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Abstract

We realize the non-split Bessel model of Novodvorsky and Piatetski-Shapiro in [1]

as a generalized Gelfand-Graev representation of GSp(4), as defined by Kawanaka in

[2]. Our primary goal is to calculate the values of Iwahori-fixed vectors of unramified

principal series representations in the Bessel model. On the path to achieving this goal,

we will first use Mackey theory to realize the Bessel functional as an integral - as a

result, we will reestablish the uniqueness and existence of a Bessel model for principal

series representations, originally proved in [1] and by Bump, Friedberg, and Furusawa,

in [3], respectively.

Inspired by the work of Brubaker, Bump, and Friedberg in [4], our method of cal-

culation takes advantage of the connection between the Iwahori-fixed vectors in the

Bessel model and a certain linear character of the Hecke algebra of GSp(4). We will

also provide a detailed description of the conjectural program, originally appearing in

[5], connecting characters of the Hecke algebra for a more general reductive group G

with multiplicity-free models of principal series representations. In particular, we will

focus on the role played by the Springer correspondence in this program.

Additionally, using the formulas we develop for the Iwahori-fixed vectors, we provide

an explicit alternator expression for the spherical vector in the Bessel model which

matches previous results in [3].
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Chapter 1

Introduction

In the context of a group G acting on a vector space V , the term “matrix coefficient”

refers to a type of function on G. In general, a matrix coefficient is any linear combina-

tion of functions of the form 〈f, g · v〉 where g ∈ G, v ∈ V , and f ∈ V ∗, the dual space

of V . In particular, if we are in the finite-dimensional setting, with a basis {e1, . . . , en}
of V , and a basis {e∗1, . . . , e∗n} of V ∗, such that 〈e∗i , ej〉 = δij , then the literal matrix

coefficient 〈e∗i , g · ej〉 is an example of a matrix coefficient. For example, the character

χV : g 7→ tr((gij)) of the representation V , where (gij) denotes the matrix of g with

respect to these bases, is a powerful invariant of V .

Within the theory of automorphic forms, one important place where matrix coeffi-

cients appear is in the integral expressions used to construct automorphic L-functions.

Two well-studied examples of matrix coefficients that have this property are the Whit-

taker function and the Macdonald spherical function. Additionally, both the Whittaker

function and the Macdonald spherical function have been shown to have interesting con-

nections to the fields of algebraic combinatorics (see [6], [7]) and mathematical physics

(see [8], [9], [10]).1 In this thesis, we will eventually explain a program for generating

a family of matrix coefficients with applications to the theory of automorphic forms

similar to those of Whittaker functions and the Macdonald spherical function, but first

we will provide an extensive study of a particular type of matrix coefficient, the Bessel

functions. In particular, we will be interested in the images of Bessel functions on the

1 We note that the connections to physics arise primarily in the setting where the group G is a
reductive group over the real or complex field.
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universal principal series representation of an appropriate reductive group G - the uni-

versal principal series is a generalization of principal series representations of G. In

the language of matrix coefficients, Bessel functions are formed by choosing a special

vector in the representation space - such as a spherical vector, or, more generally, an

Iwahori-fixed vector - and by choosing the Bessel functional as the element of the dual

space.

In their 1973 paper [1], Piatetski-Shapiro and Novodvorsky defined the Bessel model

for irreducible admissible representations of the group G = GSp(4) over a p-adic field,

and showed that the dimension of such an embedding is at most 1. Since then, many

deep connections have been established between Bessel models and automorphic forms.

For the moment, let A denote the ring of adeles of a number field. In 1979, Novodvorsky

connected the Bessel model of an irreducible automorphic representation of GSp(4,A)

to the global integral representation of a degree eight L-function for GSp(4) × GL(2)

in [11]. Subsequent contributions in this area were made by Piatetski-Shapiro and

Soudry ([12]) and Bump, Friedberg, and Furusawa ([13],[3]). More recently, Roberts

and Schmidt proved, in [14], that every irreducible, admissible representation of GSp(4)

over a p-adic field of dimension greater than one admits a Bessel functional.

In this dissertation, we will recreate the results from [1] and [3] regarding the unique-

ness and existence, respectively, of the non-split Bessel model specifically for an unram-

ified principal series representation using Mackey theory, which will allow us to realize

the corresponding Bessel functional explicitly as an integral. This will, in turn, allow us

to proceed to our ultimate goal of providing an explicit expression for the Iwahori-fixed

vectors in the model. In particular, the formula that we develop for the spherical func-

tion agrees with the formula for the spherical function in the Bessel model on SO(5)

established by Bump, Friedberg, and Furusawa in [3].

Along the way, we will describe how our construction of the Bessel functional fits into

a conjectural program for connecting characters of the finite Hecke algebra of G with

multiplicity-free models of principal series representations. This program, formulated

by Brubaker, Bump, and Friedberg in [4], was motivated by the study of the Whittaker

and spherical functionals, which it contains as special cases.

We will show momentarily that the most natural way to view this connection between

these models and characters of the finite Hecke algebra is from the perspective of the
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“universal principal series.” In this section, we will only provide the definitions needed

to give an overview of our results; a more in-depth treatment of the universal principal

series, following that provided by Haines, Kottwitz, and Prasad, in [15], will be given

in Section 2.1.

Although our results in this paper will apply specifically to GSp(4) over a p-adic

field, we expect them to generalize considerably, much as the examples of the Whittaker

and spherical models do, and towards that end we will work in greater generality when

possible. In particular, for the rest of this section, let G be a split, connected reductive

group over a p-adic field F with ring of integers o and uniformizer π. Let k denote the

residue field o/(π), and let q denote its cardinality. Let W denote the Weyl group of

G. Let B be a Borel subgroup of G with maximal torus T and unipotent subgroup U

such that B = TU . Let U denote the opposite unipotent of U in B. We assume that

these subgroups, as well as G, are defined over o. Note that this means that K = G(o)

is a maximal compact subgroup of G. Let J denote the Iwahori subgroup, which is

the preimage of B(k) under the canonical homomorphism G(o)→ G(k). Let H denote

the Iwahori-Hecke algebra of G, which is the C-algebra of functions Cc(J\G/J), with

multiplication given by convolution.

Our first definition of the universal principal series will be as the vector space M :=

Cc(T (o)U\G/J), which we can regard as a right H-module under convolution. It will

also be useful to have the following alternate definition of the universal principal series:2

We begin by defining R to be the complex algebra Cc(T/T (o)). We will write πµ to

denote the element µ(π) ∈ T/T (o) where µ is an element of the cocharacter groupX∗(T ).

We regard R as a left (T/T (o))-module via the inverse of the “universal” character

χuniv : πµ 7→ πµ. The universal principal series M is isomorphic to indGB(χ−1
univ)J as

right H-modules, where the representation indGB(χ−1
univ)J is composed of the J-fixed

vectors of the representation indGB(χ−1
univ) formed using normalized induction.

Recall that the spherical function φ◦ in indGB(χ−1
univ) is the image of the characteristic

function 1T (o)UK ∈ M under the isomorphism, which we will call η, mentioned above.

2 We note that this definition gives more of an indication of the connection between the universal
principal series and principal series representations - we will state this connection explicitly in Section
2.1.
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Using the Iwahori-Bruhat decomposition, we see that we can decompose φ◦ as

φ◦ =
∑
w∈W

φw,

where φw := η(1T (o)UwJ). In order to provide an explicit expression for the images of φ◦

and φw in the Bessel model, we are going to need to use the H-structure of indGB(χ−1
univ)J

and its image in the model as left H-modules. In order to define the appropriate H-

module structure on indGB(χ−1
univ)J , we first note that M ∼= H as a free, rank one right

H-module. Using this isomorphism, along with η−1, we can see that R embeds into

H. In fact, as vector spaces, H ∼= R ⊗C H0 where H0 := C(J\K/J) is the finite Hecke

algebra. Eventually, we will show that the image of the universal principal series - and,

hence, the images of these functions - in the Bessel model are contained in a submodule

isomorphic to Vε := H⊗H0 ε, where ε is a certain linear character of H0. We will show

that the Bessel model contains Vε with multiplicity one; this fact will be crucial to our

calculations.

We can see that Vε ∼= R as vector spaces, so we can transfer the H-action on Vε to R

via vε 7→ r, where r is any element of R and vε is the eigenvector of H0 corresponding

to ε. In fact, the model that Vε appears in is dependent on the choice of normalization,

and this also affects the value r in the map above. Roughly stated, a goal of Brubaker,

Bump, and Friedberg is to find many examples where, if L is an R-valued map arising

from a unique model, then there is a character ε of H0 and a subgroup S ⊂ G such that

the transformation properties of L under S imply that L is an H-map from M to Vε;

a key idea here is that the models are connected to the representations of H0 via the

Springer correspondence - we will discuss this connection further in Section 2.3.

We will see momentarily that, due to the structure of H0, there are not many

possible choices of ε. First, we note that the set {Ts | s a simple reflection in W},
where Ts := 1JsJ , generates H0. This set of generators satisfies the same braid relations

that the simple reflections in W satisfy, in addition to satisfying the quadratic relation

(Ts − q)(Ts + 1) = 0. (1.0.1)

From (1.0.1) we see that the only possible eigenvalues for the generators of H0 are −1

and q. The braid relations for H0 then imply that we either have two or four linear
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characters of H0, depending on whether or not the Dynkin diagram for G is simply

laced.

The simplest examples in this program are the Whittaker and spherical models. If

we take L to be the R-valued spherical functional, uniquely determined up to scalar by

the condition that L(φ(gk)) = L(φ(g)) for all φ ∈ indGB(χ−1
univ) and k ∈ K, and ε to

be the trivial character on H0, then it was shown by Brubaker, Bump, and Friedberg

(based on the work of Casselman in [16]) that L is an H-intertwiner from M to Vε; the

analogous result was shown by Brubaker, Bump and Licata, where L is taken to be the

R-valued Whittaker functional, uniquely determined up to scalar by the condition that

L(φ(gu)) = ψ(u)L(φ(g)) for all φ ∈ indGB(χ−1
univ) and u ∈ U , where ψ is a non-degenerate

character of U , and ε is the sign character of H0. Most recently, in [4], Brubaker, Bump,

and Friedberg showed that the Bessel functional on the doubly-laced group SO(2n+ 1)

is an H-intertwiner from M to Vε in the manner described above; in this case, ε is the

character of H0 that acts by −1 on long simple roots and by q on short simple roots.

In general, we start with a subgroup S of G and a linear C-valued character ψ of S,

and we look for an R-module homomorphism L : indGB(χ−1
univ)→ R such that

L(s · φ) = ψ(s)L(φ) for all s ∈ S and φ ∈ indGB(χ−1
univ), (1.0.2)

where the action of G on indGB(χ−1
univ) is given by right translation. In order to find L,

we will use Mackey theory. In the case where F is a finite field, Mackey theory tells us

that the space of R-module homomorphisms satisfying (1.0.2) is in bijection with the

vector space of functions ∆ : G→ R that satisfy the equivariance properties

∆(sgb) = ψ(s)∆(g)χ−1
univ(b) (1.0.3)

for all s ∈ S, b ∈ B; here we are thinking of ψ as taking values in R, since R is a

commutative C-algebra with C included in it.

When F is a p-adic field, Mackey theory tells us that the space of R-module ho-

momorphisms satisfying (1.0.2) is in bijection with the vector space of distributions
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satisfying (1.0.3).3 If such a ∆ exists, we get the corresponding R-module homomor-

phism L from the convolution

L(φ)(g) =

∫
B\G

∆(h−1)φ(hg) dh.

If such an L exists then the space IndGSψ is called a model for indGB(χ−1
univ) - we say

that the model is unique for indGB(χ−1
univ) if the space HomG(indGB(χ−1

univ), IndGSψ) is one-

dimensional, i.e. if the space of functionals satisfying (1.0.2) is one-dimensional.

Based on the formalism of [4], it can be shown that if L is restricted to the space

of Iwahori-fixed vectors, indGB(χ−1
univ)J , then L induces a left H-module structure on its

image. In particular, the algebra R embedded in H, as described earlier, acts on the

image of L by translation. What’s more, it turns out that the only H-module actions on

R, in which the embedded copy of R in H acts by translation, are those arising from the

isomorphism R ∼= IndHH0
ε, with ε a linear character of H0. Putting this all together, we

end up with Brubaker, Bump and Friedberg’s conjecture with regards to this program:

Conjecture 1.0.1 (Rough Form). [4] Let L be an R-valued linear map on indGB(χ−1
univ)

obtained from a unique model. Then L is an H-map from M to Vε = IndHH0
ε for some

choice of linear character ε of H0 and the following diagram commutes:

indGB(χ−1
univ)J

M ∼= H Vε

Lη

Fv (1.0.4)

with vε := L(φ1) and Fvε : h 7→ h · vε where h acts on vε according to the module

structure on Vε. In particular, there exists an r ∈ R such that r · L is an H-map to the

module Vε with eigenvector 1.

Of course, such an H-map L is guaranteed to exist since Fvε and η are isomor-

phisms; rather, the dotted line is meant to reiterate the point made earlier that we are

looking for an explicit realization of this isomorphism using a subgroup S such that the

transformation property (1.0.2) implies that L is an H-map to Vε.

3 In practice, for the models that we are considering, any nonzero ∆ satisfying (1.0.3) is defined on
an open set, so that, in these cases, such ∆ are, in fact, functions.
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We will show in Section 4 that the Bessel functional on GSp(4) as defined by

Piatetski-Shapiro and Novodvorsky in [1] provides another example of such an L:

Theorem 1.0.2. Let G = GSp(4) and let ε be the character of H0 that acts by multipli-

cation by −1 on long simple roots and acts by q on short simple roots. Let Vε = IndHH0
ε.

Then the diagram (1.0.4) commutes by taking vε = πρ
∨
ε , where ρε is half of the sum of

the long positive roots; and by taking L = B, the non-split Bessel functional as defined

by Piatetski-Shapiro and Novodvorsky.

It should be noted that the split Bessel model also gives rise to a functional fitting

into Conjecture 1.0.1 - however, in this case one can show that this model is related to

the sign character of H0.

Before we can prove this theorem, we will discuss the definition of the Bessel model

on GSp(4) and then use Mackey theory to prove the existence of a Bessel model for

indGB(χ−1
univ) in Sections 3.1 and 3.2, respectively. We conclude Section 3.2 with an

explicit realization of the Bessel functional as an integral. And then, once we have

proved Theorem 1.0.2, in Section 5.1, we will use that result to calculate the images of

the Iwahori-fixed vectors {φw}w∈W on torus elements in the model Vε, which has not

previously appeared in the literature. In particular, we prove the following theorem:

Theorem 1.0.3. For dominant λ and fixed w,

B(π−λ · φw) =
1

m(JπλJ)
Twπ

λ · vε,

where the action of T on indGB(χ−1
univ) is by right translation and where the action of

Twπ
λ on vε is the left action on vε appearing in the definition of B.

Using Theorem 1.0.3, we will also be able to calculate the image of the spherical

function in the model, giving a new proof of the same result from [3] (in what follows,

α1 is the short simple root of GSp(4) and α2 is the long simple root):

Theorem 1.0.4. [3] Let ρ be the half-sum of the positive roots of Φ, and let ρε be as

defined in Theorem 1.0.2. Then, for any dominant coweight λ,

B(π−λ ·φ◦) =
π−ρ

∨
ε (1− qπα∨2 )(1− qπ(2α1+α2)∨)

πρ∨
∏
α∈Φ+(1− π−α∨)

A((1−qπα∨1 )(1−qπ(α1+α2)∨)π2ρ∨ε−ρ∨+λ),
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where the action of T on indGB(χ−1
univ) is by right translation and where A denotes the

standard alternator expression A(πµ) =
∑

w∈W (−1)`(w)wπµ with W acting on X∗(T )

in the usual way.

We note here that our proof of Theorem 1.0.2 does not rely on prior knowledge

of the image of the spherical function in the model - in this way our method of proof

differs from the proofs of similar results in [4]. Instead, we will calculate the relevant

intertwining constants directly. Additionally, the proof we give does not use uniqueness

of the model in an essential way, should we eventually find ourselves in a situation where

the space HomG(indGB(χ−1
univ), IndGSψ) is finite-dimensional instead of one-dimensional.

We will discuss how this situation might arise naturally within this program when we

discuss the Springer correspondence in Section 2.3, and again in Chapter 6.

In Section 5.2, we discuss the fourth character, σ, of the finite Hecke algebra of

GSp(4), which acts by multiplication by q on long simple roots and −1 on short simple

roots. At this time we do not have a realization of the intertwiner L satisfying the

diagram (1.0.4) that is also defined according to a subgroup transformation, but we

have matched the image of the spherical function under Fvσ for σ to the image of the

spherical function in the Whittaker-Orthogonal models defined by Bump, Friedberg and

Ginzburg in [17]. In particular, we prove the following proposition:

Proposition 1.0.5. Let WO be the Whittaker-Orthogonal functional on an unramified

principal series representation τ of SO(6), such that τ is a local lifting of an unramified

principal series representation of Sp(4). Then Fvσ(π−λ · 1T (o)UK) and WO(z−λ · φ◦)
agree, for any dominant coweight λ.

Finally, we note that Piatetski-Shapiro and Novodvorsky do not provide an explicit

integral formula for their functional, so part of our task in proving Theorem 1.0.2 is

coming up with the correct integral formula for L. Our method for doing this follows

what we believe to be the general method for connecting models of the form IndGSψ to

characters of H0, which has its genesis in [2]. We will discuss Kawanaka’s conjectured

method for building unique models, along with the modifications we made to it, in Sec-

tion 2.2. Then, in Chapters 6 and 7, we end this thesis with a discussion of how exactly

we expect Kawanaka’s generalized Gelfand-Graev representations to be connected to

irreducible representations of H0 and explain how this connection seems to have led us
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to a (unique) Bessel model for G = GSp(2n).



Chapter 2

Background

2.1 Universal Principal Series

In this section, we retain the notation from Section 1. In particular, G will be a split,

connected reductive group over a p-adic field F with ring of integers o and uniformizer

π. B will denote a Borel subgroup of G with maximal torus T and unipotent subgroup

U such that B = TU , and U will denote the opposite unipotent of U in B. We assume

that these groups are defined over o; in particular, this means that K = G(o) is a

maximal compact subgroup of G. Let J denote the Iwahori subgroup, and let H denote

the Iwahori-Hecke algebra of G.

As mentioned in the introduction, our discussion of the universal principal series

is inspired by the treatment given in [15]. We define the universal principal series M

to be the vector space Cc(T (o)U\G/J). Evidently, we can make M into a right H-

module where H acts by convolution. Now, observe that T/T (o) is isomorphic to the

cocharacter group X∗(T ) of G under the map that sends µ ∈ X∗(T ) to µ(π) ∈ T/T (o).

We will write µ(π) as πµ throughout this thesis. Define R := Cc(T/T (o)) = C[X∗(T )],

and regard R as a left (T/T (o))-module via the inverse of the “universal” character

χuniv : πµ 7→ πµ. If we use normalized induction to form indGBχ
−1
univ, and then take its J-

fixed vectors indGB(χ−1
univ)J , then we can see that M ∼= indGB(χ−1

univ)J as right H-modules;

explicitly we have η : M → indGB(χ−1
univ)J where

η(φ)(g) =
∑

µ∈X∗(T )

δB(πµ)−1/2πµφ(πµg).

10
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Here we can see the motivation for our terminology: if we’re given an unramified prin-

cipal series obtained from parabolic induction by a character χ : T/T (o)→ C×, then χ

determines a C-algebra homomorphism R→ C, and

C⊗RM ∼= indGB(χ−1)J ,

the Iwahori-fixed vectors of our original unramified principal series.

In order to gain a better understanding of the Hecke algebra H, we are going to

make use of an alternate point of view of M . First, we note that M is isomorphic to

H as a free, rank one right H-module; it has a C-basis made up of the characteristic

functions 1T (o)UwJ where w is an element of the affine Weyl group W̃ . The isomorphism

from H to M is given by the map h 7→ 1T (o)UJ ∗ h. We can define a left action of H on

M via this isomorphism: in particular, we identify h ∈ H with the endomorphism

h : 1T (o)UJ ∗ h′ 7→ 1T (o)UJ ∗ (hh′).

Using η, we can transfer this left H-action to indGB(χ−1
univ)J , so that h ∈ H sends φ1∗h′ to

φ1∗(hh′), where φ1 = η(1T (o)UJ). Note that this left action identifies H with EndH(M).

As mentioned in the introduction, the spherical function, φ◦, will be a major figure

in this thesis; we pause here to note that, as an element of indGB(χ−1
univ)J , the spherical

function is defined as

φ◦(g) := δ−1/2(πµ)π−µ,

where g = tuk is the Iwasawa decomposition of g with u ∈ U , k ∈ G(o), and t ∈ T (F )

where t ≡ πµ ∈ T (F )/T (o). As mentioned in the introduction, φ◦ can be decomposed

into the sum

φ◦ =
∑
w∈W

φw,

where φw := η(1T (o)UwJ) ∈ indGB(χ−1
univ)J .

Now, if we take the obvious left action of R on indGB(χ−1
univ)J and transfer it via η−1

to M , we see that R embeds into EndH(M), and hence embeds into H. Additionally,

the finite Hecke algebra H0 = C(J\K/J) is a subalgebra of H, and there is a vector

space isomorphism H ∼= R⊗CH0. While we will often conflate πµ ∈ R with its embed-

ded image in H, we would like to point out that the image of πµ is convolution with

the characteristic function 1JπµJ only when µ is dominant. We use Ts to denote the
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generator 1JsJ of H0, where s is a simple reflection in the Weyl group, W , of G. The

generators of H0 satisfy the braid relations

(TiTj)
m(i,j) = (TjTi)

m(i,j),

where m(i, j) is the order of the braid relation satisfied by the corresponding simple

reflections si, sj , in addition to satisfying the quadratic relation

(Ts − q)(Ts + 1) = 0.

Finally, to understand H in terms of these generators, we need the Bernstein relation,

first proved in [18], which says that, for πµ ∈ R and Ts ∈ H0,

Tsπ
µ = πs(µ)Ts + (1− q)π

s(µ) − πµ

1− π−α∨
, (2.1.1)

where s = sα for a simple root α in the root system Φ of G.

2.2 Generalized Gelfand-Graev Representations

We believe that the unique models that give rise to R-homomorphisms as described in

Conjecture 1.0.1 are related to Kawanaka’s construction of the “generalized Gelfand-

Graev representations” (gGGr) in [2]. Although Kawanaka’s results are given in the

context of algebraic groups over finite fields, we believe that they can be suitably adapted

for the p-adic setting. For this subsection, all notations for algebraic groups indicate

points over the finite field F = Fq.

We will now broadly describe the method for constructing a gGGr and leave more in-

depth discussions of certain parts of the construction for the subsections to follow. When

constructing a gGGr, we begin with a nilpotent Ad(G)-orbit with representative A. We

then use Kirillov’s orbit method to form the attached irreducible representation ηA on

UA, where UA is the unipotent radical of the associated parabolic subgroup PA and UA

is the opposite unipotent. We denote the stabilizer of the representation ηA contained in

the Levi LA of PA by ZL(A), and we note that ZL(A) is a reductive group. We build a

representation ηA,α on UAoZL(A) from ηA and an irreducible representation α of ZL(A).

Then the gGGr associated to A is the irreducible representation ΓA,α := IndG
UAZL(A)

ηA,α.
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In Conjecture 2.4.5, Kawanaka offers a method of producing gGGr’s that contain

each unipotent representation with multiplicity one. Since the principal series repre-

sentations are precisely those representations containing a B-fixed vector, Kawanaka’s

conjecture implies that, for each irreducible H0-module, there should be a unique gGGr

containing it with multiplicity one. After the conjecture, Kawanaka notes that the

nilpotent orbit containing A and the irreducible representation of H0 appearing inside

it appear to be linked via the Springer correspondence.

Shifting back to the p-adic setting, we note that in [19], Mœglin and Waldspurger

give a treatment of those representations - also referred to as gGGr’s in [2] - that are

constructed by inducing ηA from UA up toG directly. However, when we try to construct

gGGr’s (as defined in the previous paragraph) in the p-adic setting, the obstacle that we

encounter is that the representation ηA,α is not necessarily guaranteed to be a genuine

representation; we are only guaranteed that it is projective. However, if ηA is a character

and α is a character of ZL(A), as is the case for the Bessel model on GSp(4), then ηA,α

will be a genuine representation.

Unlike the Whittaker model, which served as the inspiration for the definition of a

Gelfand-Graev representation (see [20]), the spherical model and Bessel model are not

realized directly as gGGr’s. Instead, we realize these models by extending ηA from UA

to UA o (ZL(A) ∩G(o)), and then inducing to G. In the case of the Whittaker model,

ZL(A) is trivial, so it appears that this method of extending ηA to the semidirect product

of UA and ZL(A) ∩ G(o) is a step towards understanding the general construction of

gGGr’s over local fields.

2.2.1 Kirillov’s Orbit Method

A complete treatment of the orbit method can be found in [21]. As originally formulated,

the orbit method gives us a way to construct all unitary irreducible representations of

a connected and simply connected real nilpotent Lie group G.

To construct an irrreducible unitary representation of G, we begin with an element

F of g∗, where g is the Lie algebra of G and g∗ is the dual space of g with respect

to the coadjoint representation. Our next task is to find a maximal Lie subalgebra

h of g subordinate to F , i.e. such that [h, h] ⊂ kerF . We then define the character

χ(exp(X)) = e2πiF (X) of H = exp(h). That χ is a character of H is a consequence of
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the Baker-Campbell-Hausdorff formula. The representation Tχ = IndGHχ can be shown

to be an irreducible unitary representation of G. The Kirillov orbit method tells us

that every irreducible unitary representation of G can be constructed in this manner.

In particular, Kirillov proved the following theorem, listed as Theorem 7.2 in [21]:

Theorem 2.2.1. 1. Every irreducible unitary representation T of G has the form

T = IndGHχF,H ,

where H ⊂ G is a connected subgroup and F ∈ g∗.

2. The representation TF,H = IndGHχF,H is irreducible if and only if the Lie algebra h

of the group H is a subalgebra of g subordinate to the functional F with maximal

possible dimension.

3. Irreducible representations TF1,H1 and TF2,H2 are equivalent if and only if F1 and

F2 belong to the same orbit of g∗.

Switching back to the situation where G is a connected reductive linear algebraic

group defined over Fq, we will say a few words about how the orbit method appears

in the construction of the gGGr associated to a nilpotent Ad(G)-orbit, according to

Kawanaka in [2]: Suppose that we choose such an orbit, O, and choose a representative

A from that orbit. By Dynkin-Kostant theory, there is an sl2 subalgebra with nilpositive

element A whose semisimple element H is invariant under the choice of representative

of O. Exponentiating H gives us a one-parameter subgroup, φ(s), which we then use

to define the associated unipotent subgroup UA: UA is the subgroup of G whose Lie

algebra is composed of elements X such that

lim
s→0

φ(s) ·X = 0.

As stated in Springer’s book [22], UA is the unipotent radical of a parabolic subgroup of

G, which we call PA. Finally, we can use the orbit method to construct an irreducible

representation ηA of the opposite unipotent subgroup UA from the coadjoint UA-orbit

of the dual element A∗ of A in u∗A, the dual space to Lie(UA). The construction of the

associated gGGr then proceeds as described above.
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2.2.2 From ηA to the Generalized Gelfand-Graev Representation ΓA,α

In our initial discussion of the construction of gGGr’s, we introduced the notation ZL(A)

for the stabilizer of the representation ηA in the Levi subgroup LA of PA. We will often

shorten this notation to ZL = ZL(A) when there is no risk of confusion. The motivation

for this notation comes from the fact that the stabilizer of ηA in LA is equal to the

centralizer of the element A in LA, the proof of which can be found in [23]. In order

to construct a representation ηA,α of UAZL as described above, we will use Wigner’s

method of little subgroups. In particular, we must start by extending ηA from UA to

UAoZL and extending α from ZL to UAoZL. In the case where ηA is a linear character

of UA (as it is for the Bessel model) this process is straightforward and yields a genuine

representation of UAZL. If ηA is a higher-dimensional representation, then the method

of little subgroups is only guaranteed to yield a projective representation of UAZL (see

the discussion preceding Proposition 2.2 in [23]). However, as proved in Proposition 2.3

in [23], with G defined over a finite field, this extension of ηA, which we denote by η̃A, is

a genuine representation. We define the representation ηA,α on UAZL as ηA,α := η̃A⊗α
and, finally, we define the gGGr

ΓA,α = IndG
UAZL(A)

ηA,α;

here we abuse notation and let α refer to the extension of α to UAZL.

When we adapt this theory to the p-adic setting, we find that the extension of ηA

to UAZL is no longer guaranteed to be a genuine representation. Kawanaka offers a

version of Conjecture 2.4.5 modified for this case at the end of [2], and, as mentioned

previously, Mœglin and Waldspurger provide some answers to these conjectures for the

gGGr’s of the form IndG
UA
ηA. However, our results seem to be related to the more

refined gGGr’s induced from UAZL that we have been discussing. In [4], the authors

suggest that, in order to suitably adapt the more refined gGGr’s to the p-adic setting,

we should be using a representation of ZL(A) ∩ G(o) to construct ηA,α rather than a

representation on ZL(A). Taking this tack, (as described in [4] one can realize both the

spherical model and the non-split Bessel model on SO(2n+ 1), as well as the non-split

Bessel model on Sp(4) (as we will show in this thesis).

In particular, we can realize the spherical model as a gGGr by taking A = 0, so

that UA is trivial and ZL(A) = G; putting the trivial representation on G(o), gives
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us the spherical model. As for the non-split Bessel model on G = SO(2n + 1), we

let A be an element of the orbit corresponding to the partition [2n − 1, 12] (see 2.3.1

for further explanation), so that UA is the unipotent subgroup generated by the root

subgroups corresponding to the roots α1, α2, α2 + α3. In this case, ZL(A) is a non-

split one-dimensional torus embedded in the central SO(3) block. If we put the trivial

representation on ZL ∩G(o) and form the associated gGGr, we see that we end up with

the non-split Bessel model on SO(2n+ 1) as defined in [5].

2.3 The Springer Correspondence

As mentioned in Section 1, we expect the model containing Vε as defined in Conjecture

1.0.1 to be a gGGr ΓA,α where A and α are closely related to the character ε of H0.

In particular, we believe that the Springer correspondence plays a major role in this

connection between ε and ΓA,α. We pause here to summarize the known results again: if

ε is the trivial character, then Vε lives inside the J-fixed vectors of the spherical model;

if ε is the sign character, then Vε lives inside the J-fixed vectors of the Whittaker model;

and if G = SO(2n+ 1), then if ε is the character that acts by −1 on long simple roots

and by q on short simple roots, then Vε lives inside the J-fixed vectors of the Bessel

model (in this thesis we will show that this result holds for G = Sp(4) as well).

The Springer correspondence is a bijection between irreducible representations of W

and pairs (O, µ), where O is a nilpotent orbit of the Lie algebra and µ is an irreducible

representation of A(O), a subgroup of the G-equivariant fundamental group. The ir-

reducible representations of W are in bijection with those of H0 by Tits’ Deformation

Theorem. Geometrically, the Springer correspondence arises from the realization of the

irreducible representations of W in the top degree cohomology group of partial flag va-

rieties. For classical groups, this bijection can be represented by a combinatorial recipe

between the two sets, which is generally more useful in practice than the general defini-

tion. Since, in the rest of this thesis, we are primarily concerned with G = Sp(4), we will

describe this recipe for type Cn. We note that the recipes for type Bn and Dn are quite

similar, while type An is much simpler. A description of the Springer correspondence

for each of these types can be found in Chapter 10 of [24] and in Chapter 13 of [25].

In this section, we will give an overview of the Springer correspondence, and then, in
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Chapter 6, we will give a description of how, for a given ε, we think one might construct

ΓA,α so that Vε is contained in the J-fixed vectors of this gGGr. In particular, we will

start by describing the correspondence between nilpotent orbits and representations of

the Weyl group W . Once we have done this, we will describe how to determine the

character of A(O) corresponding to a given representation of W .

2.3.1 The Combinatorics of Nilpotent Orbits

We will begin by offering parametrizations of both the set of nilpotent orbits of type

Cn and the set of irreducible representations of W . Once we have done this, we will

describe an injective map from the set of nilpotent orbits into the set of irreducible

representations of W formulated by Lusztig in [26].

Recall that, for type Cn, W ∼= Sn o (Z/2)n. As noted in Chapter 10 of [24], since

(Z/2)n is abelian, we can use Wigner’s method of little subgroups to obtain the following

parametrization of W (|d| will denote the sum of parts of the partition d):

Theorem 2.3.1. The irreducible representations of the Weyl group W of type Cn are

parametrized by ordered pairs (p,q) of partitions such that |p|+ |q| = n. The resulting

representation has dimension

dimπ(p,q) =

(
n

|p|

)
(dimπp)(dimπq).

We also have

π(p,q)
∼= π(q,p) ⊗ sgn,

where p denotes the conjugate partition of p, and sgn denotes the sign character. The

representation π(p,q) is characterized by the following property. Let V be the subspace of

π(p,q) consisting of all vectors on which the first |p| copies of Z/2 act trivially while the

remaining |q| copies act by −1. Then S|p|×S|q| acts on V according to the representation

πp × πq.

Going forward, we will abuse notation and refer to the representation π(p,q) as (p,q).

We will make the same abuse of notation with respect to our parametrization for the

nilpotent orbits of sp(2n), which we recall from Section 5.1 in [24]:

Theorem 2.3.2. Nilpotent orbits in sp(2n) are in one-one correspondence with the set

of partitions of 2n in which odd parts occur with even multiplicity.
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Now, let d be a partition of 2n corresponding to an orbit of sp(2n). We ensure that

d = [d1, . . . , d2k] has an even number of parts by calling the first part 0 if necessary, and

we arrange the parts in increasing order (so that di > 0 for i > 1). We then define a

new strictly increasing sequence of integers (e1, . . . , e2k) by setting ei = di+ i−1. Next,

we use the ei’s to define two new strictly increasing sequences of integers (f1, . . . , fa)

and (g1, . . . , gb), where 2f1 + 1 < 2f2 + 1 < · · · < 2fa + 1 are the odd ei’s and 2g1 <

2g2 < · · · < 2gb are the even ei’s. It turns out that a = b = k.

Next, let pi = fi−(i−1) and qi = gi−(i−1) for all i. Once we have discarded any 0

parts, we find that we have an ordered pair of partitions (p,q), with p = [p1, . . . , pj ] and

q = [q1, . . . , q`]. In particular, it is always the case that the ordered pair of partitions

(p,q) that we get from this process satisfy the property that |p| + |q| = n. Thus,

using Theorem 2.3.1 and Theorem 2.3.2, we can see that this method gives us a way to

associate a nilpotent orbit of Cn to an irreducible representation of the Weyl group of

Cn.

As an example, let’s suppose that n = 3 and calculate the calculate the irreducible

Weyl group representation corresponding to the nilpotent orbit d = [22, 12]. In this

case, we have that (e1, e2, e3, e4) = (1, 2, 4, 5), and so (f1, f2) = (0, 2) and (g1, g2) =

(1, 2). Then (p1, p2) = (0, 1) and (q1, q2) = (1, 1). Thus, the irreducible Weyl group

representation corresponding to this nilpotent orbit is ([1], [12]).

We will end this subsection by investigating the image of the map d 7→ (p,q). It

will turn out that the method we will use to identify which irreducible representations

(p,q) of W are hit by this map can be adapted to give the Springer correspondence, as

we will show in the next subsection.

Given an ordered pair of partitions (p,q) with |p| + |q| = n, write p = [p1, . . . , pk]

and q = [q1, . . . , q`] with the parts of p and q given in increasing order. For the following

correspondence to be defined, we must make sure that p has exactly one more partition

than q. To achieve this, we simply pad the given partitions with 0’s in front as necessary

(we now reindex the parts of p and q to reflect these added zeros, so that k = ` + 1).

From these partitions we consider the symbol (originally defined by Lusztig in [27], and

referred to as the “Lusztig symbol” of the representation (p,q) in the sequel)(
p1 p2 + 2 · · · pk + 2(k − 1)

q1 + 1 q2 + 3 · · · q` + 2`− 1

)
.
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If p1 ≤ q1 + 1 ≤ p2 + 2 ≤ q2 + 3 ≤ · · · ≤ q` + 2`− 1 ≤ pk + 2(k− 1), then (p,q) is in the

image of the injection from nilpotent orbits to irreducible representations of the Weyl

group defined above. To figure out the nilpotent orbit associated to a given symbol, just

decompose the symbol back into pi’s and qj ’s (as in the original definition of the symbol)

and then work backwards towards the partition d associated to a nilpotent orbit using

the algorithm described in the paragraphs above. Note that in the construction of the

symbol, we end up with p having one more part than q (including the zeros), even

though, in our map from nilpotent orbits to irreducible W0-representations, these two

partitions were constructed to have the same number of parts. Thus, to make it possible

to work backwards through the injection d 7→ (p,q), either remove p1 from p if p1 = 0,

or add a 0 to q if p1 6= 0. Then p and q should have the same number of parts and it

should be possible to recover the original partition d.

As an example, consider the irreducible representation ([2], [1]) of the Weyl group of

C3. After padding [2] to [0, 2], we get the symbol(
0 4

2

)
.

Since 0 < 2 < 4, ([2], [1]) is the image of some nilpotent orbit under the map defined

above. Working backwards, we can see that the associated nilpotent orbit is [4, 2].

2.3.2 The Springer Correspondence in Type Cn

Using the symbol of a representation of W as defined in the previous subsection, we

can give a description of the Springer correspondence, following Lusztig. We begin

with the observation that each irreducible representation of W can be associated to

a Lusztig symbol as described in the previous section. In particular, we can see that

(p1,q1), (p2,q2) will have the same Lusztig symbol if and only if p1 = p2 and q1 = q2.

In order to determine the nilpotent orbit d and representation µ of A(d) associated to

(p,q) under the Springer correspondence, we must first reorganize the Lusztig symbol

of (p,q) so that the symbol satisfies the condition p1 ≤ q1 + 1 ≤ p2 + 2 ≤ q2 + 3 ≤ · · · ≤
q` + 2`− 1 ≤ pk + 2(k− 1) given in the previous section. The nilpotent orbit associated

to (p,q) is the orbit d associated to this rearranged Lusztig symbol.
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In order to determine µ, we first need to be able to say what A(d) is. In Chapter 6

of [24], the authors prove the following theorem:

Theorem 2.3.3. In type Cn,

A(d) =

{
(Z/2)b if all even parts have even multiplicity

(Z/2)b−1 otherwise,

where b is the number of distinct nonzero parts of d.

Next, let S be the set of integers appearing with multiplicity one in the Lusztig

symbol, and break S into intervals, where an interval of S is a subset

(i+ 1, . . . , j) ⊂ S with 0 ≤ i < j and i, j + 1 6∈ S.1

The group A(d) is generated by elements of order 2, where each generator, aI , corre-

sponds to an interval I of S, with the additional relation that the sum of the generators

is defined to be 0. In type Cn, µ is always a character, and the value of µ(aI) is deter-

mined by the Lusztig symbol. In particular, µ(aI) = 1 if the associated interval I lies in

the same row of the rearranged Lusztig symbol as it did in the original Lusztig symbol,

and µ(aI) = −1 otherwise.

For example, consider the irreducible representation (∅, [3]) of the Weyl group of C3.

After padding ∅ to [02], we get the symbol(
0 2

4

)
.

Since this symbol does not satisfy the inequalities p1 ≤ q1 + 1 ≤ p2 + 2, it is not in

the image of the map from nilpotent orbits to irreducible representations of the Weyl

group. Hence, we associate π(∅,[3]) to the nilpotent orbit that corresponds to the symbol(
0 4

2

)
,

which we saw earlier was the nilpotent orbit [4, 2]. Next, we observe that A([4, 2]) = Z/2;

hence, µ is either trivial or the sign character. We see that S = {0, 2, 4}, and hence

1 It turns out that the number of intervals is equal to the number of distinct even parts of d.
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that we have two intervals, I1 = (2), I2 = (4), giving us two generators a1 and a2 of

A([4, 2]). Since 2 is in the first row of the original Lusztig symbol but is in the second

row of the rearranged Lusztig symbol, we have µ(a1) = −1. Thus, µ must be the sign

character of A([4, 2]), and so we see that the Springer correspondence associates (∅, [3])

to ([4, 2], sgn).



Chapter 3

The Bessel Model and the Bessel

Functional

We return now to the setting where G = GSp(4), and show how the Bessel model as

formulated in [1] fits into the narrative formulated at the end of the previous section

before we move on to establishing our main results. We carry all of our notation through

from the previous section. We will have need to realize specific elements of G, and so

we will explicitly define G as

G := {g ∈M4(F ) | g>Ωg = kΩ, k ∈ F×},

where

Ω =


−1

−1

1

1

 .

As in the first section, we let Φ denote the root system of G, with simple roots α1, α2,

and let s1, s2 denote the corresponding simple reflections in W . Let ρ denote the half-

sum of the positive roots of Φ, and let Φ+ and Φ− denote the sets of postive and negative

roots of Φ, respectively.

22
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3.1 The Bessel Model as a Generalized Gelfand-Graev

Representation

The transformation property satisfied by the Bessel model depends on the parabolic

subgroup PA of G containing the subgroup corresponding to the short simple root −α1.

We can factor PA = LAUA where LA is the Levi component of PA, and UA is the

unipotent component of PA, as outlined previously. In this case, the nilpotent element

A can be chosen so that A is the sum of non-zero elements in the long simple root α2-

subalgebra and in the (2α1 + α2)-subalgebra. Let UA denote the opposite unipotent of

UA. Let ψ0 be a non-degenerate additive character on F+, and let ψA(u) = ψ0(tr(ru′))

for u ∈ UA, where u′ is the lower left 2× 2 block of u and r ∈M2(F ). We assume that

r is non-degenerate. Then the linear character ψA is the representation of UA that we

denoted as ηA in the previous section.

We wish to extend ψA to a character ψ̃A of UA o ZL, where ZL = ZL(r) is the

centralizer of r in LA (this is the same group as ZL(A) as described in the previous

section, by duality). If we look at the orbits of the elements of UA under the conjugation

action of LA, we see that each orbit contains an element with

r =

(
0 −ω
1 0

)
.

Piatetski-Shapiro and Novodvorsky show that ZL is a torus in LA – if it is non-split

then the upper left 2× 2 block of an element of ZL looks like(
α ωβ

β α

)
∈ GL(2).

We can then define ψ̃A(ut) = ψA(u) for t ∈ ZL and u ∈ UA. Note that this represen-

tation is the one denoted by η̃A in Section 2.2.2; going forward we will continue to use

ψ̃ to denote the representation ψ̃ ⊗ 1, where 1 is the trivial character of ZL(A). Then,

following the previous section, we can define the Bessel model to be IndG
UAZL

(ψ̃A).

The Bessel functional for an irreducible admissible representation θ on G is defined

to be a linear functional B on the representation space Vθ of θ such that

B(θ(ut)v) = ψ̃A(ut)B(v),
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for v ∈ Vθ, t ∈ ZL and u ∈ UA. In particular, note that this means that ψ̃A must

agree with the central character of θ. Following [3], let ZL(o) = ZL ∩ SL(4, o), so that

ZL is the semidirect product of the compact group ZL(o) and the center of G. In

particular, this means that the model IndG
UAZL(o)

(ψ̃A) is a scalar multiple of the model

defined in the preceding paragraph. Going forward, we will take this second definition

as the definition of the Bessel functional, so as to be consistent with the discussion

in Section 2.2.2. We want the character ψ̃A to have o as its conductor, so we choose

ω ∈ o. In order to ensure that ZL(o) is non-split, we choose ω 6∈ o2. In the next section

we will discuss the existence and uniqueness of a Bessel functional for indGB(χ−1
univ)J .

As mentioned previously, the latter condition was covered in [1] in greater generality,

but the Mackey theory argument outlined in Section 3.2 has the additional benefit

of suggesting an integral realization of the functional, as described in Section 1. We

end this section with the statement of Novodvorsky and Piatetski-Shapiro’s theorem

regarding the uniqueness of the Bessel functional:

Theorem 3.1.1. [1] Let θ be an irreducible admissible representation of the group G

in a complex space V . Then the dimension of the space of all linear functionals B on V

for which

B(θ(ut)v) = ψ̃A(ut)B(v), for all t ∈ ZL(o), u ∈ UA, v ∈ V

does not exceed one.

3.2 Existence and Uniqueness of Bessel Functionals for

Principal Series Representations

In this section, we will use Bruhat’s extension of Mackey theory as described in [28] in

order to first show that indGB(χ−1
univ) admits a Bessel model, and then to give an integral

realization of the corresponding Bessel functional. In particular, much of the argument

used to prove this result for SO(2n+ 1) given in [29] can be applied without significant

alteration, so, in the discussion to follow, we will refer the reader to the relevant results

in [29] where appropriate. Before we begin, we note, per [15], that while the treatment

in [29] ultimately yields a C-valued functional on principal series representations, the

method of proof applies equally well to a functional taking values in any commutative
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C-algebra, and so the fact that χ−1
univ takes values in R does not introduce any new

complications when translating results from [29].

As mentioned above, the argument that we will use to show that

dim HomG(indGB(χ−1
univ), IndG

UAZL(o)
ψ̃A) = 1

originated with Rodier in [28], and it makes use of the following theorem of Bruhat:

Theorem 3.2.1. [30] Let G be a locally compact, totally disconnected unimodular group.

Let H1 and H2 be two closed subgroups of G, and δi the module of Hi. Let τi be a smooth

representation of Hi in the vector space Ei, πi be the induced representation IndGHiτi in

the Schwarz space of τi.

Then the space of all intertwining forms I of π1 and π2 is isomorphic to the space

of (E1 ⊗ E2)-distributions ∆ on G such that

λ(h1) ∗∆ ∗ λ(h−1
2 ) = (δ1(h1)δ2(h2))1/2∆ ◦ (τ1(h1)⊗ τ2(h2)) (3.2.1)

where hi ∈ Hi and λ(x) is the Dirac distribution in x. The correspondence between I

and ∆ is given by

I(p1(f1), p2(f2)) =

∫
G
dg2

∫
G
f1(g1g2)⊗ f2(g2) d∆(g1), (3.2.2)

where fi are locally constant functions on Ei with compact support, and pi is the pro-

jection from this space of functions to the Schwarz space of τi.

Let D(X,R) denote the space of R-distributions on a locally compact, totally dis-

connected space X. Following [29], we begin by noting that

HomG(indGBχ
−1
univ, IndG

UAZL(o)
ψ̃A) ∼= HomG(indG

UAZL(o)
ψ̃∗A, indGB(χ−1

univ)∗),

where ψ̃∗A and (χ−1
univ)∗ are the smooth contragredients of ψ̃A and χ−1

univ, respectively.

Then, by Theorem 3.2.1, this latter space is isomorphic to the subspace Dψ̃A,χ−1
univ

(G,R)

of D(G,R) of R-distributions ∆ on G satisfying

λ(b) ∗∆ ∗ λ(h−1) = δ
1/2
B (b)χ−1

univ(b)ψ̃∗A(h)∆. (3.2.3)

for all h ∈ UAZL(o) and b ∈ B. With this condition in mind, we will use a double-

coset decomposition of G to analyze Dψ̃A,χ−1
univ

(G,R). The Bruhat decomposition G =
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tw∈WBwU tells us that every element ofG lies in some double cosetBwx−α1(t)UAZL(o),

where x−α1(F ) is the −α1 root subgroup of G, and where w = s1, s2s1, s1s2s1, or w0,

since s1 ∈ UAZL(o). In fact, for each of these w, wx−α1(t) = xα(t)w ∈ Bw, where

either α = α1 or α = α1 + α2, so we can refine our double coset decomposition and say

that every element of G lies in one of the double cosets BwUAZL(o).

In a series of results, starting with Proposition 2.4, Friedberg and Goldberg show

that, for a given non-zero ∆ ∈ Dψ̃A,χ−1
univ

(G,R), ∆ can only be supported on one specific

double coset, and that, in addition, ∆ is completely determined by its restriction to

that double coset. The same thing is true in our case, and we will show that the only

double coset that can serve as the support of ∆ is BUAZL(o). Once we have done this,

our proof of uniqueness of the Bessel model concludes in the same way described in [29].

The following lemma allows us to determine which of these double cosets do not

satisfy the compatibility condition

χ−1
univ(b) = ψ̃A(w−1bw) (3.2.4)

for some b ∈ B with h = w−1bw ∈ UAZL(o). By Theorem 1.9.5 in [31], any double coset

that fails to satisfy (3.2.4) for all such b is not part of the support of any distribution

in Dψ̃A,χ−1
univ

(G,R).

Lemma 3.2.2. If w(α) ∈ Φ+ for any α such that xα(t) is in the support of ψ̃A, then

every element of Dψ̃A,χ−1
univ

(G,R) must vanish on BwUAZL(o).

Proof. In this case, we have χ−1
univ(xw(α)(t)) = 1 for all t ∈ F , but ψ̃A(xα(t)) is not

constant, so (3.2.4) does not hold on BwUAZL(o).

Since w(−α2) ∈ Φ+ for w = s2, s1s2, s2s1s2, Lemma 3.2.2 tells us that every ∆ ∈
D−1

ψ̃A,χuniv
(G,R) must vanish off of BUAZL(o).

In the rest of this section, we will discuss the integral realization of the Bessel

functional for indGBχ
−1
univ, as well as the issue of convergence of the functional. We

will leave the proof of the existence of a non-zero Bessel functional for Section 4. If

indGBχ
−1
univ has a Bessel model, then Theorem 3.2.1 tells us that, if ∆ is a non-zero

element of DηA,χ−1
univ

(G,R), then the corresponding intertwining form, I, of indGBχ
−1
univ

and IndGUAZL(o)ψ̃A, is given by (3.2.2). Hence, the corresponding Bessel functional is
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realized as the inner integral of I, which in this case is

B(φ)(g) =

∫
G
φ(hg) d∆(h)

=

∫
ZL(o)

∫
UA

ψ(u)φ(uhg) du dh,

with g set equal to 1.

Upon showing that this integral is non-zero in the next section, we will have proved

the following theorem:

Theorem 3.2.3. The space of Bessel functionals on indGB(χ−1
univ) is one dimensional and

there exists a unique such Bessel functional whose restriction to functions supported on

the big cell PAUA is given by

B(φ) = πρ
∨
ε

∫
ZL(o)

∫
UA

ψ(u)φ(uh) du dh.

Here we have normalized the Bessel functional so that the diagram (1.0.4) will

commute with vε = πρ
∨
ε as in Theorem 1.0.2. Of course, we could just as easily define

the outer integral to be over all of ZL, since we can see ZL is compact in the non-split

case, so that the functional as defined is just a constant multiple of the Bessel functional

we would get by integrating over all of ZL. Note that, in the split case, ZL is no longer

compact, so that we will have to worry more about convergence of the functional in

this case. Because of this, we expect the integral realization of the functional to have a

slightly different form, so that, as a Hecke algebra map, it behaves like the Whittaker

functional and intertwines the sign character.

We conclude this section with a brief discussion regarding the convergence of the

functional B. We will start by discussing the convergence of B(φ), φ ∈ indGBχ
−1
univ in

a particular completion of R, as described in Section 6.2 of [15] for the Whittaker

functional. Let J = {−α∨2 , (−α1 − α2)∨, (−2α1 − α2)∨}, and let C[J ] denote the

subalgebra of R generated by J . Let RJ denote the completion of C[J ] with respect

to the maximal ideal generated by J . Our initial claim is that B(φ) ∈ RJ . Since

φ ∈ indGBχ
−1
univ is compactly supported mod B, we can see that we do not need to

include any positive coroots in J . Additionally, since B(φ) is an integral over UAZL(o),

we can see that there is no need to include −α∨1 in J either. In order to see that

B(φ) ∈ RJ , we apply the following lemma from [15]:
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Lemma 3.2.4. [15] Let µ ∈ X∗(T ). Then the set U ∩ πµUK is compact.

Finally, we observe that, due to the oscillation of the character ψA, all but finitely

many of the coefficients of the Laurent series B(φ) will vanish, which means that B(φ)

is indeed an element of R, not just RJ . Note that, if we were to specialize χ−1
univ to

a C-valued character on B, we could show that the resulting functional converges in

C on elements of the corresponding principal series representation using an argument

analogous to that presented in [29].



Chapter 4

The Bessel Functional as a Hecke

Algebra Intertwiner

4.1 Principal Series Intertwining Operators

We will now introduce the principal series intertwining operators. These operators turn

out to be closely connected to the left action of the elements of the finite Hecke algebra

on indGB(χ−1
univ)J , and we will exploit this connection in order to show that our functional

acts as a Hecke algebra intertwiner in the way predicted in Theorem 1.0.2.

Our initial goal is to define a family of intertwining operators, one for each w ∈W ,

that take M to itself. Our first guess at such an operator

Iw : φ 7→
∫
U∩wUw−1

φ(w−1ug) du,

does not quite work, because it does not preserve M. As shown in [15], there is a way

to extend M by scalars to a completion of R according to the roots

Φ+
w := {α ∈ Φ+ | w−1(α) ∈ Φ−},

such that this extension of M is preserved by Iw, but instead of doing this, we choose

to use normalized versions of these intertwiners, Aw, where

Aw :=

 ∏
α∈Φ+

(1− πα∨)

 Iw,
29
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since, using basic properties of Iw recorded in Lemma 1.13.1 in [15], we can see that

Aw preserves M. Now, since Aw ∈ EndH(M), we can regard Aw as an element of H
acting on the left ofM. In particular, we see that, for a simple reflection sα, the desired

relation between Asα and Tsα is

Asα = (1− q−1)πα
∨

+ q−1(1− πα∨)Tsα . (4.1.1)

We pause here to note that it was Rogawski in [32] who first used (4.1.1) to recover

earlier results of Rodier and others on the structure of the unramified principal series

representations. However, Rogawski was using (4.1.1) to recover information about the

intertwining operators from his knowledge of the Hecke algebra action, which is the

opposite of what we will do.

4.2 Calculating Intertwining Factors

In order to prove Theorem 1.0.2, we will use (4.1.1) to reduce the problem to under-

standing the interaction between the principal series intertwiners and the functional. In

particular, since the Bessel functional is unique and since B ◦Asα is a Bessel functional

on indGB(sα · χ−1
univ), we know that it must be a constant multiple of sα ◦ B. Hence, for

each simple root α, we want to calculate cα ∈ R such that

B ◦Asα = cα(sα ◦ B).

This turns out to be a tractable calculation, yielding the following results:

Proposition 4.2.1. With notation as above, we have that

B ◦As1 = (1− q−1πα
∨
1 )(s1 ◦ B), (4.2.1)

and

B ◦As2 = (πα
∨
2 − q−1)(s2 ◦ B). (4.2.2)

Remark. We expect that, for the rank n case, (4.2.1) will hold for all short simple roots

and (4.2.2) will hold for the long simple root.

In order to prove (4.2.1), we will need to calculate the image of the Iwahori-fixed

vectors φ1 and φs1 in the model. It turns out that the difficult part of this is calculating
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the intersection of our domain of integration, UAZL(o), with the support of these func-

tions. The goal is to express the intersection as a set whose measure we can calculate

when it appears during evaluation of the functional. As a first step towards determining

these intersections, then, we note that ZL(o) is contained in the Iwahori-Bruhat cells

J and Js1J . Recalling the definition of ZL(o) from Section 3.1, we see that elements

of the stabilizer are in J if and only if α ∈ o× and β ∈ (π). Since ZL(o) ∩ Js1J is

the complement of J contained in ZL(o), we see that ZL(o) ∩ Js1J consists of those

elements of ZL(o) such that β ∈ o×. Hence, an element of ZL(o) is in Js1J if and only

if β ∈ o× and α ∈ o. We choose our Haar measure so that m(ZL(o) ∩ J) = 1, which

means that m(ZL(o) ∩ Js1J) = q.

If uA ∈ UA has Iwahori-Bruhat decomposition bwj with b ∈ B, w ∈ W , and j ∈ J ,

and z ∈ ZL(o), then uAz can be in the support of φ1, BJ , only if z ∈ J and w = 1,

or if z ∈ Js1J and w = s1. Likewise, uAz can be in the support of φs1 , Bs1J , only if

z ∈ J and w = s1 or if z ∈ Js1J and w = 1. With this in mind, once we develop our

understanding of UA ∩ BJ and UA ∩ Bs1J , we should be able to calculate B(φ1) and

B(φs1) easily.

In order to determine that UA∩Bs1J is empty, we are going to appeal to the Iwasawa

decomposition of G with respect to PA and to the Bruhat factorization of G(o) with

respect to PA(o). In other words we will be using the “block” Iwasawa decomposition

G = PAG(o), which is just a more coarse version of the usual Iwasawa decomposition.

The “block” Bruhat decomposition ofG(o) is achieved analogously - we begin by defining

JA to be the preimage of PA(k) under the canonical homomorphism G(o) → G(k), so

that G(o) = JAtJAs2JA, which gives us the decomposition G = PAJAtPAs2JA. Since

Bs1J ⊂ PAJA, we will be able to use the result of the following lemma to figure out

what UA ∩Bs1J is.

Lemma 4.2.2. UA ∩ PAJA = UA ∩ JA.

Proof. Let uA ∈ UA∩PAJA. We see that the standard argument for the rank 1 Iwahori

factorization J = (J ∩B)(J ∩U) can be adapted here to give JA = (JA∩PA)(JA∩UA).

Using this, we see that we can factor uA = pj, with p ∈ PA and j ∈ JA∩UA. Rewriting

this as uAj
−1 = p, we see that uAj

−1 ∈ UA ∩ PA, so uA = j ∈ JA ∩ UA.

Lemma 4.2.2 tells us that UA ∩ Bs1J is contained in UA ∩ JA. In particular, note
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that UA ∩ JA ⊂ J , which means that UA ∩Bs1J is empty.

Our next step is to show that UA ∩BJ = UA ∩ J . To do this, we will use the result

analogous to the one above for the usual Iwahori factorization. This result follows by

an argument similar to the one given in the proof of Lemma 4.2.2.

Lemma 4.2.3. U ∩BJ = U ∩ J .

Proof. Let u ∈ U∩BJ . Then, using the standard Iwahori factorization, J = (J∩B)(J∩
U), we see that we can factor u = bj, with b ∈ B and j ∈ U ∩ J . Rewriting this as

uj−1 = b, we see that, while uj−1 ∈ U ∩B, so u = j ∈ U ∩ J .

For our purposes, suppose that uA ∈ UA ∩ BJ in the argument above. Then,

using the factorization of uA from the proof of Lemma 4.2.3, we see that uA = j. In

particular, this means that j ∈ UA, as well as meaning that uA ∈ J , so that we see that

UA ∩BJ = UA ∩ J.
With these results behind us, we now see that

UAZL(o) ∩BJ = (UA ∩ J)(ZL(o) ∩ J) (4.2.3)

and that

UAZL(o) ∩Bs1J = (UA ∩ J)(ZL(o) ∩ Js1J). (4.2.4)

We make the choice now to normalize our Haar measure so that m(UA ∩ J) = 1. We

are ready to prove Proposition (4.2.1):

Proof of Proposition 4.2.1. In order to make our calculation of cα1 easier, we will eval-

uate B ◦As1 on the Iwahori-fixed vector φ1 +φs1 . From Lemma 1.13.1 in [15], we know

that

B(As1(φ1 + φs1)) = (1− q−1πα
∨
1 )B(φ1 + φs1).

Note that, if we can show that B(φ1) and B(φs1) are both invariant under the reflection

s1, then we will have proved (4.2.1). Now, it follows from (4.2.3) that B(φ1) = πρ
∨
ε , and

hence B(φ1) is invariant under the reflection s1. Similarly, it follows from (4.2.4) that

B(φs1) = qπρ
∨
ε , and so we see that B(φs1) is also invariant under the reflection s1.

Next, we calculate cα2 . Finding this intertwining constant is similar to the corre-

sponding calculation for the Whittaker functional on GL(2). Let φ be an element of
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indGB(χ−1
univ)J on which B is non-zero. A priori, we do not know that such an element

exists - however, in our proof of (4.2.1) we showed that φ1 is such a function. We see

that

B(Asα2φ)(1) = πρ
∨
ε

∫
ZL(o)

∫
UA

∫
F
ψA(u)φ(s2xα2(τ)uz) dτ du dz,

where xα2(τ), with τ ∈ F , denotes an element of the α2-root subgroup of G. Note

that we only need to evaluate the functional at 1 in order to determine the intertwining

constant. Using the rank 1 Bruhat decomposition

s2xα2(τ) = hα2(τ−1)xα2(τ)x−α2(τ−1),

where hα2 is the semisimple subgroup of the embedded SL(2) triple corresponding to

α2, and excluding the point τ = 0, we can rewrite this integral as∫
ZL(o)

∫
UA

∫
F×

ψA(u)χ−1
univ(hα2(τ−1))φ(x−α2(τ−1)uz) dτ du dz.

After factoring u into root subgroups and performing some linear changes of variables,

we find that

B(Asα2φ)(1) = πρ
∨
ε

∫
ZL(o)

∫
UA

ψA(u)φ(uz)

∫
F×

ψA(−ωτ−1)χ−1
univ(hα2(τ−1)) dτ du dz

= cα2(sα2 ◦ B(φ))(1),

where

cα2 =

∫
F×

ψA(−ωτ−1)χ−1
univ(hα2(τ−1)) dτ.

This last integral can be evaluated by shells so that, after normalizing the Haar measure

so that m(xα2(o)) = 1, we get the familiar Whittaker intertwining constant

cα2 = (πα
∨
2 − q−1).

4.3 Proof of Theorem 1.0.2

In order to show that B is an H-intertwiner as claimed in Theorem 1.0.2, we will need

to know the action of Tsα on Vε ∼= R explicitly for simple reflections sα. The calculation
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of this action follows easily from the Bernstein relation: for a basis element πµvε, where,

as before, vε denotes the eigenvector of H0 corresponding to ε, (2.1.1) gives

Tsα · πµvε = πsα(µ)ε(Tsα)vε + (1− q)π
sα(µ) − πµ

1− π−α∨
vε

=

(
ε(Tsα) +

1− q
1− π−α∨

)
πsα(µ)vε +

q − 1

1− π−α∨
πµvε,

where in the second equality we have rearranged terms so that we can see how Tsα ·πµvε
is expressed as a linear combination of πµvε and πsα(µ)vε over R. Thus, regarding Tsα

as an operator on R, we see that Tsα acts on f ∈ R by

Tsα : f 7→
(
ε(Tsα) +

1− q
1− π−α∨

)
fsα +

q − 1

1− π−α∨
f. (4.3.1)

Proof of Theorem 1.0.2. The main result we need to prove is that B is indeed a left

H-module intertwiner from indGB(χ−1
univ)J to Vε, where ε is the character that acts by

multiplication by −1 on long simple roots and acts by q on short simple roots. Once we

have done this and checked that F(1T (o)UJ) = B(φ1) = πρ
∨
ε , we can see that the diagram

commutes since indGB(χ−1
univ)J ∼= M ∼= H. That the diagram commutes on 1T (o)UJ is a

consequence of Lemma 4.2.3; as shown in the proof of Proposition 4.2.1, B(φ1) = πρ
∨
ε ,

and we observe that F(1T (o)UJ) = F(1T (o)UJ ∗ 1J) = πρ
∨
ε .

In order to prove that B is a left H-module intertwiner, it suffices to show that, for

any φ ∈ indGB(χ−1
univ)J ,

B(h · φ) = h · B(φ),

for a set of generators {h} for H. In particular, we will choose our set of generators

to be those elements of the form πµTsα where µ ∈ X∗(T ) and sα is a simple reflection.

Since πµ acts by translation on both Vε and indGB(χ−1
univ)J , we can reduce to checking

the equality on Tsα .

From (4.1.1), we immediately see that

q−1(1− πα∨)B(Tsα · φ) = B(Asαφ)− (1− q−1)πα
∨B(φ).

Now, we need to split into cases since the left action of H on elements of Vε depends on

the length of the simple root α. From Proposition (4.2.1), we see that

q−1(1− πα∨)B(Tsα · φ) =

{
(1− q−1πα

∨
)(sα ◦ B)(φ) + (q−1 − 1)πα

∨B(φ) if α = α1

(πα
∨ − q−1)(sα ◦ B)(φ) + (q−1 − 1)πα

∨B(φ) if α = α2.



35

Dividing by q−1(1− πα∨), we see that the operator acting on B(φ) is

f 7→ q

1− πα∨

{
(1− q−1πα

∨
)fsα + (q−1 − 1)πα

∨
f if α = α1

(πα
∨ − q−1)f sα + (q−1 − 1)πα

∨
f if α = α2.

If we compare this with the operator that we got in (4.3.1) that described the action

of Tsα on R, we see that it matches it exactly in both cases, remembering that ε(Ts1) = q

and ε(Ts2) = −1. Thus, B(Tsα · φ) = Tsα · B(φ) for any φ ∈ indGB(χ−1
univ) and simple

reflection sα.



Chapter 5

Calculating Distinguished Vectors

at Torus Elements

In this section, we will focus on calculating the images of distinguished vectors in unique

models of the universal principal series of GSp(4). In 5.1, we will conclude our discus-

sion of the Bessel functional with proofs of Theorem 1.0.3 and Theorem 1.0.4. Then,

in Section 5.2, we will move on to discussing the connection between the Whittaker-

Orthogonal models defined in [17] and the proposed H-intertwiner corresponding to the

fourth character, σ, of the finite Hecke algebra of GSp(4).

5.1 Calculating Distinguished Vectors in the Bessel Model

As mentioned in Section 1, we will use Theorem 1.0.2 to calculate the images of certain

distinguished vectors under B on anti-dominant, integral torus elements - in particular,

we will use it to prove Theorems 1.0.3 and 1.0.4. Before we can prove Theorem 1.0.3,

we must first prove the following Iwahori factorization:

Lemma 5.1.1. J = (J ∩B)(J ∩ UAZL(o)).

Proof. Using the usual Iwahori factorization, we can see that it suffices to show that

the subgroup x−α1((π)) of J is contained in (J ∩B)(J ∩ UAZL(o)). To see that this is

the case, observe that, for τ = uπj with u ∈ o× and j > 0, we can factor x−α1(τ) = bh,

36
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where

b =

(
g 0

0 det g · (g′)−1

)
with g =

(
(1− ωt2)−1 −ωτ(1− ωτ2)−1

0 1

)
,

and

h =

(
γ 0

0 det γ · (γ′)−1

)
with γ =

(
1 ωτ

τ 1

)
.

proof of Theorem 1.0.3. We begin by looking at the right-hand side, Twπ
λ · vε. We will

use the commutativity of the diagram (1.0.4) and the dominance of λ to show that

B(φw ∗ 1JπλJ) = Twπ
λ · vε,

so that it suffices to show that

B(π−λ · φw) =
1

m(JπλJ)
B(φw ∗ 1JπλJ).

In order to see that this second equality holds, first note that π−λ · φw = η(1T (o)UwJπλ)

by definition (here we emphasize the definition of η as a vector-space isomorphism from

Cc(T (o)U\G) to indGB(χ−1
univ)). Now, if we look at B(φw∗1JπλJ) = B(η(1T (o)UwJ∗1JπλJ)),

we see from the definition of the convolution that

B(φw ∗ 1JπλJ) =

∫
UAZL

∫
J\Jπ−λJ

∫
J
ψ̃(h)η(1T (o)UwJ)(hjγ) dj dγ dh.

Using Lemma 5.1.1 and making the change of variables h 7→ hj−1, the integral above

simplifies to

B(φw ∗ 1JπλJ) = m(JπλJ)

∫
UAZL

ψ̃(h)η(1T (o)UwJπλ)(h) dh,

since the conductor of ψ is o. This is the equality that we wanted to establish.

To see that B(φw ∗ 1JπλJ) = Twπ
λ · v, we first note that

φw ∗ 1JπλJ = η((1T (o)UJ ∗ Tw) ∗ 1JπλJ) = η((Twπ
λ) · 1T (o)UJ),

where the second equality follows because λ is dominant. Thus, using the commutativity

of the diagram (1.0.4), we see that

B(φw ∗ 1JπλJ) = Twπ
λ · vε.
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As noted at the beginning of the section, the linearity of B gives us the following

immediate corollary regarding φ◦:

Corollary 5.1.2. For dominant λ,

B(π−λ · φ◦) =
1

m(JπλJ)

∑
w∈W

Twπ
λ · vε.

In order to prove Theorem 1.0.4, we will to make use of an identity of operators

on Frac(R). Recall that when we recorded the action of Tsα as an operator on R in

(4.3.1), it was with R regarded as a left H-module with eigenvector 1. Our goal is to

calculate the image of the spherical function in the model Vε, and, as noted previously,

R is isomorphic to Vε under the isomorphism 1 7→ πρ
∨
ε . Then, extending the action

of H to Frac(R), we realize the operator associated to Tsα via this isomorphism (now

regarded as an isomorphism of Frac(R)) as

Tsα := πρ
∨
ε Tsαπ

−ρ∨ε ,

so that we can rewrite Corollary (5.1.2) as

B(π−λ · φ◦) =
π−ρ

∨
ε

m(JπλJ)

∑
w∈W

Twπ
λ+2ρ∨ε .

Explicitly, the action of Tsα on Frac(R) for a simple root α is given by

Tsα : f 7→ q

1− πα∨

{
(πα

∨ − q−1)πα
∨
fsα + (q−1 − 1)πα

∨
f if α = α1

(1− q−1πα
∨
)fsα + (q−1 − 1)πα

∨
f if α = α2.

The operator identity that we will use is a deformed version of the Weyl character

formula, established in [4] in a more general setting where G is only assumed to be

split, connected and reductive. Let Ω denote the operator on Frac(R) given by the

Weyl character formula-like expression

Ω := π−ρ
∨ ∏
α∈Φ+

(1− π−α∨)−1A(π−ρ
∨
).

The deformation depends on the choice of character of the Hecke algebra, as described

in the following theorem:
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Theorem 5.1.3. [4] If we have a character τ of H0 for G, then

∑
w∈W

Tw =

 ∏
α∈Φ+

−1

(1− qπα∨)

Ω

 ∏
α∈Φ+

q

(1− qπα∨)

 ,

where Φ+
−1, resp. Φ+

q , are those positive roots that are the same length as the simple

roots α such that τ(α) = −1, resp. τ(α) = q.

In the case of ε, Φ+
−1 = {α2, 2α1 + α2} and Φ+

q = {α1, α1 + α2}, and making these

substitutions gives us Theorem 1.0.4. The image of the spherical function in the Bessel

model evaluated on torus elements was already calculated by Bump, Friedberg and

Furusawa in Corollary 1.8 in [3], and, indeed, it can be confirmed by observation that

our formula matches theirs, up to normalization.1

5.2 Whittaker-Orthogonal Models and the Shalika char-

acter

In this section, we consider the character σ of H0, which was defined in Section 1 to be

the character which acts by q on long simple roots and −1 on short simple roots. For

each of the other three characters of H0 on GSp(4), we have found a subgroup S ⊂ G

such that the model formed by inducing S to G contains that character with multiplicity

one - σ is the only character for which we have not found an explicit integral realization

of L as in the diagram (1.0.4). However, even without this information, we can still say

what the image of the spherical function under L in Vσ, evaluated on torus elements,

would have to be, by the commutativity of (1.0.4) combined with Theorem 5.1.3. Upon

completing this calculation, we notice that the result matches the image of the spherical

function in the Whittaker-Orthogonal model (WO-model) defined by Bump, Friedberg,

and Ginzburg in [17], which we record in Proposition 1.0.5.

The WO-model is defined as a representation on SO(2n+ 2). Let U be the opposite

unipotent radical of the parabolic subgroup of SO(2n+ 2) with a Levi component that

is diagonal except for a central SO(4) block and let ψ be a character of U defined as

ψ(u) := ψ0(u21 + u32 + · · ·+ un−2,n−1 + un−1,n+1 + un−1,n+2),

1 In [3], they work with a choice of unramified principal series indGBχ instead of the universal principal

series. The parameters denoted α1, α2 in [4] can be expressed as α2
1 = χ(π−(α1+α2)

∨
) and α2

2 = χ(πα
∨
1 ).
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where ψ0 is a nontrivial additive character of F with conductor o. Let Z(ψ) ∼= SO(3)

be the stabilizer of this character contained in the Levi. Then, for an unramified rep-

resentation θ of SO(2n + 2), we say that θ has a WO-model if there exists a nonzero

linear functional WO on the representation space Vθ of θ such that

WO(θ(uh)x) = ψ(u)WO(x),

for u ∈ Uπ, h ∈ Z(ψ), and x ∈ Vθ. The uniqueness of WO-models is established in

Theorem 4.1 in [17]. The authors then show, in Theorem 4.2, that, if χ̂ = indGB(χ) is

an irreducible unramified principal series representation, then χ̂ admits a WO-model if

and only if χ̂ is a local lifting of an unramified principal series representation of Sp(2n).

We call χ̂ a local lifting from Sp(2n) if one of the Langlands’ parameters of χ̂ is 1. The

authors note that this is in conformity with Langlands’ functoriality since the L-group

of Sp(2n) is SO(2n+1), and that if one of the Langlands’ parameters is 1 then the given

conjugacy class is in the image of the inclusion of L-groups SO(2n+ 1) ↪→ SO(2n+ 2).2

Now, suppose that we have an unramified principal series representation of SO(6),

χ̂ = indGBχ, where χ = (χ1, . . . , χn+1) with χ1, . . . , χn+1 quasicharacters of F×. Let

zi = χi(π) for each i, and let z = χ(π). Then, if zn+1 = 1, we have the following

formula from Theorem 4.3 in [17] for the image of the spherical vector of χ̂ under WO

evaluated at torus elements πλ, with λ = (λ1, λ2, 0):

Theorem 5.2.1. [17] Let WO be the WO-functional on Vχ̂ such that WO(φ◦) = 1. For

λ ∈ X∗(T ), we have

WO(z−λ · φ◦) = z−2λ1
1 · A(zρ

∨
zλ11 (1− q−1z−1

1 ))

A(zρ∨)
.

Remark. Note that all of the root data here are given with respect to the root system

for SO(2n+ 2), with ρ defined analogously to how it was defined for GSp(4).

We will conflate χ̂ with the representation of GSp(4) of which it is a local lifting

(and, hence, we will also conflate the spherical functions for both representations). In

the following proof, let λ1, λ2 ∈ X∗(T ) with λ1 = (1, 0) and λ2 = (0, 1).

proof of Proposition 1.0.5. We begin by evaluating the two functionals at zλ1 and πλ1 ,

respectively, where λ1 (resp. λ2) is embedded in the cocharacter group of the torus of

2 Recall that the L-group of SO(2n+ 2) is SO(2n+ 2).
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SO(6) as (1, 0, 0) (resp. (0, 1, 0)). In this case, we have that

WO(z−λ · φ◦) =
A(zρ

∨
z1)− q−1A(zρ

∨
)

A(zρ∨)
.

In order to give explicit expressions for these alternators, we will need to make a choice

of quasicharacters µi such that µ2
i = χi for each i - there are two options for each µi,

and we make one arbitrarily. Let ξi = µi(π) for each i. Then, evaluating these two

alternator expressions, we find that

A(ξ3
1ξ2) =

(ξ2
1 + 1)(ξ1ξ2 + 1)(ξ1ξ2 − 1)(ξ2

2 + 1)(ξ1 + ξ2)(ξ1 − ξ2)

ξ3
1ξ

3
2

, and

A(ξ5
1ξ2) =

ξ4
1ξ

2
2 + ξ2

1ξ
4
2 − ξ2

1ξ
2
2 + ξ2

1 + ξ2
2

ξ2
1ξ

2
2

· A(ξ3
1ξ2).

Simplifying, we see that

WO(z−λ ·φ◦) =
ξ4

1ξ
2
2 + ξ2

1ξ
4
2 − ξ2

1ξ
2
2 + ξ2

1 + ξ2
2 − q−1ξ2

1ξ
2
2

ξ2
1ξ

2
2

= z1 + z2−1 + z−1
2 + z−1

1 − q
−1.

(5.2.1)

On the other hand, in order to calculate F(π−λ ·1T (o)UK), where F is the functional

from the universal principal series M to Vσ defined in the diagram (1.0.4), we can use

Theorem 5.1.3 with Φ+
−1 = {α1, α1 + α2} and Φ+

q = {α2, 2α1 + α2}, along with the

commutativity of (1.0.4). Hence, we have that

F(π−λ · 1T (o)UK) =
∑
w∈W

Tw · πλ

= N · π
2λ1+λ2 + πλ1+2λ2 − q−1πλ1+λ2 − πλ1+λ2 + πλ1 + πλ2

πλ1+λ2
,

where N =
−(q−1 + 1)(q−1πλ2 − πλ1)(πλ1+λ2 − q−1)

π2λ1+λ2
.

As defined in (1.0.4), F is not normalized so that F(1T (o)UK) = 1, as WO is in Theorem

5.2.1. Indeed, we see that

F(1T (o)UK) =
∑
w∈W

Tw · 1

= N.

Thus, after normalizing F(1T (o)UK) = 1, we see that

F(π−λ · 1T (o)UK) = πλ1 + πλ2 − 1 + π−λ2 + π−λ1 − q−1,
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which agrees with (5.2.1), indicating that the WO-functional is a lift of the proposed

intertwiner corresponding to σ.



Chapter 6

Unique Models and the Springer

Correspondence

In this chapter, we assume all of the definitions, results, and notations discussed in

Section 2.3. We begin by finishing up a thought from that section before describing how

we expect to construct a gGGr containing Vτ in its J-fixed vectors for a given irreducible

representation τ of H0.

As noted in Section 2.3, the trivial character and the sign character of H0 are

connected to the spherical model and the Whittaker model, respectively, in the sense

described above, and the character ε of H0 that acts by −1 on long simple roots and by

q on short simple roots is similarly connected to the Bessel model for G = SO(2n + 1)

or G = Sp(4). Using the parametrization from Section 2.3, we see that these three

characters correspond to ([n], ∅), (∅, [1n]), (∅, [n]), respectively, with the fourth character

σ corresponding to ([1n], ∅). In Section 6.1, we will describe a version of our conjectured

connection between H0 and gGGr’s in the context of G = Sp(4), and then, in Section

6.2, we will discuss the impact that initial investigations into extending the results of

this paper to Sp(6) have had on the current state of this conjecture.

6.1 A First Pass: G = GSp(4)

If G = Sp(4), the Springer correspondence can be represented in the following chart:

43
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(p,q) (d, µO)

(∅, [12]) ([14], 1)

([2], ∅) ([4], 1)

([12], ∅) ([2, 12], 1)

(∅, [2]) ([22], 1)

([1], [1]) ([22], sgn)

In particular, we note that, in this cse, we have four nilpotent orbits corresponding to

the partitions [4], [22], [2, 12], and [14], and for each of these partitions, the group A(d)

is trivial except for the partition [22], for which A(d) ∼= Z/2.

If we use Kawanaka’s gGGr construction to build the Whittaker functional, we

see that the nilpotent element A that we start with lives in the orbit [4] according

to Theorem 2.3.3. If we do the same thing for the spherical functional, we see that

we begin with an element of the orbit [14]. However, Brubaker, Bump, and Licata

showed in [33] that the Whittaker functional is an intertwiner for the sign character of

H0, which is associated to [14] via the Springer correspondence, and Brubaker, Bump,

and Friedberg showed in [5] showed that the spherical functional is an intertwiner for

the trivial character of H0, which is associated to [4] via the Springer correspondence.

This led to the conjecture that, if one starts with an irreducible representation of H0,

then one should be able to construct a gGGr in which this representation is realized

with multiplicity one from an element of the nilpotent orbit whose associated partition

is the transpose of the partition associated to the nilpotent orbit associated to the

original H0-representation via the Springer correspondence. In the example established

in this paper, we see that the Bessel functional is associated to the character ε of H0,

which, via the Springer correspondence is associated to the nilpotent orbit parametrized

[2, 12]. However, the transpose of this partition is [3, 1], which does not parametrize a

nilpotent orbit in sp(4). The issue here is that, while, for type An−1, the transpose

is an order-reversing involution of the Hasse diagram for the nilpotent orbits of sl(n),

the analogous involution for type Cn is a bit more complicated. In particular, if d

parametrizes a given nilpotent orbit, but d> does not, then we follow further instructions

in [24] for how to manipulate d> in order to find the image of d in the order-reversing

involution; these manipulations are referred to as the C-collapse of d>. In the case of

the partition [3, 1] = [2, 12]>, the C-collapse of this partition is [22], which is exactly
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the orbit containing our original nilpotent element A in Section 3.1.

As for the fourth character that we discussed in Section 5.2, the Springer correspon-

dence tells us that this character should be associated to the orbit [22]. Since [22] is its

own transpose, our conjecture tells us that the gGGr that should contain this character

with multiplicity one is the Bessel model. However, this cannot be correct since the

values for the spherical function on torus elements in the Bessel model do not agree

with the values for the spherical function in a model that intertwines σ.

The search for a unique model containing the remaining irreducible representation

of H0 - the two-dimensional representation ([1], [1]) - also provides us with some avenues

of future research. In Kawanaka’s conjecture, there are no restrictions on the type of

orbit from which the nilpotent element A is chosen, so we expect this connection be-

tween unique models and Hecke algebra representations to extend to higher-dimensional

representations of H0. Attempting to do this will also require some development of the

original conjecture, however, since, as seen from the table, the gGGr we would naively

construct according to the conjecture would start with the nilpotent orbit [22]. It is

not surprising that that this orbit seems to be overloaded, since, up to this point, we

have completely ignored the group A(d). Specifically, we would expect that the sign

representation of A([22]) would be a factor in the construction of the gGGr for the

representation([1], [1]). In fact, this seems to be borne out in Conjecture 2.4.5 in [2],

where the connection between A(d) and the gGGr appears to be realized in the exten-

sion of the character ηA from UA to the representation η̃A on ZL(A)nUA. In particular,

recall that this extension is achieved by taking the tensor product of ηA and a repre-

sentation of ZL(A). In each of the examples computed so far, we have had the trivial

representation of A(d) as part of the pair (d, µd) associated to our irreducible represen-

tation of H0, and in each case we have taken η̃A = ηA ⊗ 1, but Kawanaka implies that

there is a connection between the character µd and the character of ZL(A) that we use

in the definition of η̃A. Figuring out this connection seems like another logical next step

in this story.



46

6.2 The Next Step: G = GSp(6)

We hope to extend the main results of this paper from G = Sp(4) to G = Sp(2n). In

particular, we have some preliminary results that suggest that the gGGr that we believe

should be connected to ε should itself be constructed using a nilpotent element A taken

from the orbit [2n] and the trivial character of the stabilizer of ηA. Focusing on the case

where n = 3, we record the Springer correspondence in the following chart:

(p,q) (d, µO)

([3], ∅) ([6], 1)

([2, 1], ∅) ([4, 12], 1)

([13], ∅) ([2, 14], 1)

([2], [1]) ([4, 2], 1)

([12], [1]) ([23], 1)

([1], [2]) ([32], 1)

([1], [12]) ([22, 12], 1)

(∅, [3]) ([4, 2], sgn)

(∅, [2, 1]) ([22, 12], sgn)

(∅, [13]) ([16], 1)

In particular, we note that neither ([23], 1) nor ([32], 1) correspond to ε, as we might have

predicted. Instead, we now believe that the path from an irreducible representation of

the Hecke algebra to its associated gGGr goes through the Langlands dual group, LG, of

G (recall that both G and LG have the same Weyl group, so having this correspondence

go through the dual group versus through G is not something that would be detectable

from H). Explicitly, our idea is that, in order to determine from which nilpotent orbit

A should be chosen, we start with an irreducible representation τ of H0 and apply the

Springer correspondence to LG to get the pair (d, µ). We then take d′ to be the image

of d under the appropriate order-reversing involution of the set of nilpotent orbits, and

pick A from the special orbit of G corresponding to d′ under the bijection between the

set of special nilpotent orbits of G and the set of special nilpotent orbits of LG. In types

Bn and Cn, a special nilpotent orbit is simply a nilpotent orbit d such that d> is also

a nilpotent orbit.
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In order to make this all a bit more concrete, we first take a step back and define

the partial order on the set of nilpotent orbits that we referenced above as well as in

the last section: geometrically, if O and O′ are two nilpotent orbits, then we say that

O ≤ O′ if O ⊂ O′; translated to our parametrizations, we have that d ≤ d′ if∑
1≤j≤k

dj ≤
∑

1≤j≤k
d′j for 1 ≤ k ≤ N,

where d = [d1, . . . , dN ], d′ = [d′1, . . . , d
′
N ] are partitions of N . This partial order on

partitions is referred to as dominance order. Refocusing on the case where G = Sp(6),

whence LG = SO(7), we have the following list of special orbits, listed according to the

partial order described above:

Sp(6) SO(7)

[6] [7]

[4, 2] [5, 12]

[32] [32, 1]

[23] [3, 22]

[22, 12] [3, 14]

[16] [17]

(6.2.1)

The bijection between orbits of G and LG mentioned above is simply the one sug-

gested by the partial ordering, which is depicted in (6.2.1). Thus, according to our

revamped conjecture, we see that ε corresponds to the pair ([32, 1], 1) for LG = SO(7).

Since [32, 1] is a special orbit, its transpose [3, 22] is its image under the usual order-

reversing involution, and we see that [3, 22] corresponds to [23] under the bijection

between special nilpotent orbits of G and special nilpotent orbits of LG, as desired.

We also point out that the trivial character of H0 still corresponds to [14] under this

new conjecture, and the sign character still corresponds to [4]. One can check that this

new conjecture is also compatible with our results for Sp(4). Additionally, one can check

that this conjecture is also compatible with the results of [4], in which G = SO(2n+ 1)

and LG = Sp(2n).

However, just as with our original conjecture set forth in Section 6.1, we are still

completely ignoring the group A(O) in this updated conjecture. The connection between

the character µO and ZL(A) is slightly more mysterious given this longer path from O
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to A, but, as explained in the last section, we can still be sure that the final version of

the conjecture will prominently feature the role played by µO in the construction of the

associated gGGr.



Chapter 7

The Bessel Model for GSp(2n)

In this section, we will give a description of what we believe to be the Bessel model for

G = GSp(2n), along with a proof that this model is a unique model for the universal

principal series. We will employ the same notation as we used in Chapter 3 (extended

appropriately, in some cases). In particular, we will explictly define G as

G := {G ∈M2n(F ) | g>Ωg = kΩ, k ∈ F×,

where

Ω =

(
−Ω′

Ω′

)
and Ω′ is the n × n matrix with 1’s on the antidiagonal. Let α1, . . . , αn denote the

simple roots of the root system Φ, and let s1, . . . , sn denote the corresponding simple

reflections in W .

7.1 The Bessel Model for GSp(2n) as a Generalized Gelfand-

Graev Representation

As discussed in Section 6.2, we believe that the nilpotent orbit that we will want to

use to construct our gGGr is [2n]; this means that the nilpotent element A will be an

element of the subalgebra
∑
α, where the sum is taken over the long roots in Φ. It

also means that the parabolic subgroup PA will contain the subgroups corresponding

to the negative short simple roots; we define LA, UA, UA analogously to Section 3.1.
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Let ψ0 be a non-degenerate additive character on F+, and let ψA(u) = ψ0(tr(ru′)) for

u ∈ UA, where u′ is the lower n × n block of u and r ∈ Mn(F ). We assume that r is

non-degenerate.

In this case, we find that ZL = ZL(A) is the subgroup of LA with GSO(n) blocks on

the diagonal according to the symmetric bilinear form Aw0, where w0 is the long Weyl

element. We extend ψA to a character ψ̃A on UA oZL in the usual way, and define the

Bessel model to be the gGGr IndG
UAZL(o)

(ψ̃A), where ZL(o) := ZL ∩ SL(2n, o).

Extending the GSp(4) case, we define a linear functional B on the representation

space Vθ of an irreducible admissible representation θ of G to be a Bessel functional if

B(θ(ut)v) = ψ̃A(ut)B(v),

for v ∈ Vθ, t ∈ ZL(o), and u ∈ UA.

7.2 Uniqueness of Bessel Functionals on GSp(2n) for Prin-

cipal Series Representations

The argument for the uniqueness of B on GSp(2n) for the universal principal series

follows the same arc as the proof given in the GSp(4) case given in Section 3.2. In fact,

most of the argument can be transferred over, virtually unchanged, so in this section

we will highlight the only true obstacle in generalizing this result to the rank n case,

which is the reorganization of the Bruhat decomposition that we will need to use. Even

this task is done in analogy with how it was handled in Section 3.2, but the nature of

that analogy requires some explanation.

Proposition 7.2.1. Let WL = 〈si〉i<n. The group G = GSp(2n) can be decomposed

into the disjoint union

G =
⊔

w∈W/WL

BwUAZLo.

Proof. As in Section 3.2, we begin with the Bruhat decomposition

G =
⊔
w∈W

BwU.
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This decomposition tells us that every element of G lies in at least one double coset of

the form

BwULUAZL(o), where UL =

 ∏
α∈Φ−L

uα

 ,

and where ΦL = {α ∈ Φ | xα(F ) ⊂ LA}, and Φ−L := ΦL ∩ Φ−. In fact, since si ∈ ZL(o)

for each i < n, we can refine this decomposition and assert that each element of G

lies in at least one double coset of the form BwULUAZL(o) where UL is the product

of root subgroups whose corresponding roots are in Φ+
L := ΦL ∩ Φ+, and where w is

the coset representative from the group W/WL with minimal length. Note that, at this

point, our decomposition becomes disjoint again. Finally, observe that, for any such w,

wuw−1 ∈ B, and hence

G =
⊔

w∈W/WL

BwUAZL(o).

Recall from Section 3.2 that one step in determining the uniqueness of the model is

showing that the subspace of R-distributions on G satisfying (3.2.3) is one-dimensional.

In particular, we noted that, according to [31], any double coset that didn’t satisfy

the compatibility criterion (3.2.4) could not be part of the support of any distribution

satisfying (3.2.3). This result still applies to our current case, G = GSp(2n), and, hence,

Lemma 3.2.2 still applies, its proof unaltered. Since w(−αn) ∈ Φ+ for w 6∈WL, Lemma

3.2.2 tells us that any distribution satisfying (3.2.3) must vanish off of BUAZL(o),

implying that this substace of distributions is at most one-dimensional. From here, we

see that the Bessel model on GSp(2n) is a unique model for the universal principal

series.
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