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Abstract

We are living in the era of data deluge wherein we are collecting unprecedented

amount of data from variety of sources. Modern inference tasks are centered around

exploiting structure and sparsity in the data to extract relevant information. This

thesis takes an end-to-end system centric view of these inference tasks which mainly

consist of two sub-parts (i) data acquisition and (ii) data processing. In context of

the data acquisition part of the system, we address issues pertaining to noise, clutter

(the unwanted extraneous signals which accompany the desired signal), quantization,

and missing observations. In the data processing part of the system we investigate

the problems that arise in resource-constrained scenarios such as limited computational

power and limited battery life.

The first part of this thesis is centered around computationally-efficient approx-

imations of a given linear dimensionality reduction (LDR) operator. In particular,

we explore the partial circulant matrix (a matrix whose rows are related by circular

shifts) based approximations as they allow for computationally-efficient implementa-

tions. We present several theoretical results that provide insight into existence of such

approximations. We also propose a data-driven approach to numerically obtain such

approximations and demonstrate the utility on real-life data.

The second part of this thesis is focused around the issues of noise, missing observa-

tions, and quantization arising in matrix and tensor data. In particular, we propose a

sparsity regularized maximum likelihood approach to completion of matrices following

sparse factor models (matrices which can be expressed as a product of two matrices

one of which is sparse). We provide general theoretical error bounds for the proposed

approach which can be instantiated for variety of noise distributions. We also consider

the problem of tensor completion and extend the results of matrix completion to the

tensor setting. The problem of matrix completion from quantized and noisy observa-

tions is also investigated in as general terms as possible. We propose a constrained

maximum likelihood approach to quantized matrix completion, provide probabilistic

error bounds for this approach, and numerical algorithms which are used to provide

numerical evidence for the proposed error bounds.

iv



The final part of this thesis is focused on issues related to clutter and limited battery

life in signal acquisition. Specifically, we investigate the problem of compressive mea-

surement design under a given sensing energy budget for estimating structured signals

in structured clutter. We propose a novel approach that leverages the prior informa-

tion about signal and clutter to judiciously allocate sensing energy to the compressive

measurements. We also investigate the problem of processing Electrodermal Activity

(EDA) signals recorded as the conductance over a user’s skin. EDA signals contain in-

formation about the user’s neuron firing and psychological state. These signals contain

the desired information carrying signal superimposed with unwanted components which

may be considered as clutter. We propose a novel compressed sensing based approach

with provable error guarantees for processing EDA signals to extract relevant informa-

tion, and demonstrate its efficacy, as compared to existing techniques, via numerical

experiments.
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Chapter 1

Introduction

We are living in an exciting era of “data-deluge” wherein we are collecting an unprece-

dented amount of data. This “data-deluge” has been fueled by increasing hardware

capability and efficient software front-ends and back-ends. In last decade and a half

we have witnessed wide variety of practical problems being solved from data-centric

point of view. Terms like Data Science and Big Data have become colloquial. We are

witness to lots of new exciting developments in these fields. However, the typical data

processing pipeline has more or less remained the same. Abstractly, the data processing

pipeline (shown in figure 1.1) consists of two main modules:

• Data acquisition module that acquires data from various sources such as natural

images, speech, biometric signals etc.

• Data processing module that processes the acquired data to produce the desired

output for the given inference task.

 Data  Output Acquisition 

  World 

   Process 

              Data processing Data acquisition 

Figure 1.1: Data processing pipeline
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Many tasks in signal processing and machine learning can be broadly captured by the

abstract data processing pipeline shown in figure 1.1. As we transition to an era of

Internet of Things (IoT) in which signals from various sources will be used to produce

information by using extremely low cost devices, addressing issues related to data ac-

quisition and efficient data processing in resource constrained environments will become

crucial. Modern inference tasks are centered around exploiting structure and sparsity in

the data to extract relevant information. This thesis is centered around various problems

which deal with practical issues arising in these inference tasks. The topics of research

discussed in this thesis lay specific emphasis on modeling the data acquisition process

explicitly, and improving/modifying the classical data processing techniques under the

given resource constraints arising due to limited battery life, computational power, etc.

Below we summarize the main research topics covered in this thesis.

1.1 Computationally-efficient approximations to arbitrary

linear dimensionality reduction operators

The amount of data being acquired is ever increasing in volume and dimensionality. This

calls for efficient implementations of even very simple data processing tasks such as linear

dimensionality reduction (LDR). The LDR operator can be represented as a matrix A ∈
Rm×n, with m < n. Operating with A on an arbitrary vector x ∈ Rn generally requires

O(mn) operations, which can be superlinear in n for even modest values of m (e.g., when

m = nβ for β ∈ (0, 1] the complexity is O(n1+β)). This topic examines the problem

of approximating a given matrix A ∈ Rm×n by a partial circulant matrix whose rows

are related by circular shifts. Our investigation is motivated by the implementability

benefits of these structured approximations, both in hardware (as sampled outputs of

certain linear time invariant systems) and software (via fast Fourier transform based

implementations). Our contributions on this topic are provided in chapter 2 where

we show (analytically) that while most large LDR matrices cannot themselves be well-

approximated (in a Frobenius sense) by partial circulant matrices, a slightly generalized

framework that allows for modest linear post-processing does enable accurate partial

circulant based approximations of general LDR matrices over a restricted domain of

inputs. We also propose algorithms based on alternating minimization and sparse matrix



3

factorization for identifying the factors comprising the approximations, and provide

experimental evidence to demonstrate the potential efficacy of this framework.

1.2 Noisy matrix and tensor completion under sparse fac-

tor models

Often in practice the data acquisition process suffers from noisy and missing observa-

tions which usually arise due to hardware resource constraints or sometimes they are

inherent in the observation setup itself. In the first part of this topic we examine the

task of noisy matrix completion that involves estimating the matrix from noisy obser-

vations collected at a subset of its entries. Our specific focus is on the set of matrices

following sparse factor models – the matrices which may be expressed as a product of

two matrices, one of which is sparse. Such matrices arise in wide variety of applications

including subspace clustering and dictionary learning. Leveraging the structure, we pro-

pose sparsity-regularized maximum likelihood estimation for matrix completion. Our

main contribution comes in the form of generic estimation error bounds for sparsity-

regularized maximum likelihood estimators. The bounds are general enough to be in-

stantiated for a variety of noise distributions.

In the second part of this topic we extend the results of matrix completion to the ten-

sor setting. Specifically, we focus on 3-way tensors that admit sparse CP decomposition

by which we mean that one of the canonical polyadic or CANDECOMP/PARAFAC

(CP)-factors is sparse. Tensors admitting such structure arise in many applications

involving electroencephalography (EEG) data, neuroimaging using functional magnetic

resonance imaging (MRI), and many others. We consider sparsity-regularized maxi-

mum likelihood estimation approach for tensor completion and provide generic estima-

tion error guarantees. While the task of tensor completion can be posed as a matrix

completion problem by stacking the slices of the tensor, we demonstrate the specific

advantage of considering the tensor structure. In particular, we instantiate the generic

error bounds for the Gaussian noise case and show that tighter error bounds can be ob-

tained if tensor structure is considered. We also provide an alternating direction method

of multiplier-type algorithm for approximately solving the complexity-regularized maxi-

mum likelihood problem for tensor completion tasks and provide experimental evidence
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for the error analyses. In chapter 3 we discuss the aforementioned contributions on this

topic in detail.

1.3 Matrix completion from noisy and quantized observa-

tions

In this topic, we consider the general problem of matrix estimation from noisy and

quantized measurements taken at a subset of its entries. Specifically, we assume that the

matrix to be completed lies in a structured set and consider the constrained maximum

likelihood estimates. We provide two types of probabilistic estimation error bounds

obtained via covering number based approach and a more involved chaining argument

based approach. We instantiate these bounds for the set of low rank matrices as well as

matrices following sparse factor models. For the completion of matrices following sparse

factor model we propose an alternating direction method of multiplier-type algorithm

for approximately solving the constrained maximum likelihood problem, and provide

empirical evidence for the theoretical bounds. In chapter 4 we discuss our contributions

on this topic in detail.

1.4 Compressive measurement designs for estimating struc-

tured signals in structured clutter

In many practical applications the acquired data is corrupted with pre-measurement

clutter and post-measurement noise. Typically, in such applications practical constraints

arise due to limited resources. However, given prior knowledge about the signal, clutter

and noise, it is possible to improve the data acquisition process under the given practical

constraints. In this topic we provide systematic investigation of leveraging prior knowl-

edge under finite sensing energy constraint for estimating structured signal in structured

clutter and propose a method for designing a compressive measurement strategy under

the given sensing energy budget. Experimental results on synthetic data demonstrate

that the proposed approach outperforms traditional random compressive measurement

designs, which are agnostic to the prior information, as well as several other knowledge-

enhanced sensing matrix designs based on more heuristic notions. Chapter 5 provides
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detailed discussion of our work on this topic.

1.5 A compressed sensing based decomposition of electro-

dermal activity signals

Electrodermal Activity, or EDA, is typically recorded as the conductance over a person’s

skin, near concentrations of sweat glands (e.g., palm of the hand or finger tips). EDA

signals have been shown to include significant information pertaining to human neuron

firing and psychological arousal. The measurement and analysis of EDA signals is critical

to a wide variety of applications ranging from health analytics to market research. The

central challenge in analysis of EDA signals is that it is superimposed with numerous

extraneous components, collectively termed as the baseline signal. This is an instance

of a scenario where the desired information bearing signal is corrupted with undesired

non-informative clutter. We propose a novel approach to process the EDA signals, which

involves a simple pre-processing followed by compressed sensing based decomposition.

Our approach alleviates the effects of baseline with provable bounds on the recovery

of user responses. Through numerical experiments on synthetic as well as real-world

EDA signals from wearable sensors, we demonstrate that our approach leads to more

accurate recovery of user responses as compared to the existing techniques. Chapter 6

provides detailed discussion of our work on this topic.

1.6 Published results

The topics investigated in this Ph.D. thesis have resulted in several publications. In

particular, the abridged work on the topic of computationally-efficient approximations

to arbitrary linear dimensionality reduction operators was published as conference pa-

per [1] and the full version is in preparation to be submitted to the Institute of Electrical

and Electronic Engineers (IEEE) Transactions on Signal Processing. The investigations

related to matrix/tensor completion for sparse factor models have resulted in one jour-

nal published in IEEE Transactions on Information Theory [2], and two conference

publications [3, 4]. The research into the topic of compressive measurement designs

for estimating structured signals in structured clutter has resulted in two conference
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publications [5, 6]. Our investigations into compressed sensing based decomposition

of electrodermal activity signals has resulted in one journal publication in the IEEE

Transactions on Biomedical Engineering [7]. Other publications related to Ph.D. work

reported in this thesis but not discussed in detail consists of two journal publications [8,9]

and four conference publications [10–13].



Chapter 2

Computationally-efficient

approximations to arbitrary

linear dimensionality reduction

operators

Numerous tasks in signal processing, statistics, and machine learning employ dimension-

ality reduction methods to facilitate the processing, visualization, and analysis of (osten-

sibly) high-dimensional data in (more tractable) low-dimensional spaces. 1 Among the

myriad of dimensionality reduction techniques in the literature, linear dimensionality

reduction (LDR) methods remain among the most popular and widely-used.

One well-known example is principal component analysis [14] characterized by a

linear dimensionality reduction (LDR) operator designed to maximally preserve the

variance of the original data in the projected space, and which has been widely used for

data compression, denoising, and as a dimensionality reducing pre-processing step for

other analyses (e.g., clustering, classification, etc.) [15]. Other classical data analysis

methods that employ specialized LDR operators include linear discriminant analysis

(where the operator is designed to preserve separations among original data points

1 Some of the results reported in this chapter have been published without proof in [1]. The complete
proofs of these results are provided in this chapter.

7
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belonging to disparate classes), and canonical correlations analysis (where the operator

maximizes correlations among projected data points). See the survey paper [16] for

many additional examples.

In recent years, LDR methods have also been utilized for universal “precompression”

in high-dimensional inference tasks. For example, fully random LDR operators are at

the essence of the initial investigations into compressed sensing (CS) (see, e.g., [17]); and

other, more structured, LDR operators – both non-adaptive (see, e.g., [6, 18–26]) and

adaptive (see, e.g., [27–43]) – have also been examined recently in the context of CS and

sparse inference. The computational efficiency of LDR methods is often cited as one

of their primary virtues; however, as data of interest become increasingly large-scale

(high-dimensional, and numerous), even the relatively low computational complexity

associated with LDR methods can become significant. Here we investigate the utility of

employing partial circulant approximations to general LDR operators; partial circulant

matrices admit fast implementations (via convolution or Fourier transform methods,

and subsampling), and their use as surrogates to arbitrary LDR matrices may provide

significant computational efficiency improvements in practice.

2.1 Problem statement and our contributions

We represent an arbitrary (here, real) linear dimensionality reduction (LDR) operator

as a matrix A ∈ Rm×n, with m < n. Operating with A on an arbitrary vector x ∈ Rn

generally requires O(mn) operations, which can be superlinear in n for even modest

values m (e.g., when m = nβ for β ∈ (0, 1] the complexity is O(n1+β)). Here, we

seek computationally-efficient approximations of A implementable via convolution and

downsampling (and, perhaps, modest post-processing).

We first consider approximating A as A ≈ SC, where SC is the partial circulant

matrix obtained by choosing m distinct rows from an n × n circulant matrix C using

row-subsampling matrix S containing m rows that are a (permuted) subset of rows of In

(the n × n identity). These partial circulant approximations enjoy an implementation

complexity of O(n log n) (owing to fast Fourier transforms) and storage cost of O(m+

n). Despite these potential benefits, our first result here is negative – we establish

that “most” LDR matrices are not well-approximated (in a Frobenius sense) by partial
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circulant matrices.

We then propose a generalization that uses approximations of the form A ≈ PSC,

where C and S are as above, except that S has some m′ ≥ m rows, and P is an m×m′

“post-processing” matrix. Operating with such matrices requires O(mm′ + n log n)

operations in general, and can be as low as O(n log n), e.g., when m′ = O(n1/2). Though

the storage cost slightly increases to O(mm′ + m′ + n) it is still better than O(mn).

In addition to these, the convolutional nature of these approximations makes them

viable for implementation using LTI systems, or for applications where such models

arise naturally (e.g., RADAR). Within this framework, we exploit the fact that signals

of interest often reside on a restricted input domain (e.g., a union of subspaces, manifold,

etc.), so we may restrict our approximation to mimicking the action of A on these inputs.

We provide a concise argument establishing the efficacy of this more general approach

for certain restricted inputs, describe a data-driven approach to learning the factors of

the approximating matrix, and provide empirical evidence to demonstrate the viability

of this approach.

2.2 Connections to existing work

Circulant approximations to square matrices are classical in linear algebra; for exam-

ple, circulant preconditioners for linear systems were examined in [44–46]. In a line

of work motivated by “optical information processing,” several efforts have examined

fundamental aspects of approximating square matrices by products of circulant and

diagonal matrices [47–51]. Here, our focus is on LDR matrices (not square matrices),

so results from these works are not directly applicable here. Partial circulant matrices

have been used in signal processing and high dimensional data analysis. Many ran-

dom constructions of partial circulant matrices can be shown to satisfy the restricted

isometry condition for sparse signals and therefore they have been used in compressive

sensing [52–55]. In high dimensional data analysis they are used as computationally

efficient alternative for stably embedding high dimensional data vectors into lower di-

mensions [56–58]. In these works too the partial circulant matrices are constructed

randomly. In contrast to these works, here our aim is to approximate the action of

given LDR matrix, not necessarily to perform JL embeddings.
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2.3 Preliminaries and notations

We introduce some preliminary concepts and notations that will be used throughout this

chapter. For A ∈ Rm×n, we denote its m individual rows by Ai,: for i = 1, . . . ,m and its

n columns by A:,j ∈ Rm for j = 1, . . . , n. The row-wise vectorization A is denoted by

vec(A) = [A1,:, · · · ,Am,:]
m. The squared Frobenius norm of A is ‖A‖2F =

∑
i,j |Ai,j |2,

and ‖A‖2,1 =
∑n

j=1 ‖A:,j‖2, where ‖A:,j‖2 is the Euclidean norm of A:,j . Finally,

‖A‖2→2 , supx 6=0 ‖Ax‖2/‖x‖2 denotes the spectral norm of A. A n × n identity

matrix is denoted by In and set obtained by choosing some m < n distinct rows of

identity matrix In is denoted by Sm.

For analytical description of a circulant matrix we use the notion of “right rotation”

matrix defined as

R =

[
0(n−1)×1 In−1

1 01×(n−1)

]
.

The post-multiplication of any row vector c ∈ Rn by R gives a circular shift to the

right by one position as follows cTR = [cn, c1, · · · , cn−1]. Analogously, post-multiplying

a row vector by L = RT implements a circular shift to the left by one position; note

that LR = In. We represent an n× n (real) circulant matrix by

C =




c1 c2 · · · cn

cn c1 · · · cn−1

. . .

c2 c3 · · · c1




(2.1)

where c = [c1 · · · cn]T ∈ Rn. We let Cn denote the set of all (real) n-dimensional

circulant matrices of the form (2.1) which can be described in terms of “right rotation

matrix” R as

Cn =








cT

cTR
...

cTRn−1




∣∣∣∣c ∈ Rn





. (2.2)

All circulant matrices C ∈ Cn can be factorized as follows

C = F−1diag(Fe)F, (2.3)
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where Fjk = e−2jkπi/n and e is first column of C. A partial circulant matrix of size

m×n is defined as the matrix which is obtained by sampling some m unique rows from

rows of a circulant matrix. We denote the set of m × n partial circulant matrix by

PCm,n analytically defined as follows

PCm,n =








cTRf1

...

cTRfm



∣∣∣∣ f ∈ F , c ∈ Rn




, (2.4)

where F =
{

f = [f1, · · · , fm] ∈ {0, ..., n− 1}m
∣∣∣fi 6= fj ∀i 6= j

}
.

2.4 Understanding the fundamental nature of the problem

As above, we let A ∈ Rm×n denote the LDR matrix we aim to approximate using a

partial circulant matrix of the same dimensions. Here, we consider a tractable (and

somewhat natural) choice of the approximation error metric, and seek to find the ma-

trix Z ∈ PCm,n closest to A in the Frobenius sense. In this setting, the minimum

approximation error is

EPCm,n(A) = min
Z∈PCm,n

‖A− Z‖2F . (2.5)

Evaluating (2.5) is a non-convex optimization problem, owing to the product as well

as combinatorial nature of elements of PCm,n. However, an intuitive geometric insight

can be obtained if we row-wise vectorize the matrices in the problem (2.5) and solve

the following equivalent vectorized problem

EPCm,n(A) = min
Z∈PCm,n

‖A− Z‖2F = min
z∈vec(PCm,n)

‖vec(A)− z‖22,

where vec(PCm,n) is the set obtained by row-wise vectorizing the matrix set PCm,n.

It is easy to see that vec(A) ∈ Rmn whereas owing to the description of set PCm,n in

(2.4) each vector z ∈ vec(PCm,n) has the form z = cT [Rf1 , · · · ,Rfm ] where c ∈ Rn

and f ∈ F . For a particular f ∈ F , the vectorized partial circulant matrices lie in the

row-subspace of the matrix [Rf1 , · · · ,Rfm ]. As the matrix set PCm,n is obtained by

taking union over the elements in set F its vectorized version vec(PCm,n) has union of

subspaces in Rmn. There are precisely |F| =
(
n
m

)
m! ≤ nm subspaces. A representative
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picture for intuitive understanding of this geometric interpretation is shown in figure

2.1.

0

Rmn vectorized PCm,n

vec (A)
q

EPCm,n(A)

Figure 2.1: A representative figure showing the geometric interpretation of the problem

after vectorization.

Thus, how accurately a given LDR matrix A ∈ Rm×n can be approximated via a

partial circulant matrix in PCm,n depends on how well the union of subspaces repre-

sented by vectorized PCm,n covers Rmn. We obtain a precise characterization of the

minimum achievable approximation error for a given A in the following lemma.

Lemma 2.4.1. For A ∈ Rm×n, we have

EPCm,n(A) = ‖A‖2F −R2(A), (2.6)

where R(A) is the Rubik’s Score of A defined as

R(A) = max
f∈F

‖∑m
i=1 Ai,:L

fi‖2√
m

, (2.7)

and F =
{

f = [f1...fm] ∈ {0, ..., n− 1}m
∣∣∣fi 6= fj ∀i 6= j

}
.

Proof. The proof is outline in appendix section 2.11.1.

The above lemma reveals the fundamental quantity R(A) in (2.7) which determines

how well a given LDR matrix can be approximated by a partial circulant matrix. We call

R(A) the Rubik’s Score of the matrix A, inspired by the fact that R(A) is maximized

when the circular shifts of the rows {Ai,:} are “maximally aligned”. The Rubik’s Score

can be shown to have following properties:
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• R(A) = ‖Â‖F where Â = arg minZ∈PCm,n ‖A−Z‖2F , geometrically it corresponds

to the Frobenius norm based distance of best approximation from origin.

A

kAkF

q
EPCm,n(A)

0

Â

R(A) = kÂkF

Figure 2.2: Geometric interpretation of Rubik’s score.

• 0 ≤ R(A) ≤ ‖A‖F .

• For all A ∈ PCm,n, R(A) = ‖A‖ which implies that EPCm,n(A) = 0 for all

A ∈ PCm,n.

2.5 A fundamental (negative) approximation result for par-

tial circulant matrices

The Lemma 2.4.1 gives fundamental insight into approximating the given LDR matrix

with a partial circulant matrices. However, it yields limited interpretation of achievable

error for any particular A beyond the cases when the cases when A is itself a partial

circulant matrix. We gain additional insight using a probabilistic technique – instead of

quantifying the approximation error for a fixed A, we consider instead drawing matrices

A randomly, so that their row spaces are distributed uniformly at random on Gr(m,n),

the Grassmannian manifold of m-dimensional linear subspaces of Rn. We then quantify

the proportion of matrices so drawn whose (optimal) partial circulant approximation

error is at most a fixed fraction (δ) of their squared Frobenius norm. To this end, we

exploit the fact that matrices whose row-spaces are uniformly distributed on Gr(m,n)

may be modeled as matrices having iid zero-mean Gaussian elements. With this, we

establish the following theorem
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Theorem 2.5.1. For 2 ≤ m ≤ n, let A ∈ Rm×n have iid N (0, 1) entries. Then for

δ ∈ [0, 0.125), and n is sufficiently large, there exists a positive constant c(δ) such that

Pr(EPCm,n(A) ≤ δ‖A‖2F ) = O(e−c(δ)·mn).

Proof. The proof is outlined in appendix section 2.11.2.

Simply put, the content of Theorem 2.5.1 is that the proportion of large matrices

(with row spaces uniformly distributed in Gr(m,n)) that can be approximated to high

accuracy (here, with small Frobenius approximation error) by partial circulant matrices

is exponentially small in mn, the product of the matrix dimensions. In the next section

we describe a more general framework designed to facilitate accurate partial circulant

approximations in a number of practical applications.

2.6 Approximation with partial circulant matrices with

post-processing

We now consider a more general approximation framework by approximating A as

A ≈ PSC where C ∈ Cn, S is an m′ × n matrix comprising a permuted subset of rows

of an identity matrix, and P ∈ Rm×m′ is a “post-processing” matrix. In this setting,

the minimum approximation error is

EPCm,m′,n(A) = min
Z∈PCm,m′,n

‖A− Z‖2F . (2.8)

Again evaluating EPCm,m;,n(A) is a non-convex problem. However, quantifying the

improvements offered by this expanded approximation model is possible when we make

use of the following result.

Lemma 2.6.1. For A ∈ Rm×n, we have

EPCm,m′,n(A) = ‖A‖2F −
[

max
Z∈P̃Cm,m′,n

Tr
(
ATZ

)
]2

,

where P̃Cm,m′,n =

{
Z
‖Z‖F

∣∣∣∣Z 6= 0,Z ∈ PCm,m′,n
}

.

Proof. The proof is outline in appendix section 2.11.3
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The quantity max
Z̃∈P̃Cm,m′,n

Tr
(
AT Z̃

)
in the above result is analogous to the Ru-

bik’s score in the previous section. For a given A, it is the key quantity that determines

the quality of approximation provided by the circulant matrices with post-processing.

In fact, it can be shown that the Rubik’s score of a partial circulant matrix is exactly

equal to

R(A) = max
Z∈P̃Cm,n

Tr
(
ATZ

)
, (2.9)

where P̃Cm,n =

{
Z
‖Z‖F

∣∣∣∣Z 6= 0,Z ∈ PCm,n
}

. Also, since P̃Cm,n ⊂ P̃Cm,m′,n it implies

that the Rubik’s score satisfies

R(A) ≤ max
Z̃∈P̃Cm,m′,n

Tr
(
AT Z̃

)
(2.10)

This implies that the approximation with partial circulant matrices that employ post-

processing are guaranteed to be no worse than those with post-processing. This is not

surprising given that partial circulant matrices with post-processing contain the partial

circulant matrices as a special case. However, the exact improvement is difficult to

quantify.

Our first attempt at quantifying this improvement involves the geometric insight

that can be obtained upon row-wise vectorization of matrices involved in the problem.

Upon row-wise vectorization the partial circulant matrices with post-processing matrix

satisfy the following form

vec (PSC)T = cT
[∑m′

j=1 P1,jR
fj , · · · ,∑m′

j=1 Pm,jR
fj

]

where [f1, · · · , fm′ ] ∈ {0, · · · , n − 1}m′ such that fi 6= fj for i 6= j. For a fixed P

the vec (PSC)T lies along the row space of
[∑m′

j=1 P1,jR
fj , · · · ,∑m′

j=1 Pm,jR
fj

]
and by

varying f ′is we can show that there are
(
n
m′

)
m′! subspaces. Further, the lower bound

(
n
e

)m′ ≤
(
n
m′

)
m′! implies that the number of subspaces increase exponentially as we

increase m′. Additionally, the rotations of the union of subspaces can be provided

by varying P. With these additional subspaces approximation with “post-processing”

matrix is better as it provides denser cover for Rmn. With these additional subspaces ap-

proximation with “post-processing” matrix is better. Figure 2.3 shows a representative

geometric implication of approximation with “post-processing” matrix.
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0

Rmn vectorized PCm,n

vec (A)

Extra Subspaces 

q
EPCm,n(A)

Figure 2.3: A representative figure showing the geometric implication of “post-

processing” matrix in terms of denser union of subspaces providing better approxi-

mation.

Even though the above geometric interpretation provides nice insights into how the

error decreases, it falls short of quantifying the improvement. Our second attempt

towards exact quantification is based on a probabilistic approach. We assume that the

matrix A is a Gaussian random matrix with i.i.d. entries following standard Gaussian

distribution. The expected error incurred with random A generated in such a manner

is bounded as stated in the following theorem.

Theorem 2.6.1. Assuming that A ∈ Rm×n have iid N (0, 1) entries the expected error

is bounded as

EA

(
EPCm,m′,n(A)

)
≤ mn−

[
ω(P̃Cm,m′,n)

]2
, (2.11)

where ω(P̃Cm,m′,n) is the Gaussian width of the set P̃Cm,m′,n defined as

ω(P̃Cm,m′,n) = EA

(
max

Z∈P̃Cm,m′,n
tr
(
ATZ

)
)
. (2.12)

Proof. The proof is outlined in section 2.11.4

Theorem 2.6.1 provides a fundamental insight that the average approximation error

with partial circulant matrices with post-processing matrix is related to the Gaussian

width of P̃Cm,m′,n, and it decreases with increasing Gaussian width. The following

lemma provides a lower bound on the Gaussian width of P̃Cm,m′,n as a function of m′.
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Lemma 2.6.2. The Gaussian width of the P̃Cm,m′,n (A) is bounded as

ω(P̃Cm,m′,n) ≥ mm′√
1 +mm′

. (2.13)

Proof. The proof is outlined in section 2.11.5

A direct implication of Lemma 2.6.2 is that the expected error PCm,m′,n (A) is upper

bounded as

E
(
EPCm,m′,n(A)

)
≤ mn

(
1− m′

n

mm′

1 +mm′

)
(2.14)

The above bound on expected error implies that as we increase m′ the expected error

decreases. Since for modest values of m,m′ the term mm′

1+mm′ ≈ 1, we see that with each

extra internal measurement expected the average approximation error decreases by m.

In the next section we consider a more general framework designed to facilitate accurate

partial circulant approximations in a number of practical applications.

2.7 The data driven approach

The underlying theme of the approximation techniques considered so far is that they try

to approximate the given LDR matrix globally. However, in many practical applications

where LDR methods are employed (e.g. PCA, Compressive Sensing etc.) the data to

be processed are not arbitrary, but lie in some restricted input domain X (e.g., in a low-

dimensional subspace, a union of low-dimensional subspaces, distinct clusters, etc.). In

these cases, our approximation task simplifies to mimicking the action of A on these

restricted inputs. This motivates us to propose the data-driven approach in which we

are given the data matrix X ∈ Rn×p whose columns are “representative” samples from

the restricted input domain X for the problem of interest and we want to approximate

the action of A only on X.

Next, we discuss data-driven approaches first for the partial circulant matrices fol-

lowed by the partial circulant matrices with a post-processing matrix.

2.7.1 Data driven approach for partial circulant matrices

The data-driven approach for partial circulant matrices involves approximating the ac-

tion of matrix A on the given matrix of representative data X ∈ Rn×p using a matrix
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from the set PCm,n. For this purpose the “data-driven” approach here involves solving

the following optimization problem

min
S∈Sm,C∈Cn

‖AX− SCX‖2F (2.15)

The above problem is a non-convex problem. We discuss an alternating minimization

type algorithm for approximately solving this problem in Section 2.8.1.

2.7.2 Data driven approach for partial circulant matrices with post-

processing

The presence of post-processing matrix allows for better approximation. The potential

efficacy of the data-driven approach for partial circulant matrices with post-processing

matrix can be made concrete by the following positive existence result.

Theorem 2.7.1. Let A ∈ Rm×n be any fixed matrix, and let X be any finite set of

n-dimensional unit-norm vectors. For any ε ∈ (0, 1), there exists a post-processing

P ∈ Rm×m′, sampling matrix S ∈ Rm′×n comprised of rows of identity matrix In, and

circulant C ∈ Cn×n for which

sup
x∈X
‖Ax−PSCx‖2 ≤ ε‖A‖F ,

provided that m′ > c1ε
−2 log (c2m|X |) log4(n) where c1 and c2 are universal positive

constants.

Proof. The proof is outlined in section 2.11.6

We note that the above result is for finite sized set but extensions to general sets can

be derived using the covering number arguments. Motivated by this positive existence

results we propose the “data-driven” approach which involves solving the following

problem

min
P∈Rm×m′ ,S∈Sm′ ,C∈Cn

max
i∈{1,··· ,n}

‖Axi −PSCxi‖22, (2.16)

where X ∈ Rn×p the given data matrix and xi is the ith training data point or the ith

column of the data matrix X. For computational tractability we follow the bounded
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minimization approach. We use the following trivial upper bound on the maximum

error over the training data

max
i∈{1,··· ,n}

‖Axi −PSCxi‖22 ≤
n∑

i=1

‖Axi −PSCxi‖22 (2.17)

and propose solving the following problem instead

min
P∈Rm×m′ ,S∈Sm′ ,C∈Cn

‖AX−PSCX‖2F . (2.18)

The above formulation minimizes essentially boils down to minimizing the error in

average sense over the training data. In the above problem Sm′ is discrete in nature.

One needs to potentially solve the above problem for various values of m′ and choose

the one which gives the desired performance. We notice that for a fixed value of m′ the

resulting matrix PS obtained by this approach has exactly m′ non-zero columns. Based

on this observation, we propose a general framework in which we effectively combine

the actions of the sampling and post processing matrices; we let M , PS, and seek

column sparsity in M using the ‖M‖2,1 regularization term as follows

min
M∈Rm×n,C∈Cn

‖AX−MCX‖2F + λ‖M‖2,1 + µ‖C‖2F , (2.19)

where λ > 0, µ > 0 are the regularization parameters. The regularization term ‖C‖2F
is needed to fix scaling ambiguities introduced due to the matrix product term MC.

In the above formulation the non-zero columns m′ vary with λ. This problem is also

non-convex. An alternating algorithm minimization type algorithm to approximately

solve this problem is discussed in Section 2.8.2.

2.8 Algorithms for the data driven approach

In this section, we discuss the algorithm for the problems arising in the data-driven

approach of matrix approximation. Since both the problems are non-convex we present

alternating minimization based algorithms for both the cases.

2.8.1 Data driven approach for partial circulant matrices

As discussed earlier in Section 2.7.1, the data-driven approach for approximating the

action of given LDR matrix A on the given matrix of representative data X ∈ Rn×p
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using a partial circulant matrix involves solving the problem in (2.15). This problem

is jointly non-convex in C and S due the discrete nature of the set Sm and the matrix

multiplication term SC. So we propose an alternating minimization type approach to

approximately solve it. Starting with initial feasible points S(0) and C(0) we alternatively

solve the following problem till convergence as shown in Algorithm 1.

C(t) = arg min
C∈Cn

‖AX− S(t−1)CX‖2F , (2.20)

S(t) = arg min
S∈Sm

‖AX− SC(t)X‖2F . (2.21)

Next we discuss the above two update steps.

C update step

The C update step in 2.20 can be converted to a least squares problem in the first row c

of the circulant matrix. Since the matrix S(t−1) selects some m-unique rows of C using

the representation of C in (2.1) the objective cost in 2.20 can be written as

‖AX−S(t−1)CX‖2F

=
m∑

i=1

‖Ai,:X− cTRf
(t−1)
i X‖22,

= ‖AX‖2F +mcTXXT c− 2
m∑

i=1

Ai,:XRf
(t−1)
i XT c.

where f
(t−1)
i ∈ {0, · · · , n− 1} whose value depends on the ith row S(t−1) such that if ith

row selects kth row of C then f
(t−1)
i = k − 1. Taking the derivative with respect to c

and equating it to zero the optimal c is given by

c(t) =
(
XXT

)†
(

X

(
m∑

i=1

1

m
Lf

(t−1)
i XTAT

i,:

))
. (2.22)

The full circulant matrix can be from c(t) above using (2.1). We note that
(
XXT

)†
and

Ai,:X do not change with different iterations so they can be pre-computed once and

stored at the start of the alternating minimization algorithm.



21

S update step

Even though the S update step appears to be combinatorial non-convex problem it can

be converted into a linear program and can be solved efficiently. The exact equivalent

linear program is described in the following theorem:

Theorem 2.8.1. The S(t) in (2.21) is equal to the first m-rows of P∗ where

P∗ = arg min
P∈Rn×n

∑n
i=1

∑n
i=1W

(t)
ij Pij

∑n
i=1 Pij = 1,∀j

∑n
j=1 Pij = 1,∀i
Pij ≥ 0,∀i, j

where

W
(t)
ij =




‖Ai,:X−C

(t)
j,: X‖22 1 ≤ i ≤ m,∀j

0 i > m,∀j.

Proof. The proof is outlined in section 2.11.9.

We note that for the equivalent linear program in the above theorem Ai,:X can be

precomputed and stored at the beginning of alternating minimization. However, here

the value of C(t)X changes with every iteration. Since the matrix C(t) is circulant, one

may utilize its FFT based fast implementation for calculating it. We note that entire

alternating algorithm can be run without actually constructing full C because FFT

based circulant matrix multiplication can be carried out just by the knowledge of first

row of C.

Based on the above discussed updates for the two sub-problems the final alternating

minimization for data-driven approximation of a partial circulant matrix is given in

Algorithm 1.
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Algorithm 1 “Data-Driven” Partial Circulant Approximation.

Inputs: LDR matrix A ∈ Rm×n, parameterε > 0,

Matrix of “representative” data X ∈ Rn×p,
Precompute:

(
XXT

)†
,AX,fft(X).

Initialize: S(0) = first m-rows of n× n identity matrix.

obj(0) = ‖AX‖2F ,

repeat

Compute f
(t−1)
i = k − 1 where k is the location of 1 in ith row S

(t−1)
i,: .

Update c(t) =
(
XXT

)† (
X
(∑m

i=1
1
mLf

(t−1)
i XTAT

i,:

))

Compute C(t)X = fft
(
Diag

(
ifft
(
c(t)
))

fft (X)
)

and

W
(t)
ij =




‖Ai,:X−C

(t)
j,: X‖22 1 ≤ i ≤ m,∀j

0 i > m,∀j.

S(t) = first m-rows of P(t) where

P(t) = arg min
P∈Rn×n

∑n
i=1

∑n
i=1W

(t)
ij Pij

∑n
i=1 Pij = 1, ∀j

∑n
j=1 Pij = 1,∀i
Pij ≥ 0, ∀i, j

obj(t) = ‖AX− S(t)C(t)X‖2F
until obj(t) − obj(t−1) ≤ ε · obj(t−1)

Compute C(t) using c(t) using (2.1)

Output: S∗ = S(t),C∗ = C(t)

2.8.2 Data driven approach for partial circulant matrices with post-

processing

As discussed earlier in Section 2.7.2, the data-driven approach for approximating the

action of given LDR matrix A on the given matrix of representative data X ∈ Rn×p

using partial circulant matrix with post-processing matrix involves solving problem in

(2.19).This problem is jointly non-convex in M and C due to the matrix multiplication
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term. However, for a fixed value of M the problem is convex in C and vice versa.

So we propose an alternating minimization based approach to solve it. Starting with

initial feasible M(0),C(0) the following two sub-problems are solved alternatively until

convergence

C(t) = arg min
C∈Cn

‖AX−M(t−1)CX‖2F + µ‖C‖2F (2.23)

M(t) = arg min
M∈Rm×n

‖AX−MC(t)X‖2F + λ‖M‖2,1 (2.24)

Next we discuss the above two update steps.

C update

The C update step is a convex problem and it can be converted to a least squares

problem in the first row of C similar to as was done for the case without post-processing

matrix. However, there is a critical difference here that the Hessian depends on the

M(t−1) so closed form solution may be prohibitive to obtain for large n because it

involves calculating a pseudo inverse of a n × n matrix. So we propose a projected

first order gradient type algorithm for C update which involves taking a gradient step

followed by projection onto set of circulant matrices. Projection of a given matrix

U ∈ Rn×n onto the set of circulant matrices can be posed as the following problem

CU = arg min
C∈Cn

‖U−C‖2F (2.25)

Using the structure of the circulant matrices it is easy to see that the first row of the

projected circulant matrix is given by

cU =
1

n

n∑

i=1

Ri−1UT
i,:. (2.26)

Using the above first row the full circulant matrix CU can be obtained by using (2.1).

Based on the above projection step we propose accelerated projected gradient algorithm

for C update. This algorithm is based on the accelerated proximal method proposed

in [59]. The overall algorithm is shown Algorithm 22 3 .

2 Here 2 η is the gradient Lipschitz constant of the objective function in the optimization problem.
The Hessian of objective function with respect to C is 2µIn + 2(XXT ) ⊗ (MMT ) so the gradient
Lipschitz constant is given by 2µ+ 2‖X‖22‖M‖22

3 This Algorithm can also be used for the case without post-processing matrix as well by calling it
with µ = 0 and M = S.
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Algorithm 2 Accelerated projected gradient descent C update step: minC∈Cn ‖AX−
MCX‖2F + µ‖C‖2F .

Inputs: A ∈ Rm×n, M ∈ Rm×n, X ∈ Rn×p, initial C(0), µ > 0, ε > 0

Initialize: Z(1) = C(0), η = 2µ+ 2‖M‖22‖X‖22
Repeat: for t ≥ 1

Compute gradient:

G(t) = 2MT
(
MZ(t)X−AX

)
XT + 2µZ(t)

Gradient step:

U = Z(t) − ηG(t)

Projection on Cn:

Find the first row: c(t) = 1
n

∑n
i=1 Ri−1UT

i,:

Construct C(t) from c(t) using (2.1)

Accelerate: Z(t+1) = C(t) + t
t+3

(
C(t) −C(t−1)

)

Until: ‖C(t) −C(t−1)‖F ≤ ε · ‖C(t−1)‖F
Output: C∗ = C(t)

M update

The M update step is a standard group Lasso problem that can be solved using existing

software (e.g., SLEP [60]).

Using the C and M update steps the final alternating minimization algorithm is

shown in Algorithm 3. The initialization is motivated by the initialization used for

alternating minimization algorithm presented in [61]. We also note that one may use

C(t−1) as initialization while calling Algorithm 2 for C update step. This significantly

speeds up the convergence.
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Algorithm 3 “Data-Driven” Partial Circulant Approximation with post-processing

matrix.

Inputs: LDR matrix A ∈ Rm×n, parameters λ, µ, ε > 0,

Matrix of “representative” data X ∈ Rn×p,
Initialize: M(0) = UΣ (from the SVD AX = UΣVT )

obj(0) = ‖AX‖2F
repeat

C(t) = arg minC∈Cn ‖AX−M(t−1)CX‖2F + µ‖C‖2F
M(t) = arg minM∈Rm×n ‖AX−MC(t)X‖2F + λ‖M‖2,1
obj(t) = ‖AX−M(t)C(t)X‖2F + µ‖C(t)‖2F + λ‖M(t)‖2,1

until obj(t) − obj(t−1) ≤ ε · obj(t−1)

Output: M∗ = M(t−1),C∗ = C(t−1)
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Figure 2.4: Data-driven approximation of matrix comprising of top 300 principal com-

ponents of a training set of images from COIL-20 database. The first panel (left to

right) contains log average relative approximation error vs. m′ with various circulant

approximations to the given matrix. The second panel plots shows the ratio of average

time taken by these circulant approximation and A vs. the log average relative ap-

proximation error. The third panel contains the histograms of errors by the circulant

approximation matrix obtained by Algorithm 3.

2.9 Experimental evaluation

We evaluate these approaches using the processed COIL-20 image database available at

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php. This database

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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contains 128 × 128 images which were vectorized to obtain a data matrix X whose

columns represent 1440 vectorized images from the dataset. We took rows of A as

the top 300 principal component vectors of the training data. In Algorithm 3, we use

µ = 0.1 and vary λ to obtain M∗ and C∗ for each value of λ, and quantified the nor-

malized error on the training set vs. column sparsity of M∗. We also plot the results

for circulant approximation to the matrix without the post-processing obtained using

Algorithm 1.

The first panel (left to right) in Figure 2.4 plots m′ vs. log average relative error

for “data-driven” approximations with and without post-processing matrix. We can

see from the plot that the approximation with post-processing matrix (shown in blue

colored dotted line with triangle shaped marker) incurs far less error as compared to

approximation without post-processing matrix (shown in black star shaped marker).

This plot demonstrates the superiority of approximations with post-processing matrix

relative to that without post-processing matrix.

The second panel (left to right) in Figure 2.4 give insight into the relative time taken

by matrix approximations shown as blue markers in the plot in first panel as compared

the original LDR matrix A. It plots the ratio of average time taken by A and by

its “data-driven” approximation with post-processing matrix obtained from Algorithm

3 versus the log average relative error. The average time was obtained by averaging

over the training data set.4 We can see that the multiplication with approximations

obtained by Algorithm 3 is faster than the given LDR matrix A. The speed is due to

the FFT based implementation of matrix vector multiplication. We can see that as m′

increases the speed of matrix vector multiplication decreases but the log average relative

error also decreases. This plot illustrates the inherent speed vs. accuracy trade-off.

For a representative λ corresponding to the sparsity of m′ = 6246, we compute the

histogram of the normalized approximation errors (‖Ax −MCx‖22/‖Ax‖22) for each

point in the training data set. The histogram is plotted in third panel of the Figure 2.4.

Most of relative errors are small which demonstrates that our approach provides fairly

accurate approximation.

4 The matrix vector multiplication was conducted by C programming language based implementation
that uses FFT algorithm. The average time vs. average error plots were obtained by averaging over 10
trials.
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2.10 Summary

We investigated the problem of approximating an arbitrary LDR matrix via various par-

tial circulant structured matrices, presented several fundamental results, and evaluated

numerically a data-driven partial circulant approximation approach. Future directions

of research include extension of the basic analytical framework developed here to other

structured matrix approximations with low implementation complexities (e.g., sparse

matrices and fast Johnson-Lindenstrauss embeddings [62,63]); this is a topic of our on-

going work. See section 7.1 for more discussion on this and several other possible future

directions of research.

2.11 Appendix

2.11.1 Proof of lemma 2.4.1

Proof. We first write EPCm,n(A) in (2.5) equivalently as

EPCm,n(A) = min
S∈Sm

min
C∈Cn

‖A− SC‖2F . (2.27)

Each choice of S ∈ Sm corresponds to a integer valued vector f from the set F defined

in Lemma 2.4.1, because including the i-th row of In in S corresponds to selecting the

i-th row of C, which is given from (2.4) by cTRi−1. Using this we may parameterize

the choice of S in terms of f , and rewrite the objective function in (2.27) as

‖A− SC‖2F =
m∑

i=1

‖Ai,:‖22 + cTRfiLfic− 2Ai,:L
fic.

Thus, since RfiLfi = In, we have

EPCm,n(A) = min
f∈F ,c∈Rn

‖A‖2F +m‖c‖22 − 2

[
m∑

i=1

Ai,:L
fi

]
c. (2.28)

We first minimize with respect to c, keeping f ∈ F fixed. This is an unconstrained

strictly convex quadratic problem whose minimum can be obtained by equating the

gradient (with respect to c) to zero. Substituting the minimizer c∗ = 1
m

∑m
i=1 Rfi(Ai,:)

T

into (2.28), and simplifying, we obtain

EPCm,n(A) = min
f∈F
‖A‖2F −

1

m
‖

m∑

i=1

Ai,:L
fi‖22,
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which gives (2.6), using the definition (2.7) of the Rubik’s Score.

2.11.2 Proof of theorem 2.5.1

Proof. Note that |F| = n!/(n−m)! (since it is just the number of ways of choosing m

elements out of n without replacement), and we have (trivially) that n!/(n−m)! < nm,

so

Pr(EPCm,n(A) ≤ δ‖A‖2F )

= Pr

(
(1− δ)‖A‖2F ≤ sup

f∈F

‖∑m
i=1 Ai,:L

fi‖22
m

)

= Pr


⋃

f∈F

[
(1− δ)‖A‖2F ≤

‖∑m
i=1 Ai,:L

fi‖22
m

]


≤ nm Pr

(
(1− δ)‖A‖2F ≤

‖∑m
i=1 Ai,:L

fi‖22
m

)
,

where the last step follows from union bounding.

Further, let a = [Ai,: A2,: . . . Am,:]
T ∈ Rmn and R̃f = [Rf1 , Rf2 , . . . ,Rfm ] ∈

Rn×mn with this we have ‖A‖2F = aTa and
∥∥∑m

i=1 Ai,:L
fi
∥∥2

2

m
=
‖R̃fa‖22
m

= aT

(
R̃T

f R̃f

m

)
a.

It is easy to check that (
R̃T

f R̃f

m

)
R̃T

f = R̃T
f ,

which implies that the columns of R̃T
f are eigenvectors of the matrix corresponding to

eigenvalue 1. Moreover, since (R̃T
f R̃f/m) is symmetric, it admits an eigendecomposition

(R̃T
f R̃f/m) = Uf ΣfU

T
f with Uf orthonormal and Σf diagonal, and since it is rank n,

Σf has exactly n entries being 1 (and the rest 0). Incorporating this into the analysis

above, we obtain that

Pr

(
(1− δ)‖A‖2F ≤

‖∑m
i=1 Ai,:L

fi‖22
m

)

= Pr
(
aTUf ((1− δ)Imn − Σf )) UT

f a ≤ 0
)

= Pr
(
ãT ((1− δ) Imn − Σf ) ã ≤ 0

)
,
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where the components of ã = Ufa are iid N (0, 1) due to the unitary invariance of the

Gaussian distribution. Thus, with a slight overloading of notation, we may write that

Pr(EPCm,n(A) ≤ δ‖A‖2F ) ≤ nm Pr

(
m∑

i=2

‖Ai,:‖22 ≤ δ
m∑

i=1

‖Ai,:‖22

)
. (2.29)

At this point, we note that vectorizing (row-wise) a random matrix A ∈ Rm×n hav-

ing iid zero-mean Gaussian elements yields an mn-dimensional vector whose direction

is selected uniformly at random from Gr(1,mn) (the space of 1-dimensional subspace

in Rmn). Thus,
∑m

i=1 ‖Ai,:‖22 quantifies the length of the vector, while
∑m

i=2 ‖Ai,:‖22
describes the energy retained after projecting the vector onto the fixed n(m − 1)-

dimensional subspace spanned by the last n(m − 1) coordinates. It follows that the

probability on the right-hand side of (2.29) may be interpreted in terms of the energy

retained after projecting a fixed mn-dimensional unit-normed vector onto a subspace

selected uniformly at random from Gr(n,mn). To quantify this, we use the following.

Lemma 2.11.1 (From Thm. 2.14 of [64]). Let v be a fixed unit-normed vector in Rd, W
a randomly oriented k-dim. subspace, and w the projection of v onto W . For ε ∈ [0, 1],

Pr
(
‖w‖2 ≤ (1− ε)

√
k/d
)
≤ 3e−kε

2/64.

Using this result (with k = n(m− 1) and d = mn) we obtain that for δ < 1− 1/m,

Pr(EPCm,n(A) ≤ δ‖A‖2F )

≤ nmPr

(∑m
i=2 ‖Ai,:‖22∑m
i=1 ‖Ai,:‖22

≤ δ
)

≤ 3nme
−n(m−1)

64

(
1−
√

δ

1− 1
m

)2

≤ 3 e
m logn−n(m−1)

64

(
1−2

√
δ

1− 1
m

)
.

It is straightforward to verify that for δ < 1/8 = 0.125 and n sufficiently large, so that

n/ log n > 128/(1−2
√

2δ), there exists positive c(δ) <
(

1− 2
√

2δ
)
/128− (log n)/n, for

which we have

m log n− n(m− 1)

64

(
1− 2

√
δ

1− 1
m

)
≤ −c(δ)mn.

In this case we have Pr(EPCm,n(A) ≤ δ‖A‖2F ) ≤ 3e−c(δ)mn.
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2.11.3 Proof of lemma 2.6.1

Proof. The error EPCm,m′,n(A) can written as

EPCm,m′,n(A) = ‖A‖2F + min
Z∈PCm,m′,n

‖Z‖2F − 2Tr
(
ATZ

)
(2.30)

The set PCm,m′,n could be of arbitrary scaling, i.e., if A ∈ PCm,m′,n them αA is also

in PCm,m′,n for all α ∈ R. The optimization over the set PCm,m′,n can be broken into

scaling and direction. For this purpose we introduce the set of unit Frobenius norm

matrices obtained from matrices in PCm,m′,n as

P̃Cm,m′,n =

{
Z/‖Z‖F

∣∣∣∣Z 6= 0,Z ∈ PCm,m′,n
}
.

In terms of P̃Cm,m′,n we can write PCm,m′,n as

PCm,m′,n =

{
αZ

∣∣∣∣α ≥ 0,Z ∈ P̃Cm,m′,n
}
.

Leveraging this fact we further simplify EPCm,m′,n(A) as follows

EPCm,m′,n(A) = ‖A‖2F + min
Z∈P̃Cm,m′,n

min
α≥0

α2‖Z‖2F − 2αTr
(
ATZ

)

= ‖A‖2F + min
Z∈P̃Cm,m′,n

min
α≥0

α2 − 2αTr
(
ATZ

)
, (2.31)

where last step utilizes the condition that ‖Z‖F = 1 for all Z ∈ P̃Cm,m′,n. Next we

solve the inner minimization with respect to α for a fixed Z ∈ PCm,m′,n. This problem

is a convex optimization problem with strictly convex objective so the first order KKT

conditions are necessary and sufficient for optimality [65]. For KKT conditions we first

write the Lagrangian

L(α, λ) = α2 − 2αTr
(
ATZ

)
− λα, (2.32)

where λ ≥ 0 is Lagrangian variable for the condition α ≥ 0. The first KKT conditions

are given by

1. 2α∗ − 2Tr
(
ATZ

)
− λ∗ = 0,

2. λ∗α∗ = 0,
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3. λ∗ ≥ 0, α∗ ≥ 0,

where α∗, λ∗ are their optimal values. From the first KKT condition we have

α∗ = Tr
(
ATZ

)
+ λ∗/2, (2.33)

and the second KKT condition implies that if λ∗ > 0 then α∗ = 0 which further

implies that λ∗ = −2Tr
(
ATZ

)
; and if α∗ > 0 then λ∗ = 0 which further implies that

α∗ = Tr
(
ATZ

)
. These conditions imply that optimal α∗ is given by

α∗ = max{0,Tr
(
ATZ

)
} (2.34)

Substituting α∗ in the objective function we have

min
α≥0

α2 − 2αTr
(
ATZ

)
= −

[
max{0,Tr

(
ATZ

)
}
]2
. (2.35)

Using the above result, the error can be stated as

EPCm,m′,n(A) = ‖A‖2F − max
Z∈P̃Cm,m′,n

[
max{0,Tr

(
ATZ

)
}
]2

(2.36)

The second term in the above expression can be simplified as

max
Z∈P̃Cm,m′,n

[
max{0,Tr

(
ATZ

)
}
]2

= max
Z∈P̃Cm,m′,n

|Tr
(
ATZ

)
|2 (2.37)

The above equality is true because max{0,Tr
(
ATZ

)
} ≤ |Tr

(
ATZ

)
| and the set P̃Cm,m′,n

is symmetric with respect to the origin, i.e. if Z ∈ P̃Cm,m′,n then −Z ∈ P̃Cm,m′,n, so

we always have max{0,Tr
(
ATZ

)
} = |Tr

(
ATZ

)
| either at Z or −Z. Further, we also

have that

max
Z∈P̃Cm,m′,n

|Tr
(
ATZ

)
|2 =

[
max

Z∈P̃Cm,m′,n
|Tr
(
ATZ

)
|
]2

=

[
max

Z∈P̃Cm,m′,n
Tr
(
ATZ

)
]2

, (2.38)

where the first equality is true by the monotonicity the function f(t) = t2 for t ≥ 0,

and the second equality is again due to the fact that both Z and −Z lie in P̃Cm,m′,n.

Finally, using (2.37) and (2.38), the error in (2.36) can be written as

EPCm,m′,n(A) = ‖A‖2F −
[

max
Z∈P̃Cm,m′,n

Tr
(
ATZ

)
]2
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2.11.4 Proof of theorem 2.6.1

Proof. The expected value of EPCm,m′,n(A) is given by

EA

(
EPCm,m′,n(A)

)

= EA

(
‖A‖2F

)
− EA



(

max
Z∈P̃Cm,m′,n

Tr
(
ATZ

)
)2



= mn− EA



(

max
Z∈P̃Cm,m′,n

Tr
(
ATZ

)
)2

 ,

≤ mn−
[
EA

(
max

Z∈P̃Cm,m′,n
Tr
(
ATZ

)
)]2

,

where the inequality in the last step is due to Jensen’s inequality and convexity of

the quadratic function. The quantity EA

(
max

Z∈P̃Cm,m′,n
Tr
(
ATZ

))
is a well known

quantity known as Gaussian width we denote it by ω(P̃Cm,m′,n) which leads us to

EA

(
EPCm,m′,n(A)

)
≤ mn−

[
ω(P̃Cm,m′,n)

]2
.

The Gaussian width of any set X in Rn can be related to measure of its size as follows

ω(X ) =
γn
2

∫

Sn−1

(
max
x∈X

xTa−min
x∈X

xTa

)
da,

=
γn
2
b (X ) ,

where Sn−1 denotes the unit sphere in Rn, γn is the expected length of a Gaussian

random vector in Rn, and b (X ) is the Gaussian mean width of the set [66]. The

Gaussian mean width is the average length of X along the unit vectors in Rn and it is

one of the fundamental intrinsic volumes of a body arising in the area of combinatorial

geometry [67].
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2.11.5 Proof of lemma 2.6.2

Proof. The Gaussian width E (f(A,m′)) of set P̃Cm,m′,n can be written as follows

ω
(
P̃Cm,m′,n

)
= E

(
max

Z∈P̃Cm,m′,n
Tr
(
ATZ

)
)

= E

(
max

P∈Rm×m′ ,S∈Sm′
max
C∈Cn

Tr

(
AT PSC

‖PSC‖F

))

≥ E

(
max

P∈Rm×m′ ,S∈Sm′
Tr

(
AT PS

‖PS‖F

))
.

where the last step is obtained by fixing C as n × n identity matrix. The trace term

can be expressed as

Tr

(
AT PS

‖PS‖F

)
= Tr

((
AST

)T P

‖PS‖F

)

= Tr

((
AST

)T P

‖P‖F

)
,

where the first step utilizes the cyclic property of traces and last step is due to the fact

that S just permutes the columns of P so that the Frobenius norm of PS is same as

that of P. Next using Cauchy Schwartz’s inequality we have

max
P∈Rm×m′

Tr

((
AST

)T P

‖P‖F

)
= ‖AST ‖F . (2.39)

With this the Gaussian width can be lower bounded as

ω
(
P̃Cm,m′,n

)
≥ E

(
max

S∈Sm′
‖AST ‖F

)

≥ E



√√√√

m′∑

i=1

‖A:,i‖22




where the last inequality is obtained by fixing S as first m′ rows of n× n identity ma-

trix. Further, E
(√∑m′

i=1 ‖A:,i‖22
)

is the expected length of mm′-dimensional standard

Gaussian random vector. It is known to be lower bounded as [66]

E



√√√√

m′∑

i=1

‖A:,i‖22


 ≥ mm′√

1 +mm′
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With this we finally have

ω
(
P̃Cm,m′,n

)
≥ mm′√

1 +mm′
.

2.11.6 Proof of lemma 2.7.1

Proof. Our proof technique involves construction of random row-sampled circulant ma-

trices Φ ∈ Cm′×n as follows

Φ = SFDξF
H , (2.40)

where F is n× n FFT matrix, S is the row sub-sampling that chooses m′ rows from F

uniformly at random, and Dξ is random diagonal matrix with diagonal chosen uniformly

at random from {−1, 1}n. The random row-sampled circulant matrix Φ constructed in

(2.40) approximately preserves the length of fixed set of points Y with high probability

as captured by the following lemma

Lemma 2.11.2. Let Φ be the random m × n row sub-sampled circulant matrix con-

structed as described in (2.40). For the set Y ⊂ Cn letm ≥ Cε−2 log4(n) log
(

4|Y|
η

)
log(ρ−1)

then with probability at least (1− ρ)(1− η) (where ρ, η ∈ (0, 1)) we have

(1− ε)‖y‖22 ≤ ‖Φy‖22 ≤ (1 + ε)‖y‖22, ∀y ∈ Y. (2.41)

Proof. The proof is provided in section 2.11.7.

The proof also requires the following lemma on embedding of the inner product.

Lemma 2.11.3. Let U and V be set of points in Rn and suppose that Φ ∈ Cm×n

satisfies the following

(1− ε)‖y‖22 ≤ ‖Φy‖22 ≤ (1 + ε)‖y‖22, ∀y ∈ Y, (2.42)

where Y =
{
u− v

∣∣u ∈ U ,v ∈ {V ∪ −V ∪ iV ∪ −iV}
}

then for any u ∈ U and v ∈ V we

have

∣∣〈Φu,Φv〉 − 〈u,v〉
∣∣ ≤
√

2ε‖u‖2‖v‖2, (2.43)

where the inner product is defined as 〈u,v〉 = uHv.



35

Proof. The proof is provided in section 2.11.8.

We proceed by fixing U = {A1,:, · · · ,Am,:}

Y =
{
u− v

∣∣u ∈ U ,v ∈ {X ∪ −X ∪ iX ∪ −iX}
}

and using Lemma 2.11.2 the random row-sampled random circulant matrix Φ ∈ Cm′×n

constructed in (2.40) satisfies (2.41) with probability at least (1 − ρ)(1 − η) provided

m′ ≥ Cε−2 log4(n) log
(

4|Y|
η

)
log(ρ−1). Further, the error incurred by approximating

given A by matrices of the form AΦHΦ

‖Ax−AΦHΦx‖22 =

m∑

i=1

|〈Ai,:,x〉 − 〈ΦAi,:,Φx〉|2 ,

Using Lemma 2.11.3 we have

|〈Ai,:,x〉 − 〈ΦAi,:,Φx〉| ≤
√

2ε‖Ai,:‖2

which implies that ‖Ax−AΦHΦx‖2 can be bounded as

‖Ax−AΦHΦx‖2 ≤
√

2ε‖A‖F .

Further, noticing that |Y| = 4|X |m and setting ρ, η = 1/2 and rescaling ε := ε/
√

2 the

number of measurement required are m′ ≥ 2Cε−2 log4(n) log (32m|X |) log(2). So finally

we can say that there exists a partial circulant matrix Φ from which we can construct

P = AΦH such we have

‖Ax−PΦx‖2 ≤ ε‖A‖F , ∀x ∈ X ,

provided m′ ≥ c1ε
−2 log4(n) log (c2m|X |) where c1 = 2C log(2), c2 = 32.

2.11.7 Proof of lemma 2.11.2

The proof uses the following fundamental result on converting a RIP satisfying matrix

to Johnson Lindenstrauss (JL) embedding matrix.

Lemma 2.11.4. [56] Fix η > 0 and ε ∈ (0, 1), and consider a finite set Z ⊂ Cn

of cardinality |Z|. Suppose the matrix Ψ ∈ Cm′×n satisfies the restricted isometry

property (RIP) of order (k, δ), i.e., for every z ∈ Cn with at most k non-zeros we have
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(1 − δ)‖z‖22 ≤ ‖Ψz‖22 ≤ (1 + ε)‖z‖22. Set k ≥ 40 log
(

4|Z|
η

)
and δ ≤ ε

4 . Let ξ ∈ Rn be

a Rademacher sequence, i.e., uniformly distributed on {−1, 1}n. Then with probability

exceeding 1− η,

(1− ε)‖z‖22 ≤ ‖ΨDξz‖22 ≤ (1 + ε)‖z‖22, ∀z ∈ Z. (2.44)

We note that this lemma is for complex RIP matrices and vectors. It can be proved

by a slight modification of the proof outlined in [56]. Specifically, the main proof is

the same, however, one just needs propositions used in the proof to hold for complex

numbers as well. It can be easily shown that the propositions are true for complex

cases as well. Next from [54] we know that the sub-sampled Fourier matrix SF, where

F is the FFT matrix and S is the row sub-sampling matrix that chooses m′ rows of

F uniformly at random, satisfies RIP of level (k, δ) with probability at least 1 − ρ if

m′ ≥ C1kδ
−2 log4(n) log(ρ−1). Utilizing this fact we invoke Lemma 2.11.4 to convert

this matrix satisfying RIP of level (k, δ) to a JL embedding matrix which requires

k ≥ 40 log
(

4|Z|
η

)
and δ ≤ ε

4 . This implies that the matrix, Ψ = SF where S is such

that the number of rows m′ ≥ 640C1ε
−2 log

(
4|Z|
η

)
log4(n) log(ρ−1) with probability

(1− ρ)(1− η), we have,

(1− ε)‖z‖22 ≤ ‖SFDξz‖22 ≤ (1 + ε)‖z‖22, ∀z ∈ Z

Further, due to the orthonormality of matrix FH in the above inequality we have that,

(1− ε)‖Fz‖22 ≤ ‖SFDξF
HFz‖22 ≤ (1 + ε)‖Fz‖22, ∀z ∈ Z.

Choosing Y = {Fz | z ∈ Z} the above inequality implies

(1− ε)‖y‖22 ≤ ‖SFDξF
Hy‖22 ≤ (1 + ε)‖y‖22, ∀y ∈ Y

2.11.8 Proof of lemma 2.11.3

This lemma follows the proof technique of Theorem 4 in [68]. The proof presented in [68]

holds for real embedding matrix matrices. Here we extended it to complex embedding

matrices.

Consider any v ∈ V and u ∈ U . To begin with assume that ‖v‖2 = ‖u‖2 = 1 and

later we will relax this assumption. Using the parallelogram law for u ∈ U and v ∈ V
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we have

Re (〈Φu,Φv〉) =
‖Φ(u + v)‖22 − ‖Φ(u− v)‖22

4

Now using the assumption in (2.42) for u + v and u− v we have

(1− ε)‖u + v‖22 − (1 + ε)‖u− v‖22
4

≤ Re (〈Φu,Φv〉) ≤ (1 + ε)‖u + v‖22 − (1− ε)‖u− v‖22
4

Further expanding the terms ‖u + v‖22 and ‖u−v‖22 and re-arranging the inequality we

have

∣∣Re (〈Φu,Φv〉)− 〈u,v〉
∣∣ ≤ ε (2.45)

Similarly, using the following parallelogram law we have

Img (Φ〈u,Φv〉) =
‖Φ(u− iv)‖22 − ‖Φ(u + iv)‖22

4

Using the assumption in (2.42) for u + iv and u− iv we have

(1− ε)‖u− iv‖22 − (1 + ε)‖u + iv‖22
4

≤ Img (〈Φu,Φv〉) ≤ (1 + ε)‖u− iv‖22 − (1− ε)‖u + iv‖22
4

Now since ‖u + iv‖22 = ‖u− iv‖22 = 2 we have the following

∣∣Img (〈Φu,Φv〉)
∣∣ ≤ ε (2.46)

Next we have that

∣∣〈Φu,Φv〉 − 〈u,v〉
∣∣ =

√∣∣Re (〈Φu,Φv〉)− 〈u,v〉
∣∣2 +

∣∣Img (〈Φu,Φv〉)
∣∣2

≤
√

2ε,

where the second inequality is by using (2.45) and (2.46). Next using bi-linearity of the

inner product the unit norm assumption on u and v can be dropped and we have

∣∣〈Φu,Φv〉 − 〈u,Φv〉
∣∣ ≤
√

2ε‖u‖2‖v‖2.
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2.11.9 Proof of theorem 2.8.1

Proof. For S update step we need to solve

S(t) = arg min
S∈Sm

‖AX− SC(t)X‖2F .

The objective function in the above problem can be expanded as

‖AX− SC(t)X‖2F =
m∑

i=1

‖Ai,:X− Si,:C
(t)X‖22

=
m∑

i=1

n∑

j=1

Si,j‖Ai,:X−C
(t)
j,: X‖22

where the second equality is due to the fact that Si,: is some row of identity matrix so

it has just 1 non-zero entry. Using this fact the S update step can be written as

min
S∈Sm

m∑

i=1

n∑

j=1

Si,j‖Ai,:X−C
(t)
j,: X‖22 (2.47)

Above problem can be transformed to a standard problem known as linear sum assign-

ment problem by introducing the constants

Wi,j =




‖Ai,:X−C

(t)
j,: X‖22 1 ≤ i ≤ m,∀j

0 i > m,∀j.
as follows

min
P∈Sn

n∑

i=1

n∑

j=1

Pi,jWi,j . (2.48)

The above linear sum assignment problem can be optimally solved by relaxing it to the

following linear program [69]

min
P∈Rn×n

∑n
i=1

∑n
i=1WijPij

∑n
i=1 Pij = 1,∀j

∑n
j=1 Pij = 1, ∀i
Pij ≥ 0, ∀i, j.

Notice that in above problem the optimization variable is of size n× n. Also, since the

objective cost in 2.48 does not depend on rows other than first m rows of P, the problem

2.47 is optimally solved by choosing first m-rows of the optimal solution 2.48



Chapter 3

Noisy matrix and tensor

completion under sparse factor

models

The task of estimating a signal from its noisy and undersampled observations arises

in a variety of applications in signal processing and machine learning. At the extreme

end of undersampling lies the case of missing observations. The famous example of

inference under missing observations is that of matrix completion problem in which

signal takes the form of a matrix which is observed at a subset of its entries and the

task is to obtain an accurate estimate of the entire matrix. In general, the recovery

of missing entries is not possible even if single entry is missing in noiseless setting.

However, if the matrix being recovered has a low-dimensional structure; exact recovery

in noiseless setting and accurate recovery in noisy setting is possible. A well explored

structure is that of low rank matrices which has been extensively studied in noise as well

as noiseless setting [70–76]. The low rank matrix completion problem arises in many

applications, including collaborative filtering [77,78], learning and content analytics [79],

sensor network localization [80] etc.

Tensors which may be viewed as generalization of matrices from two-way to multiple-

way array naturally arise in many applications in the area of signal processing, computer

vision, neuroscience, etc [81, 82]. Often in practice tensor data is collected in a noisy

39
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environment and suffers from missing observations which naturally leads to the tensor

completion problem. Given the success of matrix completion methods, it is no surprise

that recently there has been a lot of interest in extending the successes of matrix com-

pletion to tensor completion problem. Similar to matrix completion the structure of

low-rank have been exploited in for the tensors as well [83–85].

While the existing literature in matrix/tensor completion overwhelmingly centered

around the low rank structure the focus of this chapter is on matrix/tensor completion

for matrices following the sparse factor models. Specifically, for matrices we consider

the completion of matrix which can be written as product of two factors one of which

is sparse. Such matrices arise in variety of applications ranging from sparse subspace

clustering [86–88] to dictionary learning [89–91] among many others. For tensors, we

focus on tensors that admit sparse CP decomposition by which we mean that one of the

canonical polyadic or CANDECOMP/PARAFAC (CP)-factors is sparse (See (3.1) for

definition). Tensors admitting such structure arise in variety of applications involving

electroencephalography (EEG) data, neuroimaging using functional magnetic resonance

imaging (MRI), and many others [92–96].

In this chapter we discuss the sparsity-regularized maximum likelihood estimation

based approach for matrix and tensor completion. We provide general estimation error

bounds for noisy matrix and tensor completion via sparsity-regularized maximum like-

lihood estimation for tensors and matrices following the sparse factor models. These

bounds are general enough so that they can be instantiated for variety of noise distribu-

tions. After going over a few preliminaries and notations used throughout this chapter

we first briefly discuss our contributions on matrix completion for sparse factor models

followed by a detailed discussion its extension to the tensor setting.

3.1 Preliminaries and notations

We will denote vectors with lower-case letters, matrices using upper-case letters and ten-

sors as underlined upper-case letters (e.g., v ∈ Rn,A ∈ Rm×n, and X ∈ Rn1×n2×n3 , re-

spectively). Furthermore, for any vector (or matrix) v ∈ Rn define ‖v‖0 = |{i : vi 6= 0}|
to be the number of non-zero elements of v and ‖v‖∞ := maxi {|vi|} to denote maximum

absolute of v. Note that ‖A‖∞ := maxi,j {|Ai,j |} is not the induced norm of the matrix
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A. Entry (i, j, k) of tensor X will be denoted by Xi,j,k. For a tensor X we define its

Frobenius norm in analogy with the matrix case as ‖X‖2F =
∑

i,j,kX
2
i,j,k the squared two

norm of its vectorization and its maximum absolute entry as ‖X‖∞ = maxi,j,k |Xi,j,k|.
Finally, we define the canonical polyadic or CANDECOMP/PARAFAC (CP) decom-

position of a tensor X ∈ Rn1×n2×n3 to be a representation

X =
F∑

f=1

af ◦ bf ◦ cf =: [A,B,C], (3.1)

where af ,bf , and cf are the f th columns of A,B, and C, respectively, af ◦ bf ◦ cf

denotes the tensor outer product such that (af ◦ bf ◦ cf )i,j,k = (ith entry of af ) ×
(jth entry of bf ) × (kth entry of cf ), and [A,B,C] is the shorthand notation of X in

terms of its CP factors. The parameter F is an upper bound on the rank of X (we refer

the reader to [82] for a comprehensive overview of tensor decompositions and their uses).

For a given tensor X and CP decomposition [A,B,C] define nmax = max{n1, n2, n3, F}
as the maximum dimension of its CP factors and number of latent factors.

3.2 Noisy matrix completion for sparse factor models

Formally, the matrix completion problem in noisy settings can be stated as – Let X∗ ∈
Rn1×n2 denote a matrix whose elements we wish to estimate, and suppose that we

observe X∗ at only a subset S ⊂ [n1]× [n2] of its locations, where [n1] = {1, 2, . . . , n1},
obtaining at each (i, j) ∈ S a noisy measurement denoted by Yi,j . The overall aim is

to estimate X∗ given the observations {Yi,j}(i,j)∈S . Without further assumptions the

matrix completion problem is ill-posed as the value of X∗ at the unobserved locations

could be arbitrary. In context of matrix completion problem there has been extensive

focus on low-rank structure. Recent works examining the matrix completion for low-

rank structured matrices in noiseless setting include [70–73], in noisy setting include

[74–76], and quantized setting include [97–99]. However there are many other low

dimensional structures of matrices which usually arise in practice. One specific structure

is that of sparse factor model in which the given matrix can be factorized as product of

two matrices one of which is sparse. Such matrices arise in many applications including

sparse subspace clustering [86–88] and dictionary learning [89–91].
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We focus on matrix completion problem for sparse factor models for the matrices

with such sparse factorization. Specifically, we consider that the true matrix X∗ ∈
Rn1×n2 can be factorized as

X∗ = D∗A∗, D ∈ Rn1×r,A ∈ Rr×n2

where ‖D∗‖max := maxi,j |Di,j | ≤ 1, ‖A∗‖max ≤ Amax for a constant 0 < Amax <

n1 ∨ n2, and ‖X∗‖max ≤ Xmax/2 for a constant Xmax ≥ 1. We assume that this true

matrix X∗ is observed only at a subset of S ⊂ [n1]×[n2] of its entries such that each (i, j)

is observed independently and identically with probability γ = m(n1n2)−1 to obtain the

observations Yij , where m is the nominal number of observations. The observations

{Yi,j(i,j)∈S} := YS are assumed to be conditionally independent given S and can be

modeled via joint density

pX∗S
(YS) =

∏

(i,j)∈S

pX∗i,j (Yi,j) (3.2)

Following a sparsity regularized maximum likelihood approach to obtain estimates as

follows

X̂ = arg min
X=DA∈X

{− log pXSYS + λ‖A‖0} , (3.3)

where λ > 0 is the regularization parameter, X ⊂
{
DA

∣∣D ∈ D,A ∈ A, ‖X‖max ≤ Xmax

}
,

D is the set of matrices D ∈ Rn1×r whose elements are discretized to one of L =

2dlog(maxn1,n2)eβ (for some fixed β ≥ 1) uniformly spaced values in the range [−1, 1], and

A is the set of matrices D ∈ Rr×n2 whose elements either take the value zero, or are

discretized to one of L uniformly spaced values in the range [−Amax, Amax]. The main

advantage of sparsity regularized maximum likelihood approach in (3.3) is its generality

as it can handle various noise probability densities and even non-linear observations

setups such as 1-bit quantized observations. The estimate X̂ obtained from (3.3) can

be shown to satisfy the following general error bound [2]

Theorem 3.2.1. Let the sample set S be drawn from the independent Bernoulli model

with γ = m(n1n2)−1 as described above, and let YS be described by (3.2). If CD is any

constant satisfying

CD ≥ max
X∈X

max
i,j

D(pX∗i,j‖pXi,j ), (3.4)
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where X is as above for some β ≥ 1, then for any

λ ≥ 2 · (β + 2) ·
(

1 +
2CD

3

)
· log(n1 ∨ n2), (3.5)

the complexity penalized maximum likelihood estimator (3.3) satisfies the (normalized,

per-element) error bound

ES,YS
[
−2 logH(p

X̂
, pX∗)

]

n1n2
≤ 8CD logm

m
(3.6)

+ 3 · min
X∈X

{
D(pX∗‖pX)

n1n2
+

(
λ+

4CD(β + 2) log(n1 ∨ n2)

3

)(
n1p+ ‖A‖0

m

)}

where n1 ∨ n2 = maxn1,n2, D(p‖q) = Ep
[
log p(Y )

q(Y )

]
is the KL divergence and H(p, q) =

Ep
[√

q(Y )
p(Y )

]
is the Hellinger affinity.

Proof. The proof details can be found in [2].

The above oracle bound was used to obtain error bounds for Gaussian, Laplace,

Poisson noise distributions and even for 1-bit quantized observation. A scalable alter-

nating directions method of multiplies (ADMM) based algorithm for solving sparsity

regularized maximum likelihood problem was also proposed and empirical justification

for the error bounds was also provided under various noise distributions [2]. Recently

in [100] the bounds we obtained in [2] were shown to be minimax optimal under linear

sparsity regime.

3.3 Noisy tensor completion for tensors with a sparse canon-

ical polyadic factor

We consider the general problem of tensor completion. Let X∗ ∈ Rn1×n2×n3 be the

tensor we wish to estimate and suppose we collect the noisy measurements Yi,j,k at

subset of its location (i, j, k) ∈ S ⊂ [n1]× [n2]× [n3].1 The goal of tensor completion

problem is to estimate the tensor X∗ from noisy observations {Yi,j,k}(i,j,k)∈S . This

problem is naturally ill-posed without any further assumption on the tensor we wish to

1 The material in this section is c©2017 IEEE. Reprinted, with permission, from IEEE Interna-
tional Symposium on Information Theory, “Noisy tensor completion for tensors with a sparse canonical
polyadic factor”, S. Jain, A. Gutierrez, and J. Haupt.
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estimate. A common theme in recent tensor completion works is to use the tools that

have been effective in tackling the matrix completion problem and apply them to tensor

completion problem. For example, one could apply matrix completion results to tensors

directly by matricizing the tensors along various modes and minimizing the sum or

weighted sum of their nuclear norms as a convex proxy for the tensor rank [83–85]. Since

the nuclear norm is computationally intractable for large scale data, matrix completion

via alternating minimization was extended to tensors in [101,102]. In contrast to these

works, here we focus on structured tensors that admit “sparse CP decomposition” by

which we mean that one of the canonical polyadic or CANDECOMP/PARAFAC (CP)-

factors is sparse.

Recently, the completion of tensors with this model was exploited in the context of

time series prediction of incomplete EEG data [94]. Here we focus on providing recovery

guarantees and a general algorithmic framework and extend the results of noisy matrix

completion under sparse factor model in [2] to tensors with a sparse CP factor.

3.3.1 Data model

Let X∗ ∈ X ⊂ Rn1×n2×n3 be the unknown tensor whose entries we wish to estimate.

We assume that X∗ admits a CP decomposition such that the CP factors A∗ ∈ Rn1×F ,

B∗ ∈ Rn2×F , C∗ ∈ Rn3×F are entry-wise bounded: ‖A∗‖∞ ≤ Amax, ‖B∗‖∞ ≤ Bmax,

‖C∗‖∞ ≤ Cmax. Furthermore, we will assume that C∗ is sparse ‖C∗‖0 ≤ k. Then X∗

can be decomposed as follows

X∗ = [A∗,B∗,C∗] =
F∑

f=1

a∗f ◦ b∗f ◦ c∗f .

X is also entry-wise bounded, say by ‖X∗‖∞ ≤ Xmax
2

2 .Such tensors have a rank upper

bounded by F .

3.3.2 Observation setup

We assume that we measure a noisy version of X∗ at some random subset of the entries

S ⊂ [n1]×[n2]×[n3]. We generate S via an independent Bernoulli model with parameter

2 Here, the factor of 1/2 is chosen to facilitate the exposition of proof. Any factor in (0, 1) would
suffice.
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γ ∈ (0, 1] as follows: first generate n1n2n3 i.i.d. Bernoulli random variables bi,j,k with

Prob(bi,j,k = 1) = γ,∀i, j, k and then the set S is obtained as S = {(i, j, k) : bi,j,k = 1}.
Conditioned on S, in the case of an additive noise model we obtain noisy observations

at the locations of S as follows

Yi,j,k = X∗i,j,k + ni,j,k, ∀(i, j, k) ∈ S, (3.7)

where ni,j,k’s are the i.i.d noise entries.

3.3.3 Estimation procedure

Our goal here is to obtain an estimate for full true tensor X∗ using the noisy sub-sampled

measurement {Yi,j,k}i,j,k∈S . We pursue the sparsity-regularized maximum likelihood to

achieve this goal. For this we first note that the observations Yi,j,k have distribution

parameterized by the entries of the true tensor X∗ and the overall likelihood is given by

pX∗S (YS) :=
∏

(i,j,k)∈S

pX∗i,j,k(Yi,j,k). (3.8)

where pX∗i,j,k(Yi,j,k) is the pdf of observation Yi,j,k which depends on the pdf of the noise

and is parametrized by X∗i,j,k, and we have used the shorthand notation XS to denote

the entries of the tensor X sampled at the indices in S.

Using prior information that C is sparse, we regularize with respect to the sparsity

of C and obtain the sparsity-regularized maximum likelihood estimate X̂ of X∗ as given

below

X̂ = arg min
X=[A,B,C]∈X

(
− log pXS (YS) + λ ‖C‖0

)
, (3.9)

where λ > 0 is the regularization parameter and X is a class of candidate estimates.

Specifically, we take X to be a finite class of estimates constructed as follows: first choose

some β ≥ 1, and set Llev = 2dlog2(nmax)βe and construct A to be the set of all matrices

A ∈ Rn1×F whose elements are discretized to one of Llev uniformly spaced between

[−Amax, Amax], similarly construct B to be the set of all matrices B ∈ Rn2×F whose

elements are discretized to one of Llev uniformly spaced between [−Bmax, Bmax], finally

C be the set of matrices C ∈ Rn3×F whose elements are either zero or are discretized to
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one of Llev uniformly spaced between [−Cmax, Cmax]. Then, we let

X ′ =



[A,B,C]

∣∣∣∣A ∈ A,B ∈ B,C ∈ C, ‖X‖∞ ≤ Xmax



 (3.10)

and we let X be any subset of X ′.

3.3.4 General error bound

In this section we present the main result in which we provide an upper bound on the

quality of the estimate obtained by solving (3.9).

Theorem 3.3.1. Let S be sampled according to the independent Bernoulli model with

parameter γ = m
n1n2n3

and let YS be given by (3.8). Let QD be any upper bound on the

maximum KL divergence between pX∗i,j,k and pXi,j,k for X ∈ X

QD ≥ max
X∈X

max
i,j,k

D
(
pX∗i,j,k

∥∥pXi,j,k
)

where X ⊆ X ′ with X ′ as defined in (3.10). Then for any λ satisfying

λ ≥ 4 (β + 2)

(
1 +

2Q

3

)
log nmax (3.11)

the regularized constrained maximum likelihood estimate X̂ obtained from (3.9) satisfies

ES,YS
[
−2 log(H(pX̂, pX∗))

]

n1n2n3
(3.12)

≤ 3 min
X∈X

{
D(pX∗‖pX)

n1n2n3
+

(
λ+

8QD(β + 2) log nmax
3

)

(n1 + n2)F + ‖C‖0
m

}
+

8QD logm

m
.

Proof. The proof appears in the section 3.5.1.

The above theorem extends the main result of [2] to the tensor case. It states a

general result relating the log affinity between the distributions parameterized by the

estimated tensor and the ground truth tensor. Hellinger affinity is a measure of distance

between two probability distributions which can be used to get bounds on the quality of

the estimate. As in [2], the main utility of this theorem is that it can be instantiated for
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noise distributions of interest such as Gaussian, Laplace and Poisson. Note that since the

estimation procedure depends only on the likelihood term, the above theorem can also

be extended to non-linear observation models such as 1-bit quantized measurements.

We next demonstrate the utility of the above theorem to present error guarantees when

the additive noise follows a Gaussian distribution.

3.3.5 Implication for Gaussian noise

We examine the implications of Theorem 3.3.1 in a setting where observations are cor-

rupted by independent additive zero-mean Gaussian noise with known variance. In this

case, the observations YS are distributed according to a multivariate Gaussian density

of dimension |S| whose mean corresponds to the tensor entries at the sample locations

and with covariance matrix σ2I|S|, where I|S| is the identity matrix of dimension |S|.
That is,

pX∗S
(YS) =

1

(2πσ2)|S|/2
exp

(
− 1

2σ2
‖YS −X∗S‖2F

)
, (3.13)

In order to apply Theorem 3.3.1 we choose β as:

β = max



1, 1 +

log
(

14FAmaxBmaxCmax
Xmax

+ 1
)

log(nmax)



 (3.14)

Then, we fix X = X ′, and obtain an estimate according to (3.9) with the λ value chosen

as

λ = 4

(
1 +

2QD
3

)
(β + 2) · log(nmax) (3.15)

In this setting we have the following result.

Corollary 3.3.1. Let β be as in (3.14), let λ be as in (3.15) with QD = 2X2
max/σ

2,

and let X = X ′. The estimate X̂ obtained via (3.9) satisfies

ES,YS
[
‖X∗ − X̂‖2F

]

n1n2n3
= O

(
log(nmax)(σ2 +X2

max)

(
(n1 + n2)F + ‖C∗‖0

m

))
. (3.16)

Proof. The proof appears in section 3.5.3.
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Remark 1. The quantity (n1 +n2)F +‖C∗‖0 can be viewed as the number of degrees of

freedom of the model. In this context, we note that our estimation error is proportional to

the number of degrees of freedom of the model divided by m multiplied by the logarithmic

factor log(nmax).

Remark 2. If we were to ignore the multilinear structure and matricize the tensor as

X∗(3) = (B∗ �A∗)(C∗)T ,

where � is the Khatri-Rao product (for details of matricization refer [81]). The matrix

X∗(3) follows the sparse factor with (C∗)T as the sparse factor and B∗�A∗ as the dense

factor of size (n1 ·n2)×F . Applying corollary III.1 from [2] we would obtain the bound

ES,YS
[
‖X∗ − X̂‖2F

]

n1n2n3
= O

(
log(nmax)(σ2 +X2

max)

(
(n1 · n2)F + ‖C∗‖0

m

))
,

That is, the factor of (n1 + n2)F in Theorem 3.3.1 has become a factor of (n1 · n2)F

when matricizing, a potentially massive improvement.

3.3.6 The algorithmic framework

In this section we propose an ADMM-type algorithm to solve the complexity regular-

ized maximum likelihood estimate problem in (3.9). We note that the feasible set X
problem in (3.9) is discrete which makes the algorithm design difficult. Similar to [2] we

drop the discrete assumption in order to use continuous optimization techniques. This

may be justified by choosing a very large value of Llev and by noting that continuous

optimization algorithms, when executed on a computer, use finite precision arithmetic,

and thus a discrete set of points. Hence, we consider the design of an optimization
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algorithm for the following problem:

min
X,A,B,C

− log pXS (YS) + λ ‖C‖0

subject to A ∈ A,B ∈ B,C ∈ C,

‖X‖∞ ≤ Xmax,X =
F∑

f=1

af ◦ bf ◦ cf ,

A =
{
A ∈ Rn1×F : ‖A‖∞ ≤ Amax

}
,

B =
{
B ∈ Rn2×F : ‖B‖∞ ≤ Bmax

}
,

C =
{
C ∈ Rn3×F : ‖C‖∞ ≤ Cmax

}
.

(3.17)

We form the augmented Lagrangian for the above problem

L(X,A,B,C,L) = − log pXS (YS) + λ ‖C‖0 +
ρ

2

∥∥∥∥∥∥
X−

F∑

f=1

af ◦ bf ◦ cf

∥∥∥∥∥∥

2

F

+

LT · vec (X− [A,B,C]) + IX (X) + IA(A) + IB(B) + IC(C),

where L is Lagrangian vector of size n1n2n3 for the tensor equality constraint and

IX (X), IA(A), IB(B), IC(C) are indicator functions of the sets ‖X‖∞ ≤ Xmax, A, B, C
respectively3 . Starting from the augmented Lagrangian we propose the ADMM-type

algorithm for the tensor case as shown in Algorithm 4.

3 The convex indicator of set U is defined as IU (x) = if x ∈ U and IU (x) = ∞if x /∈ U . Note that
function IU (x) is convex function if U is convex set.
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Algorithm 4 ADMM-type algorithm for noisy tensor completion

Inputs: ∆stop
1 ,∆stop

2 , η, ρ(0)

Initialize: X(0), A(0),B(0),C(0), L(0)

while ∆1 > ∆stop
1 ,∆2 > ∆stop

2 , t ≤ tmax do

S1: X(t+1) = arg minX L(X,A(t),B(t),C(t),L(t))

S2: A(t+1) = arg minA L(X(t+1),A,B(t),C(t),L(t))

S3: B(t+1) = arg minB L(X(t+1),A(t+1),B,C(t),L(t))

S4: C(t+1) = arg minC L(X(t+1),A(t+1),B(t+1),C,L(t))

S5: L(t+1) = L(t) + ρ(0)vec
(
X(t+1) − [A(t+1),B(t+1),C(t+1)]

)

Set ∆1 =
∥∥∥X(t+1) − [A(t+1),B(t+1),C(t+1)]

∥∥∥
F

Set ∆2 = ρ(k)
∥∥[A(t),B(t),C(t)]− [A(t+1),B(t+1),C(t+1)]

∥∥
F

ρ(k+1) =





ηρ(k), if∆1 ≥ 10∆2

ρ(k)/η, if∆2 ≥ 10∆1

ρ(k), otherwise

end while

Output: A = A(t),B = B(t),C = C(t)

The X update in Algorithm 4 is separable across components and so it reduces to

n1n2n3 scalar problems. Furthermore, the scalar problem is closed-form for (i, j, k) /∈ S
and is a proximal-type step for (i, j, k) ∈ S. This is a particularly attractive feature

because many common noise densities (e.g., Gaussian, Laplace) have closed-form prox-

imal updates. The A and B updates can be converted to a constrained least squares

problem and can be solved via projected gradient descent. We solve the C update via

iterative hard thresholding. Although the convergence of this algorithm to a stationary

point remains an open question and a subject of future work, we have not encountered

problems with this in our simulations.

3.3.7 Experimental evaluation

In this section we include simulations which corroborate our theorem. For each experi-

ment we construct the true data tensor X = [A∗,B∗,C∗] by individually constructing

the CP factors A∗,B∗,C∗ (as described below), where the magnitudes of entries of the
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true factors A∗, B∗, and C∗ are bounded in magnitude by A∗max, B
∗
max, and C∗max re-

spectively. For the purposes of these experiments we fix n1 = 30, n2 = 30, n3 = 50 and

A∗max = 1, B∗max = 1, C∗max = 10.

For a given F the true CP factors were generated as random matrices of dimensions

n1 × F , n2 × F , n3 × F with standard Gaussian N (0, 1) entries. We then projected

the entries of the A and B matrices so that ‖A∗‖∞ ≤ A∗max and ‖B∗‖∞ ≤ B∗max.

For the C∗ matrix we first project C∗ entry-wise to the interval [−Cmax, Cmax] and

then pick k entries uniformly at random and zero out all other entries so that we get

the desired sparsity ‖C∗‖0 = k. From these tensors the tensor X∗ was calculated as

X∗ = [A∗,B∗,C∗] as in (3.1).

We then take measurements at a subset of entries following a Bernoulli sampling

model with sampling rate γ ∈ (0, 1] and corrupt our measurements with additive white

Gaussian noise of variance σ = 0.25 to obtain the final noisy measurements. The noisy

measurements were then used to calculate the estimate by solving (an approximation to)

the complexity regularized problem in (3.17) using algorithm 4. Note that for Gaussian

noise the negative log-likelihood in problem (3.17) reduces to a squared error loss over

the sampled entries. Since in practice the parameters Amax, Bmax, Cmax, Xmax are not

known a priori we will assume we have an upper bound for them and in our experiments

set them as Amax = 2A∗max, Bmax = 2B∗max, Cmax = 2C∗max, Xmax = 2‖X∗‖∞. Further,

we also assume that F is known a priori.

In figure 3.1 we show how the log per entry squared error log

(
‖X̂−X∗‖2F
n1n2n3

)
decays as

a function of log sampling rate log (γ) for F = 5, 15 in the paper and a fixed sparsity

level ‖C‖0 = 0.2n3F . The plot is obtained after averaging over 10 trials to average out

random Bernoulli sampling at given sampling rate γ and noise. Each plot corresponds

to a single chosen value of λ, selected as the value that gives a representative error curve

(e.g., one giving lowest overall curve, over the range of parameters we considered). Our

theoretical results predict that the error decay should be inversely proportional to the

sampling rate γ = m
n1n2n3

when viewed on a log-log scale, this corresponds to the slope

of −1. The curve of F = 5 and F = 15 are shown in blue solid line and red dotted line.

For both the cases the slope of curves is similar and it is approximately −1. Therefore

these experimental results validate both the theoretical error bound in corollary 3.3.1

and the performance of our proposed algorithm.
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Figure 3.1: Plot for log per-entry approximation error vs the log sampling rate for the

two ranks F = 5, 15. The slope at the higher sampling rates is approximately −1 (the

rate predicted by our theory) in both cases.

3.4 Summary

We consider problem matrix and tensor completion from noisy missing observations for

sparse factor models. We proposed a sparsity regularized maximum likelihood approach

and provided general performance error guarantees for matrix as well as tensor comple-

tion. The utility of the performance bound for tensor completion was demonstrated by

instantiating it for the Gaussian noise case. We also provided a ADMM-style algorithm

for tensor completion which was used to provide numerical evidence to the theoreti-

cal error bounds. See section 7.2 for more discussion on possible future directions of

research for noisy tensor completion.

3.5 Appendix

3.5.1 Proof of theorem 3.3.1

The proof of our main result is an application of the following general lemma.
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Lemma 3.5.1. Let X∗ ∈ Rn1×n2×n3 and let X be a finite collection of candidate recon-

structions with assigned weights pen(X) ≥ 1 satisfying the Kraft-McMillan inequality

over X . ∑

X∈X
2−pen(X) ≤ 1. (3.18)

Fix an integer 4 ≤ m ≤ n1n2n3 and let γ = m
n1n2n3

and generate n1n2n3 i.i.d. Bernoulli(γ)

random variables bi,j,k so that entry (i, j, k) ∈ S if bi,j,k = 1 and (i, j, k) /∈ S otherwise.

Conditioned on S we obtain independent measurements YS ∼ pX∗S
=
∏

(i,j,k)∈S pX∗i,j,k .

Then if QD is an upper bound for the maximum KL-divergence

QD ≥ max
X∈X

max
(i,j,k)

D(pX∗i,j,k‖pXi,j,k),

it follows that for any

ξ ≥ (1 +
2QD

3
) · 2 log 2 (3.19)

the complexity-penalized maximum likelihood estimator

X̂
ξ
(S,YS) = arg min

X∈X

{
− log pXS (YS) + ξpen(X)

}

satisfies the error bound

ES,YS
[
−2 log(H(p

X̂
∗ , pX∗))

]

n1n2n3
≤ 8QD logm

m
+

3 min
X∈X

{
D(pX∗‖pX)

n1n2n3
+

(
ξ +

4QD log 2

3

)
pen(X)

m

}
.

Proof. The proof appears in Appendix section 3.5.2.

For using the result in Lemma 3.5.1 we need to define penalties pen(X) ≥ 1 on

candidate reconstructions X of X∗, so that for every subset X of the set X ′ specified in

the conditions of Theorem 4.5.1 the summability condition
∑

X∈X 2−pen(X) ≤ 1 holds.

To this end, we will use the fact that for any X ⊆ X ′ we always have
∑

X∈X 2−pen(X) ≤
∑

X∈X ′ 2
−pen(X); thus, it suffices for us to show that for the specific set X ′ described in

(3.10), the penalty satisfies the Kraft-McMillan inequality:

∑

X∈X ′
2−pen(X) ≤ 1. (3.20)
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The Kraft-McMillan Inequality is automatically satisfied if we set the pen(X) to be the

code length of some uniquely decodable binary code for the elements X ∈ X ′ [103].

We utilize a common encoding strategy for encoding the elements of A and B. We

encode each entry of the matrices using log2(Llev) bits in this manner the total number

of bits needed to code any elements in A and B is n1F log2(Llev) and n2F log2(Llev)

respectively. Since the elements of set C are sparse we follow a two step procedure:

first we encode the location of the non-zero elements using log2 Lloc bits where Lloc =

2dlog2(n3F )e and then we encode the entry using log2(Llev) bits. Now, we let X ′′ be the

set of all such X with CP factors A ∈ A, B ∈ B, C ∈ C, and let the code for each X be

the concatenation of the (fixed-length) code for A followed by (fixed-length) code for

B followed by the (variable-length) code for C. It follows that we may assign penalties

pen(X) to all X ∈ X ′′ whose lengths satisfy

pen(X) = (n1 + n2)F log2 Llev + ‖C‖0 log2(LlocLlev).

By construction such a code is uniquely decodable, since by the Kraft McMillan in-

equality we have
∑

X∈X ′′ 2
−pen(X) ≤ 1. Further, since X ′ ⊆ X ′′ (because X ′ has a

constraint on entries being bounded in magnitude by Xmax) this also satisfies the in-

equality
∑

X∈X 2−pen(X) ≤ 1 in (3.18) in Lemma 3.5.1 is satisfied for X ′ sa defined in

statement of the Theorem 4.5.1. Now for any set X ⊆ X ′ and using coding strategy

described above, the condition (3.18) in Lemma (3.5.1) is satisfied. So for randomly

sub-sampled and noisy observations YS our estimates take the form

X̂
ξ

= arg min
X=[A,B,C]∈X

{
− log pXS (YS) + ξpen(X)

}

= arg min
X=[A,B,C]∈X

{
− log pXS (YS) + ξ log2(LlocLlev)‖C‖0

}



55

Further, when ξ satisfies (3.19), we have

ES,YS
[
−2 log(H(p

X̂
∗ , pX∗))

]

n1n2n3
≤ 8QD logm

m
+

3 min
X∈X

{
D(pX∗‖pX)

n1n2n3
+

(
ξ +

4QD log 2

3

)

·(n1 + n2)F log2 Llev + ‖C‖0 log2(LlocLlev)

m

}

≤ 8QD logm

m
+

3 min
X∈X

{
D(pX∗‖pX)

n1n2n3
+

(
ξ +

4QD log 2

3

)

· log2(LlocLlev)
(n1 + n2)F + ‖C‖0

m

}
.

Finally, we let λ = ξ · log2(LlocLlev) and using the relation that

log2 LlocLlev ≤ 2 · (β + 2) · log(nmax) (3.21)

which follows by our selection of Llev and Lloc and the fact that F, n3 ≤ nmax and

nmax ≥ 4. Using the condition (3.21) and (3.19) in Lemma 3.5.1 it follows that for

λ ≥ 4(β + 2)

(
1 +

2QD
3

)
log(nmax)

the estimate

X̂
λ

= arg min
X=[A,B,C]∈X

(
− log pXS (YS) + λ ‖C‖0

)
, (3.22)

satisfies the bound (3.12) in Theorem 4.5.1.

3.5.2 Proof of lemma 3.5.1

The main requirement for the proof of this lemma is to show that our random Bernoulli

measurement model is “good” in the sense that it will allow us to apply some known

concentration results. Let QD be an upper bound on the KL-divergence of pXi,j,k
from

pX∗i,j,k
over all elements X ∈ X :

QD ≥ max
X∈X

max
i,j,k

D(pX∗i,j,k‖pXi,j,k).
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Similarly, let QA be an upper bound on negative two times the log of the Hellinger

affinities between the same:

QA ≥ max
X∈X

max
i,j,k
−2 log

(
H(pX∗i,j,k‖pXi,j,k)

)
.

Letm ≤ n1n2n3 be the expected total number of measurements and γ = m/(n1n2n3)

to be the ratio of measured entries to total entries. Given any δ ∈ (0, 1) define the “good”

set Gγ,δ as the subset of all possible sampling sets that satisfy a desired property:

Gγ,δ :=

{
Ş ⊆ [n1]× [n2]× [n3] :


 ⋂

X∈X
D(pX∗S

‖pXS ) ≤ 3γD(pX∗‖pX)

2
+

4QD[log(1/δ) + log 2pen(X)]

3




∩


 ⋂

X∈X
−2 logH(pX∗S

, pXS ) ≥ −2γ logH(pX∗ , pX)

2
− 4QA[log(1/δ) + log 2pen(X)]

3



}

We show that Bernoulli sampling with parameter γ will be “good” with high probability

in the following lemma.

Lemma 3.5.2. Let X be a finite collection of countable estimates X for X∗ with penal-

ties pen(X) satisfying the Kraft inequality (3.18). Then for any fixed γ, δ ∈ (0, 1) let

S be a random subset of [n1] × [n2] × [n3] be a random subset generated according the

Bernoulli sampling model.Then P[S /∈ Gγ,δ) ≤ 2δ.

Proof. Note that Gγ,δ is defined in terms of an intersection of two events, define them

to be

ED =




⋂

X∈X
D(pX∗S

‖pXS ) ≤ 3γD(pX∗‖pX)

2
+

4QD[log(1/δ) + log 2pen(X)]

3





and

EA =




⋂

X∈X
−2 logH(pX∗S

, pXS ) ≥ −2γ logH(pX∗ , pX)

2
− 4QA[log(1/δ) + log 2pen(X)]

3





We apply the union bound to find that

P [S /∈ Gγ,δ] ≤ P
[
ECD
]

+ P
[
ECA
]
,
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and will prove the theorem by showing that each of the two probabilities on the right-

hand side are less than δ, starting with P[ECD ].

Since the observations are conditionally independent given S, we know that for fixed

X ∈ X ,

D(pX∗S
‖pXS ) =

∑

(i,j,k)∈S

D(pX∗i,j,k‖pXi,j,k) =
∑

i,j,k

bi,j,kD(pX∗i,j,k‖pXi,j,k),

where bi,j,k
i.i.d.∼ Bernoulli(γ). We will show that random sums of this form are concen-

trated around its mean using the Craig-Bernstein inequality .

The version of the Craig-Bernstein inequality that we will use states: let Ui,j,k be

random variables such that we have the uniform bound |Ui,j,k − E[Ui,j,k]| ≤ β for all

i, j, k. Let τ > 0 and ε be such that 0 < εβ/3 < 1. Then

P


∑

i,j,k

(Ui,j,k − E[Ui,j,k]) ≥
τ

ε
+ ε

∑
i,j,k var(Ui,jk)

2(1− εβ/3)


 ≤ e−τ .

To apply the Craig-Bernstein inequality to our problem we first fix X ∈ X and

define Ui,j,k = bi,j,kD(pX∗i,j,k‖pXi,j,k). Note that Ui,j,k ≤ QD ⇒ |Ui,j,k − E[Ui,j,k]| ≤ QD.

We also bound the variance via

var(Ui,j,k) = γ(1− γ)
(
D(pX∗i,j,k‖pXi,j,k)

)2

≤ γ
(
D(pX∗i,j,k‖pXi,j,k)

)2
.

Then let ε = 3
4QD

and β = QD in (3.5.2) to get that

P



∑

i,j,k

(bi,j,k − γ)D(pX∗i,j,k‖pXi,j,k) ≥ 4QDτ

3
+

∑
i,j,k γ ·

(
D(pX∗i,j,k‖pXi,j,k)

)2

2QD


 ≤ e−τ .

Now use the fact that D(pX∗i,j,k‖pXi,j,k) ≤ QD by definition to cancel out the square

term to get:

P


∑

i,j,k

(bi,j,k − γ)D(pX∗i,j,k‖pXi,j,k) ≥ 4QDτ

3
+
γ

2

∑

i,j,k

D(pX∗i,j,k‖pXi,j,k)


 ≤ e−τ .

Finally, we define δ = e−τ , and simplify to arrive at

P
[
D(pX∗S

‖pXS ) ≥ 4QD log(1/δ)

3
+

3γ

2
D(pX∗‖pX)

]
≤ δ, (3.23)
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for any δ.

To get a uniform bound over all X ∈ X define δX := δ2−pen(X) and use the bound

in (3.23) with δX and apply the union bound over the class X to find that

P [EA] ≤ δ. (3.24)

An similar argument (applying Craig-Bernstein and a union bound) can be applied

to EA to obtain

P [EA] ≤ δ (3.25)

This completes the proof of lemma 3.5.2.

Given lemma 3.5.2, the rest of the proof of lemma 3.5.1 is a straightforward extension

of the published proof of lemma A.1 in [2].

3.5.3 Proof of corollary 3.3.1

We first establish a general error bound, which we then specialize to the case stated in

the corollary. Note that for X∗ as specified and any X ∈ X , using the model (3.13) we

have

D(pX∗i,j,k‖pXi,j,k) =
(X∗i,j,k −Xi,j,k)

2

2σ2

for any fixed (i, j, k) ∈ S. It follows that D(pX∗‖pX) = ‖X∗ −X‖2F /2σ2. Further. as

the amplitudes of entries of X∗ and all X ∈ X upper bounded by Xmax, it is easy to see

that we may choose QD = 2X2
max/σ

2. Also, for any X ∈ X and any fixed (i, j, k) ∈ S it

is easy to show that in this case

−2 logH(pXi,j,k , pX∗i,j,k) =
(X∗i,j,k −Xi,j,k)

2

4σ2
,

so that −2 logH(pX, pX∗) = ‖X∗ −X‖2F /4σ2. It follows that

ES,YS
[
−2 logH(pX̂, pX∗)

]
=

ES,YS
[
‖X∗ − X̂‖2F

]

4σ2
.

Now for using Theorem 4.5.1, we first substitute the value of QD = 2X2
max/σ

2 to obtain

the following condition on λ

λ ≥ 4 ·
(

1 +
4X2

max

3σ2

)
· (β + 2) · log(nmax).
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The above condition implies that the specific choice of λ given (3.15) is a valid choice

to use if we want to invoke Theorem 4.5.1. So fixing λ as given (3.15) and using

Theorem 4.5.1, the sparsity penalized ML estimate satisfies the per-element mean-square

error bound

ES,YS
[
‖X∗ − X̂‖2F

]

n1n2n3
≤ 64X2

max logm

m
+

6 · min
X∈X

{‖X∗ −X‖2F
n1n2n3

+

(
2σ2λ+

24X2
max(β + 2) log(nmax)

3

)(
(n1 + n2)F + ‖C‖0

m

)}
.

Notice that the above inequality is sort of an oracle type inequality because it implies

that for any X ∈ X we have

ES,YS
[
‖X∗ − X̂‖2F

]

n1n2n3
≤ 64X2

max logm

m
+

6 ·
{‖X∗ −X‖2F

n1n2n3
+

(
2σ2λ+

24X2
max(β + 2) log(nmax)

3

)(
(n1 + n2)F + ‖C‖0

m

)}
.

We use this inequality for a specific candidate reconstruction of form X∗Q = [A∗Q,B
∗
Q,C

∗
Q]

where the entries of A∗Q are the closest discretized surrogates of the entries of A∗, B∗Q

are the closest discretized surrogates of the entries of B∗, and C∗Q are the closest dis-

cretized surrogates of the non-zeros entries of C∗ (and zero otherwise). For proceeding

further we need to bound ‖X∗Q −X∗‖max. For this purpose we consider matricization

of tensor across the third dimension as follows

‖X∗Q −X∗‖max =
∥∥(B∗Q �A∗Q

)
(C∗Q)T − (B∗ �A∗) (C∗)T

∥∥
max

Next we write A∗Q = A∗ + ∆A, B∗Q = B∗ + ∆B and C∗Q = C∗ + ∆C with straight

forward matrix multiplication we can obtain that

(
B∗Q �A∗Q

)
(C∗Q)T = (B∗ �A∗) (C∗)T + (∆A �B∗ + A∗ �∆B + ∆A �∆B) (C∗)T

+ (A∗ �B∗ + ∆A �B∗ + A∗ �∆B + ∆A �∆B) ∆T
C

Using this identity it follows

‖X∗Q −X∗‖max = ‖ (∆A �B∗ + A∗ �∆B + ∆A �∆B) (C∗)T+

(A∗ �B∗ + ∆A �B∗ + A∗ �∆B + ∆A �∆B) ∆T
C‖max
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Now using the facts that ‖A�B‖max = ‖A‖max‖B‖max, ‖AB‖max ≤ F‖A‖‖B‖max and

triangle inequality for the ‖ · ‖max norm it is easy to show that

‖X∗Q −X∗‖max ≤ F [(‖∆A‖max + ‖A‖max)(‖∆B‖max+‖B‖max)(‖∆C‖max + ‖C‖max)

−‖A‖max‖B‖max‖C‖max]

Further, using the fact that ‖∆A‖max ≤ Amax
Llev−1 , ‖∆B‖max ≤ Bmax

Llev−1 , and ‖∆C‖max ≤
Cmax
Llev−1 , we have

‖X∗Q −X∗‖max

≤ F
[(

Amax

Llev − 1
+Amax

)(
Bmax

Llev − 1
+ ‖B‖max

)(
Cmax

Llev − 1
+ Cmax

)
−AmaxBmaxCmax

]

≤ FAmaxBmaxCmax

[(
1 +

1

Llev − 1

)3

− 1

]

≤ FAmaxBmaxCmax

Llev − 1

[
3 +

3

Llev − 1
+

1

(Llev − 1)2

]

≤ 7FAmaxBmaxCmax

Llev − 1
,

where in the second last step we have used Llev ≥ 2. Now, it is straight-forward to show

that our choice of β in (3.14) implies Llev ≥ 14FAmaxBmaxCmax/Xmax +1, so each entry

of ‖X∗Q −X∗‖max ≤ Xmax/2. This further implies that for the candidate estimate X∗Q

we have ‖X∗Q‖max ≤ Xmax, i.e., X∗Q ∈ X . Moreover, we

‖X∗ −X∗Q‖2F
n1n2n3

≤
(

7FAmaxBmaxCmax

Llev − 1

)2

≤ X2
max

m
, (3.26)

where the last inequality follows from the fact that our specific choice of β in (3.14) also

implies Llev ≥ 7F
√
mAmaxBmaxCmax/Xmax.

Finally, we evaluate the oracle inequality for (4.5) for X∗Q and using the fact that

‖C∗Q‖0 = ‖C∗‖0 and using the value of λ specified in the corollary we have

ES,YS
[
‖X∗ − X̂‖2F

]

n1n2n3
≤

70X2
max logm

m
+ 24(σ2 + 2X2

max)(β + 2) log(nmax)

(
(n1 + n2)F + ‖C∗‖0

m

)
.



Chapter 4

Matrix completion from noisy

and quantized observations

As discussed in Chapter 3 matrix completion problem arises in variety of signal process-

ing and machine learning applications. Noisy and quantized observations usually arise

in systems where data is collected via low-cost resource constrained devices. Sometimes

the quantization is inherent to the observation setup. For example, consider the collab-

orative filtering task which can be posed as matrix completion of matrix of size n1×n2

whose (i, j)th entry which contain rating of user ith for jth item. In this case typically

ratings are quantized to finite symbols like number of stars or thumbs up/down.

In existing literature, the problem of matrix completion with quantized data has

been primarily explored for low rank matrices. One of the initial works [98] focused

on matrix completion with 1-bit data for low rank matrices with bounded entries using

nuclear-norm constrained maximum likelihood type approach. In [104] authors the con-

sidered the same problem using max-norm constrained minimization approach. These

works were extended to multi-bit scenarios in [79] where authors proposed numerical

algorithms and error bounds were investigated in [105–107]. Surprisingly, to the best

of our knowledge with the notable exception of [2, 108–110] matrix completion with

quantization has not been studied for structures other than sets of low rank matrices.

The investigation of quantized matrix completion for general structure is a problem

of great practical significance. In light of limited existing works, on general quantized

61
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matrix completion it requires a systematic investigation. We assume that the true

matrix X∗ lies in some set X ⊂
{
X
∣∣ X ∈ Rn1×n2 , ‖X‖∞ ≤ xmax

}
, here ‖X‖∞ is the

maximum absolute entry of the matrix. The set X may vary depending on the specific

application at hand. We assume that the noise corrupted entries of X∗ observed at

the subset of locations and are quantized to one of K-symbols via a quantizer. We

obtain estimates of true matrix X∗ from these noise corrupted quantized by solving a

constrained maximum likelihood problem. Our main contribution here comes in the

form two general probabilistic error guarantees for the constrained maximum likelihood

estimates obtained via covering number based approach, and a more involved chaining

principle based approach. We demonstrate the utility of these bounds by instantiating

them for the set of low rank matrices as well as matrices following the sparse factor

model. For the completion of matrices following the sparse factor model we propose

ab alternating direction method of multiplier-type algorithm for approximately solving

the constrained maximum likelihood problem and provide empirical evidence for the

theoretical bounds.

4.1 Preliminaries and notations

For a positive integer n, we let [n] = {1, 2, . . . , n}. We use the asterisk superscript to

denote that the corresponding parameter is the “true” model in our estimation task,

rather than to denote complex conjugation. We denote scalars with lower case letters

(e.g., x) and vectors with bold face letters (e.g., x). The matrices are denoted by upper

case bold face letters (e.g., X) and (i, j)th entry of the matrix X is denote by Xi,j .

The norm ‖X‖∞ of matrix X is equal to the maximum absolute value of its entries.

The probability that a discrete variable Z takes the value k from possible K different

values is denoted by p(Z = k), the probability mass function (pmf) is denoted by the

shorthand notation p(Z), and KL-divergence between the two pmfs p(Z) and q(Z) is

defined as

D (p(Z)||q(Z)) =

K∑

i=1

p(i) log

(
p(i)

q(i)

)
.
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4.2 Observation model

Z Q(·)
{1, · · · , K}

Quantizer

X⇤

(i, j) 2 S Wi,j

Xi,j

Zij = Q(Yij)Yi,j

Figure 4.1: Observation model under quantized setting

Suppose we observe the entires of matrix X∗ at a random subset of entries S ⊂ [n1]×[n2]

chosen such that each entry is observed independently and identically with probability

γ ∈ (0, 1). The noise corrupted entries are first obtained as follows

Yi,j = X∗i,j +Wi,j , (i, j, ) ∈ S

where the {Wi,j}(i,j)∈S denotes the noise. Subsequently, these noisy corrupted entries

are passed through the quantizer Q(·) that quantizes them to K symbols to obtain the

final quantized obervations as follows

Zi,j = Q(Yi,j) =





1 −∞ < Yi,j <= τ1

k τk−1 < Yi,j <= τk, k = 2, · · · ,K − 1

K τK−1 < Yi,j < +∞
, (i, j) ∈ S (4.1)

where {τ1, · · · , τK−1} are the given thresholds of the quantizer. The final observation

model is shown in Figure 4.1. We assume that all noise Wi,j are i.i.d. zero-mean

random variables distributed with common probability density function (pdf) fW (w)

and cumulative distribution function (cdf) FW (w).

4.3 Estimation procedure

Our estimation approach will be based on a variant of the well-known maximum like-

lihood approach. We first obtain the joint probability of the observation. The in-

dependence of noises {Wi,j}(i,j)∈S implies that the observations {Zi,j}(i,j)∈S are also



64

independent. Each quantized observation Zi,j is a discrete random variables whose pmf

is parametrized by the entry X∗i,j of the true matrix as

p(k;X∗i,j) = Pr(Zi,j = k;X∗i,j) =

∫ τk−X∗i,j

τk−1−X∗i,j
fW (w)dw, k = 1, · · · ,K (4.2)

where τ0 = −∞ and τK = +∞. Denoting the observed entries of {Zi,j}(i,j)∈S by ZS ,

the joint pmf for ZS is given by

p(ZS ; X∗S) =
∏

(i,j)∈S

p(Zi,j ;X
∗
i,j),

where

p(Zi,j ;X
∗
i,j) =

K∏

k=1

Pr(Zi,j = k;X∗i,j)
1(Zi,j=k),

with 1 (Zi,j = k) = 1 if Zi,j = k otherwise 1 (Zi,j = k) = 0. Using the joint pmf our

estimation approach involves solving the following constrained maximum log likelihood

problem to obtain the estimate X̂ of true matrix X∗ as follows

X̂ = arg max
X∈X

log p(ZS ; XS). (4.3)

An alternate expression for the objective function in the above constrained maximum

log likelihood problem in terms of sampling set S will be used in subsequent sections.

As mentioned earlier, we assume the random sampling model in which each entry is

observed independently and identically with probability γ ∈ (0, 1). The sampling of

(i, j)th entry can then be indicated by a binary random variable bij ∼ Bernoulli(γ).

With this, the sampling set can be written in be terms of bi,j ’s as S = {(i, j)|bi,j = 1}. In

terms of bi,j and observations ZS the objective of the constrained maximum likelihood

problem in 4.3 can be written as

log p(ZS ; XS) =
∑

i,j

bij log p(Zij ;Xij)

The numerical algorithm to solve the constrained maximum log likelihood problem

in (4.3) depends on the constraint set X . Depending on the specific set X this problem

may be convex or non-convex. We discuss numerical algorithms to solve the problem

(4.3) in section 4.8.
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4.4 Towards error guarantees

The estimate X̂ obtained via constrained maximum likelihood approach in (4.3) is a

random variable which could potentially lie anywhere in the set X depending on the

random realization of the sampling set S, noise, and X∗. Therefore, an important

theoretical question is about the quality of estimate X̂. The random variables are known

to concentrate around their expected value which means that with high probability the

random variables assumes values near their expected values. We use this fundamental

nature of random variables to obtain probabilistic error guarantees for X̂ in (4.3).

For obtaining the error guarantees relative to X∗ we focus on the following random

variable indexed by a fixed X ∈ X

UX = log
p(ZS ; X∗S)

p(ZS ; XS)
=
∑

i,j

bij log
p(Zij ;X

∗
ij)

p(Zij ;Xij)
. (4.4)

It is easy to see that the expected value UX is given by

E log
p(ZS ; XS)

p(ZS ; X∗S)
= γ

∑

i,j

D((p(Zij ;X
∗
ij)||p(Zij ;Xij))) = γD(p(Z; X∗)||p(Z; X)),

where the expectation is with respect to bij and Zij , and we have used the short-

hand notation D(p(Z; X∗)||p(Z; X)) =
∑

i,j D(p(Zij ;X
∗
ij)||p(Zij ;Xij)). The quantity

D(p(Z; X∗)||p(Z; X)) is a measure of closeness between the pmfs parametrized by X

and X∗, and if X∗ = X then D(p(Z; X∗)||p(Z; X)) = 0. We follow an approach where

we first obtain probabilistic concentration bounds that hold uniformly over the X . These

bounds bound the deviation of UX from its expected value for all X ∈ X . Next we in-

stantiate these bounds for constrained maximum likelihood estimate X̂ to obtain the

final probabilistic error guarantees. There are various approaches to obtain the proba-

bilistic concentration bounds that hold uniformly over the X . In next two sections we

follow two approaches to obtain two versions of error guarantees.

4.5 Error guarantees based on covering number approach

The random variable UX in (4.4) for various X ∈ X is a random process indexed

by elements of the set X . In the covering number based approach we first obtain

concentration bound that hold for a fixed X ∈ X . We then consider an ε-cover Xε of
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the set X , by which we mean that it is subset of X with minimum cardinality for which

X =
⋃
Xi∈Xε Bε (Xi) where Bε (Xi) is `∞ norm ball centered at Xi ∈ X with radius ε.

We then instantiate concentration bound over the centers of the ε-cover and extended

the argument over the entire set X using the Lipschitz continuity of UX over X .

As a first step towards obtaining performance error guarantees we establish the

following concentration bound UX for a fixed X ∈ X .

Lemma 4.5.1. Suppose that p(Zi,j ;Xi,j) ≥ δ0, for ∀(i, j) ∈ [n1] × [n2] and ∀X ∈ X
(where 0 < δ0 <

1
2). The random variable UX =

∑
i,j bij log

p(Zi,j ;X
∗
ij)

p(Zi,j ;Xij)
for a fixed X ∈ X

satisfies

Prob

(
1

2
E(UX)− UX ≥

τ

c

)
≤ e−τ ,

where c = δ0
4(1−δ0)

Proof. The proof is outlined in section 4.11.2.

Using the above concentration inequality for the covering set of X and using a simple

union bound in addition to the Lipschtiz continuity of UX we obtain the following

probabilistic bound that holds uniformly over entire X .

Lemma 4.5.2. For any X ⊂
{
X
∣∣ X ∈ Rn1×n2 , ‖X‖∞ ≤ xmax

}
, let Xε = {X1, · · · ,XN}

be the subset of X of minimum cardinality N(ε, ‖ ·‖∞,X ) such that X =
⋃

Xi∈Xε Bε(Xi)

where Bε(Xi) is `∞ norm ball centered at Xi ∈ Xε with radius ε. Assuming p(Zi,j ;Xi,j) ≥
δ0 for ∀(i, j) and ∀X ∈ X , where 0 < δ0 < 1

2 . Then the random variables UX =
∑

i,j bij log
p(Zi,j ;X

∗
ij)

p(Zi,j ;Xij)
satisfy the following with probability at least 1− α

1

2
E(UX)− UX ≤

(
|S|+ γn1n2

2

)
Lgε+

log N(ε,‖·‖∞,X )
α

c

for all X ∈ X . Here c = δ0
4(1−δ0) and Lg is a constant defined as follows

Lg = max
k

sup
|t|≤xmax

∣∣∣∣
fW (τk − t)− fW (τk−1 − t)∫ τk−t

τk−1−t fW (w)dw

∣∣∣∣.

Proof. The proof is outlined in section 4.11.3

Using lemma 4.5.2 we obtain the first result for the performance error guarantee on

the constrained maximum likelihood estimator X̂ in (4.3) as follows
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Theorem 4.5.1. Suppose S is chosen such that each entry is sampled independently

with probability γ such that it satisfies γn1n2 ≥ 12 log( 2
α). Given the observation of

X∗ ∈ X ⊂
{
X
∣∣ X ∈ Rn1×n2 , ‖X‖∞ ≤ xmax

}
taken as per (4.1) at subset of locations

denoted by S ⊂ [n1] × [n2]. Assuming that the discrete pmf satisfies p(Zi,j ;Xi,j) ≥ δ0

for ∀(i, j) and ∀ X ∈ X (where 0 < δ0 <
1
2), then with probability at least 1 − 2α the

constrained maximum likelihood estimate X̂ in (4.3) satisfies

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤ 4Lgε+ 2

log
(

2N(ε,‖·‖∞,X )
α

)

cγn1n2
(4.5)

where N(ε, ‖ · ‖∞,X ) is the covering number of set X in ‖ · ‖∞ norm with accuracy

ε,c = δ0
4(1−δ0) , and Lg defined as follows

Lg = maxk sup
|t|≤xmax

∣∣∣∣
fW (τk − t)− fW (τk−1 − t)∫ τk−t

τk−1−t fW (w)dw

∣∣∣∣. (4.6)

Proof. Since X̂ lies in X , using the lemma 4.5.2 we have with probability ≥ 1− α

1

2
E log

p(ZS ; X∗S)

p(ZS ; X̂S)
≤ log

p(ZS ; X∗S)

p(ZS ; X̂S)
+
(
|S|+ γn1n2

2

)
Lgε+

log
(

2N(ε,‖·‖∞,X )
α

)

c
,

where we have substituted UX̂ = log
p(ZS ;X∗S)

p(ZS ;X̂S)
. Since X̂ maximizes the constrained

maximum likelihood and X∗ ∈ X we have that log
p(ZS ;X∗S)

p(ZS ;X̂S)
≤ 0 and using the fact

E log
p(ZS ;X∗S)

p(ZS ;X̂S)
= γD(p(Z; X∗)||p(Z; X̂)) the above inequality reduces to

1

2
γD(p(Z; X∗)||p(Z; X̂)) ≤

(
|S|+ γn1n2

2

)
Lgε+

log
(

2N(ε,‖·‖∞,X )
α

)

c

Next, using lemma 4.11.5 we have that if γn1n2 ≥ 12 log( 2
α) then

P

(
1

2
γn1n2 ≤ |S| ≤

3

2
γn1n2

)
≥ 1− α.

Assuming γn1n2 ≥ 12 log( 2
α), and using union bound we have with probability at least

≥ 1− 2α

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤ 4Lgε+ 2

log
(

2N(ε,‖·‖∞,X )
α

)

cγn1n2
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The main advantage of the above theorem is its generality and it can be instanti-

ated for different choices of structured matrix sets X by substituting the expression for

covering number N(ε, ‖ · ‖∞,X ) for judiciously chosen ε. Next we give results obtained

by using this strategy for few specific structured matrix sets.

4.5.1 Set of low rank matrix with bounded entries

Here we instantiate theorem 4.5.1 for the set of low rank matrices with bounded entries

defined as

X = {DA
∣∣D ∈ Rn1×r, ‖D‖∞ ≤ dmax,A ∈ Rr×n2 , ‖A‖∞ ≤ amax}, (4.7)

where r < min{n1, n2}. Note that the matrices in set X are not explicitly bounded in

magnitude. In the above definition set of X we have xmax = rdmaxamax.

Corollary 4.5.1. Under the assumptions of theorem 4.5.1. For the set of low rank

matrices X defined in (4.7) given the noise corrupted quantized observation of X∗ ∈ X
taken as per (4.1) then with probability at least 1−2α the constrained maximum likelihood

estimate X̂ in (4.3) satisfies

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤ 4Lgc

−1 + 2(n1 + n2)r log
(
12amaxdmaxrcα

−1γn1n2

)
c−1

γn1n2
,

where c and Lg as defined in theorem 4.5.1.

Proof. The proof is straightforward by choosing ε = 1
cγn1n2

and substituting the expres-

sion for resulting covering number in theorem 4.5.1 from lemma 4.11.6 and using the

simple fact that 2 log
(

2
α

)
≤ 2(n1 + n2)r log

(
2
α

)
.

The bound in the above corollary reveals that the upper bound on the error measured

in terms of per-entry KL-divergence decays at the rate of γ−1 and is proportional to

(n1 +n2)r which may be interpreted as the degree of freedom for low rank matrix set in

(4.7). Our result here can be compared to the error bounds for 1-bit matrix completion

via constrained maximum likelihood estimation reported in [98] where constraint set

consisted of matrices with bounded nuclear norm and bounded amplitude. In [98]

the error measured in terms of per entry squared error between the true matrix X∗

and their constrained maximum likelihood estimate is shown to be proportional to
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(n1+n2)r
γn1n2

. This implies that bounds in [98] decay with the sampling rate as γ0.5.

Similarly, in [104] a decay rate of γ0.5 with max-norm constrained maximum likelihood

estimator. The error bound for constrained maximum likelihood estimation with exact

low rank constraints reported in [107] has the rate of γ−1 for multi-bit quantization

scenario as well. In contrast to these works, the bound in the above corollary reveals

a faster rate of decay γ−1 although we measure the error in terms of per-entry KL-

divergence and the low rank constraint is explicitly enforced. In section 4.7 we discuss a

possible way to convert the bound in corollary 4.5.1 in terms of per-entry squared error.

4.5.2 Sparse factor model with bounded entries

Here we instantiate theorem 4.5.1 for the set of matrices following sparse factor model

with bounded entries defined as

X = {DA
∣∣D ∈ Rn1×r, ‖D‖∞ ≤ dmax,A ∈ Rr×n2 , ‖A‖∞ ≤ amax, ‖A‖0 ≤ l} (4.8)

Corollary 4.5.2. Under the assumptions of theorem 4.5.1. For the matrix set of matri-

ces following sparse factor model with bounded entries defined in (4.8) given the noise

corrupted quantized observation of X∗ ∈ X taken as per (4.1) then with probability

atleast 1− 2α the constrained maximum likelihood estimate X̂ in (4.3) satisfies

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤ 4Lgc

−1 + 2(n1r + l) log
(
12amaxdmaxα

−1r2cγn1n
2
2

)
c−1

γn1n2

where c and Lg as defined in theorem 4.5.1.

Proof. The proof is straightforward by choosing ε = 1
cγn1n2

and substituting the ex-

pression for covering number in theorem 4.5.1 from lemma 4.11.7, and using the fact

2 log
(

2
α

)
≤ 2(n1r + l) log

(
2
α

)
and 2l log(n2re

l ) ≤ 2(n1r + l) log(n2re)

The above corollary reveals that the error measured in terms of per entry KL-

divergence between the constrained maximum likelihood and the true matrix decays at

the rate of γ−1 and is proportional to n1r+ l. The quantity n1r+ l may be interpreted

as the degree of freedom of the matrix set X in 4.8. For sparse factor models similar

bounds for the error measured in terms per-entry square error for sparsity regularized

maximum likelihood estimation from 1-bit quantized data was reported in [2] and [108].
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In contrast to these, our analysis here is for multi-bit scenario and shows that similar

rate is possible even with constrained maximum likelihood estimation. In section 4.7

we discuss a possible way to convert the bound in corollary 4.5.2 in terms of per-entry

squared error.

4.6 Error guarantees based on the chaining principle

The error bounds obtained via covering number based approach was a relatively simple

approach in which the supremum of the random variable 1
2EUX−UX over the centers of

an ε−cover of the structured matrix set X is controlled, and the argument is extended to

the entire set X by leveraging the Lipschitz continuity property. This covering number

based approach involved taking union bound over the centers of the ε−cover which

resulted in log of covering number showing up in the upper bounds. This procedure

is known to lead to loose bounds as the events over the centers of the ε-cover could

be dependent for a dense enough cover. In such cases, an improvement in bounds is

possible by following multi-scale approach in which the set is covered progressively by

taking balls of increasing radius. Using this technique the supremum can be bounded

by using the Dudley’s inequality and sometimes it leads to an improvement in the upper

bounds. In many cases, even Dudley’s inequality fails to give tight enough bounds; then,

one may follow the chaining principle [111,112]. In fact, for the Gaussian processes this

approach gives optimal bounds. Motivated by this here we provide the error bounds

obtained via the chaining principle.

In order to use the chaining principle we first define the following centered random

variable indexed by X ∈ X

VX =
∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)
− E


∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)


 .

The following lemma on sub-gaussian nature of increments |VX−VY| for X,Y ∈ X acts

as the basic building block to obtain final error bounds using the chaining argument.

Lemma 4.6.1. Suppose that p(Zi,j ;Xi,j) ≥ δ0, for ∀(i, j) ∈ [n1] × [n2] and ∀X ∈ X
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(where 0 < δ0 <
1
2). The random variable for fixed X ∈ X

VX =
∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)
− E


∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)




satisfies the following concentration bound for any Y ∈ X

Prob (|VX − VY| ≥ τd(X,Y)) ≤ 2e−τ
2

(4.9)

d(X,Y) = Lg
√

2n1n2‖X−Y‖F and Lg is defined as

Lg = max
k

sup
|t|≤xmax

∣∣∣∣
fW (τk − t)− fW (τk−1 − t)∫ τk−t

τk−1−t fW (w)dw

∣∣∣∣.

Proof. The proof is outlined in section 4.12.

Using the above lemma the chaining principle can be used bound the supremum of

random variables VX over the set X in the following lemma.

Lemma 4.6.2. Given a set of matrices X ⊂ Rn1×n2, assume p(Zi,j ;Xi,j) ≥ δ0 for

∀(i, j) and ∀X ∈ X , where 0 < δ0 <
1
2 . The suprema of random variables

VX =
∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)
− E


∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)




defined over X ∈ X satisfies the following concentration bound

Prob

(
sup
X∈X

|VX| ≥ Lg
√
n1n2 (Cγ2(X , `2) + τD∆`2(X ))

)
≤ e−τ2/2,

where C,D are absolute constants and

γ2(X , `2) = inf
Xa

sup
X∈X

∞∑

n=0

2n/2 inf
Z∈Xn

‖Z−X‖F , (4.10)

where Xa = (Xn)n≥0 is a sequence of subset of X , which satisfies |X0| = 1 and |Xn| ≤ 22n

for all n ≥ 1, and ∆`2(X ) = supX,Y∈X ‖X−Y‖F .

Proof. The proof is outline in section 4.13.

Instantiating the above lemma for X̂ the performance bound based on the chaining

argument can be obtained as stated in the following theorem.
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Theorem 4.6.1. Suppose S is chosen such that each entry is sampled independently

with probability γ. Given the noise corrupted quantized observation of X∗ ∈ X taken as

per (4.1) at subset of locations denoted by S ⊆ [n1] × [n2]. Assuming that the discrete

pmf satisfies p(Zi,j ;Xi,j) ≥ δ0 for ∀(i, j) and ∀X ∈ X (0 < δ0 <
1
2), then with probability

at least 1− α the constrained maximum likelihood estimate X̂ in (4.3) satisfies

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤
Lg

[
Cγ2(X , `2) +

√
2 log( 1

α)D∆`2(X )
]

γ
√
n1n2

(4.11)

where C,D are constants, ∆`2(X ) = supX,Y∈X ‖X−Y‖F , and Lg is defined as

Lg = maxk sup
|t|≤xmax

∣∣∣∣
fW (τk − t)− fW (τk−1 − t)∫ τk−t

τk−1−t fW (w)dw

∣∣∣∣.

Proof. Using the lemma 4.6.2 ∀X ∈ X we have with probability at least 1− e−τ2/2

E log
p(ZS ; X∗S)

p(ZS ; XS)
− log

p(ZS ; X∗S)

p(ZS ; XS)
≤ Lg

√
n1n2

[
Cγ2(X , `2) +

√
2 log

(
1

α

)
D∆`2(X )

]
.

Since X̂ ∈ X we instantiate the above inequality for X̂ and choose α = e−τ
2/2, i.e.,

τ =
√

2 log
(

1
α

)
. So we have with probability at least 1− α

E log
p(ZS ; X∗S)

p(ZS ; X̂S)
≤ log

p(ZS ; X∗S)

p(ZS ; X̂S)
+ Lg

√
n1n2

[
Cγ2(X , `2) +

√
2 log

(
1

α

)
D∆`2(X )

]
.

Now since X̂ maximizes p(ZS ; XS) over X , and X∗ ∈ X we have log
p(ZS ;X∗S)

p(ZS ;X̂S)
≤ 0.

Finally substituting E log
p(ZS ;X̃∗S)

p(ZS ;X̂S)
= γD(p(Z; X∗)||p(Z; X̂)) we have with probability

atleast 1− α,

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤
Lg

[
Cγ2(X , `2) +

√
2 log

(
1
α

)
D∆`2(X )

]

γ
√
n1n2

.

The theorem 4.6.1 bounds the per-entry KL-divergence in terms of γ2(X , `2) and

∆`2(X ). These two constants are purely the geometric property of the set X . The term

∆`2(X ) can be interpreted upper bounded as ∆`2(X ) ≤ 2 maxX∈X ‖X‖F . The γ2(X , `2)

and ∆`2(X ) could interpreted as the complexity of set X and similar to the bound in
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theorem 4.5.1 the bounds in theorem 4.6.1 reveals the γ−1 rate. However, in contrast

to the bound in theorem 4.6.1 obtained does not have a constant c = 1

4
1−δ0
δ0

(log
1−δ0
δ0

+1)

which could be very large for small values δ0. The term γ2(X , `2) is non-trivial to

calculate however it can be upper bounded using known inequalities or can be shown

to proportional to a quantity which is easy to calculate. In particular, the following

relationship is quite useful for obtaining interpretable bounds [111].

γ2(X , `2) ≤ β · Ω(X ), (4.12)

where β is a constant and Ω(X ) is the Gaussian width of the set X defined as follows

Ω(X ) = E
[

sup
X∈X

Tr (GX)

]
, (4.13)

where G is a Gaussian random matrix of size n2×n1 with iid entries following standard

Gaussian distribution N (0, 1). The Gaussian width is of the set X is a measure of

complexity of the set X akin to the degrees of freedom [66]. Next we instantiate the

theorem 4.6.1 for a specific set of matrices to demonstrate its utility.

4.6.1 Set of low rank matrices

Here we instantiate theorem 4.6.1 for the set of low rank matrices defined as follows

X =

{
r∑

i=1

dia
T
i

∣∣di ∈ Rn1 , ‖di‖2 ≤ 1,ai ∈ Rn2 , ‖ai‖2 ≤ 1, i ∈ [r]

}
, (4.14)

where r < min{n1, n2}. Note that the matrices in set X are not explicitly bounded in

magnitude however using the definition of the set it is possible to obtain xmax.

Corollary 4.6.1. Under the assumptions of theorem 4.6.1. For the set of low rank

matrices X defined in (4.14) given the noise corrupted quantized observation of X∗ ∈ X
taken as per (4.1) then with probability at least 1−α the constrained maximum likelihood

estimate X̂ in (4.3) satisfies

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤
Lg

[
Cβ +

√
2 log

(
1
α

)
D
]
r(n1 + n2)

γ
√
n1n2

(4.15)

where C,D, β are constants and Lg as defined in theorem 4.6.1.
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Proof. The proof is outlined in section 4.14.

The bound in the above corollary as compared to the bound in corollary 4.5.1 decays

with similar as far as decay with the sampling rate γ is concerned however above bound

does not suffer from the constant c which could be very large for small values of δ0. The

decay rate in corollary 4.6.1 is still better than the ones reported in [98, 104] and our

analysis here holds for multiple bit scenarios as well. Next we discuss a possible way to

convert the bound in corollary 4.6.1 in terms of per-entry squared error.

4.7 Further discussion on the error bounds

The bounds the corollaries 4.5.1,4.5.2, 4.6.1 suggest that the average per entry KL

divergence between the pmfs parametrizes by the estimate X̂ and X̂∗ error decays

reciprocally with respect to sampling probability γ. The KL divergence is the measure

of distance between the pmfs however nearness in pmfs also imply nearness in the

parameter space. However, this depends on the specific noise density. In particular, if

there is a constant Lf such that we have

Lf‖X∗ − X̂‖2F ≤ D(p(Z; X∗)||p(Z; X̂)) (4.16)

then the error bounds in corollaries 4.5.1, 4.5.2, 4.6.1 can be converted to per-entry

estimation error guarantees measured in squared error similar to the ones obtained

in [98,104,107]. Further, the dependence on K is not obvious in the above error bounds.

The error bounds depend on K via the constant Lg and Lf . These constants are a

function of shape of the noise pdf fW (W ) and thresholds {τi}Ki=0.

4.8 Numerical algorithms

The constrained maximum log likelihood estimates in (4.3) can be written as

X̂ = arg min
X∈X

∑

i,j

bi,j`(Zi,j , Xi,j), ,
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where we have used the shorthand notation `(z, x) = − log(p(z;x) to denote the negative

log likelihood function of noise density fW (w) given by

`(z, x) = −
K∑

k=1

1 (z = k) log

(∫ τk−x

τk−1−x
fW (w)dw,

)
. (4.17)

It is known that − log
(∫ τk−v

τk−1−v fW (w)dw
)

is a convex function of v for all log-concave

densities [113] under such densities the objective function for the above optimization

problem is a convex function. However, depending on the specific matrix sets X the

problem may be convex or non-convex.

4.8.1 For convex X

For convex X the overall problem is convex and can be solved via projected gradient

descent for the differentiable `(·) otherwise the projected sub-gradient method may be

used. The overall algorithm is summarized as Algorithm 5. The algorithm is described

in terms of sub-gradient whenever the `(·) is differentiable the projected sub-gradient

method reduces to projected gradient. Notice that the algorithm uses diminishing step

sizes which guarantees convergence to the solution of the problem.

Algorithm 5 Projected sub-gradient Algorithm to solve minX∈X
∑

i,j bi,j`(Zi,j ;Xi,j)

Initialize: X(0) = 0

Repeat for t = 1, 2, · · · until convergence.

U(t−1) ∈ ∂
(∑

i,j bi,j`(Zi,j ;X
(t−1)
i,j )

)

X(t) = arg minX∈X ‖X−
(
X(t−1) − α

t U
(t−1)

)
‖2F

Output: X = X(t)

4.8.2 For non-convex X

For non-convex sets the optimization algorithm vary a lot depening on the specific set

X . Here we focus on factor models in which each matrix X ∈ X can be decomposed as

X = DA where D ∈ D and A ∈ A. For such sets the constrained maximum likelihood
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problem takes the following form.

min
D∈Rn1×r,A∈Rr×n2

∑

i,j

bi,j`(Zi,j , Xi,j) + ID(D) + IA(A) (4.18)

s.t. X = DA.

where ID(·), and IA(·) are the indicator functions of the sets D and A respectively.1

Motivated by the Alternating Direction Method of Multipliers (ADMM) approach

proposed for matrix completion for sparse factor models in [2] here we extend it to

quantized setting for general factor models. The augmented Lagrangian of (4.18) as

L(D,A,X,Λ) =
∑

i,j

bi,j`(Zi,j , Xi,j)+ID(D)+IA(A)+tr (Λ(X−DA))+
ρ

2
‖X−DA‖2F,

where Λ is a matrix of Lagrange multipliers and ρ > 0.Starting with some feasible

A(0),D(0),Λ(0) we iteratively update X, A, D, and Λ according to

(S1 :) X(k+1) := arg min
X∈Rn1×n2

L(D(k),A(k),X,Λ(k))

(S2 :) A(k+1) := arg min
A∈Rr×n2

L(D(k),A,X(k+1),Λ(k))

(S3 :) D(k+1) := arg min
D∈Rn1×r

L(D,A(k+1),X(k+1),Λ(k))

(S4 :) Λ(k+1) = Λ(k) + ρ(X(k+1) −D(k+1)A(k+1)),

until convergence, which is based on that the norms of primal and dual residuals become

sufficiently small (as described in [114]). After completing the square and ignoring

constant terms problem the step S1 is equivalent to the following problem

min
X∈Rn1×n2

∑

i,j

bi,j`(Zi,j , Xi,j) +
ρ

2

∥∥∥∥∥X−D(k)A(k) +
Λ(k)

ρ

∥∥∥∥∥

2

F

.

The above problem is separable in each entry Xi,j and the entries can be updated in

parallel by solving the scalar convex optimization problem for each entry as follows

X
(k+1)
i,j =





arg minx `(Zi,j , x) + ρ
2

(
x− (D(k)A(k))i,j +

(Λ(k))i,j
ρ

)2
, if bi,j = 1

(D(k)A(k))i,j − (Λ(k))i,j
ρ , otherwise

1 The indicator function takes value 0 if its argument is an element of the set described as the
subscript otherwise it takes value ∞.
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Algorithm 6 ADMM algorithm for solving problem (4.18)

Inputs: ε1, ε2, ∆1, ∆2, ∆stop
1 , ∆stop

2 , η, ρ(0) > 0

Initialize: D(0) ∈ D , A(0) ∈ A, Λ(0).

repeat

X
(k+1)
i,j =





arg minx `(Zi,j , x) + ρ
2

(
x− (D(k)A(k))i,j +

(Λ(k))i,j
ρ

)2
, if bi,j = 1

(D(k)A(k))i,j − (Λ(k))i,j
ρ , ig bi,j = 0

A(k+1) := arg minA∈Rr×n2 IA(A) + ρ
2

∥∥∥X(k+1) −D(k)A + Λ(k)

ρ

∥∥∥
2

F

D(k+1) = arg minD∈Rn1×r ID(D) + ρ
2

∥∥∥X(k+1) −DA(k+1) + Λ(k)

ρ

∥∥∥
2

F

Λ(k+1) = Λ(k) + ρ(k)(X(k+1) −D(k+1)A(k+1))

Set ∆1 = ‖X(k+1) −D(k+1)A(k+1)‖F and ∆2 = ρ(k) · ‖D(k)A(k) −D(k+1)A(k+1)‖F

ρ(k+1) =





η · ρ(k), if ∆1 ≥ 10 ·∆2

ρ(k)/η, if ∆2 ≥ 10 ·∆1

ρ(k), otherwise

until ∆1 ≤ ∆stop
1 and ∆2 ≤ ∆stop

2

Output: D = D(k+1) and A = A(k+1)

For convex `(·) the subproblem for bi,j = 1 is a strictly convex problem which can

be solved via first order methods like gradient descent for differentiable `(·), via sub-

gradient method for non-differentiable `(·), and for double differentiable `(·) one may

even employ second order Newton type methods. Further, again completing the square

and ignoring the constant terms the subproblem S2 is equivalent to

A(k+1) = arg min
A∈Rr×n2

IA(A) +
ρ

2

∥∥∥∥∥X
(k+1) −D(k)A +

Λ(k)

ρ

∥∥∥∥∥

2

F

.

The above problem is minimization of a convex smooth function over the constrained set

A. For convex A, one may employ projected sub-gradient methods similar to Algorithm

5. For non-convex A, the above step changes significantly from one set to another. A

general algorithm is not possible. For the set of sparse matrices, which are one of the

main focus of this paper, we employ iterative hard thresholding (IHT) type algorithm

to solve it [115]. Finally, after completing the square and ignoring the constant terms,
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we see that the subproblem S3 is equivalent to

D(k+1) = arg min
D∈Rn1×r

ID(D) +
ρ

2

∥∥∥∥∥X
(k+1) −DA(k+1) +

Λ(k)

ρ

∥∥∥∥∥

2

F

. (4.19)

For convex D one may a employ a projected gradient method similar to Algorithm

5 whereas for non-convex D the algorithm depends on the specific set. Our overall

algorithmic approach is summarized in Algorithm 6. Note that in final algorithm the

value of ρ is varied for faster convergence as suggested in [114].

4.9 Experimental evaluation

We perform experimental validation on synthetic data set for sparse factor models. The

true data matrix for the experiment was generated randomly by first generating the

matrices D∗ ∈ R1000×5, A∗ ∈ R5×1000 and then using these to obtain the true matrix

as X∗ = D∗A∗ . We randomly generate D∗ such its entries i.i.d. Gaussian distribution

with zero mean and variance 4 and the threshold its entries to lie in the range [−1, 1].

Similarly, we generate random column sparse A∗ by first randomly selecting s = 2

non-zero locations in each column, and equating them i.i.d. Gaussian random numbers

with zero mean and variance 400 and thresholding these to the range [−10, 10]. Using

these random D∗,A∗ we obtain the matrix D∗A∗ and threshold its entries to the range

[−20, 20] to obtain X∗. The matrix X∗ generated as above is observed at subset of

its entries S by observing each entry with probability γ in a i.i.d. fashion to obtained

quantized observations in noise as follows

Yij = Q(X∗ij +Wij), (i, j) ∈ S,

where Wi,j are i.i.d. Gaussian noise with zero mean and variance σ2 = 100, and the

quantizer Q(·) maps observations to K symbols by choosing the thresholds {τi}K−1
i=1 by

uniformly dividing the interval [−20, 20] in K − 2 parts and τ0 = −∞ and τK = +∞.
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Figure 4.2: Results of synthetic experiments for quantized matrix completion under

sparse factor models. The panel (a) contains log per-entry squared error log

(
‖X̂−X∗‖2F
n1n2

)

vs. log sampling rate log10 (γ) plots for K = 8, 4, 2. Panel (b) contains per-entry squared

error
‖X−X∗‖2F
n1n2

vs. number of symbols in quantizer K plots for γ = 0.10, 0.25.

Using these quantized observations, the constrained maximum likelihood optimiza-

tion problem is solved to obtain the estimate X̂. For this we use Algorithm 6 in which

for A update step iterative hard thresholding algorithm is employed whereas D is up-

dated via projected gradient descent algorithm. We repeated this experiment for various

values of sampling rates γ and number of symbols K. The final results are shown in

figure 4.2 wherein panel (a) we plot the log

(
‖X̂−X∗‖2F

(n1n2)

)
vs. log(γ) for K = 8, 4, 2. The

plots for each value of K have the slope of about −1. This suggests that the error

measured even in terms of per-entry squared loss decays reciprocally with the sampling

rate γ and suggests the existence of a constant Lf as described in (4.16). Further, also

observe that curve shifts down as we increase the number of symbols from 2 to 8. This

implies that the error decreases as we increase the number of symbols K. However, an

interesting thing to note here is that as we increase the number of symbols from 2 to 4

there is large shift in the curve as compared to when we increase the number of symbols

from 4 to 8. This observation is further confirmed by plot in panel (b) of figure 4.2.

This empirical observation suggest a law of diminishing return type dependence on the

number of symbols K.
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4.10 Summary

We studied the problem of matrix completion arising in noisy and quantized setting.

Following up on initial work on noisy matrix completion for sparse factor models we

investigated the general problem of quantized matrix completion for structured matrix

sets and obtained two generic theorems which were specialized for specific matrix sets.

We also provided generic algorithmic framework for solving the quantized matrix com-

pletion which was used to empirically verify the bounds obtained for the sparse factor

models. See section 7.3 for more discussion on possible future directions of research.

4.11 Appendix

4.11.1 Useful lemmata

Lemma 4.11.1. Suppose two pmfs p, q of discrete random variable Z satisfy 0 < δ0 ≤
p(Z = k), q(Z = k) for all k = 1, · · · ,K then we have

∑K
k=1(p(Z = k)− q(Z = k))2

2(1− δ0)
≤ D(p‖q) ≤

∑K
k=1(p(Z = k)− q(Z = k))2

2δ0
(4.20)

Proof. Let q(Z = k) = πk and define δk := p(Z = k)−q(Z = k) we can express p(Z = k)

as p(Z = k) = πk + δk. Since
∑K

k=1 p(Z = k) =
∑K

k=1 q(Z = k) = 1 the δk’s satisfy

δ0 ≤ πk + δk,∀k = 1, · · · ,K and
K∑

k=1

δk = 0. (4.21)

The KL-Divergence D(p‖q) can be written as the function g(δ) of vector of density

differences δ = [δ1, · · · , δK ]T .

g(δ) =
K∑

k=1

(πk + δk) log

(
πk + δk
πk

)

The gradient and hessian of g(δ) w.r.t δ are easily shown to be

∇g(δ) =
[
1 + log

(
π1+δ1
π1

)
, · · · , 1 + log

(
πK+δK
πK

)]T
,

∇2g(δ) = Diag

([
1

π1+δ1
, · · · , 1

πK+δK

]T)
,
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where Diag(·) is a diagonal matrix from a vector in such a manner that the ith component

is the ith diagonal element of the resultant matrix. Since 0 < δ0 ≤ p(Z = k), q(Z = k)

it implies that p(Z = k), q(Z = k) ≤ 1− δ0 < 1 we have

I/(1− δ0) � ∇2g(δ) � I/δ0. (4.22)

Next we use the Taylor’s expansion of variance of g(δ) around zero vector to get

g(δ) = g(0) +∇g(0)T δ +
1

2
δT∇2g(tδ)δ, for some t ∈ [0, 1]

Note that if δ is a valid then tδ for t ∈ [0, 1] is also valid as it satisfies both the conditions

δ0 ≤ πk + tδk, ∀k = 1, · · · ,K and
∑K

k=1 tδk = 0. Now, using the bound on hessian in

(4.22) and substituting it in Taylor series expansion we have

g(0) +∇g(0)T δ +
δT Inδ

2(1− δ0)
≤ g(δ) ≤ g(0) +∇g(0)T δ +

δT Inδ

2δ0

it is straightforward to see that g(0) = 0 and ∇g(0) = [1, · · · , 1]T so we have

K∑

k=1

δk +

∑K
k=1 δ

2
k

2(1− δ0)
≤ g(δ) ≤

K∑

k=1

δk +

∑K
k=1 δ

2
k

2δ0
,

But, by (4.21) we have

∑K
k=1(p(Z = k)− q(Z = k))2

2(1− δ0)
≤ D(p‖q) ≤

∑K
k=1(p(Z = k)− q(Z = k))2

2δ0

Lemma 4.11.2. Suppose two pmfs p, q of discrete random variable Z satisfy 0 < δ0 ≤
p(Z = k), q(Z = k) < 1 for all k = 1, · · · ,K and an independent Bernoulli random

variable b ∼ Ber(γ) then we have

varZ∼p,b∼Ber(γ)

(
b log

p(Z)

q(Z)

)
≤ 2(1− δ0)

δ0
γD(p‖q)

Proof. Notational brevity we denote the random variable b log p(Z)
q(Z) by U . So the variance
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of U is given by

varZ∼p,b(U) = EZ∼p,b
(
U2
)
− [EZ∼p,b (U)]2

= EZ∼p,b
(
b2 log2 p(Z)

q(Z)

)
−
[
EZ∼p,b

(
b log

p(Z)

q(Z)

)]2

= Eb(b2)EZ∼p
(

log2 p(Z)

q(Z)

)
−
[
Eb(b)EZ∼p

(
log

p(Z)

q(Z)

)]2

= γEZ∼p
(

log2 p(Z)

q(Z)

)
− γ2

[
EZ∼p

(
log

p(Z)

q(Z)

)]2

(4.23)

Let q(Z = k) = πk and define δk := p(Z = k) − q(Z = k) we can express p(Z = k)

as p(Z = k) = πk + δk. Now the variance of U can be written as the function g(δ) of

vector of density differences δ = [δ1, · · · , δK ]T

varZ∼p,b(U) = g(δ)

= γ
K∑

i=1

(πi + δi) log2 πi + δi
πi

− γ2

(
K∑

i=1

(πi + δi) log
πi + δi
πi

)2

Since δ is vector of differences of valid pmfs p, q it must satisfy the following properties

δ0 < πi + δi,∀i = 1, · · · ,K and
K∑

i=1

δi = 0

Next we find gradient of variance g(δ) w.r.t δ. The partial derivative w.r.t δk is given

by

∂g(δ)

∂δk
=γ

[
log2 πk + δk

πk
+ 2 log

(
πk + δk
πk

)]

− 2γ2

[
K∑

i=1

(πi + δi) log
πi + δi
πi

] [
log

πk + δk
πk

+ 1

]

For Hessian we need second order derivatives it is easy to see that for k 6= l

∂2g(δ)

∂δk∂δl
= −2γ2

[
log

πk + δk
πk

+ 1

] [
log

πl + δl
πl

+ 1

]
, for k 6= l

and for k = l we have

∂2g(δ)

∂2δk
=

2γ

πk + δk

[
log

πk + δk
πk

+ 1

]
− 2γ2

[
log

πk + δk
πk

+ 1

]2

− 2γ2

πk + δk

[
K∑

i=1

(πi + δi) log
πi + δi
πi

]
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Finally Hessian can be written as

∇2g(δ) =Diag

([
2γ

π1 + δ1

(
log

π1 + δ1

π1
+ 1

)
, · · · , 2γ

πK + δK

(
log

πK + δK
πK

+ 1

)])

− 2γ2




log π1+δ1
π1

+ 1
...

log πK+δK
πK

+ 1



[
log π1+δ1

π1
+ 1, · · · , log πK+δK

πK
+ 1
]

−
[
K∑

k=1

(πk + δk) log
πk + δk
πk

]
Diag

([
2γ2

π1 + δ1
, · · · , 2γ2

πK + δK

])

� Diag

([
2γ

π1 + δ1

(
log

π1 + δ1

π1
+ 1

)
, · · · , 2γ

πK + δK

(
log

πK + δK
πK

+ 1

)])

The model assumptions 0 < δ0 ≤ p(Z = k), q(Z = k) implies that p(Z = k), q(Z = k) ≤
1− δ0 for all k = 1, · · · ,K. Using this we have

Diag

([
2γ

π1 + δ1

(
log

π1 + δ1

π1
+ 1

)
, · · · , 2γ

πK + δK

(
log

πK + δK
πK

+ 1

)])

� Diag

([
2γ

π1
, · · · , 2γ

πK

])
� 2γ

δ0
I,

where we have used the fact that log x ≤ x− 1 and πk ≥ δ0. Next we have the following

simple relation

∇2g(δ) � 2γ

δ0
I

for all valid δ = [δ1, · · · , δK ]T obtained by difference of pmf values. Now using Taylor’s

expansion of variance of U around zero vector is given by

g(δ) = g(0) +∇g(0)T δ +
1

2
δT∇2g(tδ)δ, for some t ∈ [0, 1]

Note that if δ is a valid then tδ for t ∈ [0, 1] is also valid as it satisfies both the conditions

in (4.24). Further, it is straightforward to see that g(0) = 0 and ∇g(0) = 0 so we have

g(δ) =
1

2
δT∇2g(tδ)δ, for some t ∈ [0, 1]

≤ γ

δ0
‖δ‖2 =

γ

δ0

[
K∑

i=1

(p(Z = i)− q(Z = i))2

]
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Further using Lemma 4.11.1 we can upper bound
∑K

i=1 (p(Z = i)− q(Z = i))2 as

K∑

i=1

(p(Z = i)− q(Z = i))2 ≤ 2(1− δ0)D(p‖q)

So finally we have

g(δ) ≤ 2(1− δ0)

δ0
γD(p‖q)

Lemma 4.11.3. Assuming that the function gk(x) = log
(∫ τk−x

τk−1−x fW (w)dw
)

is differ-

entiable w.r.t to x then it is Lipschitz continuous over |x| ≤ xmax with Lipschitz constant

Lgk = sup|t|≤xmax

∣∣∣∣
fW (τk−t)−fW (τk−1−t)∫ τk−t

τk−1−t
fW (w)dw

∣∣∣∣, i.e., we have

∣∣∣∣gk(x)− gk(y)

∣∣∣∣ ≤ Lgk |x− y|, ∀|x|, |y| ≤ xmax, (4.24)

Proof. Assuming that the function log
(∫ τk−x

τk−1−x fW (w)dw
)

is differentiable w.r.t to x

then we have

∣∣gk(x)− gk(y)
∣∣ =

∣∣∣∣
∫ x

y

dgk(t)

dt
dt

∣∣∣∣

≤ sup
|t|≤xmax

∣∣∣∣
dgk(t)

dt

∣∣∣∣
∣∣∣∣
∫ x

y
dt

∣∣∣∣

= sup
|t|≤xmax

∣∣∣∣
dgk(t)

dt

∣∣∣∣|x− y|

= sup
|t|≤xmax

∣∣∣∣
fW (τk − t)− fW (τk−1 − t)∫ τk−t

τk−1−t fW (w)dw

∣∣∣∣|x− y|

Lemma 4.11.4. We have
∣∣∣∣ log

p(ZS ; X∗S)

p(ZS ; YS)
− log

p(ZS ; X∗S)

p(ZS ; XS)

∣∣∣∣ ≤ Lg|S|ε, ∀Y satisfying ‖Y −X‖∞ ≤ ε
∣∣∣∣E log

p(ZS ; X∗S)

p(ZS ; YS)
− E log

p(ZS ; X∗S)

p(ZS ; XS)

∣∣∣∣ ≤ Lgγn1n2ε, ∀Y satisfying ‖Y −X‖∞ ≤ ε

where Lg := maxk Lgk .
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Proof. 1. We have
∣∣∣∣ log

p(ZS ; X∗S)

p(ZS ; YS)
− log

p(ZS ; X∗S)

p(ZS ; X)

∣∣∣∣ =

∣∣∣∣ log p(ZS ; YS)− log p(ZS ; XS)

∣∣∣∣

The log-likelihood term can be expanded as

∣∣∣∣ log p(ZS ; YS)− log p(ZS ; XS)

∣∣∣∣ =

∣∣∣∣
∑

(i,j)∈S

K∑

k=1

1(Zi,j = k) log

(
p(Zi,j = k;Yi,j)

p(Zi,j = k;Xi,j)

) ∣∣∣∣

=

∣∣∣∣
∑

(i,j)∈S

K∑

k=1

1(Zi,j = k) (gk(Yi,j)− gk(Xi,j))

∣∣∣∣

≤
∑

(i,j)∈S

K∑

k=1

1(Zi,j = k)
∣∣ (gk(Yi,j)− gk(Xi,j))

∣∣

Using lemma 4.11.3 we have

∣∣∣∣ log p(ZS ; YS)− log p(ZS ; XS)

∣∣∣∣ ≤
∑

(i,j)∈S

K∑

k=1

1(Zi,j = k)Lgk
∣∣Yi,j −Xi,j

∣∣

Now for all ‖Y −X‖∞ ≤ ε we have
∣∣Yi,j −Xi,j

∣∣ ≤ ε for all (i, j) which implies

∣∣∣∣ log p(ZS ; YS)− log p(ZS ; XS)

∣∣∣∣ ≤
∑

(i,j)∈S

K∑

k=1

1(Zi,j = k)Lgkε

≤ (maxk Lgk)
∑

(i,j)∈S

K∑

k=1

1(Zi,j = k)ε

= Lg|S|ε

2. We have
∣∣∣∣E log

p(ZS ; X∗S)

p(ZS ; YS)
− E log

p(ZS ; X∗S)

p(ZS ; XS)

∣∣∣∣ =

∣∣∣∣E log
p(ZS ; XS)

p(ZS ; YS)

∣∣∣∣

≤ E
∣∣∣∣ log

p(ZS ; XS)

p(ZS ; YS)

∣∣∣∣

≤ LgεE|S| = Lgεγn1n2,

where last step follows from second statement of the lemma.
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Lemma 4.11.5. Assuming γn1n2 ≥ 12 log( 2
α), we have for the random variable |S| =

∑
i,j bij

Prob

(
1

2
γn1n2 ≤ |S| ≤

3

2
γn1n2

)
≥ 1− α

Proof. We first observe that E (|S|) = γn1n2 and then using relative Chernoff’s bound

we have Prob
(
|S| ≥ 3

2γn1n2

)
≤ e−

γn1n2
12 and Prob

(
|S| ≤ 1

2γn1n2

)
≤ e−

γn1n2
8 . Rest of

the proof follows the union bounding technique as follows

Prob

(
1

2
γn1n2 ≤ |S| ≤

3

2
γn1n2

)
= 1− Prob

({
|S| ≤ 1

2
γn1n2

}⋃{
|S| ≥ 3

2
γn1n2

})

≥ 1− Prob

(
|S| ≥ 3

2
γn1n2

)
− Prob

(
|S| ≤ 1

2
γn1n2

)

≥ 1− e−
γn1n2

12 − e−
γn1n2

8

Further, if we choose γn1n2 ≥ 12 log
(

2
α

)
then we have e−

γn1n2
12 ≤ α/2 and e−

γn1n2
8 ≤

α/2. This implies that if γn1n2 ≥ 12 log
(

2
α

)
then we have

Prob

(
1

2
γn1n2 ≤ |S| ≤

3

2
γn1n2

)
≥ 1− α.

Lemma 4.11.6. The covering number N(X , ‖ · ‖∞, ε) for the set

X =

{
X = DA

∣∣∣∣D ∈ D,A ∈ A, ‖X‖∞ ≤ xmax
}

where D ⊆
{

D ∈ Rn1×r
∣∣∣∣‖D‖∞ ≤ dmax

}
and A ⊆

{
A ∈ Rr×n2

∣∣∣∣‖A‖∞ ≤ amax
}

is up-

per bounded as

N(X , ‖ · ‖∞, ε) ≤
(

6amaxdmaxr

ε

)n1r+n2r

.

Proof. Suppose we are given an εd cover Dεd of the set D in ‖ · ‖∞ norm and an εa

cover Aεa of the set A in ‖ · ‖∞ norm. Consider any X ∈ X which by construction

can be factorized as X = DXAX where DX ∈ D and AX ∈ A. Let Dεd and Aεa be

the centers of the ball in which DX and AX lie, i.e., we have ‖DX −Dεd‖∞ ≤ εd and
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‖AX −Aεa‖∞ ≤ εa. The main idea of the proof is find the ε of the covering provided

by Dεd and Aεa . For we consider

‖X−DεdAεa‖∞ = ‖DXAX −DεdAεa‖∞

≤ ‖DX (AX −Aεa) ‖∞ + ‖ (DX −Dεd) Aεa‖∞
2

+
‖ (DX −Dεd) AX‖∞ + ‖Dεd (AX −Aεa) ‖∞

2

Next we explicitly write ‖DX (AX −Aεa) ‖∞ = maxi,j dTi (aj − aεaj ) where dTi is the ith

row of DX and aj ,aj are the jth column of matrices AX and Aεa respectively. Let dεdi
T

be the ith row Dεd . We continue from above as

‖X−DεdAεa‖∞ ≤
maxi,j

∣∣∣∣dTi (aj − aεaj )

∣∣∣∣+ maxi,j

∣∣∣∣(d
εd
i − di)

Taεaj

∣∣∣∣
2

+

maxi,j

∣∣∣∣(d
εd
i − di)

Taj

∣∣∣∣+ maxi,j

∣∣∣∣(d
εd
i )T (aj − aεaj )

∣∣∣∣
2

≤ maxi(‖di‖1 + ‖dεdi ‖1)εa + maxi(‖ai‖1 + ‖aεai ‖1)εd
2

≤ r(dmaxεa + amaxεd)

The above in equality implies that Xεdεa =

{
DεdAεa

∣∣∣∣Dεd ∈ Dεd ,Aεa ∈ Aεa
}

provides

covering for X with ε equal to r(dmaxεa+amaxεd). In other words, for a given ε covering

for X we can use Xεdεa is as a cover such εa and εd satisfy

ε = r(dmaxεa + amaxεd)

With this we have the following bounds on the covering number N(X , ‖ · ‖∞, ε)

N(X , ‖ · ‖∞, ε) ≤
∣∣∣∣Xεdεa

∣∣∣∣ = N(D, ‖ · ‖∞, εd)N(A, ‖ · ‖∞, εa)

Further choosing εa = ε
2rdmax

and εd = ε
2ramax

we have ε = r(dmaxεa + amaxεd) so we

finally have

N(X , ‖ · ‖∞, ε) ≤
∣∣∣∣Xεdεa

∣∣∣∣ = N

(
D, ‖ · ‖∞,

ε

2ramax

)
N

(
A, ‖ · ‖∞,

ε

2rdmax

)
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Using standard arguments of covering numbers one can easily argue that

N

(
D, ‖ · ‖∞,

ε

2ramax

)
≤
(

6amaxdmaxr

ε

)n1r

N

(
A, ‖ · ‖∞,

ε

2rdmax

)
≤
(

6amaxdmaxr

ε

)n2r

With the above two inequalities proof is complete.

Lemma 4.11.7. The covering number N(X , ‖ · ‖∞, ε) for the set

X =

{
DA

∣∣∣∣D ∈ D,A ∈ A, ‖X‖∞ ≤ xmax
}

where

D ⊆
{

D ∈ Rn1×r
∣∣∣∣‖D‖∞ ≤ dmax

}
and A ⊆

{
A ∈ Rr×n2

∣∣∣∣‖A‖∞ ≤ amax, ‖A‖0 ≤ l
}

satisfies

N(X , ‖ · ‖∞, ε) ≤
(n2re

l

)l (6amaxdmaxr

ε

)n1r+l

.

Proof. Using the arguments presented in the proof of Lemma 4.11.6 we have

N(X , ‖ · ‖∞, ε) ≤ N
(
D, ‖ · ‖∞,

ε

2ramax

)
N

(
A, ‖ · ‖∞,

ε

2rdmax

)

While the set D is same as in Lemma 4.11.6 but set A is different in this case. The proof

is essentially about finding N
(
A, ‖ · ‖∞, ε

2rdmax

)
. For this we observe that A = {A =

Rr×n2
∣∣‖A‖∞ ≤ amax, ‖A‖0 ≤ l} =

⋃(n2rl )
i=1 Ai, where each Ai corresponds to specific

choice of support of l from n2r possible location. Each Ai is a set of l dimensions with

bounded entries as {a ∈ Rl
∣∣‖a‖∞ ≤ amax}. The covering number of Ai can be easily

calculated as N
(
Ai, ‖ · ‖∞, ε

2rdmax

)
≤
(

6amaxdmaxr
ε

)l
. Since A =

⋃(n2rl )
i=1 Ai we have

N

(
A, ‖ · ‖∞,

ε

2rdmax

)
≤

(n2rl )∑

i=1

N

(
Ai, ‖ · ‖∞,

ε

2rdmax

)

≤
(
n2r

l

)(
6amaxdmaxr

ε

)l

≤
(n2re

l

)l (6amaxdmaxr

ε

)l
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The covering number of the setD is bounded asN
(
D, ‖ · ‖∞, ε

2rdmax

)
≤
(

6amaxdmaxr
ε

)n1r
.

So finally we have

N(X , ‖ · ‖∞, ε) ≤ N
(
D, ‖ · ‖∞,

ε

2ramax

)
N

(
A, ‖ · ‖∞,

ε

2rdmax

)

=
(n2re

l

)l (6amaxdmaxr

ε

)n1r+l

.

4.11.2 Proof of lemma 4.5.1

Proof. We begin by observing that the random variable Uij = bij log
p(Zi,j=k;X∗i,j)

p(Zi,j=k;Xij)
can

be bounded from its expected value as follows

|Uij − E(Uij)| ≤ |Uij |+ |E(Uij)|

= bij

∣∣∣∣
K∑

k=1

1(Zij = k) log
p(Zi,j = k;X∗i,j)

p(Zi,j = k;Xij)

∣∣∣∣

+ γ

∣∣∣∣
K∑

k=1

p(Zi,j = k;X∗i,j) log
p(Zi,j = k;X∗i,j)

p(Zi,j = k;Xij)

∣∣∣∣

≤ log
1− δ0

δ0

(
bij

∣∣∣∣
K∑

k=1

1(Zij = k)

∣∣∣∣+ γ

∣∣∣∣
K∑

k=1

p(Zi,j = k;X∗i,j)

∣∣∣∣

)

≤ 2 log ∆

where ∆ = 1−δ0
δ0

. Equipped with boundedness of |Uij − E(Uij)| we have from Craig

Bernstein inequality [116]

Prob


∑

i,j

E(Uij)− Uij ≥
τ

c
+ c

∑
i,j var(Uij)

2(1− θ)


 ≤ e−τ ,

where 0 < 2c log ∆
3 ≤ θ < 1. Using Lemma 4.11.2 we have var(Uij) ≤ ωE(Uij) where

ω = 2∆. This gives us

Prob



[
1− cω

2(1− θ)

]∑

i,j

E(Uij)− Uij ≥
τ

c


 ≤ e−τ .
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We choose θ = 1
2 and c = 1

2ω which reduces the condition 0 < 2c log ∆
3 ≤ θ < 1 to

log ∆
3∆ ≤ 1. Since under the model assumption δ0 <

1
2 which insures that ∆ > 1 so the

inequality log ∆
3∆ ≤ 1 is always satisfied. So finally we have

Prob


1

2

∑

i,j

E(Uij)− Uij ≥
τ

c


 ≤ e−τ ,

where c = 1
2ω .

4.11.3 Proof of lemma 4.5.2

Proof. We begin with by bounding the probability that the random variable log
p(ZS ;X∗S)

p(ZS ;XS)

is bounded away from its mean E log
p(ZS ;X∗S)

p(ZS ;XS) for all X ∈ Xε. Let Uij = bij log
p(Zi,j ;X

∗
ij)

p(Zi,j ;Xij)

we can write as log
p(ZS ;X∗S)

p(ZS ;XS) =
∑

i,j Ui,j we find the probability of following event

Prob


 sup

X∈Xε

1

2

∑

i,j

E(Uij)−
∑

i,j

Uij ≤
τ

c




where c is as defined in the Lemma statement. We can write this probability as

Prob


 sup

X∈Xε

1

2

∑

i,j

E(Uij)−
∑

i,j

Uij ≤
τ

c




= Prob


 ⋂

X∈Xε

1

2

∑

i,j

E(Uij)−
∑

i,j

Uij ≤
τ

c




= 1− Prob


 ⋃

X∈Xε

1

2

∑

i,j

E(Uij)−
∑

i,j

Uij ≥
τ

c




≥ 1−N(ε, ‖ · ‖∞,X )Prob


1

2

∑

i,j

E(Uij)−
∑

i,j

Uij ≥
τ

c


 .

≥ 1−N(ε, ‖ · ‖∞,X )e−τ



91

In above the second last step is due to union bound and the last step is by using lemma

4.5.1. Now we let α := N(ε, ‖ · ‖∞,X )e−τ we can solve τ = log N(ε,‖·‖∞,X )
α . So we have

Prob


 sup

X∈Xε

1

2

∑

i,j

E(Uij)−
∑

i,j

Uij ≤
log N(ε,‖·‖∞,X )

α

c


 ≥ 1− α (4.25)

In other words, that with probability atleast 1− α we have all X ∈ Xε

1

2
E log

p(ZS ; X∗S)

p(ZS ; XS)
− log

p(ZS ; X∗S)

p(ZS ; XS)
≤ log N(ε,‖·‖∞,X )

α

c

Next we extend the above probabilistic argument to full set X by using Lemma 4.11.4

which essentially bounds the value of log
p(ZS ;X∗S)

p(ZS ;XS) and E log
p(ZS ;X∗S)

p(ZS ;XS) evaluated at points

in a ball Bε(X) associated with a center X ∈ Xε. Using Lemma 4.11.4 we have for

Y ∈ Bε(X)

log
p(ZS ; X∗S)

p(ZS ; XS)
≤ log

p(ZS ; X∗S)

p(ZS ; YS)
+ Lg|S|ε

E log
p(ZS ; X∗S)

p(ZS ; YS)
− Lgγn1n2ε ≤ E log

p(ZS ; X∗S)

p(ZS ; XS)

And since X =
⋃

Xi∈Xε Bε(Xi) we can say using the above two inequalities that for all

Y ∈ X with probability at least 1− α we have

1

2
E log

p(ZS ; X∗S)

p(ZS ; YS)
− log

p(ZS ; X∗S)

p(ZS ; YS)
≤
(
|S|+ γn1n2

2

)
Lgε+

log N(ε,‖·‖∞,X )
α

c

4.12 Proof of lemma 4.6.1

Proof. We have
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|VX − VY|

=

∣∣∣∣∣∣
∑

i,j

bij

K∑

k=1

1(Zij = k) log
p(Zi,j = k;Yi,j)

p(Zi,j = k;Xij)
− γ

∑

i,j

K∑

k=1

p(Zij = k;X∗ij) log
p(Zi,j = k;Yi,j)

p(Zi,j = k;Xij)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

i,j

K∑

k=1

(
bij1(Zij = k)− γp(Zij = k;X∗ij)

)
log

p(Zi,j = k;Yi,j)

p(Zi,j = k;Xij)

∣∣∣∣∣∣

≤
∑

i,j

K∑

k=1

∣∣(bij1(Zij = k)− γp(Zij = k;X∗ij)
)∣∣Lgk |Yij −Xij |

≤ ‖Y −X‖F ‖C‖F , where Cij =
K∑

k=1

(
bij1(Zij = k)− γp(Zij = k;X∗ij)

)
Lgk

≤ ‖Y −X‖F
√
n1n2Lg(1 + γ),

where in last step is due to |Cij | ≤ Lg(1+γ) where Lg = maxk Lgk . The above inequality

implies that the increments |VX−VY| are sub-gaussian with σ = Lg
√
n1n2 (γ + 1) ‖Y −X‖F ,

i.e., we have

Prob (|VX − VY| ≥ u) ≤ 2e
− 2u2

L2
gn1n2(1+γ)

2‖X−Y‖2
F .

Further, with the change of variable τ2 = 2u2

L2
g(1+γ)2n1n2‖X−Y‖2F

and using the fact that

1 + γ ≤ 2 we have

Prob
(
|VX − VY| ≥ τLg

√
2n1n2‖X−Y‖F

)
≤ 2e−τ

2
.

4.13 Proof of lemma 4.6.2

Proof. Using the Theorem 3.2 from [117] we have if UX satisfies

Prob (|VX − VY| ≥ ud(X,Y)) ≤ 2e−u
2

then for any X0 ∈ X

Prob

(
sup
X∈X

|VX − VX0 | ≥
√
e (Cγ2(T, d) + uD∆d(T ))

)
≤ e−u2/2, (4.26)
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where

∆d(X ) = sup
X,Y∈X

d(X,Y)

γ2(X , d) = inf
Xa

sup
X∈X

∞∑

n=0

2n/2 inf
Z∈Xn

d(X,Z)

and Xa = (Xn)n≥0 is a sequence of subset of X which satisfies |X0| = 1 and |Xn| ≤ 22n

for all n ≥ 1. We use this result for the random process indexed by X ∈ X defined as

follows

VX =
∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)
− E


∑

i,j

bij log
p(Zi,j ;X

∗
i,j)

p(Zi,j ;Xij)


 .

For the above random process using the inequality in Lemma 4.6.1 we can invoke the

above result with d(X,Y) =
Lg(1+γ)

√
n1n2‖X−Y‖F√

2
and γ2(X, d),∆d(X ) can be simplified

as follows

γ2(X , d) = Lg
√

2n1n2 inf
Xa

sup
X∈X

∞∑

n=0

2n/2 inf
Z∈Xn

‖Z−X‖F
︸ ︷︷ ︸

:=γ2(X ,`2)

,

∆d(X ) = Lg
√

2n1n2 sup
X,Y∈X

‖X−Y‖F
︸ ︷︷ ︸

:=∆`2
(X )

Now using the concentration inequality in (4.26) we have

Prob

(
sup
X∈X

|VX − VX0 | ≥
√
eLg
√

2n1n2 (Cγ2(X , `2) + uD∆`2(X ))

)
≤ e−u2/2,

Further, redefining C := C
√

2e,D := D
√

2e and substituting X0 = X∗ for which

UX0 = 0, we have

Prob

(
sup
X∈X

|VX| ≥ Lg
√

2n1n2 (Cγ2(X , `2) + uD∆`2(X ))

)
≤ e−u2/2.
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4.14 Proof of corollary 4.6.1

Proof. Using the definition of X in (4.14) the Gaussian width Ω(X ) can be calculated

as follows

Ω(X ) = E

[
sup

ai∈Rn2 ,‖ai‖2≤1,di∈Rn1 ,‖di‖2≤1
Tr

(
G

r∑

i=1

dia
T
i

)]

= rE

[
sup

a∈Rn2 ,‖a‖2≤1,d∈Rn1 ,‖d‖2≤1
Tr
(
GdaT

)
]

= rE [‖G‖2] = r(
√
n1 +

√
n2) (4.27)

where the last step is due theorem 5.32 in [118]. Further, the ∆(X , `2) can be bounded

as follows

∆(X , `2) ≤ 2 sup
X∈X

‖X‖F

= 2r

[
sup

a∈Rn2 ,‖a‖2≤1,d∈Rn1 ,‖d‖2≤1
‖daT ‖F

]

≤ 2r

[
sup

a∈Rn2 ,‖a‖2≤1,d∈Rn1 ,‖d‖2≤1
‖d‖1‖a‖2

]
,

where is last step is due the triangle inequality. Further, using the fact that ‖d‖1 ≤
√
n1‖d‖2 we have

∆(X , `2) ≤ 2r
√
n1. (4.28)

Using the upper bounds on Ω(X ) and ∆(X , `2) the bound in theorem 4.6.1 we have the

following performance bound

D(p(Z; X∗)||p(Z; X̂))

n1n2
≤
Lg

[
Cβr(

√
n1 +

√
n2) +

√
2 log

(
1
α

)
D2r
√
n1

]

γ
√
n1n2

≤
Lg

[
Cβ +

√
2 log

(
1
α

)
D
]
r(
√
n1 +

√
n2)

γ
√
n1n2

≤
Lg

[
Cβ +

√
2 log

(
1
α

)
D
]
r(n1 + n2)

γ
√
n1n2

.
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Chapter 5

Compressive measurement

designs for estimating structured

signals in structured clutter

In statistical estimation, tasks arising, for example, in compressive sensing (CS), we are

often equipped with prior knowledge about the object we wish to infer (e.g., smoothness,

characterized by the presence of only low-frequency components in the Fourier domain;

a priori region of interest knowledge; or shared features extracted from sets of training

data similar to the signal being acquired). 1 This work considers an estimation task in

compressive sensing, where the goal is to estimate an unknown signal from compressive

measurements that are corrupted by additive pre-measurement noise (interference, or

clutter) as well as post-measurement noise, in the specific setting where some prior

knowledge on the signal, interference, and noise is available. Let x ∈ Rn represent the

object we aim to estimate, and suppose that we obtain m noisy measurements of x as

follows

y = A(x + c) + w, (5.1)

where A is the m × n sensing matrix, c as a n × 1 vector of pre-measurement

1 The material in this chapter is c©2013 IEEE. Reprinted, with permission, from Asilomar Confer-
ence on Signals, Systems and Computers, ”Compressive measurement designs for estimating structured
signals in structured clutter: A Bayesian Experimental Design approach”, S. Jain, A. Soni, and J.
Haupt.
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interference or “clutter,” and w ∈ Rm is a vector of perturbations whose elements may

describe additive measurement noise or modeling error.

Investigations of problems of this form in the so-called under-determined setting

(m < n) have been the primary focus of recent efforts in CS research such as the analysis

of sensing and inference procedures for estimating x from noisy linear measurements in

case where x is sparse, having, say, k < n nonzero or significant entries.

Investigations of problems of this form in the so-called under-determined setting

(m < n) have been the primary focus of recent efforts in CS research in which a pri-

mary focus has been on the analysis of sensing and inference procedures for estimating

x from such noisy linear measurements in the case where x is sparse, having, say, k < n

nonzero or significant entries. A notable aspect of the result [119] (in the clutter-free

scenario) and indeed, many related results in the CS literature, is that of “universality”

in which the random matrices A whose elements are drawn iid from certain zero-mean

distributions comprise a broad class of sensing matrices that facilitate accurate estima-

tion of sparse x in CS (see, for example, [120]).

On the other hand, in many scenarios we may be equipped with additional informa-

tion about the signal we aim to estimate, beyond simply an assumption of sparsity. This

additional information can be incorporated into the inference task to improve estima-

tion performance [121,122]. A unique (in fact, essential) assumption underlying the CS

paradigm is the ability to obtain general linear measurements of the quantity of interest.

This inherent flexibility of the measurement process suggests that we should consider

incorporating (in a principled manner, and as appropriate) the additional information

directly into the design of the sensing process.

Motivated by this here we focus on a knowledge-enhanced estimation problem asso-

ciated with the compressive measurements obtained via the model (5.1). The question

we address here is, how should we design the sensing matrix A to take advantage of

this prior knowledge?

5.1 Problem statement and our contributions

As alluded above our ultimate inference goal is to accurately estimate the vector x given

measurements obtained according to (5.1), in settings where we may design the sensing
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matrix A using prior information about the signal, clutter, and noise. We focus on

designing the sensing matrix by minimizing the mean-square error (MSE) associated

with the ultimate estimate of the signal x. Formally, we denote by x̂A(y) an estimate

of x obtained using a particular estimation strategy, denoted here by x̂A. Note that the

estimation strategy is parameterized by the sensing matrix A, and a particular estimate

obtained using this strategy is a function of the measurements y obtained via (5.1) using

that A. The mean-square error associated with a particular estimation strategy x̂A is

Ex,c,w

[
‖x− x̂A(y)‖2

]
, where the subscript denotes that the expectation is with respect

to all of the random quantities. The criteria for optimal design of the sensing matrix

A in this case can be stated as an optimization – the optimal choice of A, denoted by

A∗, is

A∗ = arg min
A∈A

min
x̂A∈X

Ex,c,w

[
‖x− x̂A(y)‖2

]
, (5.2)

where A is a (possibly constrained) class of sensing matrices and X is a (possibly

constrained) class of possible estimation strategies. In words, A∗ ∈ A is the sensing

matrix yielding measurements for which the MSE of the best possible estimation strategy

(from the class X ) is minimum.

The problem as stated in (5.2) is very general. Depending on the application at

hand it may vary depending on the sets A, X and the prior information available at

hand. Our works [5] and [6] investigated this problem for specific cases where the prior

knowledge about the signal x, clutter c and noise w is restricted up-to first- and second-

order statistics, the class of estimator X was restricted to linear estimators, and the set

A was the set of matrices with sensing energy constraints. Our initial work [5] addressed

the sensing matrix design problem when noise power is high which allowed for certain

simplification optimization problem. A general solution without any assumption on

noise power was proposed in [6]. Due to the space limitations here we only report the

details of [6].

5.2 Connections with existing work

In [123], the authors propose one of the first approaches to design compressive sensing

matrices given some prior signal knowledge. The authors considered noise-free settings

and assumed knowledge of a dictionary in which the signals being observed were sparse,
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and proposed a sensing matrix design procedure whose aim is to reduce the coherence

between the learned sensing matrix and the known dictionary. Extensions of this idea

aimed at designing both the dictionary and the sensing matrix given a collection of

training data were examined by [124,125]. The work [126] studied knowledge-enhanced

CS design tasks using a probabilistic formulation of the prior knowledge under the as-

sumption that signal has Gaussian mixture prior, and proposed a design criteria based

on coherence minimization between the learned sensing matrix and a dictionary com-

posed of eigenvectors of the mixture covariance matrices. Along the same lines, the

work [127] examined sensing designs based on learned correlations in training data. We

note that none of these approaches utilize the statistical estimation theoretic formulation

we adopt here.

Several recent works have examined the effects of clutter (i.e., the case c 6= 0)

in compressive sensing estimation tasks, but these investigations have typically been

limited to the case where the clutter is modeled as Gaussian noise [128–131]. Several

related work are along Bayesian experimental design problems in compressive sensing

estimation tasks [132–136], and subsequent efforts [137,138] along these lines examined

the performance improvements resulting from Bayesian experimental design strategies.

Our problem is also related to the wealth of classical work on interference cancellation

(see, for example, [139]). Prior work on optimal designs for space-time linear coding

in MIMO applications – see, for example, [140], have examined qualitatively similar

estimation problems but without the additive interference or “clutter” term.

5.3 Quantifying prior information

We assume that the signal x ∈ Rn is a random quantity drawn from a mixture distribu-

tion having mx mixture components. We do not assume full knowledge of the mixture

distribution, but only that i-th mixture component has known weight πx,i and is an

n-dimensional zero-mean random vector with known n× n covariance matrix Σx,i, for

i = 1, 2, . . . ,mx. We note that the covariance matrices Σx,i are not assumed here to

be full-rank. On the contrary, rank-deficiency in any of the Σx,i amounts to a form of

sparsity, as random vectors x ∈ Rn drawn from a distribution with covariance matrix

of rank r < n inherently lie on a r-dimensional subspace of Rn. Thus, the formulation
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described here can model various forms of sparsity and structure that have been studied

in the literature, block sparsity, group sparsity (with potentially overlapping groups),

tree sparsity, and so on. Likewise, we assign an analogous prior distribution to the clut-

ter c, modeling it as a realization of an mc-component mixture distribution whose i-th

mixture component has weight πc,i and is a zero-mean random vector with covariance

matrix Σc,i, for i = 1, 2, . . . ,mc. We consider w to be additive uncorrelated zero-mean

noises with unit variance, and we assume that the random quantities x, c, and w are

uncorrelated.

5.4 Choosing the set of sensing matrices A

The presence of the measurement noise w is only relevant when the sensing matrix A

is constrained in some way. Indeed, in unconstrained settings simply scaling each of

the elements of A toward infinity would make the overall effect on w negligible in the

estimation task. Here our focus will be on sensing energy-constrained designs A; in

particular, we choose A in (5.2) as A = {A : ‖A‖F ≤ α} for some (specified) α > 0,

where the notation ‖ · ‖F denotes the matrix Frobenius norm. Each row of A is itself a

linear operator which gives rise to one (noisy, cluttered) compressive sample; thus, the

constraint we impose here amounts to a constraint on the average energy per-row in the

sensing matrix.

5.5 Choosing set of estimators X

It is well-known from statistical estimation theory that, for the minimum MSE task

(MMSE) task described above, the optimal estimator of x is the conditional mean x

given the observations y; that is, x̂A,MMSE(y) = E [x|y] (see, for example, [141]). Here,

our prior knowledge is limited to first- and second-order statistics of the signal, clutter,

and noise, and without full knowledge of the distributions we are unable to compute

this estimator in closed form. Instead, we consider restricting the class of estimators X
in (5.2) to be the class of linear estimators of x.

We define the average signal covariance matrix Σx as Σx =
∑mx

i=1 πx,iΣx,i, and

similarly for Σc, and we assume that (Σx + Σc) is invertible. Now, the linear MMSE
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estimator is just the Wiener filter, easily shown here to be

x̂A,LMMSE(y) = ΣxA
′ (A (Σx + Σc) A′ + In

)−1
y,

where A′ denotes the matrix transpose. It follows (after a bit of algebra) that

Ex,c,w

[
‖x− x̂A,LMMSE(y)‖2

]
= tr{Σx −ΣxA′

(
A (Σx + Σc) A′ + Im

)−1
AΣx}, (5.3)

where tr{·} denotes the matrix trace (the sum of the diagonal elements) and A′ is the

transpose of A. Thus, we can express our sensing matrix design task as an optimization,

whose aim is to minimize the trace of the estimation error covariance matrix. In the

parlance of Bayesian experimental design, this corresponds to a simple instance of a

Bayes A-optimality criteria. Here, this amounts to an optimization problem

A∗ = arg max
A:‖A‖F≤α

tr
{

ΣxA′
(
A (Σx + Σc) A′ + Im

)−1
AΣx

}
. (5.4)

A similar problem was addressed in [142], but under a transmit energy constraint of the

form tr
(
A (Σx + Σc) AT

)
≤ α2. That said, the solution approach therein seems to be

specific to the transmit energy constraint, and can not be directly extended to address

the sensing energy constraint tr
(
AAT

)
≤ α2 we impose here.

Our preliminary investigation on this problem (reported in [143]) entailed a solution

approach for (5.4) that utilized an approximation of the inverse term in the objective,

and led to a design strategy whose applicability was valid only in qualitatively low-SNR

regimes. This was extended in [5] where a simple procedure for obtaining the solution to

(5.4) was proposed, and performance improvements resulting from resulting approach

was demonstrated via simulations. Next we describe the design approach proposed

in [5].

5.6 Our proposed design approach

For solving (5.4) we make the following variable transformation: let A′ = YM , where

Y is n× n full rank matrix satisfying Y′(Σx + Σc)Y = In, and M any n×m matrix.

Since Σx+Σc is positive definite, we can always find a diagonalizing matrix Y from the

eigenvalue decomposition of Σx+Σc. Specifically, let Σx+Σc = Ux+cΣx+cU
′
x+c, then

Y = Ux+cΣ
−1/2
x+c . Overall there can be many choices of Y which diagonalize Σx + Σc;
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in fact, Σx + Σc is diagonalized by Y then it is also diagonalized by YQ for any

orthonormal matrix Q. Further, using the thin singular value decomposition of M =

UMΣMV′M , where UM ∈ Rn×m with U′MUM = Im, ΣM = Diag(σ1, · · · , σm) with

σi ≥ 0 ∀i = 1 . . .m, and VM ∈ Rm×m is an orthonormal matrix, we can recast the

problem (5.4) after a bit of linear algebra as

maximize
UM∈Rn×m

σi≥0

tr
(
U′MY′Σ2

xYUMΣ̃
)

subject to U′MUM = Im, tr(U′MY′YUMΣ2
M) ≤ α2,

(5.5)

where Σ̃ = Diag
(

σ2
1

1+σ2
1
, · · · , σ2

m
1+σ2

m

)
. The problem (5.5) is a non-convex problem, so

we resort to successive minimization over {σi}mi=1 and UM by successively solving the

following subproblems

P0 : maximize
{σi}mi=1; σi≥0 ∀i

tr
(
U′MY′Σ2

xYUMΣ̃
)

subject to tr(ΣMU′MY′YUMΣM) ≤ α2.

P1 : maximize
UM∈Rn×m

tr
(
U′MY′Σ2

xYUMΣ̃
)

subject to U′MUM = Im.

(5.6)
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Algorithm to solve: max
A∈Rm×n,‖A‖2F≤α2

tr
(
ΣxA (A (Σx + Σc) A′ + I)−1 A′Σ′x

)

Input: Covariance matrices Σx,Σc, budget parameter α, number of iterations N

1: Find Y such that Y′(Σx + Σc)Y = Im.

2: Calculate eigendecomposition of Y′Σ2
xY, denoted U1Λ1U

′
1 = Y′Σ2

xY

3: Initialize {σ0
i }mi=1

Repeat: 4 and 5 for j = 1 to N

4: Update Uj
M by m columns of U1 by maximizing the following

tr

(
U′MY′Σ2

xYUMDiag

(
(σj

1)2

1+(σj
1)2
, · · · , (σj

m)2

1+(σj
m)2

))

5: Update σji

(i) Compute bi the ith diagonal entry of (Uj−1
M )′Y′Σ2

xY(Uj−1
M ).

(ii) Compute ci the ith diagonal entry of (Uj−1
M )′Y′Y(Uj−1

M )

respectively.

(iii) Solve: σ2
i =

(√
bi
civ
− 1
)+

and
∑m

i=1 ci

(√
bi
civ
− 1
)+

= α2

6: Compute M = UN
MDiag

(
σN1 , · · · , σNn

)

Output: A = (YM)′

Table 5.1: Iterative algorithm for solving the sensing matrix design problem (5.4).

The sub-problem P0 is maximization over {σi}mi=1 for fixed UM , and P1 is maxi-

mization over UM for fixed {σi}mi=1. The main novelty here is in the way we split the

constraints. We next demonstrate how to solve these sub-problems.

5.6.1 Solving P0

With some linear algebra we can show P0 is equivalent to

maximize
γi∈R∀i=1...m

∑m
i=1

biγi
1+γi

subject to
∑m

i=1 ciγi ≤ α2, γi ≥ 0, i = 1, · · ·m.
(5.7)

where γi = σ2
i , and bi and ci are the ith diagonal entry of U′MY′Σ2

xYUM and U′MY′YUM

respectively. With this, we can show that P0 is a convex problem whose solution is
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given by

γ∗i =

(√
bi
civ∗

− 1

)+

and

m∑

i=1

ci

(√
bi
civ∗

− 1

)+

= α2, (5.8)

where (a)+ = max{0, a} and v∗ is the Lagrangian multiplier associated with the con-

straint
∑m

i=1 ciγi ≤ α2 which can be solved by binary search algorithm similar to stan-

dard water-filling solution with a minor modification.

5.6.2 Solving P1

Owing to orthonormality constraints this is a challenging sub-problem. However, using

the Lagrangian approach and with a carefully crafted argument along the lines of first

order optimality conditions the problem P1 can be effectively to converted to choosing

m eigen vectors out of n eigen vectors of Y′Σ2
xY so that the ith largest eigenvalue of

Y′Σ2
xY is multiplied with ith largest value in the set

{
σ2
k

1+σ2
k

}m
k=1

. This gives us the

optimal solution to P1. Details can be found in [6].

Based on the above solutions to sub-problems the final alternating minimization

algorithm for solving (5.4) is shown in Table 5.1.
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Figure 5.1: Reconstruction SNR = 20 log ‖x‖2
‖x−x̂‖2 vs. sensing energy budget for several

different compressive measurement strategies (see text for details). Panels (a)-(d) corre-

spond to m = 20, 40, 60, 80 measurements, respectively. Higher SNR values correspond

to better reconstructions. Our proposed approach (blue dotted line, circle markers)

outperforms each of the other measurement strategies examined.

5.7 Experimental evaluation

We evaluate the performance of our proposed sensing matrix design procedure via ex-

perimentation on synthetic data. We consider signals of dimension n = 100, for which

the number of signal and clutter models are mx = mc = 10, and where each model

(in each class) is a covariance matrix of rank 6. The actual covariance matrices of the

signal and clutter models are constructed randomly using a (different) random set of n

orthonormal n-dimensional vectors, and randomly generated (positive) singular values.
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For a subset of possible values of m we perform 1000 trials of the following experi-

ment. First, we select one model randomly from the set {Σx,i}mxi=1 and generate x as

a zero-mean Gaussian random vector having this covariance matrix, and we generate

c similarly using one model selected randomly from {Σc,i}mci=1. We then generate four

different sets of observations yi obtained using corresponding measurement matrices

Ai, for i = 1, . . . , 4, as follows. First, For C an m × n matrix whose elements are iid

N (0, 1/m) random variables, we let A1 = C(αIn) denote observations obtained by tra-

ditional random projections. Next, we let A2 = A∗, where A∗ is the solution of (5.4)

corresponds to the sensing matrix designed via our approach. We also compare with two

more “heuristic” approaches – in the first of these, we form the sensing matrix A3 from

a low rank approximation of the Wiener filter for estimating x from the mixture x + c,

as discussed in [144]. Specifically, here we form Wlr = B(Σx + Σc)
−1/2 where B is the

best rank m approximation of Σx(Σx + Σc)
−1/2 (in the least-squares sense). Then, we

let Wlr = UWlr
ΣWlr

V′Wlr
and obtain the sensing matrix A3 by retaining the first m

rows of the matrix ΣWlr
V′Wlr

, and appropriately rescaling to meet the sensing energy

constraint. This represents a case where we employ a classic (linear) estimation strategy

directly into the measurement process while keeping in mind that we are allowed only to

take m measurements. We also investigate the estimation performance associated with

the sensing matrix A4 = Ǎ∗, where Ǎ∗ represents the solution of (5.4) in a modified

setting where clutter models are not viewed as clutter, but rather as additional signal

models. In words, this describes the case where we design A in order to accurately

estimate the mixture x + c, deferring the separation entirely to a subsequent step. The

additive noise in each case is w ∼ N (0, Im×m).

We aim to reconstruct the signal x in each case using a group lasso approach [145]

that explicitly leverages the correlation structure described by each model. To that

end, we let Dx be the n × (6 ·mx) signal dictionary whose n × 6 blocks correspond to

the top 6 eigenvectors of each of the signal models Σx,1, . . . ,Σx,mx , and similarly for

Dc, and we denote by D = [Dx Dc] the combined dictionary, comprised of a total of

mx + mc models. Then, we obtain the estimates for each sensing matrix/observation

vector pair as x̂i = [Dx 0]
[
arg minβ ‖yi −AiDβ‖22 + λΩ(β)

]
, for i = 1, . . . , 4 where the

parameter vector β is 6 · (mx+mc)×1 and the regularizer Ω(β) =
∑mx+mc

j=1

√
v′jΛ

−1
j vj ,

where vj = β[6(j−1)+1:6j] is a sub vector of the parameter vector corresponding to the
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j-th overall model and Λj is the 6× 6 diagonal matrix whose elements are the nonzero

eigenvalues of the j-th model. Optimizations were performed using the Sparse Modeling

Software (SpaMS) 2 . We compare the performance of each of the four approaches in

terms of reconstruction SNR vs. sensing energy budget α2. The results, depicted in

Figure 5.1, show that our proposed approach (blue line, circle marker) outperforms each

of the other approaches – traditional CS (black dotted line, square markers), the sensing

approach based on the low rank Wiener filter (green dotted line, circle markers), and the

approach where the clutter models are viewed as signal models and separation is left to

the final estimation step (red dotted line, triangle markers) – across all sensing energy

budgets, and for each subsampling case examined (m = 20, 40, 60, 80 measurements,

respectively, in panels (a)-(d)).

5.8 Summary

It is interesting to see that both our proposed approach as well as the low rank Wiener

filter approach are performing a kind of “annihilate-then-estimate” sensing strategy,

while the approach corresponding to the sensing matrix A4 is more of an “estimate-then-

annihilate” strategy. Our results here suggest that the former approach is more viable

here – in other words, our empirical results here suggest that we should incorporate some

“cancellation” into the sensing matrix itself, rather than relying on the final estimation

step to perform the separation. Further, while our design approach was based on a MSE

minimization criteria, we note a point of comparison between our approach and related

design strategies that are based on maximizing mutual information between the vector x

to be estimated and observations obtained for a specific A. At first glance, these criteria

are (seemingly) different, however, a fundamental connection between the minimum

MSE matrix and the mutual information between the unknown x and the observations

y (more specifically, its gradient with respect to various problem parameters, such as the

matrix A) has recently been established – see [146]. Indeed, the work [146] discusses

a related task of linear per-coder design in an effectively “clutter-free” scenario, and

proposes a gradient projection approach for obtaining the optimal precoder matrix.

2 Available online at http://spams-devel.gforge.inria.fr



Chapter 6

A compressed sensing based

decomposition of electrodermal

activity signals

Electrodermal Activity, or EDA, is typically recorded as the conductance over a person’s

skin, near concentrations of sweat glands (e.g., palm of the hand or finger tips [147]).

EDA signals have been shown to include significant information pertaining to human

neuron firing [148] and psychological arousal [149].1 While previously a signal that was

only practically measured in a controlled laboratory setting, recent wearable devices,

such as the Affectiva Q sensor [150] and the Empatica E4 sensor [151], offer the ability

to non-invasively measure EDA signals in real-world environments.

An EDA signal is generally characterized by a slowly changing Skin Conductance

Level (SCL) combined with several short-lived Skin Conductance Responses (SCRs).

The physiological explanation can be summarized as follows: the SCL is measuring the

overall absorption of sweat in the user’s skin, while each SCR is measuring a discrete

event of sweat expulsion triggered by user excitement or psychological arousal in re-

sponse to stimuli [152]. We refer to these discrete events as SCR events. The primary

focus of prior EDA signal analysis has been to extract the informative SCR events

1 The material in this chapter is c©2016 IEEE. Reprinted, with permission, from IEEE Transactions
on Biomedical Engineering, ”A Compressed Sensing Based Decomposition of Electrodermal Activity
Signals”, S. Jain, U. Oswal, K. Xu, B. Eriksson, and J. Haupt.
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from the observed signals, due to applications ranging from content valence classifica-

tion [153], to audience cohort analysis [154], to stress detection [155]. This can prove

to be quite challenging due to the overlap of SCR signal components, a dominant SCL

signal, signal artifacts due to motion, and the inclusion of measurement noise. As a

result, there are a large number of proposed techniques to extract SCR events from

observed EDA signals [152,153,156–160], which are discussed in the ensuing sections of

this chapter.

Unfortunately, these prior techniques have a series of drawbacks. First, many of these

techniques perform only simple heuristic-based approaches to extract the SCR events,

which causes the techniques to be sensitive to noise and motion artifacts, i.e. sudden

shifts in skin conductance due to changes in the position of the sensor. Second, these

techniques lack error bounds on the recovered SCR events, so there is no guarantee for

accuracy. Finally, most of the prior methods have ignored the contribution of motion

artifacts. As EDA becomes more commonly observed via wearable devices, it is more

important to mitigate such motion artifacts.

Here, we offer a new, more realistic EDA signal model that considers the observed

EDA signal as the superposition of a baseline signal (signal component due to SCL

changes and motion artifacts), informative SCR components, and measurement noise.

Given this cluttered observed signal, we discuss how existing signal de-mixing work

(e.g., [161,162]) indicates significant challenges in reliably extracting our desired sparse

SCR event signal. We overcome these challenges by providing a new signal model for

the baseline signal component which captures changes in measured skin conductance

due to motion as well as changes in SCL. Further, we exploit this signal structure by

a simple pre-processing step, which transforms this recovery problem into the more

tractable problem of sparse deconvolution in the presence of bounded noise.

The problem of sparse deconvolution has been examined extensively in the com-

pressed sensing literature (e.g., [52, 53, 55, 163–165]). We show how our EDA problem

setup requires additional changes to the standard compressed sensing problem. We use

modified compressed sensing tools to estimate the SCR events using a concise optimiza-

tion program and corresponding recovery error bounds. This results in “first-of-its-kind”

EDA signal decomposition with known error rates.

We test this methodology on a series of both synthetic and real-world EDA signals.
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Using synthesized data we are able to sweep varying noise and sparsity levels to reveal

regimes where our technique accurately recovers the sparse responses. We then show

on real-world EDA signals that user reactions to simple stimuli can be extracted with

high accuracy compared with existing EDA decomposition algorithms.

6.1 Related work

The study of Electrodermal Activity signals, or EDA signals, dates back to the early

20th century (e.g., [149]) with the observation of a connection between changes in user

skin conductance and psychological state. In recent years, this connection has been

validated by examining brain function via fMRI and skin conduction via EDA concur-

rently in [166], and by showing the specific regions of the brain that correspond with

EDA changes and video recordings of sweat glands in [148]. The promise of EDA as

a window into user psychology resulted in extensive work on evaluating the connection

between EDA and user interactions [167], stress detection [155], content and audience

segmentation [154], and reaction to video content [153]—to name only a few.

Applications using EDA signal analysis rely on the extraction of a user’s fine-grained

responses embedded in the EDA signal called Skin Conductance Responses, or SCRs.

These SCRs measure the expulsion of sweat triggered by a user’s spike-like stimulus

responses, which we call SCR events. SCR events are not explicitly observed in the

EDA signal; we observe only the SCRs, which can be modeled as the convolution of

the SCR events with a distinguishing impulse response. Significant prior literature has

focused both on how to model the SCR impulse response and extract the SCR events

from the observed EDA signal. Examples include a parametric sigmoid-exponential

model [156], a bi-exponential impulse response [157], nonnegative deconvolution [152],

and a variational Bayesian decomposition methodology [158]. These prior techniques are

limited by either computational complexity [158] or overly simple models that ignore or

heuristically remove additional EDA signal components, such as the SCL, that disguise

the SCR events [152,157].

The authors of [152] treat the SCL as a constant estimated by averaging the skin

conductance signal over the time windows when the estimated SCR (by deconvolution)

is below a certain amplitude. The work of [153] presented a methodology to extract
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relevant SCR events while considering the SCL signal, but their matching pursuit-

based technique used only a rough heuristic to remove this additional signal by deleting

the two coarsest-scale components of a discrete-cosine transform applied to the skin

conductance.

More recent work has incorporated SCL in a more principled manner into the EDA

signal model. The sparse representation of SCR signal was exploited in [160]. In this

work, the SCL signal was modeled as a slowly varying linear signal, and the SCR signal

was modeled as a sparse linear combination of atoms of a dictionary containing time

shifts of variety of function shapes. A greedy method exploiting the sparsity was also

proposed for extracting the SCR events signal. Recently, the authors of [159] proposed

an approach which exploited sparsity from a Bayesian perspective in which the SCL

signal was modeled as a sum of cubic B-spline functions, an offset and a linear trend,

whereas the SCR signal was modeled by a sparse signal in the dictionary obtained by

shifts of bilinear transformations of a Bateman function. Following the maximum a

posteriori (MAP) estimation principle, a convex formulation was obtained which can

be solved efficiently. In contrast to these works [159, 160] we propose a model for

the baseline signal that incorporates shifts in skin conductance due to changes in the

positioning of the sensors due to motion, which is crucial when data is collected using

wearables.

Given the sparse nature of the SCR events signal, in order to obtain bounds on

our recovery, we leverage literature on compressed sensing [163]. Usually focused on

sparse signal inference after transformation by random sensing matrices, here we are

informed by recent work on sparse deconvolution in a compressed sensing regime [53],

de-mixing of structured signals [161,162], and corrupted sensing for signals with known

structure [168]. Our analysis differs from this prior work via the inclusion of a baseline

signal model. This requires significant reformulation of the problem to develop new

theory and recovery methodologies.

6.2 Model

The observed EDA skin conductance signal is typically characterized by two dominant

components. The first is a slowly varying Skin Conductance Level (SCL), also referred
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to as the “tonic” component. The second component is the observation of multiple Skin

Conductance Responses (SCRs) arising each from a corresponding SCR event. This

component is sometimes referred to as the “phasic” component. These two signal types

are detailed in Figure 6.1.

Figure 6.1: An example of EDA signal where the Skin Conductance Responses (SCRs)

resulting from SCR events signal are shown.

The user’s physiology explains the existence of these two signal components. The

SCRs are driven by occurrences of SCR events, a sparse selection of events where the user

has responded with psychological arousal or excitement to stimulus. The SCR events

signal is denoted by the impulse train at the bottom of Figure 6.1. Prior research in the

psychophysiology community (e.g., [152]) has recognized that these SCR events (i.e.,

user excitement events) are correlated with sudomotor neuron bursts, resulting in a

user’s eccrine glands to expel sweat. This sweat causes changes in skin conductance in

the form of an SCR observation in the shape similar to that shown in Figure 6.1. This

shape is the result of expelling, pooling, and evaporation of sweat on the surface of the

user’s skin.

Additionally, this act results in some sweat being absorbed into the surface of the

user’s skin, which affects the SCL. We consider the SCL to be a slowly varying signal.

The SCL signal can be changed by temperature, humidity, and other environmental

factors along with the physiology of the user (e.g., thickness of the user’s skin).
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Figure 6.2: Observation model showing the various components in the observed EDA

signal.

In addition to the SCL, there may also be sudden shifts in the skin conductance

caused by changes in the positioning of the sensors or the amount of contact of the

sensors with the skin, especially in the wearable sensor setting. Such changes are of-

ten reflected by jump discontinuities in the skin conductance. We account for such

discontinuities, as well as the SCL, in what we call the baseline signal component.

6.2.1 Model definition

Let us consider an observed EDA signal, y, discretized into T time steps. At each

time step there is the possibility of an SCR event. We denote the SCR events signal

corresponding to this content by a vector x ∈ RT , where each component represents

the intensity of the user’s reaction to the T possible events. Whenever the user has an

SCR event, prior research has shown (e.g., [152, 156, 157]) that there are typical ways

in which the EDA measurements record conductance changes. We denote this typical

sweat response of an user by a vector h ∈ Rt. In the past [152, 157], the resulting SCR

signal has been modeled as a linear time-invariant (LTI) system where the SCR events

signal x is convolved with the sweat response signal h which we denote as h∗x ∈ Rt+T−1.

As mentioned earlier, the SCR signal h ∗ x is superimposed with a baseline signal

consisting of SCL and motion artifacts. Denote the baseline signal as b ∈ Rt+T−1

and the errors arising due to observation noise and model mismatch as n ∈ Rt+T−1.

These notations are summarized in Table 6.1. The observed EDA signal can now be

represented as

y = h ∗ x + b + n. (6.1)

The final observation model is shown in Figure 6.2. Given prior work on the shape of
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the SCR impulse response h, we assume that the impulse response is known a priori

(we discuss the specific choice of h in Section 6.4). We consider the SCR events signal

x, the baseline b, and noise n to all be unknown.

Table 6.1: EDA Signal Notation Summary

Component Notation Description

Baseline b Baseline Signal - Slowly varying skin conductance

level with jump discontinuities due to motion

SCR Events x Skin Conductance Response Events - Signal of

sparse stimulus response events from the user

SCR h ∗ x Skin Conductance Response - Measured sweat

expulsion resulting from the SCR events

Noise n Additive noise observed from measurement process

and model mismatch

We propose a model for the observed EDA signal y that accounts for both the

baseline b and observation noise n in a principled manner. This requires further speci-

fications on the signals x, b, and noise n which we detail in the following.

6.2.2 SCR events signal model

Due to physiology, there are limitations to how often humans can generate SCR events.

Motivated by this, we impose a sparsity assumption on the SCR events signal. Specif-

ically, we assume that there are no more than s < T events to which a user responds

significantly. More formally, the SCR events signal is assumed to lie in the set

X sδ =
{

x
∣∣∣x ∈ RT , ‖x− xs‖1 ≤ δ

}
, (6.2)

where δ is a small constant and xs ∈ RT with exactly s non-zero components obtained

by retaining the s-largest magnitude components of x.
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The above set is the collection of vectors which can be approximated within some

distance (in terms of the `1-norm) δ from an exactly s-sparse signal. Notice that when

δ = 0, the above set is the set of s-sparse vectors in Rt+T−1. We note that in most prior

literature, the model for the SCR events signal is strictly positive. Here we drop this

constraint for a simpler analysis of recovery guarantees. Our experimental results in

Section 6.4 show that even without positivity constraints comparable performance can

be achieved.

6.2.3 Baseline model
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Figure 6.3: An example EDA signal collected using a commercially available wearable

EDA sensor showing the impact of baseline shifts due to movement.

We propose a novel baseline model, inspired by the wearable setting where changes in

the positions of sensors due to movement may lead to rapid changes in the EDA signal.

These rapid changes, or baseline shifts, are illustrated in Figure 6.3 along with several

SCRs. To the best of our knowledge, such baseline shifts have not been examined by

previous work on recovering SCR events. We incorporate these baseline shifts along

with the SCL component into a baseline signal b. We assume b changes its magnitude

significantly or has jump discontinuities at no more than c < t+ T − 1 locations. More

formally, the baseline signal is assumed to lie in the set

Bcγ =
{

b
∣∣∣b ∈ Rt+T−1, ‖Db− (Db)c‖1 ≤ γ

}
, (6.3)
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where D ∈ R(t+T−2)×(t+T−1) denotes the pairwise difference matrix defined by

D =




1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 −1




(6.4)

so that Db = [b1− b2, b2− b3, . . . , bt+T−2− bt+T−1] and (Db)c ∈ Rt+T−2 with exactly c

non-zero components obtained by retaining the c-largest magnitude components of Db.

Hence the baseline signal, after pairwise differencing, is assumed to be within some

distance (in terms of the `1-norm) γ from a c-sparse signal.

6.2.4 Bounded noise model

Finally, we consider the additional noise induced by the wearable sensor recording the

EDA signals as well as potential model mismatch. Rather than assuming a form for the

distribution of this term, we will simply assume that the noise and model inaccuracies

are bounded by a fixed value, i.e. ‖n‖2 ≤ ε/2 where ε > 0. Here the constant factor 1/2

is included only to simplify further analysis.

6.2.5 Problem overview

The goal is to obtain the SCR events signal x from the EDA observation signal y =

h ∗ x + b + n given the prior information that x ∈ X sδ and b ∈ Bcγ . We assume that

the impulse response h is known, but the baseline b, the SCR events signal x, and the

measurement noise n are all unknown.

6.3 EDA signal decomposition

The task of recovering the true SCR events x from the observed EDA signal y is par-

ticularly challenging due to the presence of the baseline b. For example, consider the

setting when there is an observed signal with no baseline and no noise, i.e., b = 0,

n = 0, and y = h ∗x. The problem of recovering x from y simply reduces to solving an
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over-determined linear system of equations given knowledge of h. As a result, this prob-

lem can be solved with standard deconvolution techniques given very mild assumptions

on h and without any assumptions needed on true x.

In another case, consider there is no baseline but noise is present, i.e., b = 0, n 6= 0,

and y = h ∗ x + n. This is a standard problem of deconvolution in noise, which in

general is a difficult problem to solve. But, when we consider the added structure of

the sparsity of SCR events signal x, one could exploit this to estimate x with provable

guarantees. This setting has been explored in prior work in the field of compressed

sensing, e.g., [53].

6.3.1 Dealing with the baseline signal

The main challenge here is the case where the baseline signal is present and non-zero.

One obvious approach could be to consider the baseline as noise and follow previously

proposed deconvolution for noisy settings e.g., [53]. However, this would likely fail

because the baseline b could have very large magnitude. Our proposed alternative is to

exploit the structure of the baseline signal to facilitate the recovery of x. We linearly

transform the baseline signal and jointly recover the transformed baseline and x. This

is often known as a de-mixing problem, and there has been recent work on using convex

techniques for de-mixing structured signals [161, 162]. These papers have theoretical

guarantees in terms of statistical dimension. Unfortunately, these guarantees assume

a specific random signal generation model which does not hold true for our problem

setting.

Recent work has proposed a corrupted sensing approach [168] which extends com-

pressed sensing to a setting where observations are corrupted with structured signals.

Our problem is different from this setup on two counts: (1) Our sparse signal is con-

volved with a known SCR impulse response and (2) the baseline signal in our setting has

structure that has not yet been considered in the corrupted sensing literature. Hence,

we leave this as an interesting future direction.
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6.3.2 EDA signal preprocessing

Figure 6.4: Block diagram showing the SCR events signal recovery using compressed

sensing based decomposition.

We propose an approach that exploits the structure of the EDA signals to mitigate the

effects of the baseline signal. Namely, we can consider that the baseline signals have

almost the same consecutive components for most of the signal elements. As a result,

they can be converted to approximately sparse signals by multiplying with the pairwise

difference matrix D defined in (6.4).

Of course, we only have access to the observed signal, y. Therefore, we follow a very

simple approach in which we linearly transform the observation y using the difference

matrix D as follows:

Dy = DThx + Db + Dn, (6.5)

where Th denotes a (t+ T − 1)× T Toeplitz matrix constructed from a vector h ∈ Rt

and is defined as follows:

Th =




h1 0 · · · 0

h2 h1
...

...
...

...
. . . 0

ht ht−1
... h1

0 ht
...

...
. . .

0 · · · · · · ht




︸ ︷︷ ︸
T columns

(6.6)

such that the convolution between vectors h ∈ Rt and x ∈ RT , denoted by h ∗ x, is
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a vector in Rt+T−1 and can be written in terms of matrix-vector multiplications as

h ∗ x = Thx.

With this transformation, the modified baseline signal Db is approximately sparse

because of the structure of b ∈ Bcγ . Due to this sparsity, the transformed baseline signal

has similar structure to the true SCR events signal x. We leverage this fact to jointly

estimate x and Db. Rearranging this term, the observation model becomes

Dy =
[
DTh I

] [ x

Db

]
+ Dn,

where I denotes the identity matrix. We have transformed this problem into estimating

a vector that is approximately sparse with s+c significant components in Rt+T−2, where

s is the number of significant non-zero elements in x, and c is the number of significant

non-zeros in Db.

Using recent advances in compressed sensing [169], we propose to solve the following

problem to estimate x and Db:

min
x̃∈RT ,ũ

∈ RT+t−2 ‖x̃‖1 + ‖ũ‖1

subject to

∥∥∥∥∥Dy − [DTh I]

[
x̃

ũ

]∥∥∥∥∥
2

≤ η,
(6.7)

where η > 0 is a parameter that can be chosen based on the energy of noise n as

detailed in the next subsection. The above problem is known to be a convex problem

which can be solved by using well-known convex optimization software (e.g., CVX [170]).

The final recovery procedure based on above discussion is summarized in Figure 6.4.

We note that our problem has Toeplitz structure which can be exploited for developing

computationally efficient algorithm using the ideas from matrix-free convex optimization

modeling [171,172]. We leave this as an interesting future direction of work.

6.3.3 Error guarantees

The fundamental question that arises here is how well the estimates obtained by solving

above problem work. Specifically, how close is the optimal solution x̂ of (6.7) to the

true SCR events signal x? We have the following theorem to specifically detail the error

in our recovered SCR events signal.
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Theorem 6.3.1. Let y = h ∗ x + b + n, where x ∈ X sδ ,b ∈ Bcγ. Denote C = [DTh I]

and define the coherence parameters µh, µm, µc as

µh = max
i 6=j

|tTi tj |
‖ti‖2‖tj‖2

, µc = max
i 6=j

|cTi cj |
‖ci‖2‖cj‖2

µm = max
i,j

|tTi ej |
‖ti‖2‖ej‖2

where ti, ei, and ci are the ith columns of matrices DTh, I, and C, respectively. If

‖n‖ ≤ ε/2 and

s+ c < max





2(1 + µh)

µh + 2µc +
√
µ2
h + µ2

m

,
1 + µc

2µc



 ,

then the solution x̂, û of (6.7) using ε ≤ η satisfies

‖x− x̂‖2 ≤ C1(ε+ η) + C2(δ + γ)

where C1, C2 > 0 depend on µc, µh, µm, s, and c.

Proof. See Appendix.

The above theorem states that, when the combined sparsity of the true SCR events

signal and the baseline signal after the difference filter is small enough, the estimate of

the SCR events signal x̂ is accurate. More specifically, the `2 norm of the error vector

(i.e., the difference between the true and the estimated SCR events signal) is upper

bounded by a quantity which is proportional to the constants ε, δ and γ, which are part

of our signal model, and the optimization parameter η, provided that it is chosen to be

greater than or equal to ε. As long as these constants are small, our approach yields

an accurate solution. In our setting, it is reasonable to assume that these constants

are indeed small for the following reasons. The SCR events signal x is sparse due to

physiological reasons, as previously discussed. The baseline signal should not have too

many jump discontinuities provided that the user is not constantly moving the sensor,

which causes Db to also be sparse. Finally, ε depends on the noise power and model

mismatch and is small provided that the noise power is much lower than the signal

power and that our model assumptions are close to reality.
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The terms C1 and C2 are known to decrease with decreasing s, c [169]. This implies

that the error in the recovery decreases as the signals become more sparse. The range of

values of s+ c for which the error bounds holds depends on the coherence parameters.

These parameters critically depend on the shape and length of h which we assume are

known. It is known that with decreasing coherence parameters µc, µh, and µm, the

recovery of a sparse signal improves [169]. All the coherence parameters can be viewed

as the maximum entries of the sub-blocks of the matrix

G =

[
(DThΛ)T

I

] [
DThΛ I

]
− I

=

[
(DThΛ)TDThΛ− I (DThΛ)T

DThΛ 0

]
,

where Λ is a diagonal matrix such that the columns of the matrix DThΛ have unit `2

norm. The coherence parameters can be written in terms of sub-blocks of matrix G as

follows

µh = ‖(DThΛ)TDThΛ− I‖max

µm = ‖DThΛ‖max

µc = max{µh, µm},

where for a matrix X, the maximum absolute entry of the matrix is denoted by ‖X‖max.

6.4 Experiments

Using a combination of both synthetic and real-world EDA data, in this section we

demonstrate the feasibility and accuracy of our proposed compressed sensing approach

to EDA decomposition. Our synthetic data experiments sweep a wide selection of

sparsity values and baseline signal energy levels to demonstrate SCR event recovery

accuracy. Using real-world EDA data, we then show how our technique allows for more

accurate inference of EDA events signal as compared to prior techniques.
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Figure 6.5: Estimation error diagrams with synthetic data for various values of number

of SCR events s ∈ {5, 10, . . . , 230} and baseline jumps c ∈ {5, 10, . . . , 350}. Panels

(a), (b), and (c) correspond to scaling the magnitude of the baseline component using

α = 0.01, 0.1 and 1, respectively.

6.4.1 Synthetic data experiment

The first experiment is dedicated to demonstrating the recovery accuracy of our pro-

cedure on synthetic data. We obtained the impulse response vector h by sampling the

function f(u) shown in Figure 6.6 at the rate of 4 samples per second in the interval

u ∈ [0, 40]. This choice of impulse response was informed by prior psychophysiology lit-

erature [157]. The h obtained in such manner lies in R160. We fixed T = 240, δ = 0.01

and γ = 0.01.

0 10 20 30 40

Time (sec.)

0

0.5

1

1.5

h

Impulse Response

Figure 6.6: The impulse response h was obtained by sampling the function f(u) =

2
(
e
− u
τ1 − e−

u
τ2

)
for u ≥ 0 and f(u) = 0 otherwise. Here τ1 = 10, τ2 = 1 and the is

function sampled at the rate of 4 samples per second in the interval u ∈ [0, 40].
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Figure 6.7: Decomposition of real-world EDA data for two users in (a) and (b) respec-

tively. Stimuli are presented to the users at moments denoted by red dotted vertical

lines. We show results for our compressed sensing approach with and without positivity

constraints for data downsampled to 4 Hz.

For a given number of SCR events s and number of baseline jumps c, we randomly

generate x ∈ X sδ and b ∈ Bcγ . A random x ∈ X sδ is generated by first choosing the s

significant components uniformly at random and filling these components with a random

vector in Rs with i.i.d. exponentially distributed entries with mean 2. This is followed

by adding to it a rescaled standard Gaussian random vector in RT with `1 norm δ.

Similarly, a random Db was generated by first choosing the c significant components

uniformly at random and filling each of these components with a standard Gaussian

variable followed by adding a rescaled standard Gaussian random vector in Rt+T−2

with `1 norm γ. Using these steps we generate the observations as follows: x

Dy = DThx + αDb + n, (6.8)

where n is also a rescaled Gaussian random vector with `2 norm equal to ε = 0.01. We

generate multiple experiments using different values of α, a scaling factor applied to Db

relative to DThx. These observations are then used to obtain the estimate x̂ by solving

the problem in (6.7) with η = 1.05ε.
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Figure 6.5 shows the average relative estimation error ‖x−x̂‖2
‖x‖2 , where the average

is obtained by 30 random observations for various values of s and c. For baseline

components with low energy in Figure 6.5a, we find that the ability to recover is almost

entirely dependent on the number of SCR events embedded in the generated EDA signal.

Regardless of the number of baseline jumps, we find that for fewer than 75 SCR events

in an EDA signal, we can accurately recover the SCR signal. On the other hand, as the

energy in the baseline increases, as shown in Figures 6.5b and 6.5c, we find that a large

number of jumps in the baseline signal can degrade our ability to accurately recover the

SCR events.

6.4.2 Experiments with real-world EDA data

Our second experiment examines the performance of our methodology on real-world

EDA signals. We used EDA signals from a simple video stimulus experiment, originally

published in [153]. The video consists of six short stimulus clips (each lasting less than

10 seconds) with differing levels of complexity. Specifically, this video contains a baby

crying sound, a gun shot sound, a dog barking sound, the image of a gun, and two short

videos of a subject injuring themselves. This stimulus is interspersed with silence where

no audio or video is presented to the user. The EDA data consists of EDA traces from

nine subjects (6 male, 3 female, with ages ranging between 20 and 50 years old) who

watched the same video content in a darkened environment. The EDA was recorded

using the Affectiva Q Sensor (available at http://www.affectiva.com/) with sampling

at 32 Hz.

Unlike with the synthetic data experiment, we cannot assess relative estimation

error ‖x−x̂‖2
‖x‖2 because we do know the magnitudes of the ground-truth SCR events x.

We do, however, know the times at which the stimulus clips and periods of silence were

presented to the users. Very few SCR events should occur during the periods of silence,

while many SCR events should occur during the stimulus clips, thus we can use these

times to assess how well our EDA decomposition technique is able to detect SCR events.

Specifically, we used 10 second windows around each stimulus and silence clip, and then

aggregated the estimated SCR event coefficients between the start of the clip and the

end of the clip. These aggregated values are then compared to a threshold to produce a

binary decision as to whether SCR events are present in the time window. The impulse

http://www.affectiva.com/
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response vector h was obtained by sampling the function f(u) = 2(e
− u
τ1 − e−

u
τ2 ) for

u ≥ 0 and f(u) = 0 otherwise. We chose τ1 = 10, τ2 = 1. For our proposed technique

and defined h, we obtained estimates of SCR events signal for each user by solving (6.7)

with η = 0.14.

To evaluate our performance we use four alternative methodologies: (1) aggregated

raw EDA signal for each user in the stimulus and silence time windows, (2) the non-

negative deconvolution analysis technique of Benedek and Kaernbach [152] using the

Ledalab software package (available at http://www.ledalab.de/), (3) the convex op-

timization approach cvxEDA proposed in [159], and (4) a modification of our approach

with positivity constraint for the SCR events signal2 . The raw EDA analysis will

communicate if the mean EDA signal is informative with respect to our stimulus, while

the deconvolution approach demonstrates EDA decomposition that ignores the promi-

nent baseline signal. The cvxEDA approach will compare our proposed model with a

recent EDA decomposition technique using convex optimization. The approach with

positivity constraints will test whether including positivity constraints in our problem

setup improves recovery accuracy.

We perform experiments on the original 32 Hz data as well as 4 Hz and 8 Hz

downsampled versions, which are more in-line with the sampling rates of commercially

available wearable sensors such as the Empatica E4 [151] and Microsoft Band 2(4 and 5

Hz, respectively). For cvxEDA, the same values τ1 = 10 and τ2 = 1 as for our approach

were used 3 , whereas for Ledalab, τ1 and τ2 were automatically optimized by the

software package.

Discussion of results: The result of signal decomposition on the 4 Hz downsampled

signal is shown in Figure 6.7. In this figure we highlight the recovered signals with our

approach and a modified version with positivity constraints on the SCR events signal.

Figures 6.7a and 6.7b correspond to two different users that were chosen at random

from our data set. Stimuli are presented to the users at moments denoted by red dotted

vertical lines. We see that the recovered SCR events signal is similar for both techniques

except for the events with small negative amplitudes when no positivity constraints are

2 Specifically, we solve problem (6.7) with positivity constraint x ≥ 0.
3 cvxEDA also requires specification of the sampling interval δ, which was set to

1/sampling frequency, and other parameters δ0, α, and γ, which were set to the default values in
the software package.

http://www.ledalab.de/
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enforced. The reconstructed SCR signal h ∗ x̂ using both approaches are also shown.

Overall, we find that our proposed approach performs similarly to its variation with

positivity constraints.
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Figure 6.8: ROC curves for real data SCR event detection experiment at the sampling

rate of 4 Hz. Our compressed sensing-based approaches is compared with a variation of

our approach with positivity constraints, the non-negative deconvolution approach in

Ledalab, the cvxEDA convex optimization based approach, and the raw EDA signal.

Further, aggregating the accuracy across all nine users, we present the Receiver

Operating Characteristic (ROC) curve in Figure 6.8, which shows the detection rate for

any given false alarm rate at the sampling rate of 4 Hz. We summarize the ROC curve

using the Area Under the Curve (AUC). We find that our compressed sensing based

decomposition (AUC = 0.848) and its variation with positivity constraints (AUC =

0.825) perform better than both the non-negative deconvolution method in Ledalab

(AUC = 0.817) and the convex optimization based cvxEDA approach (AUC = 0.622).

Another insight from these results is that using the raw EDA traces results in accuracy

roughly no better than random guessing (i.e., detection rate equal to the false alarm

rate), showing the need for processing of the observed EDA signals.
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Table 6.2: AUC values for SCR event detection at multiple sampling rates for various

approaches on real data experiment.

Sampling Compressed Compressed Raw

Rate Sensing Sensing (+) cvxEDA Signal Ledalab

4 Hz 0.848 0.825 0.622 0.539 0.817

8 Hz 0.857 0.821 0.771 0.493 0.824

32 Hz 0.868 0.895 0.819 0.514 0.837

The results at various sampling rates are shown in Table 6.2. We see that our scheme

gives better performance than all other schemes at sampling rates 4 Hz and 8 Hz. This

is an important regime when considering EDA observations from power and storage-

constrained wearables. Our observations also suggest that, at these sampling rates,

adding positivity constraints to our approach does not necessarily improve accuracy. In

fact, at 4 Hz and 8 Hz, adding positivity constraints actually lowered the AUC. The

only improvements for the positivity constrained techniques was at a sampling rate of

32 Hz.

6.5 Summary

In this work we proposed a novel compressed sensing based framework for processing of

EDA signals. The proposed framework explicitly models the baseline signal and allows

for recovery of the users responses via simple pre-processing followed by compressed

sensing based decomposition. We also provided theoretical error bounds on the accuracy

of the proposed recovery procedure. Our approach accurately recovers SCR events in

experiments on simulated data. Furthermore, our recovery procedure also outperforms

existing recovery procedures for an SCR event detection task on real-world EDA data

obtained from a video stimulus experiment.
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6.6 Appendix

Proof of Theorem 6.3.1. The proof is a straightforward extension of the following the-

orem from [169]:

Theorem 6.6.1 ( [169], Thm. 4 ). Let t = Cw + z, with C = [A B], wT = [xT uT ],

and ‖z‖2 ≤ ε. Define the coherence parameters µa, µb, µm, and µc for the dictionary C

as

µa = max
i 6=j

|aTi aj |
‖ai‖2‖aj‖2

, µb = max
i 6=j

|bTi bj |
‖bi‖2‖bj‖2

µm = max
i,j

|aTi bj |
‖ai‖2‖bj‖2

, µc = max
i 6=j

|cTi cj |
‖ci‖2‖cj‖2

Assume µb ≤ µa without loss of generality. If

s+ c < max

{
2(1 + µa)

µa + 2µc +
√
µ2
a + µ2

m

,
1 + µc

2µc

}
(6.9)

then the solution of ŵ

min
w̃

‖w̃‖1

subject to ‖t−Cw̃‖2 ≤ η, (6.10)

using ε ≤ η satisfies

‖w − ŵ‖2 ≤ C1(ε+ η) + C2‖w −wn+s‖1

where C1, C2 > 0 depend on µa, µb, µm, µc, s, and c.

We use the above Theorem 6.6.1 with t = Dy,A = DTh,B = I, z = Dn, and

wT = [xT u] with u = Db. First we show that the `2 norm of the noise z satisfies the

assumption in Theorem 6.6.1. This can be easily seen as follows

‖z‖2 = ‖Dn‖2
≤ ‖D‖2‖n‖2
≤ 2(ε/2) = ε,

where the last inequality is due the fact that ‖D‖2 ≤ 2 and ‖n‖2 ≤ ε/2 by our model

assumption. Also, as B = I is an orthonormal matrix, it is easy to see that µb = 0.
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Since µa is strictly positive under our model assumption, the condition µb ≤ µa is also

satisfied. Further, since we can write ‖w̃‖1 = ‖x̃‖1 + ‖ũ‖1, the optimization problem

(6.10) in Theorem 6.6.1 takes the following form:

min
x̃∈RT ,ũ∈RT+t−2

‖x̃‖1 + ‖ũ‖1

subject to

∥∥∥∥∥Dy − [DTh I]

[
x̃

ũ

]∥∥∥∥∥
2

≤ η

The above problem is exactly same as the problem in (6.7), for which error bounds

are outlined in Theorem 6.3.1. This essentially establishes that Theorem 6.6.1 can be

used to obtain the recovery guarantees of problem (6.7). Provided that the combined

sparsity s + c satisfies condition (6.9) and we choose η such that it satisfies ε ≤ η, we

have the following bound from Theorem 6.6.1:

‖w − ŵ‖2 =
√
‖x− x̂‖22 + ‖Db− û‖22

≤ C1(ε+ η) + C2‖w −wn+s‖1
≤ C1(ε+ η) + C2 {‖x− xs‖1 + ‖b− bc‖1}

Further, combining the above inequality with the fact that

‖w − ŵ‖2 =
√
‖x− x̂‖22 + ‖Db− û‖22 ≥ ‖x− x̂‖2,

we have arrive at

‖x− x̂‖2 ≤ C1(ε+ η) + C2 {‖x− xs‖1 + ‖b− bc‖1} ,

which, by our model assumption, can be reduced to

‖x− x̂‖2 ≤ C1(ε+ η) + C2(δ + γ).

The coherence parameters µh, µm, and µc in Theorem 6.3.1 are equivalent to coherence

parameters µa, µm, and µc respectively in Theorem 6.6.1.



Chapter 7

Future Directions

7.1 Computationally-efficient approximations to arbitrary

linear dimensionality reduction operators

So far our analysis has been focused on circulant structure. However, there are other

structures like that are also known to have computational advantages. For example,

in wireless communication the sparsity structure was exploited to control the backhaul

traffic incurred due to the multicellular cooperation [8, 10]. An interesting direction of

further study could be towards developing a similar fundamental understanding of com-

putationally efficient approximations of LDR operators using other structured matrices.

A natural extension of our work on circulant structure based approximations of LDR

operators is to extend the study to non-linear dimensionality reduction operators of the

form defined as follows

f(x) =




g1(aT1 x)
...

gm(aTmx)


 , ∀x ∈ X , (7.1)

where aTi is the ith row of the full rank matrix A ∈ Rm×n(m < n), {gi(·)}mi=1 are the

functions on R, and X is the set of signals on which dimensionality reduction is desired.

A natural question that arises here is about the circulant approximation to A being a

good approximation to non-linear dimensionality reduction operation. Specifically, how

130
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good is the following approximation

f(x) ≈




g1(âT1 x)
...

gm(âTmx)


 (7.2)

where âTi is the ith row of the circulant approximation to matrix A.

Another advantage of analyzing the non-linear dimensionality reduction as described

above is that we can extend it to understanding of so called multi-index function which

are defined over unit euclidean ball in Rn as follows

h(x) =
m∑

i=1

gi(a
T
i x), x ∈ X = {x ∈ Rn, ‖x‖2 ≤ 1} ,

Multi-index functions of above form arise in many areas including well known neural

networks [173] where g(u) = 1
1+e−t is the sigmoid function. This analysis can be poten-

tially extended to the understanding of convolutional neural networks which are special

case of neural networks with parameter sharing and sparse connections. Our results on

approximating a given LDR matrix with a circulant matrix might have implications on

approximation of a dense neural network with a convolutional neural network. These di-

rections of exploration have potential to give novel theoretical insights into the workings

of convolutional neural networks.

7.2 Noisy matrix and tensor completion under sparse fac-

tor models.

For noisy tensor completion so far we have only explored Gaussian noise density. Similar

to [2] the generic error bound for tensor completion can be instantiated for other noise

densities. Structured tensor factor models different from sparse CP decomposition could

also be explored in future research efforts. In addition to this, an important open

question is about the tightness of the error bound for tensor completion. An important

direction of future research is towards establishing the optimality of bounds by obtaining

mini-max lower bounds for noisy tensor completion, similar to ones established for noisy

matrix completion in [174]. Finally, developing numerical algorithms with provable
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convergence to global minima is yet another challenging task that could be explored in

future research efforts.

7.3 Matrix completion from noisy and quantized observa-

tions

So we have obtained error bounds for the set of low rank matrices or the matrices fol-

lowing the sparse factor models. However, there are many other interesting applications

where factor models with different structural constraints on the factors. For example,

the non-negative matrix factorization A =
{
A
∣∣∀aij ≥ 0

}
, D =

{
D
∣∣∀dij ≥ 0

}
, arise in

text mining, blind source separation and many more areas. Our error bounds can be

extended to these sets. Leveraging our approach to gain an understanding of quan-

tized matrix completion for such structured matrix sets could be an interesting future

direction to pursue.

Many structured matrix sets are non-convex and accordingly the constrained max-

imum likelihood approach of matrix completion for such matrix sets involves solving

a non-convex problem. Developing algorithms with provable global convergence guar-

antees is one of the most challenging task. Recently algorithms for projections on the

sparse symmetric convex sets which perform better than iterative hard thresholding

have been proposed in [175]. Another recent work has proposed an unifying framework

for convergence analysis of projected gradient descent algorithm [176]. Several other re-

cent papers have revealed that with proper initialization the non-convex can be solved

globally [177–179]. It is an open question whether the techniques outlined in these works

can be extended to quantized matrix completion for non-convex structured matrix sets.
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[43] R. M. Castro and E. Tánczos. Adaptive compressed sensing for estimation of

structured sparse sets. arXiv preprint arXiv:1410.4593, 2014.

[44] G. Strang. A proposal for Toeplitz matrix calculations. Studies in Applied Math-

ematics, 74(2):171–176, 1986.

[45] T. F. Chan. An optimal circulant preconditioner for Toeplitz systems. SIAM

Journal on Scientific and Statistical Computing, 9(4):766–771, 1988.

[46] E. E. Tyrtyshnikov. Optimal and superoptimal circulant preconditioners. SIAM

Journal on Matrix Analysis and Applications, 13(2):459–473, 1992.

[47] J. Müller-Quade, H. Aagedal, T. Beth, and M. Schmid. Algorithmic design of

diffractive optical systems for information processing. Physica D: Nonlinear Phe-

nomena, 120(1):196–205, 1998.



138

[48] M. Schmid, R. Steinwandt, J. Müller-Quade, M. Rötteler, and T. Beth. De-
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