
 

 
 
 
 
 

Computational analysis of genetic interaction network structures and gene properties 
 
 
 
 

A DISSERTATION 
SUBMITTED TO THE FACULTY OF  

UNIVERSITY OF MINNESOTA 
BY 

 
 
 
 

Elizabeth Natalie Koch 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF  

DOCTOR OF PHILOSOPHY 
 
 
 

Advised by Chad L. Myers 
 
 
 
 

July, 2017 
 

 
 
 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Elizabeth Natalie Koch 2017 
 



 

 i 

Acknowledgements 
 
 I thank my advisor, Chad Myers, who has been incredibly generous with his 

support; I am grateful for his kind and patient guidance. I am also thankful for the support 

and advice of Michael Costanzo and Charlie Boone, without whom my work would not 

have been possible. I additionally thank my committee members, Judy Berman, Rui 

Kuang, and Dan Knights, for their time and suggestions.  

 My lab mates have made many positive contributions to my research. I 

particularly thank Raamesh Deshpande and Jeremy Bellay, who both have a knack for 

expressing insightful observations about research and who guided me when I first began 

my work. I also thank Benjamin VanderSluis, Robert Schaefer, Scott Simpkins, Wen 

Wang, Stephanie DiPrima, Trina Kuriger-Laber, Justin Nelson, Jean-Michel Michno, 

Roman Briskine, Colin Pesyna, Hamid Safizadeh, Maximilian Billmann, and Mahfuzur 

Rahman. Everyone has been generous in sharing their skills, suggestions, and 

friendship. I wish all of them success in future pursuits. 

 The completion of my research has benefited from skills I was taught before 

entering graduate school. I am grateful to many former teachers who emphasized the 

importance of precision and clarity in reasoning, reading, and writing, and I often think 

back to their individual varieties of advice and wisdom. In this respect, I sincerely thank 

my former professors at Carleton College, particularly my undergraduate advisor David 

Liben-Nowell, and my teachers from Lincoln Academy. 

 I will forever be grateful to Matt, who never failed to be the best part of each day. 

Most of all, I thank my parents and sister for their constant love. 

  



 

 ii 

Abstract 

 Cellular systems are responsible for many complex tasks, such as carrying out 

cell cycle phases, responding to intra- and extra-cellular conditions, and resolving errors. 

Through analysis of biological networks, researchers have begun to describe how cells 

coordinate these processes by means of modularity and between-process connections. 

However, descriptions of this network-based cellular organization often do not 

incorporate the diverse characteristics and individual behaviors of the genes that 

compose it. Knowledge of gene properties and their relationships with biological network 

evolution is crucial for a complete understanding of cellular function, and investigation in 

this area can lead to general principles of biology that apply to many species. This 

dissertation will describe analyses of the Saccharomyces cerevisiae (baker’s yeast) 

genetic interaction network that connect gene topological behavior with various physical, 

functional, and evolutionary properties of genes. Genetic interactions occur between 

paired genes whose simultaneous mutations produce unexpected double-mutant 

phenotypes, which are indicative of a range of functional relationships. Because genetic 

interactions can be identified genome-wide in high-throughput experiments, their 

networks are comprehensive and unbiased representations of function to which we can 

apply computational methods that search for structure-function relationships. 

 We begin by exploring the association between a set of gene properties and 

gene genetic interaction (GI) degree. Here, we build a decision tree model that sorts 

genes based on a set of properties, each of which has a correlation with GI degree, and 

accurately predicts GI degree. We show that our model, trained on S. cerevisiae, is also 

accurate for a very distant yeast species, Schizosaccharomyces pombe, demonstrating 

that the rules governing gene connectivity are well conserved. Finally, we used 

predictions from the model to identify gene modules that differ between the two yeast 

species. 

 Next, we further characterize hub genes through an investigation of pleiotropy, 

the phenomenon of a single genetic locus with multiple phenotypic effects. Pleiotropy 

has typically been described by counting organism-level phenotypes, but a 

characterization based on genetic interactions can capture details about cellular 

processes that are buffered by the cell and never manifest in single mutant cellular 

phenotypes. For this analysis, we use frequent item set mining to discover GI modules, 
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which we annotate with high-level processes, and use entropy to measure the functional 

diversity of each gene’s set of containing modules, thus distinguishing between genes 

whose functional influence is limited to very few bioprocesses and those whose roles are 

important for varied cellular functions. We identified a number of gene and protein 

characteristics that differed between genes with high and low pleiotropy and discuss the 

implications of these results regarding the nature and evolution of pleiotropy. 
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Chapter 1: Introduction 

 The cellular processes that support all forms of biological life are dependent on 

networks of physical and functional relationships of genes and proteins. Structures in 

biological networks reflect the mechanisms by which cells create highly complex, yet 

resilient, systems that are persistent throughout evolution. The most salient network 

structures reveal the primary cellular organization of sets of genes working as modules 

to carry out cellular functions (Hartwell et al., 1999; Ravasz et al., 2002). This modular 

structure is hierarchical and contains links between modules to ensure that temporally 

and physically distinct processes are coordinated. Network structure also contributes to 

cellular robustness (Hartman et al., 2001; Rutherford and Lindquist, 1998; Stelling et al., 

2004), which means that for survival of an organism, cells must maintain phenotypic 

stability through appropriate responses to external environments, such as toxins, 

temperatures, and osmotic pressure, and internal conditions, such as mutations and 

stochastic events that perturb normal cell processes (Wagner, 2005). Finally, for the 

persistence of populations through generations of changing conditions, the network 

organization must allow for adaptability, the flexibility of a genome to evolve in the face 

of natural selection and inhabit a specific niche (Kirschner and Gerhart, 1998; 

Rutherford, 2003).  While evidence of complex organization in biological networks has 

long been known, these three aspects, modularity, robustness, and adaptability, are 

incompletely described. In particular, these properties are highly dependent on each 

other and overlapping in their effects on and requirements of network structure, but their 

precise relationships have yet to be described. 

 Over the past two decades, the use of new experimental technologies to detect 

genome sequences and mutationally target specific genes has led to the construction of 

large biological networks. One such network is the genetic interaction (GI) network of the 

yeast Saccharomyces cerevisiae, in which genes are connected to each other if there is 

phenotypic evidence in mutant yeast strains suggesting the two genes are functionally 

related to each other. Although careful inspection of the network has led to discovery of 

new functions for genes, the size of the network, with approximately one million edges 

among nearly 6,000 genes, makes many valuable analyses difficult or impossible to do 

manually. These include comparing the network to other datasets and systematic 

identification of structures.  
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 In this dissertation, we discuss the discovery of principles of gene behaviors in 

yeast genetic interaction network structure and how these behaviors are related to gene 

and network evolution. There are two broad foundations for this work that are described 

in this chapter. The first is biological networks, specifically the genetic interaction 

network of yeast, from which we can discover gene function and importance. Section 1.1 

of this chapter describes the most common components of biological networks and 

section 1.2 describes how biological networks are thought to change through evolution. 

The second foundation for this dissertation is the highly-studied model organism S. 

cerevisiae, which is briefly described at the beginning of section 1.3. The remainder of 

section 1.3 describes the diverse set of gene characteristics that give indications of how 

biological systems evolve and the behaviors of network nodes that accomplish cellular 

tasks. Finally, the concluding section, section 1.4, reintroduces the purpose of this 

dissertation within the context of the background material. 

 

1.1 Components of biological networks 

 Biological networks represent physical and functional associations between 

molecules in a cell. They comprise chemical reactions, physical structures, and even 

information flow between different physical locations and distinct types of molecules in 

the cell (Zhu et al., 2007). Consequently, there are a number of conceptually distinct 

biological networks that researchers study. Protein-protein interaction (PPI) networks are 

the most widely studied and involve physical interactions between proteins (Braun and 

Gingras, 2012). General PPI networks are complemented by other physical networks 

involving specific types of proteins and other macromolecules: regulatory networks are 

directed networks that regulate cell functions in response to stimuli (Pawson and Nash, 

2003); transcription networks are directed networks in which transcription factors 

activate and suppress gene expression through DNA binding (Thieffry et al., 1998); and 

metabolic networks describe enzymes, metabolites, and conversions between 

metabolites (Hatzimanikatis et al., 2004). Lastly, some networks contain more abstract 

connections, such as experimentally derived genetic interaction networks (Tong et al., 

2004) and computationally derived functional networks. Co-expression networks are one 

of the latter; these are constructed by connecting genes with similar patterns of 

expression. This section introduces two of the largest networks, PPI and GI networks, 
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which have been systematically constructed from experiments, and describes how they 

elucidate the functions of a cell.  

 

1.1.1  Discovery of interactions 

Protein-protein interaction networks 

 Protein-protein interactions are mainly detected by two types of high-throughput 

methods: binary assays, which detect pairwise interactions, and affinity purification 

followed by mass-spectrometry (AP-MS), which detects proteins in stable complexes. 

The interactions discovered from these methods are complementary and have quite 

different interpretations. The yeast two-hybrid system (Y2H) (Fields and Song, 1989), 

the most frequently used method to construct binary networks, consists of systematic 

screens that use a bait and prey set-up: two domains of a transcription factor, the DNA 

binding domain and the transcription activation domain, are separately attached to the 

two proteins of interest. These fusion proteins are then expressed in yeast cells. If the 

two proteins of interest bind each other, the transcription factor is reconstituted and, 

together, its domains activate a reporter gene that causes a growth-based phenotype in 

the yeast colony. There are variations to this method, such as the protein 

complementation assay, in which the two tested proteins are fused to fragments of a 

fluorescent protein. Because of the engineered systems for detection, these binary 

interactions are direct physical interactions that may naturally occur in cells of the 

proteins’ native species, but do not necessary do so. Large-scale networks have been 

constructed in a number of species, including S. cerevisiae (Ito et al., 2001; Uetz et al., 

2000; Yu et al., 2008), Schizosaccharomyces pombe (Vo et al., 2016), worm (Li et al., 

2004), fly (Giot et al., 2003), and human (Rolland et al., 2014). 

 In contrast, affinity purification methods developed in yeast are designed to 

isolate protein complexes from cells under physiological conditions, which include 

normal post-translational modifications made to proteins. For these methods, reviewed 

in Smits and Vermeulen (2016), a protein of interest—the bait protein—is fused to an 

epitope tag and inserted into its original genomic position using homologous 

recombination. The affinity purification step is performed by preparing a cell lysate and 

drawing out the bait protein by catching its epitope tag with a binding (or high-affinity) 

protein. Any proteins that are bound to the bait protein are simultaneously captured, and 
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then are identified with mass spectrometry analysis. Importantly, the captured proteins 

may include both direct interacting partners of the bait protein and proteins that simply 

participate in a complex with the bait. In order to distinguish individual protein complexes 

from among the collection of proteins associated with a single bait protein, further data 

must be collected for different bait proteins. However, even with high-density data this is 

a difficult task and follow-up experiments, computational strategies, and dataset 

comparisons have been used to refine definitions of protein complexes (Gingras et al., 

2007). Two landmark proteome-wide studies have been performed in yeast (Gavin et al., 

2006; Krogan et al., 2006); each tagged about 2,000 bait proteins. Similar methods have 

subsequently been developed for high throughput screening of proteins of other model 

organisms (Duchaine et al., 2006; Rees et al., 2011; Veraksa et al., 2005) and human 

(Hein et al., 2015; Huttlin et al., 2015; Malovannaya et al., 2011; Wan et al., 2015), in 

which there are multiple cell lines and more challenges in achieving purification of bait 

proteins (Smits and Vermeulen, 2016). 

 

Genetic interaction networks 

 A genetic interaction occurs between two genes if their simultaneous perturbation 

causes an unexpected phenotype that cannot be explained by a combination of the 

phenotypes measured after individually mutating the genes (Mani et al., 2008). Genetic 

interactions identify non-independence of genes and imply functional relationships, such 

as the ability of a gene to compensate for the loss of another. Although genetic 

interactions provide no immediate mechanistic information about protein function, their 

high level of abstraction means they are sensitive to complex and distant relationships 

between genes. Genetic interactions have been measured systematically in a number of 

species, including S. pombe (Frost et al., 2012; Roguev et al., 2008), C. elegans (Lehner 

et al., 2006), M. drosophila (Fischer et al., 2015; Horn et al., 2011), and human (Barbie 

et al., 2009; Vizeacoumar et al., 2013). 

 The most extensive networks of genetic interactions have been built for yeast 

genes using fitness (colony growth) as a quantitative phenotype (Baryshnikova et al., 

2010b; Costanzo et al., 2010; Costanzo et al., 2016; Tong et al., 2004). The expected 

fitness of a double mutant is calculated as the product of the fitnesses of the two 

associated single mutants, which has been observed for the vast majority of gene pairs. 

An extreme example of a deviation from this is cell death in a double-mutant strain 
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harboring two gene deletions that individually did not have lethal effects; this is known as 

synthetic lethality (Mani et al., 2008). More generally, a GI score is the difference of the 

observed and expected double mutant fitnesses (Baryshnikova et al., 2010b). A negative 

genetic interaction is a fitness deviation in which the measured double-mutant fitness is 

significantly lower than the prediction, indicating a phenotype sicker than expected. A 

positive genetic interaction occurs when the measured double-mutant fitness is 

significantly higher than the prediction, indicating a phenotype healthier than expected. 

The Synthetic Genetic Array (SGA) system uses robotics to automate the construction of 

colonies of double-mutant yeast strains by mating single-mutant strains. The recently 

completed SGA network includes 90% of all genes and ~75% of all gene pairs 

(Costanzo et al., 2016). 

 The array of all GI scores for a given strain (or gene), is called a genetic 

interaction profile and is a high-resolution functional description of a gene. One of the 

most powerful uses of the GI network is the derivation of a profile correlation network, in 

which genes are connected by weighted edges of Pearson’s correlation coefficients 

between their GI profiles. The profile similarity network has high accuracy in predicting 

genes involved in the same function and its precision is comparable to that of AP-MS 

PPI networks, which contain proteins interacting in complexes. This is an improvement 

over individual interactions: at a 50% recall of predicting shared curated annotations 

between genes, profile similarities have a precision approximately 50% higher than that 

of negative genetic interactions (Baryshnikova et al., 2010b; Costanzo et al., 2010). 

Inspection of uncharacterized genes in the yeast GI profile similarity network has led to 

validated function predictions for many genes (Costanzo et al., 2010; Costanzo et al., 

2016).  

 

1.1.2  Organization through modularity 

 An observed edge in a biological network can often be functionally interpreted 

through its network context. Frequently, dense sets of interactions among groups of 

genes or proteins are reflective of biological modules. 

 Modules are groups of functionally related genes or proteins that contribute to a 

task (Hartwell et al., 1999). They include pathways of consecutive physical interactions, 

such as signaling pathways, stable protein complexes, such as the proteasome or 
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nuclear pore, or proteins whose combined functions carry out a specific task, such as 

initiating DNA replication or docking and merging vesicles. Some modules, such as 

checkpoints, regulate other modules. To varying extents, these different types of 

modules are identifiable in many networks. For instance, it is mechanistically clear that 

protein complexes appear as dense clusters in Y2H or AP-MS PPI networks (e.g. (Gavin 

et al., 2006)). They also can be identified in GI networks because negative genetic 

interactions are often dense among the members of a module that can tolerate the loss 

of one member, but not two (Baryshnikova et al., 2010b). Co-expression networks 

strongly reflect complexes because co-member proteins usually have closely matching 

regulatory patterns (Stuart et al., 2003). Modules are not restricted to physical 

associations. In co-expression and regulatory networks, genes that respond as a group 

to a condition make up modules due to their common function (Gasch and Eisen, 2002). 

GI networks in particular can represent a wide variety of relationships, such as forming a 

structure in which many negative genetic interactions occur between two modules that 

functionally compensate for each other, known as the between-pathway model (Kelley 

and Ideker, 2005). 

  Modules vary greatly in size are typically not distinct: commonly, they overlap in 

their members and are nested within each other. This is best illustrated with the genetic 

interaction profile similarity network, to which Costanzo et al. (2016) applied hierarchical 

clustering (Figure 1.1). Genes with highly correlated GI profiles, forming the smallest 

clusters, correspond to protein complexes and pathways, which are contained in larger 

clusters reflecting broader biological classes. 
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Figure 1.1. Hierarchical modularity in the yeast genetic interaction profile 

similarity network. Reproduced from Costanzo et al., 2016. A clustering algorithm was 

applied to the genetic interaction profile similarity network, determining clusters of genes 

and their positions as colored nodes here (network edges are not shown). Profile 

similarity clusters reveal groups of genes with known relationships. Large network 

clusters correspond to cellular compartments (upper left), medium-sized clusters 

correspond to high-level biological processes (upper right), and small tightly-connected 

clusters correspond to protein complexes and pathways (lower left).  

 

 Within the modular landscape of gene and protein networks, there is 

heterogeneity of individual behaviors. Han et al. (2004) investigated the dynamic activity 

of hub proteins by comparing their expression profiles (expression levels measured in 

many conditions) to those of neighboring proteins in the yeast Y2H PPI network. The 

authors found a bimodal distribution across all hub proteins in their average expression 

correlation with neighbors, which indicates two types of hub behavior. Intramodular hubs 
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(also termed “party” hubs), which have high expression correlations with their physical 

interactors, were thought to simultaneously interact with many partners. Hub proteins 

with low average expression correlations with neighbors, intermodular (“date”) hubs, 

were thought to interact with neighbors at different times. The topology of these two 

behaviors had network-level effects: the simulated removal of date hub nodes from the 

PPI network caused higher increases in shortest path lengths than that of party hubs, 

which resembled removal of random nodes. Later investigations revealed that 

intramodular hubs have more binding sites on the protein surface than intermodular 

hubs (Kim et al., 2006) and confirmed the hub dichotomy using clusters in updated yeast 

interaction data and in other species (Chang et al., 2013; Pritykin and Singh, 2013). 

 Genetic interactions occur frequently between genes that have curated functions 

in different high-level bioprocesses, particularly involving chromatin, transcription, and 

Golgi-related genes (Costanzo et al., 2010). While modularity explains an organization of 

biological processes into units, between-process genetic interactions and the existence 

of intermodular hub proteins suggests an extensive coordination framework. 

 

1.2 Evolution of biological networks 

 The structures and functions of biological networks are intimately linked with 

evolution. Broadly, some network connections are more vulnerable than others to the 

effects of evolution and are more likely to lead to species-specific functions and the gain 

or loss genetic robustness. From a practical perspective, an understanding of 

conservation will help determine when and how the functions of genes in one species 

may be applicable to the functions of orthologous genes in another species. For 

example, two genes interacting in a model organism might serve as evidence that their 

human orthologs also interact or suggest the mechanism underlying a disease 

phenotype (Walhout et al., 2000). The following three sections describe key aspects of 

our current understanding of biological network evolution. In order, they describe 

evolution at a local scale of genes, at an intermediate scale of modules, and finally, at a 

network level. 
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1.2.1  Mechanisms of duplicate gene divergence 

 Gene duplication is widely considered to be the primary source of new functions, 

including increasing genomic complexity and the divergence between species (Holland 

et al., 2017; Kimura and Ohta, 1974; Ohno, 1970). For example, Holland et al. (2017) 

reviewed examples in which specialized abilities of animals are closely associated with 

sets of duplicated genes, such as high-acuity vision in dragonflies, heat tolerance in 

clams during low tide, and increased neural development in cephalopods. Duplication 

events vary in scale, affecting single genes, multiple adjacent genes, or even the entire 

genome. Directly following duplication of a gene, both genes are able to perform all roles 

of the original, parent gene (Ohno, 1970). In some cases, multiple identical copies of a 

gene facilitates an advantageous increase in expression and both duplicates will be 

evolutionarily retained under purifying selection (Kondrashov and Kondrashov, 2006; 

Rapoport, 1940). More frequently, however, the selective pressure on the duplicate 

genes is unequal. Ohno (1970) first proposed that duplication leads to genetic 

redundancy and consequently different selective pressure against the two duplicate 

genes. Others have built on this idea, describing different scenarios in which coding-

region mutations and selective pressure affect the retention of duplicate genes and the 

gain and loss of their functions (reviewed in (Conant and Wolfe, 2008)). To escape the 

loss of one gene, functional divergence of the two duplicates must occur, in which the 

genes acquire detrimental or adaptive mutations that lead to distinct functions (Force et 

al., 1999; Ohno, 1970). Models of divergence are described in terms of how these 

mutations affect the parent gene’s functions. One possibility is neofunctionalization 

(Kimura and Ohta, 1974; Ohno, 1970), a process in which an adaptive mutation imbues 

one gene with a novel, non-parental function, leaving the other under high selective 

pressure to support all parental functions. Subfunctionalization (Force et al., 1999) is the 

process in which parental functions are partitioned between the duplicate pair, which is 

possible if the parent gene contained modular regions, such as domains, that carried out 

separable functions. If one gene receives a mutation that compromises its ability to 

perform a function, there will be increased selective pressure in the opposite gene to 

maintain this function. The isolated losses of function in the individual duplicates 

eventually eliminate genetic redundancy such that each parental function is only 

performed by one gene. The concepts of subfunctionalization and neofunctionalization 
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need not be exclusive: one or both genes can mature to incorporate new and old 

functions.  

 In addition to mutations within gene coding regions, regulatory changes can 

cause duplicate genes to diverge, even in a complementary manner (Force et al., 1999). 

One mechanism promoting evolution through regulatory divergence may be the 

development of novel protein interactions: temporal changes in protein abundance can 

affect the set of potential binding partners to which a protein is exposed. Experimental 

evidence has shown that swapping the regulatory regions of paralogous yeast genes 

can cause the interacting partners of the protein products to also switch, thus specifically 

implicating regulatory change as the mechanism of divergence (Gagnon-Arsenault et al., 

2013). Various demonstrations of developmental genes being highly conserved and 

partially interchangeable in different metazoan phyla suggested transcriptional regulation 

has broad and substantial contributions to network evolution, even in the absence of 

coding-region sequence divergence (reviewed in Holland et al., 2017). (Adding to the 

apparently large impacts of transcriptional changes, it has been shown that the 

evolutionary rate of regulatory networks outpaces those of other biological networks 

(Shou et al., 2011).) 

 There is no consensus model describing divergence. However, a number of 

intriguing observations about functional relationships in duplicate gene pairs have been 

made along two broad conclusions. First, in yeast, whole-genome duplication (WGD) 

duplicates, which formed through an ancient event that caused duplication of the entire 

yeast genome, are functionally more similar to each other (Guan et al., 2007), more 

slowly evolving (Fares et al., 2013), more likely to be in protein complexes (Hakes et al., 

2007), and more affected by dosage requirements (Gout and Lynch, 2015; Hakes et al., 

2007) than small-scale duplication (SSD) duplicates. Second, there is a high occurrence 

of asymmetry between duplicates. For example, genetic interaction profiles have been 

used to identify divergent duplicates with significant levels of asymmetric functional 

importance (VanderSluis et al., 2010). Differing rates of sequence evolution have been 

observed in duplicate genes, likely reflecting cases in which a duplicate that evolves 

much more quickly than its partner is degenerate and has lost its ancestral functions 

(Kellis et al., 2004). Finally, duplicate genes tend to have transcriptional responses to 

stress conditions (Conant and Wolfe, 2006), and there is some evidence that most 

commonly, only one gene in a pair responds to stress (Mattenberger et al., 2017). 
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1.2.2  Rewiring of network modules 

 Patterns of network conservation between species are largely uncharacterized 

due to difficulties in comparing interaction networks of different species. However, there 

are clear evolutionary trends relating to modularity. 

 Protein complexes and other dense PPI modules are the most highly conserved 

structures in biological networks. These modules, which often represent core cellular 

functions, tend to have highly uniform compositions of nearly all essential genes or 

nearly all nonessential genes (Hart et al., 2007; Ryan et al., 2013). Based on this 

observation Zotenko et al. (2008) suggested that most essential genes earn their 

essential status through participation in modules. Consistently, multi-interface PPI hubs, 

which mainly represent complexes, are more likely to be essential and have a slower 

rate of sequence evolution as compared to all other PPI hubs (Kim et al., 2006). 

Phylogenetically, the genes associated with protein complexes are ubiquitous and 

widespread, with about two-thirds of metazoan protein complexes predicted to have 

ancient origins dating to at least the metazoan-fungi common ancestor (Wan et al., 

2015). Evidence suggests that even in human, most complex-member proteins function 

in core cellular processes at far above the background rate, which may indicate 

conserved functions of these modules. All these observations establish the idea that 

evolutionary rates and statuses of genes are derived from the functions of dense PPI 

modules. Based this explanation, the majority of protein modules should be 

evolutionarily conserved, due to unchanging sequences of their constituent essential 

proteins (Hirsh and Fraser, 2001).  

 In contrast, relationships between modules are evolutionarily flexible. Kim et al. 

(2006) concluded that single-interface hubs, which are likely to interact with multiple 

modules, contribute to network growth because they are able to accommodate 

interactions with recently duplicated genes. By comparing genetic interaction networks of 

two very distantly related yeast species (S. cerevisiae and S. pombe) Roguev et al. 

(2008) gave an example of a set of related complexes that are individually conserved 

between the two species, but show different between-module interactions. The changes 

between the species can be partially explained by physiological differences between the 

two yeasts, suggesting that evolution of species can occur by new connections between 
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old modules. Vo et al. (2016) confirmed this idea systematically in comparisons of the 

complete S. pombe Y2H PPI network with the complete S. cerevisiae and genome-wide 

human Y2H networks. The authors used both GO biological process terms and 

topologically defined clusters to categorize protein interactions as within- or between-

module connections. In all cases, within-module connections were much more likely to 

be conserved between species, with the most extreme difference occurring in the 

comparison between S. pombe and human: using network clusters, close to 90% of 

within-cluster interactions were conserved, but around 10% of between-cluster 

interactions were conserved. 

 The prominence of highly conserved modules and the fact that it is 

experimentally easier to demonstrate conservation than lack of conservation should not 

diminish the importance of between-module network connections. The paragraph above 

shows that module rewiring can enable species-specific features. Additionally, the 

connections between modules have substantial topological importance to biological 

networks. Analysis in a human AP-MS-derived PPI network showed that intermodular 

interactions are crucial to the connectivity and functionality of the global network (Hein et 

al., 2015). Interestingly, physical strength of protein interactions was shown to correlate 

with topological roles of the interactions in the PPI network, with an abundance of 

biophysically weaker interactions occurring between modules, which were composed of 

strong internal interactions. This is illustrated in Figure 1.2, replicated from Hein et al. 

(2015). The physical nature of the weak, between-module interactions may allow greater 

exploration of potential network rewiring, making them key elements in the adaptability of 

networks.  
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Figure 1.2. Strong and weak interactions within and between protein complex 

modules. Reproduced from Hein et al., 2015. The network of human protein-protein 

interactions identified in AP-MS experiments reveals connections between three RNA 

polymerases and other related proteins and complexes. Stoichiometry of a pair of 

proteins is highly predictive of the biophysical stability of an interaction. Thin edges 

indicate weak links and frequently occur between stable complexes. 

 

1.2.3  Whole-network evolution 

 Despite the varied observations and anecdotal support for the divergence models 

of duplicate genes, and the observation of conservation within modules, explaining the 

evolution of PPI networks has proved to be a challenge. Gene duplication and 

divergence was used as the basis of many network growth models, which were 

developed with a central goal of producing networks with similar topology to 

experimentally derived networks (e.g. Middendorf et al., 2005; Pastor-Satorras et al., 

2003; Rzhetsky and Gomez, 2001). In these iterative models, each growth step copies a 

randomly selected node and all its edges, then, with various parameter probabilities, 

deletes selected duplicated edges and adds new edges between the duplicate nodes 
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and randomly selected nodes. Additional rules incorporate biological constraints, such 

as requiring that at least one gene in duplicate pairs has an interaction with each 

neighbor of the pre-duplicated protein, mimicking the preservation of ancestral functions 

(Vázquez et al., 2003). 

 Kim and Marcotte (2008) objected to the many duplication and divergence 

growth models, crucially showing they produced networks in which the newest nodes 

have a high probability of interacting with the oldest nodes; in fact, proteins in the yeast 

PPI network show strong preference for interacting with proteins of similar age. 

Therefore they proposed the crystal growth model of network evolution, designed to 

produce interactions between nodes of similar age and to promote formation of network 

modules. The authors suggest physical justifications for both of these trends: proteins 

will form interactions primarily with other proteins that have available surface area, 

meaning that young proteins will tend to partner with each other, and proteins will form 

interactions with their neighbor’s neighbors due to proximity. The crystal growth model is 

initialized with a few nodes and as the network grows, modules are continuously defined 

based on dense regions. When a node is added to the network, a module is randomly 

selected and new interactions are limited to connect only to nodes within the module, 

with higher probability initially given to (likely newer) nodes with low degree (with low 

probabilities, a node can form a new module or intermodular connections). Likely, the 

true manner of network growth incorporates ideas from both types of models. 

 

1.3 Saccharomyces cerevisiae as a model organism 

1.3.1  General description 

 The yeast Saccharomyces cerevisiae is single-celled eukaryote that has been 

used to study many cellular processes and structures that are fundamental to our 

understanding of biology. Experimental laboratory work on S. cerevisiae that included 

life cycle descriptions, strain isolation, and trait selection began in the 1930s and 1940s 

(Mortimer and Johnston, 1986). In a research lab, this fungus is typically grown in 

colonies on solid- or in liquid-nutrient mediums, and under ideal conditions cells replicate 

as frequently as once every 90 minutes (Duina et al., 2014). S. cerevisiae is somewhat 

flexible in its life history and metabolism: under different conditions, it can harvest energy 
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through fermentation and respiration, exist in both diploid and haploid states, and 

reproduce sexually and asexually. S. cerevisiae has an evolutionary distance estimated 

near one billion years from all metazoans (Chernikova et al., 2011) and with a genome 

of approximately 6,000 genes, its complexity is humble in comparison to human and 

metazoan model species, whose genomes contain from ~14,000 genes in fly (Adams et 

al., 2000) to ~19,000 genes in human and worm (C. elegans Sequencing Consortium, 

1998; Ezkurdia et al., 2014). 

 An initial and enduring reason for S. cerevisiae’s popularity as a model organism 

is the ease with which researchers can perform targeted manipulations of gene 

sequences.  The basis of these manipulations is homologous recombination (HR), a 

DNA repair pathway in which crossover of homologous sequences (e.g. from 

homologous chromosomes) repairs double-strand breaks. Specific gene modification is 

achieved through transforming cells with a plasmid containing short DNA sequences that 

match the targeted gene (Hinnen et al., 1978; Orr-Weaver et al., 1981; Rothstein, 1983). 

Through HR, yeast incorporates the plasmid DNA into its genome with high efficiency, 

completely replacing the targeted gene. Within the inserted sequence, selectable 

markers and reporter genes enable subsequent selection of mutant cells; a modified 

form of the target gene is often included in the insertion. The tools used in this method, 

including plasmid transformation and construction of effective vectors through PCR 

(Baudin et al., 1993; Longtine et al., 1998; Wach et al., 1994), were developed in yeast 

throughout the 1980s and 1990s. In 1996, yeast became the first eukaryote with a fully 

sequenced genome (Goffeau et al., 1996) and emerged as an ideal system for the 

systematic study of a complete set of genes. With the goal of determining functions for 

all genes, researchers created collections of single-gene mutant strains. Researchers 

were able to determine cellular localizations of all genes (Huh et al., 2003) by replacing 

genes with GFP-fusion versions, and by replacing genes with epitope-tagged versions, 

multiple groups identified protein complexes (Gavin et al., 2006; Ho et al., 2002; Krogan 

et al., 2006; Rigaut et al., 1999). A number of single-mutant strain collections were 

designed to compromise the function of individual genes in order to observe the resulting 

phenotypes. The deletion collection contains strains with selectable markers and 

barcode identification sequences in place of all nonessential genes (Giaever et al., 

2002); the DAmP method causes depressed levels of expression by insertion of a 

marker in the 3’ UTR of a gene, and has been applied to essential genes (Schuldiner et 
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al., 2005); the haploinsufficient collection contains heterozygous diploid strains, each 

with only one copy of an essential gene (Giaever et al., 1999); and many temperature-

sensitive alleles along with selectable markers have replaced essential genes (Kofoed et 

al., 2015; Li et al., 2011). These S. cerevisiae strain collections, all constructed through 

HR-based methods, remain at the forefront of yeast genomics, since they are used in 

high-throughput endeavors, such as screening for genetic interactions (Costanzo et al., 

2016) and chemical-genetic interactions (Hillenmeyer et al., 2008), and other projects. 

The efficiency of homologous recombination seen in S. cerevisiae does not exist for 

more complex model species, such as worm, fly, and mouse, which have species-

specific complexities and low rates of homologous recombination due to cellular 

preference of alternative DNA repair pathways (Hardy et al., 2010). 

 Research in yeast has had many contributions the understanding of the cellular 

biology of higher eukaryotes. Firstly, many discoveries in yeast elucidate cellular 

structures and pathways that are highly conserved among eukaryotes and therefore 

applicable to understanding all eukaryotic cells at a fundamental level. Some of the most 

famous discoveries made in yeast, and those which lead to Nobel prizes, are Leland 

Hartwell’s description of genes that advance the cell cycle and checkpoint genes that 

delay it (Pulverer, 2001), Roger Kornberg’s structural elucidation of the molecular 

components that carry out transcription (Service, 2006), and Randy Schekman’s 

identification of genes controlling vesicle trafficking and secretion (Ferro-Novick and 

Brose, 2013). However, it is impossible to quantify the influence that yeast has had on 

our understanding of eukaryotic biology since virtually all aspects of yeast cellular 

biology have some level of conservation in other eukaryotes. Secondly, important 

experimental technologies have been developed in yeast and applied to research of 

other organisms, such as the yeast two-hybrid method for detecting protein interactions 

(Fields and Song, 1989) and protein array technology (Ptacek et al., 2005; Zhu et al., 

2001). 

 With the recent sequencing of many genomes and appreciation for the influence 

of genetic diversity within species, understanding genomes in an evolutionary context is 

currently of great importance. S. cerevisiae is well-poised for the study of comparative 

genomics. Dozens of S. cerevisiae strains that have evolved in widely varying natural 

and domesticated environments in countries all over the world have been sequenced 

(e.g. Liti et al., 2009), which lays a foundation for studying intraspecies genetic variation 
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(Peter and Schacherer, 2016). At a broader evolutionary scope, there is active genomics 

research on yeast species at many evolutionary distances (Zarin and Moses, 2014). 

Lastly, the important model yeast species Schizosaccharomyces pombe, which diverged 

from S. cerevisiae approximately 500 million years ago (Rhind et al., 2011), makes a 

particularly powerful comparison to S. cerevisiae because a collection of single-mutant 

deletion strains has been constructed for its nonessential genes. This means the fitness 

defects caused by gene loss can be measured as colony size with very similar methods 

to those used in S. cerevisiae (Baryshnikova et al., 2010a). Available for comparison, 

there are many characteristics of S. pombe that are present in higher eukaryotes but 

absent from S. cerevisiae, including RNA interference, a high proportion of genes 

containing introns, alternative splicing, and repetitive centromeres (Rhind et al., 2011). 

 

1.3.2  Gene and protein characteristics for genomic analyses 

 There are many diverse ways to quantitatively describe genes in terms of their 

protein products, evolutionary histories, functional and phenotypic behaviors, and other 

descriptors. These gene characteristics are integral to much of the work presented in 

this dissertation, so we introduce them here, organized by the general methods used to 

collect them. Some characteristics have been analyzed and collected in many species; 

many could be obtained for any species, with varying amounts of experimental and 

computational effort. Therefore, the descriptions below discuss both generic methods 

and analyses that are specific to S. cerevisiae. Table 1.1 summarizes the gene 

characteristics in advance. 
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Table 1.1. Gene characteristics organized by type of measurement. All gene 

characteristics used in this document are represented by the entries of this table, though 

in some cases multiple precise characteristics are described by one item here. Most, but 

not all, items are described in the following section. Abbreviations: dN/dS, normalized 

rate of nonsynonymous mutations; PPI, protein-protein interaction; SSD, small-scale 

duplicate; WGD, whole-genome duplicate. 

 

 

Sequence-based characteristics 

 Functional and evolutionary qualities of genes are, in some cases, detectable 

solely from sequence analysis. Codon usage bias is one such phenomenon in which 

genes preferentially contain specific codons instead of uniformly using alternative 

synonymous codons. Due to broad positive correlation between codon bias and gene 

expression, as well as matching non-uniform abundance of tRNAs, the prevailing 

explanation for codon bias is natural selection for increased translation efficiency and 

accuracy (Plotkin et al., 2011). Codon adaptation index (Sharp and Li, 1987), CAI, is a 

popular quantitative measure of codon bias that compares codon frequencies in a query 

gene to frequencies in a reference set of highly expressed genes, making CAI a strong 

predictor of expression level. A measurement termed “effective number of codons”, 

abbreviated Nc, similarly measures codon bias by counting the number of codons used, 

but is not calculated in comparison to highly expressed genes, making it sensitive to 

other causes of bias, such as a reduction of 5’-end secondary structure that interferes 
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with translation initiation or a decrease in translation rate to allow for co-translational 

folding or modification. 

 Aspects of protein structure can also be detected from gene sequence, after 

translation to amino acids. Protein domains are spatially compact and distinct structural 

units of proteins that are often associated with specific molecular functions. Domains 

tend to be highly conserved (intriguingly, over half of domain families observed in 

Eukarya also appear in Bacteria and/or Archaea (Nasir, 2014)) and therefore it is 

precise, practical, and powerful to define domains by statistical models of their 

underlying sequences. For example, the Pfam database houses multiple-sequence 

alignments and hidden Markov models that represent protein regions identified from all 

proteome accessions in UniProt (Finn et al., 2016; Sonnhammer et al., 1998). A queried 

protein is matched to its domains by scores expressing how well each HMM model fits 

part of its sequence. In yeast, approximately 42% of genes have at least one domain, 

the most common being the protein kinase domain, which appears in 114 genes. Other 

examples of domains are the ATP binding domain of the ABC transporter, which moves 

substrates across membranes, the SH3 domain, which is frequently found in the proteins 

of signaling pathways, and the DEAD/DEAH box helicase domain, which unwinds RNA 

strands for various processes.  

 A complementary component of protein structure is intrinsic disorder, which 

describes regions of proteins that have no native structure, instead forming what is 

termed a random coil. Disorder can be predicted computationally with a classifier trained 

on proteins with known structure. DISOPRED, for example, predicts a protein’s 

disordered regions from its amino acid sequence and a PSIBLAST position-specific 

scoring matrix, which contains information about variations of residues that are found at 

each position in evolutionarily related sequences (Jones and Ward, 2003). The authors 

that designed DISOPRED found that disordered protein regions occur as long segments 

in one third of eukaryotic proteins (Ward et al., 2004b). Despite the lack of precise 

structure-function associations, disordered regions can also be indicative of functional 

properties. Protein disorder is broadly associated with high rates of evolution; however, 

the disordered state of regions in S. cerevisiae proteins can also be highly conserved in 

other yeasts species, indicating functional importance. When the disordered state is 

conserved but the amino acid sequence varies between species, the disorder is termed 

flexible, and proteins with this type of disordered region have specific functional 
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associations, such as involvement in signaling, low expression, and having a single 

interface that binds different proteins at different times, among others (Bellay et al., 

2011b).  

 Sequence comparison of a gene and its orthologs in close relatives can indicate 

effects of selection pressure. Evolutionary rate of a gene can be estimated from the ratio 

between nonsynonymous and synonymous mutations, denoted dN/dS, where the 

mutation counts are determined through comparing the query gene with an ortholog in a 

relatively closely related species (Goldman and Yang, 1994; Kimura, 1977). 

Alternatively, mutations can be counted. The Saccharomyces Genome Resequencing 

Project has sequenced 19 S. cerevisiae strains that have been isolated from a variety of 

environments (Liti et al., 2009). From these data, single nucleotide polymorphisms, 

SNPs, can be searched for in every gene. The incorporation of consequential mutations 

in a gene from any of the strains could mean an absence of stabilizing selection, and the 

confidence of this conclusion would increase with the number of SNPs and SNP-

containing strains. Prediction of whether a SNP causes a functional defect in a gene, a 

significant refinement over solely distinguishing non-synonymous and synonymous 

mutations, is done by the SIFT algorithm, among others, which uses multiple-sequence 

alignments of homologs to infer each amino acid position’s tolerance to specific 

substitutions, under the assumption that highly conserved amino acids are likely to have 

deleterious effects if changed by a SNP (Ng and Henikoff, 2003). 

 Analysis of the presence and absence of gene’s homologs yields a number of 

interesting gene characterizations. Paralogs are genes within a single genome (e.g. that 

of S. cerevisiae) that evolved from one ancestral gene and have retained enough 

sequence similarity to be identified. These genes arise through duplication events in 

which genome segments are copied due to mistakes during DNA replication and repair 

or chromosomal segregation during cell division. The whole-genome duplication event is 

a particularly striking event in the history of Sensu stricto yeasts and S. cerevisiae 

duplicated genes can be described as whole-genome duplication (WGD), if they resulted 

from this event, or small-scale duplication (SSD) duplicates otherwise. Some differences 

between these classes were mentioned in section 1.2.1. An important result of small-

scale duplication events is gene families, which arise from multiple (SSD) duplication 

events affecting one gene or set of paralogs and sometimes show fast rates of evolution. 
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The quantitative gene characteristic that reflects the duplication history is copy number, 

which is one plus the number of paralogs a gene has. 

 The interpretation of gene descriptors derived from orthologs, genes of separate 

species that evolved from a single ancestor gene, is relative to gene function in other 

species. Therefore, although orthologs are identified by sequence, we discuss these in 

the next section. 

 

Phylogenetic characteristics  

 Describing a gene in terms of its orthologs gives a broad view of its evolutionary 

history by offering insight to the importance of it conserved function. The InParanoid 

project has performed ortholog identification for an extensive collection of 99 eukaryotic 

proteomes (Ostlund et al., 2010). The InParanoid algorithm (Remm et al., 2001) uses 

BLAST to compare all protein pairs within and between two species, providing 

sequence-based distance scores to a clustering algorithm. The clustering applies a 

number of rules to define clusters that distinguish between duplication events that 

occurred before or after species divergence. If two species are closely related, then 

synteny, the conservation of gene order on a chromosome, can be used to bolster 

support for sequence-based orthology predictions, as is done in the SYNERGY 

algorithm (Wapinski et al., 2007a). SYNERGY, however, is a substantially different 

approach from InParanoid: by making use of a pre-defined species phylogeny, it 

constructs a gene history tree that shows where, in relation to extant and ancestral 

species, duplication and deletion events occur. The advantage of this approach is that 

orthogroups (sets of orthologs) can be traced throughout all analyzed species. The 

designers of SYNERGY applied the algorithm to 23 Ascomycete species and noted that 

orthogroups varied strikingly in the tendency of their member genes to be duplicated or 

deleted, which they defined quantitatively as a measurement called volatility (Wapinski 

et al., 2007b). Characteristics of volatile orthogroups included signaling and stress 

response functions, variable expression in mutant genotypes and in different species, 

and expression regulation by the SAGA complex and the TATA box. In contrast, non-

volatile orthogroups tended to be involved in essential growth processes, localize inside 

organelles, make up core components of protein complexes, and rarely show changes in 

expression. We use volatility as a gene descriptor, assigning each gene the volatility of 

its containing orthogroup. 
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 Regardless of the method used to discover orthologs, two additional gene 

characteristics of evolutionary conservation can be defined from them. Given a 

phylogeny, the age of an S. cerevisiae gene can be expressed as the most distantly 

related species to have an orthologous gene. We defined a measure of gene age based 

on a tree that is a combination of the Wapinski et al. (2007b) and Ostlund et al. (2010) 

trees. We sequentially labeled, from most to least recent, all the last common ancestors 

between yeast and the extant species studied by the InParanoid and SYNERGY groups. 

Then gene age of an S. cerevisiae gene is defined as the highest (least recent) last 

common ancestor that the gene shares with any ortholog. Gene age captures only a 

slice of a gene’s evolutionary history—essentially the depth of a gene’s origin in an 

evolutionary tree. A second interesting measurement is the breadth of the presence of a 

gene’s orthologs across many species. We term this “conservation” and calculate it as 

the number of species that contain an ortholog of a given gene.  

 

Genome-wide experimental data-derived characteristics  

 Some of the most valuable characterizations of genes are those that inform their 

cellular functions through observation. One of the earliest, and subsequently most 

common, high-throughput genomic technologies is the microarray, which simultaneously 

measures the presence of specific RNA and DNA sequences in samples extracted from 

cells (reviewed in Zhang, 2006). A microarray is a solid plate onto which tens of 

thousands of oligonucleotides with known sequences, called probes, that are 

representative of genome content are tethered in grid pattern. To measure gene 

expression, complementary DNA (cDNA) may be produced from experimentally isolated 

mRNA, fluorescently labeled, and hybridized to complementary probes on the 

microarray. Scanning the microarray for fluorescence strength yields a quantitative 

measure of how much labeled cDNA hybridized to each probe. This measurement of 

mRNA abundance for tens of thousands of sequences is a snapshot of genes that have 

recently been transcribed. Because gene expression is regulated according to necessity, 

gene functions can be studied by measuring expression genome-wide in many different 

conditions or in a time series. For example, genes with expression that is upregulated 

during a certain phase of the cell cycle (Spellman et al., 1998) or in response to a DNA 

damage condition (Gasch et al., 2001) can be considered to have functions related to 

these conditions. Expression variance across many conditions can summarize gene 
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behavior: high variance may indicate that a gene functions in multiple cellular responses 

to conditions (Gasch et al., 2000) and suggests the gene is not part of a core cellular 

function requiring constant expression levels. A powerful method of analyzing 

expression data is calculating pairwise correlations between all gene expression profiles 

across experimental samples. Genes whose expression level patterns are very similar 

tend to be functionally related, and these relationships can be determined for all pairs of 

genes without making assumptions about how a cell may be responding to particular 

conditions (Stuart et al., 2003). By interpreting high correlations as connections in a 

network (Huttenhower et al., 2006), we can count the number of co-regulated partners a 

gene has, a gene characteristic called co-expression degree. 

 Other experimental datasets measure phenotypes associated with genes. At a 

molecular level, protein abundance (Newman et al., 2006) can indicate the functional 

importance of a gene, which is similar to expression level but takes into account post-

transcriptional regulation. At an organism level, the phenotype of cell growth is a proxy 

for fitness, which can be measured for different genotypes. In yeast, there are collections 

of strains harboring individual deletions or mutant alleles for nearly all genes in the 

genome. Thus, single-mutant fitness measurements of the strains can be associated 

with individual genes (Costanzo et al., 2016; Giaever et al., 2002). Low single-mutant 

fitness for a given gene is an indication that the gene is important for cell growth or 

health, while high single-mutant fitness indicates its function has little importance in 

standard conditions or that the cell is able to adequately compensate for its loss. Fitness 

is not limited to standard conditions: it can also be measured while exposing cells to 

different chemicals. Lastly, Ohya et al. (2005) designed a high-throughput system to 

measure morphological phenotypes of internal cellular structures in yeast strains. The 

authors fluorescently stained cell walls, actin cytoskeletons, and nuclear DNA of the 

yeast deletion strains and used automatic image processing to measure over 250 

parameters describing the shape, size, and positions of these structures. Levy and 

Siegal (2008) used this dataset to assess the phenotypic variation that occurred within 

the single-mutant populations and calculated a measure of phenotypic capacitance, 

which expressed the extent to which loss of a given gene led to loss of phenotypic 

robustness. They found that genes with high phenotypic capacitance (genes that 

promote uniform phenotypes with a population) are likely to have many genetic 
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interactions, protein interactions, and be involved in cellular processes that can have 

broad effects, such as transcriptional regulation and maintenance of DNA stability. 

 
Curated data-based characteristics 

 As evidenced by the large number of data sets that contribute to sequence-

based, experimental, and phylogenetic gene characteristics, many yeast genes have 

been well characterized. These genome-wide studies have complemented the many 

small-scale investigations of yeast biology that have been conducted for many decades. 

Given the large number and variety of all experimental characterizations of genes, 

manual work to assimilate these data into accessible and standard gene descriptions is 

very valuable. Specifically, the curators at the Saccharomyces Genome Database 

(Cherry et al., 2012) track all experimental evidence associated with individual genes, 

such as mutant and conditional phenotypes. They also annotate the genes with terms 

from the Gene Ontology (GO) (Ashburner et al., 2000). The GO represents a systematic 

hierarchical organization of much of the current knowledge about genes in all species by 

defining terms that describe molecular functions, biological processes, and cellular 

compartments. Approximately 87% of yeast ORFs that show evidence of a protein 

product have been annotated so far. A frequent use of GO annotations is to interpret 

genes by testing for statistically over represented terms in a group of genes. As for gene 

characteristics, the number of assigned GO terms or phenotypes can indicate gene 

multifunctionality, though GO is known to be somewhat biased and, of course, is limited 

to biology that has been investigated (Gaudet et al., 2017). 

 

1.4 Dissertation focus 

 The yeast Saccharomyces cerevisiae is one of most studied and most easily 

genetically manipulated model species. Historically, it has been integral to the discovery 

of many fundamental eukaryotic cellular processes and both small-scale and high-

throughput experiments continue to increase our knowledge of biology. However, 

progress in understanding human biology, including the identification of disease 

mechanisms and treatments, requires species-specific knowledge. Biological networks 

show only moderate conservation between species in terms of both nodes (genes or 

proteins) and interactions (physical or functional) among conserved nodes. While core 

modules tend to show conservation, other aspects of cellular networks, such as 
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between-module connections, duplicates, and expression regulation, appear to evolve 

quickly—and are thought to facilitate the development of species-specific traits. 

Consequently, there is need for methods to identify basic principles of biological 

networks that are universal among eukaryotes and to transfer knowledge from a model 

organism to the context of another species. In Chapter 2, we demonstrate that it is 

possible to build a model encapsulating patterns between gene characteristics and 

structure in genetic interaction networks. We show that the model works well to predict 

genetic interaction degree in two distantly-related species, S. cerevisiae and S. pombe. 

Importantly, the model we trained was not dependent on homology, indicating that this 

type of analysis can guide research efforts related to species-specific biology. 

 The recently completed yeast genetic interaction network, in combination with 

curated annotations of genes, allows the systematic investigation of gene functional 

behavior. In Chapter 3, we discuss a pipeline that creates functional profiles for genes by 

identifying all functional modules each gene participates in and summarizing them 

across 20 high-level biological processes. Gold-standard gene annotation schemes 

typically only reflect a single primary function for each gene, or, in the case of GO terms, 

are likely significantly affected by investigation bias. Thus, our systematic module-

derived functional profiles are truer representations of gene functions. Chapter 4 

presents a particularly exciting use of these functional profiles: genome-wide 

measurement of pleiotropy—the widespread phenomenon in which one gene impinges 

on multiple functions. After identifying pleiotropic genes, we find the properties that 

distinguish them from genes with very low pleiotropy and discuss why these properties 

may be associated with pleiotropy. Although multiple network analyses have shown that 

some high-degree genes (or proteins) act within modules and others interact with or in 

many modules, there are no systematic descriptions of this topological behavior that also 

consider the biological functions of the modules. Additionally, although there are many 

definitions of pleiotropy (reviewed in section 4.2.1), no one has previously used genetic 

interactions to detect gene pleiotropy.  

 A common theme in these two main lines of research is the combination of a 

diverse set of gene characteristics and GI network topological behavior. The motivation 

for this is to find fundamental principles of genomics that are universally informative and 

applicable. As discussed in this introduction, there are many ways in which gene 

characteristics are associated with function and evolution: gene sequences can reflect 
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the strength of evolutionary pressure or the existence of functional units, a duplicate 

gene can gain or lose functions, membership in a complex restricts ability to interact with 

new proteins, orthologs in many species indicates an important function, and many 

others. These relationships are most likely well conserved. In model organism research, 

a predominant motivation is the expectation that results will be relevant to many species 

due to homology, the evolutionary conservation of sequences and structures. There is 

no doubt that this expectation has been realized many times or that conservation can 

cover exceedingly long time periods. However, it has recently become clear that 

biological networks evolve considerably, incorporating new nodes and altering 

connections between nodes. As we demonstrate in Chapter 2, the relationship between 

gene characteristics and GI degree is conserved, and thus there may be many such 

ways to understand network-based behaviors of genes through their conserved 

relationships with gene characteristics. We anticipate that our results describing 

pleiotropic genes also fall into this category. 

 Some of the work presented in this document benefitted from contributions from 

collaborators of the author. These contributions are specified in introductory sections of 

individual chapters.  
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Chapter 2: Conserved rules govern genetic interaction degree 
across species 

2.1 Chapter overview 

 Although many genetic interaction screens performed for S. cerevisiae (Costanzo 

et al., 2010) have yielded a genome-wide genetic interaction network, comprehensive 

genetic interaction networks have not been determined for other species. We therefore 

sought to model aspects of GI networks in order to enable the transfer of knowledge 

between species. This chapter presents the successful application of a machine-learning 

strategy to model GI degree. We apply the model to make predictions for S. pombe 

genes and conduct an analysis of rewiring between the species. 

 The text of this chapter has previously been published as an article in the journal 

Genome Biology (Koch et al., 2012). The author of this dissertation had a leading role in 

planning this work and writing the associated publication; all analysis was done by this 

author, except the aspects specifically noted in this paragraph, with contributions from 

collaborators. In addition to the author, Jeremy Bellay, Chad L. Myers, Michael 

Costanzo, Charles Boone, and Brenda J. Andrews conceived and planned the analysis. 

Jeremy Bellay made contributions to gathering gene properties and designing predictive 

models. Gordon Chua, Kate Chatfield-Reed, and Michael Costanzo performed the S. 

pombe GI screens and fitness measurements. Raamesh Deshpande constructed the co-

expression network for S. pombe. Michael Costanzo, Gennaro D’Urso, Charles Boone, 

and Chad L. Myers contributed to writing the manuscript. 

 

2.2 Background 

 Most genes are nonessential for eukaryotic life under standard laboratory 

conditions, which may reflect that organisms are highly buffered from genetic and 

environmental perturbations (Hartman et al., 2001). However, rare combinations of 

singly benign genetic variation can lead to synergistic effects, such as synthetic lethality, 

where mutations in two genes, neither of which is lethal independently, combine to 

generate an inviable double-mutant phenotype (Dixon et al., 2009). Because the natural 

variations that distinguish two individuals, such as single nucleotide polymorphisms, 

occur relatively frequently (Gibbs et al., 2003), and complex genetic interactions may 

underlie most individual phenotypes (Hartman et al., 2001), understanding the general 
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principles and rules that govern genetic networks may be critical for solving the 

genotype-to-phenotype problem and implementing personal medicine (Dowell et al., 

2010). 

 Recently, we tested ~5.4 million Saccharomyces cerevisiae gene pairs for 

genetic interactions, mapping an extensive network of more than 100,000 interactions by 

synthetic genetic array (SGA) analysis (Costanzo et al., 2010). The study mapped both 

negative genetic interactions, the situation in which a double mutant exhibits a more 

extreme phenotype than the expected combined effects of the single mutants, as well as 

positive genetic interactions, the situation in which a double mutant exhibits a less 

pronounced phenotype than expected (Baryshnikova et al., 2010b). This study revealed 

the distribution of genetic interactions with respect to gene function and highlighted a 

central role for chromatin-related, transcription, and secretory functions as well as 

several fundamental physiological and evolutionary gene properties that are significantly 

correlated with genetic interaction degree in the S. cerevisiae genetic network (Costanzo 

et al., 2010). For example, we showed that the genetic interaction degree of a gene is 

highly correlated with single mutant fitness, such that genes with a substantial fitness 

defect show a large number of genetic interactions. 

 While genetic interactions have been the most extensively studied in the yeast S. 

cerevisiae, there is intense interest in developing and applying large-scale screening 

technologies in other species. For example, large studies have already been completed 

in Escherichia coli (Butland et al., 2008; Typas et al., 2008), Schizosaccharomyces 

pombe (Dixon et al., 2008; Roguev et al., 2008), Caenorhabditis elegans (Byrne et al., 

2007; Lehner et al., 2006), Drosophila melanogaster (Agaisse et al., 2005; Boutros et al., 

2004), and human cell lines (Barbie et al., 2009; Luo et al., 2009; Scholl et al., 2009). 

Although definitive comparative analysis of these networks across species would be 

premature given the sparsity of known interactions in the species other than S. 

cerevisiae, there have been preliminary comparative studies. In particular, the yeast S. 

pombe provides an attractive setting for this analysis due to the availability of a genome-

wide deletion mutant collection (Kim et al., 2010a) and scalable technology for 

automated genetic analysis (Dixon et al., 2009). Furthermore, S. cerevisiae and S. 

pombe are estimated to have diverged approximately 500 million years ago and display 

markedly different physiological properties but share 75% of their gene content (Rhind et 

al., 2011; Sipiczki, 2000). The two comparative studies to date estimated approximately 
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30% conservation of individual negative genetic interactions, but also found substantial 

differences between the two species (Dixon et al., 2008; Roguev et al., 2008). These 

studies demonstrate the power and necessity of comparative analysis of genetic 

interaction networks, but have conducted only limited sampling of genetic interactions in 

S. pombe. The properties of these networks that are conserved across species and the 

rules governing their evolution remain largely open questions, making further 

characterization of the evolution of genetic interaction networks important. 

 

2.3 Modeling interaction degree in the S. cerevisiae genetic interaction 

network 

 Highly connected genes in the S. cerevisiae genetic interaction network are often 

associated with slow-growing single mutants, protein products with disordered structure, 

gene pleiotropy as indicated by multiple Gene Ontology (GO) annotations, high 

connectivity in the physical interaction network, slower rates of evolution, and low 

expression variation (Figure 2.1A; Appendix 2, A2.2) (Costanzo et al., 2010), as well as 

a number of other sequence- and experimental-based gene features (Table 2.1). We 

reasoned that these correlations could serve as the basis for predictive modeling of 

interaction degree, enabling the prediction of interaction degrees for genes that have not 

yet been screened. 

 To this end, we applied a regression tree approach to model combinations of 16 

gene characteristics (Appendix 2, A2.2) that are predictive of negative genetic interaction 

degree (Figure 2.1B). Regression trees are built by repeatedly splitting sets of training 

genes, according to the values of gene characteristics, until genes are sorted into small 

sets that each contain genes with similar genetic interaction degrees. The hierarchy of 

gene sets produced is visualized as a binary tree and the final sets of genes are each 

associated with linear regression models that assign predictions to query genes (Figure 

2.1B). Bootstrapped subsets of the training data were used to build an ensemble of 

regression trees; this use of multiple models, bootstrap aggregation, is a typical method 

for building a robust predictive model (Breiman, 1996) (section 2.8.1). 
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Figure 2.1. Physiological and evolutionary gene characteristics are predictive of 

genetic interaction degree. (A) Gene features are significantly correlated with negative 

genetic interaction degree. We measured Pearson correlation coefficient between gene 
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feature values and negative genetic interaction degree for 3456 nonessential S. 

cerevisiae genes. Error bars show 95% confidence intervals. A complete set of features 

and their correlations is given in Table 2.1; see section A2.2 for descriptions of gene 

characteristics. SM, single mutant. (B) Overview of the regression tree model for genetic 

interaction degree. An ensemble of 100 decision trees was built from bootstrap samples 

of genes. Combinations of values of characteristics are represented as paths from the 

root to the leaves of a tree. Internal nodes each split data (sets of genes) according to 

values for a single characteristic; leaf nodes are associated with predicted genetic 

interaction degrees. FD, single mutant fitness defect. (C) Scatter plot of negative genetic 

interaction degree and degrees predicted by the bagged decision tree model on held-out 

genes shows the significant relationship between predicted and actual degrees 

(Pearson’s r = 0.80, p < 10-324). 
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Table 2.1. Pearson correlations between features and negative genetic interaction 

degree in S. pombe (pom) and S. cerevisiae (cer) are observed to be significant in 

many cases. 
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 To validate our approach, we used our model to predict negative genetic 

interaction degree for all genes in the S. cerevisiae genetic interaction network (Figure 

2.1C; section 2.8.1). A high correlation (r = 0.80,  p < 10-324) was observed between 

predicted and actual genetic interaction degrees of genes not used in training the 

models, indicating that our model accurately reflects topological features of the S. 

cerevisiae genetic interaction network (Figure 2.1C). A strength of this type of model, in 

addition to providing degree predictions for previously unseen genes, is that the learned 

tree structures highlight rules consisting of combinations of gene characteristics that 

explain variation in degree (Figure 2.1B). 

 

2.4 Predicting genetic interaction degree in a distantly related species 

 If the rules governing genetic network topology are conserved, then a model 

based on S. cerevisiae gene features should be predictive of genetic interaction degree 

in other organisms. To test this, we examined the same gene features of S. pombe 

genes that we found to be predictive of S. cerevisiae interaction degree, including a 

quantitative measurement of single mutant fitness defect across the genome (section 

A2.2; section 2.8.2). Surprisingly, comparative analysis of the various characteristics 

between pairs of orthologs revealed that a number of non-sequence-based features are 

only modestly conserved between the two yeast species (Berglund et al., 2008) (Figure 

2.2A; section A2.2). For example, we found a significant but relatively weak correlation in 

single mutant fitness defect (Pearson’s r = 0.20, p < 10-8) between 1,100 one-to-one 

orthologous gene pairs for which we could derive fitness measurements in both yeasts. 

The lack of strong conservation of deletion mutant fitness is somewhat surprising given 

that approximately 80% of S. pombe orthologs of S. cerevisiae essential genes have 

conserved essentiality (Kim et al., 2010b). Thus, while S. cerevisiae and S. pombe share 

a common set of genes that are indispensable for viability, our findings suggest that the 

severity of fitness defects imposed by the deletion of orthologous nonessential genes for 

growth under standard laboratory conditions is not well conserved.  Other gene 

properties, including protein-protein interaction degree, dN/dS, and multifunctionality, 

exhibit a similar lack of conservation (Figure 2.2A). 
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Figure 2.2. Cross-species analysis of the predictive model for genetic interactions. 

(A) Pearson correlations between one-to-one S. cerevisiae and S. pombe orthologs for 

their values of gene characteristics. Note that a number of characteristics are sequence-

based and are thus not independent of the sequence-based ortholog identification; 

features that appear to have trivial correlations are not included here. Error bars show 

95% confidence intervals. (B) Pearson correlations between features and degree in S. 
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pombe are observed to be significant in many cases and similar to those in S. 

cerevisiae. A complete set of features and their correlations is given in Table 2.1; see 

section A2.2 for descriptions of characteristics. Error bars show 95% confidence 

intervals. (C) Predictive abilities of bagged regression tree models were evaluated by 

measuring Pearson correlations between predicted and actual degrees. The left set of 

bars shows the performance of predictions made for ~550 S. pombe genes and the right 

set of bars shows the performance of predictions made for all nonessential deletion 

mutants in S. cerevisiae. For each scenario, models were trained both on data from the 

same species (red bar) as well as data from the other species (blue bars). The light blue 

bars correspond to predicting degrees of all genes in the test species, while the dark 

blue bars correspond to predicting degrees for the subset of genes lacking orthologs in 

the training species.  Error bars show standard deviations of bootstrapped predictions. 

For a baseline, the dashed line shows the correlation between observed degrees of one-

to-one orthologous genes (a simple prediction method that can be applied to only 

orthologs). 

 

 Despite the low conservation of single mutant fitness and the varying correlations 

between individual gene properties for orthologs, we found that relationships between S. 

pombe gene characteristics and genetic interaction degree were strikingly similar to 

those observed in S. cerevisiae (Figure 2.2B, Table 2.1). Consistent with S. cerevisiae 

trends (Figure 2.1A, Table 2.1), fitness defect was the strongest predictor of S. pombe 

genetic interaction degree. That is, S. pombe strains with severe fitness defects often 

exhibit high numbers of genetic interactions. The observed trends suggested that in 

addition to correlations with individual gene features, higher-level combinations of 

features that are predictive of connectivity in the S. cerevisiae genetic interaction 

network (Costanzo et al., 2010) (Figure 2.1A) may also be informative of S. pombe 

genetic interaction degree. 

 To test this hypothesis, we built a predictive model relating the combination of 

available gene characteristics to genetic interaction degree in S. cerevisiae and then 

applied the resulting model to predict genetic interaction degree in S. pombe (section 

2.8.1). Interestingly, we observed significant correlation (r = 0.51, p < 10-36) between 

interaction degree predicted by our model and the number of interactions previously 
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determined (Roguev et al., 2008) for 548 S. pombe genes (Figure 2.2C, left side, light 

blue bar). 

 Our ability to predict interaction degree from a small set of gene-specific 

properties is evidence that rules governing genetic interaction network topology are 

conserved across a large evolutionary distance (Figure 2.2C). Importantly, there is no 

significant decrease in correlation between predicted and actual interaction degree when 

predictions were restricted to genes unique to S. pombe (Figure 2.2C, left side, dark blue 

bar), indicating that the model performs equally well when applied to genes lacking 

orthologs in the species used to learn relationships in the model. 

 As a baseline comparison for our cross-species predictive model, we built a 

model from S. pombe gene characteristics and genetic interaction degrees instead of 

from S. cerevisiae data. Within-species predictions for S. pombe interaction degrees are 

not significantly more accurate than predictions made by the cross-species model 

(Figure 2.2C, left side, compare red and light blue bars). We also note that although a 

simplistic predictor that maps the degree of a S. cerevisiae gene directly to its S. pombe 

ortholog provides reasonable performance (Pearson correlation approximately 0.4), this 

strategy is out-performed by our cross-species model and is limited to conserved genes. 

Strikingly, the models trained on S. pombe interactions and features were also able to 

predict interaction degree in the S. cerevisiae network with high accuracy (Figure 2.2C, 

right side, compare red and light blue bars). In general, interaction degree predictions for 

S. pombe genes were weaker than S. cerevisiae interaction degree predictions, which 

may reflect the limited functional diversity of available S. pombe genetic interaction 

studies (Dixon et al., 2008; Roguev et al., 2008). Nonetheless, the ability to predict 

interaction degree using characteristics measured in either yeast species is evidence 

that relationships between genetic interactions and fundamental physiological and 

evolutionary properties are generally conserved. 

 The strong correlation between single mutant fitness defect and negative genetic 

interaction degree has the unsurprising consequence that the models are considerably 

influenced by this feature. To explore the reliance of our model on fitness defect, we 

constructed two types of bootstrapped regression tree models that were trained on all 

characteristics except fitness defect. The first of these additional models is trained to 

predict negative genetic interaction degrees and is able to successfully make both 

within- and cross-species predictions (Figure A2.1, section A2.1). The second model 
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was trained to predict the residual negative genetic interaction degree that remained 

after subtracting degree predictions made from a regression tree model that was trained 

on the single feature single mutant fitness defect. The prediction of these residuals by 

the remaining features was also significant (Figure A2.2, section A2.1). We therefore 

consider the inclusion of many other features to be a worthwhile part of our model, since 

they capture aspects of genetic interaction degree that fitness defect alone does not. 

 

2.5 Validating predictions with S. pombe whole-genome GI screens 

 As an independent validation of our model, we conducted genome-wide S. 

pombe genetic interaction screens. Eight query gene-deletion mutants spanning diverse 

cellular functions were crossed into an array of 2,907 nonessential S. pombe deletion 

mutants (Dixon et al., 2009; Kim et al., 2010a), making approximately 23,000 double 

mutant strains (Figure 2.3A; section 2.8.2). 

 

 

Figure 2.3. Observed genetic interactions between S. pombe genes support 

degree predictions. (A) Model predictions were validated on a second, whole-genome 

set of interaction screens in S. pombe that are independent of the training data. Eight 

query deletion mutants were crossed with the entire S. pombe nonessential deletion 

collection. In total, genetic interaction (epsilon) scores were measured for approximately 

23,000 gene pairs. Epsilon scores are tightly centered at 0, thus interactions called for 

scores of +/-0.08 or more extreme are rare. (B) The collection of nonessential S. pombe 

genes (n = 2907) were grouped by the number of interactions each has with the eight 
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query genes for which full-genome screens were performed. Numbers in parentheses 

give the number of genes for which this degree was observed. For each degree, the box 

plot shows the distribution of predicted degrees, which are expressed as percentiles. 

There is a strong positive correlation (Pearson’s r = 0.40, p < 10-111) between predicted 

and actual degree. 

 

 Consistent with our results for a published dataset (Roguev et al., 2008) (Figure 

2.2C), we observed a significant correlation (r = 0.40, p < 10-111) between the predicted 

number of interactions and the total number of experimentally derived interactions 

observed for a given array mutant in this genome-wide deletion set. Grouping genes with 

the same observed degree, we found that the distributions of our predictions were 

reflective of actual degrees (Figure 2.3B). For example, the median degree percentile 

predicted for genes with a degree of one was approximately 0.72, while the median 

prediction for genes with zero interactions was approximately 0.42. Importantly, the 

significance of the correlation was robust to the choice of interaction cutoff and persisted 

for a higher-confidence, sparser network (section 2.8.2). 

 

2.6 Identifying network rewiring suggested by cross-species predictions 

 Although many individual genes are conserved, yeast genetic interaction 

networks may have undergone substantial rewiring, as only approximately 30% of the 

interactions are conserved (Dixon et al., 2008). Similarly, a low conservation of genetic 

interactions has also been observed between S. cerevisiae and C. elegans (Tischler et 

al., 2008). To examine the extent of network rewiring, we first inferred interaction degree 

for the entire S. pombe genome using our cross-species model. Because the predictions 

did not depend on sequence orthologs (Figure 2.2A, C), they can be used to compare 

the topologies of the S. cerevisiae and S. pombe networks even though only a small 

fraction of the S. pombe network has been screened. 

 We found several instances where the predicted interaction degree for a given S. 

pombe gene was quite different from the observed degree of its S. cerevisiae ortholog, 

suggesting that the gene acquired or lost interactions differentially as the species 

diverged. To identify larger functional modules that were targets of this rewiring, we 

grouped functionally related genes according to a catalog of 65 annotated protein 
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complexes (Baryshnikova et al., 2010b) and 545 GO biological process annotations 

(Ashburner et al., 2000) (section 2.8.3), and compared the median interaction degree 

determined for orthologous protein complexes and functional groups (Figure 2.4A; 

Figure A2.3, section A2.1). Many groups of functionally related genes and several 

complexes were statistically indistinguishable in terms of network connectivity, indicating 

that these modules act either as network hubs in both species or non-hubs in both 

species. 
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Figure 2.4. Global analysis of rewiring based on whole-genome predictions in S. 

pombe. (A) Points in the scatter plot each represent groups of between two and 22 

genes whose protein products are in the same protein complex (section 2.8.3). Darker 
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color represents complexes that are predicted to have significant rewiring. Generally, 

genes in complexes that fall on the diagonal are predicted to have conserved degrees, 

while those that fall off-diagonal show evidence for large degree differences between the 

two species. Significantly rewired complexes (at a threshold of 0.05) are labeled by their 

names. (B) To validate our predicted rewired genes, we constructed separate networks 

of co-expression relationships among genes for each yeast species, then labeled genes 

according to our rewiring designation. Only one-to-one orthologs that are nonessential in 

both species were included in the networks. Edges in the co-expression network were 

classified by whether involved genes were both rewired, only one was rewired, or neither 

was rewired. We then calculated fractions of conserved co-expression relationships 

between species within each of these classes. (C) There is a clear relationship between 

these classes of edges and their conservation across the two yeast species. For rewiring 

at four levels of magnitude, we counted the number of conserved edges (among all 

edges in the union of the two networks). A conserved edge appears in the networks of 

both species and a non-conserved edge appears in exactly one. The magnitude of 

rewiring increases along the x-axis for the rewired class (differences of >30, >55, >80, 

>105 interactions), but the non-rewired class is defined as the set of ortholog pairs with 

less than a 30-edge difference in degree. Edges in the two rewired classes consistently 

showed significantly lower levels of conservation than edges in the non-rewired class (p 

< 0.01, Fisher’s exact test). Error bars show the binomial proportion 95% confidence 

interval. The dashed line is the expected rate of conservation if edges are randomized in 

one of the co-expression networks. There are 12472 edges among 509 genes in the 

conserved-conserved network. Numbers of edges and genes at rewiring thresholds, in 

bold, are as follows, where the conserved-rewired case is given as the first pair and the 

rewired-rewired case is given second: 30: (14532, 832), (4684, 323) 55: (8730, 695), 

(1659, 186) 80: (5358, 620), (644, 111) 105: (2822, 565), (176, 56). 

 

 However, we also identified many examples of possible rewiring, in which a 

significant difference in network connectivity, observed in S. cerevisiae and inferred in S. 

pombe, was found for orthologous modules (Figure 2.4A; Figure A2.3; section 2.8.3). 

These predicted rewired groups represent complexes or biological processes that may 

have evolutionarily diverged in terms of their importance in the genetic interaction 

network, acting as hubs in one species but not in the other. In particular, we found that 



 

 42 

11 of 65 (17%) protein complexes and 44 of 545 (8%) GO biological processes may 

have undergone significant rewiring (Figure 2.4A; Figure A2.3) at a level of significance 

expected to identify only 3 and 27 (5%) rewired modules, respectively. For example, 

components of the dynactin complex are hub genes in the S. cerevisiae genetic 

interaction network (complex average of 85th percentile; Figure 2.4A) whereas the 

orthologous genes were predicted to exhibit average connectivity in the S. pombe 

genetic interaction network (complex average of approximately 50th percentile; Figure 

2.4A). Dynactin, a multi-subunit protein complex known for interacting with dynein and 

enabling long-range movement along microtubules (reviewed in Schroer, 2004), has 

been implicated in a S. cerevisiae cell cycle checkpoint pathway that arrests cell cycle 

progression in response to perturbations in cell wall synthesis (Suzuki et al., 2004). A 

similar checkpoint has not been reported in S. pombe, suggesting that the difference in 

the number of genetic interactions observed across species may reflect a dynactin-

specific role in monitoring S. cerevisiae cell wall integrity. 

 In addition to S. cerevisiae-specific genetic interaction hubs, we also identified 

gene groups predicted to be hubs in the S. pombe network but not observed as such in 

the S. cerevisiae genetic network. One such case is the calcineurin-associated protein 

complex (Figure 2.4A). A difference in network connectivity might reflect a unique role 

for calcineurin in the regulation of bi-polar growth activation in S. pombe (Kume et al., 

2011). Unlike an S. cerevisiae cell, which grows predominantly via an actin-dependent 

budding mechanism, an S. pombe cell grows in a highly polarized bi-polar manner from 

its two ends. Following cell division, cell growth is initiated from the old end first, and 

later, after completion of S phase, from the newer end that forms at the site of cell 

septation (referred to as new end take off, or NETO). Calcineurin has been shown to 

play an important role in the delay of NETO by directly dephosphorylating critical targets 

involved in microtubule dynamics at the site of cell growth. This mechanism is 

dependent on activation of Cds1 kinase, best known for its role in the intra-S phase DNA 

replication checkpoint (Boddy, 1998). A connection between the intra-S phase 

checkpoint and inhibition of bipolar growth activation is so far unique to S. pombe and 

distinct from the checkpoint controls operating in S. cerevisiae. Additionally, calcineurin 

is dispensable for growth in S. cerevisiae (Sugiura et al., 2001); in S. pombe, its deletion 

leads to defects in cell growth, cytokinesis, cell polarity, mating, and spindle pole body 
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positioning, which are widespread effects consistent with its hub-like activity (Yoshida et 

al., 1994). 

 While our method of identifying rewired modules reports several statistically 

significant differences, we note two caveats in interpreting these results. First, since 

degrees of genes within functional modules may be systematically poorly predicted, our 

procedure may incorrectly identify modules as significantly rewired in cases where our 

test statistic would also have indicated that the within-species difference between 

predicted and observed degree was significant. Therefore as a control, a version of this 

rewiring experiment that compares observed and predicted S. cerevisiae degrees will 

enable identification of cases that do not reflect true cross-species rewiring (Figure 

A2.4A, B). Second, due to variations in the experimental protocol for measuring genetic 

interactions, there are differences in the media on which fitness defects were measured 

in S. cerevisiae and S. pombe, which may also contribute to apparent rewiring 

(Baryshnikova et al., 2010a). 

 Functional properties of genes can be captured by many types of biological 

networks, so we turned to an independent dataset for confirmation of our rewiring 

predictions. To enable a comparative analysis of gene expression profiles across the two 

yeasts, we constructed a species-specific S. pombe co-expression network using a 

previously published approach (Huttenhower et al., 2006) and large collections of 

publicly available expression data (section 2.8.4), and obtained a previously published S. 

cerevisiae network (Myers et al., 2005). Each species’s network contained 832 genes 

that are one-to-one orthologs between the two yeasts and connected genes are those 

pairs that have high co-expression values surpassing a threshold of the 95th percentile. 

At our selected density of 0.05, there are approximately 17,000 edges in each network. 

In general, we found evidence of conservation between the S. cerevisiae and S. pombe 

networks: co-expression edges between two genes occurred in both networks for 9.2% 

of the gene pairs that were co-expressed in at least one network. This is about twice the 

background conservation rate of approximately 4.3%, as determined through 

comparison to a randomized network produced by a degree-preserving procedure. 

 To explore the connection between genes predicted to be rewired in the genetic 

interaction networks and differences between the co-expression networks, rewiring 

predictions were overlaid on the co-expression networks. Specifically, all nonessential 

one-to-one orthologs were classified as either rewired or non-rewired based on our 



 

 44 

prediction of genetic interaction degree (Figure 2.4B). Using this rewiring labeling, we 

measured the conservation rate of three types of co-expression edges: co-expression 

edges connecting two non-rewired genes, connecting two rewired genes, and 

connecting rewired to non-rewired genes. 

 We found that co-expression edges involving predicted rewired genes are 

consistently less-conserved than edges with exclusively non-rewired endpoints (Figure 

2.4C), a trend that is robust over different co-expression thresholds used for network 

sparsification (Figure A2.5). For example, when genes whose degrees differ by 55 

interactions or more are considered rewired, 6.9% of the co-expression relationships 

connecting rewired genes are conserved (107 of 1,659), in contrast to the significantly 

higher 10.1% of co-expression relationships that are conserved between non-rewired 

genes (1,238 of 12,472, Fisher’s exact test  p < 10-6). This trend grows stronger when 

considering genes that were predicted to have even larger differences between S. 

pombe and S. cerevisiae. This analysis independently confirms predictions of highly 

rewired genes between the two species and suggests that changes at the level of gene 

expression regulation are at least one mechanistic factor that contributes to these 

differences.  

 

2.7 Conclusions 

 Although individual interactions and gene-specific properties may not be strongly 

conserved between species, our findings suggest that these properties influence genetic 

interaction networks in a similar manner. For example, while the genes important for 

normal growth may vary, the relationship between a gene’s fitness contribution and the 

genetic interactions it exhibits appears to be conserved. Indeed, models trained on both 

S. cerevisiae- and S. pombe-derived gene properties were significantly predictive of 

cross-species genetic interaction degree (Figure 2.2C), suggesting that the general 

principles governing genetic interaction network structure are retained through evolution. 

Thus, a complete genetic interaction network for an organism such as S. cerevisiae 

should serve as a reference network to guide studies to uncover genetic interactions in 

more complex systems. Predicting specific pairwise interactions across species is of 

course the next (more difficult) challenge, but models that can accurately predict the 

variation in number of interactions across the genome provide a foundation for cross-



 

 45 

species interaction analysis. Our results also demonstrate that integrative comparisons 

leveraging multiple functional genomic datasets across species may be one approach to 

build confidence in differential network analysis. As more data become available, both 

the extent and nature of network conservation should reveal how functional conservation 

and divergence can be recognized and utilized in distantly related species. 

 

2.8 Methods 

2.8.1  Models and evaluation  

 Our models are bagged regression trees that use the 16 features described in 

section A2.2. Breiman (Breiman, 1996) suggests that using an ensemble of only 25 

classifiers can result in nearly all improvement gains that bagging can produce over a 

single classifier; however, we used 100 trees because the computation required in 

training is relatively low and we were interested in analyzing the tree structures. 

Individual trees were trained by MATLAB’s classregtree function, which minimizes node 

impurity according to mean squared error. For each tree, a bootstrap sample was used 

to select, with replacement, a set of training genes the same size as the set of total 

genes (therefore each tree is trained on approximately 63.2% of all genes) and held out 

genes. The final prediction for a single gene of the species used to train the model (that 

is, the within-species prediction) is the median of all predictions from trees for which the 

gene was not in the training set. The final prediction for a gene of the species not used 

to train the model (that is, the cross-species prediction) is the median of all predictions 

from all trees. 

 To assess the performance of the model, we calculated the Pearson correlation 

coefficient between predicted and actual degrees of genes with known degrees. To 

estimate stability of performance, we repeated the model construction and evaluation 25 

times and reported predictive ability as the mean Pearson correlation coefficient and its 

standard deviation across all 25 repetitions for within- and cross-species cases (Figure 

2.2C). 
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2.8.2  S. pombe genetic interaction screens 

 Eight whole-genome S. pombe genetic interaction screens were completed using 

the method described in (Dixon et al., 2008). The query strains were deletion mutants for 

each of the following genes: SPCC1682.08c, SPBC21D10.12, SPBC13E7.09, 

SPAC4G8.13c, SPAC3A11.13, SPAC27D7.13c, SPAC22F3.09c, and SPAC16A10.07c. 

The resulting double mutant colonies were processed as described in (Baryshnikova et 

al., 2010b). Negative interactions were derived from the scores by applying an 

interaction cutoff of <= -0.08 and P-value cutoff of < 0.05. Degree measurements were 

then derived for all nonessential genes by counting the number of significant interactions 

across the set of eight queries. Significant correlation with the predicted degrees was 

also observed when a stricter cutoff was applied (interaction score <= -0.12, P-value < 

0.05 yielded a correlation r = 0.41, P-value < 10-117). 

 

2.8.3  Rewiring groups and significance assessment 

 To make comparisons between degrees of orthologs in the genetic interaction 

networks of the two yeast species, we considered genetic interaction degree to be 

predicted percentile for all S. pombe genes, while percentiles of actual degrees were 

used for S. cerevisiae. 

 To search for groups of functionally related genes that have been rewired since 

the divergence of S. pombe and S. cerevisiae, we defined gene groups in two ways. The 

first simply grouped genes whose protein products form a complex in a set of complexes 

defined in (Baryshnikova et al., 2010b). The number of proteins per complex ranges 

from 2 to 81, with the vast majority having six or fewer proteins. 

 The second method for making sets of functionally related genes grouped genes 

that share a biological process GO term annotation (Ashburner et al., 2000). We 

considered GO terms that are annotated to greater than 3 and fewer than 50 genes in 

either of the two species. Additionally, a group of S. cerevisiae genes was required to 

have a minimum number of two genes with known genetic interaction degrees; a group 

of S. pombe genes was required to have a minimum of two genes with known fitness 

defect. Since GO terms tend to be highly redundant, we filtered gene groups so that no 

pair of groups overlapped by more than 50% of either group’s genes. 
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 To determine orthologous pairs of groups that have significantly different average 

degrees, we calculated the difference between the median degrees of genes in each 

species’s group, and then compared the differences to a distribution of differences 

produced from randomly grouped genes. We generated this background by creating 

groups of randomly selected genes in one species, then identifying orthologous groups 

in the other species composed of the selected genes’ orthologs. A query gene-group 

pair was compared to a background containing only random gene-group pairs whose 

group sizes were identical to the query groups. For example, a protein complex of five 

individual S. cerevisiae proteins may contain four genes that have S. pombe orthologs; 

this query gene-group pair would be compared with a background of groups with five 

random S. cerevisiae genes matched with a group of four of their S. pombe orthologs. 

 

2.8.4  Comparative analysis of co-expression networks 

 To independently validate genetic interaction degree differences across species, 

we performed a comparative analysis of co-expression networks of the S. cerevisiae and 

S. pombe genes. The S. cerevisiae network was previously published (Huttenhower et 

al., 2006) and is based on integration of a large collection of expression datasets. To 

construct the S. pombe network, data from nine expression studies were collected from 

the GEO database (Barrett et al., 2011). Genes with missing values for more than 30% 

of the samples were removed, and the remaining missing values in each dataset were 

imputed using KNNImpute (Troyanskaya et al., 2001). Datasets reflecting probe 

intensities (rather than relative ratios) were log-transformed. After processing, the nine 

S. pombe expression datasets were integrated as described in (Huttenhower et al., 

2006; Huttenhower et al., 2008). The naïve Bayes approach for dataset integration 

requires a gold standard set of positives, for which we used direct gene co-annotation to 

any term in the GO that contained between 2 and 100 genes. S. pombe gene 

annotations were downloaded from the GO website (Ashburner et al., 2000; The Gene 

Ontology Consortium, 2012) in May 2011. All analysis and integration of expression data 

were completed using the Sleipnir library (Huttenhower et al., 2008). 

 We applied a 95th percentile cutoff to edges in both the S. cerevisiae and S. 

pombe co-expression networks, such that only the highest scoring 5% of edges were 

retained. 
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 To estimate the overlap between the S. cerevisiae and S. pombe networks in the 

absence of biological conservation, we randomized the edges of the S. cerevisiae 

network and considered the background conservation to be the overlap between this 

randomized network and the S. pombe network. The randomizing procedure repeatedly 

chose two random edges that do not share an endpoint and exchanged an endpoint of 

one edge with an endpoint of the other edge, thus maintaining the degrees of genes in 

the network. The number of endpoint swaps performed was 20 times the number of 

edges in the network, which is a sufficient number of swaps to remove the original 

relationships between genes. 

  



 

 49 

Chapter 3: Functional annotation of genes with network 
modules 

3.1 Chapter overview 

 Biological networks, including GI, PPI, and co-expression networks, are 

frequently used to assign functions to genes. This often involves identifying network 

clusters that represent functional modules. Previous work has been successful in 

identifying functional modules, which demonstrates quality of data sets and the validity of 

using cluster membership to annotate genes. However, many of the most popular 

clustering methods treat module detection as a single problem with a global solution that 

describes a data set by breaking it into largely distinct components. This ignores the very 

common phenomenon of pleiotropy, in which a gene is involved in many functions. 

 In this chapter, we describe a gene-centric method to create functional profiles of 

genes based on their genetic interactions. Because modules have been shown to not 

only be a dominant feature of GI network topology but also directly correspond to 

functional processes of the cell, we opt to first extract modules from the GI network, and 

then characterize genes by their containing modules. We use biclusters discovered 

through frequent item set mining because they provide highly significant modular context 

to nearly all interactions in the GI network 

 The main components of our strategy to define a functional profile include a 

systematic method for selecting biclusters that represent the functions of each strain in 

the yeast negative genetic interaction network (Costanzo et al., 2016) and annotation of 

biclusters with high-level functional processes to summarize each gene’s participation in 

different aspects of cell biology. The most salient functions in the gene functional profiles 

closely matched gold-standard annotations of the genes, demonstrating the accuracy 

with which they capture functions. But because these functional profiles are much more 

complete than previous annotation sets, they can be used for assessing gene pleiotropy, 

an application that is discussed in Chapter 4. 

 Raamesh Deshpande and Jeremy Bellay provided helpful code used in the 

application of XMOD. All other aspects of analysis were performed by the author of this 

dissertation. The work presented in this chapter builds on some ideas suggested in 

Bellay et al. (2011a). 
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3.2 Background 

3.2.1  Popular methods of identifying clusters in biological networks 

 Community detection in networks is a highly studied area and there are many 

algorithms designed for general network cluster detection. Cluster analysis applied to 

PPI networks generally aims to identify dense subnetworks under the expectation that 

most will represent protein complexes or tight functional modules. To this end, many 

clustering algorithms calculate local densities of neighborhoods (Brohée and van 

Helden, 2006; Shih and Parthasarathy, 2012). MCODE (Bader and Hogue, 2003), for 

example, identifies areas of high density by seeding all clusters with the nodes that have 

the highest clustering coefficient when considering only neighbors with degrees high 

enough to meet a pre-determined threshold. Markov clustering (MCL)(Van Dongen, 

2001) is a particularly popular method that forms clusters through simulating random 

walks. This algorithm alternately calculates random walk distributions from every node, 

updating the network by formation of new connections between nodes, and strengthens 

links within well-connected groups of nodes. The outcome of this iterative process is a 

set of prominent nodes that are each connected to a set of nodes that have no other 

connections; each of these star-shaped components defines a cluster.  

 The accuracy of these methods is typically measured by comparison to gold-

standard sets of complexes or to GO terms, which allows authors to design algorithms 

with a practical balance between precision and recall. This often results in low coverage 

of network nodes by the clusters: Shih and Parthasarathy (2012) reported node 

coverage by clusters from 15 different algorithms in three PPI networks and the large 

majority of clustering results covered under 70% of nodes, many covering less than 

50%. Low node coverage indicates that these clusters are not representative of a large 

fraction of the genome.  

 Clustering of gene expression profiles is performed to identify sets of co-

expressed genes. Some clustering methods treat each profile as a high-dimensional 

data item; other algorithms operate solely on profile similarities, which amounts to 

clustering the co-expression networks. Co-expression gene clusters are usually not 

measured against a gold standard set of modules, but are evaluated by traditional, more 

generic metrics that compare similarity of genes clustered together to the similarity of 

genes assigned to different clusters. Two popular, and illustrative, algorithms for co-
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expression clustering are CLICK and c-means. CLICK (Sharan and Shamir, 2000) is a 

divisive algorithm that makes minimum-weight cuts on a weighted graph (derived from a 

profile similarity network), splitting connected components until each is expected to 

contain only nodes that are part of the same cluster. In between multiple rounds of 

divisive cluster formation, any non-clustered nodes are used to expand the clusters by 

comparing original profiles to profiles that have been calculated for the clusters. The 

fuzzy c-means (FCM) algorithm (Bezdek, 1981; Dunn, 1973), has also been applied and 

further developed for discovery of co-expression clusters (Gasch and Eisen, 2002; Maji 

and Paul, 2013). FCM is similar to the k-means algorithm, but allows items (e.g. profiles) 

to belong to multiple clusters with partial membership. The output is a so-called fuzzy 

partition, in which each item is associated with a membership weight for each cluster, 

such that all weights sum to one. Given the memberships of all items to all clusters, a 

cluster’s centroid can be calculated as a weighted combination of all items. After 

initiation of a specified number of random profiles as the cluster centroids, FCM 

iteratively determines each item’s cluster memberships and updates the centroids 

according to the new membership. 

 Many authors have dwelled on general topological properties that are common to 

diverse types of networks (Barabasi and Oltvai, 2004; Clauset et al., 2008), including 

genetic interaction networks (Tong et al., 2004), such as hierarchical modularity and 

power-law-like degree distributions. They suggest that one clustering scheme should 

work well for all these networks (Clauset et al., 2008; Girvan and Newman, 2002; Palla 

et al., 2005). However these topological statistics are superficial: modular structures in 

GI networks often follow the distinct patterns of the within- and between-pathway 

models. Thus it is unlikely that algorithms designed to find organic and sprawling 

modules in PPI networks or expansive co-expression modules will be able to home in on 

typical GI structures. Despite this, few targeted module-detection algorithms have been 

applied to large GI networks. By far, the most common practice in analyzing GI network 

clusters is applying hierarchical clustering to both sides of the network’s matrix 

representation and manually browsing the clustered matrix. Hierarchical clustering, 

formulated as an agglomerative algorithm, starts by treating individual GI profiles as 

clusters and iteratively merges the two most similar clusters, as determined with a profile 

similarity metric and a method of comparing two clusters. For example, Pearson’s 

correlation coefficient (PCC) is often used to compare gene profiles and two sets 
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(clusters) of profiles may be compared by calculating the maximum PCC of all pairwise 

profile comparisons between the two clusters. Clusters are merged until all profiles have 

been joined in a single top-level cluster. In the next section, we discuss how hierarchical 

clustering methods have been specifically applied to GI networks. However, afterwards, 

in section 3.2.3, we introduce a method that is able to effectively capture the network 

structures that are most common among genetic interactions. 

 

3.2.2  Systematically annotating genes with clusters 

 The application of network clustering does not always have modules as an end-

goal. Module discovery may be used to find functional information about specific genes. 

Two recent publications argue that the topologies of large-scale biological networks are 

so rich that systematically derived clusters should be used to assign data-driven 

annotations to genes. The tool NeXO (Dutkowski et al., 2013) builds an ontology based 

on a hierarchical clustering dendrogram, while SAFE (Baryshnikova, 2016) uses the 

spatial layout of a network to locate modules in overlaid data. While both methods make 

substantial use of GO terms, they are driven by network structure and the resulting 

annotations are un-biased, or less biased than GO, and able to suggest functions for all 

genes in the network, including completely uncharacterized genes. They also reiterate 

curated information, from specific modules to the hierarchical organizations of modules. 

For example, NeXO was applied to a combination of yeast biological networks and 

identified 60% of GO cellular compartment terms in addition to hundreds of modules that 

did not map to any GO term. 

 Although somewhat successful in their goal of automatic gene annotation, NeXO 

and SAFE fail to represent pleiotropy of genes, a property that has been long-recognized 

to be common and is well-represented in GO. NeXO is reliant on global similarities of 

network profiles and assigns each network node to only one set of close neighbors. 

Similarly, the SAFE publication highlights global profile correlations as an ideal data type 

to use. Further, SAFE constrains network nodes to appear in one location in a network 

layout that determines which nodes will be grouped during statistical analysis; this could 

cause a multifunctional node to be located in between multiple modules that all 

represent its true functions, but outside of the statistically enriched areas for all the 

modules. In these ways, both methods strongly emphasize a one-node-one-function 
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assumption. This assumption is also common in network clustering algorithms that 

identify dense subnetworks: the vast majority are not local because they nearly always 

attempt to optimize the entire set of clusters found, likely including some clusters at the 

expense of others (e.g. clusters emerge simultaneously as algorithms perform iterative 

updates affecting many memberships in FCM, MCL, etc., or try to optimize an objective 

function explicitly as in FCM). From another perspective, most algorithms only produce 

disjoint clusters (e.g. MCL, CLICK) or only allow overlapping clusters in a restricted 

manner (e.g. fuzzy c-means allows multiple memberships by decreasing membership 

weights, MCODE). The requirement of disjoint clusters precludes the ideal identification 

of a cluster containing a gene that has partial profile similarity with genes that are in 

separate clusters. 

 

3.2.3  Biclusters  

 Biclustering is a type of module discovery in which groups of genes are assessed 

for local, as opposed to global, similarity (Hartigan, 1972). Given a matrix representation 

of a data set, a bicluster is composed of a subset of rows paired with a subset of 

columns. For example, biclustering methods have been actively developed for 

identification of co-expressed genes. In this context, a bicluster groups genes that have 

similar expression patterns over some, but not all, of the experiments or time points. 

Genes that are members of multiple regulatory groups may fall into two or more 

biclusters that each represents a different subset of data samples. Ideal solutions to the 

problem of discovering coherent biclusters in real-valued data, like expression data, are 

infeasible because they would require solutions to NP-hard problems, such as finding a 

maximum weighted subgraph of a bipartite graph or covering a bipartite graph with a 

minimum set of bicliques (Cheng and Church, 2000; Tanay et al., 2002). Additionally, 

different data sets and applications required discovery of different types of patterns, like 

genes with expression patterns that scale with each other or expression that is constant 

throughout the bicluster. These two challenges motivated the development of a large 

variety of algorithms. The first application of biclustering to expression data used a 

greedy approach that begins with the entire data matrix and removes rows and columns 

to produce a bicluster meeting a consistency threshold (Cheng and Church, 2000). 

Another used a combinatorial search for a heavy subgraph of the gene-condition 
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bipartite graph (Tanay et al., 2002). Still another approach used Gibbs sampling to 

model the expression patterns of biclusters and determine gene and condition 

membership (Sheng et al., 2003). Many algorithms initialize a random bicluster and 

perform a local search that considers additions and removals of rows and columns that 

may improve the consistency of the expression patterns in the bicluster (Bergmann et 

al., 2003; Ihmels et al., 2002; Reiss et al., 2006). As the number of algorithms expanded, 

researchers continued creating variations that were more efficient and more inclusive of 

expression patterns. While the algorithms designed for expression data could be applied 

to genetic interactions, they generally do not provide any guarantees about the 

completeness of the discovered biclusters, tend to emphasize large structures, and 

avoid overlap of clusters. For these reasons, most biclustering algorithms are not ideal 

for genetic interactions. 

 Bellay et al. (2011a) made the observation that the between- and within-pathway 

models of genetic interactions will be captured precisely by bicluster structures. In a 

genetic interaction network, a bicluster can be described as a set of genes (or more 

precisely, strains) that, as a group, show dense interactions with a second set of genes 

(strains). While the two subsets of genes are experimentally distinguishable (e.g. query 

and array strains in SGA), the interpretation of each side of a bicluster is the same—a 

functional module. The Bellay et al. (2011a) study discovered biclusters using frequent 

item set mining, which is guaranteed to find all possible biclusters with complete density 

in a binary network. The exhaustive nature of the method proved highly useful, as the 

authors were able to draw relatively definitive conclusions about the frequency of the GI 

pathway models that are composed of negative or positive interactions. Importantly, they 

found that biclusters covered over half of the negative interactions in the GI network. 

This indicates that exhaustive biclusters are an ideal data set to help characterize not 

just modules, but the multiple functions of individual genes, and therefore are an ideal 

basis for functional profiles. 

 

3.2.4  Frequent item set mining 

General description 

 Frequent item set mining is a method to discover repeated co-occurrences of 

items in a large collection of sets of items. Although there are many diverse applications 
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of frequent item set mining, this field of data mining was originally developed to analyze 

consumer purchases from a store, and consequently, some terminology reflects this type 

of data. The set of all items that appear in the database to be analyzed is the item base 

𝐵 =  {𝑖1, … , 𝑖𝑛}, which may be, for example, all the products a store sells. Any subset of 

the item base is called an item set. The database 𝑇 = {𝑡1, … , 𝑡𝑚} is composed of many 

item sets, termed transactions. Consistent with the idea that a single customer with a 

specific set of needs bought items as one purchase, the items in a transaction are 

suspected to have some underlying connection. Further, items that appear together in 

many transactions may have an important connection that warrants labeling them as an 

interesting group. Given the transaction database 𝑇, the support of an item set, 𝑠𝑇(𝐼), is 

the number of transactions that contain the item set. Any item set with support meeting a 

user-defined minimum support threshold is called a frequent item set, and the discovery 

of such sets is the goal of frequent item set mining. 

 Although the data description and the following algorithm description are 

asymmetric, there is no required inherent difference between items and the mechanism 

that groups items into transactions, such as a customer. Any two dimensional, binary 

data set can be used, and this includes networks. In analyzing the genetic interaction 

network, items are genes (e.g. drawn from the network columns) and each transaction is 

the set of genes that interact with a single gene (e.g. drawn from the network rows). 

 Because there are 2𝑛 item sets in 𝐵 and it is neither efficient nor necessary to 

calculate support for all of them, frequent item set mining algorithms define the search 

space carefully. The support of any item set 𝐽 ⊆ 𝐵 cannot exceed the support of any 

subset 𝐼 ⊆ 𝐽, i.e. 𝑠𝑇(𝐽) ≤ 𝑠𝑇(𝐼). Therefore, if an upper bound is determined for the 

support of 𝐼, that bound will apply to 𝐽 as well. Incorporating the minimum support into 

this idea, we have the Apriori property: 

∀𝐼 ⊆ 𝐽 ⊆ 𝐵: 𝑠𝑇(𝐼) < 𝑠𝑚𝑖𝑛 ⟶ 𝑠𝑇(𝐽) < 𝑠𝑚𝑖𝑛, 

which states that a superset of an infrequent item set cannot be frequent. This property 

forms the basis for an efficient algorithm by defining where the search space may be 

pruned. 

 Given the relationship between an item set and its subsets, a natural method of 

exploring the search space begins with the smallest item sets and works its way through 

larger sets, only calculating the support of a larger set if all subsets are known to be 
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frequent. The enumeration of the subsets of B therefore can be structured as a prefix 

tree, which requires items to be ordered and represents item sets as sequences that are 

uniquely defined by a path from the root to a leaf (Figure 3.1A). The root of the prefix 

tree represents the empty set and each edge signifies the addition of an item. The edges 

follow the constraint that any path through the tree must only add items in order. This 

defines a one-to-one mapping between item sets and sequences, preventing a set from 

being generated more than once. 

 

 

Figure 3.1. Diagrams of trees used for set enumeration. (A) The complete prefix tree 

for the item base {a,b,c,d,e}. (B) The recursive subproblems defined for any position in 

the prefix tree. (C) Some of the top-most recursive subproblems for the item base 

{a,b,c,d,e} displayed on the prefix tree. In B and C, the subproblem definitions overlap 

exactly the edges leading to nodes whose associated prefix will be explored by the 

specified subproblems. 
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The Eclat algorithm 

 The Eclat algorithm (Zaki et al., 1997) defines a recursive procedure that 

incrementally extends frequent item sets with a given set of available items, reporting 

new frequent item sets as they are discovered. A single recursive call sets up a divide-

and-conquer strategy, creating two subproblems based on an initial item set and an item 

𝑖 that may be used to extend the initial item set. The first subproblem discovers all 

frequent item sets that include item 𝑖 and the second subproblem discovers all frequent 

item sets that do not include item 𝑖. This strategy is a depth-first exploration of the prefix 

tree described above. To give a formal explanation of Eclat, we trace a path through the 

prefix tree while accounting for the operations that maintain an efficient database.  

 A subproblem 𝑆, which is solved at each node of the prefix tree, is expressed by 

its two associated inputs as 𝑆 = (𝑃, 𝐶), where 𝑃 is a prefix item set and 𝐶 is a conditional 

transaction database. 𝑃 is a frequent item set and will be added to every frequent item 

set subsequently found; it corresponds to a unique position in the prefix tree. The 

database 𝐶 contains only the transactions that include 𝑃 and items that have not been 

investigated. The transaction database is organized by associating each item with a list 

of all transactions that contain it. These lists, called transaction ID (TID) lists, enable 

efficient modifications to 𝐶 that mirror the depth-first traversal of the prefix tree. The initial 

inputs for finding all frequent item sets in the transaction set 𝑇 are 𝑃 = {}, which 

corresponds to the root of the prefix tree, and 𝐶 = 𝑇, in which all transactions trivially 

contain 𝑃. An example relating subproblem definitions to the prefix tree is in Figure 3.1C. 

 The evaluation of each subproblem, 𝑆0 = (𝑃0, 𝐶0), creates two further 

subproblems, 𝑆1 and 𝑆2, based on an item 𝑖 that may be used to extend the item set 𝑃0. 

This is depicted in Figure 3.1B. It first selects and removes item 𝑖 ∈  𝐵0, which is the set 

of items contained in 𝐶0. Next, it determines if 𝑃0 ∪ {𝑖} is a frequent item set. Because all 

transactions in the conditional database contain 𝑃0, the support of 𝑃0 ∪ {𝑖} is equal to the 

support of item 𝑖 in 𝐶0, which is easily determined from the size of 𝑖’s TID list. If 𝑖 is not 

frequent in 𝐶0, the Apriori principle states that no extension of 𝑃0 ∪ {𝑖} will be frequent 

and all branches of the associated node in the prefix tree can be eliminated from the 

search space. 

 If 𝑖 is frequent in 𝐶0, then its supersets must be explored and the subproblem 

𝑆1 = (𝑃1, 𝐶1) is created to do so using the new prefix 𝑃1 = 𝑃0 ∪ {𝑖}. The new conditional 
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transaction database 𝐶1will include only the data needed to evaluate supersets of 𝑃1 and 

is efficiently derived from 𝐶0: to limit the transactions to those that include 𝑃1, the TID 

lists for all items are intersected with item 𝑖's TID list. The TID list for item 𝑖 can now be 

removed because, as with all other items in the prefix 𝑃1, item 𝑖 is guaranteed to be in all 

transactions in 𝐶1.   

 Evaluation of the second subproblem of 𝑆0, 𝑆2 = (𝑃2, 𝐶2), discovers all frequent 

item sets that do not include item 𝑖, but are supersets of 𝑃0. The subproblem therefore 

encompasses all branches of 𝑃0’s prefix tree node other than the one associated with 

item 𝑖 (Figure 3.1B and C). Reflecting the omission of item 𝑖, the prefix 𝑃2 is set to 𝑃0 and 

item 𝑖's TID list is removed from 𝐶0 to create 𝐶2. If 𝐶2 is not empty, the subproblem 𝑆2 is 

completed by a recursive call. If it is empty, then there are no further extensions of 𝑃0 

that are frequent and no recursive call is made. 

 

Filtering frequent item set results 

 A perennial problem in frequent item set mining is that frequent item sets typically 

overlap considerably as a result of noise. The simplest case is when a frequent item set 

is a subset of another frequent item set and both have the same support, which implies 

that both are supported by the same set of transactions. There is no information 

contained in the smaller set that isn’t also in the larger set, so the smaller can be safely 

discarded. More formally, only an item set that cannot be extended without decreasing 

its support needs to be kept; such a frequent item set is called closed. For every 

frequent item set, there is exactly one superset that is closed. Many applications that use 

an asymmetric interpretation of the data (i.e. frequent item sets are of more interest than 

groups of transactions) filter the frequent item sets for those that are as large as 

possible, called maximal item sets, and extension by any item would yield a non-

frequent item set. To generate the set of all maximal item sets, any frequent item set for 

which a superset is also frequent can be discarded. One of these two methods of 

filtering frequent item sets is nearly always performed, yet for large data sets, they are 

usually not sufficient to produce few enough results for manual inspection or to produce 

item sets that are meaningfully distinct enough to summarize statistically. Thus further 

limitations to the frequent item sets are applied. 
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 In the method we developed, described below, a heuristic is used to determine 

biclusters that are most likely to represent functional modules. By discarding some 

overlapping biclusters, we are left with a set that are likely to represent distinct functional 

modules. 

 

3.3 Procedure for identifying GI biclusters 

3.3.1  Bicluster discovery using frequent item set mining 

 Our first task in creating a functional profile for every yeast gene was identifying 

functional modules composed of negative genetic interactions. We opted to search for 

biclusters with frequent item set mining based on two benefits: first, there is no limit on 

the number of biclusters a gene can have membership in and, second, frequent item set 

mining is exhaustive, finding all possible dense bipartite structures in a network. Within 

an SGA-derived GI network, a bicluster takes the form of one set of query strains and 

one set of array strains, with interactions occurring between all query-array pairs; this 

structure is a complete bipartite subgraph in the network. 

 To apply frequent item set mining to the negative interactions in the most recent 

yeast genetic interaction network (Costanzo et al., 2016), we used the XMOD procedure, 

which was developed by Bellay et al. (2011a) to determine the statistical significance of 

biclusters. In this method, each bicluster is assigned a p-value, calculated by a 

comparison to biclusters mined from ten randomized versions of the network that 

preserve the degree distribution of the original network. Specifically, all biclusters are 

assigned a score that represents the likelihood of all their contained interactions 

occurring if genes interacted randomly, conditioned on the genes’ interaction degrees. 

Then, the scores of the random biclusters are used as a null distribution to assign p-

values to the real biclusters, which are expected to have lower scores due to non-

random gene associations. Biclusters with p-values higher than a chosen significance 

level are discarded.  

 A number of steps were taken to prepare the GI network for bicluster discovery. 

The network from Costanzo et al. (2016) is actually composed of two distinct data sets: 

the TSA (temperature sensitive array) and DMA (deletion mutant array) networks. Each 

was handled separately and identically. Because frequent item set mining requires 
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binary input, we took the preliminary step of binarizing the networks by defining 

interacting strains as pairs with significant SGA genetic interaction scores less than or 

equal to -0.08, according to an established intermediate cutoff. We additionally added 

self interactions to the network, so that a strain could occur on both sides of a bicluster; 

this would be expected in the case of a set of genes all interacting with each other, and 

self interactions are trivial functional relationships. 

 Next, we accounted for the fact that some yeast genes are associated with 

multiple strains. The set of queries in each GI network includes mutant strains with 

DaMP and temperature-sensitive alleles of essential genes, often with multiple alleles of 

a single gene. Due to the biased multiplicity of many essential genes within the set of 

query strains, bicluster datasets generated from the complete data set may be 

uninteresting or difficult to interpret because bicluster significance would be driven by the 

highly correlated profiles of alleles of the same gene. To overcome this problem, we 

produced replicates of the binary networks, with each replicate containing one randomly 

selected allele for each gene. Using many replicate networks yields good representation 

of different alleles and allows different combinations of alleles to be chosen. In all, 15 

replicates of each of the DMA and TSA GI network were created. 

 

 

Figure 3.2. Application of XMOD to one SGA genetic interaction network. Each 

replicate contains one randomly chosen strain for each gene and is individually mined 

for biclusters. Each bicluster contains a set of query strains and a set of array strains. 
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 Figure 3.2 depicts bicluster discovery for one SGA network: network replicates 

were input to separate runs of frequent item set mining and XMOD. All frequent item set 

mining described here was performed using an implementation of the Eclat algorithm 

(Zaki et al., 1997) by Christian Borgelt, which is available at 

http://www.borgelt.net/eclat.html, using the “-tc” option to report only closed item sets. A 

single test run on the DMA network yielded over 37 million biclusters with a size of at 

least four query strains and four array strains. Based on the observation that biclusters 

with sizes 4x4, 4x5, and 5x4 make up ∼38% of discovered biclusters, yet only ∼2.7% of 

these are significant at a p-value threshold of 10-4 (Figure 3.3), we used the Eclat option 

to remove from the results all biclusters of these three mentioned sizes and those with 

either dimension smaller than four in order to reduce memory usage in XMOD; the Eclat 

option string to accomplish this is “-s-4 –m-4 -F-6-5-4”.  After eliminating these small 

biclusters, the DMA network replicates contained an average of ∼24.5 million biclusters 

and the TSA network replicates contained an average of ∼20 million biclusters. 

 

 

Figure 3.3. Percent of discovered biclusters that are significant. Axes describe the 

dimensions of the biclusters, with the number of query strains on the x-axis and the 

number of array strains on the y-axis. The red section of each pie chart shows the 

fraction of biclusters with p-values < 10-4. The size of the pie charts in (A) show the 

number of discovered biclusters for each size; (B) shows only the fraction significant. 

A B 
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These grids of pie charts are truncated; there were many biclusters with dimensions 

larger than 12. 

 

 As described in Bellay et al. (2011a) and briefly above, XMOD determines 

empirical p-values of biclusters through comparison to biclusters discovered in ten 

randomized networks. Combining biclusters from ten random networks supplies a better 

sampling of biclusters of larger dimensions than one random network could, however, 

there was an overabundance of random-network biclusters with small dimensions (e.g. 

4x6, 6x4, and 5x5). So for better speed and memory use, we randomly discarded 

biclusters to keep a maximum of two million for each size. 

 All biclusters with p-values higher than 10-4 were discarded, leaving ∼14 million 

(57%) DMA and ∼10 million (50%) TSA biclusters per network replicate. The vast 

majority of biclusters containing 30 or more interactions (e.g. 6x6, 7x5, and larger) were 

significant (Figure 3.3), since very few large biclusters were found in the randomized 

networks. 

 

3.3.2  Selection of biclusters for a non-redundant set 

 Bicluster discovery through frequent item set mining produces modules that 

overlap, i.e. a bicluster usually shares some of its interactions with other biclusters. 

While this certainly reflects reuse of genes in different cellular functions, it is also caused 

by our inability to discover larger modules that are fractured by false negatives 

(biological or technical).  Because our goal is to simply identify gene membership in 

different functional modules, it is not necessary that modules be recovered in their 

entirety. However, it is important to remove the redundancy of biclusters that reflect the 

same functional module in order to prevent over-counting the functional memberships of 

genes. We do so by making pairwise comparisons of biclusters and discarding one 

bicluster whenever a pair has too much overlap. Our application of this bicluster-removal 

process specifically aligns with our goal of creating a functional profile for every gene: 

we do not remove any biclusters globally, we make removals separately within each 

single-mutant strain’s set of containing biclusters. In this way, removal of a bicluster 

does not remove a gene’s membership in the associated functional module because an 

overlapping bicluster remains to represent the module. 
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 To remove redundancy from the sets of biclusters associated with each single-

mutant strain, we used a method described in Bellay et al. (2011a). The procedure is 

greedy and proceeds as follows. First, order all biclusters from best to worst. Then, 

select the biclusters in order and upon the selection of a bicluster, remove overlapping 

biclusters from any future consideration. We defined “overlapping” as the smaller 

bicluster having 10% or more genetic interactions in common with the larger. 

 To define the best-to-worst ordering, we determined preferences for different 

bicluster sizes, and built a size-lookup table to pick between differently sized biclusters. 

For our use, the quality of a bicluster can be measured by how well it reiterates a set of 

genes annotated by a GO term. We selected Jaccard similarity between the bicluster 

gene set and an enriched GO term as a simple statistic to measure this. Since 

calculating GO term enrichments on all bicluster gene sets would take too long, we used 

a sample of biclusters to rank bicluster sizes (expressed in two dimensions) according to 

results from Jaccard similarity analysis. First, for each bicluster size, we collected all 

biclusters up to a maximum of 10,000 and removed redundancy from this set by 

consecutively selecting biclusters in random order and removing any other bicluster from 

future selection if more than 10% of its interactions overlapped with the selected one. 

Next, statistically enriched GO terms were determined for every bicluster (using genes 

from one side) and the maximum Jaccard similarity obtained from each bicluster was 

recorded, yielding a distribution of maximum Jaccard similarities for each bicluster size. 

Finally, as a summary statistic representing likelihood of reflecting a known module, we 

kept the median Jaccard score for each bicluster size, organized as a lookup table to 

consult. This analysis was done separately for the DMA- and TSA-derived biclusters. 

 A size preference table is specific to the bicluster dataset (either TSA or DMA) 

and the side of the bicluster (query-strain or array-strain) that is intended to be used in 

further analyses. Therefore, a total of four tables were created (Table A3.1). 

 For both the TSA and DMA negative genetic interaction network, every strain has 

15 sets of biclusters that it appeared in, one set from each of the network replicates. All 

of these individually had redundancy removed twice: first for the purpose of annotating 

the query-strain sides of biclusters, and second for the purpose of annotating the array-

strain sides, using the appropriate bicluster size preference table in each case. 
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3.4 Bicluster-derived functional profiles for genes 

3.4.1  Annotation of biclusters 

 After identifying non-redundant sets of biclusters for strains in the GI network, the 

remaining steps in creating functional profiles summarize the biclusters in terms of their 

functions and collect network replicates. The final functional profiles are calculated for 

strains, since those are represented in the genetic interaction network. However, these 

are equally considered gene profiles since each strain is associated with a single gene’s 

functions. 

 Biclusters can be functionally annotated using the annotations of genes that are 

represented by their constituent strains. As alluded to earlier, biclusters may be 

annotated based on either of their two strain sets, the query strains or the array strains. 

The set chosen determines the interpretation of the bicluster’s functional annotation in 

relation to the member strain of interest. If the strain of interest is within the set used to 

determine the bicluster annotation, then the annotation should reflect a function the 

strain participates in. If not, the annotation is based on the strain’s interactors, and 

represents a functional relationship that may be direct or indirect. We analyze query-

strain profiles and use bicluster annotations derived from the query-strain gene sets the 

remainder of this chapter and in Chapter 4. 

 We annotated the query-strain side of each bicluster with biological process 

terms that have been manually annotated (MA, Table A3.2) or systematically annotated 

(SAFE, Table A3.3) to yeast genes. Every bicluster was annotated by any term for which 

its gene set had significant enrichment or to which at least 40% of queries were 

annotated. In most cases, that majority of each strain’s set of biclusters received 

annotations (Figure 3.4), meaning this layer of abstraction from specific biclusters to 

high-level annotations is likely to faithfully represent the breadth of a gene’s module 

memberships. In the TSA network, ~94% of strains have at least 50% coverage of their 

biclusters with MA annotations and ~42% have at least 80% coverage; for the DMA 

network these numbers are lower, at ~76% and ~18%, respectively. 
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Figure 3.4. Distribution of annotation coverage in sets of biclusters associated 

with individual query strains of the DMA (A) and TSA (B) GI networks. MA terms 

were used to annotate query-strain sides of biclusters based on gene annotations. 

 

 The numbers of annotations to each term were counted and normalized within 

each of the 15 sets of biclusters associated with each query or array strain, creating 

functional profiles. These replicate profiles were averaged, yielding one bicluster-based 

functional profile per strain. 

 

3.4.2  Validation of bicluster functional profiles 

 To compare each gene’s bicluster-derived annotation profile to its gold standard 

annotations, either MA or SAFE, we used a simple one-dimensional version of the 

clustering algorithm DBScan (Ester et al., 1996) to find the most striking highly 

annotated process or processes for each functional profile.  Before clustering with 

DBScan, we normalized each profile by dividing all elements by their maximum value. 

Our implementation of DBScan visits values from highest to lowest and labels a value as 

an outlier if it has no neighbors (the “minPts” parameter is 1) at a distance of less than 

0.2 (the “Eps” parameter), otherwise it defines a cluster and expands the cluster 

following the standard algorithm. We defined profile-predicted annotations as (1) all 

outliers that are higher than the first cluster, if there are any, or (2) the highest cluster, if 

there are no outliers. For ∼90% of profiles, DBScan identified only one or two 

annotations. 

A B 



 

 66 

 We calculated precision and recall statistics that assess the similarity of these 

predictions to the MA and SAFE gold-standard annotation schemes (Table 3.1). Since 

genes can have more than one gold-standard annotation, we calculated precision and 

recall separately for genes with one and two annotations. For genes with two 

annotations, we defined a true positive two ways: as at least one prediction matching a 

gold-standard annotation and as two predictions matching both gold-standard 

annotations. Precision and recall values were generally very high, indicating that the 

functional profiles accurately capture known annotations of genes. 

 Additionally, we demonstrated the usefulness of annotated biclusters over 

annotated GI partners for making accurate process predictions. We performed the 

DBScan and precision-recall analysis using the MA gold-standard annotations of a 

gene’s negative genetic interaction partners (at both the intermediate, -0.08, and strict, -

0.2, SGA score interaction thresholds) to build a functional profile (Table 3.2). Precision 

and recall are always substantially lower for predictions made by genetic interactions as 

compared to the corresponding statistics for bicluster functional profile predictions. The 

superiority of our functional profiles is likely due to the fact that modules combine 

individual interactions that represent only one gene function and ignore false positive 

interactions. 

 

Table 3.1. Precision and recall summary for top biological processes predicted 

from bicluster-derived functional profiles. DMA, TSA: GI networks; MA, SAFE: gold 

standard annotation schemes; TP: true positives; green/red color scale indicates low to 

high values and matches Table 3.2. 
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Table 3.2. Precision and recall summary for top biological processes predicted 

from negative genetic interaction profiles. DMA, TSA: GI networks; TP: true 

positives; green/red color scale indicates low to high values and matches Table 3.1. The 

MA annotation scheme was used. 

 

 

3.5 Conclusions 

 We have designed a pipeline that takes advantage of the modular structure of 

the yeast GI network to summarize individual gene participation across high-level 

biological processes. The comprehensiveness of the derived functional profiles 

represents an improvement over many alternatives. In particular, our use of frequent 

item set mining followed by redundancy removal performed within strain-specific sets of 

biclusters avoided the limitations of clustering approaches that use global calculations 

that may give unequal preference to the strongest network structures at the expense of 

others. Additionally, the recently published SGA genetic interaction network is 

unprecedented in its completeness of genome coverage with single mutant strains, 

meaning these networks may contain local structures of genes that were not included in 

other genetic interaction screens. Although our method is straightforward at a high level 

and is similar to the previous application of XMOD (Bellay et al., 2011a), nuances of the 

GI data set and our prioritization of individual strains required a careful, detailed 

implementation as well as a computationally intense execution. 

 While this chapter demonstrates a strong comparison between bicluster-derived 

functional profiles and gold standard annotations, it does so purely as validation of the 

fact that the profiles contain the simplistic view of the annotations. A more complete 

exploration of the novelty of our functional profiles is presented next.  
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Chapter 4: Pleiotropy derived from yeast genetic interaction 
modules 

4.1 Chapter overview 

 Pleiotropy, the phenomenon of a single genetic locus with multiple phenotypic 

effects, has vast implications on the genotype-phenotype relationship, as well as the 

robustness and adaptability of cellular networks. It has previously been measured 

according to many definitions, which typically count phenotypes associated with genes. 

Although modularity is frequently—and rightly—discussed as a key organization 

principle in biological networks, pleiotropy has not been measured in the same network 

context. Therefore, an important component of gene functional behavior is still 

unexplored. 

 In this chapter, we systematically measure pleiotropy within the context of 

modularity by using the module-based functional profiles described in Chapter 3. Our 

method calculates the entropy of functional profiles to measure the spread of each 

gene’s set of containing modules among high-level biological processes. We measure 

the pleiotropy of ~3200 essential and nonessential genes, which are all the genes that 

participated in enough biclusters to have a reliable functional profile.  

 We compare gene pleiotropy to our panel of gene characteristics to search for 

fundamental principles of how multi-module gene behavior relates to different types of 

genes. Pleiotropy is significantly associated with a number of gene characteristics, 

including some unexpected functional and evolutionary properties, like high expression 

variance and high copy number, which have interesting implications. 

 The author of this dissertation had a leading role in conceiving and planning this 

work; all analysis was done by this author, with contributions from collaborators. In 

addition to the author, Chad L. Myers, Michael Costanzo, and Charles Boone conceived 

the analysis. Chad L. Myers and Michael Costanzo provided suggestions regarding the 

analysis and its written presentation. Raamesh Deshpande and Jeremy Bellay provided 

code used for methods described in Chapter 3 and referenced in the current chapter. 
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4.2 Introduction 

4.2.1  Organization of functions in biological systems 

 Modularity of cellular functions has become a central tenet of systems biology, 

supported by evidence from diverse types of genomic data. Segal et al. (2003) designed 

a method that, from yeast gene expression data, inferred functionally coherent sets of 

genes that were regulated as a group according to different conditions. Gavin et al. 

(2006) described protein complexes in terms of core components and attached modules, 

using various data as evidence that grouped proteins act as single functional units. 

Costanzo et al. (2010) noted that the yeast genetic interaction (GI) network is well suited 

to define clustering of genes at various levels, from broad high-level biological processes 

down to specific pathways. With an eye to evolution, Hart et al. (2007) found that most 

S. cerevisiae protein complexes are composed of genes that are either all essential or all 

nonessential. Further, Ryan et al. (2013) noted that complexes conserved in S. pombe 

had the same property, but notably, proteins in some complexes switched essentiality as 

a group, indicating that this organization persists in the context of evolutionary changes.  

Finally, Roguev et al. (2008) compared genetic interactions between the same yeast 

species and found evidence that while GIs are highly conserved within modules, a lower 

conservation of GI between modules allows “rewiring” to occur as the species diverge. 

 Despite the seemingly tidy nature of modules and their properties, considerable 

complexity characterizes modular organization due to substantial reuse and diverse 

effects of cellular components. Pleiotropy, when considered at the molecular level of 

genes, is the case in which perturbation of one gene influences multiple functions 

(Paaby and Rockman, 2013; Stearns, 2010). For example, specific subcomplexes of 

nucleopores play important roles in gene silencing and DNA damage repair in addition to 

controlling nuclear import and export (Strambio-De-Castillia et al., 2010). As another 

example, multiple proteins responsible for mRNA decay in the cytoplasm, such as 

XRN1p, have a complementary chromatin-binding function that promotes genome-wide 

transcription initiation and elongation, mechanistically maintaining steady state mRNA 

levels (Haimovich et al., 2013). Famously, mammalian apoptosis pathways are triggered 

by components of the electron transport chain, such as cytochrome C (Ow et al., 2008). 

Other genes have a single molecular function but are fundamentally upstream of diverse 

cellular pathways, such as the HSP90 family of chaperones, which aid the folding of 



 

 70 

functionally diverse proteins (Taipale et al., 2010), and class V myosins, which use the 

actin cytoskeleton to localize mRNA and various organelles with help from cargo-specific 

receptor proteins (Hammer and Sellers, 2011). Because of the diverse physical 

interactors of the protein products, varied phenotypic effects appear when these genes 

are mutated. 

 In exploring the general notion of pleiotropy, researchers have used distinct 

definitions and datasets, showing that pleiotropy exists as many types of one-to-many 

genotype-to-phenotype relationships (Paaby and Rockman, 2013). All levels of biological 

organization have been considered: pleiotropy can connect DNA mutations or genes to 

phenotypic traits of molecular networks, cellular structures, organisms, populations, etc. 

Further, a phenotype may be described in the context of an environment, such as a 

genetic background, population, chemical, or nutrient availability. In humans, pleiotropy 

was recently explored by Pickrell et al. (2016), who used GWAS results to identify 341 

loci in humans that are associated with multiple traits, including diseases. In yeast, 

phenotypic effects that stem from one gene have previously been measured by reverse 

genetics methods that screened the yeast deletion collection for phenotypes, such as 

measuring over 250 morphological phenotypes (Ohya et al., 2005) or measuring 

sensitivities to different stresses (Dudley et al., 2005; Ericson et al., 2006; Hillenmeyer et 

al., 2008, respectively assessing 21, 6, and 180 evironments). These studies variously 

estimate that between 5% and 30% of yeast genes could be considered pleiotropic 

according to counted numbers of traits or environmental sensitivities. Although different 

environmental challenges can require different functional roles, these studies do not link 

conditions to specific functions, leaving the possibility that genes sensitive to many 

environments may belong in a generalized stress response category.  

 Given the extensive sets of gene annotations assembled by The Gene Ontology 

(Ashburner et al., 2000) for human and model organisms, counting annotations is a 

natural way to identify pleiotropic genes and has been employed in a number of studies. 

Khan et al. (2014) used semantic similarity of GO terms that clustered into non-

overlapping functions to identify moonlighting proteins, a strict but particularly interesting 

type of pleiotropy in which functions are physically separable but not as a result of 

physical partitioning in the protein. The authors found that moonlighting proteins often 

(48% of the time) contain disordered regions. Pritykin et al. (2015) carefully considered 

the structure of the GO tree in order to identify genes with distinct functions. The 
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multifunctional genes were tested for associations with a number of gene properties, 

revealing that multifunctional genes are more likely to be large and multi-domain, 

essential, broadly expressed, central in PPI networks, have many regulators, and 

contain disordered regions. 

 

4.2.2  A genome-wide and modular basis for pleiotropy 

 Biological networks can naturally represent modularity and pleiotropy, providing 

detailed molecular-level context for gene functions. In comparison to characterizations of 

individual genes, networks are more comprehensive representations of cell function 

because they reflect cellular processes as systems, which can be seen as, for example, 

associations between phenotypes and entire pathways (Kim and Przytycka, 2012; Vidal 

et al., 2011; Yu et al., 2016). Further, gene functions are not limited to associations with 

phenotypes: genes can affect network properties, such robustness and flexibility (Burga 

et al., 2011; Levy and Siegal, 2008; Park and Lehner, 2013; Rutherford and Lindquist, 

1998). An estimation of pleiotropy as effects measured within a molecular-level network 

may therefore be crucial in order to capture a gene’s importance to multiple components 

of a complex cellular system.  

 In protein interaction networks, a popular network-based characterization of hub 

proteins is classification as an intra-modular (“party”) node, which mainly functions as 

part of a module and has correlated expression with its neighbors, or an inter-modular 

(“date”) node, which coordinates between modules or has multiple functions (Agarwal et 

al., 2010; Han et al., 2004; Pritykin and Singh, 2013). A strength of physical protein 

interactions is that they are mechanistically interpretable; however this type of 

relationship is limited by physical locality. In contrast, genetic interactions identify a 

variety of functional relationships, including partial redundancy within the same module, 

pathway buffering, and dependency/similarity within a spatially or temporally directed 

pathway. We believe that genetic interactions provide a novel and valuable view of 

pleiotropy because they (i) are known to appear both within and between pathways, (ii) 

capture functional relationships between genes that operate in different high-level 

processes, (iii) can recover functions that are buffered by other genes, and (iv) can 

reflect any biological process, not just those in a restricted set of measured phenotypes. 

This last point is a solution to the problem of trait selection that many estimates of 
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pleiotropy are bound by. The GI network is therefore an informative place to assess the 

molecular pleiotropy of genes. 

 In this work using genetic interactions, we consider pleiotropy to be one gene 

affecting multiple sectors of cellular function such that there is a phenotypic 

consequence of fitness defect. With this definition, we are able to characterize the 

properties and behavior of genes that impinge on diverse functional modules and affect 

multiple traits at the molecular level. 

 The gene functional profiles described in Chapter 3 form the basis of the 

pleiotropy measure we describe in this study. In the creation of these profiles, frequent 

item set mining was used to exhaustively discover modules of genetic interactions, 

termed biclusters, which covered the majority of the yeast genetic interaction network 

(Costanzo et al., 2010). A bicluster is composed of two sets of genes and each gene in 

one set interacts with every gene in the other set—put another way, it is a complete 

bipartite subgraph of the GI network. Biclusters represent genes with similar behavior, 

because all genes on one side of a bicluster share a set of interaction partners; in this 

way, they are similar to clustered gene profiles, a popular framework for identifying 

functionally related genes. However, biclusters are built from subsets of a gene’s 

interaction partners, meaning they can identify multiple functions per gene and thus 

represent reuse in addition to modularity. Bellay et al. (2011a) found that the bicluster 

coverage of interactions in a hub gene’s profile may relate to pleiotropy, since this 

correlated with the number of GO terms annotated to the gene as well at the number of 

drug sensitivities (Hillenmeyer et al., 2008). In the following analysis, we describe a 

novel definition of pleiotropy derived from GI biclusters in a new, nearly complete yeast 

GI network (Costanzo et al., 2016). We measure pleiotropy using an entropy measure 

computed on the set of each gene’s genetic interaction biclusters to describe the 

functional spread of its effects on phenotype. We evaluate characteristics of the high- 

and low-pleiotropy genes identified by our approach and report several physical, 

functional, and evolutionary properties that differ between the two pleiotropy classes. 

 

4.3 Measuring pleiotropy from participation in GI modules 

 Genetic interactions are able to capture relationships between genes involved in 

different processes, and biclusters, which are groups of genes densely connected by 
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genetic interactions, are able to characterize the functional context of these 

relationships. We define a measure of pleiotropy that expresses a gene’s functional 

distribution within these bicluster modules (Figure 4.1). Our first step was to apply 

XMOD to an input GI network to obtain its set of biclusters. For each gene, we collected 

all biclusters that contain it and removed clusters that were redundant (see Chapter 3). A 

bicluster consists of two sets of genes, densely connected by a set of genetic 

interactions bridging them. In the context of calculating pleiotropy for a specific gene G, 

we refer to the set containing G as the “associate side” and the set of genes interacting 

with G as the “adjacent side.” We use simple criteria to annotate biclusters with high 

level biological processes: if the associate-side genes are statistically enriched for or are 

at least 40% composed of genes annotated by a term, then the bicluster is labeled with 

that term. Having identified and annotated a gene’s biclusters, we then count the 

process annotations as described in Chapter 3, resulting in a functional profile of the 

gene’s modules (Figure 4.1, 4.2A). The final pleiotropy score is the entropy of the 

process annotations counted in the profile (Figure 4.1, 4.2A and section A4.1). Entropy 

is a non-negative value that is 0 in the case that all annotations are the same and 

reaches a maximum when all possible annotations occur an equal number of times. The 

number of terms used for annotations, not the number of annotations a gene’s biclusters 

receive, determines the maximum value entropy can reach. We used a set of 20 

manually annotated (MA) biological processes (Table A3.2) and the entropy scores 

could range from zero to approximately 4.3 (Figure 4.2B). 
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Figure 4.1. Measuring pleiotropy from GI modules. Bicluster modules are obtained by 

applying XMOD to the genetic interaction network (Left box). The input SGA-derived 

network is binary and contains negative genetic interactions between query and array 

single mutant strains, reflecting SGA experimental setup. Interactions are added 

between query and array strains representing the same gene to allow modules 

containing these. Discovered complete bipartite modules have one set of query strains 

and one set of array strains. The pleiotropy of a focal strain, depicted as an outlined 

circle, is calculated from the functional distribution of its containing bicluster modules 

(Right box). Bicluster annotations are determined by the associate side of the module, 

the set of genes that contains the focal gene and is drawn as the left side of each 

bicluster (the right strain set is the adjacent side). Colors represent gene annotations. 

The vector n contains counts of annotation occurrences. 
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Figure 4.2. Pleiotropy scores. (A) Functional profiles of example genes with a range of 

pleiotropy scores are sorted with the most pleiotropic at the top. The distribution of 

annotation occurrences from each gene’s containing modules was normalized (equal to 

vector p in Figure 4.1) and displayed such that circle area represents the fraction of 
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module annotations in each bioprocess. Data for each are from a single query strain. (B) 

Gene pleiotropy scores are correlated with genetic interaction degree, but still show 

further variation. High, low, and medium pleiotropy groups are only assigned to genes 

with degree of at least the 60th percentile (vertical boundary between gray and colored 

markers, left plot) and are determined from residuals of the regression of pleiotropy 

scores against degree (cause for sloped divisions between the high-medium and 

medium-low boundaries, left plot). Histogram bars in the right-hand plot are stacked and 

count the genes assigned to pleiotropy groups. Both plots show DMA-derived pleiotropy 

scores. 

 

 In implementing this pleiotropy measure, we used negative genetic interactions 

of the latest, near-complete yeast GI network (Costanzo et al., 2016). This network 

comprises two distinct datasets reflecting the experimental organization used in its 

construction. The separation of the two GI networks persists throughout our work here: 

we derived pleiotropy scores from each. The first GI network, called the TSA 

(temperature sensitive array) network, contains 2112 query genes screened for 

interactions with 560 essential array genes and 173 nonessential array genes. The 

second, called the DMA (deletion mutant array) network, contains 4004 query genes 

screened for interactions with 3827 nonessential array genes. The query genes of both 

networks include nonessential genes, experimentally represented by gene deletions, 

and essential genes, which were represented by temperature sensitive and DAmP 

alleles. Accordingly, the biclusters from both networks can have a mixture of essential 

and nonessential genes on one side, the query side. We focused primarily on measuring 

pleiotropy for query genes (more precisely, strains), so in this case the associate-side 

module enrichment step of our pleiotropy method analyzed mixed-essentiality groups of 

genes. We also implemented our pleiotropy measure with a different data orientation, 

computing pleiotropy scores for array instead of query genes, and with a second 

annotation scheme, the experimentally derived SAFE annotations (Table A3.3) 

(Baryshnikova, 2016; Costanzo et al., 2016) instead of the manual set. We use the term 

“scoring configuration” to refer to a data setup used in generating pleiotropy scores, 

which specifies the annotation method and type of strains analyzed; in total, there are six 

configurations, which are described in section 4.9.1. 
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 Pleiotropy scores systematically identified a broad range of gene functional 

behavior within the GI network. Figure 4.2A uses example genes to illustrate the 

relationship between pleiotropy scores and bicluster-derived functional profiles, which 

count biological process annotations: some genes participate in many processes, while 

others have functions concentrated in a few processes. In total, we were able to 

construct bicluster-derived functional profiles and measure pleiotropy for 3236 yeast 

genes. 

 When using the genetic interaction network, a straightforward pleiotropy metric 

could be the number of interactions observed for a given gene. A gene’s genetic 

interaction degree is very informative about the magnitude of a mutation’s effect. For 

example, degree is strongly correlated with fitness defect (Pearson’s r = 0.78, p < 10-300; 

(Costanzo et al., 2016, nonessential strains)), and is also correlated with the number of 

GO terms (r = 0.23, p < 10-42) and the number of curated phenotypes (r = 0.65, p < 10-

300), two gene features that can indicate multiple functions. The pleiotropy score we 

developed, however, is more specific than GI degree—it is designed to distinguish 

different functions of a gene, first by organizing GIs into modules, and second, by 

assessing annotation profiles with fractions instead of counts in the entropy calculation. 

This decoupling of degree and pleiotropy is evident by the variation depicted in Figure 

4.2B, which illustrates how a high degree alone is not sufficient for a gene to have high 

pleiotropy. Nevertheless, the Spearman correlation of 0.45 (p < 10-53) between entropy 

and degree suggests that attempts to characterize pleiotropic genes may simply recover 

trends already associated with degree. To focus specifically on the functional breadth of 

genes, independently from their interaction degree, we controlled for GI degree when 

defining pleiotropy classes. Specifically, we first take pleiotropy as the residual of the 

regression of entropy against degree. We then limit genes to those that have a negative 

GI degree at or above the 50th percentile. Finally, we classify these high-degree genes 

as high, medium, or low pleiotropy by binning scores into the highest 30%, middle 40%, 

and lowest 30% (Figure 4.2B). These three classes are used for all statistical analyses 

discussed in the following sections. As previously mentioned, we used the TS-derived 

and DMA-derived GI networks separately in measuring pleiotropy, therefore we have a 

set of three pleiotropy classes for each network. We specify source GI data in the text 

when discussing specific results. 
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4.4 Examples of high and low pleiotropy: Calmodulin and RAD27 

 As an example, we highlight the high-scoring pleiotropic gene CMD1 (Figure 

4.3A, Figure 4.2A), which encodes the binding protein calmodulin and is conserved in all 

eukaryotes. It is well known to regulate many processes, a functional ubiquity that likely 

is enabled mechanistically by the capacity to bind calcium ions in four different sites in 

most species as well as bind various target proteins, many of which trigger function-

specific conformations of calmodulin. Evidence of binding site functional specificity 

comes from Ohya and Botstein (1994), who found four groups of mutations that resulted 

in distinct phenotypes. Using its namesake ability to detect Ca+ ions, CMD1 activates 

calcineurin and two protein kinases when Ca2+ concentration is high, which control a 

number of downstream processes (Cyert, 2001). Within the GI network, CMD1 appears 

in dozens of biclusters. Nine of them are shown in Figure 4.3A to illustrate both how GI-

derived pleiotropy is apparent from structured modules and the functional coherency that 

characterizes these modules. One of Calmodulin’s known localizations is the bud tip and 

neck due to its physical interaction with Myo2p, a myosin protein that is required for 

polarized growth (Stevens and Davis, 1998). This relationship is reflected in the bicluster 

labeled “Cell polarity/morphogenesis” (Figure A4.1), which contains cell wall integrity 

genes SLT2, BCK1, and SWI4, bud neck and wall localized proteins SKT5, CHS3 

(recruited by SKT5 and MYO2), and ROM2, ARP2/3 activator PAN1, and polarity-

establishing BEM1 (Duncan et al., 2001; Levin, 2005; Madden and Snyder, 1998). 

Another established localization behavior of calmodulin is association with the spindle 

pole body throughout the cell cycle. During mitosis, it is involved in attachment of 

microtubules to the SPB and is required for correct spindle function (Sundberg et al., 

1996). This explains its membership in the bicluster labeled “Chrom. seg/kinetoch./etc” 

(Figure A4.2) along with spindle organizers CIK1 and STU2 (a SPB-interactor), as well 

as a number of kinetochore genes, AME1, OKP1, and NSL1, and kinetochore 

recruitment gene CTF13 (De Wulf et al., 2003; Kosco et al., 2001; Page et al., 1994). 

The shared negative interactors of these genes, adjacent in the bicluster, are genes from 

the spindle assembly checkpoint (SAC), which can buffer a dysfunctional spindle by 

prolonging prometaphase. Lastly, Cmd1p is thought to regulate the final stages of 

vacuolar fusion (Peters and Mayer, 1998). The bicluster labeled 

“Golgi/endosome/vacuole” (Figure A4.3) reflects this role, containing two components of 

the cytoplasm-to-vacuole targeting pathway complex TRAPPIII and GYP1, which 



 

 79 

respectively activate and deactivate the vesicle docking regulator YPT1, as well as 

SEC17, which is required before vacuole membrane fusion events, and three members 

of the COG complex (Du and Novick, 2001; Lynch-Day et al., 2010; Ungermann et al., 

1998). Though GI modules do not explain specific functions of a gene, the example of 

CMD1 shows how genetic interactions can recover evidence for functions established in 

literature.  

 In contrast to the highly varied functions of CMD1, we also make an example of 

RAD27 (Figure 4.3B). This gene has a focused functional influence on cellular 

processes, and therefore low pleiotropy, with nearly all of its containing biclusters 

representing DNA replication and repair functions. Despite the clear theme of RAD27’s 

modules, we still see individual pathways clustering together. For example, the associate 

side of one bicluster (Figure A4.4) contains genes in complexes that initiate and drive 

the replication fork during DNA replication (Medagli et al., 2016).  The genes PSF1 and 

SLD5, as half of the GINs complex, and SLD3 help to assemble the pre-initiation 

complex, which includes MCM2, ORC2, and CDC45, at replication origin sites. Many of 

these genes go on to form the CMG complex, the helicase that unwinds duplex DNA and 

progresses in the core of the replication fork. This set of genes negatively interacts with 

genes involved mitotic checkpoints for DNA damage and DNA replication, MRC1, RAD9, 

RAD24, DDC1, RAD17, and CSM3, which appear in the bicluster’s adjacent side. 

Another of RAD27’s biclusters contains histone-related genes in both sides (e.g. SWC3, 

SWR1, ARP6, VPS71, HTZ1, YTA7, and EAF6), and others contain a number of genes 

related to RAD27’s known functions, Okazaki fragment processing and double-strand 

break repair (Figure A4.5) (e.g. POL31, RNH203, RNH201, XRS2, MRE11, and 

RAD50). 
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Figure 4.3. Selected biclusters of the pleiotropic gene CMD1 (A) and the non-

pleiotropic gene RAD27. (B). Nodes represent genes and edges represent negative 

genetic interactions extracted from the DMA-derived GI network. Only genetic 

interactions that define each bicluster are displayed, although there are often 
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interactions between genes on the same side of a bicluster. The biclusters’ adjacent-side 

sets of genes are connected to the focal genes CMD1 or RAD27. The genes arranged 

on the outside of the each diagram, with the addition of the focal gene, are the associate 

sides. Gene names list the members of some biclusters; the first group of names in each 

bracketed pair lists the associate-side genes and the second group lists the adjacent-

side genes. Text labels are bicluster annotations determined from the associate-side 

genes. Colors of nodes indicate the functional annotations of genes, which can be 

inferred from the bicluster annotations (e.g. sea green represents “Cell 

polarity/morphogenesis”). Any colors that cannot be interpreted with bicluster labels are 

listed in the legend. Any genes that have multiple process annotations are colored 

preferentially to match the annotation given to the bicluster. Both panels use the same 

color scheme. 

 

4.5 Many primary functions are represented in high-pleiotropy genes 

 Many of the genes that displayed high pleiotropy have known associations with 

particular pathways. The chaperone HSP90, whose pleiotropy score is in the highest 

30%, is a classic example of how participation in a central maintenance pathway allows 

the gene to suppress phenotypic variation in many aspects of cellular biology 

(Rutherford and Lindquist, 1998). We found that this is not unique; genes involved in 

many other cellular functions also exhibited high pleiotropy. The following are brief 

examples of some of the many functional annotations already associated with genes in 

our high pleiotropy class: cell cycle regulation (CDC28, CKS1, cyclin CLN3, whole 

genome duplicates SWI5 and ACE2, RAM pathway component TAO3); the ubiquitin 

system (UBI4, UBP1, DOA1, CDC53, RAD6, RSP5, TOM1, UBP6, UBR2, HRT1, UFD1, 

UBP14); stress response and protein folding (chaperones HSP82, CDC37, and CNS1, 

HSP82 regulator HSP1); membership in the CCR4-NOT complex, a global transcription 

regulator (CDC36, CDC39, NOT3, CAF120); ribosome biogenesis (MAK11, NEW1, 

DBP7); nuclear-envelope membrane functions (BRL1, BRR6, and APQ12); and vacuole 

functions (VPS62, VAC7, VAC14, VPS66, ZRT3, IML1). 
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4.6 GO term enrichment within pleiotropy classes 

 In order to discover any particular cellular processes or components that are 

significantly biased in their composition of pleiotropic genes, we performed 

hypergeometric tests for enrichment of GO terms in our high and low pleiotropy classes. 

We found that high pleiotropy genes were not enriched for any GO terms. Although this 

result is somewhat surprising, it is consistent with the observation that pleiotropic genes 

work in diverse primary functions. Low-pleiotropy gene classes from both GI networks 

were enriched for a number of terms. Low-pleiotropy genes derived from the DMA 

network were enriched for Golgi vesicle-mediated transport, as well as more general 

transport and localization terms, and mitochondrial respiration. For example, 43 of all 55 

background genes annotated by the GO component “mitochondrial inner membrane” 

have low pleiotropy (enrichment, p < 10-11). The low-pleiotropy class derived from the 

TSA network was enriched for vesicle transport also, and DNA replication and 

proteolysis terms. For example, 15 of the 16 genes in the cytosolic proteasome complex 

have low pleiotropy (enrichment, p < 10-4). 

 

4.7 Differences between high- and low-pleiotropy genes 

 Next, we searched for evolutionary, structural, and functional properties of high- 

and low-pleiotropy genes by testing for associations with 36 gene characteristics. Many 

of the gene characteristics were described in Chapter 1, section 1.3.2; the exact set 

used and their associated methods are listed in Appendix 4, section A4.2. Briefly, the 

characteristics include quantitative summaries of individual gene behavior in various 

phylogenetic analyses, sequence-based calculations, and genome-wide experimental 

data sets. 

 A number of gene properties differed significantly between the two pleiotropy 

classes in Wilcoxon rank-sum tests (Figure 4.4, Table 4.1). High-pleiotropy genes were 

positively associated with expression variation, high gene copy-number-based features, 

high protein abundance, and many domains, while the low-pleiotropy genes tended to 

participate in protein complexes and, surprisingly, had more curated phenotypes. 

Specific statistics presented in the sections below are based on pleiotropy scores of 

query strains, our default analysis set, derived from both the TSA and DMA GI networks; 

we also explored other scoring configurations (section 4.9.1). In most cases, pleiotropy 
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associations with gene characteristics were consistent across different scoring 

configurations, with few exceptions. For example, SMF, essentiality, and Expression 

variance, genetic-B were significantly associated with both high- and low-pleiotropy 

genes, depending on the scoring configuration used (Table 4.1). 

 Our reporting of results in the following sections is conservative: we tested 22 

variations of our method (section 4.9.2 and Table 4.2) and report results that are robust 

across most test variants for multiple scoring configurations (Table 4.1; non-robust 

results, Table A4.2). For example, SGA interrogates essential genes with mutant strains 

that are temperature-sensitive point mutations or DAmP (low expression) alleles. 

Because it is easy to imagine a point mutation that affects only the subset of a gene’s 

functions that is dependent on a single part of the protein, one variation of our rank-sum 

tests excludes TS strains, leaving just DAmP alleles to represent the behavior of 

essential genes. 
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Figure 4.4. Gene properties significantly associated with high (yellow) or low 

(blue) pleiotropy derived from the DMA (A) and TSA (B) GI networks. Cumulative 

plots are displayed for properties that take on many values. For a pleiotropy group and 

property, the plotted line shows the percent of the genes that have a property value 

greater than or equal to any point on the x-axis. Percentage calculations only take into 

account genes that have measured values for the property (all characteristics shown had 

good data coverage, see section 4.9). The area between the blue and yellow lines is 

filled with color indicating which pleiotropy group has a higher percent of genes with high 

B 
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property values. Black hash marks plotted above the x-axis mark all values found in the 

genes’ property values. Bar plots are displayed for properties that take on few values. 

There is a total of 268 genes in both the high and low DMA-derived groups (A) and a 

total of 163 genes in both TSA-derived groups (B). P-values from rank-sum tests for 

each property from left to right are (A, top row) 7 x 10-3, 8.4 x 10-4, 7.4 x 10-4; (A, second 

row) 3.4 x 10-2, 4.3 x 10-4, 1.1 x 10-4; (A, third row) 1.1 x 10-5, 2.7 x 10-4, 1.6 x 10-3 (B, top 

row) 5.4 x 10-3, 6.4 x 10-3, 2.4 x 10-6; (B, second row) 3.4 x 10-2; 8.7 x 10-6, 7.5 x 10-7; (B, 

third row) 5.8 x 10-3, 2.1 x 10-3, 5.9 x 10-5. 

 

Table 4.1. Summary of gene characteristics associated with high- and low-

pleiotropy genes. Tests were performed for pleiotropy scores derived from different 

pleiotropy scoring configurations (columns); TSA array configurations are relegated to 

Table A4.1 due to sparsity of significant results. Values shown are the number of rank-

sum tests that yielded a significant p-value, out of a total of 22 variations performed for 

each query-strain scoring configuration and 12 variations performed for each array-strain 

scoring configuration (see section 4.9 and Table 4.2). Blank cells indicate zero tests with 

significant results. Values in parentheses indicate significant results that contradict the 

result column by associating the gene property with the opposite pleiotropy class. 

Asterisks indicate features that were associated strongly enough with both pleiotropy 

classes that the property is listed in two rows. The significance of p-values from rank-

sum tests was determined using the FDR-control procedure described in Benjamini et al. 

(2006), counting tests for 37 gene properties as a family. 
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4.7.1  Expression variance and protein abundance are higher among high-

pleiotropy genes 

 Two different measurements of gene expression level variance were robustly 

associated with high-pleiotropy genes. Environmental expression variance is determined 

by subjecting yeast cells to many environments and measuring gene expression levels, 

then calculating variance for each gene (Gasch et al., 2000). A Wilcoxon rank-sum test 

showed that genes in the high pleiotropy class had higher environmental expression 

variance than genes in the low-pleiotropy class using both the DMA (p < 7 x 10-3) and 

TSA (p < 6 x 10-3) pleiotropy scores (Expression variance, environ., Figure 4.4A,B). 

Among the 50 genes with the highest environmental expression variance, 22 have high 

DMA-derived pleiotropy compared to only 5 with low pleiotropy (Figure 4.5A; 23 have a 
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medium pleiotropy). We found that, regardless of pleiotropy level, most genes with high 

variance reached their extreme expression levels during heat shock and cold shock 

conditions and during stationary phase. Regulatory response to environmental stresses 

consists of induced expression of some genes and suppression of others, a program 

that is similar in all stress environments, not condition-specific (Gasch et al., 2000). We 

find that there is no bias in the high pleiotropy genes towards having increased or 

decreased expression during stress conditions (Figure 4.5B). 

 

 

Figure 4.5. High-pleiotropy genes have higher environmental expression variance 

than low-pleiotropy genes. (A) Histograms show the distribution of expression 

variance, shown on the y-axis, for all high- and low-entropy genes. The number of genes 

in each pleiotropy class that fall into each bin is given next to each bar. (B) Expression of 

all high- and low-pleiotropy genes that are among the 60 genes (regardless of 

pleiotropy) with the highest expression variance was plotted for each environment. 

Values plotted are medians of multiple time points measured for individual environments. 

Separate axes are for visual clarity only: genes that tend to increase in expression 

during stress are plotted on the top, while genes with the opposite trend are on the 

bottom. Yellow indicates high-pleiotropy and blue indicates low pleiotropy. 
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 Genetic expression variance, calculated from the genome-wide expression 

profiles of many crosses between the diverged S. cerevisiae strains BY and RM (Brem 

and Kruglyak, 2005)(Expression variance, genetic-A, Figure 4.4B), was also associated 

with high pleiotropy genes identified from both GI networks (DMA-derived pleiotropy, 

SAFE annotations: p < 7 x 10-3; TSA-derived pleiotropy: p < 7 x 10-3), although this result 

depended on the configuration used for the DMA-derived pleiotropy classes (Table 4.1). 

Among the 50 genes with the highest variance, 22 had high pleiotropy and 7 had low 

pleiotropy (21 have medium pleiotropy). Similarly, a second measure of genetic 

expression variance (Skelly et al., 2013)(Expression variance, genetic-B, Table 4.1), 

which is measured from the gene expression of many diverged and geographically 

varied S. cerevisiae strains, was associated with high pleiotropy genes for one scoring 

configuration. (For another scoring configuration, in which pleiotropy of DMA queries 

was measured using adjacent-side bicluster enrichments, this expression variance 

feature was associated with low-pleiotropy genes.) 

 The two expression variance measures strongly associated with high-pleiotropy 

genes, environmental and genetic-A, had a Pearson’s correlation of 0.21 (p < 2.6 x 10-

13), suggesting that highly variable genes defined by the two measures overlap.  

However, environmental variance remained robustly associated with pleiotropy after 

controlling for the genetic-based feature (TSA-derived pleiotropy, rank-sum p < 0.017). 

Genetic expression variance was not correlated after controlling for the environmental 

feature, suggesting that environment-induced expression variation is more strongly 

linked with high pleiotropy. 

 Protein abundance levels (Newman et al., 2006) offer further observation of 

cellular usage of a gene, since translation and protein degradation are regulated. Protein 

abundance, including protein abundance under stress conditions, tended to be higher in 

high-pleiotropy genes than in low-pleiotropy genes (nonstress, SAFE: p < 7 x 10-3; 

stress, SAFE: p < 5 x 10-3; Figure 4.4). 

 

4.7.2  Copy number is higher in high-pleiotropy genes 

 High-pleiotropy genes tended to have higher copy number, which is the number 

of genes that arose through duplication of a single ancestral gene of a given gene, 

compared to low-pleiotropy genes (DMA: p < 4.3 x 10-4; TSA: p < 8.7 x 10-6; Figure 4.4A, 
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B). High-pleiotropy genes with a copy number greater than two are in protein families 

that function in environmental responses as transmembrane proteins or components of 

signaling pathways, consistent with previous characterization of genes that have 

frequently duplicated (Wapinski et al., 2007b). The most extreme copy number is that of 

high-pleiotropy gene RGT2, which, with its paralogs, is in a family of transmembrane 

sugar-transport channels, including some that trigger response to intracellular sugar 

concentrations. A more well-known example is the hub IRA2, which is a negative 

regulator of RAS2 and has two paralogs. 

 Duplicate gene pairs that arose from an ancient S. cerevisiae whole-genome 

duplication (WGD) event are distinguished from all other duplicate pairs, which resulted 

from small-scale duplication (SSD) events (Guan et al., 2007; Hakes et al., 2007; Kellis 

et al., 2004; Wapinski et al., 2007b; Wong et al., 2002). We found that this difference is 

important with respect to pleiotropy. WGD genes were strongly associated with high 

pleiotropy genes, while SSD genes had only slight evidence of an association (Table 

4.1, Table A4.2). This difference is difficult to explain, since there is no consensus on 

how evolutionary models apply differently to these scenarios. However, it is possible the 

genome state after a whole-genome duplication helps genes diversify by providing 

broader redundancy, like entirely duplicated complexes and pathways.  

 The DMA-derived group of high pleiotropy genes contained 38 WGD genes, 

significantly more than the 18 classified as low pleiotropy (p < 4.8 x 10-3; Figure 4.6). 

TSA-derived groups, from an overall smaller dataset, showed the same trend with 18 

and 4 WGD duplicates in the high and low groups, respectively. 

 WGD gene pairs have been shown to sometimes have unequal allocation of 

importance, though they typically retain similar function (Kellis et al., 2004; VanderSluis 

et al., 2010), and pleiotropy roles reflect both these scenarios. We investigated the 

behavior of the duplicate partners of the DMA-derived high pleiotropy genes (most 

partners of genes in the TSA-derived pleiotropy groups have not been screened in 

SGA). First, considering only the handful of WGD pairs whose members both meet our 

degree criteria and therefore both have assigned pleiotropy classes, we find similarity in 

pleiotropy (Figure 4.6). Two WGD pairs were composed of two high-pleiotropy genes 

each (the pair ACE2 and SWI5, and the pair RPL40A and RPL40B) and, similarly, one 

pair had two low-pleiotropy members. However, no paired genes that both had high 

degree contained a low- and high-pleiotropy gene—a hint that duplicate partners of high 
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pleiotropy genes tend to have higher pleiotropy than partners of low-pleiotropy genes 

(Wilcoxon rank-sum p < 0.016).  Beyond these cases, the duplicate partners of high-

pleiotropy WGD genes ranged broadly in both pleiotropy and GI degree (Figure 6), 

therefore representing both similarity and difference in the pleiotropy level of paired 

duplicate genes (Figure 4.6). 

 

 

Figure 4.6. High-entropy genes are more likely to be whole-genome duplicates 

than are low-entropy genes. Bar heights show the number of whole-genome duplicate 

genes that are in the classes of high-, medium-, and low-pleiotropy, as labeled on the x-

axis. GI degree and pleiotropy data shown as bar coloring describes the WGD partners 

of the high-degree classified genes. Bars on the left side show partner GI degree, where 

genes are considered “high” if their degree is at least the 50 percentile “hub” threshold 

used to define pleiotropy classes (near 100); “medium” if degree is at least 50 but lower 

than high cutoff; and “low” if degree is lower than 50. Bars on the right side show partner 

pleiotropy scores, which use the same thresholds as the standard pleiotropy classes 

defined for high-degree genes. Stacked sections of pleiotropy scores correspond to the 

matching sections of degree, as shown by horizontal white lines. For example, of all the 

WGD partners of classified low-pleiotropy genes, there are six with low GI degree (light 

blue, left bar) and, of these, one participated in enough biclusters that it could be given 
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and pleiotropy score, which was low (one unit of dark blue, right bar). As another 

example, there are six high-pleiotropy genes whose WGD partners have high degree 

and, of these, four also have high pleiotropy. High-degree genes will be counted as both 

a classified gene and a partner of a classified gene. 

 

 A third copy-number based feature, copy number volatility (Wapinski et al., 

2007b), was also higher in high pleiotropy genes (p < 8.4 x 10-4, p < 2.4 x 10-6, Figure 

4.4A, B). This property measures the number of times a gene is lost or duplicated within 

extant or ancestral yeast species. We note that although copy number and copy number 

volatility are correlated with the binary WGD duplicate feature, these features each 

remain significantly associated with high pleiotropy genes after controlling for WGD 

duplication (p < 0.032 and < 0.011, respectively). 

 

4.7.3  Domains are more common in high-pleiotropy genes 

 The proteins of high pleiotropy genes tended to have more domains than those 

of low pleiotropy genes (DMA p < 1.1 x 10-4; Figure 4.4A), a relationship supported by a 

recent GO-based measure of multifunctionality (Pritykin et al., 2015). Speculating that 

the association between the number of domains and pleiotropy is driven by functions of 

individual domains, we tested for enrichment of specific domains and combinations of 

domains, but did not find significant results for either medium- or high-pleiotropy genes. 

 

4.7.4  Characteristics of low-pleiotropy genes 

 Genes that have low pleiotropy are characterized as highly prominent genes that 

are well-studied, conserved, and important. We found that low-pleiotropy genes are 

involved in more complexes than high pleiotropy genes (DMA p < 1.1 x 10-5, TSA p < 7.5 

x 10-7, Figure 4.4A, B), a characteristic derived from a literature-curated protein complex 

standard (Costanzo et al., 2016). For TSA-derived pleiotropy, this result is also 

supported by a tendency to have a higher number of protein interactions in Tap-MS 

experiments (p < 6 x 10-5) (Table 4.1). Participation of low-pleiotropy genes in protein 

complexes likely has the result of constraining the evolution of these genes (Lovell and 

Robertson, 2010). 
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 A second characteristic of low-pleiotropy genes is that, compared to the high-

pleiotropy genes, they have higher phenotypic capacitance, which is a measure of 

average morphological variance upon deletion of a nonessential gene and therefore also 

an indication of ability to buffer variability in phenotypes (Levy and Siegal, 2008). The 

authors who investigated phenotypic capacitors described a subset of capacitors that 

function in protein interaction clusters containing multiple capacitors and have a number 

of specific GO enrichments. This suggests that some capacitors promote phenotypic 

robustness by working in specific pathways. The abundance of these capacitors in our 

low-pleiotropy shows that our process of measuring a gene’s functional behavior through 

GI modules has distinguished between genes with specific roles in varied pathways 

(high pleiotropy) and genes whose deletion effects, but not necessarily wild-type 

behavior, has a variety of phenotypes. 

 Low pleiotropy genes have a higher number of annotations in the form of curated 

phenotypes (DMA p < 2.8 x 10-4, TSA p < 2.1 x 10-3) and multifunctionality (TSA p < 8.6 

x 10-4), which is derived from GO biological process annotations. These results are 

difficult to explain in relation to low pleiotropy, but might be caused by investigation bias 

in our understanding of yeast. Indeed, for the TSA-derived pleiotropy groups, we find 

tendencies of the low-pleiotropy genes to be old and conserved and to have strong 

mutant phenotypes (Table 4.1, “Yeast conservation”, “Broad conservation”, “Age”, 

“Single mutant fitness defect”), which describe genes that may be frequently studied. 

The low-pleiotropy genes from the DMA-derived scoring configuration “query, adjacent” 

may also trend in the conserved direction, but not robustly, with only two rank-sum test 

variations displaying significance. In order to test the possibility that curated phenotypes 

and high multifunctionality specifically highlight well-studied genes, we compared these 

two gene characteristics to the number of publications associated with individual genes, 

which we obtained from PubMed (“Links from Gene”) and SGD (“primary references”).  

Curated phenotypes had significant correlations of 0.49 and 0.43 with PubMed and SGD 

literature counts, respectively; multifunctionality had significant correlations of 0.67 and 

0.65. We therefore calculated new annotation-count characteristics by regressing 

curated phenotypes and multifunctionality against each of the literature counts and 

recording the residuals of the two characteristics. Next, we repeated the rank-sum tests 

to compare the literature-controlled annotation characteristics between the high- and 

low-pleiotropy classes. Despite accounting for possible literature bias, the association 
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between DMA-derived low pleiotropy and curated phenotypes remained. However, using 

the annotation characteristics that controlled for PubMed literature counts completely 

removed the associations between TSA-derived low pleiotropy and both curated 

phenotypes and multifunctionality (rank-sum p > 0.56 and 0.18). This means that we 

cannot exclude literature bias as a major driver of the original surprising results. 

Importantly, there is a reasonable expectation that literature counts strongly reflect truly 

interesting genes, so these results are far from conclusive.  

 Given the fact that a control for literature bias did not alter the association 

between DMA-derived low pleiotropy and curated phenotypes, and that we expect 

curated annotations to accurately reflect biology even with some bias, our low pleiotropy 

results remain puzzling. It is possible that our measure of pleiotropy is only evident at the 

molecular level or may depend on the functional depth that genetic interactions reveal by 

removing redundancy in pairs of genes that have hidden effects. This suggests that our 

novel, unbiased measure of pleiotropy captures an as-yet unappreciated amount of 

functional influence that flourishes in many functionally buffered and newly evolved 

genes that are difficult to characterize experimentally. 

 

4.8 Discussion 

 Genetic interactions provide a valuable view of pleiotropy by revealing gene 

functions at a molecular level. Clusters of within-pathway interactions highlight modules 

of genes related to specific cellular processes, like pathways or protein complexes, while 

between-pathway interactions occur when two pathways buffer each other. With this 

sensitivity to such a variety of gene-gene relationships, genetic interactions are well-

suited for identifying diverse functions.  Importantly, genetic interactions are calculated 

solely from phenotypic measurements, namely growth rates, in our case. Therefore, all 

genetic interactions represent functions that are evolutionarily relevant. Despite the fact 

that only one phenotype is measured, the functions represented by genetic interactions 

span most aspects of cellular biology (Costanzo et al., 2010; Costanzo et al., 2016). 

 Another strength of genetic interactions is their ability to reveal functions that may 

be undetectable in single mutants.  A negative genetic interaction between two genes 

indicates a shared function that either one can perform individually, i.e. a buffering 

relationship. By assessing a gene’s pleiotropy within the GI network, we leverage the 
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context of many (individual) background mutations, effectively removing layers of 

buffering and exposing the gene’s formerly hidden phenotypes. Some pleiotropy studies 

suggest that most genes affect few traits (as reviewed by (Paaby and Rockman, 2013; 

Wagner and Zhang, 2011)), but none of the considered datasets measure gene roles 

that are normally buffered in single mutants, leaving both theoretical and empirical 

discussions (Wang et al., 2010) to possibly underestimate pleiotropy. Still, the 

importance of recognizing buffered functions depends on the extent to which individuals 

in natural populations harbor genetic variations that have genetic interactions.  

 A key element or our pleiotropy measure is the organization of the GI network 

into biclusters, which has multiple benefits. First, we have higher confidence in 

structures of genetic interactions than in individual interactions because dense clusters 

are very unlikely to occur by chance. Second, the functional level of a module removes 

redundancy by treating a set of genes as a unit. Because our method uses the 

associate-side of biclusters to determine annotations, genes that share a function are 

treated as a single unit. These functional units are summarized by an entropy 

measurement, the final pleiotropy score, which describes the shape of the distribution of 

modules among functions and differentiates broad from focused functional influence of a 

gene. 

 Through characterization of genes classified as having high and low pleiotropy, 

we found that evolution-related properties distinguished the groups. High-pleiotropy 

genes were more likely to be duplicated and to change in copy number throughout 30 

yeast species. Contrasts in functional behaviors of the pleiotropy classes showed that 

high-pleiotropy genes have greater variability in expression, while low-pleiotropy genes 

are likely to be part of protein complexes. These interesting characterizations may shed 

light on the evolutionary processes through which genes may acquire multiple functions. 

 We propose that functional freedom is an important property enabling pleiotropy. 

Gene duplication and divergence is considered to be the primary source of raw material 

through which adaptions appear. The fact that WGD duplicate genes tend to have high 

pleiotropy suggests that this process of new adaptations allows the accumulation of 

diverse functions in single genes, as opposed to only yielding two specialized (i.e. low-

pleiotropy) genes.  Partial functional buffering, relatively common between duplicates 

(Musso et al., 2008; VanderSluis et al., 2010), likely plays a role in this process. One 

model consistent with these ideas is subfunctionalization, in which the functions of the 
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original gene are partitioned between the paired duplicates (Force et al., 1999). 

Following this process, the two genes complement each other such that each gene has 

functional regions maintained by selective constraint and degenerate regions that 

tolerate mutations and possibly acquire new functions. Even duplicates that are 

asymmetric in GI degree have been shown to maintain buffering relationships 

(VanderSluis et al., 2010). A second mechanism by which duplicates may diverge and 

become pleiotropic is suggested by the tendency of high-pleiotropy genes to have high 

variance in expression. Changes in regulatory patterns occurring soon after duplication 

may provide a route for acquiring environment-specific roles (Conant and Wolfe, 2006; 

Mattenberger et al., 2017). Functions unneeded in particular conditions may be altered 

to respond to new challenges, thus diversifying the gene’s functions. Acquisition of new 

functions through variable expression is not limited to duplicates, but is proposed as a 

general mechanism promoting environmental and phenotypic adaptations (Stern et al., 

2007; Tirosh et al., 2006). Finally, the significantly low number of pleiotropic genes that 

have membership in protein complexes suggests an avoidance of evolutionary 

constraint of sequence changes and consequent barrier to gaining novel functions.  

 While the characterization of pleiotropic genes as being sheltered from functional 

constraints provided by duplicates buffering each other and as lacking physical 

interactions in protein complexes offers insight into the kind of genes that are able to 

acquire new functions, it remains to be shown how pleiotropic genes have risen to such 

prominence that they are genetic interaction hubs. Indeed, the functional freedom 

suggested by our characterization of pleiotropic genes is a contrast to Fisher’s classic 

geometric model of pleiotropy, which predicts that pleiotropic genes will be evolutionarily 

constrained and has been advanced by the “cost of complexity” model (Orr, 2000; Welch 

et al., 2003). However these characterizations can coexist at different time periods in a 

gene’s life cycle: pleiotropy may originate over a relatively short period of time following 

de novo birth of a gene, a gene duplication, or a regulatory change buffered by a non-

duplicate alternative pathway, and subsequent loss of buffering. Intriguingly, the TSA-

derived high-pleiotropy genes contained a significantly higher number of 

Saccharomyces-specific genes as compared to the low-pleiotropy genes, which is 

evidence that participation in many processes can occur near the beginning of the 

lifecycle of a gene. Additionally, there may be mechanisms in place that stabilize the 

effects of evolving genes. Post-transcriptional regulation may be strong enough to 
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counteract expression-level patterns, therefore stabilizing protein levels when needed 

(Artieri and Fraser, 2014), and explaining the association between high-pleiotropy genes 

and high protein abundance. Similarly, genetic hubs have been shown to typically have 

steady expression levels, likely as a consequence of their importance (Park and Lehner, 

2013), but the hubs that have variable expression levels are enriched for duplicates that 

may be able to buffer the effects of low expression (Park and Lehner, 2013).  Overall, 

there appears to be a complicated relationship between pleiotropy, adaptation, and 

genomic robustness that has yet to be elucidated. 

 

4.9 Methods for characterizing high- and low-pleiotropy genes 

 We used Wilcoxon rank-sum tests to compare the values of gene characteristics 

in our high- and low-pleiotropy gene classes, which were defined for genes with degree 

of at least the 50th percentile among all genes with pleiotropy scores. The gene 

characteristics are listed in section A4.3. All gene characteristics have data coverage of 

over 75% of genes (most have coverage over 95%), with the exception of three 

characteristics that were measured only for nonessential genes: phenotypic capacitance, 

curated phenotypes, and chemical genetic degree. These characteristics have coverage 

of nearly 60% of classified genes. We performed tests using pleiotropy scores obtained 

from the six different pleiotropy scoring configurations (for each of the TSA and DMA GI 

networks) and 22 testing variants, which are described below. The significance of p-

values from rank-sum tests was determined using the FDR-control procedure described 

in Benjamini et al. (2006), treating the sets of 36 tests with identical set-ups, but different 

gene properties, as families. 

 

4.9.1  Description of scoring configurations 

 Because there are multiple ways to derive gene functional profiles from SGA 

networks using the method presented in Chapter 3, we explored six reasonable 

versions, called pleiotropy scoring configurations. A scoring configuration comprises 

three specifications of the method (Figure 4.1 illustrates relevant details). First, functional 

profiles can be calculated for a network’s query strains or array strains and this 

determines the set of strains (and genes) that will be assigned a pleiotropy score; we 
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use the label “query” or “array”. Second, only one of the two bicluster sides is used for 

determining bioprocess annotations and, in relation to the strains being analyzed (the 

first specification), it either includes the strains or consists of their interacting partners; 

we use the label “associate” or “adjacent”. Third, the set of annotations used may be the 

manual annotations, “MA”, or the systematic annotations “SAFE”. The six combinations 

of these three methods specifications that we used are “Query, associate, manual”, 

“Query, associate, SAFE”, “Query, adjacent, manual”, “Array, associate, manual”, “Array, 

associate, SAFE”, and “Array, adjacent, manual”. 

 

4.9.2  Description of testing variants 

 For each scoring configuration, we performed multiple rank-sum tests, called 

“testing variants,” that explore different ways to define the high- and low-pleiotropy 

classes and control for possible biases that different types of mutant alleles may cause. 

The set of methods choices we considered that may affect any gene includes controlling 

for the GI degree of genes; removing strains that show weak signs of batch effects; and 

altering the percent of genes that are added to the high and low pleiotropy classes, 

which may be 20%, 30%, or 40%. Methods related to genes represented by TS and 

DAmP strains are the following: determining the gene’s pleiotropy score by taking the 

mean or maximum of the strains scores; discarding all strains of a mutation type (DAmP 

or TS); and applying a minimum GI degree threshold of 50 before averaging the degree 

of alleles to determine the high-degree genes that may be classified.  

 For each of these possibilities, we selected a default for use in reporting results 

and making figures. The default test variant is the following: degree controlling was 

used; in the case of multiple strains representing one gene, pleiotropy scores were 

averaged; only genes with the highest 50% of GI degree after averaging strains were 

kept (called "high-degree"); of high-degree genes, those with the highest and lowest 

30% of pleiotropy scores were classified as having high and low pleiotropy, respectively. 

 Finally, to understand how robust our rank-sum results are, we selected a total of 

22 testing variants (including the default) in which different methods are used. Only 12 of 

these are relevant for “array” scoring configurations because the sets of array strains in 

SGA networks are nearly all essential (TSA) or all nonessential (DMA). All combinations 

of these methods that we implemented are presented in Table 4.2. 
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Table 4.2. Test variants used for comparing gene properties in high- and low-

pleiotropy genes. This table describes test variants in terms of modifications that were 

made to the default method described in the text. The method modification of not 

controlling for degree was paired with all other selected combinations of modifications to 

the default method, so we shortened the table by omitting it; each row represents two 

variants—one with and one without controlling for degree. 

 
 

 The pleiotropy classes of high, medium, and low, are determined for each pairing 

of scoring configurations and testing variants because these methods choices affect 

which genes are considered. First, high-degree genes are identified as those with 

degree in the top 50% out of all genes that have been screened, have a pleiotropy 

score, and have not been removed by one of the test-variant modifications. For test 

variants that include degree control, we regress pleiotropy scores against degree and 

keep the pleiotropy residuals in place of pleiotropy scores. Then the pleiotropy scores (or 

score residuals) are divided into classes with the genes whose pleiotropy is in the top 
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30% of the high-degree genes labeled high pleiotropy, genes in the bottom 30% labeled 

as low pleiotropy, and the remaining 40% of genes labeled as medium pleiotropy. 

  



 

 101 

Chapter 5: Conclusions and future work 

5.1 Dissertation summary 

 Network structure is an important component of functional genomics and 

understanding it is required for prediction of phenotypes from genotypes. It is widely 

accepted that genes function through modules and that mechanisms of network 

structure promote robustness and adaptation, making biological complexity feasible. 

However, there are no characterizations of biological networks that successfully unify 

topological behavior with the functional roles of genes in determining phenotypes. The 

work described here investigates structure in the yeast genetic interaction network 

through the application of machine learning and data mining strategies. We use 

interpretable evolutionary, functional, and physical properties of genes to relate network 

structure to gene functional behavior. 

 We first showed that there is a high conservation of the relationship between 

gene characteristics and network structure by building an ensemble decision tree model 

that predicts negative GI degree. This model was trained using data from S. cerevisiae, 

but we successfully applied it to predict GI degree of S. pombe genes. We have 

therefore demonstrated that the structural properties of the S. cerevisiae GI network can 

be encapsulated in a model that is useful for other species. An important aspect of this 

result is that it suggests a practical method to guide the design of genetic interaction 

screens in other species, which have risen in interest since advances in gene-editing 

technology have made large-scale genetic interaction experiments feasible in more 

complex organisms (Doudna and Charpentier, 2014), including human. Since the yeast 

genome is extensively annotated and its GI network is completely mapped, models built 

in yeast may be able to capture patterns more complex than degree; our work suggests 

that these will be applicable to incomplete GI networks of other species. 

 Our next investigation of genetic interaction network structure led to gene 

functional characterization and a novel measurement of gene pleiotropy. The GI network 

is an ideal context for measuring pleiotropy because it is systematically measured and 

highly modular. We began with tackling the problem of module discovery by using 

frequent item set mining to extract all dense bipartite subgraphs of the GI network. 

Generally, previous studies explored networks using clustering methods that cannot 

reveal pleiotropy. The typical methods used, such as hierarchical clustering, are far too 
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limited to fully make use of large, comprehensive networks. After taking steps to remove 

redundancy of each gene’s associated modules, we annotated modules with biological 

processes and used them to build functional profiles for all genes. Each functional profile 

describes the extent to which a gene’s functional influence is focused in one sector of 

cellular function or is spread among many.  We therefore used the entropy of functional 

profiles as a measurement of gene pleiotropy. This is the first measure of pleiotropy 

derived from a GI network, and it is notable in that it is based on a highly comprehensive 

and unbiased data set, identifies functions at a module level, and includes gene 

functions that are hidden in single-mutant strains but revealed in double mutants. To 

describe this new pleiotropy score, we compared many gene characteristics between 

groups of high- and low-pleiotropy genes. Surprisingly, we found that some gene 

characteristics expected to represent pleiotropic genes corresponded to the low, not 

high, pleiotropy genes. Gene characteristics that were positively associated with high-

pleiotropy genes included high expression variance across environmental conditions, 

status as a WGD duplicate, high copy number volatility, and high protein abundance. 

 Pleiotropy has a history of being difficult to define and measure, but is a common 

and important aspect of the relationship between genotypes and phenotypes. Because 

of this, pleiotropy is expected to affect gene and network evolution. Classically, 

pleiotropic genes are expected to be highly constrained. This idea has never before 

been challenged, thus our results represent a notable departure from current theory. 

However, principles of network evolution are so far poorly described and many previous 

measures of pleiotropy are derived from experimental or curated data that contain 

biases. We hope that this new view of pleiotropy will inspire more investigations into 

using genome-wide measurements of function at a pathway level. 

 

5.2 Future work 

 Despite the fact that biclusters mined from the genetic interaction network have 

significant benefits over modules identified by most clustering methods, they have 

shortcomings that can be addressed. One challenge we faced is that GI networks are 

known to have high rates of false negatives, and standard frequent item set mining only 

identifies complete bipartite structures. The false negatives in genetic interaction data 

cause fragmentation of network structures that are dense but not complete. Future work 
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may obtain more accurate functional modules through two approaches. Firstly, 

integration of other high throughput data sets, such as co-expression or physical 

interactions, with the GI network could help to fill in connections between genes that 

have close functional relationships not captured in genetic interactions. Secondly, there 

are frequent item set mining algorithms that are able to tolerate false negatives, and 

produce biclusters that are not complete bipartite structures. We investigated some of 

these algorithms and found them to be too computationally intense for the large size of 

the latest yeast network. However, these algorithms may be more useful if minimum 

support and item set size parameters are used to reduce the search space and identify 

larger modules. Additionally, new frequent item set mining algorithms and 

implementations may be available in the future. 

 The exhaustive set of biclusters we have discovered in the GI network remains a 

rich resource for characterizing the modular nature of cellular functions. Assessing the 

coherency of different gene characteristics in biclusters may suggest new properties of 

modules. One of the more thoughtfully designed models of protein network evolution 

(Kim and Marcotte, 2008) highlighted the physical constraints of proteins and took into 

account the characteristic of gene age. Consideration of a larger panel of gene 

characteristics, such as those we have collected, and how they distribute among 

bicluster modules may suggest further constraints that should be added to network 

evolution models. For example, we may be able to use evolutionary characteristics of 

genes to describe the age and evolution of individual modules. 

 The surprising contrast between the characteristics of highly-pleiotropic genes 

we have identified and the expectations that pleiotropic genes would show signs of slow, 

limited evolution should be investigated. In the case of controversy over inter- and intra-

modular (date and party) protein interaction hubs, the context of co-expression and the 

behavior of singlish- and multi-interface proteins provided a convincing explanation. 

Considering that our set of low-pleiotropy genes had a high tendency to be part of 

physical modules and that inter-modular PPI hubs had more complex expression 

patterns that their counterparts, there may be a strong connection between pleiotropy 

and the PPI hub classes. An interesting first analysis could calculate date and party hubs 

directly from the GI network, in much the same way as it was done in the original 

publication, and compare the resulting gene classes to our measure of pleiotropy. We 

demonstrated here that bicluster modules more accurately reflect gene functions than 
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individual interactions, so the date-vs-party hub calculations could be modified to 

describe hub gene co-expression not with individual genes, but with modules. 

 Lastly, experimental characterizations of high-pleiotropy genes could 

substantially increase confidence in our pleiotropy measure. Double-mutant phenotypes, 

such as those observed through high-content screening (Vizeacoumar et al., 2010), 

could identify specific gene functions that are buffered in single-mutant phenotypes. 

Further, experiments could confirm the accuracy of gene participation in modules. For 

example, a gene that appears in a bicluster with a set of functionally-related genes but 

does not already have documented evidence of this function could be selected for 

experiments that precisely measure the gene’s relationship to the relevant phenotypes. 
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Appendix 1:  Term definitions 

Initializations and acronyms 

AP-MS ...affinity purification followed by mass spectrometry 

BLAST ...Basic Local Alignment Search Tool 

CAI ........codon adaptation index 

DAmP ....decreased abundance by mRNA perturbation 

DD .........duplication and divergence 

DMA ......deletion mutant array 

dN/dS ....ratio of the rate of nonsynonymous mutations to the rate of synonymous 

mutations 

DNA .......deoxyribonucleic acid 

FCM .......fuzzy c-means 

GEO ......Gene Expression Omnibus 

GFP .......green fluorescent protein 

GI ...........genetic interaction 

GO .........Gene Ontology 

HR .........homologous recombination 

MA .........manual annotations (annotation gold standard) 

MCL .......Markov clustering 

Nc ...........effective number of codons 

NETO ....new-end take off (phase of S. pombe growth) 

PCC .......Pearson’s correlation coefficient 

PCR .......polymerase chain reaction 

PPI .........protein-protein interaction 

RNA .......ribonucleic acid  

SAFE .....spatial analysis of functional enrichment 

SGA .......synthetic genetic array (high-throughput method of mating yeast strains, 

notably used to construct GI networks through calculation of SGA scores) 

SM .........single mutant 

SNP .......single-nucleotide polymorphism 
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SSD .......small-scale duplication 

TS ..........temperature sensitive 

TSA .......temperature sensitive array 

UTR .......untranslated region (of mRNA molecules) 

WGD ......whole-genome duplication 

Y2H .......yeast two-hybrid 

 

Glossary 

Also see Appendix 4, section A4.3 for definitions of gene characteristics. 

 

Allele  A version of a gene. 

Array gene  A gene that is represented by a single-mutant SGA array strain. 

Array strain  In the context of SGA, a yeast strain in a fixed collection, such as the 

deletion mutant array or the temperature sensitive array, that contains an array-

specific selectable marker and is typically mated with a query strain. 

Bicluster  In a matrix, a subset of rows paired with a subset of columns such that the 

elements in the intersection are meaningful.  

Bipartite  Consisting of two disjoint sets of nodes and a set of edges such that no edge 

occurs between two nodes in the same set. 

Cluster  A set of data points that show higher similarity with each other than with other 

data points, e.g. densely connected nodes in a network. 

Connected  For two nodes, linked with a network edge; for more nodes, linked with 

edges. (The graph-theoretic definition involving a path is not used in this 

document; here, and typically in genomics, the term refers to a single edge, or 

multiple edges that may or may not be incident.) 

Conservation  Retention through evolution, often observed through identification in two 

diverged species; often said of a sequence, structure, pattern or relationship. 

DAmP  A method in which a marker inserted into the 3’ UTR of a gene destabilizes the 

gene transcripts, causing low protein levels. 

Degree  The number of edges a node participates in; equivalent to the number of 

neighbors the node has. 
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Deletion collection  For S. cerevisiae or S. pombe, a set of mutant strains, each of 

which has a single gene removed from its genome; nearly all nonessential genes 

are represented by a strain. 

Deletion mutant  A strain in which a known gene has been removed. 

Deletion mutant array  The fixed set of deletion-mutant yeast strains that are each 

mated with every query strain in an SGA experiment. 

Edge  One of the two basic types of units that compose a graph or network: a 

relationship between two nodes in a graph; e.g. an interaction in an interaction 

network. 

Entropy  A measure of diversity; specifically in this document, Shannon entropy; given a 

distribution, the average information gained from a single data point. See Appendix 

4, section A4.1. 

Epsilon score  The interaction score for a pair of strains screened in an SGA genetic 

interaction experiment. 

Essential  Required for viability of an organism (typically said of a gene). 

Fitness  In yeast, the observed growth rate relative to that of a wild type strain. 

Fitness defect  Decrease of fitness in comparison to wild type fitness, i.e. 1 – fitness. 

Gene  A region of DNA that is transcribed as a unit; the RNA transcript may be used 

directly or translated into a protein. 

Graph  A mathematical structure composed of a set of objects (nodes) and a set of 

relationships (edges) that each link two objects (nodes) together. 

Homolog  An ortholog or paralog. 

Hub  A node with a high degree, used as a general description or in relation to a defined 

minimum degree. 

Mutant  A strain or organism that contains mutations; not wild type.  

Mutation  A change in DNA sequence, usually relative to that of another strain or 

species, such as a standard laboratory strain or ancestral species. 

Network  Real-world phenomenon or specific concept that can be modeled as objects 

with relationships (i.e. represented as a graph) or its representative graph data set; 

graph terminology can be used for networks. 
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Node  One of the two basic types of units that compose a graph or network, it may be 

joined to another node with an edge; e.g. usually a gene or protein in this 

document. 

Nonessential  Not required for viability of an organism, but possibly causing a reduction 

in fitness if mutated (said of a gene). 

Orthologs  Genes of different species that evolved from one ancestral gene. 

Paralogs  Genes in a single genome that evolved from one ancestral gene and have 

detectable sequence similarity with each other. 

Profile  Array (ordered list) of all interaction measurements collected for a single node in 

a network. 

Query gene  A gene that is represented by a single-mutant SGA query strain. 

Query strain  In the context of SGA, a yeast strain that contains a query-specific 

selectable marker and is mated with an array strain. 

Small-scale duplicate  Gene that derives from a “parent” gene that was duplicated by a 

mutation event that did not affect the entire genome. 

Strain  A version of a species, as defined by its genome, which may have a known or 

unknown sequence. In the context of the yeast GI network, strains are 

experimentally constructed and each represents a single gene; for ease of 

language in this context, a strain may be referred to as a gene occasionally. 

Subgraph  A subset of a graph’s nodes and all or some of the edges between them. 

Temperature sensitive  Said of a mutant allele or strain harboring a mutant allele, has a 

phenotype that occurs only at high temperature. 

Temperature sensitive array  The fixed set of temperature-sensitive yeast strains that 

are each mated with every query strain in an SGA experiment. 

Whole-genome duplicate  In yeast, one of two paralogs created by the whole genome 

duplication event that occurred approximately 100 million years ago in an ancestor 

of S. cerevisiae and its closest relatives in six genera. 

Wild type  Of the standard reference version of a strain or species, which is typically 

standard in terms of its DNA sequence; not a mutant. 
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Appendix 2:  Supplementary items for Chapter 2 

A2.1 Supplementary figures 

 
Figure A2.1. Evaluation of prediction performance excluding the SM fitness defect 

feature from bagged regression tree models. Models were trained on all features 

listed in Table 2.1 except for SM fitness defect. Pearson correlation coefficients between 

predicted and actual negative genetic interaction degrees were averaged across 25 

repetitions of model construction, shown here with error bars of standard deviation. The 

left set of bars shows the performance of predictions made for ~550 S. pombe genes 

and the right set of bars shows the performance of predictions made for all nonessential 

deletion mutants in S. cerevisiae. For each scenario, models were trained both on data 

from the same species (red bar) as well as data from the other species (blue bars). The 

light blue bars correspond to predicting degrees of all genes in the test species, while 

the dark blue bars correspond to predicting the subset of genes lacking orthologs in the 

training species. 
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Figure A2.2. Patterns in gene characteristics other than SM fitness defect show 

predictive ability not captured by SM fitness defect alone. Using all features except 

SM fitness defect, models were trained to predict the residual negative genetic 

interaction degree that remained after subtracting degree predictions made from a 

regression tree model that was trained on the single feature SM fitness defect. Details of 

the bar chart are the same as those specified for Figure A2.1. 
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Figure A2.3. Global analysis of rewiring based on whole-genome predictions in S. 

pombe. Points in the scatter plot each represent groups of between two and 23 genes 

that are annotated with the same GO term (section 2.8.3). Darker color represents 

complexes that are predicted to have significant rewiring. Generally, genes in GO-term 
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groups that fall on the diagonal are predicted to have conserved degrees, while those 

that fall far off-diagonal show evidence for large degree differences between the two 

species. Significantly rewired groups are labeled by their GO terms. 

 

 

Figure A2.4. Within-species control for cross-species rewiring analysis. The 

rewiring-discovery procedure was applied to S. cerevisiae genes and their predicted and 

actual genetic interaction degrees (substituting S. cerevisiae predictions for S. pombe 

predictions in the pipeline). (A) This within-species evaluation revealed six out of 91 

complexes that appeared significantly rewired (p < 0.05). While this is fewer than was 

identified in the S. pombe-S. cerevisiae comparison, this is more than expected by 
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chance, which likely reflects complexes for which we are systematically over- or under-

predicting actual degrees. Of the 11 rewired complexes (Figure 2.4A), 4 of these are 

among the six complexes significant in the control experiment. (B, figure below) 14 of 

the 44 predicted rewired GO term in the S. pombe-S. cerevisiae comparison (Figure 

A2.3) also showed significance in the within-species control. We suggest that these 

cases should be excluded from further analysis, as they likely reflect systematic 

prediction errors, not true cases of cross-species differences. 
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Continued on next page. 



 

 136 

 

Figure A2.4B. See entry in caption above. 
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Figure A2.5. Validation of rewiring predictions is robust across a range of co-

expression percentile thresholds used to define networks. As described in the main 

text and Figure 2.4, we constructed networks of co-expression relationships among 

genes for each yeast species, then labeled genes according to our rewiring designation. 

Edges in the co-expression network were classified by whether involved genes were 
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both rewired, only one was rewired, or neither was rewired. Bars show fractions of 

conserved co-expression relationships between species within each of these classes 

and error bars are 95% confidence intervals for the binomial proportion test. Panels 

show conservation results from co-expression networks that differ in their confidence 

and density, both of which are affected by placing a threshold, which is a percentile, on 

co-expression levels and retaining only edges corresponding to levels that exceed the 

threshold. Note that we observe a significant difference between the conserved-

conserved and rewired-rewired classes for a range of cutoffs. Also, the significance of 

the difference diminishes for weaker thresholds, likely due to an abundance of spurious 

co-expression edges allowed at the cutoffs. 

 

A2.2 Gene characteristics 

Yeast conservation 

 Yeast conservation is a count of how many of 23 different species of Ascomycota 

fungi possess an ortholog of a given gene. This measure was first described in Wapinski 

et al. (2007b), and ortholog data was downloaded from the Fungal Orthogroups 

Repository (Wapinski, 2009). The 23 species are an expanded set of the 17 species 

described in the study, with the additions of S. octosporus, S. japonicus, L. 

elongosporus, C. parasilosis, C. tropicalis, and C. guilliermondii. 

 

Broad conservation 

 Similar, though complementary, to yeast conservation, broad conservation is a 

count of how many out of a set of 86 non-yeast species possess an ortholog of a given 

gene. To count this, we obtained orthogroup designations from InParanoid (Ostlund et 

al., 2010). For each gene, we considered it to have an ortholog in another species only if 

it appeared in a cluster with the other species and was given a score of 1.0 by the 

InParanoid clustering method; that is, we considered a yeast gene to have an ortholog in 

species x if it was a seed gene for a gene cluster that had an orthologous cluster in 

species x. Although Ostlund et al. (2010) considered 100 species, we disregarded the 

yeast species since the yeast conservation measure already captures information from 

these species. 
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CAI 

 The Codon Adaptation Index, a measure of bias in the usage of synonymous 

codons, was calculated with the cai tool in the EMBOSS suite (Rice et al., 2000). For 

each gene, the index is based on a comparison between codon frequencies in the gene 

and frequencies observed in a set of highly expressed genes; for both S. pombe and S. 

cerevisiae, EMBOSS included a default codon usage table that was used. 

 

Copy number 

 Copy number is a count of the number of paralogs a gene has. This was 

determined from clusters identified by the InParanoid algorithm (Berglund et al., 2008) 

run on S. cerevisiae and S. pombe. All genes that appear in the same cluster were 

considered copies. 

 

Disorder 

 The protein disorder measure is the percent of unstructured residues in a gene’s 

protein product as predicted by the Disopred2 software (Ward et al., 2004a).  

 

dN/dS 

 dN/dS is the ratio between nonsynonymous and synonymous mutations in 

coding regions of genes. For S. pombe genes, dN/dS was calculated twice, using S. 

japonicus, S. octosporus as out-group species, and averaged to produce a final dN/dS 

estimate. Orthologous protein sequences were globally aligned with EMBOSS (Rice et 

al., 2000) using default parameters. For each S. pombe gene, only the out-group 

ortholog that produced the highest alignment score was used for dN/dS calculations; 

dN/dS ratios were calculated with the PAML package's implementation of the Yang and 

Nielsen method for estimating substitution rates (Yang, 2007; Yang and Nielsen, 2000). 

 Similarly, we computed the average dN/dS ratio for S. cerevisiae in comparison 

to sensu stricto yeast species (S. paradoxus, S. bayanus and S. mikatae). Protein 

sequences were aligned using MUSCLE (Edgar, 2004) and dN/dS ratios were computed 

using PAML (Yang, 2007). 
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Number of domains 

 The number of domains for a gene is the number of regions that Pfam has 

identified as domains in the protein sequence of the gene. Domain matches for each 

protein were obtained online from the Pfam database (Punta et al., 2012).  

 

Number of unique domains 

 Since the same domain is often repeated multiple times in a single protein, this 

feature modifies number of domains by counting the number of unique domains present 

in each protein. 

 

Nc 

 This measure is a simple statistic of codon usage bias and expresses the 

effective number of codons used in a gene. The chips tool of EMBOSS (Rice et al., 

2000) was used to calculate this feature. 

 

Protein length 

 Protein length is simply the number of amino acids in the corresponding protein. 

 

Co-expression degree 

 This measure is derived from the co-expression network, the construction of 

which is described in section 2.8.4. The network contains a level of co-expression for all 

pairs of genes. We therefore sparsified the network by considering only edges between 

gene pairs whose co-expression levels were above the 95th percentile. The co-

expression degree of a gene is the number of genes with which its co-expression value 

is retained in this restricted network. 

 

Expression level 

 Expression levels of all S. cerevisiae genes were downloaded from (Holstege et 

al., 1998). Expression levels of all S. pombe genes are measured RNAseq abundance 

that corresponds to Grabherr et al. (2011) and were downloaded from the Broad 

Institute’s Fungal Genome Initiative website (Broad Institute, 2012). 
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Expression variation 

 We estimated the amount of variability in a gene’s expression level by measuring 

the variance of its expression across a number of different microarray experiments, 

which included microarray data from different growth conditions and replicates. Within 

each study, we found each gene’s percentile of variation. The final value assigned to 

each gene is its average percentile across all studies. These datasets were obtained 

from a number of different studies that deposited data in the Gene Expression Omnibus 

(GEO) (Edgar et al., 2002). S. pombe data used in this analysis is the same as those 

used in construction of the S. pombe co-expression network.  

 

Fitness defect 

 S. pombe fitness defect measurements were obtained by conducting a series of 

control SGA experiments as described elsewhere (Baryshnikova et al., 2010a; Dixon et 

al., 2009; Dixon et al., 2008). Briefly, a S. pombe SGA query strain harboring a dominant 

drug-resistance marker (natMX4) inserted at a neutral genomic locus (h- leu1::natMX4 

ade6-M210 ura4-18 leu1-32), was crossed against the S. pombe nonessential deletion 

mutant collection (h+ geneXkanMX4 ade6-M210 ura4-18 leu1-32). Following mating 

and sporulation, haploid meiotic progeny harboring both the kanMX4 and natMX4 

markers are selected and colony sizes are measured after applying standard 

normalization procedures. We have previously shown that colony sizes derived from 

these control screens reflect fitness defect of the kanMX4-marked single mutant strains 

that comprise the deletion mutant array. Fitness estimates were based on four control 

screens as described above and combined with five mutant screens (prz1, res2, 

SPAC1687.22c, SPCC1682.08, and SPAC6G9.14), which contained the dominant drug-

resistance marker (natMX4) (Dixon et al., 2008). 

 S. cerevisiae fitness defect values, defined quantitatively in Baryshnikova et al. 

(2010b), were published in Costanzo et al. (2010) and experimental procedures are 

detailed in Baryshnikova et al. (2010a). As in the S. pombe protocol described above, 

SGA was used to insert a neutral query marker into mutant strains so that we could 

observe colony growth for each mutant in the deletion collection under the effects of only 

the single deletion. Fitness estimates are based on a large number of replicate screens.  
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Protein-protein interaction degree 

 The protein-protein interaction degree of each gene’s protein is the number of 

physical interactions reported in BioGRID, version 2.0.58 (Stark et al., 2006). 

Interactions considered physical were restricted to those identified by the following 

terms: Affinity Capture-MS, Affinity Capture-RNA, Affinity Capture-Western, Biochemical 

Activity, Co-crystal Structure, Co-fractionation, Co-localization, Co-purification, Far 

Western, FRET, PCA, Protein-peptide, Protein-RNA, Reconstituted Complex, and Two-

hybrid. 

 

Multifunctionality 

 Multifunctionality is a measure of the number of GO terms that are annotated to a 

gene (Ashburner et al., 2000). From GeneDB (Hertz‐Fowler et al., 2004) and 

Saccharomyces Genome Database (SGD Project, 2010) gene association files 

(download in November 2009) for S.pombe and S. cerevisiae, respectively, redundant 

terms—one term from pairs of terms that are considered “alternative ids”—were 

removed before totaling the number of GO term annotations for each gene. 

 

A2.3 Genetic interaction degrees 

 Negative genetic interaction degrees of S. pombe genes were derived from 

interactions reported in Roguev et al. (2008). Only those interactions with S-scores <= -

2.5 were considered. This dataset contains 551 genes that are involved in chromosome 

function; intentionally included are ~100 genes that participate in processes present in 

both S. pombe and human, but importantly, are not present in S. cerevisiae (e.g. RNAi 

machinery). 

 Negative genetic interaction degrees of S. cerevisiae genes were collected from 

the measurements reported in Costanzo et al. (2010), which screened for interactions 

involving 3456 array genes, 1438 of which have S.pombe orthologs. As suggested by 

the authors, only negative interactions with an epsilon value of <= -0.08 and a p-value 

cutoff < 0.05 were considered. This dataset includes degree measurements for most 

nonessential genes. 
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A2.4 Orthologs 

 Orthology mappings (Additional files 4 and 5) are from the InParanoid eukaryotic 

ortholog database (Berglund et al., 2008). Although the InParanoid algorithm produces 

clusters, our analysis depends on ortholog pairs. To calculate correlations between S. 

cerevisiae and S. pombe for each of the gene features (Figure 2.2A), only genes in one-

to-one orthology mappings were used. When holding out orthologs for degree prediction 

in a set of "species-specific" genes (Figure 2.2C), all genes that had any number of 

orthologs were removed. Since InParanoid may not report orthologs that other 

algorithms have detected, we took a conservative approach by additionally removing any 

genes that had an ortholog in the pombe database GeneDB (Wood, 2006), which 

includes manually curated orthologs. 
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Appendix 3:  Supplementary items for Chapter 3 

 
Table A3.1. Bicluster size preference tables. Each element is the median of all 

maximum Jaccard similarities between GO terms and biclusters, calculated for the set of 

biclusters with specified dimensions.  
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Table A3.2. Terms used in the manual annotation (MA) scheme for yeast gene 

biological-process annotation. 

 
 
Table A3.3. Terms used in the SAFE scheme for yeast gene biological-process 

annotation. 
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Appendix 4:  Supplementary items for Chapter 4 

A4.1 Pleiotropy (entropy) scores 

 Entropy of a strain was calculated from its functional profile as − ∑ 𝑝𝑖 log2 𝑝𝑖
𝑘
𝑖=1 , 

where 𝑝𝑖 is the fraction of biclusters annotated with the 𝑖-th process and 𝑘 is the total 

number of terms in the annotation scheme. Pleiotropy scores were not assigned to 

genes that had fewer than 10 annotated biclusters. 

 

A4.2 Supplementary figures and tables 

 

 
Figure A4.1. Example bicluster that contains CMD1 and was annotated by the 

bioprocess term “Cell polarity/morphogenesis”. Due to a physical interaction with 

MYO2p, a myosin required for polarized growth, Cmd1 localizes to the bud neck and tip. 

 

Cmd1-binding, actin 
cytoskeleton related 
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Figure A4.2. Example bicluster that contains CMD1 and was annotated by the 

bioprocess term “Chrom. seg/kinetoch./etc”. Cmd1 is involved in attachment of 

microtubules to the SPB and is required for correct spindle function.  

 

 
Figure A4.3. Example bicluster that contains CMD1 and was annotated by the 

bioprocess term “Golgi/endosome/vacuole”. Cmd1 is thought to regulate the final 

stages of vacuolar fusion. 
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Figure A4.4. Example bicluster that contains RAD27 and complexes involved in 

the DNA replication fork. 

 

 
Figure A4.5. Example bicluster that contains RAD27 and complexes involved in 

Okazaki fragment processing and double-strand break repair. Another RAD27-

associated bicluster (not shown) contained the two genes listed on the left. 
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Table A4.1. Summary of gene characteristics associated with high- and low-

pleiotropy genes for “TSA, array” scoring configurations. Tests were performed for 

pleiotropy scores derived from different pleiotropy scoring configurations (columns). 

Values shown are the number of rank-sum tests that yielded a significant p-value, out of 

12 variations performed (see section 4.9 and Table 4.2). Blank cells indicate zero tests 

with significant results. Asterisks indicate characteristics that were associated strongly 

enough with both pleiotropy classes that they are listed in two rows. The significance of 

p-values from rank-sum tests was determined using the FDR-control procedure 

described in Benjamini et al. (2006), counting tests for 37 gene properties as a family. 
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Table A4.2. Summary of gene characteristics with non-robust associations with 

high- and low-pleiotropy genes. Details are as in Table 4.1. 

 
 

A4.3 Gene characteristics 

Gene age indicates the phylogenetic distance of the most distantly related species with 

an identified ortholog to a given yeast gene. Genes only found in S. cerevisiae are 

assigned the age of 0 and genes with orthologs appearing in more distant species are 

assigned higher ages up to 14. Two phylogenetic trees were used in this analysis: one 

obtained from Ostlund et al. (2010) contains 99 animal, plant, and fungi species and one 

obtained from Wapinski et al. (2007) contains 23 yeast species. 

 

Broad conservation is a count of how many non-yeast species, out of a set of 86, have 

an ortholog of a given gene. To count this, we obtained orthogroup designations from 

InParanoid (Ostlund et al., 2010). For each gene, we considered it to have an ortholog in 

another species only if it appeared in a cluster with the other species and was given a 

score of 1.0 by the InParanoid clustering method; that is, we considered a yeast gene to 

have an ortholog in species x if it was a seed gene for a gene cluster that had an 

orthologous cluster in species x. Note that this measure is similar, though 

complementary, to the “yeast conservation” measure described below, which focuses on 

conservation within the yeast clade. 
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CAI, codon adaptation index, is a sequence-based measure of bias in usage of 

synonymous codons as compared to usage in highly expressed genes. It was calculated 

using the cai tool and the default codon usage table in the EMBOSS suite (Rice et al., 

2000). 

 

Chemical-genetic degree is a count of drug and environmental conditions to which a 

homozygous diploid gene-deletion mutant strain is significantly sensitive (Hillenmeyer et 

al., 2008). 

 

Co-expression degree is a measure derived from a co-expression network based on 

integration of a large collection of expression datasets (Huttenhower et al., 2006). The 

network was sparsified by considering only edges between gene pairs whose co-

expression levels were above the 95th percentile. The co-expression degree of a gene is 

the number of genes with which its co-expression value is retained in this restricted 

network. 

 

Complex member is a binary feature that indicates whether the corresponding protein is 

a component of at least one complex based on the complex standard provided in 

Costanzo et al. (2016). 

 

Copy number is a count of the number of paralogs each gene has. This was 

determined from clusters identified by the InParanoid algorithm (Ostlund et al., 2010). All 

genes that appeared in the same cluster were considered paralogs. 

 

Copy number volatility is the number of times that a gene is lost or gained among 23 

Ascomycete fungi species, as defined by Wapinski et al. (2007). 

 

Curated phenotypes is the number of mutant phenotypes associated with a 

nonessential gene’s deletion strain. Mutant phenotypes were downloaded from the 

Saccharomyces Genome Database (SGD) on January 31, 2013. The list of phenotypes 

was filtered to include only those related to deletion mutants of verified or 

uncharacterized open reading frames (mutant type = 'null', feature type = 'ORF'). 

Phenotypes were further filtered to only include increased or decreased phenotype 
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expression compared to a wild-type strain. Finally, the number of non-wild-type 

phenotypes was counted for each gene. Unclear descriptions of phenotypes, such as 

"abnormal", were ignored. 

 

Deleterious SNP rate is the number of predicted deleterious SNPs observed for a given 

gene in a diverse set of sequenced S. cerevisiae strains (Liti et al., 2009) normalized by 

gene length. Deleterious SNP rate of strains is similar, but counts strains containing 

deleterious SNPs. These SNP features were derived from identification and analysis of 

SNPs in 19 strains as described in (Jelier et al., 2011). Briefly, SNPs were identified from 

sequence alignments of all strains to the S288C reference sequence. The SIFT 

algorithm, with some modifications, was used to predict which nonsynonymous SNPs 

are likely to have functional consequences. We applied the recommended threshold to 

SIFT scores, calling any SNP with a score of <= 0.05 deleterious. 

 

dN/dS is the ratio of the number of nonsynonymous to synonymous mutations in a given 

gene. We computed the average dN/dS ratio for S. cerevisiae in comparison to the 

sensu stricto yeast species (Saccharomyces paradoxus, Saccharomyces bayanus, and 

Saccharomyces mikatae). Protein sequences were aligned using MUSCLE and dN/dS 

ratios were computed using PAML (Edgar, 2004; Yang, 2007). 

 

Effective number of codons is a measure of codon usage bias and is an alternative to 

CAI that does not require a pre-defined set of highly expressed genes. This measure 

was computed using PAML (Yang, 2007). 

 

Essential, a binary feature, is true for any gene that is required for viability under 

standard laboratory conditions. 

 

Expression level is a measurement of the mRNA expression level of a gene (Holstege 

et al., 1998). 

 

Expression variance, environ. is the variance in a gene’s expression across all 

measurements in the Gasch et al. (2000) dataset. This study subjected yeast to many 

environmental conditions and measured expression of nearly all yeast genes with 
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microarrays. Environments included heat shock, hydrogen peroxide, superoxide 

generated by menadione, diamide, dithiothreitol, hyper-osmotic shock, amino acid 

starvation, nitrogen source depletion, and progression into stationary phase, as well as 

alternative carbon sources and variable temperatures. The data contain multiple time 

points and temperatures for the environments listed. 

 

Expression variance, genetic-A is the variance of expression for each yeast gene 

measured across a set of strains including BY4716, RM11-1a, and 112 segregants from 

crosses between BY4716 and RM11-1a. This reflects variation that occurs in genetically 

diverse genomic backgrounds. The expression data set was produced by Brem and 

Kruglyak (2005) using DNA microarrays. 

 

Expression variance, genetic-B is the variance of expression for each yeast gene 

measured across 22 strains from geographically and environmentally diverse locations. 

This reflects expression variation that occurs in genetically diverse genomic 

backgrounds. The expression data set was produced by Skelly et al. (2013) using RNA-

seq. 

 

log2(Distance from telomere) is the distance, in nucleotides and log-transformed, 

between a gene and the start of a its closest telomere. 

 

Multifunctionality is a count of annotations to “biological process” terms of the Gene 

Ontology (Ashburner et al., 2000). Specifically, it is the total number of annotations 

across a set of functionally distinct GO terms described in Myers et al. (2006). 

 

Number of complexes is a count of the number of complexes by which a given gene is 

annotated in the protein complex standard provided in Costanzo et al. (2016). 

 

Number of domains is the number of domains, counting repeated domains, present 

within a given protein, as identified by PFAM (Finn et al., 2013)(downloaded July 2015). 

Number of unique domains is the same but does not count repeated domains. 
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Originated in Saccharomyces is a binary value that is true if a gene originated in the 

Saccharomyces clade of the phylogenetic tree, which is assumed if the most distant 

species with an ortholog is a Saccharomyces yeast species. Specifically, we consulted 

the species tree from Wapinski et al. (2007) and identified all genes that appear only in 

S. cerevisiae’s closest relatives: species up to and including Saccharomyces bayanus. 

Note that although some more distant species (Naumovozyma castellii, Lachancea 

kluyveri) were originally placed in the genus Saccharomyces and may still be referred to 

with this name as described in (Wapinski et al., 2007b), these have subsequently been 

associated with different genera. 

 

Phenotypic capacitance was computed by Levy and Siegal (2008) and captures 

variability across a range of morphological phenotypes upon deletion of a nonessential 

gene. 

 

PPI degree, Tap MS is the total number of protein-protein interactions in the union of the 

two data sets from Gavin et al. (2006) and Krogan et al. (2006), which both performed 

experiments using Tandem Affinity Purification coupled with Mass Spectrometry. 

 

PPI degree, Y2H is the total number of binary, physical interactions detected using 

yeast two-hybrid analysis (Yu et al., 2008). 

 

Protein abundance was measured by fluorescence of GFP-tagged proteins grown in 

liquid rich media; protein abundance under stress was measured by fluorescence of 

GFP-tagged proteins grown in liquid minimal media (Newman et al., 2006). 

 

Protein disorder is the percent of unstructured residues as predicted by the Disopred2 

software (Ward et al., 2004). 

 

Protein length is the number of amino acids in a gene’s encoded protein. 

 

Single mutant fitness defect was calculated by Costanzo et al. (2016) and is the 

decrease in the growth of a single-gene mutant strain as compared to wild type. 
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SSD duplicate, a binary feature, is true for genes with one or more paralogs that 

resulted from small scale duplication (SSD) events. To identify pairs of genes that 

emerged from SSD events, VanderSluis et al. (2010) searched for gene pairs that meet 

the following criteria: the gene pair must have a sufficiently high sequence similarity 

score (FASTA Blast, E = 10), sufficient protein alignment length (> 80% of the longer 

protein), an amino acid level identity of at least 30% for proteins with aligned regions 

longer than 150 amino acids or greater than [0.01n + 4.8L^(-0.32(1 + exp(-L/1000)))] 

with L defined as the aligned length and n = 6 for shorter proteins (Gu et al., 2002; Rost, 

1999). 

 

Transcription level is the average measured number of mRNA copies of each 

transcript per cell (Holstege et al., 1998). 

 

WGD duplicate, a binary feature, is true for any gene that has a paralog that resulted 

from the whole genome duplication event. The WGD event designation was reconciled 

from several sources (Byrne and Wolfe, 2005). 

 

Yeast conservation counts how many of 23 different species of Ascomycota fungi 

possess an ortholog of a gene. This measure was described by Wapinski et al. (2007) 

and ortholog data were downloaded from the associated website 

http://www.broadinstitute.org/regev/orthogroups/. 
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