R×[0, 2π/ω] where the spatial dynamics approach can still be applied to

construct the desired solutions. For example, in the Cahn-Hilliard equation mentioned

above

ut = −∆(∆u+ u− u3) x, y ∈ R, (1.5.1)

“slanted” stripe patterns arise as solutions ust(x, y) = v(k(x cosφ−y sinφ)) for some 2π-

periodic function v(·) with an angle φ ∈ [0, 2π) and wavenumber k. Triggered solutions

could then be studied in a system of the form

ut = −∆(∆u+ u− u3) + cχ(x− ct) x, y ∈ R, (1.5.2)
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where χ is a y-independent source term which creates a y-independent preparation front

upr. Triggered solutions, connecting the stable state ahead of the trigger with a slanted

stripe ust behind it, then arise as stationary solutions of the following system, obtained

by making the coordinate changes ξ = x − ct, ỹ = kyy − ωt with ky = k sinφ and

ω = cky,

0 = −ω∂yu−∆ky(∆kyu+u−u3)+c∂ξu+cχ(ξ), ∆ky = ∂2
ξ +k2

y∂
2
ỹ , ỹ ∈ [0, 2π], ξ ∈ R.

(1.5.3)

This equation can then be written as a dynamical system with time-like variable ξ in

the phase space of periodic functions in y. Since the y-domain is compact the resulting

linearization of the dynamical system has compact resolvent and thus has spectrum com-

posed of eigenvalues with finite algebraic multiplicity. This allows for the construction

of invariant manifolds which can be used to find specific desired solutions.

In other cases one cannot compactify one of the spatial dimensions so that any spatial

dynamics formulation will still have continuous spectrum. If this spectrum is bounded

away from the origin, a center manifold reduction may still be applied [74]. If not,

as in many interesting problems, it becomes difficult to yield meaning information out

of the formulation. Some examples of such problems include the existence of fully

localized hexagon patches in the Swift-Hohenberg equation [97] and the formation of

corner interfaces between two pattern forming fronts. Another interesting example arises

in (1.5.2) where

χ = χ(ξ, y) =
u0 − um√

δπ
e−(ξ2+δyy2)/δ, (1.5.4)

is a fully localized source term depositing mass in a strip of R2 with an initial condition

of u ≡ um ∈ [−1, 1] a constant. As seen in Figure 1.5.1 many interesting patterns arise

which are not periodic in y hence requiring study on all of R2. If one looks in a fixed

x-cross-section, different transverse and planar modes appear to be locally selected as

one moves farther away from y = 0 (depending on the steepness of the source), leading

to the interaction of stripes, fingers, and dot patterns at the leading edge and in the

wake. Indeed after proving the existence of a transverse, weakly sub-critical bifurcation

from a preparation front, one could try to study the interfacial dynamics (i.e. analyze

the cross-section ξ = 0) in y by deriving a modulation equation for these complicated
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Cahn-Hilliard, t = 324
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(a) (1, 10−4, 0.4,−0.58)
Cahn-Hilliard, t = 210
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(b) (2.5, 10−4, 0.0,−0.6)
Cahn-Hilliard, t = 378
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(c) (1, 2 ∗ 10−4, 0.5,−0.6)
Cahn-Hilliard, t = 588
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(d) (0.5, 10−3, 0.5,−1),
Cahn-Hilliard, t = 330
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(e) (1, 2× 10−3, 0.5,−0.6)

Figure 1.5.1: Various patterns in (1.5.2) in the wake of traveling gaussian (1.5.4). Gaus-
sian and initial condition parameters (c, δy, u0, um) are listed.
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dynamics.

Other examples where spatial dynamics may not apply, include the study of traveling

waves whose interfaces are perpendicular to the direction of motion; see [54]. Fur-

thermore, in the broad field of non-local evolution equations, many systems cannot be

studied with spatial dynamics due to the absence of a flow [45].

Thus, in the last part of this thesis, we wish to study a more abstract approach which

uses functional analysis in the place of spatial dynamics to rigorously obtain solutions.

The natural starting point for this abstract approach is to study a problem in which

the existing methods can still be applied so that one can learn about the benefits and

pitfalls of this new approach.

1.5.1 Hopf bifurcation from fronts in Cahn-Hilliard in 1-D

In Chapter 4 of this work we study modified Cahn-Hilliard models of the form,

ut = − (uxx + f(x− ct, u))xx + cχ(x− ct; c), x, t ∈ R (1.5.5)

which combine both types of triggers described in (1.3.2) and (1.3.3) above. Recall

u(x, t) is an order parameter which denotes the concentration of precipitate at a certain

space-time point (x, t) and χ(x − ct) is a source term which travels through the do-

main with a constant speed c, leaving behind a monotone, uniformly translating front

u∗(x, t) = u∗(x − ct). The spatially dependent nonlinearity f encodes any changes of

the medium itself, in the wake of the moving source.

We study the behavior of the system near fronts u∗(x− ct) which connect two homoge-

nous equilibria lying outside or barely inside the spinodally unstable regime, where f ′ >

0; see [50]. As this front travels, there must be a moving spatial domain [−`− ct, `− ct]
where the front takes values inside this unstable regime. In the moving frame coordi-

nate ξ := x− ct, for large trigger speeds c, instabilities which may arise in this domain

are convective ([126], [153]), and get absorbed into the homogeneous equilibrium in the

wake. As c decreases through a certain threshold, an absolute instability may arise,

causing the formation of a periodic pattern which saturates the moving domain. In the

physical literature, such a “self-sustaining” pattern is referred to as a nonlinear global
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mode; see [25]. See Figure 1.5.2 for a schematic plot of these two types of instabilities.
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Figure 1.1: Development of an instability in spinodal regime of the traveling front u⇤. Left: Instability
is stationary (convective in the moving frame), and is ”eaten” by the trailing homogeneous state. Right:
Instability is absolute and is sustainned as the front propagates through the medium.f:convabs

1.3 Summary of contributions

Our main contributions are threefold: a technically simple proof for Hopf bifurcation in the presence

of essential spectrum, a rigorous existence proof of patterned fronts in the Cahn-Hilliard equation,

and the analysis of an explicit, prototypical example.

A simple proof of Hopf bifurcation in the presence of essential spectrum. When study-

ing bifurcation in the presence of essential spectrum, the absence of a spectral gap precludes any

center manifold reduction and hence does not allow the imediate use of standard finite-dimensional

bifurcation techniques. Several methods have been developed to get around this di�culty. In the

context of Hopf bifurcation in viscous shocks and combustion waves, Texier and Zumbrun [51, 52]

use subtle point-wise estimates for the temporal semi-group of the linearization to obtain solutions

via a Poincare return map. Alternatively, a more geometric approach via spatial dynamics can

be used to study the spatial evolution of time-periodic functions. Bifurcating solutions then are

constructed via a pointwise matching of infinite dimensional invariant manifolds. Such techniques

have been applied in the study of viscous shocks by Sandstede and Scheel [42], extending their pre-

vious work on Hopf bifurcations due to essential spectrum crossing the imaginary axis [36, 39, 40],

and also in the propagation of water waves by Barrandon, Dias, and Iooss [5], [11]. Interaction

between Hopf bifurcation and essential spectra was studied in a spirit similar to [51, 52], yet with-

out the assumption of a conservation law, in [25, 6], exploiting the su�ciently strong di↵usive

decay of modes associated with essential spectra in higher space dimensions. Hopf bifurcation in

the presence of essential spectra is also responsible for the meandering transition of spiral waves

[4, 44, 45, 18]. While rigorous Hopf bifurcation results are not available for Archimedean spirals,

the essential spectrum has striking consequences for the shape of bifurcating patterns, creating an

intricate rotating super-spiral structure [41].

Our main contribution is a much more direct functional analytic approach to this problem. While

we develop our approach in the context of the Cahn-Hilliard equation, it could also be used in

the context of [51, 43] to significantly simplify proofs. Our approach is simpler as it restricts

the linear analysis to Fredholm properties on time-periodic functions, avoiding the subtle di↵usive

decay properties for infinite times used in [51] or the pointwise reduction based on exponential

dichotomies in [43].

3

Figure 1.5.2: Development of an instability in spinodal regime of the traveling front u∗.
(Left): Instability is stationary (convective in the moving frame), and is “eaten” by the
trailing homogeneous state. (Right): Instability is absolute and is sustained as the front
propagates through the medium. Originally appeared in [65]

Since these patterns are stationary in a stationary frame, they become time-periodic in

a co-moving frame ξ = x− ct. Allowing for variations in the temporal frequency ω, we

scale τ = ωt to obtain

ωuτ = − (uξξ + f(ξ, u))ξξ + cχ(ξ; c) + cuξ, τ ∈ [0, 2π), ξ ∈ R (1.5.6)

Hence, in this frame of reference, this convective-to-absolute instability transition can

be viewed as a Hopf-bifurcation where for some speed c∗, the linearization

Lv := −(uξξ + f(ξ, u∗))ξξ + cχ(ξ; c) + cuξ

has a complex-conjugate pair of eigenvalues λ(c) = µ(c)±iκ(c) which cross the imaginary

axis with non-zero speed, µ′(c∗) > 0, leading to a localized instability arising in the

plateau region [−`, `]. Since far field fluctuations are neutrally unstable due to the

mass conserving properties of the Cahn-Hilliard equation, the continuous spectrum of L

intersects the origin. Furthermore, since we allow for asymptotic states u∗(±∞) which

are weakly unstable in our approach, the continuous spectrum can also marginally

reside in the unstable half-plane. For our specific construction, we also require that the

continuous spectrum is not resonant with the Hopf frequency. That is, the bifurcating

eigenvalues (and their integer multiples) do not lie in the essential spectrum. Two

examples of this spectral configuration are given in Figure 1.5.3.



31

σ+
σ+

σ-σ-

Figure 1.5.3: Allowed spectral configurations in our abstract framework, here the crosses
denote Hopf eigenvalues, grey regions denote the essential spectrum, and blue and red
lines denote the Fredholm borders.

Our main contributions are threefold: a technically simple proof for Hopf bifurcation

in the presence of essential spectrum, a rigorous existence proof of patterned fronts in

the Cahn-Hilliard equation, and the analysis of an explicit, prototypical example. The

rigorous result roughly goes as follows:

Sketch of Theorem 4.1.3

In the system (1.5.6) above, assume the following:

• The inhomogeneities f and χ are smooth and converge exponentially fast as ξ →
±∞.

• There exists a travelling wave solution u∗ which travels with speed c∗ and is robust,

monotone, and asymptotically constant in space with exponentially fast conver-

gence.

• The linearization L about u∗, posed on L2(R), has a simple Hopf eigenvalue cross-

ing for some λ = ±iω∗ and speed c∗ > 0 with eigenfunctions p ∈ L2(R).

• For all λ ∈ iω∗Z�{0,±1}, the operator L − λ is invertible when considered on

L2(R).

Then there exists a one-parameter family of 2π/ω∗-periodic solutions which bifurcate



32

from u∗ which can be parameterized by a real amplitude r > 0 such that

c = c∗ +
Re{θ+}
µ′(c∗)

r2 +O(r4), ω = ω∗ + Im{θ+}|r|2 +O(|r|4),

u = u∗ + rp(ξ) cos(ωt) +O(r2),

where θ+ is determined by the spectral information and the nonlinearity f .

Existence of pattern forming fronts. This result shows the existence of pattern

forming fronts in the Cahn-Hilliard equation (1.5.6). As evidenced above, such fronts

have been widely studied experimentally and numerically. Furthermore, we obtain

computable bifurcation coefficients allowing for the characterization of bifurcations and

hopefully a deeper understanding of the patterns being formed. In terms of understand-

ing triggered pattern formation, this result gives predictions for how the wavenumber

can be controlled, using the relation k = ω/c. We also remark that our results compare

well to the numerical investigations of [92, 91], where numerical continuation was used

to find modulated and un-modulated traveling wave solutions, revealing a rich snaking

structure of saddle-node and Hopf-bifurcations as the speed of the trigger is varied.

Bifurcation in the presence of essential spectrum. We wish to study the bifur-

cation of eigenvalues when essential spectrum is present on the imaginary axis. This

absence of a spectral gap precludes any center manifold reduction and hence does not

allow the immediate use of standard finite-dimensional bifurcation techniques. Several

methods have been developed to get around this difficulty. In the context of Hopf bi-

furcation in viscous shocks and combustion waves, Texier and Zumbrun [149, 150] use

subtle point-wise estimates for the temporal semi-group of the linearization to obtain

solutions via a Poincare return map. Alternatively, a more geometric approach via

spatial dynamics (described in the sections above) can be used to study the spatial

evolution of time-periodic functions. Bifurcating solutions then are constructed via a

point-wise matching of infinite dimensional invariant manifolds. Such techniques have

been applied in the study of viscous shocks by Sandstede and Scheel [135], extending

their previous work on Hopf bifurcations due to essential spectrum crossing the imag-

inary axis [125, 128, 129], and also in the propagation of water waves by Barrandon,
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Dias, and Iooss [9], [36]. Interaction between Hopf bifurcation and essential spectra

was also studied in a spirit similar to [149, 150], yet without the assumption of a con-

servation law, in [94, 16], exploiting the sufficiently strong diffusive decay of modes

associated with essential spectra in higher space dimensions. Hopf bifurcation in the

presence of essential spectra is also responsible for the meandering transition of spiral

waves [8, 137, 138, 67]. While rigorous Hopf bifurcation results are not available for

Archimedean spirals, the essential spectrum has striking consequences for the shape of

bifurcating patterns, creating an intricate rotating super-spiral structure [131].

A direct functional analytic approach Our main contribution is a much more

direct functional analytic approach to this problem. While we develop our approach

in the context of the Cahn-Hilliard equation, it could also be used in the context of

[150, 135] to significantly simplify proofs. In particular see Section 4.7 where we give a

simplified proof of the existence result in [135] for bifurcation in of oscillatory viscous

shocks. Our approach is simpler as it restricts the linear analysis to Fredholm properties

on time-periodic functions, avoiding the subtle diffusive decay properties for infinite

times used in [150] or the point-wise reduction based on exponential dichotomies in

[135].

In the Cahn-Hilliard setting we described above, we study bifurcating solutions of (1.5.6)

as solutions of a nonlinear operator

0 = F(u, ω, c) = ωuτ + (uξξ + f(ξ, u))ξξ − cχ(ξ; c)− cuξ. (1.5.7)

Our approach then exploits the techniques in [123] to determine that the linearization

of F about u∗

Lv := ω∗vτ +
(
vξξ + f ′(ξ, u∗)v

)
ξξ
− c∗vξ,

is Fredholm with index -1 when considered on an exponentially weighted function space

L2
η(R, L2(T)), with norm

∫

R
eη
√

1+x2 ||v(x, ·)||2L2(T)dx, 0 < η � 1,

where we have imposed temporal periodicity. This norm shifts the Fredholm boundaries
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of the essential spectrum and in effect suppresses the neutrally unstable far field caused

by mass conservation. Furthermore, this mass conservation then allows us to restrict

the codomain of the nonlinear operator to the subspace of functions perpendicular to

the constants, where L has index 0. Eigenfunctions, p(ξ), of L corresponding to the

Hopf mode then span the kernel of L

kerL = span{eiτp(ξ), e−iτp(ξ)},

while adjoint eigenfunctions span the cokernel. We then apply a Lyapunov-Schmidt

reduction to the restriction of L to obtain existence of bifurcating solutions and ex-

pansions of bifurcation parameters. We also add that our method gives computable

expressions for bifurcation coefficients. In previous studies, such coefficients appear

difficult to obtain; see for example Eqn. 3.35 of [135, §3.2].

Explicit characterization of a prototypical example. In Section 4.4, we apply

our results to an idealization of the motivating examples discussed above which exhibits

many interesting phenomena. In particular, we study a nonlinearity of the form

f(x− ct, u) = χ(x− ct)u+ γu3 − βu5,

and solutions which bifurcate from a trivial front u∗ ≡ 0. Here β > 0, χ ≡ 1 for all

ξ = x − ct ∈ [−l, l], and χ ≡ −1 elsewhere. As it travels through the domain, the

parameter ramp triggering mechanism χ does not add mass to the system but instead

alters the stability of the homogeneous solution u∗. Indeed ∂uf(ξ, 0) > 0 (spinodally

unstable) for all ξ ∈ [−l, l] and ∂uf(ξ, u0) < 0 (spinodally stable) for all ξ 6∈ [−l, l]. As

c decreases through a certain speed c∗, we show that there exists a first-crossing of a

pair of eigenvalues with non-zero imaginary part. The piecewise constant dependence

of f on ξ allows us to construct an explicit Evans function, and use spatial dynamics

to determine the leading order expansions for the accompanying eigenfunctions, for l

sufficiently large.

While the piecewise constant linearization of f allows for relatively straight forward

study of spectra, its discontinuities cause the linearized operator to not be well-defined
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on the previous “nice” function spaces. To overcome this, optimal parabolic regularity

and trace estimates are used to adapt the function spaces and obtain the necessary

Fredholm properties; see Section 4.2.2. We then apply our main result to conclude the

existence of bifurcating solutions and furthermore that the bifurcation is subcritical for

γ > 0 and supercritical for γ < 0.

1.5.2 Higher dimensional patterns

We believe that the analytic method outlined above, and discussed in detail in Chapter

4 below, should be able to be lifted to the more complicated settings discussed at the

beginning of this section.

For example in the Cahn-Hilliard equation (1.5.3) posed on an infinite cylinder (x, y) ∈
R× [0, 2π),

0 = −ωuy −∆ky(∆kyu+ f(ξ, u)) + c∂ξu+ cχ(ξ), ∆ky = ∂2
ξ + k2

y∂
2
y , ` ∈ Z, ξ ∈ R,

(1.5.8)

one could hope to prove a result similar to the O(2)-Hopf bifurcation result in [117]

(because of the reflection and translation symmetries in y) or the transverse steady

bifurcation in [105]. That is assuming the existence of bifurcating transverse eigen-

functions, one would hope to obtain a Fredholm linearization using an abstract closed

range lemma with suitably defined function spaces and then determine the index by

decomposing the linearized operator into its Fourier components in y,

L`v := ωi`v− ∆̂ky(∆̂kyv+f ′(ξ, u∗)v)+ c∂ξv, ∆̂ky = ∂2
ξ −k2

y`
2, ` ∈ Z, ξ ∈ R, (1.5.9)

and determining the index of each separately. Through a suitably arranged Lyapunov-

Schmidt argument one could then prove the existence of transversely modulated patterns

such as the slanted stripe pattern shown in Figure 1.5.4.
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Figure 1.5.4: Transverse pattern in triggered Cahn-Hilliard equation.



Chapter 2

Pattern formation in the wake of

pulled trigger fronts

The contents of this chapter originally appeared in [64]; with permission of Springer.

2.1 Introduction and main results

In this chapter we study how spatial triggers can perturbed pulled free invasion fronts

in the prototypical complex Ginzburg-Landau equation (CGL),

At = (1 + iα)∆A+A− (1 + iγ)A|A|2, (2.1.1)

As is typical for pattern-forming systems, CGL supports a variety of coherent and

complex patterns. Even in parameter regimes α ∼ γ, when the equation is close to

a gradient-like flow, there exist continua of stable periodic patterns, A ∼ ei(ω(k)t−k·x),

and coherent defects, most prominently Nozaki-Bekki holes in one space dimension and

spiral waves in two space-dimension, both having vanishing amplitude A = 0 at x = 0.

As described in Section 1.2.1, when starting with spatially localized initial conditions,

one observes a spatial invasion process that leaves distinct wavetrains in its wake, whose

wavenumber does not depend on the initial condition but only on system parameters;

see [11, 33, 156].
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We shall study how a parameter-ramp type trigger can select wavenumbers in one spatial

dimension with the modified equation

At = (1 + iα)Axx + χA− (1 + iγ)A|A|2, (2.1.2)

where χ = χ(x − ct), c > 0, and, setting ξ = x − ct, χ(ξ) → χ± for x → ±∞, with

χ− > 0 > χ+.

We now describe the basic scenario that we will analyze quantitatively in this article.

In the following work we fix

χ(ξ) =




χ− = +1, for ξ ≤ 0

χ+ = −1, for ξ > 0
(2.1.3)

and consider (2.1.2) with fixed α, γ, while varying the speed c of the trigger χ as our

primary bifurcation parameter. Our results can be easily adapted to different values of

χ±. Smooth triggers χ with derivative χ′ sufficiently localized would also be immediately

amenable to the following analysis.

Phenomenologically, one observes roughly two different regimes. For large speeds c, one

observes patterns in the wake of a front that propagates with a speed clin < c. The

patterns created in the wake of that front are roughly independent of the speed c. When

the trigger speed is decreased below clin, patterns nucleate roughly at the location of

transition from stability to instability. The wavenumber of patterns in the wake now

depends smoothly on the speed c. At the transition, c ∼ clin, the wavenumber in the

wake depends continuously on c, constant for c > clin, and, to leading order, linear for

c . clin. This scenario is illustrated in space-time plots of direct numerical simulations

in Figure 2.1.1 and Figure 2.1.2. There, the trigger moves into the medium from the left,

sending out a periodic wave-train in it’s wake. The right-hand figure shows the same

system in a moving frame of speed c. The trigger is placed near the right boundary

of the domain and sends out waves to the left. Since A ≡ 0 is unstable for ξ < 0,

without any local perturbations, the system oscillates homogeneously. As time evolves,

a periodic wave train emitted from the trigger invades these homogeneous oscillations

along a sink [132, 157].
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Figure 2.1.2: The figure on the right gives the selected wavenumber for a range of trigger
speeds; α = −0.1, γ = −0.2. The figure on the left shows the space-time plot in the
case c = 2.3 > clin, when the constant wavenumber klin is selected. The dotted red line
denotes the path of the trigger x = ct.

Before continuing, we recall the properties of the pulled free front stated in Section 1.2.1.

Namely, the linear spreading speed can be obtained from inserting the ansatz A ∼ eλt+νx

into (2.1.1). In our case this relation takes the form d(λ, ν) = (1 + iα)ν2 + 1 − λ, by

solving1

d(iω − cν, ν) = 0,
d

dν
d(iω − cν, ν) = 0

1In general, one also needs to verify a pinching condition, which however in our case is automatically
satisfied.
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where d
dν is evaluated as a total derivative. One finds

clin = 2
√

1 + α2, ωlin = α, νlin = − 1− iα√
1 + α2

. (2.1.4)

One derives a linear prediction for the nonlinear pattern in the wake of the front from

this linear information as follows. Nonlinear spatio-temporally periodic patterns are, in

the simplest form, solutions of the form

A(t, x) = eiΩnl(k)tAp(x; k), Ap(x; k) =
√

1− k2e−ikx, where Ωnl(k) = −αk2−γ(1−k2).

In the comoving frame of speed c, the frequency of these patterns is determined by the

nonlinear dispersion relation in the comoving frame,

Ω(k; c) = −αk2 − γ(1− k2)− ck. (2.1.5)

One can solve Ω(k, clin) = ωlin for k =: klin, using that |k| < 1, and thereby derive a

linear prediction for a nonlinear selected wavenumber,

klin =




−
√

1 + γ2 −
√

1 + α2

γ − α , for γ 6= α

− α√
1 + α2

, for γ = α.
(2.1.6)

We also recall that the group velocity of wave trains in the wake of the invasion front

points away from the front interface so that the front acts as a source in a co-moving

frame of speed clin,

cg :=
dΩ(k; clin)

dk

∣∣∣
k=klin

= −2
√

1 + γ2 < 0. (2.1.7)

In order to state our main assumption, we first give a precise characterization of invasion

fronts in the form needed later.

Definition 2.1.1 (Generic free fronts). A free front is a solution to CGL, (2.1.2) with

χ ≡ 1, of the form A(t, x) = eiωlintAf(x− clint), that satisfies

Af(ξ)→ 0 for ξ →∞, |Af(ξ)−Ap(ξ; klin)| → 0 for ξ → −∞.
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We say a free front is generic if there exist A∞,B∞ ∈ C with A∞ 6= 0 such that

Af(ξ) =
(
A∞ξeνlinξ + B∞eνlinξ

)(
1 + Oξ(1)

)
, for ξ →∞.

Trigger fronts and main result. Our goal is to find solutions to (2.1.2) that describe

the triggered invasion process when the speed of the trigger is less than, but close to,

the speed of the invasion front. In a completely analogous fashion to free fronts, we

define trigger fronts as spatial connections between A = 0 at ξ = +∞ and a periodic

wave train at ξ = −∞.

Definition 2.1.2 (Trigger fronts). A trigger front with frequency ωtf is a solution to

CGL, (2.1.2), with trigger speed c, of the form A(t, x) = eiωtf tAtf(x− ct), that satisfies

Atf(ξ)→ 0 for ξ →∞, |Atf(ξ)−Ap(ξ; ktf)| → 0 for ξ → −∞,

where ktf is such that ωtf = Ω(ktf ; c) and the group velocity

cg(ktf) :=
dΩ(k; c)

dk

∣∣∣
k=ktf

< 0.

In other words, trigger fronts are time-periodic with frequency ωtf and emit wave trains

with wavenumber ktf . Furthermore, for a fixed δ > 0 sufficiently small, we define the

front interface distance as

ξ∗ := inf

{
ξ; sup
ξ′>ξ
|A(ξ′)| < δ

}

.

We are now ready to state our main result.

Theorem 2.1.1. Fix α, γ ∈ R and assume that there exists a generic free front. Then

there exist trigger fronts for c < clin, |c − clin| sufficiently small. The frequency of the

trigger front possesses the expansion

ωtf(c) = ωabs(c) +
2

π
(1 + α2)3/4|∆Zi|(clin − c)3/2 +O((clin − c)2). (2.1.8)
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Here,

ωabs(c) = −α+
αc2

2(1 + α2)
,

and ∆Zi is defined in (2.3.22), below. Furthermore, for α 6= γ the selected wavenumber

has the expansion

ktf = klin − g1(α, γ)(clin − c)−
2(1 + α2)3/4|∆Zi|
π(1 + γ2)1/2

(clin − c)3/2 +O((clin − c)2)

where g1(α, γ) = 1
2(γ−α)

(
1− 1+2αγ−α2√

(1+α2)(1+γ2)

)
. The distance between the trigger and the

front interface is given by

ξ∗ = π(1 + α2)1/4(clin − c)−1/2 + (1 + α2)1/2 ∆Zr +O((clin − c)1/2),

where ∆Zr is defined in (2.3.22) as well.

In the following, we elaborate on assumptions and conclusions in this result.

Interpreting the expansion. The frequency ωabs is determined by the intersection

of the absolute spectrum [126] of the linearization at the origin in a frame moving with

speed c and the imaginary axis. Roughly speaking, the absolute spectrum denotes curves

in the complex plane that emanate from double roots of the dispersion relation such

that finitely truncated boundary-value-problems possess dense clusters of eigenvalues

at these curves as the size of the domain goes to infinity [126]. The absolute spectrum

is a natural first-order prediction for frequencies of trigger fronts as we shall explain

in Section 2.2. Intersection points with the imaginary axis arise when the edge of

the absolute spectrum crosses the imaginary axis. This happens precisely when c is

decreased below clin, so that quite generally there will be a unique intersection point,

smoothly depending on c; see Figure 2.1.3.

The term ∆Zi that describes corrections to the leading-order prediction can be inter-

preted as a distance in projective space between tangent spaces of stable manifold and

unstable manifold. Roughly speaking, decay at ξ = +∞ creates an effective boundary

condition of Robin type at ξ = 0, while the leading edge of the invasion front approx-

imately satisfies a different Robin boundary condition. The distance between those
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expansion

ktf = klin � g1(↵, �)(clin � c) � 2(1 + ↵2)3/4|�Zi|
⇡(1 + �2)1/2

(clin � c)3/2 + O((clin � c)2)

where g1(↵, �) = 1
2(��↵)

✓
1 � 1+2↵��↵2p

(1+↵2)(1+�2)

◆
. The distance between the trigger and the front inter-

face is given by

⇠⇤ = ⇡(1 + ↵2)1/4(clin � c)�1/2 + (1 + ↵2)1/2 �Zr + O((clin � c)1/2),

where �Zr is defined in (3.22) as well.

In the following, we elaborate on assumptions and conclusions in this result.

Interpreting the expansion. The frequency !abs is determined by the intersection of the ab-

solute spectrum [30] of the linearization at the origin in a frame moving with speed c and the

imaginary axis. Roughly speaking, the absolute spectrum denotes curves in the complex plane

that emanate from double roots of the dispersion relation such that finitely truncated boundary-

value-problems possess dense clusters of eigenvalues at these curves as the size of the domain goes

to infinity [30]. The absolute spectrum is a natural first-order prediction for frequencies of trigger

fronts as we shall explain in Section 2. Intersection points with the imaginary axis arise when

the edge of the absolute spectrum crosses the imaginary axis. This happens precisely when c is

decreased below clin, so that quite generally there will be a unique intersection point, smoothly

depending on c; see Figure 1.3.

⌃abs

c < clin
i!lin

i!abs

iR

⌃abs

iR

Figure 1.3: Left: Plot of the absolute spectrum ⌃abs in the complex plane. The blue dots denote double
roots. The curve moves into the right half plane for c < clin, intersecting iR at i!abs. Right: As the domain
size L increases to +1 the spectrum of the linear operator accumulates on ⌃abs.

The term �Zi that describes corrections to the leading-order prediction can be interpreted as

a distance in projective space between tangent spaces of stable manifold and unstable manifold.

Roughly speaking, decay at ⇠ = +1 creates an e↵ective boundary condition of Robin type at ⇠ = 0,

while the leading edge of the invasion front approximately satisfies a di↵erent Robin boundary

condition. The distance between those two boundary conditions, measured in an appropriate

coordinate system, is denoted by �Zi. Using a simple shooting algorithm, one can evaluate �Zi

quite accurately; see our numerical studies in Section 4.

The assumption on existence, non-uniqueness, and more fronts. We will see in our proof

that the expansion of invasion fronts at ⇠ ! 1 holds for any invasion front with |A1| + |B1| > 0,

6

Figure 2.1.3: Left: Plot of the absolute spectrum Σabs in the complex plane. The
blue dots denote double roots. The curve moves into the right half plane for c < clin,
intersecting iR at iωabs. Right: As the domain size L increases to +∞ the spectrum of
the linear operator accumulates on Σabs.

two boundary conditions, measured in an appropriate coordinate system, is denoted by

∆Zi. Using a simple shooting algorithm, one can evaluate ∆Zi quite accurately; see our

numerical studies in Section 2.4.

The assumption on existence, non-uniqueness, and more fronts. We will see

in our proof that the expansion of invasion fronts at ξ →∞ holds for any invasion front

with |A∞| + |B∞| > 0, so that genericity refers to the (open) condition A∞ 6= 0, only.

Existence can be cast as the problem of existence of a heteroclinic connection between

an unstable equilibrium and a sink. Genericity refers to unstable and stable manifolds

being in general position.

We are not aware of results guaranteeing the existence of generic invasion fronts, or any

evidence pointing towards non-existence. We show in Proposition 2.3.3 that generic

invasion fronts exist for |α− γ| sufficiently small.

In a different interpretation, vanishing of A∞ characterizes fronts at the boundary

between pushed and pulled invasion in parameter space. In the case of cubic CGL,

considered here, such a transition has not been observed. On the other hand, the

transition is usually accompanied by an increase in the (nonlinear) invasion speed, so

that one expects trigger fronts to exist for speeds larger than clin beyond this transition;

see the discussion in Section 2.5.

The fronts we find are not unique. In fact, our proof gives the existence of a countable
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family of invasion fronts, indexed by j = 1, 2, . . ., with frequencies

ωtf(c; j) = ωabs(c) +
2|∆Zi|

πj(1 + α2)3/4
(clin − c)3/2 +O((clin − c)5/2). (2.1.9)

Roughly speaking, the distance between front interface (measured by, say, the location

of |A| = δ > 0, fixed) and the trigger location ξ = 0 increases linearly with the index j.

We expect these fronts to be unstable with Morse index increasing linearly in j.

Stability and secondary instabilities. We did not attempt to prove stability but

we suspect that the fronts we find are stable in a suitable sense. In fact, stability of the

free front is known for α = γ = 0 [42] and one can show that fronts with α ∼ γ are at

least linearly stable. It would be interesting to conclude stability of the trigger fronts

that we find from spectral stability of the free front. On the other hand, free fronts can

be unstable. In particular, the wave train selected by the invasion (or trigger) front is

in fact unstable for many values of α and γ. Most dramatically, for αγ < −1, all wave

trains are unstable. The instability may propagate slower than the primary invasion

front, leading to a wedge in space-time plots where the (unstable) selected wave train

can be observed. For large α, γ, the secondary instability invades at a fixed distance

behind the primary front; see [156, §2.11.5], [144] and Figure 2.1.4 for an illustration.
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Figure 2.1.4: Invasion of spatio-temporal chaos after formation of periodic pattern in
wake of a trigger; parameters in the Benjamin Feir instability range: α = −1.2, c =
0.95 · clin = 1.90 ·

√
1 + α2 and γ = 2 (left), and γ = 8 (right).
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Spatial dynamics. We prove our main result by rewriting the existence problem for

a trigger front as a non-autonomous ODE for Atf(ξ),

Aξξ = − 1

(1 + iα)

[
(χ(ξ)− iω)A+ cAξ − (1 + γi)A|A|2

]
. (2.1.10)

Here, c is the (externally prescribed) bifurcation parameter and ω is a matching pa-

rameter that will be used to achieve appropriate intersections of stable and unstable

manifolds. In fact, one can most easily understand this ODE by separately considering

dynamics with χ ≡ χ+ and χ = χ−, thus obtaining two separate 4-dimensional phase

portraits. For χ = χ+, we will find the equilibrium A = Aξ = 0 with a two-dimensional

stable manifold. For χ = χ−, we find that A = Aξ = 0 is stable with an open basin of

attraction. On the other hand, we also have a periodic orbit Ap, depending on c and ω,

with a two-dimensional unstable manifold. Existence of a free front implies that there

exists a heteroclinic orbit between Ap and the origin. The strategy of the proof is to find

intersections between the unstable manifold of Ap in the χ−-phase-space and the stable

manifold of the origin in the χ+-phase space. We will find these intersections bifurcat-

ing from the origin upon decreasing c below clin and adjusting ω appropriately. A key

technical ingredient to our result is a geometric blowup of the origin which both factors

the S1-action on (A,Aξ) ∈ C2 induced by the gauge symmetry, and desingularizes the

vector field by effectively separating eigenspaces near an algebraically double complex

eigenvalue. Intersections can then be found almost explicitly on a singular sphere, and

lifted using Fenichel’s invariant foliation methods [46, 47, 48].

Outline. The remainder of this paper is organized as follows. Section 2.2 gives heuris-

tics and a conceptual outline of the proof of Theorem 2.1.1, describing the role of the

absolute spectrum in finding the desired heteroclinic intersection. Section 2.3 contains

the proof of our main theorem. Section 2.4 gives comparisons between our expansions,

direct simulations, and direct computations of heteroclinic orbits. Finally, Section 2.5

gives a discussion of our results and directions for future research.
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2.2 Heuristics — formal asymptotics and the role of the

absolute spectrum.

We present several concepts that help understand the result. We first explain the role of

absolute spectra and then present a formal exponential matching argument that mimicks

the main strategy of proof. Last, we give a brief outline of geometric desingularization,

the center piece of our approach and connect it with these two other points of view.

Absolute spectra. Taking the perspective of a numerical simulation in a comoving

frame, we could attempt to understand trigger fronts as steady states (up to the gauge

symmetry) bifurcating from the trivial state A ≡ 0 when the latter looses stability.

One would then linearize the system at A ≡ 0 in a bounded domain, in a comoving

frame, equipped with separated boundary conditions. In order to realistically capture

the phenomena, we would assume that the size of the domain L is large. One can even

simplify further and substitute “effective” boundary conditions at ξ = 0 and restrict to

ξ ∈ [−L, 0]. The linearized operator (1 + iα)∂ξξ + c∂ξ + 1− iω then possesses constant

coefficients but is not self-adjoint and spectra in large domains are not approximated

by spectra in unbounded domains. In fact, eigenvalues of the linearized operator in the

bounded interval accumulate, as L→∞, at curves referred to as the absolute spectrum,

Σabs [126]; see Fig. 2.1.3. Those curves can be computed from the dispersion relation

d(λ, ν) = 0 as follows. One varies λ as a parameter, solves for all roots ν = νj(λ),

and orders those roots by real part Re ν1 ≤ Re ν2 ≤ . . . ≤ Re νN for each fixed λ. For

Reλ → ∞, one always finds Re νj < 0 < Re νj′ , for j ≤ M < j′, with some fixed M .

The absolute spectrum then is the set of λ so that Re νM (λ) = Re νM+1(λ).

In our case, dc(λ, ν) = (1 + iα)ν2 + cν + 1− λ, with roots

ν± = − c

2(1 + iα)
±
√

c2

4(1 + iα)2
− 1− λ

1 + iα
.

At the absolute spectrum, we must have Re ν+ = Re ν−, so

c2

4(1 + iα)2
− 1− λ

1 + iα
< 0. (2.2.1)
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Bifurcations in a bounded domain occur when eigenvalues cross the imaginary axis,

λ = iω, leading to periodic orbits with frequency close to ω. We are therefore interested

in the intersection of the absolute spectrum with the imaginary axis, which, starting

with (2.2.1), is readily found at

ωabs(c) = −α+
αc2

2(1 + α2)
, (2.2.2)

for c < clin. We caution the reader that ωabs is not constant, due to two effects: the

curve of absolute spectrum is not horizontal and the imaginary part of the leading edge

will depend on c. As the domain size increases, eigenvalues will move along the curve of

absolute spectrum towards the edge [126, Lemma 5.5], which is located in {Reλ > 0},
thus leading to a sequence of Hopf bifurcations. The periodic solutions with frequency

ω emerging from these Hopf bifurcations converge to the trigger fronts described in our

main result; see also the subsequent discussion, pointing to a countable family of trigger

fronts.

While this view point gives a rather simple and universal prediction, it is generally not

clear how the bifurcating solutions evolve as L → ∞. One can easily envision pushed

fronts leading to a faster propagation mechanism, thus inducing turning points in the

branch of periodic solutions. We refer to [25, 153, 134] for more detailed analyses in

this direction.

Inspecting the proofs in [126], eigenvalues are generated by oscillatory dynamics in the

Grassmannian: one evolves the boundary condition at ξ = −L as an element of the

Grassmannian and seeks intersections with the boundary condition at ξ = L. Since

eigenvalues in the Grassmannian are differences of eigenvalues in the linear system,

oscillatory dynamics occur when Reν− = Reν+, in our simple case. In the following, we

explain how these oscillatory dynamics can be found in a more local analysis.

Exponential matching. Starting with the assumption that the amplitude of the

trigger front would be small at ξ = 0 when c . clin, we try to glue the free front, shifted

appropriately, at ξ = 0 with an exponentially decaying tail in ξ > 0.

To leading order, the free front decays like A∞ζeν(ξ+ζ)+B∞eν(ξ+ζ), with shifted variable
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ζ. We next vary ω and c and neglect the dependence of the coefficients A∞ and B∞ on

c, ω. In order to track the dependence of the exponential rate ν on ω, c, we inspect the

linear dispersion relation (1 + iα)ν2 + cν + 1 − iω = 0. Near ω = ωlin and c = clin, we

have two roots ν1 ∼ ν2, so that one expects decay in the front profile Aeν2(ξ+ζ), when

Re ν1 < Re ν2 < 0.

On the other side, small solutions in ξ > 0 decay like A+eν+ξ, where ν+ solves (1 +

iα)ν2 + cν − 1− iω = 0.

Trying to match A and Aξ at ξ = 0, we find that due to leading order scaling invariance

(keeping only linear terms) and gauge invariance, it is enough to match Aξ/A. This

however gives ν+ = ν1 in our leading order expansion, an equation that cannot be

solved varying ω and c locally. In fact, our expansion for the invasion front Aeν1(ξ+ζ)

is not valid uniformly when varying ω and c. In order to get smooth and uniform

expansions, one needs to use a smooth expansion in terms of exponentials near the

double root, using either smooth normal forms near a Jordan block [6] or, more along

the lines of our strategy, normal forms for the induced flow on Aξ/A. Without going into

details, one readily finds that the expansion in eν2ξ alone will fail near Re ν1 = Re ν2,

where one would keep both terms Aeν1ζ + Beν2ζ . Varying ζ and the difference ν1 − ν2

as a function of ω, one can then solve the matching problem with ξ > 0.

Note that here the absolute spectrum appears in a natural way as parameter values ω

where Reν1 = Reν2.

Geometric desingularization. The global aspect of the matching procedure is il-

lustrated in Figure 2.2.1. The dynamics with χ ≡ χ− show a periodic orbit Ap with a

two-dimensional unstable manifold that converges to the stable equilibrium A ≡ 0. In

this phase portrait, the linearization at the origin is a complex Jordan block. Overlayed

is the phase portrait for χ ≡ χ+, where A ≡ 0 possesses a two-dimensional stable man-

ifold. Factoring the S1-symmetry, both manifolds are 1-dimensional in a 3-dimensional

ambient space. We are looking for intersections close to the origin. Our main control

parameter is ω, which, together with the bifurcation parameter c unfolds the complex

Jordan block and leads to possible flips in the position of the unstable manifold of Ap

near A ≡ 0.
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From the above discussion, it is apparent that a description of a neighborhood of A =

Aξ = 0 is crucial to the understanding of the matching procedure. There are several

dynamical systems techniques for such a description. First, one can try to use smooth

linearization for the ODE (2.1.10). Since ν = νlin has negative real part, the double

eigenvalue is in fact non-resonant, and smooth linearization results are available; see for

instance [86, §6.6]. In our context, we would however also require smooth parameter-

dependence and S1-equivariance. While such results may well be true, our approach

appears more robust and elementary. Roughly speaking, we introduce polar coordinates

for (A,Aξ) ∈ C2 ∼ R+ × S3, and factor the gauge symmetry, C2/S1 ∼ R+ × (S3/S1) ∼
R+×S2, where the last equivalence collapses the Hopf fibration. Identifying S2 with the

Riemann sphere C, we end up with coordinates |A|2 and Aξ/A, that we identified above.

In these coordinates, the sphere |A|2 = 0 is normally hyperbolic and carries an explicit

linear projective flow that allows us to compute expansions at leading order. Matching

outside of the sphere, which corresponds to taking higher-order terms in the exponential

matching procedure into account, can be readily achieved after straightening out smooth

foliations. We refer to the next sections for details of this procedure.

2.3 Heteroclinic bifurcation analysis

In this section we prove our main result. We start in Section 2.3.1 by several simple

rescaling transformations and calculate dimensions of stable and unstable manifolds

using information from the dispersion relation. Section 2.3.2 introduces the coordinate

system near the origin that we use to factor the gauge symmetry and desingularize the

linear dynamics. Section 2.3.3 examines the asymptotics of the free invasion front and

shows that our assumptions are verified in the regime α ∼ γ. Section 2.3.4 contains the

matching analysis in the desingularized coordinates.
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dimensional in a 3-dimensional ambient space. We are looking for intersections close to the origin.

Our main control parameter is !, which, together with the bifurcation parameter c unfolds the

complex Jordan block and leads to possible flips in the position of the unstable manifold of Ap near

A ⌘ 0.

From the above discussion, it is apparent that a description of a neighborhood of A = A⇠ = 0

is crucial to the understanding of the matching procedure. There are several dynamical systems

techniques for such a description. First, one can try to use smooth linearization for the ODE (1.10).

Since ⌫ = ⌫lin has negative real part, the double eigenvalue is in fact non-resonant, and smooth

linearization results are available; see for instance [21, §6.6]. In our context, we would however

also require smooth parameter-dependence and S1-equivariance. While such results may well be

true, our approach appears more robust and elementary. Roughly speaking, we introduce polar

coordinates for (A, A⇠) 2 C2 ⇠ R+ ⇥S3, and factor the gauge symmetry, C2/S1 ⇠ R+ ⇥ (S3/S1) ⇠
R+ ⇥S2, where the last equivalence collapses the Hopf fibration. Identifying S2 with the Riemann

sphere C, we end up with coordinates |A|2 and A⇠/A, that we identified above. In these coordinates,

the sphere |A|2 = 0 is normally hyperbolic and carries an explicit linear projective flow that allows

us to compute expansions at leading order. Matching outside of the sphere, which corresponds

to taking higher-order terms in the exponential matching procedure into account, can be readily

achieved after straightening out smooth foliations. We refer to the next sections for details of this

procedure.

W ss
� (0)

c,!

Ap

W cu
� (Ap)

W s
+(0)

Figure 2.1: Schematic diagram of intersection between W cu
� (Ap) and W s

+(0). The red lines denote the
invariant manifolds of the origin in the ⇠ > 0 dynamics. These act as boundary conditions for a shooting from
W cu

� (Ap). Unfolding c and ! from clin and !lin, we obtain a non-trivial intersection at (⇠,!) = (⇠⇤,!tf(c))
(blue dot) .

3 Heteroclinic bifurcation analysis

In this section we prove our main result. We start in Section 3.1 by several simple rescaling

transformations and calculate dimensions of stable and unstable manifolds using information from

the dispersion relation. Section 3.2 introduces the coordinate system near the origin that we use

to factor the gauge symmetry and desingularize the linear dynamics. Section 3.3 examines the

11

Figure 2.2.1: Schematic diagram of intersection between W cu
− (Ap) and W s

+(0). The red
lines denote the invariant manifolds of the origin in the ξ > 0 dynamics. These act as
boundary conditions for a shooting from W cu

− (Ap). Unfolding c and ω from clin and
ωlin, we obtain a non-trivial intersection at (ξ, ω) = (ξ∗, ωtf(c)) (blue dot) .

2.3.1 Scalings and dimension counting

The following change of variables will slightly simplify the remainder of our analysis,

essentially eliminating α as a parameter. Suppose first that 1 + αγ > 0. Setting

S =
cα

2(1 + α2)
, m2 = 1 +

(cα)2

4(1 + α2)
− αω, l2 =

1 + αγ

m2
, (2.3.1)

we scale and parameterize

a = le−iSξA, ĉ =
c

m
√

1 + α2
, ω̂ =

ω − ωabs(α, c)

m2
, ζ =

m√
1 + α2

ξ, γ̂ =
γ − α
1 + γα

,

(2.3.2)

so that (2.1.10) simplifies to

aζζ = −(1− iω̂)a− ĉaζ + (1 + iγ̂)a|a|2 +
(1− χ)

m2
(1 + iα)a. (2.3.3)
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If we restrict to ζ < 0 we have χ = 1 and obtain

aζζ = −(1− iω̂)a− ĉaζ + (1 + iγ̂)a|a|2, (2.3.4)

whereas for ζ ≥ 0 we obtain

aζζ = −(1− iω̂)a− ĉaζ + (1 + iγ̂)a|a|2 +
2

m2
(1 + iα)a. (2.3.5)

The cases 1+αγ < 0 and 1+αγ = 0 can be treated in a similar fashion. For 1+αγ < 0

one finds

aζζ = −(1− iω̂)a− ĉaζ + (−1 + iγ̂)a|a|2 +
(1− χ)

m2
(1 + iα)a, (2.3.6)

and for 1 + αγ = 0 we find

aζζ = −(1− iω̂)a− ĉaζ + iγ̂a|a|2 +
(1− χ)

m2
(1 + iα)a. (2.3.7)

Since those cases do not alter the subsequent discussion, we omit the straightforward

details and focus on the case 1 + αγ > 0 in the sequel.

Remark 2.3.1. The fact that the scaled equation changes type when 1 + αγ changes

sign reflects the Benjamin-Feir instability: for 1 +αγ < 0, all wave trains are unstable.

One observes secondary invasion fronts, Figure 2.1.4, which for moderate values of |αγ|
propagate slower than the primary invasion front, leaving a long plateau of unstable

wave trains. For large values of |αγ|, the instability catches up with the primary front

and one observes chaotic dynamics in the immediate wake of the primary front. In this

case, our results, while correct, do not describe actually observed wavenumbers due to

the strong, absolute instability in the wake; we refer to [156, §2.11.5] and [108] for a

discussion of this behavior for free invasion fronts.

For the remainder of the proof, we will consider the first order form of (2.3.3), writing
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ζ as our spatial variable, A once again as the amplitude, and B := Aζ .

Aζ = B

Bζ = −(1− iω̂)A− ĉAζ + (1 + iγ̂)A|A|2 +
(1− χ)

m2
(1 + iα)A. (2.3.8)

The following proposition shows that free fronts are unique up to spatial translation

and gauge symmetry.

Proposition 2.3.2. Let c = clin and ω = ωlin. Then the CGL traveling wave equation

(2.1.10) possesses a unique relative equilibrium Ap with wavenumber klin. In other words,

there exists a unique wave train with frequency ωlin in a frame moving with speed clin.

In (2.1.10), this relative equilibrium possesses a smooth two-dimensional center-unstable

manifold W cu
− (Ap).

Proof. The proof of the proposition is a direct calculation of eigenvalues of the

linearization at Ap. We refer to [157, §2.2.3], where explicit conditions are given so that

this linearization possesses precisely one unstable eigenvalue but caution the reader that

the convention in this chapter is to define frequency and wavenumber of wavetrains via

A = re−iωt+kx (i.e. with the opposite sign as ours). Substituting c = clin and ω = ωlin

into the formulas there, we obtain the desired result for all α, γ.

2.3.2 Symmetry reduction and geometric blowup

In order to carry out the matching procedure near the origin, we would like to quo-

tient the S1-action and exhibit the leading-order scaling symmetry from the linearized

equation. It turns out that this can be achieved in a very simple fashion, introducing

|A|2 ≥ 0 and Aζ/A ∈ C as new variables. While very effective, this choice appears

somewhat arbitrary and we will show how to obtain these coordinates in a systematic

fashion.

Since the S1-action is not free near the origin, the quotient C2/S1 is not a manifold. A

canonical parameterization of the orbit space is given by the Hilbert map and canonical

coordinates are given by the generators of the ring of invariants of the action; see [24,
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Thm 5.2.9]. In our case, the ring of invariants is generated by

R = |A|2, S = |B|2, N = AB̄ (2.3.9)

where, once again, we have set B = Aζ , with a relation

H(R,S,N) := RS −NN̄ = 0, R ≥ 0, S ≥ 0, (2.3.10)

hold. The generators of the ring of invariants can be found either through a direct

computation or using the general theory of invariants as outlined in [24, §5]. Explicitly,

one checks that a monomial A`1Ā`2B`3B̄`4 is invariant if `1 + `3 = `2 + `4, which defines

a submodule M of N4. One then readily verifies that this submodule is generated by

the vectors

e1 = (1, 1, 0, 0), e2 = (0, 0, 1, 1), e3 = (1, 0, 0, 1)

which correspond to the monomials in (2.3.9) above. In other words, any invariant

monomial can be written as a product of R,S,N, and N̄ in an obvious fashion. More

generally, one can compute the Molien series [24, Thm 5.4.1] of this specific represen-

tation of the group S1 as 1+z2

(1−z2)3 . The denominator indicates three algebraically inde-

pendent quadratic monomials, say R,S,Re(N), and the numerator suggests another,

algebraically dependent, quadratic invariant, Im(N); see [24, Rem 5.4.2].

The orbit space C2/S1 is then homeomorphic to the subset of R,S,N ∈ R2 × C where

the relations (2.3.10) hold. One can now express (2.3.8) in invariants, only, and derive

equations for R,S,N [24, §6].

We next would like to eliminate the leading-order scaling symmetry, which, since all

invariants are quadratic, acts equally on R,S,N . Directional blowup [41], allows us

to exploit the leading-order scaling symmetry in an explicit fashion. We therefore use

an equivariant, R, and associated invariants S/R, N/R, with respect to the scaling

symmetry as new variables. The idea is that the invariants represent the quotient space

and the equivariant, which commutes with the action of the scaling group rather than

being invariant, tracks the scaling action. One finds that the relations simplify and the

orbit space is given as a graph, S/R = N/R·N/R, so that we may consider the invariant
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z = N̄/R = B/A ∈ C, only2. We find the system

z′ = −z2 − ĉz − (1− iω̂) + (1 + iγ̂)R

R′ = 2Re(zR) = R(z + z) (2.3.11)

in the phase space R+×C. In order to obtain a complete set of charts in a neighborhood

of the origin, one also uses the directional blowup in the S-direction, with variables

z̃ = A/B = 1/z and S,

z̃′ = 1 + ĉz̃ + z̃2
[
1 + iω̂ − (1 + iγ̂)|z̃|S2

]

S′ = 2S
[
−Re((1− iω̂)z̃)− c+ Re((1 + iγ̂)z̃)|z̃|2S

)
. (2.3.12)

Note that the z̃ equation is precisely the Poincaré inversion of the z-equation in system

(2.3.11), and that the singularity z =∞ is non-degenerate, with z̃′ = 1.

Also, note that the sphere z ∈ C, R = 0, together with the point z̃ = 0, S = 0, is

flow-invariant, the blown-up origin of the original system. On this singular sphere S,

we isolated the scaling-invariant, leading-order part of the equation. Of course, the

sphere can also be understood as the result of collapsing the Hopf fibration, obtained

via C2/S1 ∼ R+ × (S3/S1) ∼ R+ × S2.

Since a direct calculation using (2.1.4) and (2.3.2) shows that ĉlin = 2, it is convenient to

introduce the detuning of the trigger speed from the free front speed as a new parameter,

∆ĉ = ĉlin − ĉ = 2− ĉ, 0 < ∆ĉ� 1.

The system (2.3.11) now reads

z′ = −(z + 1)2 + ∆ĉ z + iω̂ + (1 + iγ̂)R

R′ = 2Re(zR) = R(z + z). (2.3.13)

To conclude this section, we study the flow on the singular sphere, given by the Riccati

2We do not know when to expect such a simplification for more general group actions.
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equation

z′ = −(z + 1)2 + ∆ĉ z + iω̂. (2.3.14)

Equilibria

z−1/2 = −2−∆ĉ

2
±
√
−∆ĉ − iω̂ +

(∆ĉ )2

4
,

correspond to eigenspaces of the original linearized equation. The equilibria undergo

a complex saddle-node at z = −1 when ∆ĉ = 0, ω̂ = 0, and a Hopf bifurcation at

∆ĉ > 0, ω̂ = 0. At the Hopf bifurcation, the flow on S consists of periodic orbits,

whereas outside of the Hopf bifurcation, all non-equilibrium trajectories converge to the

same equilibrium. At the saddle-node, all trajectories are homoclinic to z = −1. Of

course, the Riccati equation can be integrated explicitly, and we will exploit this later

on.

We also note that for the ζ > 0 dynamics (χ(ζ) = −1) the equilibria on S satisfy

z2 + (2−∆ĉ )z + (−1 + iω̂) +
2

m2
(1 + iα),= 0.

The equilibrium with negative real part corresponds to the tangent space of the stable

manifold W s
+ and is explicitly given through

z+ = −2−∆ĉ

2
−
√

2−∆ĉ − iω̂ +
(∆ĉ )2

4
+

2

m2
(1 + iα). (2.3.15)

2.3.3 Existence of generic free invasion fronts and the blowup geome-

try

We show that generic free fronts exist when |α − γ| � 1 and analyze asymptotics in

our blowup coordinates. As we saw in the previous section, the dynamics on the sphere

consist of homoclinic orbits converging to a saddle-node equilibrium zb = −1 when ∆ĉ =

ω̂ = 0, corresponding to the unscaled parameters c = clin and ω = ωlin. In particular,

there exists a unique trajectory in the strong stable manifold of the equilibrium, which

corresponds to decay e−ζ . All other trajetories decay with rate 1/ζ in the tangent space

of the sphere, which translates into decay A(ζ) ∼ A∞ζe−ζ + B∞e−ζ with A∞ 6= 0. In
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fact, one readily obtains

zf (ζ) ∼ ν +
1

ζ + B∞
A∞

= −1 +
1

ζ + B∞
A∞

, Rf (ζ) = e2Re νζ |A∞ζ + B∞|. (2.3.16)

The following proposition shows that A∞ 6= 0 for α ∼ γ.

Proposition 2.3.3. For fixed α, generic free fronts as defined in Definition 2.1.1 exist

when |α− γ| is sufficiently small.

Proof. In scaled variables, when ĉ = ĉlin = 2 and ω̂ = ω̂lin = 0, we find

A′′ = −A− 2A′ + (1 + iγ̂)A|A|2, (2.3.17)

where, from (2.3.2), γ̂ = O(|γ−α|). For γ̂ = 0, this equation posseses a real heteroclinic

solution connecting A = 1 to A = 0, with the desired asymptotics A(ζ) ∼ A∞ζe−ζ +

B∞e−ζ , A∞ > 0. Since the heteroclinic is a saddle-sink connection between the circle of

relative equilibria |A| = 1 and the origin, it persists for small values of γ̂ as a heteroclinic

orbit between a nearby relative equilibrium and the origin. Moreover, the heteroclinic

is not contained in the strong stable manifold of the saddle-node equilibrium at α = γ

and therefore does not lie in the strong stable manifold for |α−γ| � 1. This proves the

proposition.

These genericity assumptions can be visualized in the blowup coordinates coordinates of

Section 2.3.2. Since the gauge symmetry is eliminated in such coordinates, the neutral

direction of the periodic orbit is removed so that dimW cu
− (Ap) = 1; see Figure 2.3.1 for

a schematic drawing of dynamics in blowup coordinates near the origin.

We also tested our hypotheses on existence and genericity of free fronts numerically for

α − γ not necessarily small. Using a shooting method for (2.3.13), we calculate the

unstable manifold of

zp = ik̃lin, R =

√
1− k̃2

lin,

where k̃lin is the linearly selected wavenumber calculated using (2.3.4). We then track the

base point z∗ of the fiber in which this trajectory lies when R = δ small. For parameters

at the branch point, if z∗ is far away from zb = −1, we observe that W cu
− (Ap) does not
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Proof. In scaled variables, when ĉ = ĉlin = 2 and !̂ = !̂lin = 0, we find

A00 = �A � 2A0 + (1 + i�̂)A|A|2, (3.17)

where, from (3.2), �̂ = O(|� � ↵|). For �̂ = 0, this equation posseses a real heteroclinic solution

connecting A = 1 to A = 0, with the desired asymptotics A(⇣) ⇠ A1⇣e�⇣ + B1e�⇣ , A1 > 0.

Since the heteroclinic is a saddle-sink connection between the circle of relative equilibria |A| = 1

and the origin, it persists for small values of �̂ as a heteroclinic orbit between a nearby relative

equilibrium and the origin. Moreover, the heteroclinic is not contained in the strong stable manifold

of the saddle-node equilibrium at ↵ = � and therefore does not lie in the strong stable manifold for

|↵� �| ⌧ 1. This proves the proposition.

These genericity assumptions can be visualized in the blowup coordinates coordinates of Section 3.2.

Since the gauge symmetry is eliminated in such coordinates, the neutral direction of the periodic

orbit is removed so that dim W cu
� (Ap) = 1; see Figure 3.1 for a schematic drawing of dynamics in

blowup coordinates near the origin.

W s
+(0)

W cu
� (Ap)

W ss
� (0)

z+

zb

Ap

c = clin
W s

+(0)

W cu
� (Ap)

z�2

Ap

! > !abs

z�1

c < clin

Figure 3.1: Dynamics near the singular sphere: free front heteroclinic (blue) and stable manifold W s
+(0)

(red). Left: Unscaled parameters set c = clin, ! = !lin. On the sphere, homoclinic trajectories are tangent
to the real circle (green) at the branch point zb. Right: Perturb in c < clin at ! = !abs(c). The branch
point zb bifurcates into two equilibria which are encircled by periodic orbits. For ! perturbed away from
!abs equilibria become unstable and stable respectively causing drift along the family of periodics.

We also tested our hypotheses on existence and genericity of free fronts numerically for ↵ � � not

necessarily small. Using a shooting method for (3.13), we calculate the unstable manifold of

zp = ik̃lin, R =

q
1 � k̃2

lin,

16

Figure 2.3.1: Dynamics near the singular sphere: free front heteroclinic (blue) and
stable manifold W s

+(0) (red). Left: Unscaled parameters set c = clin, ω = ωlin. On
the sphere, homoclinic trajectories are tangent to the real circle (green) at the branch
point zb. Right: Perturb in c < clin at ω = ωabs(c). The branch point zb bifurcates
into two equilibria which are encircled by periodic orbits. For ω perturbed away from
ωabs equilibria become unstable and stable respectively causing drift along the family
of periodics.

approach the sphere along the strong stable manifold of the branch point. Thus if the

quantity |z∗ + 1| is non-zero we obtain that the free front is generic and thus A∞ 6= 0.

This quantity is plotted for a range of γ-values in Figure 2.3.2. Recall that α = γ

implies that in our scaled coordinates γ̂ = 0. Using z∗ we can also calculate ∆Zi defined

in (2.3.22). We then use this in calculating our O((∆c)3/2)-prediction in Figure 2.4.1.

The righthand side shows the coefficient ∆Zi over a range of γ̂-values.

2.3.4 Matching stable and unstable manifolds at ζ = 0

We now prove our main result. The road map is as follows. We shall see that the

singular sphere S is normally hyperbolic. This will give that the flow is locally foliated

by smooth one dimensional fibers with base points in S. Then, well-known results of
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Figure 2.3.2: Left: Plot of |z∗ + 1| for γ̂ ranging from zero to ten. Right: Plot of ∆Zi

over the same range of γ̂.

Fenichel and an inclination lemma will essentially reduce the connection problem to

the singular sphere S. On the sphere, we give a series of coordinate changes which

allow us to explicitly integrate the dynamics on S in a robust fashion, dependent on the

scaled parameters ∆ĉ and ω̂. We find a connecting orbit using time and ω̂ as matching

parameters. A local analysis yields a leading order expansion for the angular frequency

ω̂sel(∆ĉ) in ∆ĉ near zero. We finally unwind our scaling transformations to obtain an

expansion of ωtf in the unscaled ∆c := clin − c. This expansion can then be inserted

into the dispersion relation (2.1.5) to obtain a wavenumber prediction for the pattern

left in the wake of a trigger front.

Normal hyperbolicity and smooth foliations near S. In what follows, consider

all manifolds in the reduced phase space R+×S2. Let Φζ be the flow of the full system

(2.3.13) and φζ the flow on S. Now, note for ∆ĉ = ω̂ = 0, all trajectories on the

sphere S converge to the branch point zb with algebraic decay O(1/ζ). Since the the

linearization at zb is normally hyperbolic, this implies that the invariant singular sphere

S is normally hyperbolic and Fenichel’s results [46, 48] imply that the phase space

R+×S2 is locally smoothly foliated by smooth one-dimensional strong-stable invariant

fibers ΦζFz ⊂ Fφζ(z). More precisely, all leaves are Ck manifolds, with Ck-dependence

on base point and parameters, for any finite fixed k <∞.

As a consequence, there exists a smooth change of coordinates that straightens out the
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local stable foliation, so that (2.3.13) can be written as

z′ = −(z + 1)2 + ∆ĉ z + iω̂

R′ = R · g(R, z; ω̂,∆ĉ ), (2.3.18)

where g(0,−1; 0, 0) = −1.

To prove existence of the desired connection, we need to choose ∆ĉ > 0 small and

find ω̂∗ and ζ∗ such that there exists a point (R, z) = (δ, z−) ∈ W cu
− (Ap) with δ > 0

sufficiently small so that

Φ−ζ∗
(
W s

+(0)
)
∩W cu

− (Ap) 3 (δ, z−).

Before we prove the existence of such an intersection, we investigate the structure of

W s
+(0). It is important to remember that W s

+(0) is not a stable or unstable manifold

in the ζ < 0 dynamics, but just the set of initial conditions for the ζ < 0 flow that

will give rise to decaying solutions when integrated forward in the ζ > 0 dynamics. In

the blowup coordinates (2.3.13), W s
+(0) is one dimensional and can be written locally

as a graph over the fiber Fz+ in the ζ < 0 dynamics. More precisely, there exists an

h : R+ → C, with h(0) = 0 so that locally

W s
+(0) = {(R, z+ + h(R)) |R ≥ 0}.

The normal hyperbolicity of S then allows us to study how this set evolves under the

flow. Heuristically, when flowed in backwards time, a piece W s
+(0)loc of the ζ > 0

local stable manifold will be stretched out in the normal direction while expanding

comparatively little in the S directions. Since W s
+(0) is a graph over the strong stable

fiber Fz+ , the considerations above imply that Φ−ζ(W s
+(0)) will remain a graph over

the strong-stable fiber with base point φζ(z+). This graph will converge to the strong

stable fibration as ζ increases. This strong inclination result is commonly referred to as

a λ-Lemma and is stated precisely in the following lemma; see also Figure 2.3.3 for an

illustration.

Lemma 2.3.4 (λ-Lemma). The image of the local ζ > 0-stable manifold W s
+(0)loc under
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the flow Φ−ζ , with ζ > 0, large, is exponentially close to the strong stable fiber Fφ−ζ(,z+).

More precisely, there exist constants κ,C > 0 and a function h̃(·, z+) : R+ → C such

that

Φ−ζ(W
s
+(0)loc) = {

(
R,φ−ζ(z+) + h̃(R,−ζ, z+)

)
|R ≥ 0}

where ‖h̃(R,−ζ, z+)‖Ck ≤ Ce−κζ for any k <∞, h̃(0, ζ, z) = 0, and ∂zh̃ 6= 0.

Proof. This lemma is a consequence of the existence proof for invariant foliations

[48]: one shows that trial foliations over the linear strong stable foliation converge to

the invariant foliation when transported with the backward flow.

z�

��⇣⇤(z+)

(z�, �)

z+

��⇣⇤(W
s
+(0))

S

W cu
� (Ap)

h

h̃

!̂

Mz�

W s
+(0)

Fz� F�⇣(z�)

Figure 3.3: Depiction of foliations and heteroclinic connection. The strong-stable foliation of the trajectory
�⇣(z�) is denoted as Mz� (blue). Here h̃ = h̃(�,�⇣⇤, z+) and h = h̃(�, 0, z+). The stable manifold W s

+(0)
(dark red) is stretched in the normal direction under the backwards flow, approaching Mz� . We vary !̂ and
⇣ so that ��⇠⇤(W

s
+(0)) \ Fz� = (z�, �).

Connecting via the singular flow. With these results in hand,we wish to establish a connection

by finding a time-of-flight ⇣⇤ and frequency !̂⇤ such that

z� = ��⇣⇤(z+; !̂⇤) + h̃(�,�⇣⇤, z+). (3.19)

Recall that z+ is the base point of W s
+(0) and z� is the base point of the strong stable fiber that

contains W cu
� (Ap) with R = �.

We rewrite (3.19) as

��⇣(z+; !̂⇤) = z� � h̃(�,�⇣⇤, z+), (3.20)

and change variables in parameter space,

µ(�ĉ , !̂) = ��ĉ + i!̂ +
(�ĉ )2

4
:= M2ei✓, M, ✓ 2 R.

Next, we shift z = ẑ + �ĉ
2 � 1 in (3.18) and obtain

ẑ0 = �ẑ2 + µ(!̂,�ĉ ). (3.21)

In these variables, W s
+(0) intersects the blowup sphere at the point

ẑ+ = ẑ+(�ĉ, !̂) = z+ � �ĉ

2
+ 1 = �

r
K ��ĉ +

(�ĉ )2

4
� i!̂ = �

p
K + M2ei✓,

19

Figure 2.3.3: Depiction of foliations and heteroclinic connection. The strong-stable
foliation of the trajectory φζ(z−) is denoted as Mz− (blue). Here h̃ = h̃(δ,−ζ∗, z+)

and h = h̃(δ, 0, z+). The stable manifold W s
+(0) (dark red) is stretched in the nor-

mal direction under the backwards flow, approaching Mz− . We vary ω̂ and ζ so that
Φ−ξ∗(W

s
+(0)) ∩ Fz− = (z−, δ).
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Connecting via the singular flow. With these results in hand,we wish to establish

a connection by finding a time-of-flight ζ∗ and frequency ω̂∗ such that

z− = φ−ζ∗(z+; ω̂∗) + h̃(δ,−ζ∗, z+). (2.3.19)

Recall that z+ is the base point of W s
+(0) and z− is the base point of the strong stable

fiber that contains W cu
− (Ap) with R = δ.

We rewrite (2.3.19) as

φ−ζ(z+; ω̂∗) = z− − h̃(δ,−ζ∗, z+), (2.3.20)

and change variables in parameter space,

µ(∆ĉ , ω̂) = −∆ĉ + iω̂ +
(∆ĉ )2

4
:= M2eiθ, M, θ ∈ R.

Next, we shift z = ẑ + ∆ĉ
2 − 1 in (2.3.18) and obtain

ẑ′ = −ẑ2 + µ(ω̂,∆ĉ ). (2.3.21)

In these variables, W s
+(0) intersects the blowup sphere at the point

ẑ+ = ẑ+(∆ĉ, ω̂) = z+ −
∆ĉ

2
+ 1 = −

√
K −∆ĉ +

(∆ĉ )2

4
− iω̂ = −

√
K +M2eiθ,

where K = 2 + 2
m2 (1 + iα), m was defined in (2.3.1), and z+ was defined in (2.3.15).

We note that ẑ+(0, 0) = 4 + 2iα is non-zero. Also, our assumptions give that ẑ− is

non-zero, but needs to be evaluated numerically. This allows us to define,

∆Z =

(
1

ẑ+
− 1

ẑ−

) ∣∣∣∣∣
M=0

, ∆Zr = Re ∆Z, ∆Zi = Im ∆Z. (2.3.22)

Note that M = 0 corresponds to ∆ĉ = ω̂ = 0.
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Next, we scale ẑ = Mw, ζ̂ = Mζ and use the Möbius transformation

ρ =
w + η

w − η , η = ei θ
2

to shift equilibria to the north and south pole of the sphere, respectively.

Last, we set r = log(ρ) and find the constant vector field

ṙ = (log(ρ))ζ̂ = 2η. (2.3.23)

In our new coordinates, the points ẑ+ and ẑ− − h̃(δ, ẑ−,−ζ̂/M), which we wish to

connect, have the representations

r+ = log

(
1 + Mη

ẑ+

1− Mη
ẑ+

)
+ i(2πj+), r− = log


1 + Mη−h̃

ẑ−

1− Mη−h̃
ẑ−


+ i(2πj−),

where h̃ = h̃(δ, ẑ+,−ζ̂/M), and j± ∈ Z take into account that the complex logarithm is

multi-valued. By varying µ (i.e. ω̂ and ∆ĉ) we wish to find a solution r(ζ̂ ) connecting

these points in finite time ζ̂ = T̂ .

As we are expanding from ∆ĉ = ω = 0, we have that M is small. Thus we find to first

order

r+ = i(2πj+) +
2Mη

ẑ+
+O(M3), r− = i(2πj−) + 2

Mη − h̃
ẑ−

+O(M3).

Now integrating (2.3.23), setting r(0) = r+ and r(−ζ̂) = r−, we obtain

−2η ζ̂ = r− − r+ = −i(2π∆j)− 2ηM ∆Z − 2h̃

ẑ−
+O(M3), (2.3.24)

where ∆j = j+ − j− and we have discarded all but the leading order term, in M , of
1
ẑ+
− 1

ẑ−
. We then obtain the equation

ζ̂ = i∆jπe−i
θ
2 +M ·∆Z +

2h̃

ηẑ−
+O(M3). (2.3.25)
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By Lemma 2.3.4, we have for ζ̂ > 0, h̃ = h̃(δ,−ζ̂/M, ẑ+) = O(Mk) for all k ≥ 1. Thus,

we can smoothly extend h̃ at M = 0 to h̃ = 0.

Now setting θ̂ = −π + θ we obtain

ζ̂ = −∆jπe−
θ̂
2 +M∆Z +O(M3) (2.3.26)

This equation has the solution

M = 0, θ̂ = 0, ζ̂ = −∆j π.

We choose ∆j < 0 so that ζ̂ > 0. We wish to find a solution near this point for M

small. Considering the imaginary part of (2.3.26)

0 = ∆jπ sin(θ̂/2) +M ∆Zi +O(M3)

and expanding in θ̂, we obtain

θ̂ = −2
M ∆Zi

π∆j
+O(M3).

Inserting this into the real part of (2.3.26) and solving for ζ̂, we obtain

ζ̂ = −π∆j +M ∆Zr +O(M2).

Now using the polar change of coordinates −∆ĉ + (∆ĉ )2/4 + iω̂ = M2eiθ, the Implicit

Function Theorem allows us to obtain the expansion

−∆ĉ +
(∆ĉ )2

4
+ iω̂ = −M2 ·

(
1 + i

2∆Zi

π∆j
M +O(M2)

)
.

Noticing that M =
√

∆ĉ +O(∆ĉ ), we solve the imaginary part of this equation for ω̂

and expand

ω̂(∆ĉ ) = −2∆Zi

π∆j
(∆ĉ )3/2 +O((∆ĉ )2).

We summarize the above discussion in the following proposition.
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Proposition 2.3.5. Set ∆Zi := Im( 1
ẑ+
− 1
ẑ−

) where z = ẑ+ ∆ĉ
2 −1 and choose ∆j ∈ Z−,

fixed. Then for ∆ĉ > 0 small, there exists ζ∗ and ω̂∗ for which (2.3.19) is satisfied.

Furthermore, we have the following expansions:

ω̂∗(∆ĉ ) = −2∆Zi

π∆j
(∆ĉ )3/2 +O((∆ĉ )2), ζ∗ = −π(∆j)(∆ĉ )−1/2 +∆Zr +O((∆ĉ )1/2).

(2.3.27)

Remark 2.3.6. We emphasize that the behavior of W s
+(0) and W cu

− (Ap) near the origin

determine the coefficient ∆Zi of the leading order term in the expansion (2.3.27). As

pointed out in the introduction, ∆Zi measures a distance between the leading edge of

the front and the stable subspace in projective coordinates. This can be made explicit by

considering the Poincaré-inverted coordinates zinv = 1/(z+1), in which ∆Z = z+
inv−z−inv.

Since z−inv, the base point of the stable fiber corresponding to W cu
− , is only defined up to

flow translates, we can vary Re(z−inv) arbitrarily by shifting the free front. Therefore, the

imaginary part ∆Zi merely measures the distance between z+
inv and the homoclinic orbit

in the base of the fibers corresponding to W cu
− .

Also notice that, since trajectories approaching S have the asymptotic form (2.3.16), we

have that

Im{ 1

z−
} = Im{ζ + B∞/A∞} = Im{B∞/A∞}.

2.3.5 Proof of Theorem 2.1.1

Proposition 2.3.5 gives the existence of trigger fronts: Given (ω̂∗, ζ̂∗) there are corre-

sponding ω∗ and ξ∗ such that W s
+(0) and W cu

− (Ap) intersect non-trivially. By taking

points in this intersection as an initial condition at ξ = 0, then sending ξ → −∞,

the trajectory (which is in W cu
− (Ap)) must converge to Ap . In the same way, sending

ξ → +∞ the trajectory (which is in W s
+(0)) must converge to A ≡ 0.

In order to prove our main result, it remains to track the scalings from Section 2.3.1. We

therefore reintroduce hats, writing for instance ω̂ for the frequency in scaled coordinates

as given in Proposition 2.3.5, and ω for the parameter in CGL (2.1.2); see (2.3.1) and

(2.3.2).

We use (2.3.2) to write the leading order expansion from the above proposition in terms
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of the unscaled variables ∆c := (clin−c) and ∆ω := (ωlin−ω). Near the linear spreading

parameters clin, ωlin the nonlinear transformation Υ : (c, ω) 7→ (ĉ, ω̂) is, at leading order,

equal to its linear approximation,

(ĉ, ω̂) = (2, 0) +DΥ
∣∣∣
clin,ωlin

(∆c,∆ω) +O((∆ĉ)2, (ω̂)2).

Then by the Inverse Function Theorem the expansions in (2.3.27) yield

∆ω = − (∂c ωabs(α, clin)) ∆c+
2∆Zi

π∆j
(1 + α2)3/4(∆c)3/2 +O((∆c)2)

from which we obtain the expansion as stated in the main theorem by setting ∆j = −1:

ω = ωabs(α, c)−
2∆Zi(1 + α2)3/4

π∆j
(clin − c)3/2 +O((clin − c)2).

In the same manner we can also obtain the expansions for the unscaled ξ∗, the distance

between the trigger and the invasion front, and ktf the selected wavenumber as given in

Theorem 2.1.1.

2.4 Comparison with direct simulations and heteroclinic

continuation

We now compare our leading order prediction with both direct simulation of (2.1.2) and

computation of trigger fronts via continuation. For the direct simulations, we used a

first order spectral solver, simulating in a moving frame of speed c. The calculations

were performed on a large domain (L = 2400) to avoid wavenumber/wavelength mea-

surement error. Since wavelengths converge slowly as expected [156], simulations were

run for sufficiently long times (t ∼ 5000). To corroborate these simulations, we used the

continuation software auto07p to find the heteroclinic orbit directly as solution to a

truncated boundary value problem, and then continue in c with ω as a free parameter.

As seen in Figure 2.4.1, both methods are in reasonably good agreement.

We also give comparisons between auto07p computations, the prediction based on

the absolute spectrum ω ∼ ωabs, and the O((∆c)3/2) correction from Theorem 2.1.1 in
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Figure 2.4.1: Left: Comparison of wavenumbers from direct simulations with auto07p
calculations for a range of c values for fixed α = −0.1, γ = −0.2. Discrepancy between
the two calculations is less than 0.1% for dt = 0.01 and dx = 0.0767. Right: Comparison
of different predictions for the selected wavenumber with AUTO07p calculations. The
speed is varied while other parameters are fixed at α = −0.1, γ = −0.2.

Figure 2.4.1. There we also compare with a somewhat naive prediction, assuming that

the frequency ω of the invasion process is constant at leading order. As pointed out in

Figure 2.1.3, this neglects frequency detuning based on wavenumber changes (slope of

absolute spectrum) and speed (shift of absolute spectrum). Finally, Figure 2.4.2 shows

how our predictions fare when c is fixed and γ is varied, as well as a log-log plot of

ωtf − ωabs, confirming the exponent 3/2 and the coefficient ∆Zi.

2.5 Discussion and Future Work

In this work, we have proved the existence of a coherent triggered front in the CGL

equation for trigger speeds close to, but less than, the linear invasion speed, under mild

generic assumptions on free invasion fronts. Furthermore, we have shown how the trig-

ger selects the periodic wave-train created in the wake and how its speed affects the

wavenumber. Our main tools were a sequence of coordinate changes in a neighbor-

hood of the origin, based on geometric desingularization and invariant foliations. As a

byproduct, we establish expansions for the frequency of the trigger front with universal

leading order coefficient determined by the absolute spectrum. At higher order, coeffi-

cients in the expansion depend on a projective distance between the leading edge of the
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Figure 2.4.2: Left: Comparison of different predictions for the selected wavenumber
with AUTO07p calculations for a range of γ with fixed c = 1.8 and α = −0.1. Right:
Logarithmic plot of the difference ωabs(c) − ωtf(c) using expansion from the Theorem
2.1.1 above, and data from AUTO07p continuation.

front and a stable manifold ahead of the trigger.

While some of the tools used in this chapter may not immediately apply in other situa-

tions (such as those mentioned in the introduction), we expect that one could adapt the

main concepts from Section 2.2. Namely, for a triggered front in such systems, selected

wave numbers should be determined by the intersection of the absolute spectrum with

the imaginary axis at leading order. In many of these systems, explicit expressions for

the spectra are not known but simple algebraic continuation usually allows one to easily

obtain accurate predictions.

The present paper addresses existence and qualitative properties of trigger fronts in the

simplest possible (yet interesting) context, leaving many open questions.

First, it would be interesting to study stability of the trigger fronts. Stability is deter-

mined, at first approximation, by spectral properties of the linearization at such a front.

Essential and absolute stability of this linearized operator are determined by essential

and absolute spectra at ξ = ±∞. Since we have stability at ξ = +∞, the only destabi-

lizing influence in the far field comes from instabilities of wave trains in the wake. For

c ∼ clin these instabilities are known to be convective [108, 157] or absent for α, γ not

too large. In addition, it would be interesting to study and possibly exclude instabili-

ties via the extended point spectrum. Based on the geometric construction of coherent
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trigger fronts and direct simulations, we do not anticipate such instabilities. We do

suspect however that fronts with ∆j < −1 (2.1.9) would pick up unstable eigenvalues

near A = 0 and hence be unstable. A larger ∆j will lead to fronts with larger distance

ξ∗ to the trigger location ξ = 0 (2.3.27) and several small oscillations in this gap. One

then expects this unstable plateau to generate unstable eigenvalues in the linearization;

see [127] for a similar scenario. From a different perspective, fronts with higher |∆j|
arise through bifurcations from an already unstable primary state as explained in the

discussion of the role of absolute spectra in Section 2.2, when considering large, bounded

domains. As a consequence, one expects the bifurcated states to be unstable as well.
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Figure 2.5.1: We fix α = −0.1, γ = −0.2. Left: Comparison of AUTO07p calculation
with the absolute spectrum prediction and the O((∆c)3/2) correction for speeds ranging
from c = 0 to c = clin. Right: Front profiles calculated in the blow-up coordinates using
AUTO07p for various speeds. Here the left boundary condition is given by the periodic
orbit (z,R) = (iktf , 1− k2

tf) and the right is given by (z+, 0).

One can also envision many generalizations of our result. Using ill-posed spatial dy-

namics on time-periodic functions as in [63, 132], one can study similar problems in

pattern-forming systems without gauge symmetry. In a different direction, we expect

that triggers χ with χ′ sufficiently localized would be immediately amenable to our

analysis. In particular, monotone triggers with χ′ sufficiently localized should yield the

same type of expansion, albeit with different, non-explicit, projective distances ∆Z. On

the other hand, one can envision how non-monotone triggers with long plateaus where

χ > χ−, would generate triggered fronts even for speeds c > clin. In terms of our linear
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heuristics, the linearized operator at the origin, (1 + iα)∂ξξ + c∂ξ +χ− iω now possesses

unstable extended point spectrum [121] in addition to the unstable absolute spectrum.

In a different direction, slowly varying triggers |χ′| � 1 or triggers that do not simply

modify the linear driving coefficient pose a variety of interesting challenges.

Another direction is suggested by Figures 2.4.2 and 2.5.1. For speeds further away from

the linear spreading speed, our predictions deviate significantly from the actual selected

wavenumber and it is not clear in which context one might be able to establish analytic

predictions. Going all the way to trigger speed c = 0 could however serve as another

point in parameter space where analytic expansions can be derived. In fact, thinking

of the trigger as an effective Dirichlet-type boundary condition, one expects standing

triggers similar to Nozaki-Bekki holes [133]. Such holes are explicitly known coherent

structures in CGL that emit wave trains. Selected wavenumbers for c close to zero

would be corrections to the wave numbers selected by these coherent structures.



Chapter 3

Pattern formation in the wake of

pushed trigger fronts

The contents of this chapter originally appeared in [66]; c©IOP Publishing & London

Mathematical Society. Reproduced with permission. All rights reserved.

3.1 Introduction

In this chapter, trigger fronts which are perturbed from pushed free fronts are considered.

As discussed in Section 1.3.2, such fronts behave in a strikingly different manner than

in the pulled case, exhibiting non-monotonic wavenumber selection, multi-stability, and

hysteresis. In contrast to the previous chapter, where we study a prototypical example,

here we construct an abstract framework and necessary conditions under which a pushed

trigger front exists. Our main hypotheses consist of the existence of a pattern forming

pushed free front, uff and a robust preparation front, upr, which is created by some

spatial trigger. In addition we require certain genericity and inclination conditions on

these two fronts which give an appropriate setting when they are viewed in a spatial

dynamics framework; see Section 1.3.2 above for a sketch and Section 3.3 for precise

statements. We then apply this theory to two examples, the prototypical cubic-quintic

70
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CGL equation

At = (1 + iα)Axx + χ(x− ct)A+ (ρ+ iγ)A|A|2 − (1 + iβ)A|A|4, x, t ∈ R, A ∈ C,
(3.1.1)

where χ(ξ) = − tanh(εξ) with 0 < ε << 1 and ξ := x− ct. This parameter-ramp trigger

travels through the domain with speed c making the homogeneous state A∗ ≡ 0, which

is a preparation front, being stable for ξ := x− ct > 0, and unstable for ξ < 0. It is in

the latter domain where wave-trains can form.

Heuristically, one can think of the trigger χ as an effective boundary condition for the

system in ξ < 0 when posed in a co-moving frame of speed c. Stationary solutions in this

coordinate frame are usually referred to as nonlinear global modes [22]. They mediate

the transition from convective to absolute instability in a semi-infinite domain. From

this perspective, our problem is somewhat equivalent to problems studied in [26, 23, 115],

where oscilliatory solutions in open shear flows was studied. Moreover, our results can

be understood as a rephrasing and improvement of expansions in [27]. In particular,

we emphasize universality in expansions for wave-number and frequency in terms of

only properties of the corresponding free front. We also note that a slightly different

but related approach was used in [39] to study the effect of defects on one-dimensional

localized structures.

The rest of the chapter is structured as follows. In Section 3.2 we give examples of the

relevant phenomena in specific equations. In Section 3.3 we formulate our abstract hy-

potheses and state our main result. In Section 3.4 we then give the heteroclinic matching

proof for the existence of pushed trigger fronts and obtain leading order expansions for

the bifurcation curve in terms of the spectral information of the system. We conclude

our work in Section 3.5 by discussing future areas of work and how our results could be

improved and extended.
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3.2 Examples and numerical results

To motivate our results, we briefly describe examples in the cubic-quintic complex

Ginzburg-Landau and Cahn-Hilliard equations which illustrate the phenomena men-

tioned in the introduction.

3.2.1 Complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation has been used as a modulation equation to

study the onset of coherent structures in many physical systems; see for example [102,

3, 141]. As mentioned above, pattern-forming free fronts have been extensively studied

in this setting. In particular, it has been shown in [157] that the cubic-quintic variant

discussed above

ũt = (1 + iα)ũxx + ũ+ (ρ+ iγ)ũ|ũ|2 − (1 + iβ)ũ|ũ|4, x, t ∈ R, ũ ∈ C, (3.2.1)

possesses pushed free invasion front solutions for a range of parameters ρ, α, γ, β. That

is, there exist front solutions which asymptotically approach a wave train up(x, t) =

rei(kpx−ωpt) as x → −∞, and approach the unstable homogeneous equilibrium u∗ ≡ 0

as x→∞ with an interface which invades the unstable state u∗ with a speed, cp, faster

than the linearized dynamics predict. The parameters of the asymptotic wave train,

r, k, ω ∈ R, can be found to satisfy the nonlinear dispersion relation

1 = k2 − ρr2 + r4,

ω − ck = αk2 − γr2 + βr4. (3.2.2)

By shifting into a co-moving frame ξ = x − cpt and detuning by u = eiωptũ, such a

traveling front takes the form of a heteroclinic orbit in the finite-dimensional system

0 = (1 + iα)uξξ + cpuξ + (1− iω)u+ (ρ+ iγ)u|u|2 − (1 + iβ)u|u|4. (3.2.3)

In this setting, we can then study how a spatially progressive triggering mechanism, χε,
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affects this pattern-forming front using the following system

0 = (1 + iα)uξξ + cuξ + (χε(ξ)− iω)u+ (ρ+ iγ)u|u|2 − (1 + iβ)u|u|4, (3.2.4)

ε
d

dξ
χε = χ2

ε − 1, χε(0) = 0, (3.2.5)

where 0 < ε << 1 and χε takes the role of the trigger, satisfying χε(ξ) = − tanh(εξ).

The initial condition of χε fixes the location of the trigger interface. When viewed

in the stationary coordinate frame, the inhomogeneity χε travels through the spatial

domain, altering the PDE-stability of u∗. For ξ > 0 the state is stable, while for ξ < 0

it is unstable. In the language we defined above, the trivial solution upr = u∗ is a

preparation front in the triggered system (3.2.4). Thus, if upr is locally perturbed, an

oscillatory instability will develop, leading to the formation of a patterned state in the

domain ξ < 0, or in the wake of χε.

Numerical simulations show that such a mechanism creates pattern-forming fronts which

behave in a strikingly different manner than in the pulled case. The upper left of Figure

3.2.1 depicts the non-monotonic bifurcation curve (gold line) for pushed trigger fronts

near the free front parameters (cp, kp); compare with the bifurcation curve in [64, §4]

briefly discussed in the above section. As can be seen in the upper right plot of Figure

3.2.1, the front exhibits snaking behavior as the trigger speed c is varied near cp. This

figure plots the distance of the front to the trigger interface as the trigger speed non-

monotonically approaches cp; see also solution profiles (i) - (iii) plotted in the bottom

row for various points along the bifurcation curve. Furthermore, observe that trigger

fronts lock and persist for speeds larger than the free invasion speed cp (see for example

profile (iii)), in contrast to the pulled case. In the top row, blue and orange dotted lines

show the results of direct simulations where the trigger speed was varied adiabatically

and evidence how the wave-number and front distance varies hysteretically as the speed

is decreased (blue) and then increased (orange).

These results were obtained using both numerical continuation and direct simulation of

(3.2.4). The yellow curves were found via numerical continuation in AUTO07P. In order

to avoid periodic boundary conditions, these computations were done in the blow-up

coordinates derived in [63], where periodic orbits in the traveling wave equation collapse
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Figure 3.2.1: Numerical bifurcation diagrams comparing computations of triggered
qcGL equation (3.2.4) from AUTO07P (yellow) and direct simulation (blue x’s and
orange dots) with parameter values α = 0.3, γ = −0.2, β = 0.2, ρ = 4 so that
(kp, cp) ≈ (2.66, 1.19). Bottom three figures depict triggered pushed front profiles for
a range of parameter values: (i): (c, k) = (2.656, 1.1894), (ii): (c, k) = (2.646, 1.0678),
(iii) (c, k) = (2.728, 1.1181), zoomed in near the trigger χε which is overlaid in orange.

to equilibrium points. The dotted lines (blue and orange) come from measurements of

direct simulations. In these simulations the homogeneous state u∗ was locally perturbed

far away from the trigger interface, resulting in a patterned state which locked some

distance away from the interface (blue curve). The trigger speed c was then adiabat-

ically decreased and, when c reached the turning point of the bifurcation curve found

using AUTO07P, the front detached and re-locked to a solution branch with front in-

terface closer to the trigger and a different wave-number. The trigger speed c was then

adiabatically increased, continuing solutions along this different branch (orange curve).

The direct simulations used a 2nd-order exponential time differencing scheme (see [28])

with dt = 0.01, a spectral spatial discretization with 210 Fourier modes, and were run

in the co-moving frame with speed c. Note the trigger was made negative near the left
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boundary at ξ = −70 (not pictured) to accommodate for the periodic boundary condi-

tions. This was not found to affect the results as the nucleated patterns were unaffected

by this interface, having negative group velocity.

3.2.2 Cahn-Hilliard equation

We have also have investigated these types of fronts in a modified Cahn-Hilliard equation

ut = −(uxx + f(u))xx, f(u) := u+ γu3 − u5, x, t, u ∈ R. (3.2.6)

Because the linearization about the homogeneous unstable state u∗ ≡ 0 is the same as

the standard Cahn-Hilliard equation with f(u) = u − u3, (3.2.6) will have the same

linear spreading speed [156],

clin =
2

3
√

6

(
2 +
√

7
)√√

7− 1.

Direct numerical simulations using both spectral and finite-difference methods have

suggested that, for γ > 0 sufficiently large, this equation possesses oscillatory pushed

invasion fronts which freely invade the homogenous state u∗. Figure 3.2.2 depicts space-

time diagrams of two free invasion fronts in (3.2.6), both invading u∗ ≡ 0, one with

γ < 0 and one with γ > 0. In the former case the front approximately travels with the

linear speed clin, while in the latter case the front travels with a faster speed, cp, and

possesses steeper decay at the leading edge. To the author’s knowledge the rigorous

existence for such pushed fronts in a Cahn-Hilliard system of this form is still an open

and interesting problem.

The Cahn-Hilliard equation possesses periodic solutions u(kx; k,m), where m quan-

tifies an average mass in the system, which are weakly unstable against coarsening

processes [70, 69]. Instabilities result in the creation of such periodic patterns as tran-

sients. In particular, there exist invasion fronts that create such periodic patterns.

Note however, that the periodic patterns are time periodic in a co-moving frame,

u(kx, k,m) = u(k(ξ + ct); k,m), with period 2π/kc, so that the invasion front will be

time periodic. In the complex Ginzburg-Landau equation, this time periodicity could

be eliminated by exploiting the gauge symmetry (see above), but for Cahn-Hilliard one
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Figure 3.2.2: Free invasion fronts in (3.2.6) for γ = 1.5 (left) and γ = −1.5 (right).
The invasion speed on the right is the linear speed predicted by the linearization about
u∗ ≡ 0 while the invasion speed on the left is much faster and the corresponding front
has a sharp leading edge, indicating a nonlinear front. The dashed red line overlaid on
the left indicates the path of the pulled front on the right. Here (3.2.6) was simulated
using a semi-implicit time stepping method with second order finite differences in space
(dx = 0.2) and first order in time (dt = 0.01).

must study the modulated traveling wave problem; see [63, §4.2]. That is, pushed free

fronts arise in a co-moving frame of speed cp as time-periodic solutions with some tem-

poral frequency ωp. In other words they are time time-periodic solutions of the equation

ωpuτ = −(uξξ + f(u))ξξ + cpuξ, ξ ∈ R, τ ∈ T := R/2πZ. (3.2.7)

We can then study pushed trigger fronts by introducing a uniformly-translating spatial

trigger as in qcGL above

ωuτ = −(uξξ + f̃(ξ, u))ξξ +cuξ, f̃(ξ, u) := χ(ξ)u+γu3−u5, ε
d

dξ
χε = χ2

ε −1 (3.2.8)

with ε > 0 small, so that χε is once again a hyperbolic tangent and we fix the trigger

interface by setting χε(0) = 0. As in the qcGL case above, the preparation front is

trivial, upr ≡ 0, and is stable for ξ > 0, and is unstable for ξ < 0. We note that for

Cahn-Hilliard a different type of triggered system can also be studied; see (3.5.2) below.

There the spatial inhomogeneity is not a linear coefficient but a traveling source term,

which leaves behind a preparation front connecting two homogeneous states.
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Figure 3.2.3: (upper left): Bifurcation curve for triggered pushed fronts in (3.2.8) with
temporal frequency ω and trigger speed c with γ = 1.5 for which the free pushed pa-
rameters are (cp, ωp) = (2.0324, 1.5115). (upper right): Plot of the L2 norm of solutions
against the trigger speed c. Insets are zoomed in near the value c = cp (lower): Space-
time diagrams of solutions for a selection of points (i): (c, ω) = (2.001, 1.471), (ii):
(c, ω) = (2.0329, 1.5113), (iii): (c, ω) = (2.0325, 1.5115), (iv): (c, ω) = (2.0324, 1.5115)
along the bifurcation curve. First order forward differences for ∂t and centered second-
order differences for ∂x were used, with step sizes dt = 0.2, dx = 0.5 respectively, and
N = 200. Note also the trigger interface is located at ξ = 175.

Using numerical arc-length continuation we found that, in a narrow parameter regime,

pushed trigger fronts in (3.2.8) possess a spiraling bifurcation curve and thus exhibit

locking and multi-stability phenomena, as in qcGL; see Figure 3.2.3. Here we used

the temporal frequency ω in our bifurcation diagrams and note that the wave-number

k can be determined by the relation c = ω
k since the spatial pattern is stationary in

a stationary frame. We also mention that this locking behavior was corroborated in
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semi-implicit time-stepping simulations. In these simulations, if the homogeneous state

was perturbed near the trigger, then the resulting patterned state would lock close to

the trigger (i.e. farther out on the spiral). If the homogeneous state was perturbed far

away from the trigger then the pattern would lock far away from the trigger (i.e. closer

to (ωp, cp) on the spiral).

Our numerical continuation method used finite-differences to discretize both temporal

and spatial derivatives and the MATLAB Newton solver “fsolve” to continue solutions

on the domain (ξ, τ) ∈ [0, N ]×[0, 2π] in c and ω for some fixed N large. To accommodate

for the second parameter ω we appended the phase condition

∫ 2π

0
〈∂τu(·, s), u(·, s)− uold(·, s)〉L2([0,L]) ds = 1,

where uold is the solution found at the previous continuation step. This eliminates

the non-uniqueness due to the translation symmetry in time and allows the modulated

traveling wave equation 3.2.8 to be solved uniquely. The initial guess for the continuation

algorithm was one full time-period of a solution obtained from an semi-implicit time-

stepping method, with the same spatial discretizations as above. More details of our

continuation method can be found in the caption of Figure 3.2.3, and more details on

how our theory applies to this equation will be provided in Section 3.3 and Section 3.5.1.

3.3 Abstract formulation

Our theoretical approach is motivated by the spatial dynamics method first formulated

by Kirchgässner and subsequently developed by many others over the past few decades

[49, 83, 88, 130]. By viewing a pattern-forming system as a continuous-time dynamical

system, where the spatial co-moving frame variable ξ is viewed as the “time-like” vari-

able, the existence of a trigger front can be obtained as a heteroclinic bifurcation from

a nearby pushed free front.
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In particular, we shall study a system of the form

d

dξ
u0 = f0(u0;µ) (3.3.1)

d

dξ
u1 = Au1 + f1(u0, u1;µ)u1, ξ ∈ R, µ ∈ R2, (3.3.2)

where µ shall consist of system parameters, u0 ∈ X0 := Rn, and u1 ∈ X1, a real

Hilbert space. Equation (3.3.1) governs the triggering mechanism as in (3.2.5), while

(3.3.2) governs the pattern forming system as in (3.2.4). Here, we chose to provide an

ODE for the triggering mechanism for convenience, thus casting the system in a more

conventional context for heteroclinic and homoclinic bifurcation theory. Let A : Y1 ⊂
X1 → X1 be a closed linear operator where Y1 := D(A) is also a real Hilbert space which

is dense and compactly embedded in X1. Furthermore we shall assume that there exists

a projection P such that As := AP and −Au := −(1− P )A are sectorial operators.

Next we assume that the function f0 satisfies

f0(0, µ) = f0(ũ∗0(µ), µ) = 0,

where ũ∗0(µ) ∈ X0 varies smoothly in µ in an open neighborhood of the origin in R2.

Furthermore we assume

f0 ∈ Ck(X0 × R2, X0), f1 ∈ Ck(X0 ×X1 × R2, X1),

for some k ≥ 1. Defining X := X0 ×X1, it is readily seen that U∗ := (0, 0), Ũ∗(µ) :=

(ũ∗0(µ), 0) are equilibria of the system

d

dξ
U = F (U ;µ), F (U ;µ) =

(
f0(u0;µ)

Au1 + f1(U ;µ)u1

)
, U =

(
u0

u1

)
, (3.3.3)

and

DUF (Ũ∗(µ);µ) =

(
Du0f0(ũ∗0, µ) 0

0 A+ f1(ũ∗0, 0, µ)

)
,

DUF (U∗;µ) =

(
Du0f0(0, µ) 0

0 A+ f1(0, 0, µ)

)
.
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In this formulation, the preparation front will be a heteroclinic orbit contained in the

{u1 = 0} subspace which connects U∗ to Ũ∗ as ξ increases, while the pushed free front will

be a heteroclinic orbit contained in the {u0 = 0} subspace approaching U∗ as ξ →∞; see

Hypothesis 3.3.7. In our formulation, we have fixed U∗ = (0, 0) independent of µ, as it

is where we perform most of our analysis. Also, we have chosen µ to be two-dimensional

to match the examples above, and to accommodate the co-dimension assumptions that

we make in Hypothesis 3.3.12 below. In spatial dynamics terms the preparation front

will be a transverse heteroclinic and the pushed free front will be co-dimension two, thus

requiring a two-dimensional parameter to complete our heteroclinic gluing and matching

argument in Section 3.4. In the examples of Section 3.2, µ corresponds to the bifurcation

parameters ω−ωp and c−cp. Next, motivated by the time-translation symmetry which

occurs in a typical spatial dynamics formulation of a modulated traveling wave problem

(see for example [125, §3.1], [129, §5], or the Cahn-Hilliard example below), we assume

the following:

Hypothesis 3.3.1. Let T1 : S1 ×X → X be a strongly continuous group action of the

circle, S1, on X such that X0×{0} ⊂ Fix(T1), and A and f1 are both equivariant under

this action.

Furthermore, we remark that this action arises as a gauge symmetry in qcGL. Such a

symmetry arises from averaging out time when deriving cGL as a modulation equation

for oscilliatory instabilities in a system with time-translation symmetry. Finally, we

assume the existence of a smooth family of periodic orbits.

Hypothesis 3.3.2. There exists a family of periodic solutions Up(ξ;µ) of (3.3.3),

smooth in µ, which lie entirely in the subspace {0} × X1 and possess trivial isotropy

with respect to T1 which acts by,

T1(kζ)Up(ξ, µ) = Up(ξ + ζ;µ)

where k = k(µ) defines the period, 2π/k(µ), of Up.

Hypothesis 3.3.2 encodes the existence of periodic patterns. These are typically of the

form u(kξ − ω(k)t; k), where ω(k) is known as a nonlinear dispersion relation [38, 122].
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In spatial dynamics, the time t-dependence is encoded in the function space, u = u(kξ−
·; k) ∈ L2(T), and the time shift symmetry of Hypothesis 3.3.1 acts as u(kξ − · + ζ).

In other words, spatially periodic orbits are relative equilibria with respect to the time

shift symmetry in spatial dynamics in a co-moving frame.

Remark 3.3.3. Note that the u1-components of the equilibria U∗ and Ũ∗ are the same.

We have simplified the setting to reflect those of the examples given above where the

trigger is a inhomogeneous coefficient in the linear term which progressively changes

the stability of a constant preparation front. We remark that our abstract setting could

be readily altered to instead study a system with a source-term trigger, such as (3.5.2),

which moves the system from one spatially homogeneous equilibrium to another.

Next, we show how the two examples of Sections 3.2.1 and 3.2.2 can be put into this

abstract formulation.

CGL spatial dynamics In the setting of the complex Ginzburg-Landau equation

given in (3.2.4)-(3.2.5), a formulation as above can be obtained by converting (3.2.4)

into a first order complex system for u and v := uξ, and then decomposing into equations

for the real and imaginary parts of each u = s+it, v = z+iw so that sξ = z and tξ = w.

Setting u0 = χε and u1 = (s, t, z, w)T , one obtains the system

ε
d

dξ
u0 = u2

0 − 1, (3.3.4)

d

dξ
u1 = A(c, ω)u1 + f1(u0, u1; c, ω)u1 (3.3.5)

with

A(α, c, ω) = − 1

1 + α2

(
0 I2

A1 A2

)
,

f1(u0, u1; c, ω)u1 = Bu1 + c(u1)TCu1 + d(u1)TDu1,

B = − 1

1 + α2

(
0 0

B1 0

)
, C = − 1

1 + α2

(
0 0

C1 0

)
, D =

1

1 + α2

(
0 0

D1 0

)
,
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where all the zeros are 2× 2 zero-matrices, I2 is the 2× 2 identity, and

A1 =

(
1− αω ω + α

−(ω + α) 1− αω

)
, B1 =

(
u0 − 1 α(u0 − 1)

α(1− u0) u0 − 1

)
,

C1 =

(
ρ+ αγ αρ− γ
γ − αρ ρ+ αγ

)
, D1 =

(
1 + αβ α− β
β − α 1 + αβ

)
,

c(u1) = (s2 + t2) · (0, 0, 1, 1)T , d(u1) = (s2 + t2)2 · (0, 0, 1, 1)T .

Here, the phase space is simply X = R5 and the preparation front upr is a heteroclinic

orbit contained in the {u1 = 0} subspace connecting U∗ = (u0, u1) = (1, 0) with Ũ∗ =

(u0, u1) = (−1, 0), while uff is a heteroclinic orbit contained in the {u0 = 1} subspace.

Also the S1-action arises in the original variables (u, v) as the gauge-symmetry,

T1(θ) : (u, v) 7→ eiθ(u, v).

We remark that change of coordinates u0 7→ (u0 − 1)/2 is required to obtain the exact

formulation of (3.3.1) - (3.3.2).

Cahn-Hilliard spatial dynamics In the context of the modified Cahn-Hilliard equa-

tion given in (3.2.8), a formulation as above can be obtained by setting

u0 := χ, u1 = (u, v, θ, w)T := (u, uξ, uξξ + f̃(ξ, u), (uξξ + f̃(ξ, u))ξ)
T

from which one finds

ε
d

dξ
u0 = u2

0 − 1, (3.3.6)

d

dξ
u1 = A(c, ω)u1 + f1(u0, u1; γ)u1, (3.3.7)
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with

A(c, ω) =

(
b1 I3

−ω∂τ b2(c)

)
, f1(u0, u1;µ) = −




0 0 0 0

1− u0 + γu2 − u4 0 0 0

0 0 0 0

0 0 0 0



,

(3.3.8)

where 0 < ε� 1, I3 is the three dimensional identity matrix, b1 = (0, 1, 0)T , and b2(c) =

(c, 0, 0). This is then an evolution equation on the Banach space X = R × H3(T) ×
H2(T)×H1(T)×L2(T), so that each element u1 ∈ H3(T)×H2(T)×H1(T)×L2(T) is

a time-periodic vector and the linear operator A has domain Y = R×H4(T)×H3(T)×
H2(T)×H1(T). Even though the initial-value problem for this equation is ill-posed (this

can be seen using an argument similar to [130, §2.2]), exponential dichotomies can be

used to construct invariant manifolds and find the solutions of interest; see for example

[114, 125, 130]. In this form, upr corresponds to a heteroclinic orbit contained in the

{u1 = 0} subspace, while uff is a heteroclinic orbit contained in the {u0 = 1} subspace.

Here, the S1-action arises as a time-shift symmetry

T1(θ) : (u0, u1(·)) 7→ (u0, u1(· − θ)) .

By setting µ = (c− cp, ω − ωp) and making the change of coordinates u0 7→ (u0 − 1)/2

we obtain a system of the form given in (3.3.3) above.

3.3.1 Spectral hypotheses

Next, we state our spectral hypotheses for the equilibria U∗, Ũ∗, and the relative equilib-

rium Up of (3.3.3). It follows from the compact embedding of Y1 ⊂ X1 that the spectra

of DUF , evaluated at each of these, consists of isolated eigenvalues of finite multiplicity.

We thus assume the following,

Hypothesis 3.3.4. (i) The linearization of F about U∗ at µ = 0 has the following

properties:

• The operator DUF (U∗; 0) has algebraically simple eigenvalues νss = −rss ±
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iσss, νsu = −rsu ± iσsu such that rss > rsu > 0, σss, σsu 6= 0, and all other

ν ∈ Σ (DUF (U∗;µ)) satisfy either Re{ν} > −rsu or Re{ν} < −rss.

• Du0f0(0, 0) has a real unstable eigenvalue νu = ru > 0 which satisfies ru >

2rss − rsu.

(ii) The periodic orbit Up is hyperbolic. That is, the linearization about Up has spec-

trum bounded away from the imaginary axis except for a simple Floquet exponent,

located at 0 ∈ C.

(iii) The spectrum Σ(DUF (Ũ∗); 0) is bounded away from the imaginary axis. That is,

there exists a γ > 0 such that all eigenvalues satisfy |Re{ν}| > γ.

νss

νsu

νsu

νss

σss

σsu

−rsu−rss

−ηss −ηsu

∆ν

∆r

∆σ

Figure 3.3.1: Schematic diagram of notation for leading eigenvalues and relevant quan-
tities.

The first bullet of Hypothesis 3.3.4(i) encodes the spectral splitting, depicted in Figure

3.3.1, corresponding to the leading order decay of the free pushed front. The second

bullet describes the decay of the preparation front in backwards time, requiring that it

decays with a fast rate. This will aid in our analysis and is not restrictive in our results

since we imagine such a front to be controlled by the experimenter or an outside mech-

anism. For instance, for the examples given in Section 3.2, one could obtain such a fast

decay by tuning ε > 0 to be sufficiently small. Hypothesis 3.3.4(ii) readily gives that Up

is not degenerate with respect to perturbations in µ. Such a hypothesis could be checked

using the relationship between the PDE-stability of the wave-train and the hyperbolicity

of its spatial dynamics formulation; see [132, §3.1] for more detail. Hypotheses 3.3.4(iii)

reflects the fact that the state Ũ∗, which corresponds to the asymptotic state ahead of
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the trigger, is typically PDE-stable. We chose the subscripts “ss/su/u” above as these

eigenvalues will give the leading order decay of strong-stable, weak stable-unstable, and

unstable invariant manifolds which are constructed in Proposition 3.3.10 and will be

important in our work.

Remark 3.3.5. These spectral hypotheses would need to be adapted if the PDE from

which the system originated possessed any conserved quantities or additional symmetries.

We briefly discuss how our results would change for these cases (such as in Cahn-

Hilliard) in Section 3.5.

Using the sectoriality of the decomposition of A, we can define spectral projections

P
ss/su
1,∞ to obtain eigenspaces, Ess

1,∞ and Esu
1,∞ of DUF (U∗) which are associated with the

spectral splitting in Hypothesis 3.3.4(i). These spaces have the decomposition

Ess
1,∞ = Ess,l

1,∞ + Ess,s
1,∞, Esu

1,∞ = Esu,l
1,∞ + Esu,u

1,∞ , (3.3.9)

where “l” denotes the 2-dimensional eigenspaces corresponding to the leading eigenval-

ues νss/su and “s/u” denote the eigenspaces corresponding to the spectral sets {ν < −rss}
and {ν > −rsu} respectively. Also, let e

ss/su
1,∞ ∈ Ess/su,l

1,∞ denote the unit-normed complex

eigenvectors of DUF (U∗) associated with the eigenvalues νss/su respectively, and let e∗j,∞
denote the complex eigenvector of the adjoint linearization −DUF (U∗)∗ with eigenvalue

−νsu.

From these spectral hypotheses we have the following result on locally invariant mani-

folds around U∗.

Lemma 3.3.6. According to the spectral splitting

(
Σ (DUF (U∗; 0)) ∩ {Re ν ≤ −rss}

) ⋃ (
Σ (DUF (U∗; 0)) ∩ {Re ν ≥ −rsu}

)
,

the system (3.3.3) possesses locally-invariant manifolds W ss
loc(U∗) and W su

loc(U∗) which

are Ck- and C1-smooth respectively. Furthermore, the periodic orbit Up and equilibrium

Ũ∗ possess Ck-smooth locally invariant manifolds W cu
loc(Up), and W s

loc(Ũ∗).
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Proof. This follows by standard results on infinite dimensional locally invariant mani-

folds (see [76] or [158]). We also mention that higher degrees of smoothness of W su
loc(U∗)

can be obtained if the spectral gap ∆η = rss − rsu is sufficiently large.

Next we state our assumptions on the heteroclinic orbits formed by the preparation and

pushed free fronts.

Hypothesis 3.3.7. For µ = 0, there exist Ck-smooth heteroclinic solutions q0
i (ξ) of

(3.3.3) for i = 1, 2 such that for some S > 0 sufficiently large

• q0
1(ξ) ∈ {{0} ×X1} and q2(ξ) ∈ {X0 × {0}} for all ξ ∈ R,

• {q0
1(ξ)}ξ∈[S,∞) ⊂W ss

loc(U∗),

• {q0
1(ξ)}ξ∈(−∞,−S] ⊂W cu

loc(Up),

• {q0
2(ξ)}ξ∈(−∞,−S] ⊂W su

loc(U∗),

• {q0
2(ξ)}ξ∈[S,∞) ⊂W s

loc(Ũ∗).

Furthermore, for some ε > 0 small, there exist a, b ∈ C such that q0
i has the following

asymptotics,

q0
1(ξ) = aeνssξess,l

1,∞ + c.c.+O(e−(rss+ε)ξ), as ξ → +∞, (3.3.10)

q0
2(ξ) = beνuξeu

1,∞ +O(e(ru+ε)ξ), as ξ → −∞, (3.3.11)

where c.c. stands for complex-conjugate and the vectors ess,l
1,∞ ∈ Ess,l

1,∞, and eu
1,∞ ∈ Eu

1,∞
have unit-norm and are complex eigenvectors of the linearization DUF (U∗) associated

with the leading eigenvalues νss and νu respectively.

Finally, the orbit q0
2 is robust to perturbations in µ. That is there exists a smooth

family of heteroclinic orbits q2(ξ, µ) satisfying the above properties for all |µ| � 1 and

q2(ξ; 0) = q0
2(ξ).

The second part of this hypothesis states that, to leading order, q0
1 and q0

2 approach U∗

along the leading eigenspaces Ess,l
1,∞ and Eu,l

1,∞ as ξ → ±∞ respectively. In this notation,

q0
1 denotes the pushed free front, while q2 denotes the preparation front. See Figure

3.4.1 for a depiction of these heteroclinic orbits.
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3.3.2 Invariant manifolds and variational set-up

We now construct global invariant manifolds in neighborhoods of the heteroclinic orbits

q0
1 and q0

2. To do so we define variations, w0
i (ξ) = U(ξ)− q0

i (ξ), about such orbits with

i = 1, 2, and study the variational equations

d

dξ
w0
i = Ai(ξ)w

0
i + g0

i (ξ, w
0
i ), ξ ∈ R, (3.3.12)

with

Ai(ξ) := DUF (q0
i (ξ); 0), g0

i (ξ, w
0
i ) := F (q0

i (ξ) + w0
i ;µ)− F (q0

i (ξ); 0)−Ai(ξ)w0
i .

In order to study these variations we shall use exponential dichotomies of the linear

variational equations and their adjoints

d

dξ
w = Ai(ξ)w, (3.3.13)

d

dξ
ψ = −Ai(ξ)∗ψ, i = 1, 2. (3.3.14)

Before doing so, we require the following well-posedness assumption.

Hypothesis 3.3.8. For both i = 1, 2, if w0(ξ) is a bounded solution of either of the

linear variational equations (3.3.13) or (3.3.14) for all ξ ∈ R and w0(ξ0) = 0 for some

ξ0 ∈ R, then w0 ≡ 0.

We remark that for finite-dimensional systems and many parabolic equations this hy-

pothesis holds via parabolic regularity results; see [21, 130]. For more discussion and

some examples of when this hypothesis is satisfied see [114, §6]. For an example where

this hypothesis is not satisfied see [32, Ch. 4].

Proposition 3.3.9. (Existence of Exponential Dichotomies) Assuming the above hy-

potheses, (3.3.13) has exponential dichotomies on J1 = R+ = [0,∞), J2 = R− = (−∞, 0]

with a splitting according to the eigenspaces E
ss/su
1,∞ given above. That is there exist pro-

jections P
ss/su
i (ξ) : X → X for ξ ∈ Ji such that the following holds for some K > 0:

• For any ζ ∈ Ji and u ∈ X, there exists a solution Φss
i (ξ, ζ)u of (3.3.13) defined

for ξ ≥ ζ, continuous in (ξ, ζ) for ξ ≥ ζ, and differentiable in (ξ, ζ) for ξ > ζ,
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such that Φss
i (ζ, ζ)u = P ss

i (ζ)u and

|Φss
i (ξ, ζ)u| ≤ K e−rss(ξ−ζ)|u|, ξ ≥ ζ (3.3.15)

• For any ζ ∈ Ji and u ∈ X, there exists a solution Φsu
i (ξ, ζ)u of (3.3.13) defined

for ξ ≤ ζ, continuous in (ξ, ζ) for ξ ≤ ζ, and differentiable in (ξ, ζ) for ξ < ζ,

such that Φsu
i (ζ, ζ)u = P su

i (ζ)u and

|Φsu
i (ξ, ζ)u| ≤ K e−rsu(ξ−ζ)|u|, ξ ≤ ζ. (3.3.16)

• The solutions Φss
i (ξ, ζ)u and Φsu

i (ξ, ζ)u satisfy

Φss
i (ξ, ζ)u ∈ Rg(P ss

i (ξ)) for all ξ ≥ ζ, ξ, ζ ∈ Ji,
Φsu
i (ξ, ζ)u ∈ Rg(P su

i (ξ)) for all ξ ≤ ζ, ξ, ζ ∈ Ji,

where | · |, unless otherwise stated, denotes the norm on X.

Proof. See [114] or [130].

We remark that the first two bullets of this proposition correspond to the usual stable-

unstable dichotomy when considered in an weighted norm ||u||η := supξ∈Ji eηξ|u(ξ)| with

0 < rsu < η < rss. The third bullet gives the usual invariance of the dichotomies under

the linear evolution.

Let us denote Eji (ξ) = P ji (ξ)X, for i = 1, 2 and j = ss, su. Also, as they will be

necessary to the subsequent analysis, we isolate the leading components of these ξ-

dependent subspaces as follows

Ess
i (ξ) = Ess,l

i (ξ) + Ess,s
i (ξ), Esu

i (ξ) = Esu,l
i (ξ) + Esu,u

i (ξ), i = 1, 2, (3.3.17)

such that the spaces E
ss/su,l
i (ξ) are unique and satisfy

E
ss/su,l
1 (ξ)→ E

ss/su,l
1,∞ ξ →∞,

E
ss/su,s/u
2 (ξ)→ E

ss/su,s/u
1,∞ ξ → −∞. (3.3.18)
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Such a decomposition of, say for example Ess
2 (ξ), can be achieved by first obtaining

exponential dichotomies associated with the spectral sets {ν : Re{ν} ≤ −rss}, {ν :

Re{ν} ≥ −rss} and then taking the intersection of their associated ξ-dependent sub-

spaces. Denote the resulting dichotomies of these restricted subspaces as Φ
ss/su,l
i for

i = 1, 2.

From Proposition 3.3.9, we are then able to obtain the existence of globally invariant

manifolds in a neighborhood of q0
i (ξ) for all ξ ∈ Ji, and µ sufficiently small.

Proposition 3.3.10. For all µ sufficiently small, the equilibrium U∗ in (3.3.3) possesses

strong stable and weak-stable/unstable invariant manifolds W ss(U∗) and W su(U∗) which

exist in a neighborhood of the orbits q0
1 and q0

2 respectively. Furthermore, W ss(U∗) is Ck-

smooth while W su(U∗) is in general only C1-smooth. In an exponentially weighted space

with weight η ∈ (rsu, rss) and for µ sufficiently small, W ss(U∗) contains all solutions

which stay close to q0
1(ξ) for all ξ ≥ 0 while W su(U∗) contains all solutions which stay

close to q0
2(ξ) for all ξ ≤ 0. Finally, these manifolds are smooth in the parameter µ and

have tangent spaces which satisfy, for µ = 0,

Tq0
i (ξ)W

j(U∗) = Eji (ξ), j = ss, su, i = 1, 2.

Proof. This proof follows in the same way as those in [125, Sec. 3.5] which use the

existence of exponential dichotomies from [114, Thm. 3.3.3] and infinite-dimensional

center manifold results of [158]; see also [130, 132].

In an analogous fashion, one may use the spectral properties of the linearization about

Up and Ũ to obtain the following proposition,

Proposition 3.3.11. For all µ sufficiently small, the equilibria Up and Ũ∗ of (3.3.3)

possess Ck-smooth center-unstable and stable manifolds, denoted as W cu(Up) and W s(Ũ∗),

which exist in a neighborhood of the orbits q0
1 and q0

2, and are smooth in the parameter

µ. Here, W cu(Up) contains all solutions which stay close to q0
1(ξ) for all ξ ≤ 0 and

W s(Ũ∗) contains those which stay close to q0
2(ξ) for all ξ ≥ 0.

Proof. The hypothesis on the linearizations at Up and Ũ∗ give the existence of center-

unstable and stable dichotomies Φ
s/cu
−1 along q0

1(ξ) for ξ ≤ 0, and stable and unstable
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dichotomies Φ
s/u
+2 along q0

2(ξ) for ξ ≥ 0. As in Proposition 3.3.10, one can then use these

dichotomies and variation of constants formulas to prove the above proposition.

See Figure 3.4.1 for a depiction of these invariant manifolds and how they relate to our

heteroclinic gluing construction.

3.3.3 Intersection hypotheses

We wish to construct pushed trigger fronts as intersections between W cu(Up) and

W s(Ũ∗) near the equilibrium U∗ under certain conditions on the heteroclinic chain com-

posed of q0
1 and q0

2. We first assume the tangent spaces of the invariant manifolds along

q0
i (ξ) generically behave as a codimension-two heteroclinic bifurcation problem:

Hypothesis 3.3.12. (i) The tangent spaces Tq0
1(0)W

cu(Up), and Tq0
1(0)W

ss(U∗) form

a Fredholm pair with index 0, and satisfy

dim
(
Tq0

1(0)W
cu(Up) + Tq0

1(0)W
ss(U∗)

)⊥
= dim

(
Tq0

1(0)W
cu(Up) ∩ Tq0

1(0)W
ss(U∗)

)
= 2.

(3.3.19)

(ii) The tangent spaces Tq0
2(0)W

su(U∗), and Tq0
2(0)W

s(Ũ∗) intersect transversely, form

a Fredholm pair of index 1, and satisfy

dim
(
Tq2(0)W

su(U∗) ∩ Tq2(0)W
s(Ũ∗)

)
= 1. (3.3.20)

These hypotheses enforce genericity on the heteroclinic orbits in the sense that q0
1, while

not persisting for all µ sufficiently small, can be transversely unfolded in the parameter µ.

In the setting of an evolutionary PDE with both time- and space-translational symme-

tries (like the Cahn-Hilliard equation mentioned above), q0
1 is a modulated traveling wave

with both τ - and ξ-derivative lying in the intersection Tq0
1(0)W

cu(Up) ∩ Tq0
1(0)W

ss(U∗),

while q0
2 lies in the subspace of time-independent functions and thus has only ξ-derivative

lying in the intersection Tq2(0)W
su(U∗) ∩ Tq2(0)W

s(Ũ∗). See [63, Sec. 4.3] for more dis-

cussion on this topic.

We must also make an assumption on the inclination properties of the invariant man-

ifolds between U∗ and Ũ∗. Let P su
2,+(ξ) denote the projection in X onto Esu

2 (ξ) =
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Tq0
2(ξ)W

su(U∗) along Ẽs
+2(ξ), the orthogonal complement of

dq0
2

dξ (ξ) in Tq0
2(ξ)W

s(Ũ∗). Such

a projection can be constructed in the same manner as in [114, Eqn. 3.20].

Hypothesis 3.3.13. (Inclination property) The restricted projection

P l := P su
2,+(0)

∣∣∣
Ess,l

2 (0)

is an isomorphism from Ess,l
2 (0) onto Esu,l

2 (0).

We note that the equivariance of F with respect to the S1-action implies that P l com-

mutes with T1. This equivariance makes P l complex linear when considered on the

complexification of the subspaces E
ss/su,l
2 (0) and will enforce certain conditions on the

coefficients of the bifurcation equation, see Section 3.4.6 below. Additionally, this hy-

pothesis can be given a geometric interpretation when the invariant manifold W s(Ũ∗)

about q2(ξ) can be extended for all ξ ∈ R, as is the case when X is finite dimen-

sional. In such a situation, this hypothesis says that W s(Ũ∗) converges towards the

non-leading strong-stable eigenspace Ess,s
1,∞ in backwards time and hence does not lie in

an inclination-flip configuration [81].

Remark 3.3.14. Since X is a Hilbert space, it can be decomposed as a sum of complex

one-dimensional irreducible representations. In the spatial-dynamics formulation for the

Cahn-Hilliard equation for u0 ≡ 1, this decomposition is simply the Fourier series

U(t) =
∑

`∈Z
U`e

i`τ , U` ∈ R4,

and can be used to determine the spatial eigenvalues of the linearization of (3.3.7) about

the equilibrium u1 = 0. Replacing ∂τ by i`, and setting (c, ω) = (cp, ωp), the linearization

can be broken down into a set of infinitely many finite-dimensional linear systems, whose

eigenvalues ν` satisfy

0 = ν4
` + f ′(u∗)ν2

` − cpν` + iωp`, ` ∈ Z, (3.3.21)

with corresponding eigenspaces lying in the subspaces

Y` = spanU`,U−`∈R4{U`ei`τ , U−`e
−i`τ}.



92

Hypothesis 3.3.13 then requires that each of the leading eigenspaces, E
ss/su,l
1,∞ , must lie

in the same subspace Y` for some `. If this was not true, we would obtain that the two

irreducible representations θ 7→ ei`1θ, and θ 7→ ei`2θ for distinct `1 and `2 are isomorphic,

a contradiction.

As in other heteroclinic bifurcation problems, we must require the invertibility of a

certain mapping constructed using Melnikov integrals. Hence for j = 1, 2 we let e∗j (ξ)

be bounded solutions of the adjoint variational equation (3.3.14) such that e∗j (0) = e∗j,0
for vectors e∗j,0 ∈ X with unit-norm which satisfy

spanj=1,2{e∗j,0} =
(
Tq1(0)W

cu(Up) + Tq1(0)W
ss(U∗)

)⊥
.

We then assume the following

Hypothesis 3.3.15. The following mapping is invertible,

M :R2 → (Ess
1 (0) + Ecu

−1(0))⊥,

µ 7→
∑

i=1,2

∫ ∞

−∞
〈DµF (q0

1(ζ); 0)µ, e∗j (ζ)〉dζ e∗j,0.

3.3.4 Statement of main result

With all of these hypotheses in hand, we define the desired solution as follows,

Definition 3.3.16. A pushed trigger front is a heteroclinic orbit Utf(ξ;µ) of (3.3.3)

which satisfies the following properties:

(i) |Utf(ξ;µ)−Up(ξ;µ)| → 0 and Utf converges along the invariant manifold W cu(Up)

as ξ → −∞ with asymptotic phase.

(ii) Utf(ξ;µ)→ Ũ∗(µ) along the invariant manifold W s(U∗) as ξ →∞.

Since we only discuss pushed trigger fronts in the rest of this work, we shall henceforth

refer to such solutions as just trigger fronts.

Theorem 3.3.2. Assume Hypotheses 3.3.1–3.3.15 and recall the definition of the eigen-

vectors esu,l
1,∞, and e∗j,∞ from Section 3.3.1. Then, there are constants ρ, L∗ > 0 so that
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for all L > L∗ there exists a triggered pushed front Utf(ξ;µ∗(L)), with bifurcation curve

µ∗(L) that has the leading order expansion,

µ∗(L) = −
∑

j=1,2

[
e2∆νLdj + c.c.

]
M−1e∗j,0 +O(e−(2∆r+ρ)L)).

Here,

dj = ac1c̃j

〈
esu,l

1,∞, e
∗
j,∞
〉
C
, ∆ν = νss − νsu, ∆r = Re ∆ν,

the Melnikov mapping M is defined in Hypothesis 3.3.15, the constants a, c1, c̃j ∈ C are

defined in Hypothesis 3.3.7, Lemma 3.4.9, and Lemma 3.4.10 respectively, and 〈·, ·〉C is

the complexified inner product induced by the real inner product on X. Moreover, for

each L, the elements of the group orbit {T1(θ)Utf(ξ, µ∗(L)) : θ ∈ [0, 2π)} are also pushed

triggered fronts. Compare this expansion with Figure 3.3.1 for a schematic of νss/su and

∆ν.

Remark 3.3.17. In a typical spatial dynamics formulation, temporal translations form

the group orbit of each trigger front, Utf .

3.4 Proof of Main Theorem

3.4.1 Variational set-up

Our approach to proving Theorem 3.3.2 will follow that of Rademacher in [120]. There,

a gluing-matching procedure akin to Lin’s method [96] was used to construct solutions

near a heteroclinic cycle between a periodic orbit and an equilibrium. Our case is

simpler as we glue near a fixed equilibrium, not a periodic orbit.

We wish to construct the desired solution, which connects Up to Ũ∗, by studying vari-

ational equations about the heteroclinic orbits corresponding to the preparation front

and the pushed front. For the former, since the heteroclinic q2(ξ;µ) is robust in µ, we

study variations w2(ξ) = U(ξ)− q2(ξ;µ) and define the system

d

dξ
w2 = A2(ξ)w2 + g2(ξ, w2;µ), ξ ∈ R, (3.4.1)
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with

A2(ξ) := DUF (q2(ξ; 0)), g2(ξ, wi) := F (q2(ξ;µ) + w2;µ)− F (q2(ξ;µ);µ)−A2(ξ)w2.

For the variations about the pushed front more care must be taken due to the fact that,

because the subspace pair in Hypothesis 3.3.12(i) has non-zero co-dimension, q0
1(ξ) does

not generically persist for all µ in a neighborhood of the origin. To deal with this we

select a trajectory, q1(ξ;µ), defined for ξ ≥ 0, which is contained in the strong-stable

manifold W ss(U∗), and approaches q0
1 uniformly as µ→ 0. This can be done by realizing

that trajectories which are near q0
1 and lie in the strong stable manifold are described

using the following variation of constants formula

vss(ξ;µ, v0) = Φss
1 (ξ, 0)v0+

∫ ξ

0
Φss

1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ +

∫ ξ

∞
Φsu

1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ, (3.4.2)

G1(ξ, v;µ) = F (q0
1(ξ) + v;µ)− F (q0

1(ξ);µ)−DUF (q0
1(ξ); 0)v,

where v0 ∈ Ess
1 (0). In a similar manner we may also define for ξ ≤ 0,

vcu(ξ;µ, v0) = Φcu
−1(ξ, 0)v0 +

∫ ξ

0
Φcu
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ

+

∫ ξ

−∞
Φs
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ, (3.4.3)

where v0 ∈ Ecu
−1(0), and Φ

cu/s
−1 is the dichotomy associated with the periodic orbit Up

along q0
1 for ξ ≤ 0.

It then follows for µ sufficiently small (see [81, Lem 2.1]) that there exists vectors

vss
0 (µ) ∈ Ess

1 (0) and vcu
0 (µ) ∈ Ecu

−1(0), smooth in µ, such that vss
0 (0) = vsu

0 (0) = 0 and

vss(0;µ, vss
0 )− vcu(0;µ, vcu

0 ) ∈
(
Tq0

1(0)W
ss(U∗) + Tq0

1(0)W
cu(U∗)

)⊥
. (3.4.4)
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Indeed, this can be obtained by using the Implicit Function theorem to solve the pro-

jected equation

0 = Q [vss(0;µ, vss
0 )− vcu(0;µ, vcu

0 )] ,

= vss
0 − vcu

0 +Q
(∫ 0

∞
Φsu

1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ −
∫ 0

−∞
Φs
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ

)
,

for vss
0 and vcu

0 in terms of µ, where Q is the orthogonal projection of X onto the

subspace (
Tq0

1(0)W
ss(U∗) + Tq0

1(0)W
cu(U∗)

)
.

We shall denote such unique trajectories as

q1(ξ;µ) := vss(ξ;µ, vss
0 (µ)), ξ ≥ 0,

q−1 (ξ;µ) := vsu(ξ;µ, vsu
0 (µ)), ξ ≤ 0,

so that q1 approaches U∗ along the strong-stable manifold W ss(U∗) as ξ → +∞ and

satisfies q1(ξ; 0) = q0
1(ξ) for ξ ≥ 0, while q−1 approaches Up along the center-unstable

manifold W cu(Up) as ξ → −∞ and satisfies q1(ξ; 0) = q0
1(ξ) for ξ ≤ 0.

We can then define the variation w1(ξ) = U(ξ)− q1(ξ;µ) for ξ ≥ 0 and the variational

equation
d

dξ
w1 = A1(ξ)w1 + g1(ξ, w1;µ), ξ ∈ R+, (3.4.5)

with

A1(ξ) := DUF (q1(ξ; 0); 0), g1(ξ, wi) := F (q1(ξ;µ) +w1;µ)− F (q1(ξ;µ);µ)−A1(ξ)w1.

Next, let

Σi =

(
dq0
i

dξ
(0)

)⊥
, i = 1, 2

be fixed transverse sections to qi, with ξ chosen so that each Σi lies in a small neigh-

borhood of U∗ and the orthogonal complement is taken in X. In order to construct

the trigger front we wish to find solutions w1(ξ) and w2(ξ) of the variational equations

in (3.4.1) and (3.4.5) which lie in W cu(Up) and W s(Ũ∗) respectively and satisfy the
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following “gluing” condition for some L > 0:

w2(−L)− w1(L) = q1(L;µ)− q2(−L;µ). (3.4.6)

If these conditions hold then the corresponding solutions Ui of (3.3.3) satisfy

U1(L) = U2(−L), |U1(−ξ)→ Up(ξ)|+ |U2(ξ)− Ũ∗| → 0, ξ →∞,

so that the solution composed of the concatenation of U1 and U2 is the desired het-

eroclinic. Also, the smoothness of F gives the following pointwise estimates on the

variational nonlinearities

Lemma 3.4.1. There exists constants Ci > 0 such that gi and its derivative Dwigi

satisfy the following estimates for all ξ and sufficiently small wi ∈ X and µ ∈ R2,

|gi(ξi, wi;µ)| ≤ C
(
|wi|2 + |µ||wi|

)
, (3.4.7)

|Dwigi(ξi, wi;µ)| ≤ C(|wi|+ |µ|). (3.4.8)

Proof. This follows from the assumptions on F and the heteroclinic solutions qi

above.

We construct solutions wi(ξ) to (3.4.5) and (3.4.1) separately, with each satisfying Sil-

nikov boundary conditions for sufficiently large L > 0:

P ss
1 (0)w1(0) = s1, P su

1 (L)w1(L) = u1, (3.4.9)

P ss
2 (−L)w2(−L) = s2, P su

2 (0)w2(0) = u2, (3.4.10)

where ui, si ∈ X are free variables satisfying

s1 ∈ Ess
1 (0), u1 ∈ Esu

1 (L), (3.4.11)

s2 ∈ Ess
2 (−L), u2 ∈ Esu

2 (0). (3.4.12)

Also, we require that wi(0) ∈ Σi. To simplify notation, let Wi := (si, ui) for i = 1, 2.

With these solutions we follow the gluing-matching procedure used in [120], which is
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outlined below and depicted in Figure 3.4.1.

• Section 3.4.2 (Silnikov Solutions): Use variation of constants formulas to

prove existence of variational solutions wi(Wi;µ,L), lying near q1 and q2, which

lie in certain exponentially weighted function spaces and satisfy the boundary

conditions (3.4.11)-(3.4.12).

• Section 3.4.3 (Gluing): Use the gluing condition (3.4.6) to solve for the “outer”

boundary variables W0 := (s1, u2) in terms of the “inner” boundary variables

WL := (s2, u1), L, and µ.

• Section 3.4.4 (Transverse intersection): Match the solution w2(W0;µ,L)

with W s(Ũ∗(µ)) in the transverse section Σ2 of q2(0).

• Section 3.4.5 (Non-transverse intersection): Match the the solution w1(W0;µ,L)

with W cu(Up) in the transverse section Σ1 of q1(0) by first solving the matching

condition in E1 := Ess
1 (0) + Ecu

−1(0) where Ecu
−1(0) := Tq1(0)W

cu(Up). Then solve

the condition in the complement E⊥1 using Melnikov integrals.

In Section 3.4.6 we then derive asymptotics which allow us to obtain the bifurcation

curve discussed in Theorem 3.3.2.

3.4.2 Silnikov Solutions

In order to find solutions with the desired decay, we use exponentially weighted norms.

Let ηss, ηsu > 0 be fixed constants such that δss := rss − ηss and δsu := ηsu − rsu are

positive and arbitrarily small. Also define the quantity m := ηss−2ηsu, which quantifies

the size of the spectral gap ∆η := ηss − ηsu, so that m < 0 if and only if ηss/ηsu < 2.

To begin we define the L-dependent norms

||w1||1,L := sup
ξ∈I1

eηssξ+γssL|wss
1 (ξ)|+ sup

ξ∈I1
eηsuξ+γsuL|wsu

1 (ξ)| (3.4.13)

||w2||2,L := sup
ξ∈I2

eηss(ξ+L)+κssL|wss
2 (ξ)|+ sup

ξ∈I2
eηsu(ξ+L)+κsuL|wsu

2 (ξ)| (3.4.14)
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W cu(Up)

q0
1

q0
2

U∗
Ũ∗

Up

W s(Ũ∗) w1(L)

w2(−L)

W cu(Up)

Σ1

Σ2

u1(ξ)

u2(ξ)

W s(Ũ∗)

U∗

q1

q−
1

Σ1 Σ2

Ess
1 (0)

Esu
1 (0)W cu(Up)

q1(0)

s1

u2

q2(0)

W s(Ũ∗)

Ess
2 (0)

Esu
2 (0)

w1(0)

w2(0)

q−
1 (0)

Figure 3.4.1: Schematic diagram of gluing construction. The top left figure depicts the
global phase portrait in X for µ = 0, showing the two manifolds we wish to connect. The
top right figure depicts the gluing construction near the equilibrium U∗ for µ close to 0,
where initial data are taken in transverse sections Σ1,Σ2. These sections are depicted
in the bottom figure with the corresponding Silnikov data s1, u2 prescribed in each.

where I1 = [0, L], I2 = [−L, 0], wji (ξ) := P ji (ξ)wi(ξ) for i = 1, 2, j = ss, su and

γss = ∆η + |m| − ηsu, γsu = ∆η + |m| − ηsu, κss = ∆η + |m|, κsu = ∆η + |m|+ ρ,

with ρ > 0 arbitrarily small. Note by the definition of m, these quantities are all

positive.

Remark 3.4.2. These norms were determined in order to make the upcoming fixed

point operators uniform contractions in a sufficiently small neighborhood of the origin,

and accommodate for all sizes of the spectral gap ∆η in the gluing-matching procedure.

We remark that more general conditions on γss/su and κss/su can be determined, but we

have omitted them for the sake of presentation.
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We denote

Γε1,L := {w1 ∈ Ck([0, L], X) : ||w1||1,L < ε },
Γε2,L := {w2 ∈ Ck([−L, 0], X) : ||w2||2,L < ε},

and define the variation-of-constants operators

Ψi(wi,Wi;µ,L) := Ψss
i (w1,W1;µ,L) + Ψsu

i (w1,W1;µ,L)

with

(
Ψss

1 (w1;W1, µ, L)(ξ)

Ψsu
1 (w1;W1, µ, L)(ξ)

)
:=

(
Φss

1 (ξ, 0)s1 +
∫ ξ

0 Φss
1 (ξ, ζ)g1(ζ, w1(ζ);µ)dζ

Φsu
1 (ξ, L)u1 +

∫ ξ
L Φsu

1 (ξ, ζ)g1(ζ, w1(ζ);µ)dζ

)
,

(
Ψss

2 (w2;W2, µ, L)(ξ)

Ψsu
2 (w2;W2, µ, L)(ξ)

)
:=

(
Φss

2 (ξ,−L)s2 +
∫ ξ
−L Φss

2 (ξ, ζ)g2(ζ, w2(ζ);µ)dζ

Φsu
2 (ξ, 0)u2 +

∫ ξ
0 Φsu

2 (ξ, ζ)g2(ζ, w2(ζ);µ)dζ

)
.

Finally, for some small δ > 0 we denote

ΛδL = {µ ∈ R2 : e(2∆η−ρ)L|µ| < δ}, Xδ
η,L = {u ∈ X : eηL|u| < δ}. (3.4.15)

Here, the weight in the parameter space ΛδL was chosen to capture the O(e2∆νL) leading-

order dynamics of the bifurcation equation for µ. It is readily seen that if wi is a fixed

point of Ψi then it must also solve (3.4.5) or (3.4.1) for i = 1, 2. We then have the

following proposition,

Proposition 3.4.3. There exists an ε0 > 0 such that the following holds. For all

0 < ε < ε0, and L sufficiently large, there exists a δ > 0 such that for all µ ∈ ΛδL and

W1 = (s1, u1) which satisfy

s1 ∈ Xε/6
γss,L

, u1 ∈ Xε/6
ηsu+γsu,L

, (3.4.16)

the variational equation (3.4.5) has a unique solution w∗1(W1, µ, L) ∈ Γε1,L which is Ck

in (ξ,W1, µ) and satisfies the boundary conditions (3.4.11).
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Proof. We prove this result by showing that the operator,

Ψ1(W1) : Γε1,L × ΛδL → Γε1,L,

which can readily be shown to be Ck in both arguments, is well-defined and a uniform

contraction. The resulting unique fixed point will then be the desired solution.

We shall need the following pointwise estimates on the the nonlinearity g1. For any

ξ ∈ [0, L] with w ∈ X and µ ∈ R2 sufficiently small, Hypothesis 3.3.7 and Lemma 3.4.1

give a constant C1 > 0 such that

|g1(ξ, w;µ)| ≤ C1(|w(ξ)|2 + |w(ξ)||µ|)

≤ C1

(
|wss(ξ)|2 + |wsu(ξ)|2 + |µ| (|wss(ξ)|+ |wsu(ξ)|)

)

≤ C1

(
e−2ηssξ−2γssL||wss||21,L + e−2ηsuξ−2γsuL||wsu||21,L

+ |µ|
(

e−ηssξ−γssL||wss||1,L + e−ηsuξ−γsuL||wsu||1,L
))

. (3.4.17)

Note that wj(ξ) = P j1 (ξ)w(ξ). Similarly, for w, v ∈ X we have the quadratic estimate

|g1(ξ, w;µ)− g1(ξ, v;µ)| ≤ C ′1
(
|w(ξ)|+ |v(ξ)| · |w(ξ)− v(ξ)|+ |µ||w(ξ)− v(ξ)|

)

≤ C ′1e−2ηssξ−2γssL (||wss||1,L + ||vss||1,L) · ||wss − vss||1,L
+ C ′1e−2ηsuξ−2γsuL (||wsu||1,L + ||vsu||1,L) · ||wsu − vsu||1,L

+ C ′1|µ|
(

e−ηssξ−γssL||wss − vss||1,L + e−ηsuξ−γsuL||wsu − vsu||1,L
)
.

(3.4.18)

We then find

sup
ξ∈I1

eηssξ+γssL|Ψss
1 (w1)(ξ)| ≤

sup
ξ∈I1

e(ηss−rss)ξ+γssL|s1|+ eηssξ+γssL

∫ ξ

0
e−rss(ξ−ζ)C1

(
|w1(ζ)|2 + |w1(ζ)||µ|

)
dζ.

(3.4.19)
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The condition on s1 gives

sup
ξ∈I1

e(ηss−rss)ξ+γssL|s1| ≤
ε

6
. (3.4.20)

Next we estimate the term involving |w1|2 in (3.4.19):

sup
ξ∈I1

eηssξ+γssL

∫ ξ

0
e−rss(ξ−ζ)C1|w1(ζ)|2dζ

≤ C1

(
e−(γss+δss)L − e−(γss+ηss)L

) ||wss||21,L
2ηss − rss

+ C1

(
e(γss−2γsu+ηss−2ηsu)L − e(γss−2γsu−δss)L

) ||wsu||21,L
|2ηsu − rss|

≤ 2C1C
∗
1 ||w1||21,L < ε/6. (3.4.21)

where C∗ = max{ 1
2ηss−rss ,

1
|2νsu−rss|}, and we require ε < 1

12C1C∗
. Also note that we have

used the fact that γss − 2γsu = 2ηsu − ηss − |m| − 2ρ.

The term with |w1||µ| in (3.4.19) can similarly be estimated by

C1 sup
ξ∈I1

eηssξ+γssL

∫ L

0
e−rss(ξ−ζ)|µ|

(
e−ηssζ−γssL||wss||1,L + e−ηsuζ−γsuL||wsu||1,L

)

≤ C1|µ|
(

e−δssL||wss||1,L + e(γss−γsu+∆η)L||wsu||1,L
)

≤ C1δ||w||1,L < ε/6, (3.4.22)

for any 0 < δ < 1
6C1

, since µ ∈ ΛδL and γss − γsu = −2ρ.

Combining (3.4.20), (3.4.21), and (3.4.22) we obtain

||Ψss
1 (w1)||1,L < ε/2. (3.4.23)

Similar estimates may be applied to obtain

||Ψsu
1 (w1)||1,L < ε/2, (3.4.24)

for any ε < (C1 max{ 1
2ηss−rsu ,

1
2ηsu−rsu })

−1. These can then be combined to obtain
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||Ψ1(w)||1,L < ε.

To prove the contraction, the pointwise estimate (3.4.18) can be used in a similar way

to obtain

||Ψ1(w;W1, µ, L)−Ψ1(v;W1, µ, L)||1,0 ≤ C1C∗
(
4ε+ |µ|e∆ηL

)
||w − v||1,L <

1

2
||w − v||1,L,

w, v ∈ Γε1,L, (3.4.25)

For ε0 sufficiently small, and L sufficiently large. Since Ψ1 is smooth in µ and W1, the

Uniform Contraction principle then gives the result.

An analogous proof gives the existence of a solution for (3.4.1).

Proposition 3.4.4. There exists an ε0 > 0 such that the following holds: For all

0 < ε < ε0 and L sufficiently large there exists a δ > 0 such that for all µ ∈ ΛδL and

W2 = (s2, u2) which satisfy

s2 ∈ Xε/6
κss,L

, u2 ∈ Xε/6
ηsu+κsu,L

, (3.4.26)

equation (3.4.1) has a unique solution w∗2(W2, µ, L) ∈ Γε2,L which is Ck in (ξ,W2, µ).

3.4.3 Gluing

We now wish to find boundary data W1 = (s1, u1) and W2 = (s2, u2) for which the

solutions w∗1, w
∗
2 satisfy the gluing equation (3.4.6). We use the projections P ss

2 (−L)

and P su
1 (L) to decompose the gluing equation (3.4.6) into the system

P ss
2 (−L)w∗1(L)− s2 = P ss

2 (−L)∆q(L)

u1 − P su
1 (L)w∗2(−L) = P su

1 (L)∆q(L) (3.4.27)

where ∆q(L) = q2(−L)− q1(L).

To simplify this system, we use the following estimates on the ξ-dependent projections.
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Lemma 3.4.5. For L sufficiently large there exists a constant K > 0 such that

|P j1 (L)u− P j1,∞u| ≤ Ke−∆ηL|u|, (3.4.28)

|P j2 (−L)u− P j1,∞u| ≤ Ke−∆ηL|u|, (3.4.29)

for j = ss, su, u ∈ X.

Proof. Using the asymptotic decay of Ai(ξ) as ξ → ±∞ for i = 1, 2 respectively, this

result follows from [114, Cor. 2].

From this lemma, the heteroclinic asymptotics in Hypothesis 3.3.7 then give that (3.4.27)

has the leading order form

s2 =
[
w∗,ss1 (L)− q1(L)

] (
1 +O(e−∆ηL)

)

u1 =
[
w∗,su2 (−L) + q2(−L)

] (
1 +O(e−∆ηL)

)
.

Hence, it suffices to prove the existence of solutions to the truncated system

s2 = w∗,ss1 (L)− q1(L)

u1 = w∗,su2 (−L) + q2(−L).

Such solutions can be found as fixed points of the following operator,

Hgl : XεL × Xε0 × ΛδL → XεL

(WL;W0, µ) 7→
(

Ψss
1 (w∗1(s1, u1, µ, L), µ, L)(L)

Ψsu
2 (w∗2(s2, u2, µ, L);µ,L)(−L)

)
+

(
−q1(L;µ)

q2(L;µ)

)
, (3.4.30)

where we solve for the inner boundary values near the equilibrium U∗,

WL := (s2, u1) ∈ XεL := Xε
κss,L ×Xε

ηsu+γsu,L,

in terms of the outer boundary values near q1(0) and q2(0),

W0 := (s1, u2) ∈ Xε0 := Xε
γss,L ×Xε

ηsu+κsu,L.
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The exponential weights on these values are chosen to be consistent with the contraction

arguments in Propositions 3.4.3 and 3.4.4. We then obtain the following existence result,

Proposition 3.4.6. There exists an ε1 > 0 such that the following holds. For all ε < ε1,

L sufficiently large, there exists a δ > 0 such that the mapping Hgl : XεL×Xε0×ΛδL → XεL

has a unique fixed point WL
† (W0, µ, L) :=

(
s†2(W0, µ, L), u†1(W0, µ, L)

)
which is Ck

smooth in all its variables.

Proof. First note that since w∗i is smooth in Wi and µ, and w∗i (0; 0, L) = 0, we have

that

||w∗1(W1;µ,L)||1,L ≤ C3

(
eγssL|s1|+ e(ηsu+γsu)L|u1|+ e∆ηL|µ|

)
,

||w∗2(W2;µ,L)||2,L ≤ C3

(
eκssL|s2|+ e(ηsu+κsu)L|u2|+ e∆ηL|µ|

)
. (3.4.31)

Similar to the proofs in the previous section, the pointwise estimates (3.4.17) and

(3.4.18) then give the estimates

eκssL|Φss
1 (L, 0)s1| ≤ K1e(κss−rss)L|s1|,

eκssL|
∫ L

0
Φss

1 (L, ζ)g1(ζ, w∗1;µ)dζ| ≤

C2eκssL
(

e−2(ηss+γss)L||wss
1 ||21,L + e−2(ηsu+γsu)L||wsu

1 ||21,L
)

+ |µ|
(

e−(ηss+γss)L||wss
1 ||1,L + e−(ηsu+γsu)L||wsu

1 ||1,L
)
,

for the first component of Hgl.
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For the second component we obtain for some constants K2,K
′
2 > 0,

e(ηsu+γsu)L|Φsu
2 (−L, 0)u2| ≤ K2e(2ηsu+γsu)L|u2| ≤ K2e(ηsu+γsu−κsu)Lε, (3.4.32)

e(ηsu+γsu)L|
∫ −L

0
Φsu

2 (−L, ζ)g2(ζ, w∗2;µ)dζ| ≤

K2e(2ηsu+γsu−δsu)L

(
e−2(ηss+κss)L||wss

2 ||22,L + e−2(ηsu+κsu)L||wsu
2 ||22,L

+ |µ|
(

e−(ηss+κss)L||wss
2 ||2,L + e−(ηsu+κsu)L||wsu

2 ||2,L
))

≤ K2

(
e(−3∆η−|m|−ηsu)L||wss

2 ||22,L + e(−ηsu−∆η−|m|)L||wsu
2 ||22,L

+ |µ|
(

e−∆ηL||wss
2 ||2,L + e−(δsu+ρ)L||wsu

2 ||2,L
))

,

eηsu+γsuL|q2(L)| ≤ K ′2e(∆η+|m|−ru)L.

Pairing these estimates with those in (3.4.31) and using Hypothesis 3.3.4, we can then

obtain the desired invariance of Hgl for sufficiently small ε.

Uniform Contraction then follows in a similar manner, using the fact that ||w∗i (Wi) −
w∗i (Vi)||i,L ≤ C2|Wi −Vi| for small enough Wi,Vi.

This proposition implies the existence of boundary data

WL
gl(W

0, µ, L) :=
(
sgl

2 (W0, µ, L), ugl
1 (W0, µ, L)

)
,

smooth in all dependent variables, which give glued solutions

wgl
1 (W0, µ, L)(ξ) := w∗1(s1, u

gl
1 (W0), µ, L)(ξ), wgl

2 (W0, µ, L)(ξ) := w∗2(sgl
2 (W0), u2, µ, L)(ξ),

satisfying (3.4.27).
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3.4.4 Transverse matching

Now we match the glued solution with the stable manifold W s(Ũ∗) inside Σ2. Since this

manifold is Ck-smooth and intersects W su(U∗) transversely, we have that W s(Ũ∗) ∩Σ2

can be locally described near q2(0) as a graph h2 : Es
+2(0) ∩ Σ2 → Esu

2 (0) ∩ Σ2, where

Es
+2(0) := P s

+2(0)X and

|h2(v2;µ)| ≤ Ks|v2|(|µ|+ |v2|),

for some Ks > 0, and sufficiently small µ and v2 ∈ Es
+2(0) ∩ Σ2. Here, P s

+2(ξ) is

the projection associated with the dichotomy used to construct the invariant manifold

W s(Ũ∗). We thus obtain the matching equation

wgl
2 (W0;µ,L)(0) = v2 + hs(v2;µ), (3.4.33)

which we use to solve for (u2, v2) in terms of (s1, µ). Defining

g̃i(ξ,W
0;µ) := gi(ξ, w

gl
i (W0;µ,L)(ξ);µ), i = 1, 2,

we use the projected solution operators Ψ
ss/su
2 to write (3.4.33) as

u2 − v2 = hs(v2, µ)− Φss
2 (0,−L)sgl

2 (W0)−
∫ 0

−L
Φss

2 (0, ζ)g̃2(ζ;W0;µ)dζ. (3.4.34)

Proposition 3.4.7. For some ε2 > 0 the following holds: For all 0 < ε < ε2 there exists

a δ > 0 such that (3.4.33) has a Ck-solution (utr
2 , v

tr
2 )(s1, µ) ∈ Xε

ηsu+κsu,L
×Xε

ηsu+κsu,L
,

for each (s1, µ) ∈ Xε/8
γss,L
× ΛδL.

Proof. First, Hypothesis 3.3.12 implies that the canonical mapping

S2 :(Esu
2 (0) ∩ Σ2)× (Es

+2(0) ∩ Σ2)→ Σ2

(u2, v2) 7→ u2 − v2,

is invertible with uniformly bounded inverse. Thus (3.4.33) can be rewritten as the fixed
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point problem

(u2, v2) = S−1
2

(
hs(v2, µ)− Φss

2 (0,−L)sgl
2 (W0)−

∫ 0

−L
Φss

2 (0, ζ)g̃2(ζ,W0;µ)dζ
)

=

(
hs(v2;µ) , −P s

+2(0)

(
Φss

2 (0,−L)sgl
2 (W0) +

∫ 0

−L
Φss

2 (0, ζ)g̃2(ζ,W0;µ)dζ

))
.

(3.4.35)

since S−1
2 (x) = (P su

2,+(0)x,−P s
+2(0)x), where P su

2,+(ξ) was defined in Hypothesis 3.3.13

above.

We then obtain the following estimates on the different terms of the right-hand side of

the above equation for some constant K > 0,

e(ηsu+κsu)L
∣∣∣hs(v2, µ)

∣∣∣ ≤ Ke(ηsu+κsu)L
(
|v2||µ|+ |v2|2

)

≤ Kε(δ + ε), (3.4.36)

e(ηsu+κsu)L|P s
+2(0)wss

2 (0)| ≤ Ke(ηsu+κsu−ηss−κss)L||wss
2 ||2,L = Ke(ρ−∆η)L||wss

2 ||2,L.
(3.4.37)

Applying the estimates in (3.4.31) we conclude that (3.4.35) is a uniform contraction

and thus possesses a unique fixed point.

We denote the subsequent glued solutions which also solve the transverse matching

problem as

wtr
1 (s1, µ, L)(ξ) := wgl

1 (s1, u
tr
2 , µ, L)(ξ), wtr

2 (s1, µ, L)(ξ) := wgl
2 (s1, u

tr
2 , µ, L)(ξ),

where utr
2 = u2

tr(s1, µ).

3.4.5 Non-Transverse matching

Now let us match the glued solution with W cu(Up) in Σ1. In a neighborhood of q1(0;µ),

the intersection of the center-unstable manifold W cu(Up) ∩ Σ1 can be described as a
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graph q−1 (0;µ) + v + hp(v;µ) with

hp : Ecu
−1(0) ∩ Σ2 → Ẽss

1 (0)⊕ E⊥1 , v ∈ Ecu
−1(0) ∩ Σ2

where Ecu
−1(0) := P cu

−1(0)X, E1 := Ecu
−1(0) + Ess

1 (0), and Ẽss
1 (0) is the orthogonal com-

plement of Z = Ecu
−1(0) ∩ Ess

1 (0) in Ess
1 (0). Also define the orthogonal projection

Q1 : Ecu
−1(0) → Z ∩ Σ2 and let ṽ1 = (I − Q1)v, v1 = Q1v. We remark that since

d
dξ q

0
1(0) ∈ Z, the range of Q is a one-dimensional subspace.

We thus wish to solve the matching equation

wtr
1 (s1, µ, L)(0) = q−1 (0;µ)− q1(0;µ) + ṽ1 + v1 + hp(ṽ1 + v1;µ). (3.4.38)

In order to do this we shall first solve the projected equation on E1 after which we can

the solve on the complement E⊥1 using Melnikov integrals.

To achieve this first step, we apply the orthogonal projection P1 : X → E1 to (3.4.38)

and use (3.4.4) to obtain

s1− ṽ1 = v1 +P1

(
hp(ṽ1 + v1;µ)− Φsu

1 (0, L)ugl
1 (s1, u

tr
2 )−

∫ 0

L
Φsu

1 (0, ζ)g̃1(ζ,W0
tr;µ)dζ

)
.

(3.4.39)

We then obtain the following result,

Proposition 3.4.8. There exists ε3 > 0 such that the following holds. For all ε < ε3

there exists a δ > 0 such that there is a unique Ck-solution (sm
1 , ṽ

m
1 )(v1, µ, L) ∈ Xε

γss,L
×

Xε
γss,L

of (3.4.39) for each v1 ∈ Xε
γss,L

, and µ ∈ ΛδL.

Proof. The proof follows in a similar manner as in Proposition 3.4.7 and we omit it.

We denote the corresponding solutions as

wm
i (v1, µ, L)(ξ) = wtr

i (sm
1 (v1, µ, L), µ, L)(ξ).

Now we wish to solve the component of (3.4.38) in E⊥1 and thus complete the gluing
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matching procedure. This can be done by solving the equations

〈
wn

1(v1, L)(0), e∗j,0
〉

=
〈
q−1 (0;µ)− q1(0;µ), e∗j,0

〉
+ 〈hp(v1 + ṽn

1 ;µ), e∗j,0〉, j = 1, 2,

where and e∗1,0, e
∗
2,0 ∈ X have unit norm and form a basis of E⊥1 . Also, these ba-

sis elements correspond to bounded solutions e∗j (ξ) of the adjoint variational equation

(3.3.14) which satisfy e∗j (0) = e∗j,0. Applying the variation of constants formula to wn
1

and noticing that
〈
P ss

1 w
n
1(0), e∗j,0

〉
= 0 we then obtain, for j = 1, 2,

〈
Φsu

1 (0, L)utr
1 , e

∗
j,0

〉
=
〈
q−1 (0;µ)− q1(0;µ), e∗j,0

〉
+ 〈hp(v1 + ṽn

1 ;µ), e∗j,0〉

−
〈∫ 0

L
Φsu

1 (0, ζ)g̃1(ζ,W0
tr;µ)dζ, e∗j,0

〉
. (3.4.40)

The expressions from (3.4.2) and (3.4.3) give that

〈
q−1 (0;µ)− q1(0;µ), e∗j,0

〉
=

〈∫ 0

−∞
Φs
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ +

∫ ∞

0
Φsu

1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ, e∗j,0

〉

=

(∫ ∞

−∞

〈
DµF (q0

1(ζ); 0), e∗j (ζ)
〉
dζ

)
µ+O(|µ|2).

Now, since there exists constants C > 0 such that

|hp(v1 + ṽn
1 (v1;µ);µ)| ≤ C(|v1|+ |µ|)2,

|
〈∫ 0

L
Φsu

1 (0, ζ)g̃1(ζ,W0
tr;µ)dζ, e∗j,0

〉
| ≤ e−γssLC (|v1|+ |µ|)2 (3.4.41)

for µ sufficiently small and L sufficiently large, we can use the quadratic estimates on

g̃1 to obtain that (3.4.40) has the form

〈
Φsu

1 (0, L)utr
1 , e

∗
j,0

〉
=

∫ ∞

−∞

〈
DµF (q0

1(ζ); 0), e∗j (ζ)
〉
dζ µ+O

(
(|µ|+ |v1|)2

)
, (3.4.42)
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or after rearranging,

Mµ(v1, L) =
( ∑

j=1,2

〈
Φsu

1 (0, L)utr
1 , e

∗
j,0

〉
e∗j,0
)

+O
(
(|µ|+ |v1|)2

)
. (3.4.43)

Since the Melnikov mapping is invertible by assumption, the implicit function theorem

then gives, for L sufficiently large, that there exists a family of solutions µm(v1, L) with

the following leading order expansion

µtf(v1, L) =M−1
( ∑

j=1,2

〈
Φsu

1 (0, L)utr
1 , e

∗
j,0

〉
e∗j,0
)

+O (|v1|) . (3.4.44)

Let us denote the corresponding glued solution for these parameters as wtf
i (ξ) :=

W tf
i (v1, µtf(v1, L), L)(ξ) and the projections as w

tf,ss/su
i (ξ) = P

ss/su
i (ξ)wtf

i (ξ). From

these we immediately obtain the desired heteroclinic solution Utf as a concatenation

of the solutions U tf
i := qi + wtf

i . This gives the existence of a one-parameter family of

solutions for each L as described in the statement of the theorem. By uniqueness, the

parameter v1 must parameterize the group orbit of a solution under the S1-action.

3.4.6 Leading order bifurcation equation expansions

In this section, we complete the proof of the theorem by obtaining the desired expansion

of the bifurcation equation (3.4.44) obtained in the previous section. Let us ease notation

by denoting wi = wtf
i , w

ss/su
i = w

tf,ss/su
i , and µ = µtf . To obtain finer expansions we

isolate the leading components of the ξ-dependent subspaces as described in (3.3.17)

above,

Ess
i (ξ) = Ess,l

i (ξ) + Ess,s
i (ξ), Esu

i (ξ) = Esu,l
i (ξ) + Esu,u

i (ξ), i = 1, 2.

In the following we will study these real subspaces using the complexified flow. Here the

complexification of the eigenspaces E
ss/su,l
1,∞ are spanned by the eigenvectors e

ss/su,l
1,∞ , e

ss/su,l
1,∞

of DUF (U∗) corresponding to the leading complex-conjugate eigenvalues νss/su, νss/su.

Before continuing, we prove the following three lemmata which are needed in our deriva-

tion of the leading order bifurcation equation.
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Lemma 3.4.9. For L > 0 sufficiently large there exist constants c1, c2 ∈ C and ρ > 0

such that the following asymptotic expansions hold

Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)ess,l

1,∞ = c1e
∆νLesu,l

1,∞ +O(e−(∆r+ρ)L),

Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)ess,l

1,∞ = c2e∆νLesu,l
1,∞ +O(e−(∆r+ρ)L).

Proof. First note that by its construction, the restricted dichotomy Φss,l
2 (ξ, ζ) is well-

defined for both ξ ≥ ζ and ξ ≤ ζ. Hence there exists vectors vss
1 , v

ss
2 which span Ess,l

2 (0)

such that

Φss,l
2 (−L, 0)vss

1 = e−νssLess,l
1,∞ +O(e(rss−ρ)L)),

Φss,l
2 (−L, 0)vss

2 = e−νssLess,l
1,∞ +O(e(rss−ρ)L)).

Applying Φss
2 (0,−L) to both sides of these equations, we then obtain

Φss
2 (0,−L)ess,l

1,∞ = eνssLvss
1 +O(e−(rss+ρ)L)),

Φss
2 (0,−L)ess,l

1,∞ = eνssLvss
2 +O(e−(rss+ρ)L)).

In a similar manner, there exists vectors vsu
1 , v

su
2 which span Esu,l

2 (0) such that

Φsu
2 (−L, 0)vsu

1 = e−νsuLesu,l
1,∞ +O(e(rsu−ρ)L),

Φsu
2 (−L, 0)vsu

2 = e−νsuLesu,l
1,∞ +O(e(rsu−ρ)L). (3.4.45)

Hypothesis 3.3.13 then gives that there exists constants c1, c
′
1 ∈ C not both zero such

that

P su
2,+v

ss
1 = P lvss

1 = c1v
su
1 + c′1v

su
2 .

Since P l is an isomorphism which commutes with the action T1(θ), it can then be

obtained that P l is complex-linear so that c′1 = 0. Combing this all together we obtain,

Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)ess,l

1,∞ = c1e(νss−νsu)Lesu,l
1,∞ +O(e−(∆r+ρ)L). (3.4.46)
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The expansion for ess,l
1,∞ follows in an analogous way for some constant c2 ∈ C.

In a similar manner, we can also obtain expansions for bounded solutions of the adjoint

variational equation along q1.

Lemma 3.4.10. Let q1(0) be sufficiently close to U∗, L sufficiently large, and E⊥1 =

span{e∗j,0}j=1,2. Then, for some ρ > 0, there exists a complex eigenvector e∗j,∞ of

(DUF (U∗))∗ with eigenvalue −νsu and |e∗j,∞| = 1, such that the bounded solutions of the

adjoint equation satisfy

e∗j (L) = Φ∗,us
1 (L, 0)e∗j,0 =

(
c̃je
−νsuLe∗j,∞ + c.c.

)
(1 +O(e−ρL)),

for some constants c̃j ∈ C, where Φ∗,us
1 denotes the dichotomy of the adjoint variational

equation (3.3.14) associated with the spectral set {ν : Re{ν} ≤ rsu}.

Before completing the analysis of the bifurcation equation, we need one more prepatory

lemma which estimates the scalar product contained inside of (3.4.43).

Lemma 3.4.11. There exists a ρ > 0 such that for all L sufficiently large, and j = 1, 2

we have the following expansion

〈
u1, e

∗
j (L)

〉
=
〈
wsu

2 (−L), e∗j (L)
〉

+O(e−(2∆η+ρ)L). (3.4.47)

Proof. Applying P ss
2 (−L) to (3.4.6), we use the asymptotic expansion of Hypothesis

3.3.7, and the projection estimates in Lemma 3.4.5 to obtain

s2 = −P ss
2 (−L)∆q(L) + P ss

2 (−L)w1(L)

= aeνssLess,l
1,∞ + c.c.+O(e−(rss+∆η)L). (3.4.48)

This, combined with the result of Lemma 3.4.10, and the fact that
〈
ess,l

1,∞, e
∗
j,∞
〉

= 0 ,

allows us to obtain the estimate

|
〈
wss

2 (−L), e∗j (L)
〉
| ≤ Ke−(2∆η+δss)L,
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for some constant K > 0. Also, once again using the projection estimates in Lemma

3.4.5, we obtain

〈
∆q(L), e∗j (L)

〉
=
〈
q2(L), e∗j (L)

〉
(1 +O(e−∆ηL)),

≤ Ke(rsu−ru)L,

≤ Ke−(2∆η+ρ)L,

where this last inequality comes from the eigenvalue requirements in Hypothesis 3.3.4(i).

Finally, we use the gluing equation (3.4.6), and the fact that e∗j (ξ) ⊥ Ess
1 (ξ), to find

〈
u1, e

∗
j (L)

〉
=
〈
wsu

1 (L), e∗j (L)
〉

=
〈
wsu

2 (−L) + wss
2 (−L)− wss

1 (L)−∆q(L), e∗j (L)
〉

=
〈
wsu

2 (−L) + wss
2 (−L)−∆q(L), e∗j (L)

〉
,

which, combined with the above estimates yields the result.

We may now complete the proof of the main theorem with the following proposition

which gives the leading order expansion of the right-hand side of (3.4.43).

Proposition 3.4.12. The bifurcation equation (3.4.44) has the following leading order

expansion in µ,

Mµ = −
∑

j=1,2

(
e2∆νLdj + c.c.

)
e∗j,0 +O(e−(2∆r+ρ)L) +O (|µ| (|v1|+ |µ|)) , (3.4.49)

where

dj = ac1c̃j

〈
esu,l

1,∞, e
∗
j,∞
〉
C
,

for a, c1, c̃j ∈ C as defined in Hypothesis 3.3.7, Lemma 3.4.9, and Lemma 3.4.10 re-

spectively, and where 〈·, ·〉C is the complexified inner product induced by the real inner

product on X.

Proof. To begin, by applying the projection P su
2,+(0), and its complement I −P su

2,+(0) to
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the transverse matching equation (3.4.33), we obtain

u2 = wsu
2 (0) = −P su

2,+(0)wss
2 (0) +O(e−(ηss+∆η)L).

Then, using estimates similar to those in the proof of Proposition 3.4.3 we find

wsu
2 (−L) = Φsu

2 (−L, 0)u2 +O(e−(2∆η+ρ)L)

wss
2 (0) = Φss

2 (0,−L)s2 +O(e−(rssL+2∆ηL)).

We then combine these estimates to obtain,

wsu
2 (−L) =Φsu

2 (−L, 0)u2 +O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)wss
2 (0) +O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)
[
Φss

2 (0,−L)s2 +O(e−(rssL+2∆ηL))
]

+O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)s2 +O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)

(
aeνssLess,l

1,∞ + c.c.
)

+O(e−(2∆η+ρ)L)

= ac1e(2νss−νsu)Lesu,l
1,∞ + ac2e(2νss−νsu)L esu,l

1,∞ +O(e−(2∆η+ρ)L),

where estimate (3.4.48) was used in the fifth line, and Lemma 3.4.9 used in the sixth.

Since this last expression must be real (being the flow of a real initial condition), it can

be found that c2 = c1. Hence we obtain

wsu
2 (−L) = ac1e(2νss−νsu)Lesu,l

1,∞ + c.c+O(e−(2∆η+ρ)L). (3.4.50)

Applying Lemma 3.4.10 to (3.4.43), we obtain

〈
Φsu

1 (0, L)u1, e
∗
j,0

〉
C =

〈
u1, e

∗
j (L)

〉
C =

〈
u1, e

−νsuLc̃j e
∗
j,∞ + c.c.

〉
C (1+O(e−ρL)). (3.4.51)

Finally by substituting the expansion obtained for u1 in Lemma 3.4.11, and taking into

account the fact that 〈
esu,l

1,∞, e
∗
1,∞
〉
C

= 0,

we obtain the result.



115

3.5 Discussion

3.5.1 Application of results

We now discuss the applicability of our result in the examples given in Section 3.2.

Cubic-quintic complex Ginzburg-Landau equation

In this example, all of the required hypotheses either have been proven in previous

works, or can be proven using straightforward techniques. As we study real equations

above, one must first write (3.2.4) in terms of the variables Reu, Imu or u, u, obtaining

a four-dimensional real system. We also note that the well-posedness assumption of

Hypothesis 3.3.8 is trivially satisfied.

Next it can readily be calculated for parameters as in the following proposition, that the

eigenvalues of the asymptotic linearization of (3.2.4) as ξ → +∞ about the equilibrium

u∗ ≡ 0 are hyperbolic, with a complex conjugate pair of eigenvalues on each side of the

imaginary axis. Furthermore, for ξ = −∞, the spectrum of the linearization consists of

complex conjugate pairs νss, νss, and νsu, νsu which satisfy the desired hypotheses. The

results of [157] then give the following proposition

Proposition 3.5.1. For α, β, γ sufficiently small, and ρ > 1, there exists a pushed

front solution uff of the form uff(ξ, t) = eiωptuf(ξ) which invades u∗ with speed cp > clin

and some angular frequency ωp. Here, uf solves (3.2.3), approaches the periodic pattern

up = rpeikpξ as ξ → −∞, and approaches u∗ as ξ → +∞, where cp, ωp, rp, and kp

satisfy the nonlinear dispersion relation (3.2.2). Furthermore, the periodic orbit, up,

has two-dimensional center-unstable manifold in the flow defined by (3.2.3).

Remark 3.5.2. Note that our parameter assumptions differ slightly from those of [157]

where ρ is scaled to be equal to 1, and the coefficient of the linear term u is small. In

order to go from our parameters to theirs, one should make the scalings

u =
ũ

a
, x =

x̃

a2
, t =

t̃

a4
, c = a2c̃, χε = a4χ̃ε, γ = a2γ̃, a2 = ρ.
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Next, for the trigger χ0 given in (3.2.4) above, or for a step-function trigger satisfying

χ0 ≡ ±1 for ξ ≶ 0, we have that the trivial solution u∗ is a preparation front, and

that, for the variables U = (Reu,Reuξ, Imu, Imuξ, χ0), the spatial dynamics equilibria

U∗ = (0, 0, 0, 0,−1), Ũ∗ = (0, 0, 0, 0, 1) satisfy W su(U∗) = 3 and W s(Ũ∗) = 3, where one

dimension from each count is from the χ direction. Also, let Uff denote the heteroclinic

orbit in this formulation which corresponds to uff . For χ0, the tangent spaces of these

invariant manifolds are constant and can be explicitly calculated in terms of the spatial

eigenvalues. The desired transversality of the intersection about u0 can then be obtained

by calculating that

det

(
1 1

ν+
2 ν−1

)
6= 0,

where ν±j solve the dispersion relation, d±(ν) = (1 + iα)ν2 + cν + (±1 − iω), and are

ordered by increasing real part. A standard singular-perturbation argument then gives

the transversality for χε with 0 < ε� 1.

All that is left is to verify are the intersection properties along Uff , and the invertibility

of the associated Melnikov matrix. Note that since there is no non-leading strong-stable

eigenspace, Ess,s
1,∞, the inclination assumption in Hypothesis 3.3.13 is trivially satisfied.

Proposition 3.5.3. For α, β, γ, ε sufficiently small,

dimTUff(ξ)W
ss(U∗) ∩ TUff(ξ)W

cu(Up) = dim
(
TUff(ξ)W

ss(U∗) + TUff(ξ)W
cu(Up)

)⊥
= 2,

and the Melnikov matrix

M =

( ∫∞
−∞ 〈ψ1(ξ), ∂cF (Uff(ξ)〉 dξ

∫∞
−∞ 〈ψ1(ξ), ∂ωF (Uff(ξ)〉 dξ

∫∞
−∞ 〈ψ2(ξ), ∂cF (Uff(ξ)〉 dξ

∫∞
−∞ 〈ψ2(ξ), ∂ωF (Uff(ξ)〉 dξ

)
,

is invertible, where ψj(ξ) are solutions of the adjoint variational equation of the lin-

earization of (3.2.4) with initial conditions ψj(0) satifying

spanj=1,2{ψj(0)} =
(
TUff(ξ)W

ss(U∗) + TUff(ξ)W
cu(Up)

)⊥
.

Proof. First, after scaling t = ωτ , note that ∂τuff and ∂ξuff are linearly independent
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and lie in the kernel of the linear operator

T : V 7→ − ωVτ + (1 + iα)Vξξ + cVξ + V + gA,A(Aff , Aff)V. (3.5.1)

Since ε is small, it can be readily obtained that χε does not induce any eigenfunctions

corresponding to resonance poles of the Evans function about u∗ and hence that ∂τuff ,

and ∂ξuff span the kernel, so that 0 is an eigenvalue of T with geometric multiplicity 2.

We claim its algebraic multiplicity is also equal to 2. Momentarily assuming this claim,

the first statement of the proposition follows immediately, as the adjoint variational

equation is found to have two linearly independent bounded solutions. The proofs of

Theorem 8.4 and Lemma 8.7 in [130] can then be used to obtain that M is invertible.

To prove the claim, we first note that in the real-coefficient case α = γ = β = 0 the

linearized operator T is self-adjoint when defined on an exponentially weighted space

L2
c/2(R × T) with weight e

c
2
ξ. This implies that T does not have a generalized kernel

for α = γ = β = 0. Since algebraic simplicity is an open property, we then have that

for complex parameters α, γ, β sufficiently small, the eigenfunctions ∂tuff , ∂ξuff remain

algebraically simple.

With these propositions in hand we can then apply our results to obtain the existence

of a family of pushed trigger fronts in the modified qcGL equation which bifurcate from

the pushed free front solution obtained in Proposition 3.5.1.

Remark 3.5.4. We also note that our results could be obtained for qcGL with the step

function trigger χ0 by first simplifying the phase-space with the blow-up coordinates used

in [64]. One then obtains a phase space R+×S2, where S2 denotes the Riemann sphere.

In these coordinates, the dynamics are smoothly foliated over S2 which is a normally

hyperbolic invariant manifold. Furthermore, the dynamics on S2 are described by a

Ricatti equation which can be explicitly integrated. Here, the periodic orbit up reduces

to a point, with one-dimensional unstable manifold, while the target manifold W s
+(0) is

two dimensional. Lin’s method could then be readily applied to obtain the desired result.
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Cahn-Hilliard

In the case of Cahn-Hilliard, more work needs to be done to apply our bifurcation

result. While the existence of a preparation front upr can be obtained using a Conley

index argument (see [?, App. A]), the existence of an oscillatory pushed front is, to the

authors’ knowledge, still an open problem. Furthermore, the spectrum of the linearized

modulated traveling wave problem would have to be obtained by first using a Fourier

decomposition in time,

iω`û = −∂ξξ
(
∂ξξû+ f ′(u∗)û

)
= c∂ξû, ` ∈ Z,

writing each equation as a first order equation in ξ, and finding the four spatial eigen-

values ν` which satisfy

0 = ν4 + f ′(u∗)ν2 − cpν + iωp`, ` ∈ Z.

Using a scaling argument, it is possible to show that such spatial eigenvalues are bounded

far away from the imaginary axis for large ` and thus only a few values of ` need be

studied. From this one should hopefully be able to establish (or assume) the intersection

properties of Section 3.3.3, possibly after factoring out the S1-equivariance, and obtain

a leading order expansion for the bifurcation equation.

In practice, one may also proceed by verifying the hypotheses with numerical computa-

tions. As shown above, numerical continuation can be used to provide evidence for the

existence of a pushed invasion front. Then, the spatial eigenvalues ν` could be found

for each ` using the values for cp and ωp obtained from the AUTO calculation in Figure

3.2.3. Regarding the discussion in Remark 3.3.14, we note that for the numerically

determined cp and ωp, the leading eigenspaces corresponding to νss/su lie in the ` = 1

Fourier subspace.

One could then use a numerical eigenvalue solver to test the transversality hypotheses

on upr and uff . For the former, one need only verify that the kernel of the discretized

linearization about upr is empty. For the latter, since the free pushed front is time-

periodic in a co-moving frame, one must look at the spectrum of the discretized linear

period map and determine that the algebraic multiplicity of the Floquet exponent at
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0 is two. Finally, since inclination-flip configurations are degenerate, the failure of the

inclination hypothesis could be tested by perturbing the preparation or free pushed

fronts.

In many experiments and models using the Cahn-Hilliard equation (see for example

[54, ?, 152]), the preparation front is controlled by a traveling source term, instead of a

spatial inhomogeniety as in (3.2.8) above. Such systems usually take the form

ut = −(uxx + f(u))xx + cux + ch(x), (3.5.2)

where the source term h : R→ R is positive, spatially localized, and deposits mass into

the system to transform a stable homogeneous equilibrium into to an unstable state in

its wake. For simplicity, let us also assume that h′ is compactly supported. To apply

our results in this case we must take into account that this equation preserves mass

and hence has a linearization with additional neutral modes. This is manifested in the

corresponding spatial dynamics formulation,

ux = v

vx = θ − f(u)

θx = w

wx = −ω∂τ + cux + h(ξ), (3.5.3)

as the existence of a conserved quantity

I(u1; c) =
1

2π

∫ 2π

0
w − cu dτ, u1 = (u, v, θ, w),

which is constant under the flow for all |ξ| sufficiently large (i.e. outside of the support of

h′). The existence of such a quantity implies the existence of a family of periodic orbits

and hence pushed free invasion fronts which are parameterized by fixed values I(u1; s) ≡
m. Thus, pushed free invasion fronts, if shown to exist, will come in a 1-parameter family

as well. One can obtain existence of pushed trigger fronts, by restricting the phase-space

to the affine, co-dimension one subspaces {I ≡ m} and then applying our results.
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More generally, if the spatial dynamics formulation of a pattern-forming system pos-

sesses conserved quantities one must perform a dimension counting to check that our

genericity and intersection hypotheses still hold. Namely, one must verify that the intro-

duction of neutral modes about the equilibria and periodic orbit preserves the transver-

sality and Fredholm properties we require. For more information and an example of

such calculations see [63, Sec. 4].

3.5.2 Other spectral splittings

As mentioned in the introduction, the spectral splitting associated with the pushed

front’s strong-stable decay and the next weakly-stable eigenvalue comes in other vari-

eties in addition to the case we studied. First we remark that a system where νss has

a complex conjugate while νsu is real and simple should behave in the same way as

discussed above, as the quantity ∆ν would still be complex. One such example arises

in the Extended Fisher-Kolmogorov equation,

ut = −γ∂4
xu+ ∂2

xu+
u

b
(b+ u)(1− u), x, t ∈ R, u ∈ R. (3.5.4)

It has been observed in [155] that pushed fronts exist for b sufficiently small. For

γ < 1/12, this front is asymptotically constant in the wake, while for γ > 1/12 it

forms a spatially periodic pattern of “kinks” and “anti-kinks”. In the former case,

with γ = 0.08 for example, the pushed speed is found to be cp ≈ 2.175 while spatial

eigenvalues νss, νss ≈ −0.575971 ± 1.21251 i and νsu ≈ −0.365678. Hence, the pushed

front in this case has an oscillatory tail and we thus predict that a triggered version

of this equation, with say χ(x − ct) multiplied by the linear term u, would exhibit

non-monotone front locking with respect to the trigger interface.

Many examples arise where both νss and νsu are real, generically leading to monotone

front selection and no front locking phenomena unless a more complicated spatial trigger

is introduced. One such example is the cubic-quintic Nagumo equation,

ut = ∂2
xu+ u+ du3 − u5, x, t ∈ R, u ∈ R. (3.5.5)

Here, using a reduction of order method (see [155]), one finds that free pushed fronts
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exist for all d > 2
√

3
3 and travel with speed cp = −d+2

√
d2+4√

3
.

While such fronts will always be asymptotically constant (i.e. no periodic pattern in

the wake), we hypothesize that certain spatial triggers could induce the front locking

phenomena discussed above. To this end, one could explore triggering phenomena by

moving into a co-moving frame of speed c and studying the equation on a semi-infinite

domain x ∈ (−∞, 0] with various boundary conditions B1(ux) + B2(u) = 0 at x = 0.

In order for the problem to be well-posed, one would look at conditions of the form

ux(0, t) = φ(u(0, t)), for some smooth function φ : R→ R. Triggered fronts would then

be obtained by finding connections between the strong-stable manifold, W ss(0), and

the boundary manifold Bφ defined by the graph of φ. By selecting specific boundary

conditions, one could then obtain multi-stability of fronts which lock to the boundary

condition at different distances. See [106] for a general study of this subject in the case

where the co-moving frame speed is zero. We also remark that it may be possible to

observe interesting dynamics if a triggering mechanism could be used to perturb pushed

fronts in the phase-field system studied in [63].

3.5.3 Stability of pushed trigger fronts

Though we did not study the stability of pushed trigger fronts, direct numerical simu-

lations lead us to expect such solutions to be stable for parameters lying on branches of

the bifurcation curve µ∗(L). Since the asymptotic states are in general stable, so that

there is no unstable continuous spectrum, only localized instabilities could arise. If the

trigger is sufficiently sharp (ε << 1 in the examples above) we expect the corresponding

point spectrum to also be bounded away from the imaginary axis in the left half-plane.

For more general types of triggers, such as those with bounded regions with χ > 1 or

a shallow interface, resonance poles or branch poles ahead of the front could induce

faster speeds and different wave-numbers in the wake. The solutions we construct here

would in such a case be unstable. These effects have been documented in a particular,

prototypical case of coupled KPP equations in [79]. In particular, such localized strong

triggers can create resonance poles in the linearization at the trigger, which in turn

induce spatio-temporal growth. In [79], it was shown that the growth rate of such

a real resonance pole determines the speed of the front in the wake of the trigger.
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In a pattern-forming context, as considered here, one suspects that such resonance

poles would be complex, and thus determine not only speeds but also frequencies, and

therefore wave-numbers, of patterns in the wake. For example, in the context of the

examples given in Section 3.2, if ε were not small, the interface of χε would be shallow,

taking a long time to ramp up from -1 to 1. This would cause resonance poles to arise

in the linearization about u∗ leading to instabilities in the interfacial region where χε

is not close to ±1. Such an example could also be realized in (3.5.2) by making the

source term h only weakly localized. Here, the resulting preparation front would possess

localized instabilities as the interface slowly passes through the spinodal region. Finally,

see [162] for interesting numerical results where spatially periodic forcing induces the

selection of different patterns and locking behavior.



Chapter 4

Hopf-bifurcation from fronts in

the Cahn-Hilliard equation in one

spatial dimension

The contents of this chapter originally appeared in the work [65]; with permission of

Springer.

4.1 Introduction and main results

In this last chapter, we consider the problem discussed in Section 1.5.1. Namely, we use

a direct functional analytic method for bifurcation in the presence of essential spectrum

to prove the existence of oscillatory solutions to the triggered Cahn-Hilliard equation

discussed above

ut = − (uyy + f(y − ct, u))yy + cχ(y − ct; c). (4.1.1)

Recall u is a real-valued function of y, t ∈ R and χ is a source term traveling with speed c

through the domain. After stating and proving our results in Sections 4.1.1-4.3, we then

study an explicit example for which we can verify all of the required hypothesis, apply

our results, and obtain information about the nature of the bifurcating solutions. In

Section 4.6 we use Conley index theory to give an existence proof for preparation fronts

123
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when the nonlinearity f satisfies additional coercivity properties. Finally, in Section 4.7

we use our approach to simplify the Hopf bifurcation result found in [135].

4.1.1 Hypotheses and main existence result

In order to perform our analysis, we pass to a co-moving frame x = y−ct so that (4.1.1)

becomes

ut = − [uxx + f(x, u)]xx + cux + c χ(x; c). (4.1.2)

We now specify the assumptions needed for our main result.

Nonlinearity and trigger. We start with assumptions on f and χ.

Hypothesis 4.1.1. The nonlinearity f is smooth in both x and u, and converges with

an exponential rate to smooth functions f± := f±(u) as x → ±∞. This convergence is

uniform for u in bounded sets.

Hypothesis 4.1.2. The trigger χ = χ(x; c∗) is smooth and exponentially localized in x.

Piecewise-smooth nonlinearity. Our explicit example, and several explicit models

mentioned above are formulated in terms of discontinuous nonlinearities. We therefore

include an alternate setup to cover such cases.

Hypothesis 4.1.3. Let l > 0, χ ≡ 0, u∗(x; c) ≡ u− and f(x, u) = b(x)(u− u−) + g(u),

where b is piecewise smooth in x with jump discontinuities at x = ±`, and g is smooth

in u such that g(u) = O(|u− u−|2).

Remark 4.1.4. Similar results will follow in the same manner if b(x) has any fi-

nite number of jump discontinuities in x. For more general forms of f which possess

x-discontinuities that depend nonlinearly on u, our results should still hold but more

complicated modifications to the smooth case are required.

Existence and robustness of trigger front. We assume existence of a “generic”

propagating front.



125

Hypothesis 4.1.5. There exists a front solution u∗(y − c∗t; c∗) of (4.1.1) for some

c∗ > 0, with

lim
x→±∞

u∗(x; c∗) = u±, u+ − u− =

∫

R
χ(ξ; c∗)dξ.

Moreover, u∗ ∈ C4(R) and

|u∗(x)− u±|+
3∑

j=1

|∂ixu∗(x)| ≤ C ′e−γ|x|,

for some C, γ > 0. We refer to this front solution as the primary trigger front

One can show, under appropriate assumptions on the nonlinearity f and u±, that

such trigger fronts necessarily exist. One can indeed find those as solutions to a non-

autonomous, three-dimensional ODE with a gradient-like structure, using Conley’s in-

dex; see Appendix 4.6 for a outline of the proof.

We are interested in Hopf bifurcations from u∗. In the following, we state our spectral

assumptions and their immediate consequences.

The following hypothesis implies that kerL = ∅ when considered on the spaces L2(R),

L2
η(R) := {u : eη

√
1+x2

u(x) ∈ L2(R)}, and L2
+η(R) := {u : eηxu(x) ∈ L2(R)} for any

η > 0 small. It also follows that, when considered on the last of the spaces just listed, L

is invertible. For background on the notion of extended point spectrum, see for example

[49, Pg. 75].

Hypothesis 4.1.6. The point 0 ∈ C is not contained in the extended point spectrum of

the linearization L : H4(R) ⊂ L2(R)→ L2(R) defined as

Lv := −∂2
x

(
∂2
xv + ∂uf(x, u∗(x))v

)
+ c∗∂xv. (4.1.3)

The following lemma guarantees that our assumptions so far are open in the class of

problems considered here.

Lemma 4.1.7 (Robustness of Front Solution). Assuming the above hypotheses, for ũ±

in a small neighborhood of u±, with ũ+− ũ− = u+−u−, and c close to c∗, there exists a

family of smooth front solutions u∗(x; c) asymptotic to ũ±, satisfying Hypothesis 4.1.5.
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Proof. Hypothesis 4.1.6 implies that the steady-state equation associated with (4.1.2)

(known as the traveling-wave equation) has a transverse intersection of the respective

stable and unstable manifolds emanating from the hyperbolic equilibria u ≡ u±. Indeed

if this intersection were not transverse, the intersection would give rise to an exponen-

tially localized solution of the linearized equation, hence contributing to the extended

point spectrum.

Hopf crossing and non-resonance. We formulate our main spectral hypotheses on

Hopf bifurcation.

Hypothesis 4.1.8. (simple Hopf-Crossing) The operator L, defined on L2(R) as in

(4.1.3) above, has an isolated pair of algebraically simple eigenvalues λ(c) = µ(c)± iκ(c)

and corresponding L2(R)-eigenfunctions p(x), p(x) such that for some ω∗ 6= 0, and c∗ >

0 as above

µ(c∗) = 0, µ′(c∗) > 0, and κ(c∗) = ω∗.

Note that the hypothesis implicitly assumes that iω∗ does not belong to the essential

spectrum, that is, L− iω is Fredholm with index 0. Let ψ be the corresponding adjoint

L2(R)-eigenfunction which is normalized so that

〈ψ, p〉L2(R) = 1.

Also, it can be readily obtained that

〈ψ, p〉L2(R) = 0.

Finally, we assume that there are no point or essential resonances:

Hypothesis 4.1.9. (Absence of resonances) For all λ ∈ iω∗Z�{0,±1}, the operator

L− λ is invertible when considered on the unweighted space L2(R).

Remark 4.1.10. The Fredholm boundaries of L−λ on the unweighted space L2(R) are

equal to the continuous curves

σ± := {λ ∈ C : λ = −k4 − f ′±(u±)k2 + ick, k ∈ R},



127

Each of the curves σ± intersect the imaginary axis at λ = 0 and possibly two other points

±iωe. These last two intersections exist when f ′(u±) > 0, respectively. When considered

on the doubly weighted space L2
η(R) mentioned above, the curves σ± are shifted

ση± := {λ ∈ C : λ = −(ik ∓ η)4 − f ′±(u±)(ik ∓ η)2 + c(ik ∓ η), k ∈ R}.

Using the information in Remark 4.1.10, Figure 4.1.1 depicts examples of Fredholm

boundaries, for η = 0, which do and do not satisfy Hypothesis 4.1.9. The second

figure from the left portrays the intriguing case where both f ′±(u±) > 0 and the Hopf

eigenvalues are on the “wrong” side of the Fredholm borders σ±. In other words,

they lie inside of the essential spectrum of both of the constant coefficient operators

L± := −∂xx
(
∂xx + f ′±(u±)

)
+ c∗∂x, but, since the Fredholm index is determined by the

difference in Morse indices between L±, L−λ∗ has index 0 and our spectral hypothesis

are still satisfied. Though our results give existence of time periodic solutions in this

case, we believe that such solutions are not physically relevant: since the exponential

weight selects the wrong spatial decay rates, the Hopf eigenvalues do not correspond to

poles of the point-wise Green’s function. Thus, any compactly supported initial data

will be at most convectively unstable, leading to point-wise decay as t → ∞. In other

words, in this case the primary trigger front is linearly point-wise stable, even after

the pair of Hopf eigenvalues has crossed the imaginary axis. Only perturbations with

weak exponential decay ahead of the trigger front will induce linear exponential growth

associated with this pair of Hopf eigenfunctions. One would expect that such weakly

decaying perturbations eventually saturate at the time periodic profile constructed in

our theorem. Although we do not prove this here, we suspect this time-periodic profile

itself is stable against point-wise perturbations. If, on the other hand, the primary

trigger front is perturbed by compactly supported initial conditions, such as the Hopf

eigenfunctions multiplied by a bump function, one would expect the solution to converge

back to the primary trigger front.

Large domain length. We may characterize the spectrum of L more explicitly if we

further restrict our hypotheses by assuming that f(x, u) is piecewise constant in x with

∂uf(x, u0) ≡ C > 0 for all x ∈ [−`, `]. The results of [127] imply that for ` >> 1 all but
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the intriguing case where both f 0
±(u±) > 0 and the Hopf eigenvalues are on the ”wrong” side

of the Fredholm borders �±. In other words, they lie inside of the essential spectrum of both

of the constant coe�cient operators L± := �@xx

�
@xx + f 0

±(u±)
�

+ c⇤@x, but, since the Fredholm

index is determined by the di↵erence in Morse indices between L±, L � �⇤ has index 0 and our

spectral hypothesis are still satisfied. Though our results give existence of time periodic solutions

in this case, we believe that such solutions are not physically relevant: since the exponential weight

selects the wrong spatial decay rates, the Hopf eigenvalues do not correspond to poles of the point

wise Green’s function. Thus, any compactly supported initial data will be at most convectively

unstable, leading to point wise decay as t ! 1. Hence if the oscillatory part of our bifurcating

solution were multiplied by a compactly supported bump-function, it would decay as well for the

linearized equation.

�+

��

�+

��

�+

��

�+

��

Figure 1.2: Examples of allowed (first two figures) and disallowed (last two figures) spectrum of L in C under
our hypothesis with ⌘ = 0. The crosses denote the eigenvalues �⇤(c⇤),�⇤(c⇤), solid (blue) and dotted (red)
lines denote the Fredholm borders �± while the shaded region denotes the essential spectrum of L.f:OK

Large domain length. We may characterize the spectrum of L more explicitly if we further

restrict our hypotheses by assuming that f(x, u) is piecewise constant in x with @uf(x, u0) ⌘ C > 0

for all x 2 [�`, `]. The results of [38] imply that for ` >> 1 all but a finite set of the point spectrum

of L is well approximated by the absolute spectrum, ⌃abs ⇢ C, of the linearization about the

homogeneous state u0. Hence, eigenvalue crossings as described in Hypothesis 1.9 occur when ⌃abs,

typically through one or more branch points, crosses into the right half of the complex plane. The

front speed for which these crossings occur has come to be known as the linear spreading speed,

which we denote as clin; see [20] and [56] for a more in depth discussion of these topics. Thus, as

`! 1, the Hopf-crossing speed c⇤ will approach clin.

In Section 4, our assumptions on f allow us to use such an argument to prove the existence

of a Hopf eigenvalue crossing and subsequently obtain explicit expansions for the corresponding

eigenfunctions. This then allows us to apply Theorem 1 to prove the existence of a Hopf bifurcation

for an explicit example of this form.

1.5 Main Result
s:mr

We are now ready to state our main result.

t:hbex Theorem 1. Given Hypotheses 1.5, 1.6, 1.9, 1.10 and either the pair 1.1 and 1.2, or 1.3, there

exists a one-parameter family of time-periodic solutions of (1.2) which bifurcate from the front

solutions u⇤(x, c) as the speed c decreases through c⇤. This solution branch (u, c,!) 2 (u⇤+H4(R))⇥

7

Figure 4.1.1: Examples of allowed (first two figures) and disallowed (last two figures)
spectrum of L in C under our hypothesis with η = 0. The crosses denote the eigenvalues
λ∗(c∗), λ∗(c∗), solid (blue) and dotted (red) lines denote the Fredholm borders σ± while
the shaded region denotes the essential spectrum of L. (Color figure online)

a finite set of the point spectrum of L is well approximated by the absolute spectrum,

Σabs ⊂ C, of the linearization about the homogeneous state u0. Hence, eigenvalue

crossings as described in Hypothesis 4.1.8 occur when Σabs, typically through one or

more branch points, crosses into the right half of the complex plane. The front speed

for which these crossings occur has come to be known as the linear spreading speed,

which we denote as clin; see [80] and [156] for a more in depth discussion of these topics.

Thus, as `→∞, the Hopf-crossing speed c∗ will approach clin.

In Section 4, our assumptions on f allow us to use such an argument to prove the

existence of a Hopf eigenvalue crossing and subsequently obtain explicit expansions for

the corresponding eigenfunctions. This then allows us to apply Theorem 4.1.3 to prove

the existence of a Hopf bifurcation for an explicit example of this form.

4.1.2 Main Result

We are now ready to state our main result.

Theorem 4.1.3. Given Hypotheses 4.1.5, 4.1.6, 4.1.8, 4.1.9 and either the pair 4.1.1

and 4.1.2, or 4.1.3, there exists a one-parameter family of time-periodic solutions of

(4.1.2) which bifurcate from the front solutions u∗(x, c) as the speed c decreases through

c∗. This solution branch (u, c, ω) ∈ (u∗ + H4(R)) × R2 can be parameterized by r ≥ 0,

the amplitude of oscillations. More precisely, there exist r∗ > 0 and smooth functions

Υj, j ∈ {c, ω, u}, defined for |r| < r∗, Υj(0) = 0, so that

c = c∗ + Υc(r
2), ω = ω∗ + Υω(r2), u = u∗ + Υu(r),
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with expansions

Υc(r
2) =

Re{θ+}
µ′(c∗)

r2 +O(r4), Υω(r2) = Im{θ+}|r|2 +O(|r|4),

Υu(r) = rp cos(ωt) +O(r2).

Here, µ′(c∗) is the crossing speed from Hypothesis 4.1.8, and

θ+ =
〈(

3 ∂3
uf(x, u∗) p2p + ∂2

uf(x, u∗) [pϕ0 + pϕ+]
)
xx
, ψ
〉
L2
η(R)

,

with p, ψ eigenfunctions and adjoint eigenfunctions, and ϕi, defined in (4.3.5) below,

encode quadratic interactions. In particular, if Re{θ+} > 0, the bifurcation is super-

critical; if Re{θ+} < 0 then the bifurcation is subcritical.

A numerical example of this bifurcation is given in Figure 4.1.2 where equation (4.1.2) is

simulated with f(x, u) = u−u3 and χ equal to a sum of two Gaussian source terms. The

corresponding trigger front u∗ connects two stable homogeneous equilibria at x = ∓∞
with a spinodally unstable plateau state in-between. For speed c > c∗, oscillatory

instabilities of this front are convected away, while for c < c∗ they are self-sustaining.

This setting, for which our results give a rigorous characterization, is closely related

to models used by [40] and [152], where χ is composed of only a single Gaussian and

produces a front u∗ which connects a stable equilibrium at x = +∞ to a spinodally

unstable equilibrium at x = −∞. Here, a similar bifurcation occurs as the trigger speed

is reduced. Numerical simulations of such a situation are depicted in Figure 4.1.3.

The remainder of the paper is organized as follows. In Section 4.2, we establish Fredholm

properties of the linearization. This is done in Propositions 4.2.1 and 4.2.10, for f

smooth and piecewise-smooth in x respectively, using the methods of [44] and [123]. In

Section 4.3 we give the proof of Theorem 4.1.3. In Section 4.4 we study a prototypical

example, showing the existence of a first crossing of Hopf eigenvalues. By finding leading

order estimates for such a crossing and its corresponding eigenfunctions, we then apply

Theorem 4.1.3 to obtain existence of a Hopf bifurcation and compute the direction of

branching. In Section 4.5 we discuss possible extensions and applications of our results.
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Figure 4.1.2: (Left): Front profile u∗ in co-moving frame for two Gaussian source terms.
(Middle), (Right): Spacetime plots in co-moving frame with speed c > c∗ and c < c∗
respectively. The initial condition for both is u∗ plus a small localized perturbation near
x = −75.
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Figure 4.1.3: (Left): Front profile u∗ in co-moving frame. (Middle), (Right): Spacetime
plots in co-moving frame for speeds above and below a bifurcation point. The initial
condition for both is u∗ plus a small Gaussian perturbation near x = −75.

4.2 Preliminaries and Fredholm properties

After introducing some notation and function spaces, we establish Fredholm properties

in weighted spaces in Section 4.2.1. We list necessary changes for the piecewise smooth

case in Section 4.2.2.
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For η > 0 we define the exponentially weighted norm

‖w‖22,η :=

∫

R
|eη〈x〉w(x)|2dx, (4.2.1)

where 〈x〉 =
√

1 + x2. We say that w ∈ L2
η(R) if w is Lebesgue-measureable and

‖w‖2,η <∞. Similarly, we define Sobolev spaces Hk
η , with ∂ju ∈ L2

η for j ≤ k. We use

the following space-time norms,

X = L2(T), Y = H1(T),

X = L2
η(R, X), Y = L2

η(R, Y ) ∩H4
η (R, X), (4.2.2)

where x ∈ R and τ ∈ T = [0, 2π), the one-dimensional torus. Note that Y is dense and

compactly embedded in X. Also note that X is a Hilbert space with the inner product

〈u, v〉X :=
1

2π

∫ 2π

0

∫ ∞

−∞
u(x, τ)v(x, τ) e2η〈x〉 dx dτ.

Furthermore, the following norm makes Y a Hilbert space

‖u‖2Y :=

∫ ∞

−∞
‖u(x, ·)‖2Y +

4∑

j=1

‖∂jxu(x, ·)‖2Xdx. (4.2.3)

We define F : Y × R2 → X as

F : (v;ω, c) 7−→ ωvτ + (vxx + g(x, v; c))xx− c vx, g(x, v; c) := f(x, u∗+ v)− f(x, u∗),

so that time-periodic solutions u = u∗ + v of (4.1.2) satisfy F (v;ω, c) ≡ 0.

4.2.1 Smooth nonlinearity

We are interested in Fredholm properties of the linearization L : Y ⊂ X → X of F at

the homogeneous solution (v;ω, c) = (0;ω∗, c∗), which has the form

L : v 7−→ ω∗∂τv − Lv = ω∗∂τv − ∂xL̃v, L̃ : v 7−→ −∂x
(
∂2
xv + ∂uf(x, u∗)v

)
+ c∗v.

(4.2.4)
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These properties will be necessary to implement the Lyapunov-Schmidt reduction used

in the proof of Theorem 4.1.3. We prove that L is Fredholm in Proposition 4.2.1 and

we compute its Fredholm index in Proposition 4.2.7.

Proposition 4.2.1. Assuming Hypotheses 4.1.1, 4.1.2, 4.1.6, 4.1.8, and 4.1.9, the

operator L : Y ⊂ X → X is Fredholm.

To prove this proposition we shall need a few lemmata. First of all, we shall need a

standard abstract closed range lemma.

Lemma 4.2.2. (Abstract closed range lemma) Let V,W,Z be Banach spaces, T : V →
W a bounded linear operator, and K : V → Z a compact linear operator such that

||u||V ≤ C (||Ku||Z + ||Tu||W ) ,

for all u ∈ V and some C > 0. Then T has closed range and finite dimensional kernel.

Proof. The proof can be found in [147, Prop. 6.7, Pg. 583].

Next, we prove the following lemma which adapts the methods of [123]; see also [44].

For J > 0, let Y(J) and X (J) denote the spaces of functions, in Y and X respectively,

which have x-support in the interval [−J, J ]. Since the embedding Y(J) ↪→ X (J) is

compact, the following lemma allows us to apply Lemma 4.2.2 to L.

Lemma 4.2.3. There exist constants C > 0 and J > 0 such that the operator L defined

above satisfies

‖ξ‖Y ≤ C
(
‖ξ‖X (J) + ‖Lξ‖X

)
. (4.2.5)

Proof. Throughout, C > 0 will be a changing constant, possibly dependent on

η, c∗, ω∗, f, u∗ and u± but not ξ. Following [123, Lem. 3.7], the proof is divided into

three steps:

Step 1: Prove that the estimate holds for J =∞.

For this step, momentarily assume that the exponential weight has η = 0. To begin, we

notice

‖Lξ‖X ≥ ‖(∂τ + ∂4
x)ξ‖X − ‖∂2

x(∂uf(x, u∗)ξ)− c∗∂xξ‖X . (4.2.6)
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Since f and u∗ are smooth, for all ε > 0 we have

‖∂2
x(∂uf(x, u∗)ξ)− c∗∂xξ‖X ≤ C‖ξ‖H2(R,X)

≤ C‖ξ‖
1
2
X · ‖ξ‖

1
2

H4(R,X)

≤ C
(
ε‖ξ‖H4(R,X) +

1

4ε
‖ξ‖X

)
. (4.2.7)

Combining (4.2.6) and (4.2.7), we have for sufficiently small ε > 0

‖Lξ‖X +
C

4ε
‖ξ‖X ≥ ‖(∂τ + ∂4

x)ξ‖X − Cε‖ξ‖H4(R,X)

≥ C‖u‖Y . (4.2.8)

This gives the desired estimate.

If η > 0 then this step works in essentially the same manner. The only difference is that

one must work with the conjugated operator Lη := eη〈x〉L e−η〈x〉 and deal with third

derivative terms which are small due to the fact that η > 0 is small.

Step 2: Prove the estimate for the constant coefficient operators L± given above.

We must work with the conjugated operators L±,η := eη〈x〉L± e−η〈x〉. By taking the

Fourier transform in both x and τ , if

L±,ηξ = g, (4.2.9)

then

ĝ(iζ, ik) =
[
(ζ ∓ η)4 − f ′±(u±)(ζ ∓ η)2 − ic∗(ζ ∓ η) + iωk

]
ξ̂, ξ ∈ R, k ∈ Z.

By Hypothesis 4.1.9 and Remark 4.1.10, for η > 0 the essential spectrum of the time-

independent operator does not intersect the set iω∗Z. Hence both equations in (4.2.9)

are invertible and

ξ̂ =
(
(ζ ∓ η)4 − f ′±(u±)(ζ ∓ η)2 − ic∗(ζ ∓ η) + iωk

)−1
ĝ
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such that the coefficient on the right is bounded. The estimate

‖ξ̂‖X ≤ sup
ζ∈R,k∈Z

|
(
(ζ ∓ η)4 − f ′±(u±)(ζ ∓ η)2 − ic∗(ζ ∓ η) + iωk

)−1 | · ‖ĝ‖X ,

implies by Fourier-Plancherel that

‖ξ‖Y ≤ C‖L±ξ‖X .

Step 3: To complete the proof we use the estimates of Step 1 and Step 2 to perform a

patching argument in the same way as in [123] and [44]. To begin, for J > 1 let ξ± ∈ Y
such that ξ+(x) = 0 for all x ≤ J − 1 and ξ−(x) = 0 for all x ≥ 1− J . The exponential

decay of u∗ − u± and f − f± as x → ±∞ from Hypotheses 4.1.2 and 4.1.5 gives the

following estimate. For any ε > 0, there exists J > 0 sufficiently large such that

||(L± − L)ξ±||X ≤ ε||ξ±||H2
η(R,T). (4.2.10)

This allows us to obtain

||ξ±||Y ≤ C||L±ξ±||X
≤ C

(
||(L± − L)ξ±||X + ||Lξ±||X

)

≤ C
(
ε||ξ±||H2

η(R,T) + ||Lξ±||X .
)

where we have used the estimate from Step 2 in the first inequality. Chosing ε < 1
C we

obtain

||ξ±||Y ≤ C||Lξ±||X . (4.2.11)

Next note that for ξ ∈ Y with ξ ≡ 0 for all |x| ≤ J − 1 we can decompose ξ = ξ+ + ξ−

with

ξ+ =




ξ(x), x ≥ 0

0, x < 0,
ξ− =





0, x ≥ 0

ξ(x), x < 0.
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Applying estimate (4.2.11) we then obtain

||ξ||2Y = ||ξ+||2Y + ||ξ−||2Y
≤ C

(
||Lξ+||2X + ||Lξ−||2X

)
= C||Lξ||2X . (4.2.12)

Finally, given any ξ ∈ Y choose a smooth bump function β such that β ≡ 1 for |x| ≤ J−1

and β ≡ 0 for |x| ≥ J . Applying, (4.2.12) and Step 1 we obtain

||ξ||Y ≤ ||βξ||Y + ||(1− β)ξ||Y
≤ C (||βξ||X + ||L(βξ)||X + ||L ((1− β)ξ) ||X )

≤ C
(
||ξ||X (T ) + ||Lξ||X

)
,

giving the desired result.

Proof. [Proof of Prop. 4.2.1]

Lemma 4.2.3 gives that L has closed range and finite dimensional kernel. To finish the

proof we define a suitable adjoint L∗ and show it also satisfies a closed range lemma as

above. In unweighted spaces the formal adjoint is

L∗ := ∂4
x + ∂uf(x, u∗)∂2

x + c∗∂x − ω∂τ .

But as we wish to work with exponentially weighted spaces Y and X , we define the

adjoint using the conjugated operator

L∗η := eη〈x〉L∗e−η〈x〉 : H4(R, X) ∩ L2(R, Y ) ⊂ L2(R, X)→ L2(R, X),

Note, since Lη is closed and densely defined, L∗η is well-defined.

This operator can then be run through the same estimates as in Lemma 4.2.3, and we

once again obtain that L∗η has closed range and finite kernel. Therefore L is Fredholm.

Next, in Lemma 4.2.4 and 4.2.5, we determine the index of L. We decompose X and
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Y into a direct sum of invariant subspaces so that L is diagonal and the index of each

restriction can be readily calculated. Elementary results (see for example [147]) then

give that L has index equal to the sum of the indices of the restrictions.

The work of [5, Thm. 1.5] gives that X has a Fourier decomposition in the time variable

X =
⊕

k∈Z
X k, X k :=

{
v ∈ X : v(x, τ) = ṽ(x)eikτ , ṽ ∈ L2

η(R)
}
.

Next, let Xh =
⊕

k 6=0X k, and Yh =
⊕

k 6=0 Yk, where Yk = X k ∩ Y, so the following

decompositions hold

X = X 0 ⊕Xh, Y = Y0 ⊕ Yh.

Note that X0 is the set of all time-independent functions in X while Xh is the set of all

functions with time-average equal to zero.

Lemma 4.2.4. The restriction L0 := L : Y0 → X 0 has Fredholm index −1.

Proof. On Y0 we have L = −L = −∂x ◦ L̃. Recall from (4.2.4) that L̃ : H3
η (R) ⊂

L2
η(R) → L2

η(R) is defined as L̃v = −∂x(∂2
xv + ∂uf(x, u∗)v) + c∗v. Hypothesis 4.1.2

implies that L̃ is an asymptotically constant operator:

L̃→ L̃± as x→ ±∞, L̃±v := − ∂3
xv − f ′±(u±)∂xv + c∗v.

Moreover, the constant coefficient first order systems associated with L̃± are hyperbolic

with the same Morse index. Indeed, since c > 0, each of the polynomials ν3 +f ′±(u±)ν−
c = 0 has two positive roots and one negative root. Thus, the piecewise constant

operators L̃+ and L̃− have relative Morse index equal to zero as well. This implies that

the operator L̃ has Fredholm index equal to zero. (See for example [85, Sec. 3.1.10 -

11])).

To finish the proof it suffices to notice that ∂x : H1
η (R) → L2

η(R) is Fredholm with

index -1. The result then follows using standard results on the composition of Fredholm

operators (see for example [147, Sec. A.7])

Lemma 4.2.5. The restriction Lh := L : Yh → Xh has Fredholm index 0.
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Proof. First note that since L is Fredholm, Lh and L∗h must have finite dimensional

kernel. Next, it is straightforward to notice that each restriction Lk := L : Yk ⊂ X k →
X k is well defined and takes the form

Lk(eikτ ṽ(x)) = ∂2
x

(
∂2
xṽ + ∂uf(x, u∗(x))ṽ

)
− c∗∂xṽ + iωkṽ.

Hypothesis 4.1.6 and 4.1.9 imply that for Lk and its adjoint L∗k

dim kerLk =





0 k 6= ±1

1 k = ±1,
dim kerL∗k =





0 k 6= ±1

1 k = ±1.

Comparing the dimensions of kerLh and kerL∗h then implies that Lh has Fredholm

index 0.

Remark 4.2.6. For simplicity, we have included direct proofs to determine the Fredholm

index of L in the preceding lemmas. We note that one could also calculate these using a

spectral flow as in [123]. Namely, the index could be found by tracking spatial eigenvalue

crossings as x moves from −∞ to +∞.

The previous lemmas then give the following proposition.

Proposition 4.2.7. Given the hypotheses in Proposition 4.2.1, the operator L has

Fredholm index -1.

Proof. Since L can be decomposed as

L :=

(
L0 0

0 Lh

)
: Y0 ⊕ Yh −→ X0 ⊕Xh,

a standard result in Fredholm theory (see [147, Sec. A.7]) gives that the Fredholm index

of L is equal to the sum of the indices of L0 and Lh. This fact, in combination with

Lemmas 4.2.4 and 4.2.5, proves the proposition.
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4.2.2 Piecewise smooth f

If Hypothesis 4.1.3 is assumed instead of Hypotheses 4.1.1 and 4.1.2 the setting must

be slightly altered in order to obtain the Fredholm properties required in the proof of

Theorem 4.1.3. In particular, since ∂uf has discontinuities in x, L is not well-defined

on Y and hence jump-conditions are needed. Let us define the jump condition notation

δx0u = lim
x→x+

0

u(x, t)− lim
x→x−0

u(x, t).

Also, for simplicity let us define the piecewise-smooth function

b(x) = ∂uf(x, u∗(x)).

Next let us define the following set of conditions on a function u(x, t),

(##) :=





t ∈ T, x0 = ±`,
δx0u = 0, δx0ux = 0, δx0uxx = −u(x0, t) δx0b,

δx0uxxx = − [u(x0, t) δx0bx + ux(x0, t) δx0b] .

A brief calculation then shows that L is well defined on the space

Y## :=
(
H4
η

(
[`,∞), X

)
⊕H4

η

(
[−`, `]), X

)
⊕H4

η

(
(−∞,−`], X

))
∩L2

(
R, Y

)
∩(##) ⊂ X .

Furthermore, it is easily seen that L is a closed, densely defined operator on X . Indeed,

the latter fact follows from the density of Y in X , and the fact that for any u ∈ Y there

exists a function v, which is smooth away from the points x = ±`, has arbitrarily small

L2-norm, and yet satisfies the jump conditions (##) so that u+ v ∈ Y##.

For ease of notation, we restrict for the remainder of the section to f with one jump

discontinuity located at x = 0. The result for a nonlinearity with multiple discontinuities

will follow in the same manner. Hence we work with the operator

L : Y# :=
(
H4
η (R−, X)⊕H4

η (R+, X)
)
∩ L2

η(R, Y ) ∩ (#) ⊂ X → X , (4.2.13)
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defined as in (4.1.3) above with

(#) :=





t ∈ T, x0 = 0

δx0u = 0, δx0ux = 0, δx0uxx = −u(x0, t) δx0b,

δx0uxxx = − [u(x0, t) δx0bx + ux(x0, t) δx0b] .

Our approach is to conjugate from Y to Y# through a change of variables ũ = u + Φ

where Φ = Φ(x, τ) has jump discontinuities on (0, τ) ∈ R × T which compensate for

the discontinuities created by b(x). We construct Φ using solutions of fractional order,

L2(T)-valued, evolution equations which have the jump conditions on {0}×T as initial

conditions.

For any µ, τ ∈ [0,∞), and open U ⊂ R let

W σ,µ
η (U × T) := Hµ

η (U,X) ∩ L2
η(R, Hσ(T)),

denote the anisotropic Sobolev space of order µ in space and order σ in time defined

in the usual way via Fourier Transform. As they will repeatedly arise in the following,

denote V = R×T and V ± = R±×T. Note also that W 0,0
η (V ) = X , W 1,0

η (V ) = L2
η(R, Y ),

W 0,4
η (V ) = H4

η (R, X), and W 1,4
η (V ) = Y.

To setup the evolution equations, for i = 0, 1 and αi ∈ R+, let Ai : Hαi(T)→ L2(T) be

the linear operators defined via Fourier series as

(Âiv)k := (−|k|αi − 1) v̂k, k ∈ Z. (4.2.14)

Next, for βi ∈ R+, define the trace operators Ti : W 1,4
η (V +)→ Hβi(T) as

T0[u] := −δ0(b)u(0, τ), T1[u] := −(δ0(bx)u(0, τ) + δ0(b)ux(0, τ)).

Anisotropic trace estimates give that u(0, τ) ∈ H7/8(T) and ux(0, τ) ∈ H5/8(T) if u ∈
W 1,4
η (V +); see [35, Lem 3.5]. This means that T0 and T1 are well defined for β0 ≤ 7/8

and β1 ≤ 5/8 respectively. Also, note that if these inequalities are strict then each Ti is

compact.
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In order to obtain the desired regularity properties we set

α0 =
5

16
, α1 = 1, β0 =

7

8
− ε, β1 =

5

8
− ε, (4.2.15)

for some ε > 0 sufficiently small. Then, define the X-valued initial value problems

∂xv0 = A0v0, v0(0) = T0[u], (4.2.16)

∂xv1 = A1v1, v1(0) = T1[u]−A0T0[u]. (4.2.17)

where vi = vi(x) take values in X = L2(T). We then obtain the following result

characterizing solutions of these equations.

Proposition 4.2.8. Given u ∈W 1,4
η (V +), there exist unique solutions v∗0 and v∗1 of the

initial value problems (4.2.16) and (4.2.17) which satisfy

v∗0 ∈W β0−α0/2,1
η (V +) ∩W β0+α0/2,0

η (V +) ∩W β0−3α0/2,2
η (V +), (4.2.18)

v∗1 ∈W β1−α1/2,1
η (V +) ∩W β1+α1/2,0

η (V +). (4.2.19)

Proof. This result can be proved using Fourier analysis. For a more general reference

see [1]

Note that for the specific values of αi, βi listed in (4.2.16) and (4.2.17), we have v∗0 ∈
W 1,2
η (V +) and v∗1 ∈W 1,1

η (V +). We may then define functions Φi = Φi(x, τ) as

Φ0(x, τ) :=

∫ x

0

∫ y

0
v∗0(s, τ)ds dy, Φ1(x, τ) :=

∫ x

0

∫ y

0

∫ z

0
v∗1(s, τ)ds dz dy, (4.2.20)

so that Φ0,Φ1 ∈W 1,4
η (V +). By extending Φi by zero for (x, τ) ∈ V − and using the fact

that

(Φ0)x

∣∣∣
x=0

= (v∗0)x

∣∣∣
x=0

= A0v
∗
0

∣∣∣
x=0

= A0T0[u],

our construction gives that (Φ0 + Φ1) satisfies the jump conditions (#) defined above.

Hence the following mapping is well defined

Φ : W 1,4
η (V )→ Y#, (4.2.21)

u 7−→ Φ[u] = Φ[u](x, τ) := ρ(x)(Φ0(x, τ) + Φ1(x, τ)), (4.2.22)
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where ρ = ρ(x) is a smooth bump function compactly supported and identically equal

to 1 in a neighborhood of the origin. We then have the following lemma

Lemma 4.2.9. The mapping id + Φ : Y → Y# is a linear isomorphism.

Proof. It is readily found that this mapping is linear. Furthermore, since we have

not used the full trace regularity of u, the mapping Φ is compact. Hence, it suffices to

show that id + Φ is one-to-one, since it then immediately follows that the mapping is

onto. If (u+ Φ[u]) = 0, then for all τ ∈ T

ũ(0, τ) = Φ[u](0, τ) = 0 = Φ[u]x(0, τ) = ux(0, τ).

This implies

δ0(Φ[u]xx) = δ0(Φ[u]xxx) = 0,

so that the initial value problems (4.2.16) and (4.2.17) have zero initial conditions and

hence that u = 0.

We are now ready to prove the desired result.

Proposition 4.2.10. Assuming the Hypotheses 4.1.6, 4.1.8, 4.1.9, and 4.1.3, the op-

erator L : Y# ⊂ X → X is Fredholm with index -1.

Proof.

First note that because L is closed and densely defined, its X -adjoint is

L∗ : Y ⊂ X → X
L∗v := −∂tu− ∂4

xu− b(x)∂2
xu− c∗∂xu. (4.2.23)

This definition can be easily calculated using the jump conditions in (##) and integra-

tion by parts. The methods used to prove Proposition 4.2.1 can immediately be applied

to obtain that L∗ has closed range and finite dimensional kernel.

Since id + Φ is an isomorphism, it suffices to prove that L̃ := L ◦ (id + Φ) : Y → X
has closed range and finite dimensional kernel. We thus proceed as in Lemma 4.2.3.

We only give the proof of Step 1, obtaining a G̊arding type inequality as in (4.2.8).
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The subsequent steps will then follow in an analogous way to those in Lemma 4.2.3.

In particular, since L̃ is equal to constant coefficient operators L± for x outside the

support of Φ[u], an even simpler patching argument than that of [44] and [123] can

be implemented. Also, since we have conjugated to the space Y, we still have the

compact embedding of the truncated spaces Y(J) ↪→ X (J) and may apply the abstract

closed range lemma. Therefore L̃ and, by Lemma 4.2.9, L have closed range and finite

dimensional kernel. Since L∗ has the same properties, we find that L is Fredholm. The

index can be found in the exact same manner as in Section 4.2.1.

Let . and & denote inequality up to a constant independent of the variables being used.

We first estimate

‖LΦ[u]‖X = ‖LΦ[u]‖
W 0,0
η (V +)

. ‖Φ[u]‖
W 1,4
η (V +)

. ‖Φ[u]‖
W 1,0
η (V +)

+ ‖Φ[u]‖
W 0,4
η (V +)

. ‖u‖
W 1−ε,0
η (V )

+ ‖u‖
W 0,2
η (V )

≤ c1(ε)‖u‖X + c2(ε)‖u‖Y . (4.2.24)

where c1(ε) → ∞ and c2(ε) → 0 as ε → 0+. In the first two lines we restricted to V +

because supp(Φ) ⊂ V +. In the third line, the first term is obtained by exploiting the

fact that less than maximal regularity of the trace, u|x=0, is used. The second term in

the third line is obtained using trace and inverse-trace estimates from [35, Lem. 3.5],

‖Φ[u]‖
W 0,4
η (V +)

. ‖Φ[u]xx‖W 0,2
η (V +)

. ‖u(0, ·)‖
W

3/4,3/2
η ({0}×T)

. ‖u‖
W 0,2
η (V +)

+ ‖u‖
W 0,2
η (V −)

. ‖u‖W 0,2(V ). (4.2.25)

To obtain the last line in (4.2.24), we use the estimates

‖u‖
W 0,2
η (V )

.
1

ε
‖u‖X + ε‖u‖Y , (4.2.26)

‖u‖
W 1−ε,0
η (V +)

≤ ‖u‖ε
W 0,0
η (V )

‖u‖1−ε
W 1,0
η (V )

≤ c̃1(ε)‖u‖
W 0,0
η (V ))

+ c̃2(ε)‖u‖
W 1,0
η (V )

, (4.2.27)

where c̃1(ε)→ +∞ and c̃2(ε)→ 0 as ε→ 0. The estimate (4.2.27) uses standard Sobolev
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interpolation results (see [98]) and Young’s inequality.

This finally allows us to obtain

‖L̃u‖X = ‖L ◦ (id + Φ)u‖L2
η(V ) &

∑

i=±
‖L ◦ (id + Φ)u‖L2

η(V i)

≥
∑

i=±
‖Lu‖L2

η(V i) − ‖LΦ[u]‖L2
η(V i)

&
∑

i=±

(
‖u‖

W 1,4
η (V i)

− ‖u‖L2
η(V i)

)
− ‖LΦ[u]‖X

&
∑

i=±

(
‖u‖

W 1,4
η (V i)

− ‖u‖L2
η(V i)

)
− (c1(ε)‖u‖X + c2(ε)‖u‖Y)

≥ Cε‖u‖Y − C ′ε‖u‖X , (4.2.28)

with Cε, C
′
ε > 0 for ε > 0 sufficiently small. Since L ◦ (id + Φ)u ∈ L2

η(V ), the first and

last inequality follow from the equivalence of the Euclidean and box norms on R2. The

third inequality is obtained by proceeding as in Step 1 of Lemma 4.2.3 on each V i. The

estimate (4.2.24) gives the fourth inequality.

In the more general case where b(x) has more than one discontinuity, one must first

construct jump functions Φi as above for each of the domain decompositions R =

(−∞,−`) ∪ (−`,∞), (−∞, `) ∪ (`,∞). Then Φ may be obtained as a sum of the

ρi(x) · Φi(x, τ), where each ρi is a sufficiently localized smooth bump function which is

identically one in a neighborhood of a discontinuity of b.

4.3 Proof of main theorem

4.3.1 Smooth front profile u∗

In this section, we give the proof where Hypothesis 4.1.1 and 4.1.2 hold. The proof for

Hypothesis 4.1.3 will follow in the same way with a few alterations and is lined out in

Section 4.3.2.

Using Lyapunov-Schmidt reduction, we wish to solve F(w,ω, c) = 0 for (ω, c) close to

(ω∗, c∗). Since L has Fredholm index -1, one must alter the setting before the Implicit
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Function theorem may be applied in the reduction. In our setting, this alteration is

simple. Let

X̊ := {u ∈ X :
〈
u, e−2η〈x〉

〉
X

= 0},

so that X̊ is a closed subset of X . Using the fact that, for any exponential weight with

η > 0, the constant function e−2η〈x〉 lies in the cokernel of L, it is readily found that L
maps Y into X̊ . Thus, we may restrict the codomain of our problem.

Furthermore, the linearization L has Fredholm index zero when considered as an op-

erator L : Y → X̊ . This follows from Proposition 4.2.1 and Fredholm algebra. Indeed

L : Y → X can be viewed as the composition S ◦ L where S : X → X̊ is the orthogonal

projection onto X̊ possessing fredholm index 1.

Let us define

ω̃ = ω − ω∗, c̃ = c− c∗, Ω = (ω̃, c̃), (4.3.1)

so that F is now a function of (u; Ω) ∈ Y × R2. For the following we suppress the

dependence on parameters (ω̃, c̃) unless it is needed.

By Hypothesis 4.1.8, for the functions P+(x, τ) := eiτp(x), P−(x, τ) := P+(x, τ),

kerL = span
{
P+, P−

}
.

Furthermore, let us give u0 ∈ kerL the coordinates

u0 = aP+ + aP−,

with a, a ∈ C. Next, with the adjoint eigenfunctions ψ(x) and ψ(x) as defined in Section

4.1.1, we define Ψ+(x, τ) := eiτψ(x), Ψ− := Ψ+. The algebraic simplicity assumed in

Hypothesis 4.1.8 implies

〈Pi,Ψj〉X = δij ,

where δij is the Kronecker delta. Then since L is Fredholm by Proposition 4.2.1, we

have the following decomposition

X̊ = kerL∗ ⊕M, M = (span{Ψ−,Ψ+})⊥ .
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This decomposition has the associated projections

Q : X̊ → kerL∗, P := I −Q : X̊ →M.

The projection onto kerL∗ can be explicitly defined as

Qu =
∑

i=±
〈u,Ψi〉X ·Ψi. (4.3.2)

Thus, solving F ≡ 0 is equivalent to solving the following system of equations

0 = PF(u0 + uh,Ω), (4.3.3)

0 = QF(u0 + uh; Ω), (4.3.4)

where uh ∈ N := (kerL)⊥.

Since the linearization L of F about the trivial state (0; 0, 0) has Fredholm index zero,

the linearization of the first equation with respect to uh is invertible on N . Since F is a

smooth function of (v, ω, c), the Implicit Function theorem guarantees that there exists

a smooth function ϕ : kerL × R2 → N such that u0 + ϕ(u0; Ω) solves the “auxiliary”

equation (4.3.3) and ϕ(0; Ω) = Du0ϕ|(0,Ω) = 0 for Ω sufficiently small.

Substituting the coordinatization for u0 given above into the perturbation equations

and matching terms, we obtain the expansion

ϕ(u0; Ω) = a2e2itϕ+(x; Ω) + aaϕ0(x; Ω) + a2e−2it ϕ−(x; Ω) +O(|a|3).

Inserting this into (4.3.3), it is readily found that the functions ϕi for i = 0,−,+ must

solve the differential equations

L(e2itϕ+) = e2it(∂2
uf(x, u∗(x))p2)xx,

L(ϕ0) = (∂2
uf(x, u∗(x))pp)xx,

L(e−2itϕ−) = e−2it(∂2
uf(x, u∗(x))p2)xx. (4.3.5)

Note that each solution ϕi exists because the right hand side of each equation in (4.3.5)
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is exponentially localized in x so that it is an element of X̊ and, by the Fredholm

alternative, lies in the range of L.

Inserting these solutions into the bifurcation equation (4.3.4), we obtain the equivalent

reduced system of equations

0 = Φi(u0; Ω) := 〈Ψi,F(u0 + ϕ(u0,Ω); Ω)〉 , i = +,−. (4.3.6)

Then, after calculations similar to [68, §VIII.3], the expansion of each Φi about (a, a; ω̃, c̃) =

(0, 0, 0, 0) is found to be

Φ+(a, a; Ω) = (λc̃(0)c̃+ i ω̃) a+ θ+(0, 0) a|a|2 +O
(
(|Ω|+ |a|2)|a‖Ω|+ |a|4

)
, (4.3.7)

Φ−(a, a; Ω) =
(
λc̃(0) c̃− iω̃

)
a+ θ−(0, 0) a|a|2 +O

(
(|Ω|+ |a|2)|a‖Ω|+ |a|4

)
, (4.3.8)

where λc̃(0) = dλ
dc̃ (c̃ = 0) 6= 0 by assumption and

θ+(ω̃, c̃) =
〈(

3∂3
uf(x, u∗)p2p+ ∂2

uf(x, u∗) [pϕ0 + pϕ+]
)
xx
, ψ
〉
L2
η(R)

, (4.3.9)

θ−(ω̃, c̃) =
〈(

3∂3
uf(x, u∗)pp2 + ∂2

uf(x, u∗) [pϕ− + pϕ0]
)
xx
, ψ
〉
L2
η(R)

. (4.3.10)

As common in Hopf bifurcation, the time-shift symmetry induces complex rotation

equivariance of the bifurcation equation, so that we can factor a and obtain an equation

that only depends on |a|2.

Since Reλc̃(0) is non-zero by assumption, the Implicit Function theorem gives that

there exists a bifurcating branch of solutions (ω̃, c̃)(|a|2) parameterized by the amplitude

r2 := |a|2 of the coordinate in kerL∗. Whenever Re{θ+(0, 0)} 6= 0, one can solve for c̃

as a function of r and readily confirm the statement on the direction of branching in

the theorem.

Remark 4.3.1. For the standard Cahn-Hilliard nonlinearity f(u) = u − u3 linearized

about u∗ ≡ 0, we have f ′′(u∗) = 0 so that the expressions for θ± simplify and, in practice,

the inhomogeneous problems in (4.3.5) need not be solved.

Remark 4.3.2. We note that instead of restricting the codomain so that L is Fredholm

index 0, one could also follow the work of [116] and [136] by adding an extra parameter
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via the ansatz

u(x) = bχ(x) + w(x),

where b ∈ R, χ(x) = (1− tanh(x))/2 and w ∈ X . When considered in these coordinates,

F : Y × R3 → X will then have a linearization which has Fredholm index 0 so that we

may then perform a Lyapunov-Schmidt reduction as above. Such an approach would also

be necessary when mass conservation only determines the asymptotic mass difference

implicitly, say, when mass deposition through the trigger depends on concentrations

χ = χ(x, u).

4.3.2 Alterations for Hypothesis 4.1.3

The proof under Hypothesis 4.1.3 follows in a similar manner and we only note the

few differences. By taking into account the jump conditions at the discontinuities, it

is readily found that F and hence L maps Y## into X̊ . A routine calculation then

shows that the weak derivatives in the right sides of the three equations in (4.3.5)

are well defined and in X . The solvability of these equations then follows from the

Fredholm Alternative, the fact that the eigenfunction p is exponentially localized, and

ker(L− ikω) = {0} for k 6= ±1.

4.4 Instability plateaus — an explicit example

In this section, we study an example where we can establish existence of modulated

traveling waves. That is, we are able to verify the assumptions of Theorem 4.1.3. We first

motivate our specific choice of nonlinearity in Section 4.4.1, and then introduce general

concepts on absolute and convective instability in bounded domains in Section 4.4.2.

Sections 4.4.3 to 4.4.5 then establish precise asymptotics for the first Hopf instability for

long plateaus. Finally, Section 4.4.6 concludes by determining the cubic Hopf coefficient

and the direction of branching.
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4.4.1 Motivation

Establishing the existence of a Hopf bifurcation can generally be cumbersome. While

the Hopf bifurcation that we analyzed here is ubiquitous in numerical simulations and

experimental observations, it is generally difficult to rigorously prove that the assump-

tions of our theorem are satisfied. Intuitively, one expects a Hopf instability since for

slow speed, mass deposition is slow so that the system develops a long, slowly varying

plateau-like state in the intermediate spinodal regime. On this state, one expects a

spinodal decomposition instability, with a typical selected spatial wavenumber. Since

this instability is stationary in the steady frame, one would expect oscillations in the co-

moving frame of the trigger front. The absence of an explicit expression for the trigger

front and the lack of tools to detect Hopf eigenvalues makes this problem in general quite

intractable. We therefore set up a toy system, where the front is trivial, the “plateau”

is an actual constant state, and nonlinearities are piecewise constant. As a benefit, we

show how to make the above intuition rigorous in terms of branch points and absolute

spectra, in particular obtaining corrections to the simple wavenumber prediction from

fastest growing modes.

For the remainder of the section we let u∗(x) ≡ 0 and study (4.1.2) with nonlinearities

of the form f(x, u) = χ(x)u + γu3 − βu5 where β and γ are real constants with β > 0

and

χ(x) =




χ+ = 1 x ∈ [−`, `]

χ− = −1 x ∈ (−∞,−`) ∩ (`,∞),
(4.4.1)

is a triggering mechanism which makes the homogeneous state u ≡ 0 linearly unstable

inside the interval [−`, `] and linearly stable everywhere else. Such triggers have been

used to numerically study directional quenching (see [54] and [93]) and are a caricature

of many others used in different situations; see Section 1.1 above. Also, by scaling we

may assume that β = 1. This nonlinearity obviously satisfies Hypothesis 4.1.3 as noted

above. Denote

Lu = − (uxx + χu)xx + cux,

and, as they will be of use in the following propositions, define the constant coefficient



149

operators

L±u := − (uxx + (χ±)u)xx + cux. (4.4.2)

4.4.2 Absolute and convective instabilities in bounded domains

One can think of the linear problem with piecewise constant trigger χ as in (4.4.1)

as a problem on x ∈ (−l, l) with “effective” boundary conditions at ±l, induced by

the stable system on either side of the plateau. On the plateau, we see an instability

which is advected by the drift term c∂x induced by the co-moving frame. Only for

sufficiently strong instabilities will the exponential growth outpace the linear advection.

The eigenvalue problem on a finite domain is of course “explicitly solvable”, in principle.

On the other hand, calculations very quickly become quite impenetrable and we pursue

a more conceptual approach.

In fact, the results in [126] and [127] show how to generally compute asymptotic be-

havior of spectra in finite bounded domains. For large domain length and separated

boundary conditions which satisfy a certain non-degeneracy condition, all but finitely

many eigenvalues are approximated by a set of curves called the absolute spectrum. This

set is determined via the dispersion relation d(λ, ν) obtained by inserting eλt+νx into the

asymptotic linearized equation. By viewing the temporal eigenvalue λ as a parameter

and solving for the spatial eigenvalues ν = ν(λ) ordered by real part Re νj ≥ Re νj+1,

one finds for well-posed operators that the system has fixed Morse index i∞ so that

Re νi∞(λ) > 0 > Re νi∞+1(λ) for all λ with large real part. The absolute spectrum is

then defined as

Σabs = {λ ∈ C : Re νi∞(λ) = Re νi∞+1(λ)}.

Though Σabs is not part of the spectrum of the linearized operator on an infinite domain,

it dictates whether instabilities saturate the domain or are convected away. For typical

problems, Σabs has an element λbr with largest real part which determines when such

instabilities arise. It is often the case that λbr is a branch point of the dispersion relation

and hence is an endpoint of a curve in Σabs which satisfies νi∞(λbr) = νi∞+1(λbr); see

[121] or [126]). Additionally, the results of [126] give that eigenvalues of the finite domain

problem of length ` accumulate on λbr with rate O(`−2).
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The work of [127] uses these concepts to study the spectrum of a pulse p(x) connecting a

stable rest state p0 at x→ ±∞ to a plateau state which is close to an unstable rest state

p1 for x ∈ [−`, `]. By viewing such a pulse as the gluing of “front” and “back” solutions

between p0 and p1, the limiting spectral set (as `→∞) of the linearization about this

pulse can be decomposed into three parts: the absolute spectrum of the linearization

about the unstable state p1, the essential spectrum of the linearization about the state

p0, and a finite number of isolated eigenvalues determined by the spectrum of the front

and back solutions. Using arguments as in [126], it is also shown that an infinite number

of eigenvalues converge to the absolute spectrum with O(`−2) rate.

In our setting, the solution u∗(x) can be viewed as a pulse whose asymptotic operator,

defined above as L−, has marginally stable spectrum. We will show for large ` that

eigenvalue crossings are approximated by intersections of the absolute spectrum of L+

with the imaginary axis. The absolute spectrum, which we denote as Σ+
abs, is deter-

mined by the dispersion relation d+ in (4.4.6) below. Furthermore, the first crossing

is approximated by where the right-most part of Σ+
abs, which consists of two complex

conjugate branch points, intersects iR. As the front speed c is decreased, Σ+
abs moves

to the right towards the right half of the complex plane C+. As discussed above, when

Σ+
abs ∩ C+ 6= ∅ instabilities which are stronger than the convective motion arise in the

domain [−`, `]. This heuristically indicates that unstable eigenvalues will lie close to

Σ+
abs ∩ C+. In the following, proof of these facts in our specific context is done by

hand as the aforementioned results are not directly applicable and do not give explicit

expansions of eigenvalues near the branch point.

4.4.3 Extended point spectrum

We now begin to verify the spectral hypotheses for our explicit example. In this section,

we show that no eigenvalues arise from the front or back solutions. The genericity of the

absolute spectrum, discussed in Section 4.4.4, will then allow us to show that eigenvalues

which accumulate onto the absolute spectrum are the first to bifurcate.

In our case, the front and back solutions are u∗(x) ≡ 0 which solve the toy problem
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with χ(x) defined respectively as

χf (x) =




χ+ x ∈ (−∞, 0]

χ− x ∈ (0,∞)
, χb(x) =




χ− x ∈ (−∞, 0]

χ+ x ∈ (0,∞)
. (4.4.3)

These solutions then give the following piecewise-constant coefficient linearizations com-

posed of L±

Lf/bu := −
(
uxx + (χf/b)u

)
xx

+ cux, (4.4.4)

which have domain Y# ⊂ X where x0 = 0 and b = χf/b.

We analyze the corresponding Evans functions Df/b(λ) whose zeros are the eigenvalues

of Lf/b; for more background see [85] and references therein. In this simple case, the

Evans function can be expressed in terms of the stable and unstable eigenspaces E±s (λ)

and E±u (λ) of the first order systems associated with the operators L± − λ as in (4.4.2)

above. Namely, Df/b(λ) := E±s (λ) ∧ E∓u (λ). Instead of the usual formulation in terms

of u and its derivatives, we use a different set of variables in which the jump conditions

(##) at x = ±` become continuity conditions. Namely we let v = ux, θ = uxx + χf/bu,

and w = θx so that the first order systems take the form

ux = v

vx = θ − χ±u
θx = w

wx = cv − λu. (4.4.5)

The eigenvalues of this system, denoted as ν±i (λ), are roots of the dispersion relations

d±(λ, ν) = −ν4 − χ±ν2 + cν − λ. (4.4.6)

We order these roots by decreasing real part

Re{ν±j (λ)} ≥ Re{ν±j+1(λ)},
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and let

e±i (λ) :=
(
1, ν±i (λ), ν±i (λ)2 + χ±, ν

±
i (λ)(ν±i (λ)2 + χ±)

)T

be the corresponding eigenvectors. As mentioned above, for λ with large positive real

part it can readily be found that

Re{ν±1 (λ)} ≥ Re{ν±2 (λ)} > 0 > Re{ν±3 (λ)} ≥ Re{ν±4 (λ)}. (4.4.7)

In fact this splitting holds for all λ to the right of Σ±ess, the essential spectrum of L±. For

either j = 1, 3, if νij 6= νij+1 then eij and eij+1 span the unstable and stable eigenspaces

of (4.4.5) respectively. We find up to a normalization factor, for all λ ∈ C�Σabs with

e±1 6= e±2 and e±3 6= e±4 ,

Df (λ) = det

∣∣∣∣∣e
+
1 e

+
2 e
−
3 e
−
4

∣∣∣∣∣, Db(λ) = det

∣∣∣∣∣e
−
1 e
−
2 e

+
3 e

+
4

∣∣∣∣∣, (4.4.8)

where we have suppressed the dependence on λ of e±j inside the determinant.

If for example ν−1 = ν−2 for some λ0, then one must view the spatial eigenvalues as

functions of a variable ζ on a Riemann surface, λ = g(ζ), with a branch point at λ0;

see [85, §9.1]. Since ν−1 is analytic in ζ, the vectors e−1 and d
dζ e
−
1 form a basis for the

corresponding unstable eigenspace.

With these definitions, we readily obtain the following lemma.

Lemma 4.4.1. For all speeds c > 0, the functions Df (λ) and Db(λ) have no zeros in

the set C�Σ+
abs. Furthermore, they have a non-vanishing limit as λ approaches Σ+

abs.

Proof. As the argument will be the same for the back, we only consider the front. By

applying Sobolev embeddings to the numerical range of both L±, taking care to mind

the jump conditions (#), it is readily found that Lf is uniformly sectorial on L2(R)

in the plateau length `. This implies that both Df , being analytic off of the absolute

spectrum, does not vanish identically in any connected component of C�Σabs.

It can be readily found that Df (0) 6= 0. Assuming that λ 6= 0, we split the proof of the

first statement into two cases.

Case 1: Assume that λ is such that ν+
1 6= ν+

2 and ν−3 6= ν−4 .
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In this case the Evans functions Df/b are given by (4.4.8) above,

Df (λ) = det




1 1 1 1

ν−1 ν−2 ν+
3 ν+

4

(ν−1 )2 + χ− (ν−2 )2 + χ− (ν+
3 )2 + χ+ (ν+

4 )2 + χ+

ν−1 ((ν−1 )2 + χ−) ν−2 ((ν−2 )2 + χ−) ν+
3 ((ν+

3 )2 + χ+) ν+
4 ((ν+

4 )2 + χ+)




= det




1 1 1 1

ν−1 ν−2 ν+
3 ν+

4

(ν−1 )2 (ν−2 )2 (ν+
3 )2 (ν+

4 )2

(ν−1 )3 (ν−2 )3 (ν+
3 )3 (ν+

4 )3



, (4.4.9)

a Vandermonde determinant which we shall denote as V (v−1 , v
−
2 , v

+
3 , v

+
4 ). This equality

can be obtained using the dispersion relation to find (ν±i )2 + χ± = −λ−cν±i
(ν±i )2

and then

performing elementary row operations.

Hence, Df (λ) = 0 if and only if ν−3 (λ) = ν+
2 (λ). This means that both dispersion

relations d± are satisfied simultaneously and, since χ+ 6= χ−, that ν−3 = ν+
2 = 0. But

we also have that ν±i (λ) = 0 if and only if λ = 0. Therefore Df (λ) 6= 0.

Case 2: Assume either ν−1 = ν−2 or ν+
3 = ν+

4 .

Say only the latter holds. Then we have

Df (λ) = ∂ζν
+
3 ·

d

dν+
4

∣∣∣
ν+
4 =ν+

3

V 6= 0,

for all λ 6= 0 because once again Df (λ) = 0 if and only if ν+
3 = ν−2 which holds if and

only if λ = 0. If ν−1 = ν−2 then take the derivative of V with respect to ν−1 . If both

equalities hold then take the derivatives of V with respect to both ν−1 and ν+
3 . Note, we

have that ∂ζν
+
3 6= 0 because double roots are simple for all c > 0. This gives the proof

of the first part of the lemma.

To prove the second statement we note that if λ → λ0 ∈ Σ+
abs then, by definition,

Re ν+
2 − Re ν+

3 → 0. If Df (λ) were to approach zero as well, then arguments used

above give that λ0 must be 0, which is readily found to lie in the complement of the

absolute spectrum for all speeds c > 0. This gives the proof of the second statement
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and completes the lemma.

4.4.4 Branch points, rescalings and asymptotics

We now analyze the dispersion relation near the rightmost point of the absolute spec-

trum, defined in Section 4.4.2, in more detail. We give explicit formulas describing how

branch points cross the imaginary axis and how the spatial eigenvalues ν(λ) behave

around them. Furthermore, we will study how Σ+
abs behaves near λbr(c).

For c = clin, it is readily found that the essential spectrum, Σ+
ess, lies in the closed

left-half plane when considered in an exponentially weighted space with weight eµlinx,

for µlin defined in Lemma 4.4.2 below. Since Σ+
abs generically lies to the left of Σ+

ess,

elementary calculation shows that, for c near clin, the right most part of the absolute

spectrum consists of a pair of complex conjugate branch points of the dispersion relation

d+. Such branch points, which we denote as λbr(c), λbr(c), solve the algebraic system

d+(λ, ν) = 0, (4.4.10)

∂

∂ν
d+(λ, ν) = 0, (4.4.11)

for some double spatial eigenvalue which we denote as νbr(c) := ν(λbr(c)).

In the context of front invasion into an unstable state, if νbr(c) satisfies what is known

as a “pinching”condition, the speed c = clin for which λbr(c) ∈ iR is called the linear

spreading speed ; see [17], and [80]. Such “pinched double root” solutions of the Cahn-

Hilliard dispersion relations have been studied previously and explicit expressions for

λlin := λbr(clin) and νlin := νbr(clin) have been obtained. As they will be of use in the

following, we sum them up in the following lemma.
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Lemma 4.4.2. Given f and u∗ as above, for α = ∂uf
′(0, u∗(0)), we have the following

λlin = i(3 +
√

7)

√
2 +
√

7

96
· α2

clin =
2

3
√

6
(2 +

√
7)

√√
7− 1 · α3/2

µlin := Re{νlin} = −

√√
7− 1

24
· α1/2

κlin := Im{νlin} =

√√
7 + 3

8
· α1/2. (4.4.12)

Proof. These quantities can be found in [139, Lem 1.3] or [156].

In the next section, we will use spatial dynamics to obtain precise expansions for the

first eigenvalue crossing and its corresponding eigenfunction. In order to do this we

must obtain expansions for the spatial eigenvalues which solve the dispersion relation

(4.4.6) for λ near λlin. Thus let λ̂ = λ − λlin, ν̂ = ν − νlin, ĉ = c − clin and Λ = (λ̂, ĉ).

In these variables the dispersion relation (4.4.27) takes the form

d̂+(λ̂, ν̂) := ν̂4 + 4νlinν̂
3 + (1 + 6ν2

lin)ν̂2 − ĉν̂ + λ̂− ĉνlin. (4.4.13)

We characterize the roots ν̂(λ̂, ĉ) in the following lemma.

Lemma 4.4.3. The dispersion relation (4.4.13) has four roots, ν̂s, ν̂u, ν̂cs, ν̂cu, which are

functions of Λ ∈ C× R and, for all Λ close to (0, 0), satisfy the following properties

(i) ν̂s/u = −2νlin ±
√
−2ν2

lin − 1 +O(|Λ|).

(ii) The roots ν̂cs/cu solve

ν̂2 + b1(Λ)ν̂ + b0(Λ) = 0, (4.4.14)

where, setting γlin = (1 + 6ν2
lin), the coefficients b0 and b1 are analytic functions

of Λ with leading order expansions

b1(Λ) =

(
4νlin

γ2
lin

− 1

γlin

)
ĉ− 4νlin

γ2
lin

λ̂+O(|Λ|2), b0(Λ) = −νlin

γlin
ĉ+

1

γlin
λ̂+O(|Λ|2).

(4.4.15)
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(iii) For all Λ with λ̂+ λlin 6∈ Σ+
abs the roots ν̂cs/cu split in the following way

Re{ν̂cs} < −
b1(Λ)

2
< Re{ν̂cu}. (4.4.16)

Proof. Property (i) is easily proved using standard perturbation techniques. Prop-

erty (ii) is obtained using multi-parameter expansions and the Weierstrass Preparation

Theorem; see for example [142, Ch. 4]. We note that (4.4.14) may be used to determine

the branch point (λ̂br(ĉ), ν̂br(ĉ)) in the shifted dispersion relation (4.4.13), for ĉ near

zero. Indeed, λ̂br(ĉ) must satisfy

0 = b0(λ̂br(c), ĉ)−
b1(λ̂br(ĉ), ĉ)

2

4
, (4.4.17)

and hence has the form λ̂br(ĉ) = νlinĉ+O(ĉ2), while ν̂br(c) = − b1(λbr(ĉ),ĉ)
2 .

It now remains to prove property (iii). In order to find expansions for the roots of

(4.4.14), we make the change of variables ν̂ = ν̃ − b1(Λ)
2 so that

0 = ν̃2 + β(Λ), with β(Λ) = −b0(Λ) + b1(Λ)2. (4.4.18)

Fixing ĉ, setting λ̃ = λ̂− λ̂br(ĉ), and expanding near λ̂br(ĉ) we obtain

0 = ν̃2 + λ̃ b̃2(λ̃, ĉ), (4.4.19)

for some function b̃2 which is analytic in λ̃ with b̃2(0, 0) = 1
γlin

. Finally, setting λ̃ = −ζ2

and scaling ν̃1 = ν̃ζ we find

ν̃1 = ±
√
b̃2(−ζ2, ĉ) = ±γ−1/2

lin +O(|ζ2|+ |ĉ|). (4.4.20)

Unwinding all of these scalings gives two roots, ν̂cu and ν̂cs, which are analytic on the

Riemann surface defined by ζ, and satisfy

Re{ν̂cs} < −
b1(−ζ2, ĉ)

2
< Re{ν̂cu}, for all ζ 6∈ Sabs = {ξ : ξ2 b̃2(−ξ2, ĉ) ∈ R−},

where R− is the non-positive part of the real line. This completes the proof of the

lemma.
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We remark that the calculations of Lemma 4.4.2 imply that for all Λ small, the eigen-

values ν̂s/u are bounded away from the imaginary axis, with real parts of opposite sign.

The following lemma shows that Σ+
abs is generic near the branch point λbr(c) for all c

near clin. The result of this lemma is the reducibility hypothesis in [127, §7 ]. Coupled

with Lemma 4.4.1, this will imply that bifurcating spectra of L are only found near

Σ+
abs.

Lemma 4.4.4. Let V ⊂ (C− Σess) be an open, bounded, and connected set containing

the branch point λbr(c) for all c close to clin. Given such a speed c, each λ ∈ (Σ+
abs ∩

V )�{λbr(c)} satisfies the following:

νi∞(λ) 6= νi∞+1(λ),
d(νi∞ − νi∞+1)

dλ
6= 0. (4.4.21)

Proof.

By definition, for any λ ∈ Σabs ∩ V there exist ν ∈ C and γ ∈ R such that

d+(λ, ν) = d+(λ, ν + iγ) = 0.

Expanding from the branch point we find, after the change of variables (λ̃, ν̃) = (λ −
λbr, ν − νbr), that λ̃+ λbr ∈ Σ+

abs satisfies

λ̃ = bν̃2 +O(λ̃ν̃, λ̃2, ν̃2), (4.4.22)

λ̃ = b(ν̃ + iγ)2 +O(λ̃ν̃, λ̃2, ν̃2), (4.4.23)

where b ∈ C is a non-zero constant. This implies that

ν̃ = −γ
2

i +O(γ2). (4.4.24)

By substituting this into the first equation of (4.4.22) we then find

λ̃ = −γ
2

4
+O(γ3). (4.4.25)
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which implies for 0 < λ̃ << 1 that γ 6= 0 and

d(ν̃i∞ − ν̃i∞+1)

dλ̃
6= 0, (4.4.26)

where i∞ denotes the Morse index of the first order system corresponding to L+, and

counts the dimension of the unstable eigenspace as λ→∞.

4.4.5 Spatial dynamics near the branch point

Having collected spectral facts in Sections 4.4.2 - 4.4.4, we now are able to use spatial

dynamics to characterize the first eigenvalue crossing and its corresponding eigenfunc-

tion. We construct eigenfunctions of L by conjugating with eνlinx and solving the finite

domain eigenvalue problem for x ∈ [−`, `] subject to boundary conditions induced by

the dynamics for x ∈ R�[−`, `].

Inserting u = eνlinxũ into the eigenvalue equation Lu = λu, dividing by eνlinx, and using

the fact that d+(λlin, νlin) = d
dν d+(λlin, νlin) = 0, we obtain an equivalent eigenvalue

equation which, when expressed in scaled variables, takes the form

∂4
xũ+ 4νlin∂

3
xũ+ (χ+ + 6ν2

lin)∂2
xũ− ĉ∂xũ+ (λ̂− ĉνlin)ũ = 0, x ∈ [−`, `], (4.4.27)

∂4
xũ+ 4νlin∂

3
xũ+ (χ− + 6ν2

lin)∂2
xũ− (ĉ+ 2(δχ)νlin)∂xũ+ (λ̂− ĉνlin − (δχ)ν2

lin)ũ = 0,

x ∈ R�[−`, `], (4.4.28)

where δχ = χ− − χ+. Using the coordinates of (4.4.5), these operators have the first

order systems

ũx = ṽ − νlinũ

ṽx = θ̃ − χ±ũ− νlinṽ

θ̃x = w̃ − νlinθ̃

w̃x = (clin + ĉ)ṽ − (λlin + λ̃)ũ− νlinw̃. (4.4.29)

If ν̂±i are the eigenvalues for this system, ordered by decreasing real part, then the
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corresponding eigenvectors take the form

ê±i =
(
1, ν̂±i + νlin, (ν̂±i + νlin)2 + χ±, (ν̂±i + νlin)

(
(ν̂±i + νlin)2 + χ±

))T
, i = 1, 2, 3, 4.

Note, with χ+ chosen, the eigenvalues of (4.4.29) are precisely the scaled spatial eigen-

values derived in Lemma 4.4.3 above. Also, for λ + λ̂lin ∈ C�Σ−ess, the subspaces

Ês
− := spani=3,4{e−i } and Êu

− := spani=1,2{e−i } are the stable and unstable eigenspaces

of (4.4.29) with χ− chosen.

The boundary conditions at x = ±l for the eigenfunction are determined as follows.

In order for ũ to be an L2(R) eigenfunction, it is necessary and sufficient to require

exponential decay as |x| → ∞. Hence, for Ũ := (ũ, ṽ, θ̃, w̃)T , we require

Ũ(`) ∈ Ẽs
−, Ũ(−`) ∈ Ẽu

−. (4.4.30)

We note that the dimensions of the boundary spaces Ẽ
s/u
− are the same as the cor-

responding subspaces for the unconjugated problem L−u = λu. This can be seen by

homotoping the conjugation factor eνlins x from s = 0 to s = 1 and noticing that the

essential spectrum of L− never intersects some sufficiently small neighborhood of λlin,

implying that no spatial eigenvalue ν−i crosses the imaginary axis during this homotopy.

Finally, let Ẽcs
+ be the 2-dimensional eigenspace of (4.4.29) (with χ+ chosen) spanned

by the eigenvectors of ν̂cs and ν̂s. Define Ẽcu
+ in the same way so that it is spanned by

the eigenvectors associated with ν̂cu and ν̂u. We remark that both of these subspaces

are analytic in the Riemann surface variable ζ used in the proof of Lemma 4.4.3 and

can be analytically continued as ζ approaches Sabs, also defined in the above proof.

With these definitions we obtain the following lemma which precludes embedded eigen-

values (see [126, §5.3]), and will be important in the construction of eigenfunctions.

Lemma 4.4.5. (Non-Degenerate Boundary Conditions) For all Λ close to (0, 0) with

λ̂+ λlin 6∈ Σabs, the conjugated eigenspaces of L± satisfy

Ẽu
− t Ẽcs

+ = {0}, Ẽs
− t Ẽcu

+ = {0}, (4.4.31)

where t denotes the transverse intersection of linear subspaces.
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Proof. This follows from Lemma 4.4.3 using similar arguments as in Lemma 4.4.1.

We are now able to state our existence result and give expansions for the first crossing

eigenvalues and their eigenfunctions. This is done in the following proposition.

Proposition 4.4.6. For ` > 0 sufficiently large, there exists a speed c∗ > 0 and simple

eigenvalues λ∗(c, `), λ∗(c, `) of L with the following properties for c ∼ c∗:

(i) (First Crossing) There exists some ε > 0 so that for all c > clin − ε, λ∗(c∗, `) and

λ∗(c∗, `) are the only eigenvalues lying in the closed right half-plane.

(ii) (Bifurcation) λ∗(c, `) is an algebraically simple eigenvalue and satisfies

λ∗(c∗, `) = iκ∗(c∗, `),
dRe{λ∗}

dc
|c=c∗ < 0.

(iii) (Expansions) For ĉ ∈ R and λ̂ ∈ iR, the crossing speed c∗(`) = clin + ĉ and crossing

location λ∗(c∗, `) = λlin + λ̂ satisfy

λ̂ = i
π2

4µlin`2
(−1+6(µ2

lin+κ2
lin))+O(`−3), ĉ = − π2

4µlin`2
(1+6(µ2

lin−κ2
lin))+O(`−3),

(4.4.32)

with κlin := Im{νlin} and µlin := Re{νlin}.

Associated with λ∗, L has an eigenfunction p and corresponding adjoint eigenfunction

ψ, which satisfy the following properties:

(iv) For x ∈ [−`, `],

p(x) = Ae(νlin+α(`))x

(
sin

(
π (x− `)

2`

)
+O(`−1)

)
, (4.4.33)

ψ(x) = Be−(νlin+α(`))x

(
sin

(
π(x− `)

2l

)
+O(`−1)

)
. (4.4.34)

Furthermore, for j = 1, 2, 3

∂jxp(x) = (νlin + α(`))jp(x) +O(`−1), (4.4.35)

∂jxψ(x) = (νlin + α(`))jψ(x) +O(`−1). (4.4.36)
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Here the error terms are uniform in x, α(`) = O(`−2), and A,B > 0 are undeter-

mined normalization constants.

(v) Let Uh := (h, hx, hxx+χ−h, hxxx+(χ−h)x)T as in (4.4.5) above. Then for h = p

or h = ψ, there exists a constant C > 0, independent of ` such that,

|Uh(x)| ≤ C`−1e−µlin`eδ(x+`), x ≤ −`, (4.4.37)

|Uh(x)| ≤ C`−1eµlin`e−δ
′(x−`), x ≥ `, (4.4.38)

with δ = |Re{ν−2 (λ∗)}| > 0, δ′ = |Re{ν−3 (λ∗)}| > 0, and ν−i (λ) defined in (4.4.6)

above.

Proof.

Existence of λ∗ and properties (ii), (iii), and (iv) will all follow from our construction

of a solution to the first order system associated with (4.4.27).

Property (i) follows using similar methods as in [127, §6] and the fact that λbr(c) is the

right-most part of Σ+
abs for all c near c∗. In particular, for V as in Lemma 4.4.4, possibly

enlarged to contain the positive real part of the sector which contains the spectrum of

L, a construction similar to the following can be used to obtain that any λ ∈ V not in

a sufficiently small neighborhood of Σ+
abs is not an eigenvalue.

Now let us begin our construction of the eigenfunctions on the interval [−`, `]. Since the

construction of the adjoint eigenfunction ψ follows in the same way, we only describe

how p is obtained. After an analytic change of variables, the first order system (4.4.29)

can be split into hyperbolic and center dynamics as

Ẇh =

(
ν̂s 0

0 ν̂u

)
Wh, (4.4.39)

Ẇc =

(
α 1

−β α

)
Wc, (4.4.40)

where W := (Wh,Wc)
T ∈ C2×C2, and α = α(Λ), β = β(Λ) are parameters, analytic in

(λ̂, ĉ), which unfold the two-dimensional Jordan block at Λ = (0, 0); see [6], for instance.

In fact, the leading order expansion of β is given in (4.4.18) and α = −b1(Λ)/2. This
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can be seen by comparing the characteristic polynomial of the matrix on the right hand

side of (4.4.40) to (4.4.14).

Next we study how the non-degeneracy conditions given by Lemma 4.4.5 affect the

boundary conditions in (4.4.30). Since Ẽ+
cs⊕Ẽ−cu = C4, there exist linear transformations

T± such that, for Wh = (ws, wu)T and Wc = (wc,0, wc,1)T ,

(
ws(−`)
wc,0(−`)

)
= T−

(
wu(−`)
wc,1(−`)

)
,

(
wu(`)

wc,1(`)

)
= T+

(
ws(`)

wc,0(`)

)
. (4.4.41)

Then, given the flow Φx,y of the system (4.4.39) - (4.4.40), any solution must satisfy

the matching condition Φ`,−`W (−`) = W (`). Using a Lyapunov-Schmidt reduction (i.e.

project onto the stable, unstable, and center subspaces) it can be obtained for some

constants c1, c2 ∈ C that

ws(−`) = c1wc,0(−`) +O(e−δ`), wu(`) = c2wc,1(`) +O(e−δ`), (4.4.42)

from which boundary conditions on wu(−`) and ws(−`) can be determined via (4.4.41).

The solvability of this reduction follows from Lemma 4.4.5.

Furthermore, we readily obtain

|Wh(±`)| ≤ C|Wc(±`)|+O(e−δ`), (4.4.43)

for some δ̃ > 0 dependent on ν̂s and ν̂u. The boundary conditions for Wc(±`) can then

be obtained from this reduction and can be found to be independent of Wh(±`) up to

an O(e−δ̃`) correction.

We now construct solutions to the center system (4.4.40). We make the scalings x =

x̃− `, Wc = eαx̃W̃c, and define µ2 = −β so that (4.4.40) becomes

W̃ ′c =

(
0 1

−µ2 0

)
W̃c. (4.4.44)

In order to ease the derivation, the boundary conditions on the center system may, up
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to an O(e−δ`) correction, be written as

(
−1

r+

)T
W̃c(2`) = 0,

(
−1

r−

)T
W̃c(0) = 0,

for some r± ∈ C which depend analytically on µ.

Under these conditions, the system (4.4.44) has the solution, W̃c,∗, with first component

w(x̃) = A(sin(µx) + r−µ cos(µx)), where µ must satisfy the equation

tan(2µ`)

2µ`
=

(r+ − r−)

2`(1 + r− r+µ2)
. (4.4.45)

For l large, this equation has the solutions µ = πk
2` + O(`−2) for integers k 6= 0. To

obtain the first eigenvalue crossing, we set µ = π
2` so that

W̃c,∗(x̃) = A

(
sin(πx̃2` )
π
2` cos(πx̃2` )

)
+O(`−1),

with error term uniform in x.

Recalling that µ2 = −β, we have

π2

4`2
= −β(Λ) =

1

γlin
(λ̂− νlinĉ) +O(|Λ|2),

which can then be solved for λ̂ ∈ iR and ĉ ∈ R to obtain the expressions in (4.4.32) as

desired. Inserting these expressions into the conjugating exponent α, we find it has the

asymptotics

α(`) = −b1(Λ)

2
= O(`−2).

The eigenfunction p given in the statement of the proposition can then be obtained by

unwinding all the scalings made above.

To obtain the decay conditions in (v), we notice that |W̃c,∗(0)|, |W̃c,∗(2`)| ≤ C ′l−1 and

thus, given the estimates (4.4.43), for h = ψ, p and some constant C ′ > 0,

|Uh(±l)| ≤ C ′`−1e±µlin`.
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The boundary conditions (4.4.30) then give the estimates (4.4.37) and (4.4.38) above.

Remark 4.4.7. The leading order term in the expansions for the Hopf crossing location

λ∗ and speed c∗ in (4.4.32) were compared with numerical calculations of the spectrum

of L and were found to be in excellent agreement. In particular, the operator L was

discretized using fourth-order accurate centered finite differences with discretization size

∆x = 0.05 on a domain of length 400. Hopf eigenvalues λ∗,num and approximate cross-

ing speed c∗,num were found numerically using the built-in eigenvalue solver “ eigs” in

MATLAB. The errors between each of the leading order terms of λ̂(`) and ĉ(`), and

those of λ∗,num − λlin and c∗,num − clin were respectively found to converge with rate

O(`−3) as ` was varied between ` = 10 and ` = 150.

Remark 4.4.8. We note that the above result could also be obtained via a similar,

and in some sense equivalent, geometric singular perturbation method. If λ̂ and ĉ are

scaled by ε = `−2, one obtains a slow equation which is equivalent to a heat equation.

Furthermore for ε = 0 the boundary conditions for a solution on the slow manifold reduce

to Dirichlet conditions. By solving this system, the same leading order expansions for

the eigenfunction, and eigenvalue-front speed pair (λ∗, c∗) may be obtained.

4.4.6 Nonlinear Hopf bifurcation — direction of branching

We are now able to state our main result of this section which gives the existence of

bifurcated solutions and determines the direction of bifurcation in terms of the the cubic

nonlinearity parameter γ.

Theorem 4.4.4. For f and u∗ described above and ` > 0 sufficiently large, the results

of Theorem 4.1.3 hold and the direction of bifurcation is given by

sign[θ+] = − sign γ. (4.4.46)

Proof. Using Proposition 4.4.6, it is readily checked that Hypotheses 4.1.6, 4.1.8,

and 4.1.9 are all satisfied. The existence of a Hopf bifurcation then follows by applying

Theorem 4.1.3.
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All that is left is to determine the sign of θ+. In order to facilitate this determination,

let p and ψ be as given in Proposition 4.4.6 with normalization constants A,B such that

A3B = e2µlin`. Since the first order system vector Up decays exponentially fast outside

the unstable interval, (−`, `), the estimates (4.4.37), (4.4.38) in Proposition 4.4.6 give

θ+ =

∫ `

−`

(
3∂3

uf(x, u∗(x))p(x)2p(x)
)
xx
ψ(x) +O(`−4). (4.4.47)

The form of the solution W̃c,∗ found in the proof of Proposition 4.4.6 gives

∫ `

−`

(
3∂3

uf(x, u∗(x))p(x)2p(x)
)
xx
ψ(x) dx =

18γA3B

∫ `

−`
e2µlinx

[
(2ν + ν)2 sin4

(
π(x− `)

2`

)
+O(`−l)

]
dx

= −27γ(2νlin + νlin)2

8µlin
+O(`−1). (4.4.48)

Thus, for ` > 0 sufficiently large,

sign [ Re θ+] = −sign

[
Re

27γ(2νlin + νlin)2

8µlin

]

= sign
[

Re γ (2νlin + νlin)2
]

= sign
[
γ (9µ2

lin − κ2
lin)
]

= −sign γ (4.4.49)

where the expressions given in Lemma 4.4.2 are used in the last two lines.

Remark 4.4.9. Since the argument of νlin, and hence the sign of 9µ2
lin−κ2

lin, is invariant

with respect to changes in the value of f ′(α) for α near zero, the sign of 9µ2
lin−κ2

lin will

remain constant when our equation is linearized about a front u∗ ≡ α.

Remark 4.4.10. We note that since λlin is an accumulation point of the eigenvalues of

L as l→∞ successive Hopf bifurcations will rapidly occur as c is decreased below clin.

Remark 4.4.11. The findings of Theorem 4.4.4 are in agreement with numerical sim-

ulations, where supercritical behavior was found for γ < 0 and subcritical behavior was
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found for γ > 0. In the latter case, for c slightly larger than c∗, we also observed hys-

teretic behavior between the front u∗ and a bifurcating periodic pattern. This region

of bistable, hysteretic behavior should, in principle, be able to be determined by finding

higher order coefficients in the bifurcation equation. We also note that the wavenum-

ber of the periodic pattern was different than that predicted by the linearized equation,

indicating that such solutions should be related to pushed fronts.

4.5 Discussion

Our methods should be applicable in many different settings. First of all, the existence

result for viscous shocks in [135] can readily be obtained (and shortened significantly)

with a nearly direct translation of our approach; see Appendix 4.7 for more detail.

Also, problems with more general u-dependent source terms which are still exponen-

tially localized in space could also be treated using our method. With such a source, the

corresponding nonlinear solution operator F would lose its conservation form. Since the

codomain cannot be restricted as above, the method described in Remark 4.3.2 must

be employed to obtain a Fredholm index 0 operator. One such area where these source

terms appear is in the equations governing the propagation of oscillatory detonation

waves. Here an ignition function, dependent on the characteristics of the gas, controls

the reaction terms in the equation which feed the combustion; see [150]. These sources

also arise in certain forms of the chemotaxis equation where the aggregation of bacte-

ria depends nonlinearly on the density of bacteria (in addition to the gradient of the

chemoattractant); see [110].

Furthermore, our method could possibly be used to study problems with spatial di-

mension larger than one. In particular, for systems whose spatial domain is an infinite

cylinder, one could imagine that Fredholm properties could be established using expo-

nentially weighted spaces and a closed range lemma, while the index could be determined

via a spectral flow. This would then allow one to perform a Lyapunov-Schmidt reduc-

tion to obtain a bifurcation equation for transverse modes. Such an abstract functional

analytic method would hopefully be simpler than the spatial dynamics formulations

developed in [114] and subsequent works, and the diffusive stability approach used by
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[117].

4.6 Existence of trigger fronts

In this appendix we give the outline of a proof for the existence of trigger fronts in

the case where the nonlinearity satisfies certain coercivity conditions. Such conditions

are satisfied by many typical nonlinearities, including the polynomial cases such as

f(u) = u− u3 and f(u) = u+ u3 − u5.

Theorem 4.6.5. Let Hypotheses 4.1.1 and 4.1.2 from above hold, and assume the

following coercivity conditions on the nonlinearity f and p ≥ 3, odd,

(i) For some C > 0, −uf(x, u) ≥ C(up+1 − 1) uniformly in x.

(ii) For each δ > 0, there exists a constant C ′(δ) > 0 such that |f(x, u)| ≤ Cδ|u|p+1 +

C ′(δ) uniformly in x.

Then there exists a front solution u∗ of the traveling-wave equation (4.1.1), satisfying

Hypothesis 4.1.5.

Proof. The construction is based on ideas from [139]. We integrate the traveling-wave

equation

−(uxx + f(x, u))xx + cux + cχ(x) = 0,

and find

−(uxx + f(x, u))x + c(u+H(ξ)− u+) = 0,

where H(x) =
∫ x
∞ χ(ζ)dζ, so that H(+∞) = 0 and H(−∞) = u− − u+.

We then write the equation as a first-order system,

ux = v

vx = −f(x, u) + θ

θx = c(u+H − u+). (4.6.1)
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We consider the set of bounded solutions A to this equation, and claim that A is

bounded, uniformly with respect to |H|∞ and u+, for fixed c > 0. Consider the functions

E±(u, v, θ) =
1

2
v2 − F± − θ(u+H(±∞)− u+), F ′±(u) = f±(u).

A direct calculation shows that

dE±
dx

= −c(u+H(±∞)− u+)2,

so that E± is a strict Lyapunov function for the systems whereH ≡ H(±∞) respectively.

We compactify time in (4.6.1), using for instance yx = γ(1 − y2) with solution y(x) =

tanh(γx) and 0 < γ � 1. For γ sufficiently small we can extend

H̃(y) := H(δ−1 arctanh(y)), f̃(y, u) := f(δ−1 arctanh(y), u)

smoothly to |y| ≥ 1, obtaining an extended, autonomous equation which possesses an

isolated invariant set consisting of all bounded solutions.

Since E± is a Lyapunov function on the flow restricted to the subspaces {y = ±1},
the set of accumulation points of these restricted flows consists only of the equilibria

U± = (u±, 0, f±(u±),±1)T respectively. Then because the y-flow is monotone from

y = −1 to y = 1, the chain-recurrent set of the extended flow is contained in the

subspaces {y = ±1}. Using the fact that omega limit sets are contained in the chain-

recurrent set, we obtain that all bounded solutions are heteroclinic orbits connecting

U±. A direct calculation then shows that both of these equilibria are saddles, with one-

dimensional unstable and two-dimensional stable manifolds in the subspaces {y = ±1},
respectively. We will show below that the set of such heteroclinic orbits is a priori

bounded in terms of |H|∞ and u+, for fixed c > 0.

Given those a priori bounds, one can then readily conclude the existence of heteroclinics

by studying the Conley index of A. By employing a homotopy to a spatially independent

nonlinearity f̃(u) = −u−up and then to a monotone flow yx = −δ(1+y2), it can readily

be seen that the Conley index of A is trivial. Finally, if the set of heteroclinics were

empty, the Conley index of A would be the direct sum of the Conley indices of the two

hyperbolic equilibria at y = ±1, thus giving a contradiction.
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To establish a priori estimates, we rewrite the first-order system (4.6.1) as an equation

in θ,

θx = w

wx = ρ

ρx = c
(
−f(

w

c
−H + u+) + θ

)
+ cH ′′. (4.6.2)

Here, w = c(u+H − u+), and ρ = c(v +H ′). The equivalent higher-order system is

θxxx = c

(
−f(

θx
c
−H + u+) + θ +H ′′

)
.

Multiplying by θx and integrating in x now gives

−
∫
θ2
xxdx = −c

∫
θx

(
f(
θx
c
−H + u+) +H ′′

)
dx− c

2
θ2
∣∣
±∞ .

Using the boundedness of the solutions and the assumptions on f with δ > 0 sufficiently

small, one readily concludes,

∫
(θ2
xx + θp+1

x )dx ≤ C ′(1 + θ2
∣∣
±∞),

where C ′ possibly depends on |H|∞, c, and u±. This gives bounds on u in L∞, which

one can easily use in the third-order equation for u to bootstrap to BCk-uniform bounds

for any finite k.

4.7 Hopf bifurcation in viscous shocks

In this section we show how our functional analytic method can significantly shorten

the existence of bifurcation proof in [135]. We briefly recount the setup and hypotheses

given there.
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For smooth f : Rn → Rn and n ∈ N, consider the viscous conservation law in a co-

moving frame of speed of c,

ut = [ux + cu− f(u)]x , x ∈ R, u ∈ Rn. (4.7.1)

and viscous-shock solutions qε(x) which satisfy

lim
x→±∞

qε(x) = uε±,

for smooth curves uε± in Rn which are defined for ε ∈ R near zero. Such solutions must

satisfy the integrated steady-state equation

ux =
[
f(u)− f(uε−)

]
− cε[u− uε−], (4.7.2)

where cε is a family of speeds satisfying the Rankine-Hugoniot condition,

cε =
fj(u

ε
+)− fj(uε−)

uε+,j − uε−,j
, j = 1, ..., n.

In other words, qε(x) lies in the intersection of the unstable manifold W u
−(ε) of uε− and

the stable manifold W s
+(ε) of uε+.

Next, we assume that these solutions are Lax shocks:

Hypothesis 4.7.1. For some p = 0, ..., n− 1, let uε± and qε satisfy the following,

(i) dimW u
−(0) = p+ 1, dimW s

+(0) = n− p.

(ii) (transversality) The intersection W u
−(0) ∩W s

+(0) is transverse along q0.

(iii) (strict hyperbolicity) The Jacobian fu(u0
±) has real and distinct eigenvalues.

From this it readily follows that qε and cε are smooth in ε. This remark and the above

hypothesis also give exponential decay estimates analogous to those in Hypothesis 4.1.5

with decay rate 0 < γ < min |ν±j | where the ν±j correspond to the ingoing characteristics.

In other words, ν−j ranges over the p+ 1 eigenvalues of (4.7.2) corresponding to W u
−(0)

and ν+
j ranges over the n − p eigenvalues corresponding to W s

+(0). Next, the operator
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Lε := ∂x [∂x + cε − fu(qε(x))] is a closed, densely defined operator on L2(R,Rn). It is

readily seen that the essential spectrum lies in the closed left-half plane only touching

the imaginary axis at 0 ∈ C. Furthermore, since there is a spatial translation symmetry,

an embedded eigenvalue lies at 0 which is simple due to the transversality assumption.

We also assume a simple Hopf-crossing in the same way as in Hypothesis 4.1.8 and 4.1.9

above:

Hypothesis 4.7.2. The point spectrum of Lε lies in the open left half-plane, bounded

away from the imaginary axis, except for an isolated pair of algebraically simple eigen-

values λ(ε) = µ(ε)± iκ(ε) which satisfy

µ(0) = 0, κ(0) = iω∗, µ′(0) > 0,

and have L2(R,Rn)-eigenfunctions p(x), p(x) for ε = 0.

This hypothesis, along with the statement about the essential spectrum above gives the

absence of resonances as in Hypothesis 4.1.9 above. Once again denote the corresponding

adjoint eigenfunctions as ψ(x), ψ(x) normalized as before. We define our function spaces

as

X = L2(T,Rn), Y = H1(T,Rn), X = L2
η(R, X), Y = L2

η(R, Y ) ∩H2
η (R, X),

with η > 0 sufficiently small.

We can then define the nonlinear operator F : Y × R2 → X and its linearization

L : Y ⊂ X → X about (v;ω, ε) = (0;ω∗, 0) as

F : (v;ω, ε) 7−→ ωvτ − (vx + cεv + g(x, v; c))x ,

g(x, v; ε) := f(qε(x) + v)− f(qε(x)), τ = ωt, (4.7.3)

L : v 7→ ω∗∂τv − L0v = ω∗∂τv − ∂x
[
∂xv + c0v − fu(q0(x))v

]
. (4.7.4)

We may then obtain the following proposition

Proposition 4.7.3. Assuming Hypotheses 4.7.1 and 4.7.2, the operator L : Y ⊂ X → X
is Fredholm.
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Proof. Given the exponential decay of q0 and its derivatives as x→ ±∞, this follows

by similar estimates as in Section 4.2.1 above.

Lemma 4.7.4. The operator L has Fredholm index 1− n.

Proof. We once again decompose the space X = X 0 ⊕ Xh as in the discussion above

Lemma 4.2.4 and 4.2.5.

On X 0we have L = −L0 = ∂x ◦ L̃ with L̃v := ∂xv + c0v + fu(q0)v. It then follows from

Hypothesis 4.7.1 that L̃ restricted to X 0 has Fredholm index 1. Furthermore, since we

are working in exponentially weighted spaces, ∂x has Fredholm index −n. Combining

these two facts, we have that L has index 1− n on X 0.

Then, by a similar argument as in the proof of Lemma 4.2.5, we find that Lk := L :

Yk ⊂ X k → X k satisfies dim kerLk = dim kerL∗k = 0 for k 6= ±0, 1 and dim kerLk =

dim kerL∗k = 1 for k = ±1. This once again implies that Lh has index 0 and thus gives

the result.

Next we define X̊ = {u ∈ X :
〈
u, e−2η〈x〉r

〉
, ∀r ∈ Rn}. Then, since e−2η〈x〉r lies in the

cokernel of L for all r ∈ Rn, we find that L maps Y into X̊ and obtain the following

corollary to Lemma 4.7.4

Corollary 4.7.5. The operator L : Y → X̊ has Fredholm index 1.

Proof. This follows from the fact that the orthogonal projection S : X → X̊ has

Fredholm index n.

Combining this all together, we obtain the following result which is equivalent to The-

orem 1 of [135].

Theorem 4.7.6. Given Hypotheses 4.7.1 and 4.7.2, there exists a 1-parameter family

of time-periodic solutions of (4.7.1), unique up to spatial translates, which bifurcate

from the shock solutions qε(x) as ε is varied through 0. The solution branch (u, ω, ε) ∈
(
qε +H2(R, L2(T))

)
× R2 can be parameterized by r ≥ 0, the amplitude of oscillations.

More precisely, there exists r∗ > 0 and smooth functions Υj, j ∈ {ω, ε, u}, defined for
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|r| < r∗, Υj(0) = 0, so that

ε = Υε(r
2), ω = ω∗ + Υω(r2), u = qε + Υu(r),

with expansions

Υε(r
2) =

Re {θ+}
µ′(0)

r2 +O(r4), Υω(r2) = Im {θ+}|r|2 +O(|r|4),

Υu(r) = rp cos(ωt) +O(r2), (4.7.5)

where θ+ satisfies (4.7.10) below.

Proof. First we see that the restricted operator L : Y → X̊ has 3-dimensional kernel

spanned by

P+ = eiτp(x), P− = P+, P0 = ∂xq
0(x),

where ∂xq
0 is the exponentially localized translational mode and spans the eigenspace

corresponding to the embedded eigenvalue 0 of L.

This implies that L has 2-dimensional cokernel and is thus spanned by

Ψ+ = eiτψ, Ψ− = Ψ+.

We coordinatize elements u0 ∈ kerL using

u0 = aP+ + aP− + bP0, (a, b) ∈ C× R.

The rest of the proof follows in a similar manner as in Section 4.3 where the only

alteration is that the coordinate b ∈ R corresponding to the extra dimension in the

kernel must be treated as a parameter which, as we shall see below, parameterizes the

translational shifts of solutions.

Defining Ω := (ω − ω∗, ε) and the projections Q : X̊ → kerL∗, P := I − Q : X̊ →
(span{Ψi})⊥ as before, we can then solve the “auxiliary” equation analogous to (4.3.3).

We obtain a smooth solution ϕ : kerL × R2 → (kerL)⊥ which is a function of (a, b,Ω)

and satisfies ϕ(0; Ω) = Du0ϕ|(0,Ω) = 0 for Ω sufficiently small. Fixing b = 0, we then
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obtain

ϕ(a, a, 0; Ω) = a2e2itϕ+(x; Ω) + aaϕ0(x; Ω) + a2e−2itϕ−(x; Ω) +O(|a|3),

where ϕi satisfy

L(e2itϕ+) = e2it(fuu(qε(x))[p, p])x,

L(ϕ0) = (fuu(qε(x))[p, p])x,

L(e−2itϕ−) = e−2it(fuu(qε(x))[p, p])x. (4.7.6)

Next, we obtain the same expansion for ϕ and the expanded bifurcation equations

Φ+(a, a; Ω) = (λε(0)ε+ i ω̃) a+ θ+(0, 0) a|a|2 +O
(
(|Ω|+ |a|2)|a‖Ω|+ |a|4

)
, (4.7.7)

Φ−(a, a; Ω) =
(
λε(0) ε− iω̃

)
a+ θ−(0, 0) a|a|2 +O

(
(|Ω|+ |a|2)|a‖Ω|+ |a|4

)
, (4.7.8)

where

θ+(ω̃, ε) =
〈(

3fuuu(qε(x))[p, p, p] + fuu(qε(x)) ([p, ϕ0] + [p, ϕ+])
)
x
, ψ
〉
L2
η(R)

, (4.7.9)

θ−(ω̃, ε) =
〈(

3fuuu(qε(x))[p, p, p] + fuu(qε(x)) ([p, ϕ−] + [p, ϕ0])
)
x
, ψ
〉
L2
η(R)

. (4.7.10)

After once again factoring out the dependence on a using the time-shift symmetry, we

use the assumption that Reλε(0) = µ′(0) 6= 0 to obtain a unique 1-parameter family of

solutions (ω̃, ε)(|a|2).

Then since F is equivariant with respect to the spatial translation symmetry, the unique-

ness of the implicit solution ϕ gives that the family of solution branches obtained when

b varies near 0 are in fact the spatial translates.

Remark 4.7.6. We note that one could also deal with the translational mode and the

extra dimension it adds to kerL by imposing a phase condition such as
〈
u, q0

x

〉
= 0 on

the domain of L. This would in effect pin fronts down, getting rid of spatial translates.
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Remark 4.7.7. Along the lines of Remark 4.3.2, we could alternatively study the origi-

nal linearization L : Y → X with index 1−n and obtain an index-0 operator by inserting

into F the ansatz

u(x) =
∑

b±j e
±
j χ±(x) + w(x),

where χ±(x) = (1±tanh(x))/2, w ∈ X , b±j are real parameters, and e±j are the eigenvec-

tors of fu(u±) corresponding to the n− 1 outgoing characteristics ν±j ≷ 0 (this requires

the e±j to be linearly independent). This allows the outgoing characteristics to vary in

the modulated front. We also remark that this technique should allow for the study of

under- and overcompressive shocks. Denoting i as the number of incoming character-

istics, L would then have Fredholm index i − 2n. By fixing ingoing characteristics and

allowing outgoing characteristics to vary, one obtains a linearization about the shock

with index 0. In a slightly different direction, one can also consider systems with re-

active variables, in which case it may be more appropriate to include the wave speed c

as a free parameter in order to compensate for a cokernel associated with translational

invariance. Such scenarios are very intriguing and would provide an interesting avenue

of research in the future.
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