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Abstract

Progress in medical practice traditionally takes place over a sequence of clinical stud-

ies which are designed to establish clinical efficacy, identify the safety profile, and seek

regulatory approval for a novel treatment strategy. These trials in humans can be ex-

pensive and present numerous challenges in their implementation. While some challenges

may be addressed by the development of innovative trial designs, it may also be advan-

tageous to incorporate supplemental sources of information, which are typically ignored

in traditional approaches to analysis. In this dissertation, we introduce Multi-Source Ex-

changeability Models (MEMs), a general Bayesian hierarchical approach that integrates

supplemental data arising from multiple, possibly non-exchangeable, sources into the anal-

ysis of a primary source. We first describe the proposed framework and prove some desir-

able asymptotic properties that show the consistency of posterior estimation. Simulation

results illustrate that MEMs incorporate more supplemental information in the presence of

homogeneous supplemental sources and exhibit reduced bias in the presence of heteroge-

neous supplemental sources relative to competing Bayesian hierarchical modeling strategies.

Next, we illustrate how MEMs can be used to design a more efficient sequential platform de-

sign for Ebola virus disease by sharing information across trial segments. When compared

to the standard platform design, we demonstrate that MEMs with adaptive randomization

improved power by as much as 51% with limited type-I error inflation. We conclude by

extending our work with model averaging to the estimation of multiple mixture distribu-

tions in the presence of a hypothesized biological relationship between groups to identify

non-compliance in a regulatory tobacco clinical trial. The results of this dissertation illus-

trate that MEMs yield favorable characteristics across a variety of scenarios and motivates

further research to extend the MEM framework to other settings, as well.
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Chapter 1

Introduction

1.1 Incorporating supplemental sources of data into a pri-

mary source

Advances in medical practice arise from evaluating therapeutic interventions over a se-

quence of clinical studies devised to establish the clinical efficacy and safety profile of a

novel treatment strategy. Conduct of clinical trials in humans is expensive and inher-

ently challenging. Furthermore, the current paradigm for evaluating novel interventions,

whereby therapies are screened one-at-a-time in phases, remains inefficient with each in-

vestigational drug requiring a sequence of disjointed trials designed to acquire and evaluate

different types of information. Moreover, design, review, and initiation of a single study,

a period often referred to as operational “whitespace,” is a gradual process. After initi-

ation, a successful trial usually requires several years to achieve the targeted enrollment.

Additionally, a considerable proportion of studies fail due to low recruitment (Williams

et al., 2015). This system for clinical testing produces redundancy, whereby similar treat-

ment strategies are replicated, either as experimental or standard-of-care therapy, across

multiple studies and development phases.

Some of these limitations to traditional clinical trial progression may be addressed

by the development of new designs for clinical trials, such as sequential platform trials,

which incorporate and test multiple treatments sequentially within a single master proto-

col. However, these newer designs present some potential redundancies as well. Within

1
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a sequential platform trial there may be supplemental sources of information from previ-

ously completed segments of the trial which are ignored in favor of the traditional approach

to analysis which only utilizes contemporaneously collected information. This represents

a potential inefficiency, as data from previous segments may provide useful information

about the current segment, as well.

Conventional approaches to statistical inference, which assume exchangeable data sam-

pling models, are inappropriate for integrating data from disparate studies because of their

failure to account for between-study heterogeneity, which yields statistical estimators that

are sensitive to inter-cohort bias. Thus, while ignoring relevant, supplemental information

reduces the efficiency of any study, supplemental data acquired from broadly similar ther-

apeutic interventions, patient cohorts, previous investigations, or biological processes is

often excluded from statistical analysis, in practice (U.S. Food and Drug Administration,

2001).

1.1.1 Previous approaches to incorporating supplemental sources of in-

formation

Statistical methods for integrating information from commensurate trials that relax the

assumption of inter-cohort data exchangeability and leverage inter-trial redundancy have

been developed. Pocock (1976) was first to propose using Bayesian models to incorporate

supplemental information into the analysis of a primary data source through static, data-

independent shrinkage estimators that require the extent of between-source variability to be

pre-specified. Numerous models have been discussed since, which involve pre-specification

of the amount of borrowing under different paradigms related to the power prior (Ibrahim

and Chen, 2000; Hobbs et al., 2011; De Santis, 2006; Rietbergen et al., 2011) or inflating the

standard error to down-weight supplemental cohorts (Goodman and Sladky, 2005; French

et al., 2012; Whitehead et al., 2008).

Hierarchical linear models and models which include adaptive down-weighting of data

from supplemental cohorts have been extensively explored, as well. For these models, the

extent of shrinkage towards the supplemental sources is not predetermined but is estimated

from the data. More strength is borrowed in the absence of evidence for inter-trial effects,
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which controls the extent of bias induced from using the supplemental information. One ap-

proach is the power prior of Ibrahim and Chen (2000) which can be constructed to discount

supplemental sources relative to the primary data. Bayesian (Smith et al., 1995) and fre-

quentist (Doi et al., 2011) methods which utilize hierarchical modeling have been developed

to estimate between-source variability with univariate observables or repeated measures.

Other authors have considered hyperprior specifications for Bayesian hierarchical models

(Daniels, 1999; Natarajan and Kass, 2000; Spiegelhalter, 2001; Gelman, 2006; Browne and

Draper, 2006; Kass and Natarajan, 2006). Recently, approaches using Bayesian hierarchi-

cal modeling to leverage supplemental controls in data analysis (Neuenschwander et al.,

2010; Pennello and Thompson, 2008; Chen et al., 2011; Neelon and O’Malley, 2010) and

trial design (Hobbs et al., 2013) have been explored. Furthermore, dynamic approaches to

incorporating supplemental information using hierarchical modeling with sparsity inducing

spike-and-slab hyperpriors and empirical Bayesian inference have been described (Hobbs

et al., 2011, 2012; Murray et al., 2014).

1.2 Motivating examples and plan of dissertation

1.2.1 A regulatory tobacco clinical trial

The Center for the Evaluation of Nicotine in Cigarettes, project 1 (CENIC-p1), was a

6-week randomized multi-center trial designed to evaluate the effect of nicotine reduction

on tobacco use and dependence (Donny et al., 2015). 839 current smokers underwent

randomization, with 780 completing the 6-week study after being equally randomized to

seven treatment groups, including a usual brand control condition or one of six experimental

cigarette conditions with nicotine content ranging from 15.8 mg per gram of tobacco (15.8

mg/g group; approximately equivalent to the nicotine content of commercial cigarettes) to

0.4 mg per gram of tobacco (0.4 mg/g group; also referred to as very low nicotine content

(VLNC) cigarettes). At the end of six weeks, participants randomly assigned to the lowest

nicotine condition had significantly reduced tobacco use, dependence, and nicotine exposure

relative to the normal nicotine controls.

In Chapter 2, the data from CENIC-p1 are used to illustrate the benefit of using MEMs

to borrow information from a supplemental data source compared to standard analytical
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approaches. For purposes of illustration, our analysis focuses on the comparison of the

change in cigarettes smoked per day from baseline to week 6 between the 15.8mg/g group

and the 0.4 mg/g group. There are multiple supplemental sources of data that could

be combined with our primary data source (the 15.8 mg/g and 0.4 mg/g groups from

CENIC-p1) to obtain a more precise estimate of the effect of nicotine reduction on cigarette

consumption. Specifically, data are available from two previous trials of VLNC cigarettes

(Hatsukami et al., 2013, 2010). In addition, CENIC-p1 also included a 0.4 mg/g group

with a higher-than-normal tar yield, which could be viewed as supplemental data for the

0.4 mg/g group. Finally, the 15.8 mg/g group could be combined with the usual brand

control group from CENIC-p1 to achieve a more precise estimate of cigarette consumption

in the control condition. However, assuming that the primary and supplemental sources

are exchangeable may be inappropriate for a number of reasons and we desire a statistical

method that is flexible enough to down-weight individual supplemental sources that are

not consistent with the primary data source, while achieving increased precision when the

supplemental sources are consistent with the primary source.

In Chapter 4, model averaging is used to develop a mixture modeling approach for

identifying non-compliance in CENIC-p1. Participants self-reported high rates of non-

compliance to study product (i.e., smoking cigarettes other than those provided by the

study) and, while the primary analysis was completed following the intent-to-treat princi-

ple, investigators are interested in estimating the effect of nicotine reduction if all subjects

had complied to the treatment to understand nicotine reduction as a potential tobacco

regulatory strategy. In addition to high rates of self-reported non-compliance, it has also

been noted that self-reported compliance to study product is not a reliable measure of com-

pliance (Nardone et al., 2016) an biomarkers of nicotine exposure, such as cotinine or total

nicotine equivalents, have been proposed as an approach for identifying non-compliance in

randomized trials of VLNC cigarettes (Benowitz et al., 2015). However, while data from

an auxiliary study provide information about the distribution of biomarkers for the VLNC

group (Denlinger et al., 2016), no data are available for the intermediate dose levels, which

limits the utility of biomarkers for identifying non-compliance in intermediate dose lev-

els. To address this, we develop an approach to identify non-compliance in intermediate

dose levels, which utilizes model averaging to potentially share information across nicotine
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dose levels based on our biological understanding of the relationship between the nicotine

content of the cigarettes and biomarkers of nicotine exposure.

1.2.2 An adaptive platform trial design for emerging infectious disease

epidemics

The outbreak of the highly infectious Ebola virus disease (EVD) in West Africa beginning

in March 2014 through 2016 resulted in more cases and deaths from EVD than all previous

outbreaks combined (WHO, 2016). The outbreak had initial case mortality estimates as

high as 74% in some areas and represented a dire situation with no known effective thera-

peutics (Schieffelin et al., 2014). The West African outbreak called for novel platform-based

trial designs which sequentially consider multiple treatments, potentially in combination,

within a single trial in order to most effectively identify beneficial therapeutics and quickly

incorporate them into the standard of care for EVD to reduce morbidity and mortality.

Additional difficulties in designing a trial for the EVD outbreak were the relatively sparse

knowledge of this EVD strain, the potential for disease evolution or changes in the course

of the trial, the urgent need for identifying any potentially beneficial treatments or combi-

nations of treatments as quickly as possible, and the need to maintain traditional clinical

trial benchmarks as much as possible for outcomes such as activity, safety, and efficacy

(Dodd et al., 2016).

In response to this need, the National Institutes of Health (NIH) launched the Part-

nership for Research on Ebola Vaccines in Liberia II (PREVAIL II) trial, a randomized

clinical trial to evaluate medical countermeasures against EVD, in March of 2015 (Dodd

et al., 2016; PREVAIL II Writing Group, for the Multi-National PREVAIL II Study Team,

2016). PREVAIL II was designed as a modified platform trial, as defined by Renfro and

Sargent (2016), in order to improve the efficiency of testing multiple potentially beneficial

therapeutics, accelerate clinical development, and maintain flexibility in the context of an

emerging infectious disease epidemic. The trial had two unique characteristics driven by

the urgent need for new treatments. First, the objective of PREVAIL II was to evalu-

ate multiple treatments within a single, master protocol rather than multiple independent

studies. Treatments would be evaluated sequentially against the optimal standard of care

(oSOC) which, initially, consisted only of supportive care (intravenous fluids, hemodynamic
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monitoring, etc.). As the trial progressed, any treatment which demonstrated a significant

improvement over oSOC would be added to the oSOC for future comparisons. Second,

PREVAIL II utilized frequent interim monitoring to allow very early termination if a new

treatment exhibited sufficient statistical evidence for a decline in the mortality rate with

respect to the concurrent oSOC.

1.2.3 Dissertation objectives

In this dissertation, we introduce multi-source exchangeability models (MEM), a general

Bayesian approach that integrates supplemental data arising from multiple, possibly non-

exchangeable, sources into the analysis of a primary source, while reducing the dimension-

ality of the prior space by enabling prior specification on supplemental sources and avoiding

the limiting assumption of exchangeability among the supplemental sources. Our model-

ing framework effectuates source-specific smoothing parameters that can be estimated from

the data to facilitate dynamic multi-resolution smoothing. We will demonstrate that our

proposed approach yields asymptotically consistent posterior estimates, while achieving

more desirable small sample properties when compared to competing Bayesian hierarchical

modeling strategies.

In Chapter 2 we introduce the general framework for MEMs and apply it to the context

of Gaussian-distributed data with an unknown mean and known precision. Asymptotic

properties are presented showing the consistency of the posterior MEM estimates with

simulation studies demonstrating that desirable small sample properties can be obtained

through carefully selected prior distributions. When compared to competing Bayesian

hierarchical modeling strategies, the simulation results demonstrate that MEMs achieve up

to a 56% reduction in bias when there is heterogeneity among the supplemental sources.

When applied to the data from CENIC-p1, MEMs resulted in a 30% improvement in

efficiency compared to a standard analysis without borrowing.

In Chapter 3 we propose a multi-source adaptive platform design for EVD using the

MEM framework to facilitate the borrowing of information across trial segments. Since

the incorporation of supplemental information can induce an imbalance between the arms
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within a segment, we also incorporate adaptive randomization to balance overall infor-

mation within a segment, which improves power relative to a fixed randomization strat-

egy that results in information imbalances across treatment groups. Our proposed design

demonstrates improvements of up to 51% in power with limited type-1 error inflation while

randomizing more participants to promising treatment arms when compared to the design

used in PREVAIL II.

In Chapter 4 we focus on the estimation of mixture distributions to identify non-

compliance in CENIC-p1 using a fully Bayesian approach. A model averaging approach,

which incorporates our biological understanding regarding the relationship between the

nicotine content and biomarkers of nicotine exposure, is proposed to borrow information

across dose-levels and achieve more precise estimates of the mixture components. There

exist multiple approaches to specifying the MCMC samplers, so model averaging techniques

over multiple proposed specifications are explored via reversible-jump MCMC (RJMCMC).

Our proposed method results in more precise estimates of the mixture components when

the proposed relationship is appropriate, while minimizing bias when the relationship does

not hold.



Chapter 2

Bayesian Hierarchical Modeling

based on Multi-Source

Exchangeability

This chapter introduces the proposed MEM framework, which enables the incorporation of

supplemental sources of information into a primary data source. MEMs are developed in the

context of Gaussian-distributed outcomes with unknown means and known precision, with

an extension to binary outcomes in Chapter 3 and to estimation of mixture distributions

in Chapter 4. The remainder of Chapter 2 proceeds as follows. We first introduce MEMs,

in generality, in Section 2.1. We then discuss estimation and investigate the asymptotic

properties of MEMs in the Gaussian case in Section 2.2. Simulation results comparing the

small-sample properties of MEMs to existing methods are presented in Section 2.3 and we

apply our proposed method to CENIC-p1 in Section 2.4. Finally, we conclude with a brief

discussion in Section 2.5.

2.1 Multi-source Exchangeability Models

Consider the general case where there is a single primary cohort, P , with n observables

represented by yp, and a total of H independent supplemental cohorts considered for

incorporation into the analysis with nh observables each, represented by yh, h = 1, ...,H.

8
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Together these observables represent the data, D. Our primary goal is to estimate θp, which

represents the parameters for the primary cohort. θh represents the same parameters from

supplemental cohort h. For our framework, exchangeability is defined between the primary

cohort and a supplemental cohort h to be where θp = θh.

Since it is likely that the supplemental sources may not be exchangeable with the

primary cohort or that the supplemental sources may be heterogeneous, themselves, let

Sh denote an indicator function of whether or not supplementary source h is assumed

exchangeable with the primary cohort. A MEM, noted generally as Ωk, is defined by con-

sidering a set of source-specific indicators, (S1 = s1,k, ..., SH = sH,k), where sh,k ∈ {0, 1}
with indices for source h and model k representing all K = 2H possible configurations of

assumptions regarding exchangeability between the primary and supplemental sources. A

conceptual diagram representing these K configurations of exchangeability is depicted by

Figure 2.1 with each box representing a potential configuration of exchangeability for a

MEM, Ωk. Solid arrows indicate sh,k = 1 and graphically demonstrate what observables

are used to estimate θp and therefore indicate which supplemental sources are exchange-

able with the primary cohort. If there is no solid arrow connecting the observables, then

sh,k = 0. The dashed arrows with posterior model weights, ωk, visualize that posterior

inference is completed by a weighted average of each MEM posterior. To quickly identify

the sources assumed exchangeable in the K MEMs, the k subscript can be represented

as the supplemental sources assumed exchangeable with the primary source such that Ω

represents the MEM which assumes no supplemental information and Ω1,2,...,H assumes all

supplemental sources are exchangeable.
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Conceptual Diagram of Multi-source Exchangeability Models

p(θp|D) =
K∑
k=1

ωkp(θp|Ωk, D)

Ω Ω1

Ω1,2Ω1,2,...,H . . .

θp θp

θpθp

yp yp

ypyp

y1

y2

...

yH

y1

y2

...

yH

y1

y2

..
.

yH

y1

y2

..
.

yH

ω ω1

ω1,2ω1,2,...,H

Figure 2.1: Each MEM is a combination of supplemental sources assumed exchangeable
with the primary cohort in order to estimate the parameters of interest, θp, and is contained
within each box for Ωk. Within a box the solid arrows θp and the observables, yh, represent
which supplemental sources are assumed exchangeable with the primary cohort within the
given MEM. The dashed arrows represent that the posterior model weights for each MEM,
ωk, are used in calculating the weighted average of each MEM’s posterior distribution,
p(θp|Ωk, D), to be used for posterior inference, p(θp|D).

A natural approach to estimating model-specific weights is through Bayesian model

averaging (BMA) (Raftery, 1995; Raftery et al., 1997; Hoeting et al., 1999). BMA accounts

for uncertainty in the model specification by facilitating posterior inference that averages

over a collection of posterior distributions that are obtained from a set of candidate models.

BMA describes the Bayesian framework for using conditional probability to estimate a

weight for each candidate model in the presence of the data. In our case, BMA would

be used to average over the K = 2H multi-source exchangeability models representing all

possible assumptions regarding the exchangeability of the supplementary data with the
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primary data. A model weight given the data, ωk, which is often random, is determined

for each possible model as laid out by Hoeting et al. (1999) and used for posterior inference.

Let L represent the likelihood given the data for Ωk, Θ = (θp, θ1, ..., θH), and π(Θ|Ωk)

denote the prior density of Θ under Ωk. In the context of MEMs, the integrated marginal

likelihood for a particular multi-source exchangeability model given the data is obtained

by averaging the likelihood over the posterior distribution for the vector of all model pa-

rameters of interest,

p(D|Ωk) =

∫
L(Θ|D,Ωk)π(Θ|Ωk)dΘ. (2.1)

The posterior model weights for each MEM are given by

ωk = p(Ωk|D) =
p(D|Ωk)π(Ωk)∑K
j=1 p(D|Ωj)π(Ωj)

, (2.2)

where π(Ωk) is the prior probability that Ωk is the true model. The marginal posterior

distribution given the observable data D to be used for inference on θp is the weighted

average using the posterior model weights of the K multi-source exchangeability model

posteriors, p(θp|Ωk, D):

p(θp|D) =
K∑
k=1

ωkp(θp|Ωk, D). (2.3)

Unfortunately, BMA quickly becomes highly parameterized as the number of models

grows exponentially with the number of supplementary sources (K = 2H), and prior speci-

fication over a model space of large size is problematic. Fernández et al. (2001) noted that

posterior model weights can be very sensitive to the specification of priors in the model,

especially in the absence of strong prior knowledge. In the analysis of limited data obtained

from a clinical study, these issues with the conventional BMA approach become critical and

motivate our proposed approach. With MEMs the supplemental sources are assumed to be

distinct and independent, therefore we can specify priors with respect to sources instead

of models, π(Ωk) = π(S1 = s1,k, ..., SH = sH,k) = π(S1 = s1,k)× · · · × π(SH = sH,k). This

results in drastic dimension reduction in that it necessitates the specification of only H

source-specific prior inclusion probabilities in place of 2H prior model probabilities com-

prising the entire model space. In Section 2.2.2, we propose prior weights for the source-

inclusion probabilities that result in consistent posterior model weights and yield desirable



12

small sample properties, as evaluated by simulation in Section 2.3. In contrast, simi-

larly constructed prior weights on the models did not result in consistent posterior model

weights.

2.2 Estimation and theoretical results

We now describe posterior inference using MEMs in the Gaussian case and investigate

the asymptotic properties of our proposed approach for two classes of source-specific prior

model weights. For our primary cohort (P ), let x1,p, x2,p, ..., xn,p, denote a sample of

i.i.d. and normally distributed observables with mean µ and variance σ2. Similarly, for

supplemental cohorts h = 1, ...,H, let x1,h, ..., xnh,h, denote a sample of i.i.d. normally

distributed samples with source-specific mean µh and variance σ2
h. Throughout this section,

we assume σ2 and σ2
h are known and define v = σ2

n and vh =
σ2
h
nh

for notational simplicity.

Using the MEM approach, the likelihood is a weighted average of multi-source ex-

changeability models representing all possible assumptions regarding exchangeability:

K∑
k=1

ωkL(µ,σ2|(s1,k, ..., sH,k)) =
K∑
k=1

ωkN (µ, σ2)
H∏
h=1

{
N (µsh,k + µh(1− sh,k), σ2

h)
}
. (2.4)

Then, assuming a flat prior on the Gaussian mean, µk, as described by (Gelman, 2006),

π(µk|Ωk) ∝ 1 in (2.1), the Gaussian conditional marginal likelihood can be generally

written for any MEM as:

p(D|Ωk) =
(
√

2π)(H+1)−
∑H
h=1{sh,k}√(

1
v +

∑H
i=1

{
si,k
vi

})(∏H
j=1

{[
1
vj

]1−sj,k
})×

exp

(
−1

2

[
H∑
l=1

{
sl,k(x̄− x̄l)2

v + vl + vvl(
∑

m6=l{sm,kv
−1
m })

+

H∑
l<r

{
sl,ksr,k(x̄l − x̄r)2

vl + vr + vlvr(v−1 +
∑

p 6=l,r{sp,kv
−1
p })

}}])
.

(2.5)

The exponential portion of (2.5) is comprised of the squared deviations between the sources

included in Ωk such that if all included sources are exchangeable, then exp(0) = 1 and the
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posterior weights of (3.4) are influenced by the non-exponential terms of (2.5), which do

not include sample means, and the priors placed on model weights, π(Ωk).

The posterior distribution of µ, derived from (2.5) and used for inference with multi-

resolution shrinkage of the supplemental cohorts, is a mixture of normal distributions

computed using (3.3) and (3.4):

p(µ|D) =

K∑
k=1

ωkp(µ|D,σ2, (s1,k, ..., sH,k))

=
K∑
k=1

ωkN

 x̄
∏H
h=1

{
v
sh,k
h

}
+
∑H

i=1

{
vx̄i
vi

}∏H
j=1

{
v
sj,k
j

}
v
[∑H

l=1{
sl,k
vl
}
∏H
m=1{v

sm,k
m }

]
+
∏H
r=1

{
v
sr,k
r

} ,
1

v
+

H∑
p=1

sp,k
vp

−1
(2.6)

The posterior mean is obtained as the weighted average of the model-specific posterior

means. The posterior variance of a mixture of normal distributions is also available in

closed form.

2.2.1 Specification of model-specific prior weights

The properties of any dynamic Bayesian modeling approach are largely determined by its

prior specification. More flexible choices attenuate the influence of a priori assumptions in

the presence of conflicting data, imparting robustness for posterior inference. In the context

of MEMs, a flexible prior specification would allocate the posterior weight to models in

a manner that reflects the putative evidence for inter-source “exchangeability.” As noted

earlier, in the Gaussian case, (2.5) demonstrates that the exponential term of the integrated

marginal likelihood for each MEM is determined by the difference between the means of

the primary and supplemental data sources. If all sources in a MEM are exchangeable,

the resulting marginal density is determined by the ratio of the variance components and

sample size of the terms not in the exponent. In the absence of exchangeability shrinkage

is reduced, as conveyed by a smaller posterior model weight.

Recall that since supplemental sources are independent we can specify the prior model

weight as the product of priors on source inclusion/exclusion probabilities, π(Ωk) = π(S1 =

s1,k)× · · · × π(SH = sH,k). While there are numerous strategies for determining the prior
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inclusion probability of each source, we present the asymptotic properties and resulting

posterior inference of two approaches. Thereafter, we will demonstrate how the prior

specification impacts both asymptotic and small sample properties of the resulting posterior

estimators. The first prior, denoted by πe, equally weights all supplementary sources. This

is an obvious choice for a prior since it simply provides equal “inclusion” weight to all H

sources, e.g., πe(Sh = 1) = 1
2 . This reflects the condition of impartiality as it pertains to

which supplemental sources should be considered exchangeable with the primary cohort,

and thus on the surface appears advantageous.

The second prior we consider, denoted πn, is specified in relation to the sampling-level

variability which attempts to overcome the likelihood’s intrinsic preference for indepen-

dence found with πe. Specifying the prior source inclusion probability in relation to the

fractional component of the integrated model likelihood results in:

πn(Sh = 1) ∝
K∑
k=1

sh,k

√(
1
σ2 +

∑H
i=1

{
si,k
vi

})(∏H
j=1

{(
1
vj

)1−sj,k
})

(
√

2π)(H+1)−
∑H
l=1 sl,k

,

πn(Sh = 0) ∝
K∑
k=1

(1− sh,k)

√(
1
σ2 +

∑H
i=1

{
si,k
vi

})(∏H
j=1

{(
1
vj

)1−sj,k
})

(
√

2π)(H+1)−
∑H
l=1 sl,k

.

(2.7)

πn cancels out most of the fractional component of the integrated model likelihood (2.5).

Allowing the extent of uncertainty for a given model, as represented by the variance, to

influence the prior source inclusion probability yields a posterior that places greater em-

phasis on the exponential term of the integrated model likelihood. This enables the extent

of exchangeability between the primary and each supplemental cohort to be predominately

determined by its standardized mean difference, which is contained in the exponential term

of p(D|Ωk). This prior also depends on the sample size of the supplemental data, which

allows the source weights to place greater emphasis on the differences produced in the

exponential term by reducing the influence of the fractional component. In Section 2.3,

we will demonstrate that πn produces more shrinkage than πe which is most useful in the

presence of small studies often encountered in biomedical applications.
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2.2.2 Asymptotic properties

Methods that incorporate supplemental information should endeavor to integrate data from

potentially very different sources and arrive at a posterior estimate that minimizes the bias

introduced by incorporating the supplemental data. In the case of MEMs, bias arising from

using the supplemental data can be minimized if sources which are exchangeable attain a

weight of 1 while all other sources attain weight 0.

Using the two prior specifications presented in Section 2.2.1, we demonstrate the fre-

quentist, asymptotic properties of MEMs. Specifically, we describe the conditions whereby

the MEM specification yields asymptotically consistent model-specific weights, resulting

in consistent estimation of µ by the posterior mean. The asymptotic properties assume a

finite mixture of MEMs represented by Gaussian distributions with known variances and

posterior model weights calculated in the MEM framework.

Theorem 1 As n, n1, ..., nH →∞, ωk∗ −→ 1 for model k∗ defined by

(S1 = s1,k∗ , . . . , SH = sH,k∗), where sh,k∗ = 1{µ=µh} for all h = 1, . . . ,H and ωk −→ 0 for

k 6= k∗ with priors πe and πn.

A proof of Theorem 1 is provided in Appendix A. Theorem 1 establishes the consistency

of the model-specific weights.

There are two important points to note regarding Theorem 1. First, consistency is only

attained in the presence of large sample sizes for both the primary and the supplemental

cohorts. This property is illustrated in Figure 2.2, which presents the model weights as

a function of sample size for the case with three supplemental cohorts, where model 2 is

the correct model (i.e. µ = µ1 and µ 6= µh for h = 2, 3). We see that the model weight

converges to 1 when the sample size is large for all cohorts (b) but not when the sample size

for the primary cohort is large and the sample size for the supplemental cohorts is constant

(a). Second, we illustrate the advantage of specifying the priors on the source-specific

inclusion weights, rather than on the model weights, in Supplemental Figures 1c and 1d.

These figures present the model weights as a function of sample size for when the prior is

specified on the source-specific inclusion weights using πn and when the prior is specified

on the model weights in a standard BMA approach using prior weights analogous to πn for

the case when there are three supplemental cohorts and model 5 is the correct model (i.e.
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µ = µh for h = 1, 2 and µ 6= µ3). In this case, the model weights are consistent when the

prior is specified on the source-inclusion probabilities but not when the prior is specified

on the model weights. This is true even when the sample sizes for both the primary and

supplemental cohorts are large, suggesting that the prior specification on the model is not

adequate for all situations in our context.

Because bias arising from integrating multi-source data is avoided when shrinkage is

effectuated using only truly exchangeable sources, consistency is an important property for

any multi-source integration approach. The fact that the MEM estimators are consistent

for both priors also demonstrates flexibility to accommodate a wide variety of prior beliefs

pertaining to source inclusion. As noted in Section 2.2.1, the posterior mean, µMEM ,

is a weighted average of the model-specific posterior means, which, in combination with

Theorem 1, allows us to conclude that the posterior mean will be consistent for the true

mean assuming πe and πn.

Corollary 2 As n, n1, ..., nH →∞, E (µMEM |D)
a.s−−→ µ with priors πe and πn.

The proof of Corollary 2 is a result of the consistency of the sample mean by the strong

law of large numbers, Theorem 1 and Slutsky’s Theorem.
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Figure 2.2: Large-sample properties for posterior estimation of model weights for (a) MEM
with πn approach as only n → ∞ and (b) n, n1, n2, n3 → ∞ assuming S1 exchangeable
(M2). Large-sample properties for posterior estimation of model weights with πn under
(c) BMA and (d) MEM as n, n1, n2, n3 → ∞ assuming S1 and S2 exchangeable (M5).
Model labels are imposed along the convergence trajectory to help with identification of
overlapping lines.
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2.3 Simulation studies to establish small sample properties

In this section we evaluate the small-sample properties of our proposed approach and

compare them to two existing methods for integrating supplementary information into the

analysis of a primary data set.

2.3.1 Simulation design

Our simulation study considers scenarios that involve a single primary cohort and three

supplemental cohorts: S1, S2, S3. We assume that n = nh = 100 and σ = σh = 4 for

h = 1, 2, 3 (i.e., that the sample size and standard deviations are equal for all sources

of data). This assumption allows us to evaluate performance without having to discern

differences attributable to differing sample sizes or sampling-level variances. Four scenarios

are evaluated with different assumptions regarding the sample means. The first scenario

considers the case where the sample means were equal for all supplemental sources: x̄1 =

x̄2 = x̄3 = −4. The second scenario considers the case where the sample means for the

first two sources were identical, but the third was very different: x̄1 = x̄2 = −10, x̄3 = 2.

The third scenario represents the case where the sample means were different for all three

supplemental sources: x̄1 = −10, x̄2 = −4, x̄3 = 2. The fourth scenario considers the case

where the sample means for the first two supplemental sources were similar, but the third

was very different: x̄1 = −10, x̄2 = −9.25, x̄3 = 2.

For each scenario, we simulate data for the primary cohort with a true µ that varied

across an equally spaced grid of 420 points from -15 to 6. Data are analyzed with one of four

approaches for each simulated trial: (1-2) MEMs with πe and πn priors; (3) the empirical

Bayes implementation of the commensurate prior approach (CP) (Hobbs et al., 2011); and

(4) a standard hierarchical model (SHM) with a uniform hyperprior for the common inter-

source standard deviation over the interval (0,50) (Spiegelhalter et al., 2004). Additional

values of upper limits for the uniform distribution were explored, but all results performed

similarly under the considered scenarios. 10,000 simulated studies are completed for each

µ for approaches 1 through 3, while 1000 simulated studies are completed at each µ for

approach 4. The performance of each approach is summarized as a function of µ by bias,

coverage of the 95% HPD interval, and measures of data integration (as explained in Section
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2.3.2). All calculations are completed with R (R Core Team, 2013).

2.3.2 Dynamic borrowing

We first consider comparing the extent to which each approach integrated supplemental

information using effective supplemental sample size (ESSS). ESSS, which uses the relative

gain in posterior precision obtained from a Bayesian model to characterize an additional

number of “effective primary” samples effectuated for joint inference, was considered by

Hobbs et al. (2013) as an extension of prior effective sample size (Morita et al., 2008).

Formally, for any model in which posterior precision is approximately linear in sample size,

ESSS is defined as ESSS = n
{
P(xp,x1,...,xH)
P∗(xp) − 1

}
, where P∗(xp) is the posterior precision

of the reference model with no borrowing from supplemental sources and P(xp,x1, ...,xH) is

the posterior precision under the joint model which incorporates supplemental information.

In the Gaussian case for MEMs, the posterior precision for Ωk is 1
v+
∑H

h=1
sh,k
vh

which results

in an ESSS which can be calculated exactly as

ESSSMEM = n
K∑
k=1

{
ωk

[
1
v +

∑H
h=1

sh,k
vh

1
v

− 1

]}
. (2.8)

Figure 2.3 plots median ESSS curves obtained from our simulation study as a function

of µ. In Scenario 1, wherein the primary and supplemental data are truly exchangeable, all

methods incorporated a substantial amount of supplementary data when the true mean is

equal or close to -4, but the MEM approaches resulted in approximately 1.7 and 2.2 times

larger median ESSS (for priors πe and πn, respectively) than CP and SHM when µ = −4.

Scenarios 2-4 illustrate that the SHM consistently fails to incorporate supplementary

information in the presence of heterogeneity among the supplemental sources. Similar

results were observed when using alternative values for the hyperprior upper limit at 5, 10,

20, and 100, as well. The maximum ESSS was larger for πn than πe, in general. In addition,

πn resulted in a higher maximum ESSS than CP in 2 of the 3 scenarios, while πe had a

higher maximum sample size than CP in 1 of the 3. Moreover, MEMs facilitate flexible

patterns of dynamic borrowing such that ESSS is maximized at the observed supplemental

cohort means and minimized in regions devoid of supplemental information. In contrast,

CP, which assumes exchangeability among all supplemental sources, yielded high median
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ESSS in regions without support from the supplemental information. As a result, the two

MEM approaches resulted in larger effective regions of borrowing when compared to CP.
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Figure 2.3: Median effective supplemental sample size using MEM with πe, πn priors, CP,
and SHM under each scenario. Dashed vertical gray lines are used to represent assumed
observed values of the supplemental group means for each scenario.
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2.3.3 Bias and coverage

This section evaluates trade-offs between the extent to which one can enhance efficiency

through integrating supplementary information (as characterized by ESSS) while main-

taining other desirable inferential properties. Figures 2.4a and 2.4b present scatter plots

that illustrate maximum ESSS as a function of integrated bias per standard deviation

(left) and 1-integrated 95% HPD coverage (right). Integrated bias per standard deviation

is calculated via Riemann integration of the absolute value of the bias over the simulated

points divided by the simulated standard deviation. Integrated coverage is calculated via

Riemann integration of the coverage over the simulated points. Additional plots depicting

coverage of the 95% HPD interval estimators, bias, and MSE as functions of µ can be found

in Appendix B.

Figure 2.4a effectively demonstrates that both CP and SHM intrinsically favor extreme

bias versus efficiency trade-offs. This is most evident for the SHM, which either gains

efficiency at the expense of a substantial increase in integrated bias (scenario 1) or exhibits

no bias but also no increase in efficiency due to its inability to leverage supplemental

information in the presence of heterogeneity in the supplemental cohorts (scenarios 2-

4). In contrast, CP, represented by diamonds, integrated supplemental information in all

scenarios but resulted in an identical level of both maximum ESSS and bias for all four

scenarios. As a result, the MEM approach resulted in less integrated bias than CP, in all

cases, with πe illustrating a 47 to 56% decrease in integrated bias and πn illustrating a

25 to 38% decrease in integrated bias compared to CP. In fact, even in the scenario most

favorable to CP and SHM (scenario 1), MEMs effectuated estimators that attained both

less bias and more efficiency.

Similar trends were observed in Figure 2.4b which describes maximum ESSS as a func-

tion of 1-integrated coverage. The MEM approach outperforms CP with πe yielding greater

coverage in 4 of 4 cases and πn providing greater coverage in 3 of 4 cases while the SHM

exhibits either worse integrated coverage than MEMs (scenario 1) or adequate coverage

with essentially no borrowing (scenarios 2-4).
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Figure 2.4: Plots demonstrating bias versus shrinkage trade-offs using the methods of CP,
SHM, and MEM with πe, πn source-inclusion priors. Note that CP overlaps for all four
scenarios.

2.4 Application to a regulatory tobacco clinical trial

This section presents a case study illustrating the application of MEMs and competing

approaches to data from a recently completed randomized trial of Very Low Nicotine Con-

tent (VLNC) cigarettes. CENIC-p1 was a randomized trial devised to evaluate the effect

of reducing the nicotine content of cigarettes on tobacco use and dependence (Donny et al.,

2015). Subjects were randomized equally to one of seven treatment groups, consisting of a

usual brand cigarette condition and six conditions with investigational cigarettes that con-

tained a range of nicotine contents from 15.8 mg of nicotine per gram of tobacco (15.8 mg/g

group; approximately the amount of nicotine found in commercially available cigarettes)

to VLNC cigarettes with 0.4 mg of nicotine per gram of tobacco (0.4 mg/g group). In

addition, one treatment group received cigarettes with 0.4 mg of nicotine per gram of to-

bacco with high tar to evaluate the impact of tar yield on the effect of VLNC cigarettes

(0.4 mg/g, HT group). Our case study compares the change from baseline in cigarettes

smoked per day (CPD) between the 0.4 mg/g group and the 15.8 mg/g group.
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There are several supplementary sources of data available that could be integrated into

our analysis to achieve a more precise estimate of the effect of VLNC cigarettes. First,

the usual brand and 0.4 mg/g, HT groups from CENIC would be expected to have similar

outcomes to the 15.8 mg/g and 0.4 mg/g groups, respectively, if nicotine is the primary

driver of smoking behavior. These data should not be assumed exchangeable, however, due

to the impact of “product switching” (i.e. assigning subjects to cigarettes different than

their usual brand is likely to impact smoking behavior regardless of the nicotine content

of the new cigarette) and tar yield. In addition, data are also available from two historical

trials of VLNC cigarettes (Hatsukami et al., 2010, 2013). We will consider the VLNC

cigarette group from Hatsukami et al. (2013) and the 0.05 mg nicotine cigarettes group from

Hatsukami et al. (2010). Both trials used VLNC cigarettes with similar nicotine content to

the 0.4 mg/g group from CENIC-p1, but neither trial used an equivalent to the 15.8 mg/g

control condition and, therefore, these historical sources will only provide supplemental

data for the VLNC condition. We note that the amount of nicotine in a cigarette can be

quantified by either the nicotine yield or the nicotine content. CENIC-p1 used the nicotine

content, whereas the two historical studies used the nicotine yield, but the nicotine content

of the cigarettes was similar. In summary, we have three potential supplemental sources

for the 0.4 mg/g group (0.4 mg/g, HT group from CENIC-p1, Hatsukami et al. (2013),

Hatsukami et al. (2010)) and one potential supplemental source for the 15.8 mg/g group

(usual brand group from CENIC-p1).

A summary of the observed data describing the mean and standard deviation for the

change in CPD for the primary and supplementary data sources can be found in the

upper panel of Table 2.1. Results for the CENIC, 0.4 mg/g group and the CENIC, 0.4

mg/g, HT group are nearly identical, suggesting that exchangeability might be a reasonable

assumption for these two cohorts, whereas the data from Hatsukami et al. (2013) and

Hatsukami et al. (2010) were not consistent with the CENIC 0.4 mg/g group. An ideal

method would exhibit the flexibility to integrate the data from the 0.4 mg/g, HT group

into the primary analysis, while giving little weight to the data from Hatsukami et al.

(2013) and Hatsukami et al. (2010). The two control populations (CENIC 15.8 mg/g and

CENIC usual brand) exhibited similar but not entirely consistent results, indicating that

some amount of smoothing is appropriate but not to the same extent as for the two 0.4
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mg/g conditions.

The lower panel of Table 2.1 provides results obtained from five competing approaches:

a standard model that does not allow borrowing, MEMs with the πe and πn priors, the

empirical Bayesian commensurate prior approach, and the SHM. Figure 2.5 represents the

“bias-variance” trade-off from Table 2.1 using the percent change in mean estimation and

the percent reduction in the posterior standard deviation relative to the standard model

that does not allow borrowing. Compared to the standard approach, the MEM approach

with the πe prior and the SHM show minimal change from the mean estimate at the expense

of minor decreases of 4% and 2%, respectively, in the posterior standard deviation. The

MEM approach with πn results in only a 10% change in mean estimation as compared to

the standard approach while considerably reducing the posterior standard deviation (29%).

This is in contrast to the commensurate prior approach which has a larger percent change

in mean estimation than MEMs with πn, but borrowed half as much as the MEM with

πn prior with a 14% decrease in the posterior standard deviation relative to the standard

approach.
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Study Source Mean Change SD

Control Groups
CENIC, 15.8 mg/g group (n=110) P 5.90 9.15

CENIC, usual brand group (n=112) 1 7.33 8.38

Treatment Groups

CENIC, 0.4 mg/g group (n=109) P -0.23 6.79

CENIC, 0.4 mg/g, HT group (n=116) 1 -0.15 6.71

Hatsukami et al. (2013) (n=55) 2 -4.24 9.02

Hatsukami et al. (2010) (n=32) 3 -7.08 7.02

Group Weight No Borrowing MEM πe MEM πn CP SHM

Control
ω 1.000 0.861 0.212 - -

ω1 0.000 0.139 0.788 - -

Treatment

ω 1.000 0.691 0.423 - -

ω1 0.000 0.305 0.566 - -

ω2 0.000 0.003 0.007 - -

ω3 0.000 0.000 0.000 - -

ω1,2 0.000 0.001 0.005 - -

ω1,3 0.000 0.000 0.000 - -

ω2,3 0.000 0.000 0.000 - -

ω1,2,3 0.000 0.000 0.000 - -

Control 5.90 (0.87) 6.01 (0.89) 6.52 (0.61) 6.21 (0.77) 5.87 (0.85)

Control ESSS 0.0 18.5 105.0 31.3 5.2

Treatment -0.23 (0.65) -0.22 (0.55) -0.21 (0.47) -0.84 (0.53) -0.29 (0.65)

Treatment ESSS 0.0 36.5 68.2 56.8 0.7

∆(Trt-Con) -6.12 (1.09) -6.22 (1.05) -6.73 (0.77) -7.05 (0.93) -6.17 (1.07)

Table 2.1: Summary statistics for change in cigarettes smoked daily since baseline by group
and posterior model estimates and ESSS for no borrowing, MEM πe, MEM πn, CP, and
SHM.
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Figure 2.5: Plot comparing percent change in mean estimation from the standard model
with no borrowing and the percent reduction in the posterior standard deviation for the
difference between the treatment and control groups in Table 2.1 for the standard ap-
proach with no borrowing to the CP, SHM, and MEM with πe, πn source-inclusion priors
approaches.
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2.5 Discussion

We proposed multi-source exchangeability models, a Bayesian approach for integrating

multiple, potentially non-exchangeable, supplemental data sources into the analysis of a

primary data source. The modeling strategy was devised to overcome both limitations

arising from “single-source” exchangeability models which produce estimators that tend

to ignore supplemental data in the presence of heterogeneity as well as the challenges

with implementation of BMA, which is limited by high dimensionality of model prior

specification. By way of contrast, the MEM strategy characterizes source-specific shrinkage

parameters that synthesize all possible exchangeability relationships between primary and

supplemental cohorts, thereby inducing robustness to heterogeneity. Moreover, the method

relies on source-specific prior inclusion probabilities for model specification which, unlike

BMA, yield consistent shrinkage estimators. The general approach presented in this chapter

can be adopted in conjunction with any statistically valid likelihood specification and any

set of appropriate supplementary cohorts to be considered for potential integration into

the primary cohort. The Gaussian case demonstrates how one can influence the shrinkage

of supplemental sources through specification of the prior probability of source inclusion,

while preserving consistency.

The MEM model formulation reduces the prior space by placing prior weights on the

source-inclusion probabilities but other solutions have also been proposed within the BMA

framework. Fernández et al. (2001) propose ten ‘benchmark’ priors which use little or

no subjective prior information for specification of the priors on parameters by choice

of a single scalar hyperparameter with a corresponding uniform prior for model weights.

Eicher et al. (2011) explore these benchmark priors in addition to a prior specification

corresponding to BIC and identify better performance utilizing the BIC-related prior in

situations where there are an extremely large number of models to consider (e.g, 240)

while also noting that the different priors can result in very different posterior results for

optimal models. These approaches to prior specification demonstrate that there is a strong

relationship between sample size and the number of models that must be averaged over

when identifying prior specification that result in optimal performance in finite sample

sizes. Eicher et al. (2011) also note that different prior specifications on the model weights

did not have much impact, but our results suggest that different priors can greatly affect
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posterior estimation. BMA may also be approximated using the MC3 algorithm for model

averaging as proposed by Madigan et al. (1995), but this may be infeasible for large K

due to computation considerations as the chain may fail to consider all models. By way

of contrast, relying on source-inclusion prior probabilities, the MEM model formulation

addresses these limitations.

A limitation of any method which attempts to utilize supplemental information is that

data integration naturally induces bias. We attempt to control bias through a model spec-

ification that facilitates source-specific shrinkage parameters, thereby inducing flexibility

in the presence of non- or partially exchangeable supplemental cohorts. Our simulation

studies and analytical findings demonstrate the extent to which the proposed MEM ap-

proach effectively integrates supplemental information while minimizing bias. Averaging

over our four scenarios and two priors, MEMs achieved 41% less integrated bias while ef-

fectuating a 93% larger maximum effective supplemental sample size when compared to

the commensurate prior approach.

The definition of exchangeability used, where µ = µh, may be seen as unnecessarily

stringent. The proposed MEM framework enables source-specific shrinkage to an extent

defined by the empirical evidence for exchangeability such that sampling observables arise

from identical distributional forms. As an alternative model, the strict assumption of

equality could be relaxed by allowing some small term, εh > 0, potentially specified for

each source, such that the extent of shrinkage is determined by µ = µh + εh. This model,

however, would not be identifiable without inducing sparsity on the domain of εh, perhaps

with a spike-and-slab prior. This would require additional hyperparameter specification

beyond that of the MEM framework, which would complicate the calibration to control

frequentist error in practical application.

Another limitation is that the type of study, retrospective/observational versus prospec-

tive/randomized, affects the quality and reliability of the resulting estimates, and there-

fore consideration of design type should be taken into account. For example, as conveyed

in Pocock’s “Acceptability Criteria,” (1976) decisions pertaining to which supplemental

sources should be considered for integrative analysis should be based on the study objec-

tives, as well as controlling sources of potential bias arising from inconsistent eligibility

criteria, application of the interventions, or outcome ascertainment. Similarly, when using
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data arising from non-randomized designs, confounding due to selection bias needs to be

accounted for in some manner, such as through existing methods for causal inference using

propensity scoring, inverse-probability weighting, or matching. We endeavor to extend the

methodology to facilitate integration of multiple trials while accounting for confounding

from non-randomized designs as future work.



Chapter 3

A Multi-source Adaptive Platform

Design for Emerging Infectious

Diseases

3.1 Introduction

In the context of the dire, rapidly developing Ebola outbreak introduced in Chapter 1, the

NIH launched the Partnership for Research on Ebola Vaccines in Liberia II (PREVAIL

II) trial, a randomized clinical trial to evaluate medical countermeasures against Ebola

virus disease (EVD). PREVAIL II was designed as a sequential platform design, where

multiple experimental therapeutics were evaluated sequentially compared to the optimal

standard of care (oSOC). Treatments that showed a significant improvement relative to

the oSOC were added to the oSOC for all future comparisons. This allowed PREVAIL II

the potential to rapidly evaluate multiple treatments, accelerate clinical development, and

maintain flexibility in the context of an emerging infectious disease epidemic within one

master protocol. However, particular aspects of the platform design methodology could

be enhanced for future outbreaks. One major limitation is that the proposed design only

allowed the use of contemporaneous controls. For instance, if the initial drug (drug A)

represented a significant improvement over the oSOC in the initial segment of the trial,

the second segment would evaluate drug B in addition to drug A in a randomized design,

30
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i.e. oSOC + drug A vs. oSOC + drug A + drug B, but only subjects from segment two

would be used to evaluate drug B. This ignores subjects randomized to receive oSOC +

drug A in the initial segment of the trial.

In this chapter, we illustrate how MEMs and adaptive randomization (AR) can be incor-

porated into the PREVAIL II master protocol to achieve improved operating characteristics

relative to the original PREVAIL II design. In Chapter 2, we illustrated that MEMs can be

used to integrate information arising from potentially non-exchangeable normal populations

while minimizing bias. Integrating supplemental information using MEMs dynamically de-

termines if the non-contemporaneous segments in PREVAIL II are exchangeable (e.g., if

the segments have equivalent mortality rates) and thereby shares information across seg-

ments, if appropriate, to achieve more precise estimates of the disease-response rate and

increase power.

In addition, we will incorporate AR through an extension of the dynamic allocation

procedure proposed by Hobbs et al. (2013), which targets information balance across treat-

ment groups. Borrowing information from previous segments using MEMs may lead to

imbalances in statistical information across treatment groups within a segment because

supplemental information are only available for the control group, but, by adapting the

randomization ratio to allocate more subjects to the treatment group, we are able to bal-

ance statistical information within a segment. Balancing information by boosting allocation

to the novel treatment arm improves statistical power to detect effective treatments. As

effective novel therapies emerge in the platform, boosting allocation to the treatment arm

in the presence of evidence for inter-segment exchangeability among controls also has the

potential to improve outcomes for trial participants.

It is important to note that the proposed multi-source AR differs fundamentally from

conventional response- or outcome-AR methods. A recent article by Thall et al. (2015)

evaluated the impact of outcome-AR, concluding that designs that use outcome-AR attain

diminished power, often to a considerable extent, necessitating a larger overall sample

size. Moreover, outcome-AR risks large imbalances in sample size in the wrong direction,

assigning more patients to inferior treatments in the presence of the small to moderate effect

sizes observed in practice. In contrast, our proposed AR scheme endeavors to balance total

effective information in the presence of potentially non-exchangeable supplemental cohorts,
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which maximizes power for comparing treatment groups.

The remainder of the chapter proceeds as follows. First, the standard design of the

PREVAIL II master protocol is introduced in Section 3.2, followed by our proposed design

which incorporates MEMs and AR in Section 3.3. The scenarios considered for the simu-

lation studies, the process for design calibration, and results for the simulation studies are

presented in Section 3.4. We conclude with a brief discussion in Section 3.5.

3.2 Standard design of PREVAIL II master protocol

The initial objective of PREVAIL II was to sequentially evaluate multiple candidate ther-

apies for the treatment of EVD. Each treatment was to be evaluated in a separate trial

segment and each segment to consist of a separate randomized trial to compare the new

treatment versus the current oSOC. Treatments found to offer a significant survival benefit

compared to the standard of care would be added to the standard of care for all future

segments. Figure 3.1(I) graphically depicts an example with 3 segments and four differ-

ent treatment combinations represented by color. In segment 1, the oSOC arm (blue) is

compared to an experimental arm of drug A + oSOC (yellow) with the proportion ran-

domized to the experimental arm fixed at τ = 0.5 (also represented by the equally sized

triangles signifying equal enrollment throughout the segment). If the experimental arm

was determined to provide significant improvement over the standard of care, then the

next trial segment would consist of a comparison between the updated oSOC, drug A +

oSOC (yellow), and a new experimental arm, drug B + drug A + oSOC (green). However,

if the drug B + drug A + oSOC does not demonstrate a significant improvement, drug A +

oSOC is carried forward to the next segment where drug A + oSOC (yellow) is compared

to drug C + drug A + oSOC (maroon).
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Figure 3.1: Example comparing three segments of a trial with (I) PREVAIL II master
protocol which only compares contemporaneously enrolled subjects with equal allocation
to the study arms, τ = 0.5, versus (II) framework with methods to potentially incorporate
non-contemporaneous data and ability to adaptively alter the randomization ratio as a
function of the effective supplemental sample size, τ(t) = f(ESSS). Equally sized trian-
gles further indicate segments with equal allocation versus smaller oSOC triangles which
indicate the potential for greater allocation to the experimental arm in the presence of
supplemental information.
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The PREVAIL II master protocol allowed for the rapid evaluation of multiple candidate

treatments. Within a segment, PREVAIL II used frequent sequential monitoring in the

Bayesian paradigm to allow early termination in the event that a treatment provided a

substantial survival benefit over the standard of care (Dodd et al., 2016; Proschan et al.,

2016). The primary outcome for PREVAIL II was a binary indicator of 28-day mortality.

Let xA be the number of deaths, nA be the total number of subjects randomized, and

pA be the 28-day mortality rate for hypothetical treatment arm A. Define xB, nB and

pB analogously for hypothetical control arm B. Assuming independent beta(α = 1, β = 1)

priors for pA and pB results in independent beta posteriors with α = 1+xA, β = 1+nA−xA
for pA and α = 1 + xB, β = 1 + nB − xB for pB.

Formal inference on the 28-day mortality rate was based on the posterior distribution.

The posterior probability that the 28-day mortality rate in arm A is less than arm B is:

P (pA < pB|xA, xB) =

nA+1∑
k=xA+1

(
nA+1
k

)(
nB+1
xB

)
(nB − xB + 1)(

nA+nB+2
k+xB

)
(nA + nB − k − xB + 2)

. (3.1)

PREVAIL II was planned with a within-segment maximum sample size of 100 subjects

per arm. If the maximum sample size were reached, treatment A would be declared a

significant improvement over the control if P (pA < pB|xA, xB) ≥ 0.975.

PREVAIL II enabled aggressive interim monitoring to stop the trial early if the new

treatment represented a substantial improvement over the standard of care. Interim analy-

ses were first completed after six subjects were randomized to each arm and were completed

after every 2 subjects until data were available for 40 subjects. After the first 40 subjects,

interim monitoring was carried out after every 40 subjects until a maximum of 200 subjects

were enrolled (100 per arm). The trial would stop and declare treatment A a significant

improvement over the control if P (pA < pB|xA, xB) ≥ 0.999. Simulation results demon-

strated that this design had an overall within-segment type-I error rate near 0.03 and 86%

power to detect significant difference assuming a relative risk of 0.5 for the new treatment

(Dodd et al., 2016).
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3.3 Methods

A limitation of the PREVAIL II design is that only contemporaneous information from

the current segment is included in the analysis. Thus, relevant data from prior segments

was ignored. In fact, after the initial segment, non-contemporaneous, supplemental data is

always available for the control arm from one or more previous segments. While avoiding

the introduction of inter-cohort bias, the PREVAIL II design makes inefficient use of the

data. Utilizing Bayesian methods that estimate partial exchangeability across segments,

however, overcomes this inefficiency, resulting in increased power (or decreased total sam-

ple size), while protecting against bias in the presence of systematic differences between

supplemental and contemporaneous controls.

3.3.1 General framework of multi-source adaptive designs

To address this limitation, we propose the general conceptual design graphically represented

in Figure 3.1(II). Segment 1 is identical to the original design proposed for PREVAIL

II; patients are randomized with a fixed allocation ratio of τ = 0.5 to the oSOC (blue)

or experimental drug A + oSOC (yellow). However, after the first segment, there will

always be supplemental, non-contemporaneous control arm information acquired from past

segments which can be integrated into future comparisons using a dynamic Bayesian model.

The figure depicts data acquired from prior segments by rectangles with diagonal lines

placed in the segment of observation. For example, in Segment 2, supplemental data for

the controls are available from Segment 1, which in our figure comes from the yellow study

arm. In Segment 3, supplemental data for the controls are available from the first two

segments.

Incorporating supplemental information from previous segments can potentially result

in imbalances in the total effective information between treatment groups within a seg-

ment if a fixed allocation to the experimental arm of τ = 0.5 is maintained. Extending

the AR method proposed by Hobbs et al. (2013) to the setting of a sequential platform

design attenuates this imbalance and maximizes power. This is achieved by allowing the

allocation ratio to vary as a function of the effective supplemental sample size (ESSS).

Recall, ESSS is a measure reflecting the extent of relative gain in the posterior precision
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obtained from a Bayesian model when compared to a model that neglects the supplemental

sources. The measure is intended to characterize the effective number of samples incorpo-

rated from supplemental sources. By defining the allocation ratio as a function of ESSS

(τ(t) = f(ESSS)), the proposed AR methodology aims to balance total information across

treatment groups within a segment. Within Figure 3.1(II) this potentially unequal allo-

cation to the treatment arms is represented by the differing slopes, which are adjusted in

relation to the extent of estimated exchangeable data contributed by concordant treatment

regimes during segments 2 and 3.

The remainder of this subsection presents notation to explain the general framework

for multi-source AR. During the initial period of a segment, equal allocation between arms

is used until sufficient information is acquired to facilitate estimation of inter-segment

exchangeability, after which block-randomization is used to update the allocation ratios

according to estimates of ESSS. Let nburn represent the number of patients which must

be observed for the “burn-in” period at the start of any segment where supplemental

information is available, B represent the total number of blocks to adaptively randomize

patients after the burn-in period, and tb be the “time” of the bth interim analysis at the

start of a block. Additionally, define nA(tb) and nB(tb) as the total sample size assigned

in the current segment to the treatment and control arms at tb, respectively, ESSS(tb)

as the estimated effective supplemental sample size from the data at tb, and R(tb) as the

number of subjects left to be randomized at tb assuming the maximum sample size of the

segment is achieved. Recall, the objective is to balance total effective information at trial

completion such that, at tb, nA(tb) = ESSS(tb) + nB(tb). Thus, allocation is needed in

relation to nA(tb) + τR = ESSS(tb) + nB(tb) + (1 − τ)R. Therefore, under the the aim

of balanced allocation, assignments to treatment for the next block of patients attains the

following formulation

τ(tb) =
1

2

(
ESSS(tb) + nB(tb)− nA(tb)

R(tb)
+ 1

)
. (3.2)

τ(tb) can range between 0 and 1 depending on the extent of shrinkage to supplemental

information with a value of 0 implying all patients are randomized to the control arm,

a value of 0.5 implying a 1:1 allocation ratio, and a value of 1 implying all patients are

randomized to the treatment arm.
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3.3.2 Incorporating supplemental information with Bayesian modeling

using MEMs

Our proposed multi-source adaptive design as described thus far is general and can be im-

plemented using any method for incorporating supplemental information. While there are

many potential methods available for incorporating supplemental information, the MEM

framework is specifically considered herein on the basis of recent efforts demonstrating its

desirable properties for yielding shrinkage estimators in the presence of non- or partially

exchangeable cohorts while avoiding highly parameterized models (which are computation-

ally infeasible for implementation and calibration of sequential design).

Recall from Chapter 2, the MEM framework takes the H supplemental segments avail-

able for incorporation and maps them to 2H = K multi-source exchangeability models,

denoted Ωk, which represent all possible combinations of assumptions of exchangeability

between the current segment and the H supplemental segments. For an example in the

context of our proposed design, refer back to Figure 3.1(II) where analyses at segment 3

would have four possible MEMs: no supplemental segments assumed exchangeable with

segment 3 (Ω), only segment 1 assumed exchangeable with segment 3 (Ω1), only segment

2 assumed exchangeable with segment 3 (Ω2), and both segments 1 and 2 assumed ex-

changeable with segment 3 (Ω1,2). The MEM framework produces a posterior estimate

over these K models using posterior model weights, ωk, such that
∑K

k=1 ωk = 1. MEMs

comprising non-exchangeable supplemental data receive smaller posterior weights whereas

models contributing only exchangeable sources carry more influence in the posterior distri-

bution. A resultant smoothed posterior estimator synthesizing all possible exchangeability

relationships is used for inference.

If the standard beta-binomial model is updated to accommodate MEMs in the control

arm, a similar structure to the current PREVAIL II master protocol can be utilized which

is able to incorporate supplemental data from previous segments, making more efficient

use of available evidence and potentially improving the power of the trial. In the setting

of PREVAIL II, we have supplementary data for the control arm, arm B, but not for the

treatment arm, arm A. Therefore, we will model arm A using the beta-binomial model and

model arm B using MEMs. Introducing formal notation, the marginal posterior distribution

of pB given the observable data, D, from the current segment’s controls and the observable
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data from H supplemental segments is derived as the weighted average of the posterior

distributions for the K multi-source exchangeability models, q(pB|Ωk, D):

q(pB|D) =

K∑
k=I

ωkq(pB|Ωk, D). (3.3)

The posterior model weight, ωk, for each MEM is given by

ωk = pr(Ωk|D) =
p(D|Ωk)π(Ωk)∑K
j=I p(D|Ωj)π(Ωj)

, (3.4)

where p(D|Ωk) is the integrated marginal likelihood for Ωk and π(Ωk) is the prior probabil-

ity that Ωk is the true model. The formulation of posterior model weights in (3.4) utilizes a

framework similar to Bayesian model averaging (BMA), however the MEM framework re-

duces the dimension of the prior weight space by enabling specification on the supplemental

sources rather than models as described in Chapter 2.

Using the notation from Section 3.2 for arm A and the current segment for arm B, let

xB,h be the number of deaths observed in arm B for non-contemporaneous supplemental

segment h (h = 1, ...,H), nB,h be the number of subjects randomized to arm B in segment

h, and pB,h be the 28-day mortality rate for arm B in segment h. Let Sh denote an indicator

function of whether or not the non-contemporaneous supplementary source h is assumed

exchangeable (i.e., if Sh = 1, pB,h = pB). A model, Ωk, is then defined by considering a set

of source-specific indicators, (S1 = s1,k, ..., SH = sH,k), where sh,k is a binary indicator of

whether or not source h is assumed exchangeable with the primary data in Ωk. Assuming

independent beta(α, β) priors on pB and pB,1,...pB,H , the integrated marginal likelihood

for each MEM can be written as follows:

p(D|Ωk) =
B
(
x+ α+

∑H
h=1 sh,kxh, n+ β − x+

∑H
j=1 sj,k(nj − xj)

)
B(α, β)

×

H∏
i=1

(
B(xi + αi, ni + βi − xi)

B(αi, βi)

)1−si,k
,

(3.5)

where B() represents the beta function. The marginal likelihood results in the following
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MEM-specific posterior distribution used to calculate the marginal posterior distribution

in (3.3):

q(pB|D,Ωk) = Beta

x+ α+

H∑
h=1

sh,kxh, n+ β − x+

H∑
j=1

sj,k(nj − xj)

 . (3.6)

Therefore the posterior distribution of (3.3) for the 28-day mortality rate for the MEM

estimator is a mixture of beta distributions encompassing all possible exchangeability re-

lationships.

Since supplementary data are only available for the control arm (arm B), the marginal

posterior probability that pA < pB is a weighted average of the conditional posterior

probability that pA < pB for all possible assumptions about exchangeability:

PMEM (pA < pB|xA, xB) =
K∑
i=1

ωiP (pA < pB,Ωi |xA, xB,Ωi). (3.7)

In the context of AR with MEMs, a 1:1 allocation ratio is assumed during the burn-in

period. The specific calculations used for ESSS in (3.2) are defined as follows. For each

individual MEM, in the context of the beta-binomial model, the posterior effective sample

size (ESS) can be generally derived as

ESS(Ωk) = α+ β + nB +

H∑
h=1

sh,knB,h. (3.8)

The posterior ESSS for the overall MEM estimate is then calculated as the weighted average

of the difference from each individual MEM’s ESS and the current control arm’s sample

size: ESSS =
∑K

k=1 ωk[ESS(Ωk) − nB]. Further, it should be noted that the beta(α, β)

prior in the beta-binomial model confers the effective information of α + β subjects in

(3.8). Therefore, the MEM facilitates a non-zero ESSS of α + β when assuming the prior

probability of 1 on the independence model (e.g., the model which does not borrow strength

across segments).
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3.3.3 MEM prior probability specification

As with any Bayesian model, the properties of MEMs depend on the prior specification

assumed for the model weights, with more flexible choices imparting robustness for poste-

rior inference. Since supplemental sources are assumed independent in the MEM frame-

work, the prior model weight formulation can be specified as the product of the source-

specific prior inclusion probabilities: π(Ωk) = π(S1 = s1,k, ..., SH = sH,k) = π(S1 =

s1,k)× · · · × π(SH = sH,k) (Kaizer et al., 2017). While there are numerous strategies that

could be used to identify potential priors for each source, this section considers specific

fully Bayesian and empirical Bayesian approaches which were found to achieve desirable

operating characteristics in our simulation study.

Our proposed fully Bayesian prior, denoted by πe, assumes equal prior weight for in-

clusion and exclusion for all supplementary sources: πe(Sh = 1) = 1
2 . This prior provides

impartiality to which supplemental segments should be considered exchangeable with the

primary segment.

In contrast to the fully Bayesian approach, an empirical Bayesian (EB) approach utilizes

the data collected to inform the prior distribution by maximizing the marginal likelihood

with respect to the prior weights. For the proposed MEM model for binary data discussed

above, the marginal likelihood is maximized by placing a prior inclusion weight of 1 on

sources assumed exchangeable, while all other supplemental sources receive a prior inclusion

weight of 0. This induces posterior weights of 1 for the model which maximizes the marginal

density and 0 for all other models. The proposed EB prior is denoted by πEB.

However, placing all of the weight on a single MEM may induce less than ideal operating

characteristics under circumstances where the marginal density of multiple MEMs may be

close to the maximum marginal density. Therefore, a constrained EB prior is proposed,

denoted πEBc , where 0 ≤ c ≤ 1, such that the marginal density is maximized under

the constraint that the prior source inclusion probabilities must be less than c. This

results in a prior inclusion probability of c for segments assumed exchangeable in the MEM

that maximizes the marginal density, with all other segments receiving a prior inclusion

probability of 0. When c = 1, the standard EB formulation is achieved, and when c = 0,

there is no borrowing of supplemental information. Constraining the optimization over Ωk

with πEBc attenuates bias and avoids over smoothing in the presence of limited evidence
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for exchangeability.

As an illustrative example of the behavior of the posterior weights for these priors,

consider the case where there are three supplemental segments. Let nB, nB,1, nB,2, nB,3 =

100, xB = 50, xB,1 = 52, xB,2 = 45, and xB,3 = 65. The calculated posterior weights

for each MEM are provided in Table 3.1. We see that besides πe, no other prior gives

any weight to S3 which has an estimated mortality of 0.65 and is the most different from

our primary segment with its 0.50 estimated mortality. Further, as c decreases for the

πEBc priors we see that Ω5, which assumes both S1 and S2 are exchangeable, receives

less weight while Ω1, which assumes no supplemental sources are exchangeable, receives

increasing amounts of the posterior weight.

Sources in Ωk

MEM P S1 S2 S3 πe πEB1 πEB.9 πEB.5 πEB.1 πEB0

Ω1 1 0 0 0 0.025 0.000 0.000 0.030 0.420 1.000
Ω2 1 1 0 0 0.136 0.000 0.026 0.165 0.256 0.000
Ω3 1 0 1 0 0.111 0.000 0.021 0.134 0.208 0.000
Ω4 1 0 0 1 0.015 0.000 0.000 0.000 0.000 0.000
Ω5 1 1 1 0 0.556 1.000 0.953 0.672 0.116 0.000
Ω6 1 1 0 1 0.064 0.000 0.000 0.000 0.000 0.000
Ω7 1 0 1 1 0.012 0.000 0.000 0.000 0.000 0.000
Ω8 1 1 1 1 0.081 0.000 0.000 0.000 0.000 0.000

Table 3.1: Posterior model weights for each multi-source exchangeability under various
priors to demonstrate the impact different priors can have on the resulting weights. P rep-
resents the current segments, Sh represents the supplemental segments potentially available
for incorporation (h = 1, 2, 3).

3.4 Simulation Study

Simulation was used to evaluate and compare the operating characteristics of the PREVAIL

II master protocol and the proposed multi-source AR approach. Data were generated

assuming an underlying mortality rate, poSOC , for oSOC alone, and the mortality rate for

each potential drug combination was defined through a multiplicative model utilizing the

relative risk (RR) of each drug and assuming no interactions. For example, the mortality
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rates for the various combinations of oSOC and two potential treatments are:

oSOC =poSOC ,

oSOC+Drug A =poSOC × RRA,

oSOC+Drug B =poSOC × RRB,

oSOC+Drug A+Drug B =poSOC × RRA × RRB.

The multi-source AR approach assumes independent beta(α = 1, β = 1) priors for pA

and pB and hypothesis testing at the interim and final analyses is based on the marginal

posterior probability that pA is less than pB. As in PREVAIL II, our proposed design will

stop and declare the experimental arm to be a significant improvement over the control if

P (pA < pB|xA, xB) > 0.999 for all interim analyses. The posterior probability thresholds

used at the final analysis will be calibrated for each prior to achieve the desired operating

characteristics, as described in Section 3.4.1.

Operating characteristics for the multi-source AR approach using MEMs with πe and

πEBc were compared to the naive approach of pooling all available supplemental information

regardless of exchangeability, which will maximize the amount of supplemental information

available, but introduces a prohibitive extent of bias in the presence of non-exchangeable

supplementary segments. Rather than adopting the aggressive interim monitoring of PRE-

VAIL II, we propose interim monitoring after the enrollment of every 40 subjects until the

end of the burn-in period, where it will then follow the practical schedule of interim anal-

yses at the start of each block, at tb, with nburn = 60 and B = 5. This implies interim

analyses after 40, 60, 95, 130, and 165 patients were observed, but updating the allocation

ratio using (3.2) only occurs after 60, 95, 130, and 165 patients are observed. If the trial

does not terminate early for superiority it will proceed to enroll a total of 200 patients

in the current segment and conduct the final analysis after all information is collected.

Additionally, bounds are placed on (3.2) to ensure τ(tb) ∈ [0, 1].

We considered the sequential testing of 5 potential therapeutics in the context of our

platform design with two scenarios for the underlying oSOC mortality rate: (1) a constant

mortality rate for all segments: p = 0.40 and (2) a decreasing mortality rate by segment,

p = (0.74, 0.61, 0.48, 0.36, 0.23). These decreasing values reflect observed mortality rates as
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the Ebola epidemic progressed from May 2014 to December 2014 in Sierra Leone (Dodd

et al., 2016). The varying mortality scenario is more challenging for MEMs than the

constant mortality case since the supplemental controls are not exchangeable, in which

case minimal borrowing is preferred.

Further, five different therapeutic RR profiles are examined: (1) all drugs have a null

effect (RR=1) and (2-5) one drug in the treatment pipeline has a moderate effect in segment

2, 3, 4, or 5 with RR=0.7. In a rapidly evolving epidemic it may very well be that no or

very few of the included therapeutics demonstrate an improvement. Moreover, location in

the pipeline may impact the platform’s operating characteristics.

3.4.1 Parameter calibration

To provide context, the original PREVAIL II design had a type-I error rate of around 0.03

with 86% power to reject the null hypothesis assuming a RR of 0.5, a baseline 28-day

mortality rate of 0.4, and a posterior probability threshold of 0.975 at the final analysis

within a segment if the trial did not terminate early. While the same posterior probability

threshold could be used for MEMs, performance will be optimized if the posterior proba-

bility threshold is optimized to achieve the desired operating characteristics. Furthermore,

optimal characteristics may be achieved with a threshold that varies by segment because

more supplemental information will be available at later segments as compared to earlier

segments.

Given the two scenarios for the underlying mortality rate, two potential processes to

calibrate the posterior probability thresholds are considered. First, thresholds can be cal-

ibrated to achieve a type-I error rate of approximately 0.025 within a segment for the

constant mortality scenario and the operating characteristics under the varying mortality

scenario can be evaluated to determine if the inflation in the type-I error rate is within

acceptable levels. Alternatively, thresholds can be calibrated to limit the inflation of the

type-I error rates in the varying mortality scenario while maintaining similar power in the

constant mortality scenario to that observed for the PREVAIL II design. To address the

first case, potential thresholds are identified via simulation without interim monitoring us-

ing a gradient descent algorithm with nburn = 60 and B = 5 until the average segment-wise

type-I error rate is between 0.024 and 0.026. These estimates are used as the initial values
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Segment
Scenario Approach 1 2 3 4 5

Constant
πEB10 0.975 0.97125 0.96625 0.95875 0.95750
πe 0.975 0.96375 0.95875 0.94375 0.93250
POOL 0.975 0.97375 0.96375 0.95375 0.94000

Both
πEB10 0.975 0.97500 0.97750 0.97500 0.97500
πe 0.975 0.98150 0.98500 0.98750 0.98750
POOL 0.975 0.99500 0.99900 0.99750 0.99900

Table 3.2: Posterior probability thresholds for MEMs with empirical Bayesian prior (πEB10),
MEMs with fully Bayesian uniform prior (πe), and the naive pooling (POOL) approach
presented to optimize to maintain average type-1 error rate across scenarios for constant
underlying mortality scenario only (“Constant”) or to minimize trade-off in inflation of
type-1 error in constant underlying mortality scenario while maintaining power equal to,
or greater, than the PREVAIL II scenario under the varying underlying mortality scenario
(“Both”).

to further refine thresholds to achieve desired performance. In the second case, thresholds

are identified by increasing the posterior threshold segment-by-segment to achieve equal

or greater power compared to the PREVAIL II design in the constant mortality scenario

while attempting to minimize the inflation of the type-I error rate in the varying mor-

tality scenario as compared to the PREVAIL II design. The latter approach may result

in a trade-off between power and type-1 error but, in the context of an emerging disease

outbreak, this is beneficial due to the importance of maintaining power to detect effective

treatments.

3.4.2 Results

25,000 simulated trials were completed for each scenario. Operating characteristics are

presented for the PREVAIL II master protocol, MEMs with the fully Bayesian uniform

prior (πe), MEMs with the constrained EB prior (πEBc), and naive pooling. Results are

presented for thresholds calibrated to achieve the desired type-I error rate in the constant

mortality scenario as described in Section 3.4.1, with the thresholds identified under each

approach to calibration presented in Table 3.2. The value of c = 0.10 was selected for πEBc

based on extensive sensitivity analyses (not presented) that considered values of c from

0.05 to 0.50.
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The operating characteristics presented for each scenario include the probability of

attaining a positive test within a segment based on the Bayesian posterior probability

thresholds, the mean (sd) total number of subjects (N) treated throughout all segments as

a measure of early termination, the mean (sd) proportion randomized to the treatment arm

in segments 2-5 as a measure of adaptive randomization performance, and the mean (sd)

proportion who survived either across segments 2-5 in the null case or in the specific non-

null segment in scenarios with an efficacious therapy. When considering a drug under the

null case it is ideal to rarely attain a positive test within a segment (i.e., have a probability

of rejecting near 0), whereas it is desirable to attain a positive test within segments that

include efficacious treatment (i.e., have a probability of rejecting near 1). Further, the

proportion surviving in the null scenario is expected to be identical in PREVAIL II and the

proposed AR design, but an improvement in survivorship is expected in non-null segments

when the AR design effectuates more allocation to the treatment arm.

Table 3.3 presents simulation results for the constant mortality scenario. The average

type-I error rate across segments for MEMs is similar to or less than the average type-

I error for the PREVAIL II master protocol. However, the power to detect an effective

drug is higher in every non-null segment for πEB10 and πe compared to PREVAIL II, with

increases in power ranging from 9% to 27% and 29% to 69% for πEB10 and πe, respectively.

Naive pooling, which represents the best-case upper bound on performance in the presence

of a constant mortality rate, results in similar or reduced type-I error rates compared to

those observed in PREVAIL II with increases in power of 34% to 76% across all segments.

Operating characteristics are summarized visually in the left panel of Figure 3.2, where

open triangles represent the results for the PREVAIL II design, closed shapes represent

approaches incorporating supplemental information, and the different colors identify the

segment. In the presence of a constant mortality rate, all 8 MEM-based designs have

increased power compared to PREVAIL II while 6 also have lower average type-1 error

rates.
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Figure 3.2: Plots demonstrating power versus average type-1 error rate across scenarios
for segments 2-5 for PREVAIL II, MEMs with πEB10 and πe priors, and the naive pooling
case.

While a moderate RR=0.7 results in minimal early termination, as observed by the

average sample size estimates near 1000 for each overall trial, AR balances the information

available for evaluating the control and experimental arms, with the positive byproduct

of more patients receiving a potentially beneficial treatment in the MEM-based designs

than the PREVAIL design. Across segments, we observed an absolute maximum increase

of 15.5% and 29.7% in the proportions assigned to the treatment arm for πEB10 and πe,

respectively. This also corresponds to increases in the proportion surviving within non-null

segments for the MEM-based designs compared to the PREVAIL II design with improve-

ments observed for both πEB10 and πe. Figure 3.3(a) presents the proportion randomized

to the treatment group and Figure 3.3(b) presents the proportion surviving by segment for

all designs in the constant mortality scenario. πe and naive pooling randomize a similar

number to the control group, while πEB10 is more conservative. The MEM-based designs

and naive pooling show clear increases in the median proportion surviving in each non-null

scenario compared to the PREVAIL II design.
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Figure 3.3: Proportion assigned to treatment arm across segments 2-5 (left) and proportion
surviving across segments 2-5 (Null scenario) or within the non-null segment (Scenarios 2-
5) (right) under the constant mortality scenario (top) and the varying mortality scenario
(bottom) for the PREVAIL II design, MEM-based designs, and naive pooling.

Table 3.4 presents simulation results for the varying mortality scenario using the thresh-

olds calibrated for the constant mortality scenario. Recall that this scenario is motivated

by the mortality rate observed in Sierra Leone during the West Africa Ebola outbreak

and is more challenging than the constant mortality scenario. The PREVAIL II design
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maintains a type-I error rate between approximately 0.025 to 0.03 since no supplemental

information is incorporated across segments, but the power steadily decreases with each

segment as the underlying mortality rate continues to drop and the absolute difference in

the mortality rate due to an effective treatment shrinks. Figure 3.2 clearly identifies that

the MEM-based design with πe (filled-in triangles) and naive pooling (filled-in diamonds)

result in drastic inflation to the average type-I error rates, which negate any benefit due

to increased power compared to the PREVAIL II design. However, the more conserva-

tive πEB10 prior (filled-in squares) demonstrates a more acceptable trade-off, where the

largest inflation of the type-I error rate occurs in segment 5, increasing from 0.026 for the

PREVAIL II design (open triangles) to 0.064 for πEB10 , while power increases from 2%

to 51% across non-null segments. Figures 3.3 (c) and (d) demonstrate similar operating

characteristics to the constant mortality scenario, where the MEM-based designs and naive

pooling assign a higher proportion of subjects to the treatment arm with increases in the

proportion surviving the non-null segments as compared to the PREVAIL II design.

When considering Tables 3.3 and 3.4 together, the MEM-based design with πEB10 offers

perhaps the best performance when taking into account all operating characteristics and

trial properties. While there is an inflation of the type-I error rate in the varying mortality

case, we believe it is within acceptable levels when you consider the context of a rapidly

developing disease outbreak and that there are clear improvements to power, the proportion

randomized to the treatment arms, and the proportion surviving within non-null segments

compared to the PREVAIL II design.

Section B of the Supplementary Materials provides additional simulation results. Sec-

tion B.1 provides results when thresholds are calibrated to control the type-I error rates in

the varying mortality scenario while maintaining the power for the PREVAIL II design in

the constant mortality scenario. Section B.2 provides results for scenarios with RR=0.5.

Section B.3 provides results with different parameter values for nburn, B, and c. Section

B.4 provides results with two effective therapeutics.
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.032 0.028 0.029 0.031 0.029 996 (25.58) 0.5 (0) 0.600 (0.017)

S2 0.032 0.432 0.028 0.029 0.028 988 (38.41) 0.5 (0) 0.659 (0.036)

S3 0.032 0.028 0.431 0.029 0.030 988 (38.89) 0.5 (0) 0.659 (0.036)

S4 0.032 0.028 0.029 0.434 0.028 988 (38.79) 0.5 (0) 0.659 (0.036)

S5 0.032 0.028 0.029 0.031 0.441 988 (38.78) 0.5 (0) 0.659 (0.036)

πEB10

S0 0.027 0.026 0.026 0.030 0.026 998 (14.97) 0.655 (0.029) 0.600 (0.017)

S2 0.027 0.470 0.025 0.028 0.024 990 (32.03) 0.642 (0.032) 0.669 (0.035)

S3 0.027 0.026 0.509 0.031 0.025 990 (31.49) 0.634 (0.035) 0.676 (0.035)

S4 0.027 0.026 0.026 0.548 0.028 990 (31.09) 0.638 (0.032) 0.682 (0.035)

S5 0.027 0.026 0.026 0.030 0.560 991 (30.96) 0.654 (0.029) 0.686 (0.036)

πe

S0 0.027 0.027 0.026 0.033 0.037 998 (14.63) 0.797 (0.021) 0.600 (0.017)

S2 0.027 0.556 0.017 0.020 0.026 990 (32.08) 0.785 (0.032) 0.683 (0.035)

S3 0.027 0.027 0.611 0.021 0.024 989 (32.85) 0.782 (0.038) 0.696 (0.035)

S4 0.027 0.027 0.026 0.694 0.027 988 (33.67) 0.784 (0.034) 0.701 (0.035)

S5 0.027 0.027 0.026 0.033 0.745 987 (34.80) 0.794 (0.023) 0.701 (0.035)

POOL

S0 0.027 0.022 0.030 0.036 0.040 998 (15.38) 0.825 (0.009) 0.600 (0.017)

S2 0.027 0.581 0.011 0.017 0.025 984 (37.24) 0.817 (0.024) 0.691 (0.036)

S3 0.027 0.022 0.682 0.018 0.024 982 (38.71) 0.814 (0.030) 0.701 (0.036)

S4 0.027 0.022 0.030 0.731 0.028 981 (38.51) 0.814 (0.028) 0.702 (0.036)

S5 0.027 0.022 0.030 0.036 0.778 981 (38.75) 0.821 (0.013) 0.702 (0.036)

Table 3.3: Operating characteristics and trial properties for the utilized platform design as
well as alternative adaptive platform designs. 25,000 simulations for the constant under-
lying mortality case (p = 0.4 for all segments) with RR=0.7 for non-null segments for the
PREVAIL II (P-II) master protocol; MEMs incorporating adaptive randomization with
the constrained empirical Bayes, c = .10 prior (πEB10) and the fully Bayesian uniform
prior (πe); and the naive pooling (POOL) of all supplemental information incorporating
adaptive randomization using posterior probability thresholds optimized for the constant
mortality case. Results provided for power/type-I error for each segment, average (sd)
total sample size (N) across entire trial, average (sd) proportion allocated to treatment
arm in segments 2-5, and average (sd) proportion surviving in the non-null segments (for
Trt=S2-S5) or across segments 2-5 (for Trt=S0).



50

Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Prior Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.028 0.030 0.032 0.027 0.025 997 (22.73) 0.5 (0) 0.580 (0.017)

S2 0.028 0.764 0.027 0.025 0.027 972 (51.38) 0.5 (0) 0.482 (0.041)

S3 0.028 0.030 0.555 0.026 0.026 984 (42.33) 0.5 (0) 0.591 (0.038)

S4 0.028 0.030 0.032 0.386 0.026 990 (35.35) 0.5 (0) 0.693 (0.035)

S5 0.028 0.030 0.032 0.027 0.235 994 (27.80) 0.5 (0) 0.804 (0.029)

πEB10

S0 0.027 0.040 0.048 0.058 0.061 998 (16.20) 0.543 (0.016) 0.580 (0.017)

S2 0.027 0.781 0.042 0.063 0.070 971 (47.98) 0.557 (0.019) 0.487 (0.038)

S3 0.027 0.040 0.637 0.052 0.069 983 (39.13) 0.551 (0.018) 0.597 (0.036)

S4 0.027 0.040 0.048 0.511 0.057 990 (31.19) 0.546 (0.016) 0.699 (0.032)

S5 0.027 0.040 0.048 0.058 0.354 994 (24.99) 0.542 (0.016) 0.807 (0.027)

πe

S0 0.027 0.102 0.165 0.213 0.262 995 (23.33) 0.665 (0.044) 0.580 (0.017)

S2 0.027 0.854 0.094 0.236 0.326 961 (52.95) 0.689 (0.042) 0.500 (0.038)

S3 0.027 0.102 0.768 0.134 0.307 972 (46.86) 0.673 (0.042) 0.611 (0.036)

S4 0.027 0.102 0.165 0.717 0.198 980 (41.23) 0.665 (0.043) 0.712 (0.032)

S5 0.027 0.102 0.165 0.213 0.637 986 (36.15) 0.663 (0.043) 0.816 (0.027)

POOL

S0 0.027 0.342 0.729 0.561 0.736 926 (54.93) 0.785 (0.038) 0.576 (0.023)

S2 0.027 0.997 0.171 0.486 0.674 878 (48.89) 0.749 (0.034) 0.510 (0.047)

S3 0.027 0.342 0.986 0.199 0.648 884 (39.12) 0.740 (0.029) 0.621 (0.047)

S4 0.027 0.342 0.729 0.947 0.376 893 (44.84) 0.752 (0.036) 0.720 (0.039)

S5 0.027 0.342 0.729 0.561 0.955 884 (56.21) 0.773 (0.039) 0.824 (0.033)

Table 3.4: Operating characteristics and trial properties for the utilized platform design as
well as alternative adaptive platform designs. 25,000 simulations for the varying underlying
mortality case (p = (0.74, 0.61, 0.48, 0.36, 0.23) for segments 1-5, respectively) with RR=0.7
for non-null segments for the PREVAIL II (P-II) master protocol; MEMs incorporating
adaptive randomization with the constrained empirical Bayes, c = .10 prior (πEB10) and
the fully Bayesian uniform prior (πe); and the naive pooling (POOL) of all supplemental
information incorporating adaptive randomization using posterior probability thresholds
optimized for the constant mortality case. Results provided for power/type-I error for each
segment, average (sd) total sample size (N) across entire trial, average (sd) proportion
allocated to treatment arm in segments 2-5, and average (sd) proportion surviving in the
non-null segments (for Trt=S2-S5) or across segments 2-5 (for Trt=S0).
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3.5 Discussion

In the context of rapidly developing disease outbreaks, there is a need for flexible, dynamic

methods to identify effective therapeutics as quickly as possible. In the EVD outbreak

from 2014–16, the PREVAIL II study was designed to test multiple therapies within one

overarching trial while incorporating aggressive interim monitoring to identify effective

treatments as early as possible. However, the PREVAIL II trial design did not utilize

previous segments of the control arm to improve the efficiency of the analyses and is per-

haps suboptimal given the availability of adaptive design features and Bayesian hierarchical

modeling techniques. To address this shortcoming we proposed incorporating MEMs with

AR to estimate the extent of exchangeability across segments administering identical treat-

ment regimes and balance allocation in relation to ESSS. Note that the modification to the

design is general and can be applied with other methods for incorporating supplemental

information.

There are many approaches to AR which could have been incorporated to our proposed

design. For example, Berry and Eick (1995) compare four different response adaptive

approaches to a standard equal randomization scheme and identify improvements using AR

in many scenarios. More recently, Thall and Wathen (2007) explored the use of a positive

constraint on Bayesian AR in order to limit the extent of adjusting the allocation ratio.

Methods also exist which use biomarker information to adaptively randomize individuals

during a study to more advantageous trial arms based on an individual’s biomarker profile

(Zhou et al., 2008) or to adjust patient allocation in trials with binary outcomes to address

covariate imbalances such that more patients can access the superior treatments identified

in the study (Ning and Huang, 2010). Other methods utilize predictive probability and

Bayesian AR to treat more patients with the more efficacious treatment while enabling

early termination if superiority or equivalence can be demonstrated before trial completion

(Yin et al., 2012).

However, outcome-AR techniques, which can lead to an imbalance in the sample size

or poor operating characteristics, are controversial (Thall et al., 2015). Our proposed de-

sign utilizes AR to target information balance, which results in additional allocation to

experimental therapies in the presence of exchangeable information contributed by supple-

mental controls. In the context of the EVD outbreak, where concerns were raised about
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the appropriateness of randomized trials due to ethical or practical concerns (Adebamowo

et al., 2014; Ippolito et al., 2016), the modified multi-source adaptive platform design offers

perhaps an ideal trade-off: controlling for cohort bias with the potential to randomize more

study participants to emerging therapies. The methods presented herein represent a useful

tool for designing platform trials to address future infectious disease outbreaks, such as the

Zika virus or future Ebola outbreaks.

It can be noted that 1:1 allocation is maintained in the absence of evidence supporting

exchangeable controls. Further, while AR has historically been shown to result in poten-

tially undesirable operating characteristics, MEMs with AR under πEB10 maintained type-I

error in the constant mortality scenario with reasonable inflation in the varying underlying

mortality case, while increasing the power to detect an effective drug in both scenarios.

This approach to AR addresses the concerns of sample size imbalance and potentially

undesirable operating characteristics raised by Thall et al. (2015).

Even though the simulations and designs presented in this chapter are unique to the

EVD outbreak, they can be generalized to other settings of clinical study, such as screening

platform for intermediate-phased drug trials as well as sequential experimental designs of

biomarker assays. In addition, a number of other parameters can be adjusted (e.g., priors

on the MEM weights, the components of the adaptive randomization, and the frequency of

interim monitoring) to achieve the desired operating characteristics in other settings where

incorporating supplemental control information is desired.

The number of different parameters, while demonstrating the flexibility of our design,

also represents a potential limitation. It may be challenging to identify the most appropri-

ate parameters to use given the many unknowns of a rapidly developing disease outbreak.

However, this can be moderated by assuming conservative priors on the MEM weights,

such as c = 0.1 for πEBc , which ensures that posterior model weight is given to the MEM

which assumes no exchangeable segments while incorporating information in a manner that

results in an improvement to the power, survivorship, and proportion randomized to the

treatment arm. The value chosen for c reflects a boundary imposed on the probability of

exchangeability and should be evaluated in the context of each trial. One should explore

values between 0 and 1 to identify values of c with better performance, but in our experi-

ence it should be set at a low value in order to moderate the influence of πEB which assigns
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all prior weight to a single source, and as a result, posterior, weight to a single MEM.

Further, while calibration may be challenging, the proposed πEBc prior is based on a single

hyperparameter, a benefit compared to Bayesian non-parametric density estimation with

finite- or infinite-mixtures or the traditional BMA framework which requires sets of priors

for all 2K models.

Another potential limitation is that simulation results presented in this chapter only

consider the scenario with one effective treatment across all segments. However, in the

context of a rapidly emerging infectious disease, it is unlikely that an effective treatment

will be present in all segments, with many therapies potentially nominated for inclusion

based on pharmacokinetic studies, laboratory research, or hypothetical causal drug effects

by simulation rather than more rigorous clinical trials. Results for cases with two out of

five effective treatments are presented in Section B.4 of the Supplementary Materials and

have similarly encouraging operating characteristics and trial properties as presented in

Section 3.4.2.



Chapter 4

A Fully Bayesian Mixture Model

Approach for Identifying

Non-Compliance in a Regulatory

Tobacco Clinical Trial

4.1 Introduction

The Center for the Evaluation of Nicotine in Cigarettes, project 1 (CENIC-p1), was a 6-

week randomized multi-center trial designed to evaluate the effect of nicotine reduction on

tobacco use behavior (Donny et al., 2015). 839 current smokers underwent randomization,

with 780 completing the 6-week study after being equally randomized to one of seven

groups, including a usual brand control condition and one of six experimental cigarettes

with nicotine content ranging from 15.8 mg per gram of tobacco (normal nicotine controls)

to 0.4 mg per gram of tobacco (very low nicotine content (VLNC) cigarettes). At the end of

six weeks, participants randomly assigned to the lowest nicotine condition had significantly

reduced tobacco use, dependence, and nicotine exposure relative to the normal nicotine

controls.

In 2009, Congress passed the Family Smoking Prevention and Tobacco Control Act

(FSPTCA), which gave the Food and Drug Administration (FDA) the authority to regulate

54
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the content, marketing, and sale of tobacco products. In particular, the FSPTCA gives the

FDA the authority to reduce the nicotine content of cigarettes to non-addictive levels (but

not zero) if it can be shown that this will improve public health. CENIC-p1 provides key

scientific evidence in support of a new nicotine standard for cigarettes, but understanding

the impact of mandated nicotine reduction on tobacco use behavior is difficult due to the

presence of substantial non-compliance to randomized treatment assignment.

In CENIC-p1, non-compliance is defined as smoking any commercially available, non-

study cigarettes in place of, or in addition to, the study cigarettes provided by the trial.

Identifying non-compliance in CENIC-p1 is difficult because the most direct measure of

non-compliance, self-reported smoking of non-study cigarettes, is known to be unreliable

(Nardone et al., 2016). An alternative strategy is to use biomarkers of nicotine exposure

(i.e., cotinine or total nicotine equivalents (TNEs)) to identify non-compliance among self-

reported compliers (Benowitz et al., 2015). For example, a recent study characterized the

distribution of biomarkers of nicotine exposure in participants who were sequestered in a

hotel for five days to ensure that they only smoked cigarettes with 0.4 mg of nicotine per

gram of tobacco (Denlinger et al., 2016). In this study, the 95th percentile for TNEs in fully

compliant subjects was estimated at 6.41 nmol/ml, which has been used as a threshold for

identifying non-compliance in secondary analyses of CENIC-p1 (Tidey et al., 2017; Rup-

precht et al., 2017). Alternatively, Boatman et al. (2017) used a mixture model approach,

which incorporated the data from Denlinger et al. (2016), to estimate the probability that

a subject randomized to the VLNC groups was compliant conditional on their biomarker

values, which facilitated estimation of the causal effect of nicotine reduction on cigarettes

smoked per day.

While the results of Denlinger et al. (2016) provide thresholds for identifying non-

compliance in the VLNC group, they can not be used to identify non-compliance at the

intermediate dose-levels (i.e., nicotine dose-levels between 0.4 mg/g and 15.8 mg/g). The

mixture model approach proposed by Boatman et al. (2017) could be used to identify

non-compliance at the intermediate dose-levels but fitting mixture models is known to

be challenging due to label switching or overlap between the mixture components (Marin

et al., 2005; Jasra et al., 2005; Stephens, 2000). Alternatively, we could leverage our

understanding of the biological relationship between the nicotine content of cigarettes and
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biomarkers of nicotine exposure to better estimate the mixture components (Benowitz

et al., 2015). We expect the nicotine content of the cigarettes to have an additive effect

on biomarkers of nicotine exposure and we could specify a model that incorporates this

relationship, in which case the mean of the compliant mixture component is estimated

relative to the control or usual brand groups. This could improve estimation of the mixture

components, but is also susceptible to model misspecification.

Having two different modeling frameworks represents a challenge given the uncertainty

as to which model is most appropriate for the data. The Bayesian framework is naturally

able to account for the uncertainty around selecting the “best” approach by considering

multiple models simultaneously and averaging the results, thus avoiding the need to select

the “best” model. For example, the posterior estimates for each model can be estimated

using Markov chain Monte Carlo (MCMC) techniques which account for the different

assumptions of each approach, such as the proposed biological relationship or various pa-

rameter constraints, and model averaging can smooth over the posteriors from each model.

However, model averaging in our context is made more difficult because the dimensionality

of the parameter space differs between the two proposed approaches. The reversible-jump

MCMC (RJMCMC) algorithm addresses this difficulty by providing the flexibility to ac-

count for the different dimensionalities while implementing model averaging within each

dose-level (Green, 1995). This allows us to “mix and match” which approach is most ap-

propriate for each dose-level so that any gains in efficiency from the biological relationship

can be used within the applicable dose-levels while avoiding the introduction of bias when

it is inappropriate.

The remainder of this chapter proceeds as follows. In Section 4.2 we define finite Gaus-

sian mixture models with two components (compliant and non-compliant) and discuss how

our model specification can be adapted to account for the hypothesized relationship be-

tween the nicotine content of cigarettes and biomarkers of nicotine exposure. A RJMCMC

algorithm for averaging over various models is described in Section 4.2.2. Simulation re-

sults evaluating our modeling approach when the hypothesized relationship does and does

not hold are presented in Section 4.3 and we apply our proposed method to CENIC-p1 in

Section 4.4. Finally, we conclude with a brief discussion in Section 4.5.
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4.2 Methods for estimating compliance within randomized

groups

We first introduce the notation that will be used throughout the remainder of this chapter.

Let i = 1, ..., n be an index for each observation, j = 1, ..., J index the different randomized

groups, and k = 1, 2 represent the two components of the mixture distribution within a

level j, where k = 1 implies compliance and k = 2 implies non-compliance. Further, let

y represent the observed outcome, such that yij represents participant i who belongs to

randomization group j.

The goal of this Chapter is to identify non-compliance to randomized treatment as-

signment. As discussed previously, two approaches to this problem utilizing biomarkers of

nicotine exposure have been proposed in the literature. Denlinger et al. (2016) identified

quantiles of the biomarker distribution (e.g., 90th, 95th, etc.) that can be used as thresh-

olds for identifying non-compliant individuals, while Boatman et al. (2017) estimated the

probability of individual compliance conditional on the observed biomarkers through an

application of Bayes theorem. Regardless of which approach is used, both require at least

estimating the distribution of the biomarkers in fully compliant subjects. This requires es-

timation of a mixture distribution because we do not know which subjects were compliant,

which is challenging in the absence of auxiliary data from known compliers.

We first specify a two component mixture distribution for an arbitrary treatment group

j, assuming no dose-response relationship across dose-levels, which we will label the “IND

model”. For group j, let µj1 be the mean of the compliant component (k = 1), µj2 be

the mean of the non-compliant component (k = 2), τj be the common precision of the

Gaussian distributions for compliant and non-compliant subjects, and pj be the mixture

weight, which represents the proportion of non-compliant subjects in group j. This results

in the following likelihood for group j:

p(y|µj1, µj2, τj , pj) =

n∏
i=1

[(1− pj)N (yi|µj1, τj) + pjN (yi|µj2, τj)] , (4.1)

whereN is a Gaussian density with the given mean and precision. While intuitive, this form

of the likelihood is susceptible to the issue of label-switching (i.e., the peaks of the posterior
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distribution for the two components switch such that µj1 is actually estimating the mean

for the second component and µj2 is estimating the first component mean) and makes

deriving the conditional posterior distributions under conjugate priors very challenging.

To address these issues, the likelihood can be reparameterized as follows. First, to

address the potential for label-switching, redefine µj1 as µj and µj2 as µj + θj , where

θj > 0. This implies that µj < µj + θj and ensures that the non-compliant component

mean will be larger than the compliant component mean. Second, to address the challenges

in deriving the conditional posteriors, we introduce a latent indicator variable z through

data augmentation (Chib, 1996). Define zijk = 1 when yi belongs to both group j and

component k, and 0 otherwise. These changes induce a complete data likelihood considering

both our known y and unknown z of

p(y, z|µj , θj , τj , pj) =

n∏
i=1

[(1− pj)×N (yi|µj , τj)]zij1 [pj ×N (yi|µj + θj , τj)]
zij2 . (4.2)

In the setting where J = 1, the notation can be simplified by replacing zij2 = 1− zij1,

however with multiple j this substitution implies that 1−zij1 = 1 not only when participant

i in group j belongs to k = 2, as desired, but also when a participant does not belong to

group j. Extending (4.2) to multiple j, let Θ = (p,µ,θ, τ ), where the bold notation

represents vectors including the corresponding parameter for each of the j groups. The

complete data likelihood for all subjects can be written as:

p(y, z|Θ) =

n∏
i=1


J∏
j=1

[(1− pj)N (yi|µj , τj)]zij1 [pjN (yi|µj + θj , τj)]
zij2

 . (4.3)

The complete data likelihood can be modified to incorporate the hypothesized biological

relationship discussed earlier, which we refer to as the “REL model” for the remainder of

the Chapter. First, within CENIC-p1, assume that group J represents the combined usual

brand control and 15.8 mg/g groups, where all participants are assumed to be compliant.

Then assume that some relationship exists between µj and µJ that can be defined by an

arbitrary function h: µ∗j = hj(µJ). In this case we no longer estimate each µj , j 6= J , but

only µJ . Estimates for each µj are based on the proposed relationship, hj(µJ). Note, data

are now utilized across all levels to estimate µJ , but estimates of θj are derived within each
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level to account for differences in the mean for the non-compliers across dose-levels due to

differences in the prevalence of partial compliance or smoking behavior across dose-levels.

Specifically in the context of CENIC-p1 for the log-normally distributed TNE biomarker,

we will consider the following proposed relationship. Letting wj represent the nicotine

content for dose level j, we propose the following function, hj , that maps the ratio of the

nicotine contents to the mean of the biomarker distribution:

µ∗j = hj(µJ) = log

(
wj
wJ

)
+ µJ . (4.4)

Biomarkers of nicotine exposure are thought to be linearly related to the nicotine con-

tent of the cigarettes and the proposed relationship imposes a linear relationship between

the nicotine content of the cigarettes and the median on the original scale. Given this

relationship, the complete data likelihood is very similar, but with µ∗j in place of µj :

p(y, z|Θ) =

n∏
i=1


J∏
j=1

[(1− pj)N (yi|µ∗j , τj)]zij1 [pjN (yi|µ∗j + θj , τj)
zij2 ]

 . (4.5)

When considering all j levels, it may be the case that some levels are better estimated

with the IND approach and others the REL approach. In this case, we can also average

over intermediate models where some dose-levels are estimated assuming the IND model,

while others follow the REL model. For example, within CENIC-p1 there are a total of

16 potential models, m = 1, ..., 16, considering all the possible combinations of modeling

frameworks assumed for the four non-control groups where the state of the model can be

denoted by a vector, ξm, where 0 indicates the IND model and 1 the REL model. For

example, ξm = (1, 0, 0, 0) indicates that group 1 is estimated from the REL model, while

groups 2-4 are estimated from the IND model. The RJMCMC algorithm can traverse

the model space of 16 models with different parameter dimensionality to average over all

possible combinations.

4.2.1 Prior distributions and posterior inference

In this section, we discuss prior distributions and posterior inference for the IND and REL

approaches. In general, the posterior will not be available in closed form and must be
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approximated using MCMC.

For treatment group j, we assume the following prior distributions for the various model

parameters:

µj ∼N (0, sµj),

θj ∼N (0, sθj),

τj ∼Γ(aj , bj),

pj ∼Beta(αj , βj).

(4.6)

Letting njk represent the number of observations in component k of group j and nj =∑K
k=1 njk, the joint posterior for the IND model is proportional to the following:

p(Θ|y, z) ∝
J∏
j=1

{
(1− pj)nj1+βj−1p

nj2+αj−1
j × τ

nj
2

+aj−1

j exp
(
− bjτj

)
× exp

(
−sµj

2
µ2
j

)

× exp
(
−
sθj
2
θ2
j

)
× exp

(
−τj

2

[
n∑
i=1

zij1(yi − µj)2 + zij2(yi − [µj + θj ])
2

])}
.

(4.7)

From (4.7), the conditional posterior for each parameter in the IND model within group

j is:

p(µj |θj , τj ,y, z) ∝ N
(
τj(nj1ȳj1 + nj2(ȳj2 − θj))

njτj + sµj
, njτj + sµj

)
, (4.8)

p(θj |µj , τj ,y, z) ∝ N
(
nj2τj(ȳj2 − µj)
nj2τj + sθj

, nj2τj + sθj

)
, (4.9)

p(τj |µj , θj ,y, z) ∝ Γ
(nj

2
+ aj ,

1

2

[
(nj1 − 1)s2

j1 + (nj2 − 1)s2
j2+

nj1(ȳj1 − µj)2 + nj2(ȳj2 − (µj + θj))
2 + 2bj

])
, (4.10)

p(pj |y, z) ∝ Beta(nj2 + αj , nj1 + βj), (4.11)

p(zij2 = 1|yij ,Θ) ∝ Ber

(
pjN (yij |µj + θj , τj)

(1− pj)N (yij |µj , τj) + pjN (yij |µj + θj , τj)

)
, (4.12)

where ȳjk is the mean of yijk for group j and component k.

The previous derivation can be easily extended to the REL model where hj(µJ) is



61

specified as in (4.4). The conditional posteriors for the REL model, with some additional

notation, where µ∗j = hj(µJ) is

dj = log

(
wj
wJ

)
, (4.13)

gj =τj(njdj + nj2θj − nj1ȳj1 − nj2ȳj2), (4.14)

p(µJ |Θ,y, z) ∝ N

nJτJ ȳJ −∑J−1
j=1 gj∑J

j=1(njτj) + sµJ
,
J∑
j=1

(njτj) + sµJ

 , (4.15)

p(θj |µj , τj ,y, z) ∝ N
(
nj2τj(ȳj2 − µ∗j )
nj2τj + sθj

, nj2τj + sθj

)
, (4.16)

p(τj |µj , θj ,y, z) ∝ Γ
(nj

2
+ aj ,

1

2

[
(nj1 − 1)s2

j1 + (nj2 − 1)s2
j2+

nj1(ȳj1 − µ∗j )2 + nj2(ȳj2 − (µ∗j + θj))
2 + 2bj

])
, (4.17)

p(pj |y, z) ∝ Beta(nj2 + αj , nj1 + βj), (4.18)

p(zij2 = 1|yij ,Θ) ∝ Ber

(
pjN (yij |µ∗j + θj , τj)

(1− pj)N (yij |µ∗j , τj) + pjN (yij |µ∗j + θj , τj)

)
. (4.19)

Note that the previously derived conditional posteriors for θ, p, τ , and z are un-

changed from the IND model, except that estimates for µj are derived from the proposed

relationship.

4.2.2 Model averaging with RJMCMC

We now discuss how we will average over the IND, REL, and intermediate models using

RJMCMC. RJMCMC accounts for the varying dimensionality of the parameter space dur-

ing model averaging. For example, the IND model estimates µj from the group j observed

data only, but in the REL model µj is derived from the proposed relationship with µJ ,

representing a change in the dimensionality of the parameter space due to the assumed

relationship between µj and µJ .

As noted above, we will consider intermediate models, in addition to the IND and REL

models, to account for variability in the appropriateness of the hypothesized relationship

between nicotine content and biomarkers of nicotine exposure across dose-levels. That is,

the hypothesized relationship may be appropriate for some dose levels but not others. For
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example, if ξm = (1, 0, 0, 1), µJ is updated using only groups j = 1, 4 and the control group

j = 5, while groups j = 2 and 3, are not included because only data from their own group

are used to derive parameter estimates.

While described in greater detail below, the general steps of the RJMCMC algorithm

are:

1. Update the parameters conditional on the current model using the Gibbs sampler

discussed in Section 4.2.1.

2. Update the model, m, conditional on the current parameter values using the RJM-

CMC algorithm which includes the following steps:

2.a Randomly select a group j′ from j = 1, ..., J − 1 with equal probability as a

candidate to change states from REL to IND or vice versa.

2.b Accept this proposed move with some probability.

We introduce additional notation for RJMCMC. Let q(·) be an (arbitrary) proposal

density for parameters that must be generated as the result of proposed moves that increase

the dimensionality of the parameter space, f(y|Θ,m) represent the likelihood of our data

given Θ in model m, and p(m) represent the prior probability of model m. Let Ij = 1 be an

indicator that group j is estimated using the IND model, with Ij = 0 indicating that group

j is estimated using the REL model and define p(Ij = 1) to be the prior probability that

Ij = 1 with p(Ij = 0) = 1 − p(Ij = 1), the prior probability that Ij = 0. We define p(m)

as the product of these priors:
∏J−1
j=1 [p(Ij = 1)]Ij [1 − p(Ij = 1)]1−Ij . If p(Ij = 1) = 0.5,

all models receive equal prior weight, whereas p(Ij = 1) > 0.5 favors IND for group j and

p(Ij = 1) < 0.5 favors REL for group j.

In Step 2a, the intermediate approaches can be conceptualized as a set of nested models

of the REL approach where all groups are estimated assuming the relationship, so the

proposal scheme suggested by Green and Hastie (2009) for scenarios with nested models

is implemented. In the scheme for nested models, at each iteration we propose a move

from (Θ,m) to (Θ′,m′) by randomly selecting j′ ∈ 1, ..., J − 1 with equal probability as

the candidate dose-level to flip from IND to REL or vice versa. The change in the state

of j′ will increase or decrease the dimension of the parameter space by 1. For example,
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if ξm = (1, 0, 0, 0) and j′ = 3, then ξm′ = (1, 0, 1, 0) with group 3 switching from IND

to REL and the parameter dimensionality decreases by 1. We note that, while we are

considering a RJMCMC algorithm that only considers state-changes one-dose-level-at-a-

time, an alternative proposal framework would be to consider jumping to any of the 15

other permutations of the model states for m′ rather than flipping one group at each

iteration.

In greater detail, if the proposed move changes group j′ from the REL model to the

IND model (increasing dimensionality), we define the bijective functions (i.e., one-to-one

and onto functions that map to only a single value in the range of possible values) for our

proposed values to be:

p′ = p,

τ ′ = τ ,

θ′ = θ,

µ′j 6=j′ = µj 6=j′ ,

µ′j′ = u,

(4.20)

where u ∼ q(·), such that q(·) is some (arbitrary) proposal distribution for µ′j′ . We define

q(·) as the corresponding conditional posterior distribution from (4.8).

Conversely, the reverse move for group j′ from IND to REL (decreasing dimensionality)

is determined completely by the move from REL to IND described above:

p = p′,

τ = τ ′,

θ = θ′,

µj 6=j′ = µ′j 6=j′ ,

u = µ′j′ .

(4.21)

We note that when decreasing the dimensionality we do not have to simulate from a

proposal distribution, but set µj′ at the value determined by the proposed relationship to

µJ .
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In step 2b, the probability of accepting a proposed move is equal to min(1, A), where:

A =
p(Θ′,m′|y)P (m|m′)q′(u′)
p(Θ,m|y)P (m′|m)q(u)

∣∣∣∣∂(Θ′,u′)

∂(Θ,u)

∣∣∣∣ , (4.22)

where P (m|m′) denotes the probability of proposing to move from m to m′,
∣∣∣∂(Θ′,u′)
∂(Θ,u)

∣∣∣ is the

Jacobian, and p(Θ,m|y) is the joint distribution of Θ and the model m: p(Θm,m|y, z) ∝
p(y, z|Θm,m)p(Θm|m)p(m).

In our implementation, each group j has an equal chance of being selected and flipped

within each iteration, P (m′|m) = P (m|m′). Therefore, the A term simplifies to

Aj′:REL→IND =
p(Θ′,m′|y, z)P (m|m′)q′(u′)
p(Θ,m|y, z)P (m′|m)q(u)

∣∣∣∣∂(Θ′,u′)

∂(Θ,u)

∣∣∣∣
=

p(Θ′,m′|y, z)

p(Θ,m|y, z)q(u)

=
f(y, z|Θ′,m′)p(Θ′|m′)p(m′)
f(y, z|Θ,m)p(Θ|m)p(m)q(u)

.

(4.23)

The reverse move from the model where estimation of group j′ is changed from IND

to REL can be described by the inverse of the stated acceptance probability such that

min(1, Aj′:IND→REL) = min(1, A−1
j′:REL→IND).

The final step in 2b is to simulate a single value v ∼ Unif(0, 1) and accept the move

to the proposed state if v ≤ min(1, A). If the proposed move is not accepted, the original

model m continues to the next iteration with its original parameter values.

4.3 Simulation studies to establish small sample properties

In this section, we present the results of a small simulation study to evaluate the small

sample properties of the model averaging approach discussed in Section 4.2.2. Our sim-

ulation study will mimic the data collected in CENIC-p1; we consider 5 dose-levels, with

dose-level 5 treated as the normal nicotine condition, dose-levels 1-4 treated as varying

levels of reduced nicotine content conditions and nj = 100 for all dose-levels. Data for the

control condition are drawn from a single component, N (3, 1). Data for the four treatment

conditions are simulated from a two-component mixture distribution with true probability
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of non-compliance, pj , equal to 0.70, which is approximately equal to the estimated prob-

ability of non-compliance for the 0.4 mg/g group reported in Nardone et al. (2016) and

Boatman et al. (2017). Data for the non-compliant component were drawn from a N (3, 1)

distribution for all dose-levels. Data for the compliant components were drawn from a

normal distribution with τ = 1 and a mean that varied as a function of dose-level. For

the remainder of this section, we specify the mean for the reduced nicotine content groups

by the effect size, defined as ES=
3−µj
σ . That is, we specify the effect size, which in turn

specifies µj . For purposes of estimation, the hypothesized dose-response relationship for

the REL model assumes reductions of 98.1%, 95.0%, 86.5%, and 63.2% in the mean of the

biomarker for groups 1 through 4 relative to the control condition, corresponding to ES

of 4, 3, 2, and 1 for groups 1 through 4, respectively. For all j dose-levels, assume “non-

informative” prior specifications of αj = βj = 1 for the beta prior on pj , aj = bj = 0.001

for the gamma prior on τj , and sµj = sθj = 0.00001 for the normal priors on µj and θj .

We consider six scenarios for the true relationship between the mean in the compliant

component and the dose-level. The first scenario assumes that the hypothesized relation-

ship in the REL model is correct, in which case ES=(4,3,2,1) and µj1 = (−1, 0, 1, 2) for

dose-levels 1-4, respectively. The second scenario assumes that dose-levels 1 through 3

follow the hypothesized relationship but dose-level 4 does not: ES=(4,3,2,0.5) and µj1 =

(−1, 0, 1, 2.5). The third scenario assumes that dose-levels 1 and 2 follow the hypothesized

relationship but dose-levels 3 and 4 do not: ES=(4,3,1,0.5) and µj1 = (−1, 0, 2, 2.5). The

fourth scenario assumes that only dose-level 1 follows the relationship: ES=(4,1.5,1,0.5)

and µj1 = (−1, 1.5, 2, 2.5). The fifth scenario assumes that the effect size is less than the

hypothesized effect size for all dose-levels: ES=(2,1.5,1,0.5) and µj1 = (1, 1.5, 2, 2.5). Fi-

nally, the sixth scenario assumes that the effect size is more than the hypothesized effect

size for all dose-levels: ES=(6,4.5,3,1.5) and µj1 = (−3,−1.5, 0, 1.5).

1,000 simulated studies were completed for each scenario. Simulation results are pre-

sented for the IND model, the REL model with our hypothesized relationship, and for

our RJMCMC approach that averages over the IND, REL, and intermediate approaches.

Two different model priors are chosen for the RJMCMC simulations: assuming each model

specification is equally likely (RJ) with p(Ij = 1) = 0.5 for each group j, versus favoring

models assuming IND for each level (RJ95) with p(Ij = 1) = 0.95 for each group j. Within
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each MCMC, a chain with 10,000 total iterations was used, with the first 1,000 iterations

excluded for the burn-in period. The performance of each model is summarized by bias,

standard deviation (SD), and mean square error (MSE) within each dose-level j for the

proportion compliant (pc), the mean of the compliant component (µ1), the mean of the

non-compliant component (µ2), their shared standard deviation (σ), and the 95th per-

centile of the distribution of the biomarker on the original scale (i.e., ey), which is included

as this is a quantity of interest for the analysis of the data from CENIC-p1. We note that

the SD for the REL, RJ, and RJ95 models are presented as a ratio relative to the SD for

the IND model in order to illustrate the gain in efficiency due to borrowing. Addition-

ally, the RJMCMC results also provide the mean (standard deviation) of the proportion

of iterations spent in states where the hypothesized relationship is true for each dose level.

Simulation results for Scenario 1 are presented in Table 4.1. In Scenario 1, the assumed

relationship is correct for all dose-levels and we expect that model averaging will lead to

increased efficiency compared to the model that estimates all components. All four models

are mostly unbiased across the posterior estimates, with the exception of the proportion

compliant and the non-compliant component mean for the group with ES=1. Additionally,

the IND approach shows greater bias in the estimation of the compliant component mean

for the group with ES=2 and its corresponding 95th percentile of the TNE distribution.

Both RJMCMC models strongly favor the REL model with each level spending more than

84% of the chain in states that assume the hypothesized relationship. The REL model is

more efficient than IND, as is evident by the SD ratio values below 1, and, because the two

RJMCMC models strongly favor REL, they are also much more efficient than IND. For

example, we observe a 50% to 80% decrease in the standard deviation of the mean of the

compliant component and as much as an 85% decrease in the MSE of the 95th percentile.

The results in Tables 4.2-4.6 (Scenarios 2-6) demonstrate that model averaging down-

weights the proportion of the chain estimated by the REL approach if a dose-level is not

appropriately defined by the hypothesized relationship. However, large effect sizes are

needed to downweight the influence of the REL approach. For example, when there was a

one ES difference between the two and hypothesized mean for the compliant component,

the RJ model picked models that assume the hypothesized relationship approximately 75%
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of the time, while the RJ95 picked models that assume the hypothesized relationship ap-

proximately 45% of the time (Tables 4.3-4.5). This demonstrates that calibration of model

priors in the RJMCMC algorithm is important and can have a direct impact on the pro-

portion of time spent in a given state. The direction of misspecification (i.e., effect sizes

greater or less than the hypothesized relationship) influences the amount of downweighting

of the REL approach. This can be be observed in Table 4.6 (Scenario 6), which has effect

sizes that are larger than the hypothesized relationship, where the RJ and RJ95 models

were less likely to pick models that assumed the hypothesized relationship than in Scenario

5, even though the absolute difference of the ES from the hypothesized mean relationship

was the same for both scenarios. Interestingly, the true value for one group does not seem

to have a large impact on whether borrowing from the REL model occurs. For example,

the proportion of time a group spends in REL when misspecified is fairly constant across

other scenarios, even though different groups are misspecified in each scenario.



p̂c µ̂1 µ̂2 σ̂ eµ1 95th Percentile Proportion
Model ES Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE in REL

IND

4 0.00 0.02 0.00 0.00 0.20 0.04 -0.01 0.13 0.02 0.02 0.08 0.01 0.21 0.61 0.42 -
3 0.01 0.04 0.00 0.06 0.30 0.09 -0.03 0.16 0.03 0.06 0.13 0.02 3.47 6.53 54.75 -
2 0.06 0.09 0.01 0.16 0.41 0.19 0.00 0.18 0.03 0.09 0.12 0.02 14.51 13.01 379.89 -
1 0.17 0.13 0.05 -0.05 0.40 0.16 0.30 0.29 0.17 -0.04 0.09 0.01 4.93 12.43 178.90 -
0 - - - 0.00 0.10 0.01 - - - 0.00 0.07 0.01 - - - -

REL

4 0.00 0.93 0.00 0.01 0.42 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.14 0.58 0.15 -
3 0.00 0.80 0.00 0.01 0.29 0.01 -0.03 0.98 0.03 0.04 0.83 0.01 0.69 0.19 2.05 -
2 -0.01 0.62 0.00 0.01 0.21 0.01 -0.04 0.93 0.03 0.04 0.89 0.01 1.80 0.25 13.51 -
1 0.11 0.64 0.02 0.01 0.21 0.01 0.22 0.59 0.07 -0.06 1.04 0.01 -1.82 0.53 46.49 -
0 - - - 0.01 0.85 0.01 - - - 0.00 1.00 0.01 - - - -

RJ

4 0.00 0.94 0.00 0.01 0.44 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.14 0.59 0.15 0.98 (0.06)
3 0.00 0.78 0.00 0.01 0.32 0.01 -0.03 0.97 0.03 0.04 0.83 0.01 0.77 0.22 2.73 0.98 (0.05)
2 -0.01 0.59 0.00 0.02 0.24 0.01 -0.04 0.92 0.03 0.04 0.90 0.01 2.34 0.29 20.11 0.97 (0.05)
1 0.12 0.65 0.02 0.01 0.25 0.01 0.22 0.61 0.08 -0.06 1.03 0.01 -1.58 0.53 45.45 0.97 (0.05)
0 - - - 0.01 0.85 0.01 - - - 0.00 1.00 0.01 - - - -

RJ95

4 0.00 0.94 0 0.01 0.51 0.01 -0.01 1 0.02 0.02 0.98 0.01 0.14 0.62 0.16 0.91 (0.12)
3 0.00 0.77 0.00 0.02 0.43 0.02 -0.03 0.97 0.03 0.04 0.85 0.01 1.10 0.37 7.05 0.90 (0.12)
2 0.00 0.60 0.00 0.05 0.41 0.03 -0.03 0.91 0.03 0.04 0.92 0.01 4.18 0.46 53.12 0.84 (0.13)
1 0.13 0.69 0.02 0.00 0.46 0.03 0.24 0.68 0.10 -0.06 1.03 0.01 -0.85 0.59 54.77 0.85 (0.12)
0 - - - 0.01 0.86 0.01 - - - 0.00 1.00 0.01 - - - -

Table 4.1: Scenario 1 simulation results where all dose-levels follow the assumed relationship. Bias and MSE reported
for proportion compliant (p̂c), compliant mean (µ̂1), non-compliant mean(µ̂2), shared standard deviation (σ̂), and the
estimated 95th percentile for exp(µ1) for IND model, REL model, and model averaging between the two approaches
with equal model priors (RJ) and priors favoring IND (RJ95). Estimated standard deviation (SD*) provided for the
IND approach with the ratio of the SD

SDIND
for REL, RJ, and RJ95.
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p̂c µ̂1 µ̂2 σ̂ eµ1 95th Percentile Proportion
Model ES Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE in REL

IND

4 0.00 0.02 0.00 0.00 0.20 0.04 -0.01 0.13 0.02 0.02 0.09 0.01 0.21 0.61 0.41 -
3 0.01 0.04 0.00 0.06 0.29 0.09 -0.03 0.16 0.03 0.06 0.13 0.02 3.45 6.42 53.08 -
2 0.06 0.09 0.01 0.16 0.42 0.20 0.00 0.19 0.04 0.09 0.12 0.02 14.46 12.92 376.00 -

0.5 0.20 0.14 0.06 -0.29 0.35 0.21 0.47 0.32 0.33 -0.1 0.08 0.02 -14.83 12.50 376.26 -
0 - - - 0.00 0.10 0.01 - - - 0.00 0.07 0.01 - - - -

REL

4 0.00 0.93 0.00 0.02 0.42 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.16 0.60 0.16 -
3 0.00 0.81 0.00 0.02 0.29 0.01 -0.03 0.98 0.03 0.04 0.83 0.01 0.75 0.20 2.18 -
2 -0.01 0.61 0.00 0.02 0.21 0.01 -0.04 0.91 0.03 0.04 0.89 0.01 1.98 0.25 14.54 -

0.5 0.03 0.61 0.01 -0.48 0.25 0.24 0.26 0.47 0.09 -0.13 1.03 0.02 -30.65 0.42 966.94 -
0 - - - 0.02 0.85 0.01 - - - 0.00 1 0.01 - - - -

RJ

4 0.00 0.93 0.00 0.02 0.45 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.16 0.60 0.16 0.98 (0.06)
3 0.00 0.80 0.00 0.02 0.32 0.01 -0.03 0.98 0.03 0.04 0.83 0.01 0.81 0.23 2.80 0.98 (0.05)
2 -0.01 0.59 0.00 0.03 0.24 0.01 -0.04 0.90 0.03 0.04 0.90 0.01 2.45 0.29 20.17 0.97 (0.05)

0.5 0.05 0.61 0.01 -0.46 0.30 0.22 0.29 0.52 0.11 -0.13 1.03 0.02 -29.47 0.48 904.06 0.95 (0.09)
0 - - - 0.02 0.85 0.01 - - - 0.00 1 0.01 - - - -

RJ95

4 0.00 0.94 0.00 0.01 0.51 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.15 0.64 0.17 0.91 (0.12)
3 0.00 0.79 0.00 0.03 0.43 0.02 -0.03 0.97 0.03 0.04 0.85 0.01 1.13 0.36 6.64 0.90 (0.12)
2 0.00 0.59 0.00 0.05 0.39 0.03 -0.03 0.88 0.03 0.04 0.92 0.01 4.35 0.46 54.54 0.84 (0.13)

0.5 0.09 0.72 0.02 -0.41 0.47 0.20 0.35 0.71 0.17 -0.13 1.03 0.02 -26.27 0.65 757.01 0.78 (0.17)
0 - - - 0.02 0.87 0.01 - - - 0.00 1.00 0.01 - - - -

Table 4.2: Scenario 2 simulation results where dose-level 4 does not follow the assumed relationship. Bias and MSE
reported for proportion compliant (p̂c), compliant mean (µ̂1), non-compliant mean(µ̂2), shared standard deviation
(σ̂), and the estimated 95th percentile for exp(µ1) for IND model, REL model, and model averaging between the
two approaches with equal model priors (RJ) and priors favoring IND (RJ95). Estimated standard deviation (SD*)
provided for the IND approach with the ratio of the SD

SDIND
for REL, RJ, and RJ95.
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p̂c µ̂1 µ̂2 σ̂ eµ1 95th Percentile Proportion
Model ES Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE in REL

IND

4 0.00 0.02 0.00 0.00 0.20 0.04 -0.01 0.13 0.02 0.02 0.09 0.01 0.21 0.63 0.44 -
3 0.01 0.04 0.00 0.06 0.29 0.09 -0.03 0.16 0.03 0.06 0.13 0.02 3.41 6.27 50.91 -
1 0.16 0.13 0.04 -0.06 0.42 0.18 0.30 0.29 0.18 -0.04 0.09 0.01 4.39 12.46 174.58 -

0.5 0.19 0.14 0.06 -0.3 0.35 0.21 0.47 0.32 0.32 -0.1 0.08 0.02 -14.93 12.45 377.74 -
0 - - - 0.00 0.10 0.01 - - - 0.00 0.07 0.01 - - - -

REL

4 0.00 0.93 0.00 0.04 0.43 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.19 0.59 0.17 -
3 0.00 0.81 0.00 0.04 0.30 0.01 -0.03 0.97 0.03 0.04 0.83 0.01 0.84 0.21 2.40 -
1 -0.18 0.30 0.04 -0.96 0.21 0.93 -0.12 0.39 0.03 -0.03 0.91 0.01 -23.87 0.18 574.96 -

0.5 0.04 0.62 0.01 -0.46 0.25 0.22 0.26 0.47 0.09 -0.13 1.03 0.02 -30.15 0.43 937.94 -
0 - - - 0.04 0.87 0.01 - - - 0.00 1 0.01 - - - -

RJ

4 0.00 0.93 0.00 0.03 0.46 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.18 0.59 0.17 0.98 (0.07)
3 0.00 0.80 0.00 0.03 0.34 0.01 -0.03 0.97 0.03 0.04 0.83 0.01 0.89 0.24 3.04 0.98 (0.05)
1 -0.08 0.93 0.02 -0.71 0.75 0.60 0.02 0.79 0.05 -0.04 0.93 0.01 -16.66 0.74 363.57 0.77 (0.24)

0.5 0.05 0.63 0.01 -0.45 0.31 0.21 0.29 0.55 0.12 -0.13 1.04 0.02 -29.14 0.49 886.92 0.95 (0.09)
0 - - - 0.03 0.89 0.01 - - - 0.00 1 0.01 - - - -

RJ95

4 0.00 0.93 0.00 0.02 0.52 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.16 0.61 0.17 0.91 (0.12)
3 0.00 0.79 0.00 0.03 0.44 0.02 -0.03 0.97 0.03 0.04 0.85 0.01 1.15 0.38 7.14 0.90 (0.12)
1 0.04 1.14 0.03 -0.39 0.97 0.32 0.17 1.02 0.12 -0.05 0.95 0.01 -6.78 1.02 206.56 0.44 (0.26)

0.5 0.09 0.72 0.02 -0.41 0.49 0.20 0.34 0.72 0.17 -0.13 1.03 0.02 -26.27 0.65 755.77 0.79 (0.17)
0 - - - 0.02 0.89 0.01 - - - 0.00 1.00 0.01 - - - -

Table 4.3: Scenario 3 simulation results where dose-levels 3 and 4 do not follow the assumed relationship. Bias
and MSE reported for proportion compliant (p̂c), compliant mean (µ̂1), non-compliant mean(µ̂2), shared standard
deviation (σ̂), and the estimated 95th percentile for exp(µ1) for IND model, REL model, and model averaging between
the two approaches with equal model priors (RJ) and priors favoring IND (RJ95). Estimated standard deviation (SD*)
provided for the IND approach with the ratio of the SD

SDIND
for REL, RJ, and RJ95.
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p̂c µ̂1 µ̂2 σ̂ eµ1 95th Percentile Proportion
Model ES Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE in REL

IND

4 0.00 0.02 0.00 0.00 0.20 0.04 -0.01 0.13 0.02 0.02 0.09 0.01 0.21 0.62 0.43 -
1.5 0.12 0.12 0.03 0.11 0.41 0.18 0.13 0.23 0.07 0.04 0.10 0.01 14.17 12.89 367.02 -
1 0.16 0.14 0.04 -0.06 0.42 0.18 0.30 0.3 0.18 -0.04 0.09 0.01 4.37 12.49 175.13 -

0.5 0.20 0.14 0.06 -0.3 0.35 0.21 0.47 0.32 0.33 -0.1 0.08 0.02 -14.82 12.44 374.27 -
0 - - - 0.00 0.10 0.01 - - - 0.00 0.07 0.01 - - - -

REL

4 0.00 0.92 0.00 0.06 0.46 0.01 -0.01 0.98 0.02 0.02 0.98 0.01 0.24 0.62 0.21 -
1.5 -0.23 0.19 0.06 -1.44 0.23 2.09 -0.32 0.47 0.12 0.11 0.84 0.02 -16.48 0.08 272.66 -
1 -0.18 0.30 0.03 -0.94 0.22 0.90 -0.11 0.39 0.03 -0.03 0.91 0.01 -23.63 0.19 563.73 -

0.5 0.04 0.65 0.01 -0.44 0.27 0.21 0.27 0.49 0.10 -0.13 1.03 0.02 -29.46 0.45 899.40 -
0 - - - 0.06 0.93 0.01 - - - 0.01 1 0.01 - - - -

RJ

4 0.00 0.93 0.00 0.04 0.49 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.20 0.62 0.19 0.98 (0.06)
1.5 -0.05 1.28 0.03 -0.67 1.47 0.82 -0.07 1.11 0.07 0.06 0.95 0.01 -1.74 1.02 174.71 0.55 (0.31)
1 -0.07 0.96 0.02 -0.68 0.77 0.57 0.04 0.85 0.06 -0.04 0.92 0.01 -16.02 0.80 357.47 0.76 (0.25)

0.5 0.06 0.65 0.01 -0.44 0.31 0.20 0.30 0.57 0.12 -0.13 1.03 0.02 -28.75 0.51 866.84 0.95 (0.09)
0 - - - 0.04 0.94 0.01 - - - 0.00 1 0.01 - - - -

RJ95

4 0.00 0.94 0.00 0.02 0.54 0.01 -0.01 0.99 0.02 0.02 0.98 0.01 0.17 0.63 0.18 0.91 (0.12)
1.5 0.05 1.18 0.02 -0.19 1.30 0.32 0.06 1.07 0.06 0.04 0.97 0.01 8.00 1.04 242.01 0.24 (0.22)
1 0.04 1.12 0.03 -0.38 0.96 0.31 0.18 0.98 0.12 -0.05 0.95 0.01 -6.66 1.00 200.63 0.44 (0.26)

0.5 0.09 0.74 0.02 -0.40 0.51 0.20 0.35 0.72 0.18 -0.13 1.03 0.02 -25.99 0.67 744.54 0.79 (0.17)
0 - - - 0.03 0.94 0.01 - - - 0.00 1.00 0.01 - - - -

Table 4.4: Scenario 4 simulation results where dose-levels 2, 3, and 4 do not follow the assumed relationship. Bias
and MSE reported for proportion compliant (p̂c), compliant mean (µ̂1), non-compliant mean(µ̂2), shared standard
deviation (σ̂), and the estimated 95th percentile for exp(µ1) for IND model, REL model, and model averaging between
the two approaches with equal model priors (RJ) and priors favoring IND (RJ95). Estimated standard deviation (SD*)
provided for the IND approach with the ratio of the SD

SDIND
for REL, RJ, and RJ95.
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p̂c µ̂1 µ̂2 σ̂ eµ1 95th Percentile Proportion
Model ES Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE in REL

IND

2 0.06 0.09 0.01 0.15 0.39 0.18 -0.01 0.18 0.03 0.10 0.12 0.02 14.41 12.64 367.49 -
1.5 0.12 0.12 0.03 0.12 0.41 0.18 0.14 0.23 0.07 0.04 0.10 0.01 14.26 12.82 367.68 -
1 0.16 0.14 0.04 -0.07 0.43 0.19 0.30 0.3 0.18 -0.04 0.09 0.01 4.22 12.54 175.04 -

0.5 0.19 0.14 0.06 -0.29 0.34 0.20 0.47 0.32 0.33 -0.1 0.08 0.02 -14.86 12.51 377.29 -
0 - - - 0.00 0.10 0.01 - - - 0.00 0.07 0.01 - - - -

REL

2 -0.25 0.17 0.06 -1.91 0.26 3.67 -0.49 0.55 0.25 0.26 0.66 0.07 -10.79 0.04 116.70 -
1.5 -0.23 0.20 0.05 -1.41 0.26 2.01 -0.32 0.47 0.11 0.11 0.85 0.02 -16.28 0.09 266.15 -
1 -0.18 0.32 0.03 -0.91 0.24 0.84 -0.11 0.39 0.02 -0.03 0.92 0.01 -23.21 0.20 544.83 -

0.5 0.06 0.68 0.01 -0.41 0.30 0.18 0.29 0.51 0.11 -0.13 1.03 0.02 -28.20 0.49 833.09 -
0 - - - 0.09 1.03 0.02 - - - 0.01 1.01 0.01 - - - -

RJ

2 -0.03 1.4 0.02 -0.52 1.9 0.84 -0.14 1.34 0.08 0.13 1.05 0.03 5.43 0.94 170.84 0.35 (0.31)
1.5 -0.06 1.23 0.02 -0.68 1.45 0.81 -0.08 1.07 0.07 0.06 0.97 0.01 -2.07 0.98 162.24 0.56 (0.31)
1 -0.07 0.97 0.02 -0.67 0.76 0.56 0.04 0.83 0.06 -0.04 0.93 0.01 -15.99 0.79 352.75 0.76 (0.25)

0.5 0.06 0.66 0.01 -0.42 0.33 0.19 0.30 0.53 0.12 -0.13 1.03 0.02 -28.19 0.51 835.49 0.95 (0.08)
0 - - - 0.06 1.05 0.01 - - - 0.01 1.01 0.01 - - - -

RJ95

2 0.03 1.13 0.01 -0.06 1.34 0.28 -0.05 1.12 0.04 0.10 1.01 0.03 11.62 0.97 286.01 0.11 (0.15)
1.5 0.05 1.18 0.02 -0.20 1.32 0.33 0.06 1.07 0.06 0.04 0.99 0.01 7.73 1.04 238.01 0.24 (0.22)
1 0.04 1.09 0.02 -0.40 0.95 0.33 0.17 0.95 0.11 -0.05 0.96 0.01 -7.09 0.99 203.47 0.45 (0.26)

0.5 0.09 0.75 0.02 -0.40 0.52 0.19 0.35 0.72 0.18 -0.13 1.03 0.02 -25.79 0.67 734.85 0.79 (0.17)
0 - - - 0.04 1.04 0.01 - - - 0.00 1.00 0.01 - - - -

Table 4.5: Scenario 5 simulation results where no dose-level follows the assumed relationship. Bias and MSE reported
for proportion compliant (p̂c), compliant mean (µ̂1), non-compliant mean(µ̂2), shared standard deviation (σ̂), and the
estimated 95th percentile for exp(µ1) for IND model, REL model, and model averaging between the two approaches
with equal model priors (RJ) and priors favoring IND (RJ95). Estimated standard deviation (SD*) provided for the
IND approach with the ratio of the SD

SDIND
for REL, RJ, and RJ95.
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p̂c µ̂1 µ̂2 σ̂ eµ1 95th Percentile Proportion
Model ES Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE Bias SD* MSE in REL

IND

6 0.00 0.00 0.00 0.00 0.19 0.03 -0.01 0.12 0.01 0.01 0.07 0.01 0.02 0.06 0.00 -
4.5 0.00 0.01 0.00 0.01 0.19 0.04 0.00 0.13 0.02 0.01 0.08 0.01 0.11 0.32 0.12 -
3 0.01 0.04 0.00 0.06 0.30 0.09 -0.03 0.16 0.03 0.06 0.13 0.02 3.25 6.18 48.73 -

1.5 0.12 0.12 0.03 0.11 0.43 0.19 0.13 0.22 0.07 0.04 0.10 0.01 14.45 13.03 378.69 -
0 - - - 0.00 0.10 0.01 - - - 0.00 0.07 0.01 - - - -

REL

6 0.02 2.72 0.00 1.40 0.91 2.00 0.02 0.98 0.01 0.30 1.84 0.11 1.68 13.41 3.54 -
4.5 0.03 1.48 0.00 0.90 0.87 0.84 0.05 0.99 0.02 0.16 1.62 0.04 3.02 5.68 12.44 -
3 0.03 0.82 0.00 0.40 0.57 0.19 0.02 0.98 0.03 0.09 1.00 0.02 4.76 0.61 37.10 -

1.5 -0.01 0.65 0.01 -0.10 0.39 0.04 0.01 0.70 0.02 -0.01 0.97 0.01 -1.07 0.43 32.15 -
0 - - - -0.60 1.67 0.39 - - - 0.18 1.73 0.05 - - - -

RJ

6 0.00 1.01 0.00 0.00 1.00 0.03 -0.01 1.00 0.01 0.01 1.00 0.01 0.02 1.00 0.00 0.00 (0.00)
4.5 0.00 1.01 0.00 0.01 1.03 0.04 0.00 1.00 0.02 0.01 1.01 0.01 0.13 1.21 0.17 0.00 (0.03)
3 0.04 1.20 0.00 0.40 1.57 0.37 -0.03 1.03 0.03 0.14 1.36 0.05 9.24 1.48 169.07 0.48 (0.38)

1.5 0.18 0.73 0.04 0.46 0.33 0.23 0.14 0.77 0.05 0.07 0.98 0.01 21.00 0.74 533.41 0.96 (0.07)
0 - - - -0.02 1.08 0.01 - - - 0.00 1.00 0.01 - - - -

RJ95

6 0.00 1.01 0.00 0.00 1.00 0.03 -0.01 1.00 0.01 0.01 1.00 0.01 0.02 1.00 0.00 0.00 (0.00)
4.5 0.00 1.00 0.00 0.01 1.01 0.04 0.00 1.00 0.02 0.01 1.00 0.01 0.12 1.02 0.12 0.00 (0.01)
3 0.02 1.13 0.00 0.22 1.36 0.21 -0.03 1.00 0.03 0.09 1.18 0.03 5.76 1.21 88.66 0.26 (0.29)

1.5 0.17 0.79 0.04 0.39 0.54 0.21 0.14 0.79 0.05 0.06 0.98 0.01 19.67 0.76 484.76 0.83 (0.15)
0 - - - -0.01 1.04 0.01 - - - 0.00 1.00 0.01 - - - -

Table 4.6: Scenario 6 simulation results the dose-level relationship underestimates the compliant means. Bias and MSE
reported for proportion compliant (p̂c), compliant mean (µ̂1), non-compliant mean(µ̂2), shared standard deviation
(σ̂), and the estimated 95th percentile for exp(µ1) for IND model, REL model, and model averaging between the
two approaches with equal model priors (RJ) and priors favoring IND (RJ95). Estimated standard deviation (SD*)
provided for the IND approach with the ratio of the SD

SDIND
for REL, RJ, and RJ95.
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4.4 Application to a regulatory tobacco clinical trial

This section provides a case study of our model averaging approach applied to the data

from CENIC-p1. As mentioned in Section 4.1, previous research has identified TNE cut-

offs that can be used to identify non-compliance among subjects randomized to the 0.4

mg/g groups. However, the investigators are also interested in understanding the effect of

nicotine reduction among smokers that complied to the intervention in the intermediate

nicotine content groups where biomarker thresholds for identifying non-compliance are not

currently available.

Our analysis will focus on total nicotine equivalents (TNE; a biomarker of nicotine

exposure that measures most nicotine metabolites) as our biomarker for identifying non-

compliance. For the purposes of this analysis, we will analyze TNE on the log scale and

assume that all mixture components for the log-transformed biomarker values are normally

distributed. CENIC-p1 included two control conditions: a usual brand (UB) condition,

who received their preferred brand of commercially available cigarettes, and a 15.8 mg/g

study cigarette (roughly equivalent to the nicotine content of commercial cigarettes). In

addition, CENIC-p1 included five experimental conditions: a 5.2 mg/g group, a 2.4 mg/g

group, a 1.3 mg/g group, a 0.4 mg/g group, and a 0.4 mg/g condition with elevated tar

yield (0.4 mg/g (HT) group) to understand the impact of tar yield on the effect of nicotine

reduction. For the purposes of this analysis, we combine the two controls conditions and

the two 0.4 mg/g groups because these groups have the same nicotine content, respectively,

which is the primary factor influencing the distribution of the biomarkers. The proposed

relationship from Section 4.2.1 is used with wj = (0.4, 1.3, 2.4, 5.2, 15.8), corresponding to

a 97.5%, 91.8%, 85.0%, and 66.7% reduction (effect size of -3.7, -2.5, -1.9, and -1.1) in the

average biomarker value for the VLNC group, 1.3 mg/g group, 2.4 mg/g group, and 5.2

mg/g group, respectively, relative to the combined usual brand/15.8 mg/g control group.

Table 4.7 provides summary statistics at week 6 by treatment group for all participants

and restricted to those who self-reported compliance. Figure 4.1 provides histograms of

log(TNE) by treatment group for self-reported compliers at trial completion (week 6 for

CENIC-p1). A bimodal distribution can be observed for the 1.3 mg/g group and the

combined VLNC group whereas a bimodal pattern is not easily identified for the 2.4 and

5.2 mg/g groups. This suggests that, while it may not be difficult to identify the compliant
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and non-compliant subjects in the 1,3 mg/g and VLNC groups, there may not be any truly

compliant subjects for the 2.4 and 5.2 mg/g groups, or, more likely, the distributions of

log(TNE) for compliant and non-compliant subjects have sufficient overlap to make distinct

bimodal patterns difficult to identify.

Covariate UB 15.8 5.2 2.4 1.3 0.4 HT 0.4

All Subjects: (N=118) (N=119) (N=122) (N=119) (N=119) (N=123) (N=119)

CPD Available 113 (95.8%) 111 (93.3%) 114 (93.4%) 107 (89.9%) 110 (92.4%) 116 (94.3%) 109 (91.6%)

TNE Data Available 109 (92.4%) 108 (90.8%) 107 (87.7%) 107 (89.9%) 109 (91.6%) 113 (91.9%) 107 (89.9%)

Study CPD 21.9 (13.0) 20.9 (12.4) 19.9 (14.6) 14.7 (10.5) 14.7 (10.7) 13.9 (9.65) 13.5 (10.1)

Non-Study CPD 0.28 (1.4) 0.41 (1.2) 0.92 (2.47) 1.83 (3.97) 1.63 (4.16) 1.94 (5.05) 1.35 (3.45)

TNE (nmol/mL) 59.5 (53.9) 49.9 (33.0) 39.6 (33.6) 34.8 (33.3) 35.2 (32.3) 36.1 (39.8) 34.7 (32.1)

Self-Reported Compliers: (N=102) (N=80) (N=74) (N=57) (N=64) (N=67) (N=69)

CPD Available 102 (100.0%) 80 (100.0%) 74 (100.0%) 57 (100.0%) 64 (100.0%) 67 (100.0%) 69 (100.0%)

TNE Data Available 100 (98.0%) 78 (97.5%) 69 (93.2%) 56 (98.2%) 64 (100.0%) 65 (97.0%) 68 (98.6%)

Study CPD 22.7 (13.1) 21.3 (12.6) 22.2 (15.6) 16.3 (10.9) 17.0 (10.8) 14.9 (9.82) 15.5 (10.7)

Non-Study CPD 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

TNE (nmol/mL) 59.3 (53.4) 48.0 (31.9) 33.2 (29.6) 30.6 (36.2) 30.8 (31.5) 27.3 (36.8) 30.0 (33.7)

Table 4.7: Summary statistics at week 6 by CENIC-p1 groups for all subjects and restricted
to those self-reporting compliance at week 6. Mean (sd) for continuous measures, N (%)
for categorical measures.
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Figure 4.1: Histograms for distribution of self-reported compliers of log(TNE) in each
CENIC-p1 treatment grouping at week 6.

For all j dose-levels, assume “non-informative” prior specifications of αj = βj = 1 for

the beta prior on pj , aj = bj = 0.001 for the gamma prior on τj , and sµj = sθj = 0.00001

for the normal priors on µj and θj . The REL and IND models were fit on three chains with

different, overdispersed initial values of length 20,000 with a burn-in of 2,000 iterations.
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Chain length, burn-in, and MCMC convergence of the parameters were established by

Gelman-Rubin diagnostic values below 1.05 (Gelman and Rubin, 1992), autocorrelation

plots with a lag up to 50 iterations, and trace plots. The RJMCMC models were fit on

three chains with a length of 400,000 with a burn-in of 200,000 iterations. Convergence is

challenging for reversible jump algorithms since other methods for MCMC diagnostics are

not applicable due to the changing model space (Green and Hastie, 2009), but utilizing

longer chains and discarding the first half of the observations provide a greater opportunity

to explore the total model space of 16 potential models.

The results of applying both approaches and the RJMCMC algorithm assuming p(Ij) =

0.5 for each group j are presented in Table 4.8. Presented are the posterior means and 95%

highest posterior density (HPD) intervals for the proportion compliant (p̂c), the compliant

component mean for log(TNE) (µ̂1), the non-compliant component mean for log(TNE)

(µ̂2), the shared standard deviation between the two components (σ̂), and the 90th and 95th

percentile of the biomarker distribution for compliant subjects. The last quantities have

been suggested as thresholds for identifying non-compliance in trials of reduced nicotine

content cigarettes (Denlinger et al., 2016).

Results for the IND and REL models are similar, in general, suggesting that the hy-

pothesized relationship between nicotine dose and biomarkers of nicotine exposure may be

reasonable. As a result, our RJMCMC algorithm chooses the relationship over 90% of the

time for all dose-levels. Figure 4.2 presents histograms of log(TNE) by group and the fitted

distributions from the RJMCMC algorithm. We see that our approach results in a reason-

able fit to the data, with the possible exception of the 2.4 mg/g group, where it is difficult

to identify the two components. The gains in efficiency from using the REL approach as

compared to the IND approach can be seen in more precise estimates of the 90th and 95th

percentiles across all groups, with reductions in the width of the HPD intervals ranging

from 37-55% and 24-51% for the 90th and 95th percentile, respectively. In our simulation

study, we observed that substantial overlap in the mixture components can lead to bias in

the estimated marginal probability of compliance, which may explain why the estimated

probability of compliance is higher for the 5.2 mg/g group than the other groups. Similarly,

the 2.4 mg/g group lacks a clear bimodal distribution which makes estimation for the IND

approach challenging and may introduce bias.



78

Boatman et al. (2017) showed that the probability of a subject being compliant, Cij ,

can be determined as a function of the observed biomarker values and written as a function

of the mixture components:

P (Cij |yij) =
(1− pj)N (yij |µj , τj)

(1− pj)N (yij |µj , τj) + pjN (yij |µj + θj , τj)
.

Figure 4.3 presents the estimated probability of compliance as a function of the biomarkers

from the IND and RJMCMC models. With the exception of the 2.4 mg/g group, the

curves for the RJMCMC approach are similar to the IND approach, suggesting that any

bias due to borrowing is minimal and outweighed by the increased precision, as noted

in Table 4.8. There is a substantial difference between the two curves for the 2.4 mg/g

group, but it should be noted that both curves are below the curve for the 0.4 mg/g group

for low biomarker values, which is inconsistent with our understanding of the underlying

mechanism. Further work is needed to understand the discrepancy and to determine the

validity of these results.



Percentile for µ1 Proportion

Group Approach p̂c µ̂1 µ̂2 σ̂ 90th 95th in REL

VLNC

IND 0.36 (0.27,0.45) 0.20 (-0.12,0.51) 3.44 (3.21,3.67) 0.92 (0.78,1.05) 4.03 (2.62,5.54) 5.63 (3.67,8.03)

REL 0.34 (0.25,0.43) -0.09 (-0.25,0.06) 3.38 (3.15,3.60) 0.93 (0.80,1.08) 3.03 (2.40,3.71) 4.26 (3.23,5.39)

RJ 0.34 (0.26,0.43) -0.07 (-0.28,0.14) 3.39 (3.16,3.62) 0.93 (0.80,1.07) 3.10 (2.35,3.95) 4.35 (3.17,5.72) 0.935

1.3 mg/g

IND 0.27 (0.11,0.44) 0.77 (-0.01,1.48) 3.37 (2.95,3.76) 0.94 (0.70,1.25) 8.21 (2.53,15.45) 11.86 (3.57,23.10)

REL 0.31 (0.16,0.45) 1.09 (0.93,1.24) 3.45 (3.07,3.80) 0.93 (0.71,1.20) 9.95 (6.83,14.12) 14.09 (8.74,21.46)

RJ 0.31 (0.16,0.46) 1.08 (0.92,1.25) 3.44 (3.05,3.80) 0.93 (0.71,1.21) 9.97 (6.61,14.42) 14.15 (8.48,22.00) 0.990

2.4 mg/g

IND 0.15 (0.01,0.35) 0.40 (-1.03,2.26) 3.10 (2.74,3.46) 1.00 (0.77,1.29) 8.51 (0.31,29.45) 12.72 (0.36,45.17)

REL 0.27 (0.04,0.48) 1.70 (1.54,1.85) 3.21 (2.73,3.67) 1.10 (0.83,1.38) 23.03 (14.46,32.89) 34.81 (19.39,53.59)

RJ 0.26 (0.04,0.47) 1.58 (0.22,1.94) 3.20 (2.74,3.66) 1.09 (0.82,1.38) 21.65 (1.61,32.60) 32.68 (2.11,53.04) 0.901

5.2 mg/g

IND 0.43 (0.13,0.75) 2.35 (1.91,3.02) 3.69 (3.21,4.03) 0.63 (0.43,0.90) 25.41 (12.84,56.96) 32.56 (14.82,76.61)

REL 0.44 (0.22,0.65) 2.47 (2.32,2.62) 3.71 (3.29,4.05) 0.64 (0.45,0.88) 27.49 (18.82,38.67) 35.02 (21.70,52.25)

RJ 0.45 (0.23,0.66) 2.47 (2.31,2.63) 3.72 (3.30,4.06) 0.64 (0.45,0.88) 27.31 (18.39,38.94) 34.74 (21.55,52.93) 0.989

UB/15.8 mg/g

IND - 3.57 (3.40,3.75) - 1.21 (1.09,1.34) - -

REL - 3.58 (3.43,3.73) - 1.21 (1.08,1.34) - -

RJ - 3.58 (3.42,3.74) - 1.21 (1.09,1.34) - - -

Table 4.8: Mean (95% HPD interval) of proportion in compliant group (p̂c), compliant component mean log(TNE)
(µ̂1), non-compliant component mean log(TNE) (µ̂2), shared standard deviation (σ̂), 90/95th percentile of µ̂1, and
proportion of the chain spent in the REL approach for the RJMCMC.
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Figure 4.2: Histograms for distribution of self-reported compliers of log(TNE) in each
CENIC-p1 treatment arm at week 6 with mixture densities for the RJ approach.
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Figure 4.3: Predicted compliance (Pr(C=1)) as a function of observed TNE by study group
for IND approach and model averaging with RJMCMC.

4.5 Discussion

The ability to identify non-compliance has important implications for interpreting the re-

sults of CENIC-p1. Previous work to identify non-compliance in CENIC-p1 leveraged the

availability of auxiliary data to determine cut-offs for identifying non-compliance and to
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estimate the probability of compliance conditional on the observed biomarker values for

the VLNC group, only (Boatman et al., 2017). However, auxiliary data is not available

for the intermediate dose-levels. The method proposed by Boatman et al. (2017) could be

used to estimate the probability of non-compliance for the intermediate dose-levels, but

the estimates will be inefficient in the absence of auxiliary data from known compliers. We

propose a fully Bayesian approach to estimating the mixture components across all groups

simultaneously by averaging over the model space, which included different assumptions

regarding the association between the nicotine content of the cigarettes and biomarkers of

nicotine exposure. Simulation results were encouraging, with model averaging achieving

more precise estimates of the mixture components by choosing the state assuming the hy-

pothesized relationship when the relationship was true and downweighting the hypothesized

relationship when the relationship was misspecified.

One of the objectives of CENIC-p1 was to collect data that would inform the FDA as

they consider new product standards for cigarettes, including a potential reduction in the

nicotine content of cigarettes. The intention-to-treat analysis provides an estimate of the

effect of an intervention, in practice, which may include non-compliance to the intervention,

but it does not reflect the potential future reality where policy choices may lead to previous

options disappearing from the market due to regulation (i.e., the FDA using its power to

lower nicotine content of cigarettes). This motivates the desire to estimate the causal effect

of nicotine reduction, which requires that investigators are able to accurately identify non-

compliance to randomized treatment assignment. Previously, investigators were only able

to identify non-compliance in the VLNC group, but the method proposed in this chapter

provides a framework for identifying non-compliance at other dose-levels, as well. This is

particularly important because a number of randomized trials of reduced nicotine content

cigarettes are currently under way and some use dose-levels other than the 0.4 mg/g dose.

Mixture models can be challenging to estimate in practice, with problems such as label

switching or unstable estimates. In the Bayesian context these can be addressed through

assumptions regarding the relationships between components (i.e., forcing one component

to have a larger mean than the other) and by monitoring the behavior of the resulting

MCMC chains to ensure convergence to a steady state. While our Gaussian mixture

model is for a finite, two-component mixture model, our approach could be extended to
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any finite number of components. For example, our analysis only considered subjects

that self-report compliance, in which case there are two groups: subjects that honestly

self-report compliance and subjects that self-report compliance but were actually non-

compliant. Alternately, we could analyze all subjects, which would result in a third mixture

component for subjects that honestly self-report non-compliance.

The proposed Bayesian framework represents a flexible approach to identifying non-

compliance in regulatory tobacco trials, but could be applied to other settings as well. For

instance, the approach may be beneficial in therapeutic clinical trials where multiple doses

are considered, but pharmacokinetic data are only available for one dose. In addition,

future work will extend our proposed modeling framework to a regression setting where

biomarkers can be modeled as a function of other covariates of interest that may impact

the observed biomarker values, such as cigarettes per day. Additionally, the results of this

chapter could be used to estimate graphical compliance networks, which can be combined

with causal inference techniques to estimate causal effect for the intermediate dose levels.



Chapter 5

Conclusion

5.1 Summary of developments

In this thesis we developed multi-source exchangeability models, a general Bayesian frame-

work for integrating multiple, potentially non-exchangeable, supplemental data sources into

the analysis of a primary source. MEMs yield source-specific smoothing parameters that

can be estimated by the data to facilitate a dynamic multi-resolution smoothed estimator

that is asymptotically consistent while reducing the dimensionality of the prior space.

The general MEM framework, as developed in Chapter 2, was first applied to the

context of Gaussian-distributed data with a known mean and unknown variance. The

asymptotic consistency of MEM posterior weights, and consequently the marginal posterior

distributions, were presented along with extensive simulation studies to exhibit the small

sample properties. An application to estimate the reduction in cigarettes smoked per day

in a regulatory tobacco clinical trial demonstrated the potential increase in efficiency that

results from incorporating supplemental sources into the analysis of a clinical trial.

Chapter 3 extended the MEM framework to binary outcome data in the context of a

proposed multi-source adaptive platform design. Motivated by the recent Ebola epidemic,

the MEM framework is incorporated into the standard platform trial design to enable

the incorporation of information from previous segments into the analysis of the current

segment to improve efficiency. Maintaining a fixed randomization ratio may induce an

imbalance of information between study groups when supplemental information is used
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during data analysis. To address this potential for information imbalance, an adaptive

randomization scheme was presented which adapts the allocation ratio for future partic-

ipants and targets balanced information across treatment groups within a segment. We

demonstrated via simulation that our proposed multi-source adaptive platform design us-

ing MEMs resulted in increased power and reasonable type-I error rates as compared to a

standard design with no borrowing.

We returned to the Gaussian setting in Chapter 4 and considered the situation where

there are multiple proposed models for estimating the components of mixture distribu-

tions in the context of identifying non-compliance in a regulatory tobacco clinical trial,

and then applied the RJMCMC algorithm to induce model averaging over multiple candi-

date models. Simulation studies indicated that the RJMCMC algorithm properly weights

the proposed models and results in more efficient estimates of the mixture component pa-

rameters when borrowing is appropriate. The application to CENIC-p1 was able to more

efficiently estimate thresholds for identifying non-compliance at intermediate dose-levels,

which were not previously available.

5.2 Significance of the work

While a number of methods for adaptively incorporating supplemental information into

data analysis have been proposed in the literature, existing approaches typically rely on

the data to inform a single parameter, which determines the extent of influence or shrink-

age from all sources, risking considerable bias or minimal borrowing in the presence of

heterogeneous supplemental data sources. The MEM framework is a general Bayesian

hierarchical approach which effectuates source-specific smoothing parameters that can be

estimated from the data. By estimating source-specific smoothing parameters we are able

to accommodate multiple, potentially non-exchangeable sources without pre-specifying the

smoothing parameters or relying on a single parameter to inform borrowing.

The multi-source adaptive platform design proposed in Chapter 3 addresses some of

the concerns over the “traditional” drug development process which was seen by some

as too time consuming and unable to quickly respond to a potentially dynamic, fast-

changing disease outbreak. Simulations demonstrated increased power with reasonable

inflation of the type-I error rate as compared to a standard platform design, which only
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considered contemporaneous controls. Our proposed multi-source adaptive platform trial

was strongly motivated by the recent Ebola outbreak in West Africa, but future infectious

disease epidemics are inevitable and our proposed design represents an advancement in the

tools available to respond to future epidemics.

The model averaging approach described in Chapter 4 represents an intuitive approach

to borrowing information across multiple sources of information in the presence of a hypoth-

esized relationship across sources. If the relationship is true, incorporating our biological

understanding of the relationship between the groups can increase efficiency, while model

averaging allows the flexibility to downweight the information from other groups when the

relationship does not hold. Additionally, posterior model weights can provide evidence for

the appropriateness of the hypothesized relationship separately for each group.

Finally, the use of effective supplemental sample size and posterior model weights pro-

vides a convenient way to convey the amount of supplemental information incorporated

into a primary data analysis. Further, the fact that the posterior weights are constrained

to be positive and sum to one provides an intuitive measure which can promote a greater

understanding of how supplemental information is utilized in posterior calculations that

may not be as apparent in other approaches. This can be viewed as a beneficial feature

of our proposed framework when working with collaborators who may be wary of incor-

porating supplemental information or who want to be informed of how influential each

supplemental source is on the analysis.

5.3 Future work and considerations

Throughout this dissertation, we only considered models that evaluate exchangeability

based on a single endpoint, but source inclusion probabilities could also be determined by

considering multiple endpoints, simultaneously. In practice, clinical trials in a common

disease area will often have multiple endpoints in common. For example, the CENIC-p1

study in Chapters 2 and 4 is part of a larger network of Tobacco Centers of Regulatory

Science (TCORS), a joint initiative of the FDA’s Center for Tobacco Products (CTP) and

the NIH. These centers are planning to conduct multiple trials relating to nicotine reduction

and are actively working to identify a common set of outcome measures for evaluating the

impact of tobacco product regulation.
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Expanding MEMs to multiple endpoints is methodologically interesting in that different

types of endpoints may be collected across multiple trials. For example, endpoints could

be related to binary, count, or continuous data and all could be beneficial for evaluating

exchangeability. In accounting for multiple endpoints one could evaluate each endpoint

individually and then utilize the separate source inclusion probabilities, but jointly model-

ing endpoints to evaluate exchangeability could provide stronger evidence that sources are

exchangeable rather than evaluating endpoints one-by-one. Accounting for these correlated

endpoints could be achieved through many different approaches. One approach would be

to induce correlation on the outcomes via copula models and use the resulting density to

calculate the posterior model weights (Nelsen, 2006; Embrechts et al., 2001; Durrleman

et al., 2000). If the multiple endpoints are all Gaussian distributed, a Gaussian copula

would provide an intuitive structure. Alternatively, if there are non-Gaussian endpoints

or a mixture of endpoints with different distributions, more flexible copula classes, such

as Archimedean copulas, could account for these different distributions while enabling the

ability to model the dependence of the endpoints through one parameter. An alternate

approach would be to use generalized linear mixed models for each outcome where de-

pendence across the outcomes is accounted for by specifying a joint distribution of the

random effects in place of fitting separate univariate models for each outcome (Komárek

and Komárková, 2013).
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Appendix A

Proof of theorem from Chapter 2

A.1 Proofs for Convergence of Model Weights

Proof of Theorem 1: WLOG assume n = n1 = . . . = nh. First, note that we can

re-write the model-specific posterior inclusion probabilities as follows:

ωk = p(Ωk|D) =
p(D|Ωk)π(Ωk)∑K
j=I p(D|Ωj)π(Ωj)

(A.1)

=

1 +
∑
j 6=k

p(D|Ωj)π(Ωj)

p(D|Ωk)π(Ωk)

−1

. (A.2)

We will show that ωk → 1 when Ωk = Ωk∗ and ωk → 0 when Ωk 6= Ωk∗ as n → ∞.

This can be demonstrated by showing that the ratios of the marginal likelihoods in (A.2)

converge to 0 or ∞, as desired, and by showing that
π(Ωj)
π(Ωk) converges to a constant for the

two priors under consideration for the MEM framework for all j 6= k.

A.1.1 Convergence of the marginal likelihoods

When Ωk = Ωk∗ we must show that all
p(D|Ωj)
p(D|Ωk) terms in (A.2) converge to 0 as n → ∞.

To demonstrate the convergence of the model weight when Ωk 6= Ωk∗ we must show that

at least one term of
p(D|Ωj)
p(D|Ωk) in (A.2) converges to ∞ and therefore ωk → 0 as n→∞. As

long as one term converges to ∞, the convergence of the other terms is trivial since it can
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be shown that
p(D|Ωj)
p(D|Ωk) must converge within the range of 0 to ∞.

It is helpful to first describe the convergence of the integrated marginal likelihoods.

Rewriting (3.5) we have

p(D|Ωk) =
(
√

2π)(H+1)−
∑H
h=1{sh,k}√(

1
v +

∑H
i=1

{
si,k
vi

})(∏H
j=1

{[
1
vj

]1−sj,k
})

×
H∏
l=1

H∏
l<r

{
exp

(
−n

2

[
sl,k(x̄− x̄l)2

σ + σl + σσl(
∑

m6=l{sm,kσ
−1
m })

])

× exp

(
−n

2

[
sl,ksr,k(x̄l − x̄r)2

σl + σr + σlσr(σ−1 +
∑

p 6=l,r{sp,kσ
−1
p })

])}
(A.3)

First we will describe the convergence of the exponential terms. WLOG, consider the

first exponential term in (A.3) for any model l and define the following:

d =1 +
σσl
σ + σl

∑
m6=l
{sm,kσ−1

m }

 , (A.4)

dg =σ + σl, (A.5)

g =x̄− x̄l, (A.6)

gµ =µ− µl. (A.7)

Using this notation we can demonstrate the convergence of these exponential terms in

the integrated marginal likelihoods. Since g is the sum of normally distributed random

variables it can be shown that
√
n(g − gµ) ∼ N (0, dg),∀n. By adding and subtracting gµ

we see that

exp

(
−n

2

g2

ddg

)
= exp

(
−n

2

(g − gµ + gµ)2

ddg

)
(A.8)

= exp

{
−1

2

[
(
√
n(g − gµ))2

ddg
+
ng2

µ

ddg
+ 2
√
ngµ

√
n(g − gµ)

ddg

]}
. (A.9)
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We can examine the convergence of the terms (A.9) to better understand their conver-

gence behavior. For the first term,
(
√
n(g−gµ))2

ddg
∼ Γ(k = 1

2 , θ = 2
d), ∀n. For the remaining

terms, if µl = µ, then gµ = 0 which implies
ng2µ
ddg

+ 2
√
ngµ

√
n(g−gµ)
ddg

= 0. If µl 6= µ, then

gµ 6= 0 which implies limn→∞
ng2µ
ddg

+ 2
√
ngµ

√
n(g−gµ)
ddg

→ ∞, which can be seen by noting

that:
ng2

µ

ddg
+ 2
√
ngµ

√
n(g − gµ)

ddg
= ng2

µ

(
1

ddg
+ 2

√
n(g − gµ)√
ngµddg

)
The overall convergence of the three terms in (A.9) depend on two cases. If µl = µ,

then as n → ∞ the only term remaining will be the gamma random variable. If µl 6= µ,

then as n→∞ the dominance of −n
2

g2µ
ddg

sends the entire exponential term to 0.

For the the integrated marginal likelihood in (A.3) we then see that the rate of con-

vergence depends on whether or not all sources included in the model are exchange-

able with the primary source. If µh = µ for all sources in Ωk, then each exponential

term in the marginal likelihood converges to a gamma random variable and the conver-

gence depends on the fractional component such that the overall rate of convergence is

limn→∞ p(D|Ωk) = O
([√

n(H+1)−
∑H
h=1{sh,k}

]−1
)

. If at least one source is not exchange-

able in Ωk, then at least one exponential term converges to 0 and the overall rate of

convergence is limn→∞ p(D|Ωk) = O (exp(−n)). Both cases ultimately converge to 0, but

at different rates.

A.1.2 Convergence of the ratio of marginal likelihoods

If Ωk = Ωk∗ we must show that all
p(D|Ωj)
p(D|Ωk) terms in (A.2) converge to 0 as n→∞ so that

limn→∞ p(Ωk|D) = 1. This can be exhaustively shown by considering two cases. First, Ωj

from (A.2) only contains a subset of the exchangeable sources which implies

lim
n→∞

p(D|Ωj)

p(D|Ωk)
= O

(√
n
∑H
h=1{sh,j}−

∑H
h=1{sh,k}

)
, (A.10)

and converges to 0. Alternatively, Ωj may be a model which contains nonexchangeable

sources. In this case,

lim
n→∞

p(D|Ωj)

p(D|Ωk)
= O (exp(−n)) , (A.11)
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and converges to 0. Therefore if Ωk = Ωk∗ , all terms in (A.2) converge to 0 and limn→∞ p(Ωk|D) =

1.

If Ωk 6= Ωk∗ we must show that at least one term in (A.2) converges to ∞ so that it

sends the posterior model weight to 0. Similar to before, we can show this holds for any

model by considering two cases. First, consider the case where Ωk only contains a subset

of the exchangeable sources in Ωk∗ . Examining the convergence behavior of comparing

these models results in

lim
n→∞

p(D|Ωk∗)

p(D|Ωk)
= O

(√
n
∑H
h=1{sh,k∗}−

∑H
h=1{sh,k}

)
, (A.12)

which will approach ∞ as n → ∞ since Ωk∗ includes a larger number of exchangeable

sources than Ωk. Alternatively, Ωk may contain nonexchangeable sources which, when

compared to Ωk∗ , results in convergence behavior of

lim
n→∞

p(D|Ωk∗)

p(D|Ωk)
= O (exp(n)) , (A.13)

which will approach ∞ as n → ∞. Therefore, if Ωk 6= Ωk∗ , at least one term will con-

verge to ∞ in (A.2) with the all other terms converging between 0 and ∞, therefore

limn→∞ p(Ωk|D) = 0.

A.1.3 Convergence of the priors

The results of the previous sub-section show that the ratio of marginal likelihoods in

(A.2) will converge appropriately. Recall the MEMs assume the supplemental sources are

independent such that π(Ωk) = π(S1 = s1,k, ..., SH = sH,k) = π(S1 = s1,k)× · · · × π(SH =

sH,k) so that priors are placed are the sources rather than the model alone. This results

in ratios of source priors on inclusion and exclusion, e.g. π(Sh=0)
π(Sh=1) or π(Sh=1)

π(Sh=0) . To show that

the convergence of these priors do not impact the convergence results already shown for

marginal likelihoods, we will demonstrate our proposed priors converge to constant values

and therefore do not change the rates of convergence proved previously.

First, we know that πe(Sh=0)
πe(Sh=1) or πe(Sh=1)

πe(Sh=0) is a fixed constant and we can therefore

conclude that the posterior source-specific inclusion probabilities will be consistent for πe.

Similarly, we know that πn(Sh=0)
πn(Sh=1) or πn(Sh=1)

πn(Sh=0) converges to a constant, which confirms that
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the posterior source-specific inclusion probabilities will be consistent for πn. The last result

for πn can be seen by noting that the largest term in both πn(Sh = 0) and πn(Sh = 1) is
√
nH , which implies that the ratio will converge to a constant.

Since the terms in (A.2) all converge as desired, MEM model weights are asymptotically

consistent.



Appendix B

Additional simulation results for

Chapter 2

B.1 Simulation Operating Characteristics

This section provides additional results for the simulation study presented in Section 4.

Figure B.1 shows bias at varying levels of µ. It can observed that MEMs are incorporating

information in a region around supplemental means whereas CP struggles to identify what

supplemental information to integrate. In the presence of heterogeneity of supplementary

sources the SHM shows a preference for not borrowing information and has little bias as a

consequence. Figure B.2 shows MSE represents similar trends with the MEMs incorporat-

ing information in regions around supplemental source means whereas the CP and SHM

struggle to incorporate supplemental data when they are heterogeneous. Finally, Figure

B.3 represents the coverage of 95% HPD interval for each scenario. These figures indicate

that higher coverage is attained at locations where borrowing occurs, but the location of

borrowing is not necessarily in the region of a supplemental source for CP in scenarios with

heterogeneous supplementary data.
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Appendix C

Additional simulation results for

Chapter 3

C.1 Additional simulation results for proposed multi-source

adaptive platform design

The results presented in the paper demonstrated the performance of the posterior probabil-

ity thresholds optimized for performance under the constant underlying mortality scenario.

In the supplementary materials we provide results for these scenarios under the posterior

probability thresholds calibrated to maintain the power of the constant mortality while

reducing the inflation of the type-I error rates of the varying underlying mortality. We also

provide results which look at some scenarios where a stronger effective treatment is included

at RR=0.5 as compared to the results for RR=0.7. Finally, results are presented which

explore how operating characteristics change as various parameters such as the burn-in

period or c = 0.20 for πEBc .

C.1.1 Both PP thresholds

Tables C.1 and C.2 examine the performance using the same parameters from the manuscript

of nburn = 60 and B = 5 with adaptive randomization and interim monitoring, but use the
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thresholds calibrated to minimize the inflation of the type-I error rate in the varying un-

derlying mortality case of Table C.2 while maintaining a power in the constant underlying

mortality case of Table C.1 for the MEMs similar to that of PREVAIL II (P-II).

In Table C.1 we see that the type-I error rates are now much lower than PREVAIL II

across segments 2-5 when supplemental information is available to integrate to the analysis

as compared to the results for the posterior probability thresholds calibrated to maintain

an average type-I error rate across scenarios of 0.025. However, this reduction in type-

I error rates results in a reduction of power such that performance for πEB10 and πe is

similar to P-II, whereas POOL now has less power than P-II. All MEMs still randomize

more patients to the treatment arm and see an increase in the mean proportion surviving

in the non-null segments compared to P-II.

The varying underlying mortality scenario in Table C.2 shows similar results to the

case with posterior probability thresholds calibrated to the constant scenario. There is an

inflation of the average type-I error within a segment for each MEM compared to P-II.

However the inflation is less than that observed when the thresholds are optimized for

the constant mortality case and still demonstrate an improvement in power to detect an

effective treatment. Again, more patients are randomized to the treatment arm in segments

2-5 and there is an increase in the proportion surviving the non-null segments.

The results of calibrating the posterior probability thresholds to both scenarios for

underlying mortality represents similar overall trends to operating characteristics as seen in

the calibration of thresholds to just the constant case’s average type-I error rate. However,

πe does have more acceptable levels of inflation and may be appropriate if one desires

to maximize the number of patients randomized to the treatment arm while maintaining

operating characteristics. πEB10 also demonstrates desirable characteristics as before, but

POOL still represents an undesirable trade-off wherein there is drastically increased power

compared to P-II in the varying mortality case but with very high type-I error rates.
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.032 0.028 0.029 0.031 0.029 996 (25.58) 0.5 (0) 0.600 (0.017)

S2 0.032 0.432 0.028 0.029 0.028 988 (38.41) 0.5 (0) 0.659 (0.036)

S3 0.032 0.028 0.431 0.029 0.030 988 (38.89) 0.5 (0) 0.659 (0.036)

S4 0.032 0.028 0.029 0.434 0.028 988 (38.79) 0.5 (0) 0.659 (0.036)

S5 0.032 0.028 0.029 0.031 0.441 988 (38.78) 0.5 (0) 0.659 (0.036)

πEB10

S0 0.027 0.023 0.018 0.018 0.014 998 (14.97) 0.656 (0.028) 0.600 (0.017)

S2 0.027 0.446 0.017 0.017 0.013 990 (32.02) 0.643 (0.032) 0.669 (0.035)

S3 0.027 0.023 0.435 0.018 0.014 990 (31.46) 0.638 (0.036) 0.676 (0.035)

S4 0.027 0.023 0.018 0.452 0.016 990 (31.13) 0.641 (0.033) 0.682 (0.035)

S5 0.027 0.023 0.018 0.018 0.453 991 (31.02) 0.655 (0.028) 0.686 (0.035)

πe

S0 0.027 0.013 0.009 0.007 0.006 998 (14.72) 0.798 (0.020) 0.600 (0.017)

S2 0.027 0.429 0.005 0.004 0.004 990 (32.14) 0.787 (0.032) 0.683 (0.035)

S3 0.027 0.013 0.418 0.004 0.003 989 (32.92) 0.785 (0.038) 0.696 (0.035)

S4 0.027 0.013 0.009 0.415 0.004 988 (34.12) 0.786 (0.034) 0.701 (0.035)

S5 0.027 0.013 0.009 0.007 0.452 986 (35.64) 0.794 (0.022) 0.701 (0.035)

POOL

S0 0.027 0.004 0.002 0.004 0.002 998 (15.65) 0.825 (0.007) 0.600 (0.017)

S2 0.027 0.342 0.001 0.001 0.001 984 (37.27) 0.817 (0.023) 0.691 (0.036)

S3 0.027 0.004 0.258 0.001 0.001 981 (39.39) 0.814 (0.027) 0.701 (0.036)

S4 0.027 0.004 0.002 0.354 0.001 980 (39.72) 0.814 (0.027) 0.702 (0.036)

S5 0.027 0.004 0.002 0.004 0.306 978 (40.58) 0.821 (0.012) 0.702 (0.036)

Table C.1: Constant underlying mortality scenario results using posterior probability
thresholds calibrated for both constant and varying mortality cases with RR=0.7.
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.028 0.030 0.032 0.027 0.025 997 (22.73) 0.5 (0) 0.580 (0.017)

S2 0.028 0.764 0.027 0.025 0.027 972 (51.38) 0.5 (0) 0.482 (0.041)

S3 0.028 0.030 0.555 0.026 0.026 984 (42.33) 0.5 (0) 0.591 (0.038)

S4 0.028 0.030 0.032 0.386 0.026 990 (35.35) 0.5 (0) 0.693 (0.035)

S5 0.028 0.030 0.032 0.027 0.235 994 (27.80) 0.5 (0) 0.804 (0.029)

πEB10

S0 0.027 0.035 0.034 0.038 0.038 998 (16.16) 0.542 (0.015) 0.580 (0.017)

S2 0.027 0.773 0.028 0.039 0.043 971 (48.00) 0.556 (0.019) 0.487 (0.038)

S3 0.027 0.035 0.561 0.033 0.043 983 (39.20) 0.55 (0.018) 0.597 (0.036)

S4 0.027 0.035 0.034 0.425 0.035 990 (31.19) 0.545 (0.016) 0.699 (0.032)

S5 0.027 0.035 0.034 0.038 0.272 994 (24.99) 0.542 (0.015) 0.807 (0.027)

πe

S0 0.027 0.059 0.085 0.084 0.092 994 (24.12) 0.658 (0.04) 0.580 (0.017)

S2 0.027 0.785 0.036 0.085 0.137 960 (53.46) 0.683 (0.041) 0.500 (0.038)

S3 0.027 0.059 0.627 0.037 0.109 972 (47.21) 0.667 (0.041) 0.610 (0.036)

S4 0.027 0.059 0.085 0.481 0.058 979 (41.91) 0.658 (0.040) 0.710 (0.032)

S5 0.027 0.059 0.085 0.084 0.361 985 (37.07) 0.655 (0.039) 0.815 (0.027)

POOL

S0 0.027 0.161 0.535 0.406 0.392 895 (45.15) 0.764 (0.034) 0.574 (0.023)

S2 0.027 0.985 0.030 0.232 0.495 856 (49.39) 0.739 (0.033) 0.510 (0.047)

S3 0.027 0.161 0.946 0.040 0.259 874 (37.51) 0.733 (0.024) 0.619 (0.048)

S4 0.027 0.161 0.535 0.777 0.103 879 (40.85) 0.741 (0.031) 0.717 (0.041)

S5 0.027 0.161 0.535 0.406 0.738 857 (47.80) 0.753 (0.035) 0.822 (0.034)

Table C.2: Varying underlying mortality scenario results using posterior probability thresh-
olds calibrated for both constant and varying mortality cases with RR=0.7.

C.1.2 RR=0.5 results

Tables C.3 and C.4 examine the operating characteristics if the actual RR=0.5 instead of

RR=0.7. Since πEB10 appears to have the more desirable traits of the explored MEM priors,

we include both cases with the posterior probability thresholds calibrated for RR=0.7 under

both the constant mortality only (πEB10-C) and attempting to control the trade-off between

the constant mortality type-I error and varying mortality power (πEB10-B).

Under the assumption of constant underlying mortality in Table C.3 we see both MEMs
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result in increases of power relative to P-II and similar or lower average type-I error rates

across the scenarios. There are also more patients randomized to the treatment arm and

corresponding increases in proportion surviving the non-null arms.

In Table C.4 we see gains in power for each segment with acceptable levels of inflation

to the type-I error rate. We also can note that the trials are terminating earlier for the

MEMs than the P-II cases as seen by the marginally lower median N for the overall trial.

These results suggest that all methods perform more robustly when the effectiveness

of the treatment is stronger (i.e., there is larger power and comparable type-I error rates).

Utilizing MEMs still show improvements by improving power while reducing the inflation

of the type-I error rate in the varying mortality case, by improving the proportion assigned

to the treatment arm, and by increasing the survivorship of patients.

Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.032 0.028 0.029 0.031 0.029 996 (25.58) 0.5 (0) 0.600 (0.017)

S2 0.032 0.876 0.027 0.029 0.026 961 (55.20) 0.5 (0) 0.698 (0.041)

S3 0.032 0.028 0.876 0.027 0.026 961 (55.94) 0.5 (0) 0.697 (0.041)

S4 0.032 0.028 0.029 0.875 0.025 960 (56.08) 0.5 (0) 0.697 (0.041)

S5 0.032 0.028 0.029 0.031 0.880 960 (56.67) 0.5 (0) 0.697 (0.041)

πEB10-C

S0 0.027 0.026 0.026 0.030 0.026 998 (14.97) 0.655 (0.029) 0.600 (0.017)

S2 0.027 0.905 0.027 0.030 0.027 959 (51.55) 0.627 (0.03) 0.711 (0.039)

S3 0.027 0.026 0.922 0.033 0.031 958 (51.87) 0.609 (0.032) 0.720 (0.040)

S4 0.027 0.026 0.026 0.943 0.035 957 (52.36) 0.615 (0.030) 0.729 (0.040)

S5 0.027 0.026 0.026 0.030 0.948 957 (52.67) 0.646 (0.030) 0.736 (0.041)

πEB10-B

S0 0.027 0.023 0.018 0.018 0.014 998 (14.97) 0.656 (0.028) 0.600 (0.017)

S2 0.027 0.894 0.018 0.018 0.016 959 (51.57) 0.628 (0.03) 0.711 (0.039)

S3 0.027 0.023 0.893 0.020 0.018 958 (51.91) 0.61 (0.033) 0.721 (0.040)

S4 0.027 0.023 0.018 0.909 0.021 957 (52.38) 0.616 (0.031) 0.729 (0.040)

S5 0.027 0.023 0.018 0.018 0.912 956 (52.73) 0.646 (0.029) 0.736 (0.041)

Table C.3: Constant underlying mortality scenario results with RR=0.5 for the PREVAIL
II design (P-II) and πEB10 with posterior probability thresholds calibrated under the con-
stant mortality only (-C) or both constant and varying mortality (-B).
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.028 0.030 0.032 0.027 0.025 997 (22.73) 0.5 (0) 0.580 (0.017)

S2 0.028 0.994 0.026 0.025 0.025 912 (59.09) 0.5 (0) 0.540 (0.052)

S3 0.028 0.030 0.945 0.027 0.025 945 (59.83) 0.5 (0) 0.636 (0.046)

S4 0.028 0.030 0.032 0.824 0.025 968 (51.98) 0.5 (0) 0.727 (0.038)

S5 0.028 0.030 0.032 0.027 0.589 986 (37.84) 0.5 (0) 0.826 (0.030)

πEB10-C

S0 0.027 0.040 0.048 0.058 0.061 998 (16.20) 0.543 (0.016) 0.580 (0.017)

S2 0.027 0.995 0.037 0.055 0.075 910 (53.01) 0.568 (0.020) 0.546 (0.048)

S3 0.027 0.040 0.964 0.044 0.069 941 (55.00) 0.554 (0.017) 0.644 (0.042)

S4 0.027 0.040 0.048 0.889 0.052 964 (49.76) 0.545 (0.016) 0.735 (0.034)

S5 0.027 0.040 0.048 0.058 0.699 983 (38.10) 0.542 (0.015) 0.831 (0.027)

πEB10-B

S0 0.027 0.035 0.034 0.038 0.038 998 (16.16) 0.542 (0.015) 0.580 (0.017)

S2 0.027 0.995 0.026 0.034 0.047 910 (53.01) 0.568 (0.02) 0.546 (0.048)

S3 0.027 0.035 0.948 0.027 0.041 941 (55.00) 0.554 (0.017) 0.644 (0.042)

S4 0.027 0.035 0.034 0.842 0.030 964 (49.76) 0.545 (0.015) 0.735 (0.034)

S5 0.027 0.035 0.034 0.038 0.616 983 (38.10) 0.541 (0.015) 0.831 (0.027)

Table C.4: Varying underlying mortality scenario results with RR=0.5 for the PREVAIL II
design (P-II) and πEB10 with posterior probability thresholds calibrated under the constant
mortality only (-C) or both constant and varying mortality (-B).

C.1.3 Exploring different parameter values

To explore the sensitivity of our choices for various parameters we present a selection

of results assuming posterior probability thresholds calibrated for the constant case only.

We explore what would happen if we decrease the burn-in period to 30 patients while

maintaining similarly sized blocks (B=6) or if we increase the burn-in period to 90 pa-

tients while maintaining similarly sized blocks (B=4). We explore increasing the con-

strained EB approach to 0.20 from 0.10 with calibrated posterior probability thresholds

of (0.975,0.96375,0.96125,0.95626,0.95) to examine the operating characteristics under a

slightly less conservative prior. We also explore the πEB10 with no AR but maintaining

interim monitoring (IM) and also with no IM while maintaining AR. The results for πEB10

from the main manuscript are provided for ease of comparison.
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We see in Table C.5 for the constant underlying mortality that the operating character-

istics for πEB10 are not greatly altered by the changes of burn-in period. In fact, as nburn

approaches the maximum value of 200, the results will begin to converge to the values seen

for πEB10 with no AR since larger burn-in periods result in fewer patients being adaptively

randomized. πEB20 results in slight increases of power and comparable type-I error rates,

but more patients are randomized to the treatment arm since more supplemental informa-

tion is potentially integrated into the analysis. Finally, when RR=0.7, πEB10 with no IM

shoes similar performance to πEB10 with IM and AR since the segments rarely terminate

early due to the moderate strength of the non-null treatment.

Extremely similar results are seen in Table C.6 for the varying underlying mortality.

In this case we see similar levels of inflation to the type-I error with comparable power. In

general, we see comparisons of performance of πEB10 to the alternative parameter values

which follow similar patterns as seen in Table C.5.
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

πEB10

S0 0.027 0.026 0.026 0.030 0.026 998 (14.97) 0.655 (0.029) 0.600 (0.017)

S2 0.027 0.470 0.025 0.028 0.024 990 (32.03) 0.642 (0.032) 0.669 (0.035)

S3 0.027 0.026 0.509 0.031 0.025 990 (31.49) 0.634 (0.035) 0.676 (0.035)

S4 0.027 0.026 0.026 0.548 0.028 990 (31.09) 0.638 (0.032) 0.682 (0.035)

S5 0.027 0.026 0.026 0.030 0.560 991 (30.96) 0.654 (0.029) 0.686 (0.036)

πEB10

S0 0.028 0.026 0.026 0.029 0.025 998 (15.03) 0.655 (0.028) 0.600 (0.017)

nburn=30

S2 0.028 0.471 0.024 0.027 0.023 990 (31.11) 0.642 (0.032) 0.669 (0.035)

S3 0.028 0.026 0.504 0.029 0.026 991 (29.97) 0.635 (0.034) 0.676 (0.035)

S4 0.028 0.026 0.026 0.543 0.028 991 (29.86) 0.638 (0.031) 0.682 (0.035)

S5 0.028 0.026 0.026 0.029 0.560 991 (30.14) 0.654 (0.029) 0.687 (0.035)

πEB10

S0 0.027 0.026 0.025 0.028 0.024 998 (14.74) 0.656 (0.029) 0.600 (0.017)

nburn=90

S2 0.027 0.473 0.023 0.027 0.022 990 (30.89) 0.642 (0.032) 0.669 (0.035)

S3 0.027 0.026 0.508 0.028 0.025 990 (30.40) 0.635 (0.036) 0.675 (0.035)

S4 0.027 0.026 0.025 0.550 0.028 990 (30.98) 0.637 (0.033) 0.681 (0.035)

S5 0.027 0.026 0.025 0.028 0.558 990 (30.91) 0.654 (0.030) 0.686 (0.035)

πEB20

S0 0.027 0.031 0.027 0.026 0.025 998 (14.97) 0.726 (0.035) 0.600 (0.017)

S2 0.027 0.522 0.025 0.024 0.020 990 (32.12) 0.709 (0.041) 0.674 (0.035)

S3 0.027 0.031 0.551 0.025 0.023 990 (31.86) 0.700 (0.044) 0.684 (0.036)

S4 0.027 0.031 0.027 0.584 0.025 990 (31.23) 0.704 (0.041) 0.692 (0.035)

S5 0.027 0.031 0.027 0.026 0.619 990 (31.61) 0.724 (0.036) 0.697 (0.036)

πEB10

S0 0.029 0.027 0.029 0.037 0.035 999 (12.73) 0.5 (0) 0.600 (0.017)

No AR

S2 0.029 0.476 0.027 0.035 0.034 991 (29.19) 0.5 (0) 0.660 (0.035)

S3 0.029 0.027 0.514 0.036 0.034 992 (28.15) 0.5 (0) 0.660 (0.035)

S4 0.029 0.027 0.029 0.566 0.034 992 (27.89) 0.5 (0) 0.660 (0.035)

S5 0.029 0.027 0.029 0.037 0.591 992 (27.82) 0.5 (0) 0.661 (0.035)

πEB10

S0 0.025 0.025 0.025 0.028 0.026 1000 (0.00) 0.656 (0.028) 0.600 (0.017)

No IM

S2 0.025 0.470 0.025 0.026 0.021 1000 (0.00) 0.646 (0.028) 0.669 (0.033)

S3 0.025 0.025 0.505 0.028 0.024 1000 (0.00) 0.638 (0.030) 0.676 (0.033)

S4 0.025 0.025 0.025 0.547 0.028 1000 (0.00) 0.641 (0.028) 0.682 (0.033)

S5 0.025 0.025 0.025 0.028 0.554 1000 (0.00) 0.656 (0.028) 0.687 (0.034)

Table C.5: Constant underlying mortality scenario results assuming RR=0.7 with πEB10

results provided for direct comparison with increased and decreased values for nburn, in-
creased c to 0.20, no AR, and interim monitoring (IM) only for AR without possibility of
terminating early.
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

πEB10

S0 0.027 0.040 0.048 0.058 0.061 998 (16.20) 0.543 (0.016) 0.580 (0.017)

S2 0.027 0.781 0.042 0.063 0.070 971 (47.98) 0.557 (0.019) 0.487 (0.038)

S3 0.027 0.040 0.637 0.052 0.069 983 (39.13) 0.551 (0.018) 0.597 (0.036)

S4 0.027 0.040 0.048 0.511 0.057 990 (31.19) 0.546 (0.016) 0.699 (0.032)

S5 0.027 0.040 0.048 0.058 0.354 994 (24.99) 0.542 (0.016) 0.807 (0.027)

πEB10

S0 0.025 0.039 0.048 0.060 0.063 998 (16.66) 0.544 (0.016) 0.580 (0.017)

nburn=30

S2 0.025 0.780 0.042 0.063 0.074 971 (47.49) 0.558 (0.019) 0.488 (0.037)

S3 0.025 0.039 0.635 0.051 0.068 983 (38.69) 0.552 (0.018) 0.597 (0.035)

S4 0.025 0.039 0.048 0.510 0.059 990 (32.16) 0.548 (0.017) 0.699 (0.032)

S5 0.025 0.039 0.048 0.060 0.363 994 (25.55) 0.544 (0.016) 0.807 (0.027)

πEB10

S0 0.024 0.041 0.047 0.060 0.062 998 (14.97) 0.544 (0.016) 0.580 (0.017)

nburn=90

S2 0.024 0.783 0.041 0.062 0.069 973 (45.90) 0.557 (0.019) 0.487 (0.037)

S3 0.024 0.041 0.636 0.052 0.068 984 (36.73) 0.551 (0.018) 0.597 (0.036)

S4 0.024 0.041 0.047 0.512 0.058 991 (29.32) 0.547 (0.017) 0.698 (0.032)

S5 0.024 0.041 0.047 0.060 0.353 994 (23.06) 0.543 (0.016) 0.807 (0.027)

πEB20

S0 0.027 0.062 0.074 0.082 0.095 997 (17.49) 0.572 (0.027) 0.580 (0.017)

S2 0.027 0.825 0.058 0.092 0.121 969 (49.26) 0.595 (0.031) 0.490 (0.037)

S3 0.027 0.062 0.676 0.065 0.112 981 (40.89) 0.584 (0.029) 0.600 (0.035)

S4 0.027 0.062 0.074 0.554 0.085 988 (33.39) 0.577 (0.028) 0.702 (0.032)

S5 0.027 0.062 0.074 0.082 0.425 992 (27.30) 0.572 (0.027) 0.809 (0.027)

πEB10

S0 0.025 0.036 0.043 0.054 0.054 998 (15.12) 0.5 (0) 0.580 (0.017)

No AR

S2 0.025 0.772 0.038 0.054 0.058 975 (44.76) 0.5 (0) 0.482 (0.039)

S3 0.025 0.036 0.619 0.048 0.055 986 (36.32) 0.5 (0) 0.592 (0.037)

S4 0.025 0.036 0.043 0.495 0.052 991 (29.08) 0.5 (0) 0.694 (0.034)

S5 0.025 0.036 0.043 0.054 0.342 995 (22.49) 0.5 (0) 0.804 (0.029)

πEB10

S0 0.025 0.039 0.049 0.058 0.061 1000 (0.00) 0.543 (0.016) 0.580 (0.017)

No IM

S2 0.025 0.778 0.045 0.067 0.069 1000 (0.00) 0.561 (0.021) 0.489 (0.033)

S3 0.025 0.039 0.632 0.054 0.068 1000 (0.00) 0.553 (0.020) 0.598 (0.032)

S4 0.025 0.039 0.049 0.510 0.057 1000 (0.00) 0.548 (0.018) 0.699 (0.031)

S5 0.025 0.039 0.049 0.058 0.354 1000 (0.00) 0.543 (0.016) 0.807 (0.027)

Table C.6: Varying underlying mortality scenario results assuming RR=0.7 with πEB10

results provided for direct comparison with increased and decreased values for nburn, in-
creased c to 0.20, no AR, and interim monitoring (IM) only for AR without possibility of
terminating early.
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C.1.4 Two effective therapeutics

Results for trials with two effect therapeutics are presented below. Simulations with an

effective drug in the first segment were excluded since each approach would have identical

results given the fact that no supplemental information is available until the second seg-

ment. Posterior probability thresholds calibrated for the constant mortality case in Table

3.2 used.

Operating characteristics and trial properties are extremely similar to results for sim-

ulations with only one effective treatment for Tables C.7 and C.8. In the constant case we

similar type-I error rates between PREVAIL II and the MEM priors, but we see increased

power to detect the effective therapeutic compared to PREVAIL II. In the varying case we

see minor inflation to the type-1 error rates for πEB10 compared to PREVAIL II, but πe and

POOL have unacceptable levels. Power is, again, increased for all MEM priors compared

to PREVAIL II.
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.032 0.028 0.029 0.031 0.029 996 (25.58) 0.5 (0) 0.600 (0.017)

2,3 0.032 0.432 0.368 0.029 0.028 982 (45.85) 0.5 (0) 0.683 (0.036)

2,4 0.032 0.432 0.028 0.371 0.027 982 (45.84) 0.5 (0) 0.677 (0.043)

2,5 0.032 0.432 0.028 0.029 0.378 982 (46.03) 0.5 (0) 0.677 (0.043)

3,4 0.032 0.028 0.431 0.368 0.027 982 (45.99) 0.5 (0) 0.698 (0.059)

3,5 0.032 0.028 0.431 0.029 0.378 981 (46.69) 0.5 (0) 0.699 (0.059)

4,5 0.032 0.028 0.029 0.434 0.376 982 (46.07) 0.5 (0) 0.692 (0.072)

πEB10

S0 0.027 0.026 0.026 0.030 0.026 998 (14.97) 0.655 (0.029) 0.600 (0.017)

2,3 0.027 0.470 0.409 0.029 0.025 984 (39.63) 0.628 (0.034) 0.696 (0.034)

2,4 0.027 0.470 0.025 0.449 0.026 984 (39.23) 0.629 (0.033) 0.686 (0.042)

2,5 0.027 0.470 0.025 0.028 0.453 984 (39.35) 0.641 (0.032) 0.686 (0.042)

3,4 0.027 0.026 0.509 0.440 0.027 985 (38.65) 0.624 (0.034) 0.710 (0.057)

3,5 0.027 0.026 0.509 0.031 0.444 985 (38.51) 0.634 (0.035) 0.710 (0.057)

4,5 0.027 0.026 0.026 0.548 0.437 985 (38.10) 0.637 (0.032) 0.700 (0.072)

πe

S0 0.027 0.027 0.026 0.033 0.037 998 (14.63) 0.797 (0.021) 0.600 (0.017)

2,3 0.027 0.556 0.423 0.016 0.019 985 (38.56) 0.776 (0.039) 0.714 (0.034)

2,4 0.027 0.556 0.017 0.519 0.020 984 (39.38) 0.777 (0.039) 0.698 (0.040)

2,5 0.027 0.556 0.017 0.020 0.584 983 (39.97) 0.783 (0.033) 0.698 (0.041)

3,4 0.027 0.027 0.611 0.481 0.020 985 (38.47) 0.776 (0.042) 0.727 (0.056)

3,5 0.027 0.027 0.611 0.021 0.549 984 (39.17) 0.781 (0.039) 0.727 (0.056)

4,5 0.027 0.027 0.026 0.694 0.514 984 (39.59) 0.783 (0.034) 0.710 (0.070)

POOL

S0 0.027 0.022 0.030 0.036 0.040 998 (15.38) 0.825 (0.009) 0.600 (0.017)

2,3 0.027 0.581 0.440 0.010 0.016 978 (43.19) 0.812 (0.030) 0.722 (0.036)

2,4 0.027 0.581 0.011 0.531 0.016 976 (43.88) 0.812 (0.030) 0.704 (0.040)

2,5 0.027 0.581 0.011 0.017 0.609 975 (44.89) 0.815 (0.025) 0.704 (0.040)

3,4 0.027 0.022 0.682 0.490 0.014 975 (43.90) 0.809 (0.034) 0.733 (0.057)

3,5 0.027 0.022 0.682 0.018 0.569 974 (45.01) 0.812 (0.030) 0.733 (0.057)

4,5 0.027 0.022 0.030 0.731 0.544 974 (44.20) 0.813 (0.028) 0.715 (0.069)

Table C.7: Constant underlying mortality scenario results, RR=0.7, assuming two effective
therapeutics.
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Probability Reject in Segment Mean (sd) Mean (sd) Mean (sd)

Trt 1 2 3 4 5 N Prop Trt Prop Surv

P-II

S0 0.028 0.030 0.032 0.027 0.025 997 (22.73) 0.5 (0) 0.580 (0.017)

2,3 0.028 0.764 0.400 0.026 0.027 966 (57.19) 0.5 (0) 0.592 (0.048)

2,4 0.028 0.764 0.027 0.284 0.027 969 (54.91) 0.5 (0) 0.632 (0.049)

2,5 0.028 0.764 0.027 0.025 0.185 971 (52.69) 0.5 (0) 0.680 (0.048)

3,4 0.028 0.030 0.555 0.310 0.026 979 (47.71) 0.5 (0) 0.723 (0.052)

3,5 0.028 0.030 0.555 0.026 0.198 982 (44.11) 0.5 (0) 0.768 (0.045)

4,5 0.028 0.030 0.032 0.386 0.211 988 (37.79) 0.5 (0) 0.801 (0.047)

πEB10

S0 0.027 0.040 0.048 0.058 0.061 998 (16.20) 0.543 (0.016) 0.580 (0.017)

2,3 0.027 0.781 0.494 0.052 0.074 963 (54.13) 0.564 (0.021) 0.598 (0.045)

2,4 0.027 0.781 0.042 0.422 0.060 966 (52.25) 0.559 (0.019) 0.640 (0.046)

2,5 0.027 0.781 0.042 0.063 0.311 968 (50.59) 0.556 (0.019) 0.686 (0.044)

3,4 0.027 0.040 0.637 0.429 0.062 978 (44.27) 0.553 (0.018) 0.731 (0.050)

3,5 0.027 0.040 0.637 0.052 0.322 980 (42.17) 0.550 (0.018) 0.775 (0.043)

4,5 0.027 0.040 0.048 0.511 0.320 987 (34.64) 0.546 (0.016) 0.808 (0.046)

πe

S0 0.027 0.102 0.165 0.213 0.262 995 (23.33) 0.665 (0.044) 0.580 (0.017)

2,3 0.027 0.854 0.624 0.134 0.338 951 (58.23) 0.695 (0.042) 0.617 (0.042)

2,4 0.027 0.854 0.094 0.684 0.214 951 (59.05) 0.686 (0.043) 0.659 (0.043)

2,5 0.027 0.854 0.094 0.236 0.658 953 (59.32) 0.687 (0.041) 0.703 (0.042)

3,4 0.027 0.102 0.768 0.610 0.209 965 (51.27) 0.673 (0.042) 0.750 (0.044)

3,5 0.027 0.102 0.768 0.134 0.641 965 (52.54) 0.670 (0.042) 0.791 (0.037)

4,5 0.027 0.102 0.165 0.717 0.563 975 (45.06) 0.664 (0.043) 0.822 (0.042)

POOL

S0 0.027 0.342 0.729 0.561 0.736 926 (54.93) 0.785 (0.038) 0.576 (0.023)

2,3 0.027 0.997 0.749 0.209 0.603 866 (46.84) 0.741 (0.031) 0.646 (0.038)

2,4 0.027 0.997 0.171 0.928 0.365 853 (52.80) 0.722 (0.048) 0.704 (0.034)

2,5 0.027 0.997 0.171 0.486 0.922 846 (55.09) 0.737 (0.036) 0.748 (0.034)

3,4 0.027 0.342 0.986 0.704 0.374 875 (40.03) 0.732 (0.029) 0.771 (0.032)

3,5 0.027 0.342 0.986 0.199 0.930 854 (50.74) 0.728 (0.032) 0.808 (0.030)

4,5 0.027 0.342 0.729 0.947 0.747 876 (47.42) 0.748 (0.035) 0.839 (0.033)

Table C.8: Varying underlying mortality scenario results, RR=0.7, assuming two effective
therapeutics.
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R Code for Chapter 4

This appendix provides the R code for the functions used for both MCMC approaches in

Chapter 4 and the reversible-jump MCMC algorithm for model averaging over the two

approaches. To avoid repetition, the following list provides descriptions for a majority of

the arguments for the subsequent functions:

#grp: a vector identifying which group each data value belongs to

#hp: list of hyperparameter values (for mu, theta, tau, and p)

#hpj: list of hyperparameter values (for mu, theta, tau, and p)

#j: number of groups (the final Jth group should be UB/15.8 or whatever

reference group is defined)

#M: number of iterations for Gibbs sampler

#model: a vector of indicators of the current model we are in for each

level j (e.g., for CENIC-p1 it would be 0=no relationship assumed, 1=

relationship between UB/15.8 and level j assumed)

#muj: current estimate for mu parameters for compliant group components

#nburn: number of iterations to discard from beginning of chain

#nic: nicotine level for group j (used for proposed relationship, e.g.,

0.4, 1.3, 2.4, 5.2, 15.8)

#nj: sample size of each group in vector by group

#notmix: indicator if last group should all be assumed compliant, default

is TRUE
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#pvecj: corresponding list to y for probability of each person belonging

to non-compliant group within group j

#seed: set seed to replicate results

#tauj: current estimate for shared estimate of precision in mixture

distribution within each group j

#thetaj: current estimate for theta parameter for non-compliant group

components

#yj: data in a list where each item/vector includes all observations (y_i)

for group j (should be ordered smallest to largest within each group)

A special note about the “notmix” argument needs to be mentioned. Since the provided

functions are meant to be generally written, you can specify notmix=TRUE if you desire

to use the Gibbs sampler which does not assume a relationship to estimate the mixture

components for each level j, except you are assuming that level J is entirely compliant (not

a mixture). For the RJMCMC this is set to equal TRUE in order to be match the restriction

for the Gibbs sampler of the relationship where the control has a fixed compliance status

(e.g., all compliant).

D.1 Functions to implement Gibbs samplers without model

averaging

D.1.1 Gibbs sampler for approach not assuming a relationship

gibbs_normalmixture_all <- function(yj,nj,j,pvecj,muj,thetaj,tauj,hpj,

notmix=T){

###This function provides the code for updating the Gibbs sampler for a

mixture of two normal distributions where all components are updated

across j-levels
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zj <- lapply(1:j, function(x) c(0,rbinom(n=(nj[x]-2), size=1, pvecj

[[x]][2:(nj[x]-1)]),1) ) #generate new latent indicators from

Bernoulli with smallest observation fixed as compliant and

largest fixed as non-compliant

if(notmix==T){ zj[[j]] <- rep(0, length(zj[[j]])) } #if highest

group/level is only compliant, convert all indicators to 0

ncj <- sapply(1:j, function(x) sum(zj[[x]]==0) )

nnj <- sapply(1:j, function(x) sum(zj[[x]]==1) )

ycj <- lapply(1:j, function(x) yj[[x]][which(zj[[x]]==0)] )

ynj <- lapply(1:j, function(x) yj[[x]][which(zj[[x]]==1)] )

###calculate component means and variances for each group

#compliant components

ycm <- sapply(1:j, function(x) mean(ycj[[x]]) )

ycv <- sapply(1:j, function(x) if( length(ycj[[x]])==1 ){ 0 }else{

var(ycj[[x]]) }) #place variance of 0 if only one observation to

avoid errors

#non-compliant components

ynm <- sapply(1:j, function(x) if( length(ynj[[x]])==0 ){0}else{

mean(ynj[[x]]) })

ynv <- sapply(1:j, function(x) if( length(ynj[[x]]) == 0 | length(

ynj[[x]]) == 1 ){ 0 }else{ var(ynj[[x]]) }) #set variance to 0

if only one observation to avoid errors later on

# sampling p: probability of membership in group 2 (non-compliers)

pj <- rbeta(j, nnj + hpj$p.alpha, ncj + hpj$p.beta)

# sampling tau

shape.val <- (nj/2) + hpj$tau.a
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rate.val <- 0.5 * ((ncj-1)*ycv + (nnj-1)*ynv + ncj*(ycm-muj)^2 +

nnj*(ynm-(muj+thetaj))^2 + 2*hpj$tau.b )

tauj <- rgamma(j,shape=shape.val,rate=rate.val)

sigmaj <- 1/sqrt(tauj)

# sampling mu

m.mean <- -( tauj * (nnj*(thetaj - ynm) - ncj*ycm) ) / ( nj*tauj +

hpj$mu.prec )

m.prec <- ( nj*tauj + hpj$mu.prec )

muj <- rnorm(j, mean=m.mean, sd=sqrt(1/m.prec))

# sampling theta

t.mean <- -( nnj*tauj*(muj - ynm) ) / (nnj*tauj + hpj$theta.prec)

t.prec <- (nnj*tauj + hpj$theta.prec)

thetaj <- abs( rnorm(j, mean=t.mean, sd=sqrt(1/t.prec)))

if(notmix==T){ thetaj[j] <- 0 } #replace largest group theta with 0

if notmix is TRUE

ret <- list(mu_comp=muj, mu_nonc=muj+thetaj, mu=muj, theta=thetaj,

tau=tauj, sigma=sigmaj, z=zj, p=pj)

}

D.1.2 Gibbs sampler for approach assuming a relationship

gibbs_normalmixture_meanrel <- function(yj,nj,j,pvecj,muj,thetaj,tauj,hpj,

nic){

###This function provides the code for updating the Gibbs sampler for a

mixture of two normal distributions where the compliant group means are

in relationship with the UB/15.8 group

dj <- log(nic/nic[length(nic)]) #proposed relationship for CENIC-p1
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zj <- lapply(1:j, function(x) c(0,rbinom(n=(nj[x]-2), size=1, pvecj

[[x]][2:(nj[x]-1)]),1) ) #generate new latent indicators from

Bernoulli with smallest observation fixed as compliant and

largest fixed as non-compliant

zj[[j]] <- rep(0, length(zj[[j]])) #highest group/level is only

compliant, convert all indicators to 0

ncj <- sapply(1:j, function(x) sum(zj[[x]]==0) )

nnj <- sapply(1:j, function(x) sum(zj[[x]]==1) )

ycj <- lapply(1:j, function(x) yj[[x]][which(zj[[x]]==0)] )

ynj <- lapply(1:j, function(x) yj[[x]][which(zj[[x]]==1)] )

###calculate component means and variances for each group

#compliant components

ycm <- sapply(1:j, function(x) mean(ycj[[x]]) )

ycv <- sapply(1:j, function(x) if( length(ycj[[x]])==1 ){ 0 }else{

var(ycj[[x]]) }) #place variance of 0 if only one observation to

avoid errors

#non-compliant components

ynm <- sapply(1:j, function(x) if( length(ynj[[x]])==0 ){0}else{

mean(ynj[[x]]) })

ynv <- sapply(1:j, function(x) if( length(ynj[[x]]) == 0 | length(

ynj[[x]]) == 1 ){ 0 }else{ var(ynj[[x]]) }) #set variance to 0

if only one observation to avoid errors later on

# sampling p: probability of membership in group 2 (non-compliers)

pj <- rbeta(j, nnj + hpj$p.alpha, ncj + hpj$p.beta)

# sampling tau
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shape.val <- (nj/2) + hpj$tau.a

rate.val <- 0.5 * ((ncj-1)*ycv + (nnj-1)*ynv + ncj*(ycm - (dj + muj

[j]))^2 + nnj*(ynm-(dj+muj[j]+thetaj))^2 + 2*hpj$tau.b )

tauj <- rgamma(j,shape=shape.val,rate=rate.val)

sigmaj <- 1/sqrt(tauj)

# sampling mu_J

g <- tauj*(nj*dj + nnj*thetaj - ncj*ycm - nnj*ynm)

H1 <- sum(tauj*nj) + hpj$mu.prec[j]

H2 <- sum(g[1:(j-1)]) - tauj[j]*nj[j]*ycm[j]

m.mean <- -H2/H1

m.prec <- H1

muJ <- rnorm(1, mean=m.mean, sd=sqrt(1/m.prec))

muj <- muJ+dj #muj determined by proposed relationship

# sampling theta

t.mean <- -( nnj*tauj*(dj + muj[j] - ynm) ) / (nnj*tauj + hpj$theta

.prec)

t.prec <- (nnj*tauj + hpj$theta.prec)

thetaj <- abs( rnorm(j, mean=t.mean, sd=sqrt(1/t.prec)))

thetaj[j] <- 0 #replace largest group theta with 0 since everyone

is compliant

ret <- list(mu_comp=muj, mu_nonc=muj+thetaj, mu=muj, theta=thetaj,

tau=tauj, sigma=sigmaj, z=zj, p=pj)

}

D.1.3 Implement Gibbs samplers for posterior estimation

mix2normals = function(type,y,grp,nic=NULL,inits,hp,M,nburn,notmix=T,seed)

{
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###Gibbs samplers for mixture of 2 normal distributions assuming equal

variance

#type: Gibbs sampler to use:

##’all’ estimates all parameters

##’rel’ assumes relationship between UB/15.8 group and compliant group

means for other nicotine levels

#inits: list of initial values to use for mu, theta, tau, p [note: tau is

precision]

##if one value given, it is assumed to be the same across all groups;

otherwise give vector with value for each group!!!

set.seed(seed)

yj <- lapply( split(y, grp), sort) #split data and sort in one step

j <- length(yj) #number of groups

nj <- sapply( yj, length) #calculate number of observations within

each group

draws=matrix(NA,M,7*j)

colnames(draws) <- c(paste0(’p’,1:j),paste0(’mu_comp’,1:j),paste0(’

mu_nonc’,1:j),paste0(’sigma’,1:j),paste0(’c80_’,1:j),paste0(’c

90_’,1:j),paste0(’c95_’,1:j))

#initial values (if only one given, assume it is initial value for

each level/group)

if( length(inits$mu_comp)==1 ){ mu_compj <- rep(inits$mu_comp, j) }

else{ mu_compj <- inits$mu_comp }

if( length(inits$mu_nonc)==1 ){ mu_noncj <- rep(inits$mu_nonc, j) }

else{ mu_noncj <- inits$mu_nonc }

if( length(inits$tau)==1 ){ tauj <- rep(inits$tau, j) }else{ tauj

<- inits$tau }
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if( length(inits$p)==1 ){ pj <- rep(inits$p, j) }else{ pj <- inits$

p }

if( (length(mu_compj)!=j | length(mu_noncj)!=j | length(tauj)!=j |

length(pj)!=j) == TRUE ){ stop(’Please either give inits of

length 1 or length j. At least one is not equal to 1 or j!’) } #

break from function if inits are not of correct length

#Convert hyperparameter values to be for each group if separate

values not provided for each group (if only one given, assume it

is used for each level/group)

if( length(hp$tau.a)==1 ){ hp$tau.a <- rep(hp$tau.a,j) }

if( length(hp$tau.b)==1 ){ hp$tau.b <- rep(hp$tau.b,j) }

if( length(hp$p.alpha)==1 ){ hp$p.alpha <- rep(hp$p.alpha,j) }

if( length(hp$p.beta)==1 ){ hp$p.beta <- rep(hp$p.beta,j) }

if( length(hp$mu.prec)==1 ){ hp$mu.prec <- rep(hp$mu.prec,j) }

if( length(hp$theta.prec)==1 ){ hp$theta.prec <- rep(hp$theta.prec,

j) }

if( (length(hp$tau.a)!=j | length(hp$tau.b)!=j | length(hp$p.alpha)

!=j | length(hp$p.beta)!=j | length(hp$mu.prec)!=j | length(hp$

theta.prec)!=j) == TRUE ){ stop(’Please give hp of length 1 or

length j. At least one is not equal to 1 or j!’)}

#intialize latent indicator variable

zj <- lapply(1:j, function(x) c(0, rep(NA, nj[x]-2), 1) ) #

initialize latent indicator for each group

zj.sum <- lapply(1:j, function(x) rep(0, nj[x]) ) #list keeping

track of number of iterations after burn-in where y_ij is

classified as k=1

for (iter in 1:M){
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pvecj <- lapply(1:length(yj), function(x) pj[x]*dnorm(yj[[x

]], mean=mu_noncj[x], sd=sqrt(1/tauj[x])) / ( (1-pj[x])*

dnorm(yj[[x]], mean=mu_compj[x], sd=sqrt(1/tauj[x])) +

pj[x]*dnorm(yj[[x]], mean=mu_noncj[x], sd=sqrt(1/tauj[x

])) ) )

if(notmix==T){ pvecj[[j]] <- rep(0, nj[j] ) } #if notmix=

TRUE, set all values as 0 to indicate membership in

compliant group

if(type==’all’){gibbs.step <- gibbs_normalmixture_all(yj=yj,

nj=nj,pvecj=pvecj,muj=mu_compj,thetaj=mu_noncj-mu_compj,

tauj=tauj,hpj=hp,notmix=notmix,j=j)}

if(type==’rel’){gibbs.step <- gibbs_normalmixture_meanrel(yj

=yj,nj=nj,pvecj=pvecj,muj=mu_compj,thetaj=mu_noncj-mu_

compj,tauj=tauj,hpj=hp,j=j,nic=nic)}

mu_compj <- gibbs.step$mu_comp

mu_noncj <- gibbs.step$mu_nonc

tauj <- gibbs.step$tau

sigmaj <- gibbs.step$sigma

zj <- gibbs.step$z

pj <- gibbs.step$p

if(iter > nburn){

zj.sum <- lapply(1:j, function(x) zj[[x]] + zj.sum[[x

]]) #add this iterations zj values to sum

}

draws[iter,] <- c(pj,mu_compj,mu_noncj,sigmaj)

}



125

ret <- list( samp=draws[-(1:nburn),], zj.sum=zj.sum )

return(ret)

}

D.2 Reversible-jump MCMC algorithm functions

D.2.1 Gibbs sampler to flexibly estimate with either approach for RJM-

CMC

gibbs_normalmixture_rjmcmc <- function(yj,nj,j,pvecj,muj,thetaj,tauj,hpj,

model,nic){

###This function provides the code for updating the Gibbs sampler for a

mixture of two normal distributions where all components are updated

across j-levels, where each level may be estimated using either Gibbs

sampler approach

j.all <- which( model==0 ) #identify levels estimated using model

not assuming the relationship

j.rel <- which( model==1 ) #identify levels estimated using model

assuming the relationship

dj <- log(nic/nic[length(nic)])

zj <- lapply(1:j, function(x) c(0,rbinom(n=(nj[x]-2), size=1, pvecj

[[x]][2:(nj[x]-1)]),1) ) #generate new latent indicators from

Bernoulli with smallest observation fixed as compliant and

largest fixed as non-compliant

zj[[j]] <- rep(0, length(zj[[j]])) #if highest group/level is only

compliant, convert all indicators to 0

ncj <- sapply(1:j, function(x) sum(zj[[x]]==0) )
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nnj <- sapply(1:j, function(x) sum(zj[[x]]==1) )

ycj <- lapply(1:j, function(x) yj[[x]][which(zj[[x]]==0)] )

ynj <- lapply(1:j, function(x) yj[[x]][which(zj[[x]]==1)] )

###calculate component means and variances for each group

#compliant components

ycm <- sapply(1:j, function(x) mean(ycj[[x]]) )

ycv <- sapply(1:j, function(x) if( length(ycj[[x]])==1 ){ 0 }else{

var(ycj[[x]]) }) #place variance of 0 if only one observation to

avoid errors

#non-compliant components

ynm <- sapply(1:j, function(x) if( length(ynj[[x]])==0 ){0}else{

mean(ynj[[x]]) })

ynv <- sapply(1:j, function(x) if( length(ynj[[x]]) == 0 | length(

ynj[[x]]) == 1 ){ 0 }else{ var(ynj[[x]]) }) #place variance of 0

if only one observation to avoid errors

# sampling p: probability of membership in group 2 (non-compliers)

pj <- rbeta(j, nnj + hpj$p.alpha, ncj + hpj$p.beta)

# sampling tau

shape.val <- (nj/2) + hpj$tau.a

rate.val <- 0.5 * ((ncj-1)*ycv + (nnj-1)*ynv + ncj*(ycm-muj)^2 +

nnj*(ynm-(muj+thetaj))^2 + 2*hpj$tau.b )

tauj <- rgamma(j,shape=shape.val,rate=rate.val)

sigmaj <- 1/sqrt(tauj)

### sampling mu

#levels estimating compliant mean with own information only
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m.mean_all <- -( tauj * (nnj*(thetaj - ynm) - ncj*ycm) ) / ( nj*

tauj + hpj$mu.prec )

m.prec_all <- ( nj*tauj + hpj$mu.prec )

muj_all <- rnorm( length(j.all) , mean=m.mean_all[j.all], sd=sqrt

(1/m.prec_all[j.all]))

#groups calculating compliant mean based on relationship to mu_J

g <- tauj[j.rel]*(nj[j.rel]*dj[j.rel] + nnj[j.rel]*thetaj[j.rel] -

ncj[j.rel]*ycm[j.rel] - nnj[j.rel]*ynm[j.rel])

H1 <- sum(tauj[j.rel]*nj[j.rel]) + hpj$mu.prec[j]

H2 <- sum(g[0:(length(j.rel)-1)]) - tauj[j]*nj[j]*ycm[j]

m.mean_rel <- -H2/H1

m.prec_rel <- H1

muJ <- rnorm(1, mean=m.mean_rel, sd=sqrt(1/m.prec_rel))

muj_rel <- muJ+dj[j.rel]

#combine muj estimates from both approaches

muj[j.all] <- muj_all

muj[j.rel] <- muj_rel

# sampling theta

t.mean <- -( nnj*tauj*(muj - ynm) ) / (nnj*tauj + hpj$theta.prec)

t.prec <- (nnj*tauj + hpj$theta.prec)

thetaj <- abs( rnorm(j, mean=t.mean, sd=sqrt(1/t.prec)))

thetaj[j] <- 0 #replace largest group theta with 0 if notmix is

TRUE

ret <- list(mu_comp=muj, mu_nonc=muj+thetaj, mu=muj, theta=thetaj,

tau=tauj, sigma=sigmaj, z=zj, p=pj)

}
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D.2.2 RJMCMC update step

updatemodel <- function(yj,nj,j,pj,tauj,zj,muj,thetaj,model,hpj,prob,nic){

###Function to complete the "reversible jump" portion of the RJMCMC to

move between our two proposed models

#pj: current estimate for proportion in non-compliant group for each level

j

#zj: latent variable classifying y_i subject in compliant or non-compliant

group

#prob: prior probability for level j using all components model (model 0)

ncj <- sapply(1:j, function(x) sum(zj[[x]]==0) )

nnj <- sapply(1:j, function(x) sum(zj[[x]]==1) )

ycj <- sapply(1:j, function(x) yj[[x]][which(zj[[x]]==0)] )

ynj <- sapply(1:j, function(x) yj[[x]][which(zj[[x]]==1)] )

###calculate component means and variances for each group

#compliant components

ycm <- sapply(1:j, function(x) mean(ycj[[x]]) )

ycv <- sapply(1:j, function(x) if( length(ycj[[x]])==1 ){ 0 }else{

var(ycj[[x]]) }) #place variance of 0 if only one observation to

avoid errors

#non-compliant components

ynm <- sapply(1:j, function(x) if( length(ynj[[x]])==0 ){0}else{

mean(ynj[[x]]) })

ynv <- sapply(1:j, function(x) if( length(ynj[[x]])==0 | length(ynj

[[x]])==1 ){ 0 }else{ var(ynj[[x]]) }) #place variance of 0 if

only one observation to avoid errors

###Identify current model state and propose new variables for other

model
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#Determine which level to propose different model for

r <- sample(1:(j-1),1)

r.state <- model[r]

muj_prop <- muj #create proposal muj to update with value below

depending on current r.state

model_prop <- model; if(r.state==0){model_prop[r] <- 1}else{model_

prop[r] <- 0}

m.mean_r <- (-( tauj * (nnj*(thetaj - ynm) - ncj*ycm) ) / ( nj*tauj

+ hpj$mu.prec ))[r]

m.prec_r <- ( nj*tauj + hpj$mu.prec )[r]

if(r.state==0){ #model 0 is all components, so propose values under

relationship assumption

muj_prop[r] <- muj[j] + log(nic[r]/nic[length(nic)])

}else{ #model 1 is relationship, so propose values under all

components model

muj_prop[r] <- rnorm(1, mean=m.mean_r, sd=sqrt(1/m.prec_r))

}

modprob.num <- prod( ( prob^abs(model_prop-1) * (1-prob)^model_prop

)[1:(j-1)] )

modprob.den <- prod( ( prob^abs(model-1) * (1-prob)^model)[1:(j-1)]

)

###Calculate acceptance probability

#Calculate log-likelihoods

loglikj <- sapply(1:j, function(x) sum( log( (1-pj[x])*dnorm(yj[[x

]], mean=muj[x], sd=sqrt(1/tauj[x])) + pj[x]*dnorm(yj[[x]], mean

=muj[x]+thetaj[x], sd=sqrt(1/tauj[x])) ) ) )

loglik <- sum(loglikj)
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newloglikj <- sapply(1:j, function(x) sum( log( (1-pj[x])*dnorm(yj

[[x]], mean=muj_prop[x], sd=sqrt(1/tauj[x])) + pj[x]*dnorm(yj[[x

]], mean=muj_prop[x]+thetaj[x], sd=sqrt(1/tauj[x])) ) ) )

newloglik <- sum(newloglikj)

#if currently in model 0 (est all), look at num being proposed move

for level r to model 1 (relationship assumed)

if(r.state == 0){

num <- newloglik + log(dnorm(muj_prop[r], mean=m.mean_r, sd=

sqrt(1/m.prec_r))) + log(modprob.num)

den <- loglik + log(dnorm(muj[r], mean=0, sd=sqrt(1/hpj$mu.

prec[r]))) + log(modprob.den)

}else{ #if currently in model 1 (relationship), look at num being

proposed move for level r to model 0 (estimate level with level’

s data)

num <- newloglik + log(dnorm(muj_prop[r], mean=0, sd=sqrt(1/

hpj$mu.prec[r]))) + log(modprob.num)

den <- loglik + log(dnorm(muj[r], mean=m.mean_r, sd=sqrt(1/m

.prec_r))) + log(modprob.den)

}

###Acceptance probability

A <- min(1, exp(num-den))

u <- runif(1)

if(u <= A){

if(r.state == 0){model[r] <- 1}else{model[r] <- 0}

muj <- muj_prop

}

ret <- list(model=model, muj=muj)
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}

D.2.3 Function keep track of RJMCMC model state

baseKto10 <- function(x,K=2){

###Function to convert base K vector of values into base 10 number

#x: vector with values in base K (e.g., base 2 has 0/1)

#K: base to convert from, default is base 2

sum(x * K^((length(x)-1):0))

}

D.2.4 Implement entire RJMCMC algorithm

rjmcmc_2normals = function(y,inits,hp,prob,M,seed,nburn,grp,nic){

###Gibbs samplers for mixture of 2 normal distributions assuming equal

variance

#inits: list of initial values to use for lambda, theta, tau, p [note: tau

is precision]

since proposal distribution is conditional posterior of mu_j)

#prob: prior probability for level j using all components model (model 0)

set.seed(seed)

yj <- lapply( split(y, grp), sort) #split data and sort in one step

j <- length(yj) #number of groups

nj <- sapply( yj, length) #calculate number of observations within

each group

draws=matrix(NA,M,(7*j+1))

colnames(draws) <- c(’model’,paste0(’p’,1:j),paste0(’mu_comp’,1:j),

paste0(’mu_nonc’,1:j),paste0(’sigma’,1:j),paste0(’c80_’,1:j),

paste0(’c90_’,1:j),paste0(’c95_’,1:j))
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#initial values (if only one given, assume it is initial value for

each level/group)

if( length(inits$mu_comp)==1 ){ mu_compj <- rep(inits$mu_comp, j) }

else{ mu_compj <- inits$mu_comp }

if( length(inits$mu_nonc)==1 ){ mu_noncj <- rep(inits$mu_nonc, j) }

else{ mu_noncj <- inits$mu_nonc }

if( length(inits$tau)==1 ){ tauj <- rep(inits$tau, j) }else{ tauj

<- inits$tau }

if( length(inits$p)==1 ){ pj <- rep(inits$p, j) }else{ pj <- inits$

p }

if( length(inits$model)==1 ){model <- c(rep(inits$model, (j-1)),1)}

else{ model <- c(inits$model[1:(j-1)],1) } #always assume Jth

model is 1 for relationship

if( (length(mu_compj)!=j | length(mu_noncj)!=j | length(tauj)!=j |

length(pj)!=j | length(model)!=j ) == TRUE ){ stop(’Please

either give inits of length 1 or length j. At least one is not

equal to 1 or j!’) } #break from function if inits are not of

correct length

#Convert hyperparameter values to be for each group if separate

values not provided for each group (if only one given, assume it

is used for each level/group)

if( length(hp$tau.a)==1 ){ hp$tau.a <- rep(hp$tau.a,j) }

if( length(hp$tau.b)==1 ){ hp$tau.b <- rep(hp$tau.b,j) }

if( length(hp$p.alpha)==1 ){ hp$p.alpha <- rep(hp$p.alpha,j) }

if( length(hp$p.beta)==1 ){ hp$p.beta <- rep(hp$p.beta,j) }

if( length(hp$mu.prec)==1 ){ hp$mu.prec <- rep(hp$mu.prec,j) }

if( length(hp$theta.prec)==1 ){ hp$theta.prec <- rep(hp$theta.prec,

j) }
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if( (length(hp$tau.a)!=j | length(hp$tau.b)!=j | length(hp$p.alpha)

!=j | length(hp$p.beta)!=j | length(hp$mu.prec)!=j | length(hp$

theta.prec)!=j) == TRUE ){ stop(’Please give hp of length 1 or

length j. At least one is not equal to 1 or j!’)}

#intialize latent indicator variable

zj <- lapply(1:length(yj), function(x) c(0, rep(NA, nj[x]-2), 1) )

#initialize latent indicator for each group

zj.sum <- lapply(1:j, function(x) rep(0, nj[x]) ) #list keeping

track of number of iterations after burn-in where y_ij is

classified as k=1

for (iter in 1:M){

#Update MCMC according to model state currently in

pvecj <- lapply(1:length(yj), function(x) pj[x]*dnorm(yj[[x

]], mean=mu_noncj[x], sd=sqrt(1/tauj[x])) / ( (1-pj[x])*

dnorm(yj[[x]], mean=mu_compj[x], sd=sqrt(1/tauj[x])) +

pj[x]*dnorm(yj[[x]], mean=mu_noncj[x], sd=sqrt(1/tauj[x

])) ) )

pvecj[[j]] <- rep(0, nj[j] ) #replace group J with all

compliant indicators

#update step with Gibbs sampler for given model assumed for

each level

gibbs.step <- gibbs_normalmixture_rjmcmc(yj=yj,nj=nj,pvecj=

pvecj,muj=mu_compj,thetaj=mu_noncj-mu_compj,tauj=tauj,

hpj=hp,j=j,model=model,nic=nic)

mu_compj <- gibbs.step$mu_comp

mu_noncj <- gibbs.step$mu_nonc
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tauj <- gibbs.step$tau

sigmaj <- gibbs.step$sigma

zj <- gibbs.step$z

pj <- gibbs.step$p

if(iter > nburn){

zj.sum <- lapply(1:j, function(x) zj[[x]] + zj.sum[[x

]]) #add this iterations zj values to sum

}

#Complete RJ step to determine if we switch models and

update

rjstep <- updatemodel(yj=yj,pj=pj,j=j,nj=nj,tauj=tauj,zj=zj,

muj=mu_compj,thetaj=mu_noncj-mu_compj,model=model,hpj=hp

,prob=prob,nic=nic)

model <- rjstep$model

mu_comp <- rjstep$muj

mod10 <- baseKto10(x=model[1:(j-1)],K=2)

draws[iter,] <- c(mod10,pj,mu_compj,mu_noncj,sigmaj)

}

ret <- list( samp=draws[-(1:nburn),], zj.sum=zj.sum )

return(ret)

}



Appendix E

Acronyms

Care has been taken in this thesis to minimize the use of acronyms, but this cannot always

be achieved. This appendix contains a table of some of the more frequently occurring

acronyms and their meaning.

Table E.1: Acronyms

Acronym Meaning

AR Adaptive randomization

BMA Bayesian model averaging

CENIC-p1 Center for the Evaluation of Nicotine in Cigarettes, project 1

CP Commensurate prior

CPD Cigarettes (smoked) per day

EB Empirical Bayes(ian)

ESSS Effective supplemental sample size

EVD Ebola virus disease

MEM Multi-source exchangeability model(s)

PREVAIL II Partnership for Research on Ebola Vaccines in Liberia

SHM Standard hierarchical model

SOC/oSOC Standard of care/optimal standard of care

VLNC Very low nicotine content
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