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 Abstract 

 

The overall goal of this thesis work is to use advanced noninvasive neuroimaging 

modalities and techniques to study the underlying neurological mechanisms of both 

diseased and healthy brains. The two main applications of this work are for the diagnosis 

of epilepsy and management of pain.  

Epilepsy is one of the most prevalent neurological disorders. It affects an 

estimated 2.7 million Americans. There are two broad types of epilepsy: partial and 

generalized epilepsy. For patients with drug resistant focal epilepsy, which account for 

one third of the patient population, surgical resection may provide the opportunity of 

seizure control.  Existing presurgical planning methods are not only invasive in nature, 

they may also fail to provide additional information needed for surgery due to the 

relatively limited spatial coverage. On the other hand, idiopathic generalized epilepsy 

(IGE), unlike focal or partial epilepsy, often affects the whole or a larger portion of the 

brain without obvious, known cause. Treatment options are more restricted as resection is 

not a choice. Therefore, it is important to understand the underlying network which 

generates epileptic activity and through which epileptic activity propagates. One aim of 

the present thesis was to use noninvasive imaging techniques including fMRI and EEG to 

localize epileptogenic zone for the purpose of assisting surgical planning in the focal 

epilepsy cases; and to improve our understanding the underlying mechanisms of 

generalized epilepsy, thalamocortical relationship in the IGE cases.  
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Chronic pain is one of the biggest medical burdens in developed countries, 

affecting 20% of adult population with estimated economic cost in the United States 

alone over $500 billion annually (Gaskin and Richard 2012). Functional imaging of brain 

networks associated with pain processing is of vital importance to aid developing new 

pain-relief therapies and to better understand the mechanisms of pain perception. The 

long-term goal of this project is to study the neurological mechanisms of subjective 

perception of pain using non-invasive neuroimaging methods. In this thesis study, 

changed in brain activities in healthy subjects experiencing sustained external painful 

stimuli were first studied. Neural activities in patient with sickle cell disease (SCD), who 

often surfer spontaneous acute or chronic pain as one of the comorbidities of the disease, 

were contrasted with healthy controls to study changes in neural network as a result of 

prolonged exposure to internal pain.  

In summary, the present dissertation research developed and evaluated the 

spatiotemporal imaging approaches for the non-invasive mapping of network activities in 

the diseased and normal brain. Evaluations were conducted in epilepsy patient and 

healthy control groups in order to test the clinical applicability of pre-surgical 

noninvasive imaging. An investigation has been conducted to study the widespread 

generalized spike and wave discharges (GSWDs) of generalized epilepsy patients. The 

spatial resolution has been further improved by adding the component of fMRI through 

an EEG-fMRI integrated imaging framework. For the application in pain study, two 

investigations were conducted to study changes in network level activity due to external 

pain in healthy subjects and spontaneous pain in patients with SCD. All of the results that 

were obtained suggest the importance of noninvasive spatiotemporal neuroimaging 
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approaches for solving clinical problems and for investigating neuroscience questions. 

Furthermore, an improved understanding of neurological diseases and their mechanisms 

would help us to develop and deliver curative treatments of neurological diseases. 

  



vi 
 

Table of Contents 

 

Acknowledgements .......................................................................................................................... i 

Dedication ....................................................................................................................................... ii 

Abstract .......................................................................................................................................... iii 

Table of Contents ....................................................................................................................... vi 

Chapter 1 Introduction and Motivation ........................................................................................... 2 

1.1 Scope ............................................................................................................................... 2 

1.2 EEG ................................................................................................................................. 2 

1.3 FMRI ............................................................................................................................... 4 

1.4 Concurrent EEG-fMRI .................................................................................................... 5 

1.5 ICA .................................................................................................................................. 7 

1.6 Granger Causality ............................................................................................................ 8 

1.7 Epilepsy ........................................................................................................................... 9 

1.8 Pain ................................................................................................................................ 10 

1.9 Motivation ..................................................................................................................... 10 

Chapter 2 FMRI in Focal Epilepsy ................................................................................................ 15 

2.1  Introduction ................................................................................................................... 15 

2.2  Methods ......................................................................................................................... 18 

2.2.1 Data Acquisition .................................................................................................... 18 

2.2.2  Data processing ..................................................................................................... 20 

2.2.3  Classification of components................................................................................. 21 

2.2.3  Evaluation .............................................................................................................. 25 

2.3  Results ........................................................................................................................... 26 

2.3.1  General component screening ............................................................................... 26 

2.3.2  Patients with focal epilepsy ................................................................................... 28 

2.3.3 Healthy subjects with motor tasks ......................................................................... 34 

2.3.4 Healthy subjects during Resting State ................................................................... 35 

2.4 Discussion ..................................................................................................................... 37 

2.4.1 Method Applications ............................................................................................. 38 

2.4.2 Method Assumptions ............................................................................................. 39 

2.4.3  Model-free approach ............................................................................................. 41 



vii 
 

2.4.4 Resting-state network ............................................................................................ 42 

2.4.5 Method limitations ................................................................................................. 43 

Chapter 3 Multimodal Imaging of Generalized Epilepsy .............................................................. 46 

3.1  Introduction ................................................................................................................... 46 

3.2  Methods ......................................................................................................................... 49 

3.2.1 Subjects ................................................................................................................. 49 

3.2.2 Data recording and preprocessing ......................................................................... 50 

3.2.3 ICA analysis of EEG ............................................................................................. 52 

3.2.4 EEG-informed fMRI analysis ................................................................................ 53 

3.2.5 Seed-based ROI analysis ....................................................................................... 54 

3.2.6  EEG source imaging .............................................................................................. 55 

3.2.7 Granger causality analysis ..................................................................................... 56 

3.3 Results ........................................................................................................................... 57 

3.3.1  EEG-informed fMRI ............................................................................................. 58 

3.3.2  Seed-based connectivity study............................................................................... 60 

3.3.3 Granger causality analysis ............................................................................................ 63 

3.3.4  EEG source imaging .............................................................................................. 65 

3.4 Discussion ..................................................................................................................... 67 

3.4.1 Seed-based connectivity ........................................................................................ 67 

3.4.2 Functions of ACC in GSWD ................................................................................. 69 

3.4.3  Functions of mediodorsal nuclei............................................................................ 69 

3.4.4 Predictive value of connectivity and epileptic activity .......................................... 70 

3.4.5 Hemodynamic Response Function ........................................................................ 70 

3.4.6 EEG source estimation .......................................................................................... 71 

3.4.7 Causality measures ................................................................................................ 73 

Chapter 4 Functional Neuroimaging of Thermal Pain Stimulation ............................................... 78 

4.1 Introduction ................................................................................................................... 78 

4.2 Materials and Methods .................................................................................................. 81 

4.2.1 Subjects ................................................................................................................. 81 

4.2.3 Subjective Numerical Pain Ratings ....................................................................... 82 

4.2.4 Data Analysis......................................................................................................... 82 

4.2.5 Frequency analysis ................................................................................................ 83 

4.2.6 Canonical correlation analysis of frequency contribution ..................................... 83 



viii 
 

4.2.7 Statistical analysis ................................................................................................. 85 

4.2.8 Localization and imaging of pain from EEG ......................................................... 86 

4.2.9 Granger Causality Analysis ................................................................................... 86 

4.3 Results ........................................................................................................................... 87 

4.3.2 Global Power Change ............................................................................................ 87 

4.3.3 Goodness of Fit...................................................................................................... 88 

4.3.4 EEG Correlation with Temperature and Subjective Pain Rating .......................... 89 

4.3.5 Source Localization ............................................................................................... 91 

4.3.6 Stimulation on the Right ........................................................................................ 93 

4.3.7 Granger Causality Analysis ................................................................................... 94 

4.4 Discussion ..................................................................................................................... 95 

4.4.1 Comparison with transient stimulation findings .................................................... 96 

4.4.2 Comparison with other tonic stimulations ............................................................. 97 

4.4.3 Roles of different rhythmic bands ......................................................................... 98 

4.4.4 Individual Differences ........................................................................................... 99 

4.4.5 Salient pain ............................................................................................................ 99 

4.4.6 Study limitations .................................................................................................. 101 

Chapter 5 Functional Neuroimaging of Pain in Sickle Cell Disease ........................................... 104 

5.1 Introduction ................................................................................................................. 104 

5.2 Method ......................................................................................................................... 105 

5.2.1 Healthy subjects ................................................................................................... 105 

5.2.2 SCD patients ........................................................................................................ 106 

5.2.3 MRI recording ..................................................................................................... 106 

5.2.4 FMRI preprocessing ............................................................................................ 106 

5.2.5 Seed based analysis ............................................................................................. 107 

5.2.6 Independent Component Analysis of fMRI data ................................................. 107 

5.2.7 Template-based selection of IC ........................................................................... 108 

5.3 Results ......................................................................................................................... 108 

5.3.1 Decreased DMN using ICA ................................................................................. 108 

5.3.2 Decreased DMN using fMRI connectivity analysis ............................................ 109 

5.2.3 Connectivity in insula cortex ............................................................................... 110 

5.4 Discussion ................................................................................................................... 111 

5.4.1 Decreased DMN in other pain and compare results ............................................ 111 



ix 
 

5.4.2 Decreased DMN integrity in other disease .......................................................... 111 

5.4.3 Other pain areas ................................................................................................... 112 

5.4.5 Methodological limitations and future studies .................................................... 113 

Chapter 6 Conclusions and Perspectives ..................................................................................... 115 

6.1  Conclusions ................................................................................................................. 115 

6.2  Perspectives ................................................................................................................. 118 

6.2.1  Prospective clinical studies in focal epilepsy patients ......................................... 118 

6.2.2  Deep Brain Stimulation in Generalized Epilepsy Patients .................................. 119 

6.2.3 EEG-fMRI Study of Pain .................................................................................... 120 

Reference ..................................................................................................................................... 121 

 

 

 

  



x 
 

  

List of Tables 

Table 2.1 Clinical Information ……………………...……………….…………….………….… 28 

Table 2.2 ICA classification Results ………...………………...…………….….….………….…29 

Table 3.1 Patient Information …………………………………………….…….………………. 53 

  



xi 
 

List of Figures 

Figure 2.1 Data analysis procedures. ............................................................................................. 23 

Figure. 2.2 Illustration of different components from motor simulation in a healthy subject ....... 27 

Figure. 2.3 Results from Patient #1 ............................................................................................... 29 

Figure. 2.4 Results from patient #2 ............................................................................................... 30 

Figure. 2.5 Results from Patient #3 ............................................................................................... 31 

Figure. 2.6 Results from Patient #8 ............................................................................................... 32 

Figure. 2.7 Group results in healthy subjects performing right hand motor tasks ......................... 35 

Figure. 2.8 Examples of spurious components in resting state healthy subjects ........................... 37 

Figure. 3.1 Experiment setup for simultaneous EEG-fMRI .......................................................... 51 

Figure. 3.2  Characteristics of the selected independent component (IC) to represent GSWDs ... 59 

Figure. 3.3 Group results from EEG-informed fMRI using GLM ................................................ 60 

Figure. 3.4 Seed based analysis in the patient group ..................................................................... 61 

Figure. 3.5 Seed based analysis at medial frontal cortex ............................................................... 62 

Figure. 3.6 Seed based analysis at dorsal medial thalamus ........................................................... 63 

Figure. 3.7 Granger Causality Analysis ........................................................................................ 65 

Figure. 3.8 EEG source localization results .................................................................................. 66 

Figure. 3.9 Simulation of a single dipole deep on the midline ...................................................... 72 

Figure. 3.10 Simulation of two superficial dipoles ....................................................................... 73 

Figure. 4.1 Experiment Design ...................................................................................................... 81 

Figure. 4.2 Steps in GOF calculation ............................................................................................ 85 

Figure. 4.3 Percentage power changes caused by presence of thermal stimulation ...................... 88 

Figure. 4.4 Goodness of Fig results and frequency contributions ................................................. 89 

Figure. 4.5 Linear regression between percentage power changes and pain rating or stimulation 

intensity ......................................................................................................................................... 90 

Figure 4.6 Inverse estimation of neurological sources that were related to pain perception ......... 92 

Figure. 4.7 Results when the stimulation was delivered on the right hand ................................... 93 

Figure. 4.8 Granger causality analysis at different temperatures with stimulation site on the right

 ....................................................................................................................................................... 95 

Figure. 5.1 DMN activity using template-based ICA .................................................................. 109 

Figure. 5.2  DMN activity using seed-based connectivity analysis ............................................. 110 

Figure. 5.3 Difference in connectivity between bilateral insula .................................................. 111 

 

file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067357
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067358
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067359
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067360
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067361
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067362
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067363
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067364
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067365
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067366
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067367
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067368
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067369
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067370
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067371
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067372
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067373
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067374
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067375
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067376
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067377
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067378
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067379
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067379
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067380
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067381
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067382
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067382
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067383
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067384
file:///E:/Google%20Drive/lab/writing/Dissertation/PhD%20dissertation,%20Clara%20Huishi%20Zhang.docx%23_Toc420067385


2 
 

 Chapter 1 Introduction and Motivation 

 

1.1 Scope 

The overall goal of this thesis work is to use advanced noninvasive neuroimaging 

modalities and techniques to study the underlying neurological mechanisms of both 

diseased and healthy brains. The two main applications of this work are for the diagnosis 

of epilepsy and management of pain.  

The organization of this thesis is such that Chapter One covers a brief 

introduction of the key imaging modalities of electroencephalography (EEG) and 

functional MRI (fMRI), main computational algorithms of independent component 

analysis (ICA) and Granger causality analysis, and two areas of applications for these 

imaging techniques in epilepsy and pain. In Chapter Two, a novel fMRI based technique 

is presented for lateralization and localization of epileptic zone in focal epilepsy. In 

Chapter Three, a study using both EEG and fMRI is reported to investigate the network 

dynamic of generalized spike and wave discharges in generalized epilepsy patients. In 

Chapter Four, an experiment using EEG is described to study how healthy brains respond 

to tonic thermal pain. In Chapter Five, findings are presented on the differences in resting 

state neural networks between patients with sickle cell disease (SCD) as a result of 

chronic pain and healthy controls.  

1.2 EEG 

EEG (electroencephalogram) signals are primarily generated by cortical 

pyramidal cells from net synaptic activities (Hämäläinen et al. 1993; Baillet et al. 2001; 

Engel et al. 2008; He and Liu 2008). Pyramidal cells reside in deep layers with dendrites 
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reaching out to the surrounding neurons in the top layers of cortex. The organization of 

the pyramidal cells is such that they are perpendicular to the local cortical surface. The 

total number of neurons in the human brain can amount to 10
11

. In one mm
3
 alone, there 

can be 30,000~40,000 pyramidal cells, but the density of cells varies across different 

parts of the brain (Ramon y Cajal 1928; Cullen et al. 2006; Engel et al. 2008). The signal 

measured by each EEG electrode is the synchronized activities of many neurons summed 

at the scalp through volume conduction. A dipole is a mathematical approximation of a net 

synchronized activity in the grey matter viewed from scalp electrodes. Since a dipole 

represents the underlying pyramidal activities, its direction is also perpendicular to the local 

cortical surface. Since EEG measures relatively large-scale brain activity, it is more 

suitable for studying system level behaviors and network activities. 

EEG imaging is a noninvasive neuroimaging method to estimate the locations, 

magnitudes and distributions of underlying sources that produce the scalp EEG. This 

information is achieved by solving both a ‘forward’ and an ‘inverse’ problem. 

In the EEG forward model, the spatiotemporal EEG/MEG recording x can be 

related with underlying brain activity S through a linear system: 

𝑥 = 𝐿𝑆 + 𝐵                  (1.1) 

where x is a n by t signal matrix (n is the number of electrodes and t is the number of 

time points), S is a m*t source matrix (m is the dimension of source space) and B is a n*t 

noise matrix.  L is a n*m lead field matrix that can be calculated based on the boundary 

element method (BEM) (He et al. 1987; Hamalainen and Sarvas 1989; Fuchs et al. 1998) 

or the finite element method, the finite difference method, or another numerical method.  
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In the BEM model, the head volume conductor can be separated into three conductive 

layers, the brain, the skull and the skin with conductivity of 0.33 S/m, 0.0165 S/m and 

0.33 S/m, respectively (Oostenveld and Oostendorp 2002; Lai et al. 2005).  Alternatively, 

the BEM model can be separated into four conductive layers, the brain, the skull, the skin 

and the CSF. A 3D distributed source model can be used to model the brain source 

distribution that includes around ten thousand equivalent current dipoles with 

unconstrained orientations evenly positioned within the 3D brain volume.  

Given the forward modeling of lead field matrix, spatiotemporal brain sources can 

be estimated from the EEG measurements by solving an inverse problem as follows 

𝑆 = 𝐿−1𝑥          (1.2) 

where L
-1

 is the inverse of lead field matrix.   

Existing algorithms such as Low Resolution Electromagnetic Tomography 

(LORETA) (Pascual-Marqui et al., 1994), minimum norm estimate (MNE), variants of 

MNE (e.g. weighted MNE, L-p norm algorithms (e.g., L-1 norm), sub-space scanning 

algorithms such as MUSIC, RAP-MUSIC, FINE algorithms (Ding et al. 2007; Lu et al. 

2012b; He and Ding 2013), or dipole source localization algorithms, can be incorporated 

into this method to estimate the source activity S.  

1.3 FMRI 

Since its introduction in the clinic in the 1980s, MRI has seen unparalleled 

importance in diagnostic medicine, and has superseded X-ray in many ways.  In 

neurology, MRI is primarily used to produce structural images of the brain to detect any 

anatomical abnormalities. Following the success of MRI, the emergence of functional 
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MRI (fMRI) in the early 1990s had a revolutionary impact on basic cognitive 

neuroscience research (Logothetis 2008).  Functional MRI is a functional neuroimaging 

technique that detects hemodynamic changes associated with brain activity. Blood 

oxygen level dependent (BOLD) contrast is the most common form of fMRI that 

measures changes in metabolic changes. BOLD signal changes are contributed by the 

variation of cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of 

oxygen (Ogawa and Lee 1990; Ogawa et al. 1992; Logothetis 2008). It is believed that 

increased local neural activity, as a response to external stimuli or internal processes, will 

lead to increased metabolic demand to the local areas. Blood flow to the said area will be 

detected as a BOLD signal by the MRI scanner.  

Based on the modern MRI technique, fMRI is a non-invasive procedure, which 

requires no surgical intervention or injection of agents. Since the early effort in 1990s 

(Bandettini et al. 1992; Kwong et al. 1992; Ogawa et al. 1992), this relatively young 

imaging technique has become one of the major functional neuroimaging tools, especially 

in neuroscience research. Similar to other MRI techniques, the fMRI measure of neural 

activity is characterized by high spatial resolution, which can distinguish functional 

changes on a millimeter scale. Recent development of high-field MRI has further 

improved our ability to visualize functional changes in deep and fine structures.  

1.4 Concurrent EEG-fMRI 

Although vascular signals as measured by BOLD are tightly correlated with the 

neural activity, these signals reflect neural activity in an indirect manner. Understanding 

the neurovascular coupling relationship that underlies the generation of fMRI signals, 

therefore, is crucial for the interpretation of fMRI data. Recent studies have investigated 
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the relationship between BOLD signals and electrophysiological signals through invasive 

methods (in animals or in epileptic patients). The BOLD signal change is better explained 

by the local field potential (LFP) of many synchronized neurons rather than the neuronal 

firing by individual or multiple neurons (Logothetis 2008). In line with the invasive 

investigations, non-invasive EEG-fMRI studies have also revealed a tight correlation 

between BOLD and EEG signals (Goldman et al. 2002; Debener et al. 2005; Feige et al. 

2005).  

However, unlike the high resolution in the spatial domain, the fMRI signal has 

temporal resolution much lower than the time scale of neuronal activity. The nature of the 

blood flow signals highly restricts the BOLD-fMRI’s capability to track the rapid 

changes of neurons. It has been widely recognized that EEG and fMRI are featured with 

complementary advantages and limitations: high temporal resolution but low spatial 

resolution of EEG, in contrast to high spatial resolution but low temporal resolution of 

fMRI. The complementary features of the two imaging methods have motivated the 

development of multimodal integration of EEG and fMRI, in a hope to obtain a 

neuroimaging approach with high resolution in both the spatial and temporal domains. 

Most commonly, EEG and fMRI signals are combined through an EEG-informed fMRI 

analysis or an fMRI-weighted EEG source imaging. The first strategy of EEG-informed 

fMRI analysis (Goldman et al. 2002; Debener et al. 2005; Feige et al. 2005; Gotman et al. 

2005) uses EEG signals to form a temporal regressor, and then scans the brain to find 

activated/deactivated fMRI signals that can be explained by the electrophysiological 

signatures. This strategy is based on the assumption that neuronal signals measured by 

EEG and the vascular signals measured by fMRI are correlated in the time domain. The 
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second strategy of the fMRI-weighted EEG source imaging (Liu et al. 1998; Liu and He 

2008) uses fMRI map as a spatial weighting or mask for solving EEG source imaging 

problems. This strategy is based on the assumption that the neuronal signals measured by 

EEG and the vascular signals measured by fMRI are overlapped in the spatial domain. 

The integrated EEG-fMRI imaging incorporates the information from both EEG and 

fMRI, and is designed to provide high resolution in time and space simultaneously. 

1.5 ICA 

Independent component analysis (ICA) is a data-driven technique to separate 

spatio-temporal signals into components with temporal independence. An ICA algorithm 

such as the infomax ICA algorithm (Bell and Sejnowski, 1995; Delorme and Makeig, 

2004) can be used to decompose the spatio-temporal electrophysiological data into a 

time-by-space formulation: 

𝑥 = 𝑄𝑊𝑇                    (1.3) 

where x is electrophysiological recording data, Q is an N×N  matrix, W is an N×N  

diagonal scaling matrix, and T is an N×M  matrix. The equation (1) can be expanded as: 

𝑥 = ∑ 𝑄𝑖𝑤𝑖𝑇𝑖
𝑁
𝑖=1              (1.4) 

where Qi is the ith column of Q, Ti is the ith row of T and wi is the ith diagonal element 

of W. This equation suggests that the electrophysiological data x can be expressed as a 

weighted superposition of a series of spatial distributions Qi multiplied by associated time 

courses Ti, where each Ti is statistically independent among each other. The temporal, 

spectral and spatial characteristics of the components can be used to identify and remove 
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artifacts in the electrophysiological recordings due to eye, muscle movements etc. 

(McKeown et al. 1998; Makeig et al. 2002; Debener et al. 2005, 2006; Yang et al. 2011a).   

1.6 Granger Causality  

 Granger causality was first developed by Granger in 1960 (Granger 1969) to 

depict the interactions between a pair of time series based on their temporal relation. It 

was initially applied in the broad field of econometrics and later adapted in a wide range 

of other fields including neuroscience to study the network activities in diseased and 

normal brains.  Mathematically, a univaratie time series, x(t)=[x(1),x(2),…,x(n)], can be 

written as a linear combination of the historic values of x(t) using an autoregressive (AR) 

model such that:  

𝑥(𝑡) = 𝑎1𝑥(𝑡 − 1) + 𝑎2𝑥(𝑡 − 2) + ⋯+ 𝑎𝑝𝑥(𝑡 − 𝑝) + 𝑒𝑥𝑥(𝑡)   (1.5) 

Or equivalently, 

𝑥(𝑡) = ∑ 𝑎𝑖𝑥(𝑡 − 𝑖) + 𝑒𝑥(𝑡)
𝑝
𝑖=1        (1.6) 

Where ai=1,2,…p  are the weighting coefficients corresponding to the previous values of x(t), 

p is the order of the system and ex(t) is the residual noise which cannot be described by 

the linear combination of the prior values of x(t).  

If a second time series y(t) is to be incorporated into the previous equation to 

reflect the contribution of y(t)’s previous values to x(t), x(t) can be rewritten as, 

𝑥(𝑡) = ∑ 𝑎𝑖𝑥(𝑡 − 𝑖) +𝑝
𝑖=1 ∑ 𝑏𝑖𝑦(𝑡 − 𝑘) + 𝑒𝑥𝑦(𝑡)

ℎ
𝑘=1         (1.7)  
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Where bk=1,2,…h  are the weighting coefficients corresponding to the previous values of 

y(t), h is the AR model order for the y terms and exy(t) is the residual noise.  

In the expression of x(t) as shown in (1.7), Granger defined the direction of the 

information flow between x and y time series as: if inclusion of the previous values of y(t) 

helps improve the residual error of the AR modeling of  x(t), then y(t) had a predictive or 

causal influence on x(t) (Granger 1969).  

The functional connectivity analysis utilizing DTF (Kaminski and Blinowska 

1991) is an extension of Granger causality theory.  Instead of being only suitable for pair-

wise directional causality as in Granger theory, the DTF can be applied to analyze 

connectivity among multi-channel signals (Babiloni et al. 2005; Wilke et al. 2010, 2011a; 

He et al. 2011a).  

1.7 Epilepsy  

 Epilepsy is one of the most prevalent neurological diseases. According to the 

World Health Organization (WHO), it affects approximately 3 million Americans in the 

US and 50 million worldwide (http://www.who.int/mediacentre/factsheets/fs999). Its 

impact is greater than Parkinson’s and multiple sclerosis combined.  An annual increase of 

new cases is around 40 – 70 per 100,000 people in developed countries and twice as high in 

developing countries. Epilepsy causes disease burden not only because of early death but also 

because of life-long disability and illness. The burden of epilepsy accounts for around 0.5% 

of the burden of all the diseases in the world, and contributes even more significantly to the 

burden caused by disability (Leonardi and Ustun 2002). In addition to the measurable 

burdens, epileptic patients suffer more social and economic impacts. The discrimination, 

misunderstanding and social stigma can be worse than the disease itself. 



10 
 

 Electroencephalography (EEG) is one of the most used and earliest epilepsy 

diagnostic tools. On the EEG reading, epilepsy can be characterized by highly 

synchronous, large amplitude fluctuations during seizures that may be accompanied by 

other symptoms including sensory and motor activities as well as a loss of consciousness. 

The precise mechanism that underlies seizure initiation and propagation is still unclear. 

Experimental evidence has shown that decreases in hippocampal bursting synchrony as 

well as imbalances between excitatory and inhibitory neurotransmitters may contribute to 

the seizure initiation.  

1.8 Pain  

Pain represents the most important cause of physician consultation in the United 

States, and more than 30 million people are suffering from chronic or recurrent pain 

(Turk and Dworkin, 2004). Patients who suffer from chronic pain or recurrent pain 

usually take mediations such as analgesic to reduce or eliminate their pain. However the 

drug therapy is highly influenced by the subjective pain ratings of the patients. There is a 

clinical need to develop noninvasive approaches to quantitatively assess the pain severity 

levels. The availability of quantitative pain severity assessment technology will have a 

significant impact to clinical management of pain, will objectively guide and optimize 

drug therapy.  

1.9 Motivation  

 Epilepsy and pain are two critical problems that have huge social economic 

burdens. Therefore, these two present as uniquely fitting areas for the applications of the 

imaging techniques we developed. The motivation of this dissertation is to develop 

noninvasive functional neuroimaging approaches to image the epileptic sources in order 
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to help the pre-surgical planning of epilepsy treatment and to study the network activity 

as a response to pain to develop a potential biomarker for the measurements of pain.  

The history of using EEG to diagnose epilepsy is almost as long as the discovery 

of EEG itself by Hans Berger in 1929 (Berger 1929). EEG has since been used in the 

clinical practice for its portability, noninvasiveness and direct measurements of 

neurophysiological events. Both focal and generalized epilepsy have very distinctive 

waveforms that are different from a healthy brain during and between seizures. EEG 

based electrical source imaging (ESI) has been studied extensively to show its 

effectiveness in determining the epileptogenic foci (Lantz et al. 2003; Michel et al. 2004; 

Holmes et al. 2010; Brodbeck et al. 2011; He and Ding 2013), including source 

localization during inter-ictal spikes (Sohrabpour et al. 2015; Plummer et al. 2010; Wang 

et al. 2011; Kaiboriboon et al. 2012) and seizures (Assaf and Ebersole 1997; Boon et al. 

2002; Ding et al. 2007; Holmes et al. 2010; Koessler et al. 2010; Yang et al. 2011b; Lu et 

al. 2012b). However, scalp EEG has relatively low resolution and sensitivity to the 

underlying brain activity because of the distance between the sources and the sensors and 

the volume conduction effect through all the barriers (skin, skull and the cortex).  

The invasive form of EEG – intracranial EEG (iEEG) was developed to achieve 

more direct and precise mapping of the epileptic activities in patients in the 1950s 

(Ajmone-Marsan and Van Buren, 1958; Rosenow and Luders, 2001). Electrodes of iEEG 

can be implanted over the cortical surface (electrocorticography - ECoG) or inserted into 

the deep structures as depth electrodes to render direct recordings of local activities 

without the barriers of the skull and skin (Engel et al. 1990). However, because of the 

risks and expenses associated with invasive procedures, iEEG is always considered as the 
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last choice if all the other non-invasive measurements or tests cannot converge to a 

conclusive diagnosis. Furthermore, due to physical constraints of the placements of the 

iEEG electrodes, it cannot achieve full brain coverage.  

Recently, functional neuroimaging techniques with minimum or noninvasiveness 

such as SPECT, PET and fMRI have been explored in a hope that the hemodynamic 

signal changes can reflect the neural activity in the epileptogenic zone. These techniques 

identified epileptic networks showing positive or negative responses to the epileptic 

activity (Laufs and Duncan 2007; Blumenfeld et al. 2009; Grouiller et al. 2011; Zhang et 

al. 2015). Although these techniques can offer full brain coverage with excellent spatial 

resolution, the temporal sampling is often sparse with significant lag.  In the case of fMRI, 

the most widely used sequences take up to 2 to 3 seconds to scan through the whole brain. 

Furthermore, it has been disputed as whether metabolic changes can always reflect the 

underlying epileptic activities.  Given the complementary strengths and weaknesses of 

EEG and fMRI, the two have been combined to offer unique insights to epileptic 

networks (Lemieux et al. 2001; Gotman et al. 2005, 2006; Bénar et al. 2006).  

In the context of pain management, functional imaging of brain networks 

associated with pain processing is of vital importance to better understand the 

mechanisms of brain function in addition to aid the development of new pain-relief 

therapy. The pain response in the brain is a complex process, which involves multiple 

cortical brain regions, such as primary and secondary somatosensory cortices, anterior 

cingulated cortex, and insular cortex (Bromm 2001). Recent advancement in 

neuroimaging techniques suggests the possibility to map the brain structure and networks 

that involve pain processing (Chen 2001; Stern et al. 2006; Roberts et al. 2008). Few 
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attempts have been made to use EEG to map the active brain regions in pain patients 

(Bromm 2001, 2004; Stern et al. 2006). Studies have shown that fMRI is a useful tool to 

delineate the brain regions associated with pain processing (Davis et al. 1995; deCharms 

et al. 2005). Recent studies from simultaneous EEG and fMRI recording have suggested 

that the EEG response to the pain may be correlated with the fMRI response, and both 

EEG and fMRI could be used to image the brain pain processing regions, such as the 

primary somatosensory cortex and anterior cingulated cortex (Christmann et al. 2007; 

Roberts et al. 2008). However, the EEG analysis and fMRI analysis in the studies were 

performed separately and only the induced pain in healthy subjects was investigated. 

Most current studies about brain pain processing were targeted at the induced pain.  

Only a few studies about brain pain processing were related to the more clinically-

relevant spontaneous pain due to the difficulties in comparing the painful and pain-free 

conditions of spontaneous pain. The MEG sources of spontaneous pain were previously 

studied in a patient with phantom limb pain (Kringelbach et al. 2007). The EEG sources 

of spontaneous pain were studied in neurogenic pain patients at the group-level analysis 

(Stern et al., 2006). The spontaneous pain in patients with chronic back pain was also 

studied using fMRI (Baliki et al., 2006). However, it remains important to noninvasively 

quantify and image the brain processing in clinically-relevant spontaneous pain of 

chronic pain patients. 

As discussed above, the scalp EEG provides a non-invasive approach to measure 

the neural electrophysiological activity with a high temporal resolution. Although many 

other neuroimaging techniques have emerged, the advantages of EEG, including 

noninvasiveness, direct measurement of electrophysiology, and high temporal resolution, 
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make EEG an important neuroimaging tool for neuroscience research and clinical 

diagnosis. The application of EEG, however, is highly restricted by its relatively far 

distance from the underlying brain sources. On the other hand, functional MRI has 

excellent spatial resolution and coverage but suffer from low temporal resolution. 

Therefore, imaging techniques, which leverage on the benefits for both modalities can 

significantly improve our ability to noninvasively image and understand the functions of 

the brain and address urgent unmet clinical needs. Epilepsy and pain are two critical 

problems that can cause huge social economic burdens. Therefore, these two present as 

uniquely fitting areas for the applications of the imaging techniques we developed. This 

thesis is consisted of the work I did on these two areas of applications.  
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 Chapter 2 FMRI in Focal Epilepsy 

 

2.1  Introduction 

For patients with drug resistant epilepsy, surgical resection is among the well-

established methods for seizure control. During presurgical planning, if non-invasive 

methods such as structural MRI, semiology, single photon emission computed 

tomography (SPECT) and positron emission tomography (PET) etc. are not adequate in 

localizing the epileptic foci, invasive procedures including electrocorticography (ECoG) 

and depth electrodes are currently employed to define the seizure onset zone. However 

these methods are not only invasive in nature, they may also fail to provide additional 

information needed for surgery due to the relatively limited spatial coverage (Rodionov et 

al. 2007).  

EEG/ MEG source imaging approaches (Fukushima et al. 2012; Wang et al. 2012; 

Wu et al. 2012) have also been investigated from noninvasive measurements during 

interictal (He et al. 1987, 2011a; Hamalainen and Sarvas 1989; Baillet et al. 2001; Lantz 

et al. 2003; Baumgartner and Pataraia 2006; Holmes et al. 2010; Koessler et al. 2010; 

Wang et al. 2010a; Lai et al. 2011) and ictal stages (Ding et al. 2007; Yang et al. 2011b; 

Lu et al. 2012a, 2012b) by solving the EEG/MEG inverse source imaging problem. While 

such noninvasive imaging techniques have improved substantially over the past decades, 

source imaging approaches in general are still relatively insensitive toward deep brain 

structures.  

As a noninvasive imaging method, functional MRI (fMRI) has shown promises in 

the evaluation of epileptic foci. FMRI is currently used in presurgical assessment to 
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identify eloquent cortex that affect visual, language, motor functions to be spared during 

surgery (Thornton et al. 2010). In addition, fMRI may also offer values as a useful tool to 

localize epileptic foci. It is commonly used in combination with simultaneously collected 

scalp EEG (Liu et al. 2006; He and Liu 2008; Liu and He 2008). Temporal information of 

epileptic events identified from EEG can be used to correlate with hemodynamic changes 

in blood oxygen level dependent (BOLD) signal, to study the areas in the brain with 

epileptic activities(Hamandi et al. 2004; Gotman et al. 2006; Laufs and Duncan 2007; 

Lopes et al. 2012). In standard EEG-fMRI analysis, timing of interictal epileptiform 

discharges (IED) on scalp EEG is first identified. Each occurrence is treated as an 

impulse function which is then convolved with the hemodynamic response function 

(HRF) to obtain a general linear model (GLM). The model is then statistically fitted to 

the fMRI data, with appropriate thresholding to arrive at an activation map (Lemieux et al. 

2001; Bénar et al. 2002; Hamandi et al. 2004). However, EEG recorded in the scanner is 

often heavily contaminated with artifacts that are difficult to remove completely. EEG is 

also known for its limited sensitivity towards deep brain structures. Another challenge in 

using the GLM approach is that an accurate model of the HRF is often needed, as it 

serves as the linkage that represents the neurovascular coupling. A standard canonical 

shaped HRF has been widely used but there is a growing consensus about the variability 

among subjects, or within the same individual but among different brain areas (Jacobs et 

al. 2009; Bai et al. 2010; LeVan et al. 2010). Additionally, recording EEG and fMRI 

simultaneously requires a complicated setup system that is not easy to use in a clinical 

setting. Moreover, some researchers using EEG informed fMRI have demonstrated the 
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value of fMRI in epilepsy, as it may be able to identify patients with widespread epileptic 

networks (Zijlmans et al. 2007).  

Several previous studies have described the possibility of utilizing model-free, 

data driven methods on the BOLD signal alone to delineate epileptic activities (Rodionov 

et al. 2007; LeVan et al. 2010; Moeller et al. 2011; Lopes et al. 2012). Such approaches 

may offer an alternative to circumvent some of the aforementioned challenges associated 

with simultaneous EEG and fMRI. Independent component analysis (ICA) is a widely 

used blind source separation method. In the context of fMRI signals, it extracts regions of 

activities with corresponding time course based on spatial independence, which does not 

impose any constraint on the prior knowledge of HRF or the timing of interictal 

epileptiform discharges (IED) on EEG (Rodionov et al. 2007; LeVan and Gotman 2009). 

However, the process to select the independent components (ICs) that are related to 

epileptic activity often requires human supervision to a large extent. Therefore, we sought 

to develop an easy to implement framework that requires minimal subjective input to 

extract clinically relevant components.  

Normally, focal epilepsy is highly treatable by surgery due to the focality of 

isolated epileptogenic zone. On the other hand, patients with diffused or distributed 

epileptogenic zones may not be suitable for surgical consideration. We intended to 

develop a tool to aid surgical planning for surgical candidates. Therefore, in the present 

study, we focused on the focal epilepsy population. To assess the sensitivity of the 

method, we simulated focal cortical activity in healthy subjects performing a lateralized 

motor task. We then evaluated the results of the proposed method by comparing selected 

components to expected motor activation area in healthy subjects and to surgical 
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resection in patients respectively. To assess the specificity of the method of component 

selection, we also included a study of healthy volunteers during resting state.  

This chapter has been published in Clinical Neurophysiology (Zhang et al, 2015).  

2.2  Methods 

2.2.1 Data Acquisition  

2.2.1.1 Patients 

Data were collected from 10 consecutive patients (ages 20-58 years, 35.3±15.9 

years, 5 males) with intractable epilepsy who underwent presurgical evaluation at Mayo 

Clinic (Rochester, MN). Clinical information was listed in Table 1. Resting state 

functional images were acquired using a General Electric 3T Signa HDx (Waukesha, 

Wisconsin) scanner. Each set of data was 20 min using a T2*-weighted EPI sequence. 

TR=3000 ms, flip angle =90, 3 mm isotropic voxel, 30±2 slices. A spoiled gradient 

recalled T1-weighted anatomical image before and after operation was acquired for 

coregistration with functional data (1 mm isotropic voxel, 120 or 190 slices). The study 

was conducted according to a protocol approved by the Institutional Review Boards (IRB) 

of Mayo Clinic and the University of Minnesota respectively. 

2.2.1.2 Healthy subjects with motor tasks   

In order to evaluate the application of our method in localizing lateralized focal 

activity with known activity pattern, we performed an experiment where subjects 

performed hand movement tasks. Ten healthy volunteers (ages 20-36 years, 27.5±5.6 

years, 5 males) participated in this study with written consent according to a protocol 
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approved by the Institutional Review Board of the University of Minnesota. The 

experiment followed a block design where task blocks were interleaved with resting 

blocks. Each block lasted for 20 s. Within a task block, subjects performed randomized 

left and right hand movement tasks. The tasks included either finger tapping or hand 

clenching of a given hand for one hand at a time. Each task block included only one type 

of task. Each individual anatomical MRI data set consisted of 176 contiguous sagittal 

slices with 1 mm slice thickness (matrix size: 256 * 256; FOV: 256 mm * 256 mm; 

TR/TE=20 ms/3.3 ms) on a 3T MRI system (Siemens Skyra, Siemens, Erlangen, 

Germany). Whole-brain functional images with BOLD contrast were acquired using 

gradient echo planar imaging sequence (32 axial 3-mm thick interleaved slices with 0.3-

mm gap; TR/TE = 2000 ms/30 ms; flip angle = 90°; matrix size: 64 * 64; FOV: 192 mm 

* 192 mm). Each functional run started with a rest block and contained 160 volumes. 

2.2.1.3 Healthy subjects during Resting State 

In order to test the specificity of the algorithm, we also recruited a group of 

healthy subjects for resting state recording. Seven healthy volunteers (ages 24-31 years, 

26±2.4 years, 5 males) participated in this study with written consent according to a 

protocol approved by the Institutional Review Board of the University of Minnesota. 

Each subject was instructed to lie quietly in the scanner for two scans, each lasting for six 

minutes. Additionally, individual anatomical MRI data were collected which were 

consisted of 176 contiguous sagittal slices with 1 mm slice thickness (matrix size: 256 * 

256; FOV: 256 mm * 256 mm; TR/TE=20 ms/3.3 ms) on a 3T MRI system (Siemens 

Trio, Siemens, Erlangen, Germany). Whole-brain functional images with BOLD contrast 

were acquired using gradient echo planar imaging sequence (32 axial 3-mm thick 
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interleaved slices with 0.3-mm gap; TR/TE = 2000 ms/30 ms; flip angle = 90°; matrix 

size: 64 * 64; FOV: 192 mm * 192 mm).  

2.2.2  Data processing 

2.2.2.1 MRI data preprocessing  

First, the pre-surgical structural MRI was segmented into two parts: regions 

within the boundary of the brain volume and those outside of the boundary. FMRI data 

were then spatially coregistered to the structural MRI. The boundary of the brain from the 

segmented structural MRI was used as a marker to distinguish voxels from the fMRI that 

corresponded to areas inside vs. outside of the brain in a later step after ICA 

decomposition. All fMRI data were pre-processed for slice scan time correction, 3-D 

motion correction and temporal filtering using BrainVoyager QX software (Brain 

Innovation, Maastricht, Netherlands).  

2.2.2.2. Independent Component Analysis of fMRI data 

Independent component analysis (ICA) in the spatial domain was performed using 

Brain Voyager QX. Detailed methodological principles of ICA decomposition 

implemented in Brain Voyager QX were previously described (Formisano et al. 2004; De 

Martino et al. 2007). Briefly, ICA decomposition of fMRI signal can be written as:  

Y=TS          (2.1) 

where Y is the fMRI signal, S is the spatial maps of the components and T is the time 

course defining the weights of the spatial maps in the time domain. S and T were 

obtained using the hierarchical (deflation) mode of the FastICA algorithm (Hyvarinen 
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1999; Calhoun et al. 2001, 2005). Thirty components were computed and the voxel 

intensities of each IC maps were converted to z-scores. The spatial maps were color 

coded to reflect the absolute value and sign. It should be noted that the sign of each voxel 

value does not correspond to BOLD activation or deactivation. A positive value 

represents that the time course of the particular voxel is positively correlated with the 

time course of the IC. A higher z-score represents a higher correlation coefficient. As 

pointed out previously, the z-values have no statistical significance, as no hypothesis was 

tested (McKeown and Sejnowski 1998; De Martino et al. 2007).  

2.2.3  Classification of components  

We proposed a set of data driven criteria to identify epilepsy related independent 

components (ICs). The criteria and rationales are described as following:  

Criterion 1: Biophysical constraints of neurological sources. The BOLD signal of 

our interest indirectly measures neurological activity in the brain (Arthurs and Boniface 

2002). Neurological activities are known to be generated by neurons residing in the grey 

matter of the cortex. However the BOLD signal measured is often confounded with other 

sources caused by physiological activities such as breathing, pulsation, or abrupt motion 

artifacts (Mitra et al. 1997; McKeown et al. 1998; Jiang et al. 2002). Some of these noisy 

components tend to have majority of the activity outside of the cortex in areas such as 

brainstem, eyes or the periphery of the cortex, which is usually due to residual motion 

artifacts (Mitra et al. 1997; De Martino et al. 2007). As described in the pre-processing 

section, the boundary of the brain obtained from segmenting the structural MRI was used 

to mark fMRI voxels as inside vs. outside of the brain. FMRI voxels outside of the brain, 
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which are clearly caused by noise, were not excluded before performing ICA. ICA was 

performed before exclusion of any voxels because we aimed to find and reject noisy 

activities within the brain that have statistical dependence with the noisy voxels outside 

of the brain. Therefore, by retaining obviously noisy voxels outside of the brain, it can 

help identify noisy activities that are within the brain in subsequent processing steps. To 

quantify this feature, we used the index Ri/o, where 

Ri/o=Ni/No,              (2.2)  

Ni denotes the number of voxels inside the brain, and No is the number of voxels outside 

of the brain. Components with Ri/o value below a cut-off value will be excluded from 

further analysis (Fig.  2.1, Step 2, Criterion 1). This was to separate cortical components 

from noisy components with signals concentrated predominantly outside of the brain 

volume. The default cut-off value was set to be the median of Ri/o values of all thirty 

components. This particular cut-off value was adopted to be inclusive rather exclusive. In 

this way, half of all the components will remain to be considered based on the next 
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criterion. 

 

Criterion 2: Spatial lateralization of the epilepsy related components in suitable 

surgical candidates. The concept of lateralization has traditionally been used in EEG to 

initially lateralize epileptogenic zone and to guide placement of intracranial recording. 

We now applied a similar concept in fMRI data analysis. As mentioned earlier, the 

patient population is surgical candidates with focal epilepsy. We assumed the epileptic 

activity is lateralized to one hemisphere. On the other hand, other common resting state 

activities in the brain are usually symmetrical. Such components include signals arising 

from major blood vessels, auditory activities, or default mode network (Raichle et al. 

2001; Seifritz et al. 2002; Beckmann et al. 2005; Fox et al. 2005; Fransson 2005; Aragri 

et al. 2006; De Martino et al. 2007; Rodionov et al. 2007; Greicius et al. 2009). To 

quantify the symmetricity of the signal distribution of each component, we used the index 

Corr to denote the correlation of activities among mirroring voxels about the anterior 

 
Figure 2.1 Data analysis procedures.  

Step 1. Preprocessing of fMRI and MRI images. Step 2. Selection of the components basing on 

proposed three criteria. Step 3. Evaluation of the method. In the patient group, selected component was 

compared with post-surgical MRI. 
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commissure – posterior commissure (ACPC) plane. The three-dimensional (3D) 

distribution of voxel intensity about on either side of the ACPC plane was first reduced to 

a one-dimensional series. It was arranged so that the i
th

 entry of both series corresponds 

to the mirroring voxels in the 3D space. The correlation value was calculated using 

Pearson’s correlation coefficient.  

  (2.3) 

where L(i) denotes the i
th

 entry of the activity of the i
th

 voxel in the left half of the brain 

and R(i) denote the mirroring i
th

 voxel on the right side. Then the components were 

ranked according to their Corr values, from the smallest to the largest. Asymmetrical 

components are thus the ones with low Corr values. A cut-off threshold was set as one 

standard deviation smaller than the mean of the remaining components which passed the 

first level screening. This cutoff was used to identify components which would be 

considered for subsequent Criterion 3.  

Criterion 3: Temporal features of the components. Components that passed the 

two aforementioned spatially based criteria were subjected to a third temporally based 

criterion to remove any additional noise. Components with dominant power outside of 

the range of 0.01 to 0.1 Hz were excluded. As described by De Martino et al (De Martino 

et al. 2007), neurophysiologically meaningful components are expected to have certain 

temporal structure, which often fall within the range of 0.01 to 0.1 Hz (Cordes et al. 2001; 

van de Ven et al. 2005). Components with dominant frequency outside of this range are 

often a reflection of aliasing of cardiac and respiration artifacts (>0.1 Hz) or scanner 
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susceptibility artifacts (<0.01 Hz). Power contribution of each component at each 

frequency band was computed as part of the BrainVoyager QX ICA ‘Fingerprint’ 

function. Briefly, the power spectrum density of each IC was first computed. Relative 

contribution of each frequency band ([0, 0.008 Hz], [0.008, 0.02 Hz], [0.02, 0.05 Hz], 

[0.05, 0.1 Hz] and [0.1, 0.25 Hz]) was captured by calculating the weight of each 

frequency bands over the entire spectrum. The metric of each component at any given 

frequency was normalized first within the component then cross all components to 

arrange from 0 to 1(De Martino et al. 2007). If a component has a metric of 1 for a 

specific frequency band, that frequency band is considered as a dominant frequency of 

the component. Components with dominant frequency above 0.1 Hz or below 0.008 Hz 

were removed.  

2.2.3  Evaluation  

In the patient study, the spatial patterns of identified components were compared 

to the co-registered postoperative MRI. If the area of activity in the identified component 

falls within or well overlaps with the resected area, the component was considered as 

concordant. In the motor task experiment, the accuracy of identified components was 

evaluated both temporally and spatially. Temporally, the expected time course of motor 

response was obtained by convolving the block design time and the canonical HRF. The 

time course of identified components was then compared with the expected time course 

to compute the correlation coefficient. Spatially, a general linear model was used with 

expected time course as a regressor to obtain the activation maps corresponds to the 

motor tasks. The activation maps were compared to maps of identified components. 

Group averages of the maps from both GLM and ICA were computed and compared in 
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the Talairach space. In the resting state experiment with healthy subjects, the specificity 

of the algorithm was assessed by examining if there were any components that passed the 

three-criterion algorithm.  

2.3  Results 

2.3.1  General component screening 

Fig.  2.2 shows representative components taken from a subject in the motor-task 

simulation, where the subjects were asked to perform hand movement tasks to simulate a 

unilateral focal neural activity. Components removed by Criterion 1 included a pattern 

that is consistent with activity in eye areas (Fig.  2.2A). This eye component has low in-

brain vs. out-brain ratio, Ri/o, of 0.02, which is significantly lower than the average of all 

the 30 ICs (1.60±0.9). The second criterion of lateralization rejected a component 

consistent with fMRI activity in visual cortex (Fig.  2.2B). This component has Ri/o =1.6 

and Corr= 0.4. It survived Criterion 1 but rejected by Criterion 2 due to high symmetry 

between left and right visual cortex. The component shown in Fig.  2.2C passed both 

Criterion 1 and 2 but was rejected by Criterion 3 as this component has dominant 

frequency in the >0.1 Hz range. The spatial pattern of this component matches the pattern 

of typical residual motion artifacts as reported in previous studies (Mitra et al. 1997; 

McKeown et al. 1998; Thomas et al. 2002). The only component which passed all three 

criteria showed activity in left motor cortex (Fig.  2.2D). It is consistent with the right 

finger tapping activity of the subject during the fMRI recording.  



27 
 

 

 

Figure. 2.2 Illustration of different components from motor simulation in a healthy subject 

A. Eye movements. The BOLD activities are located outside of the brain volume. This component has 

a low Ri/o value and was screened out by Criterion 1. B. Visual activity. This BOLD pattern is highly 

symmetrical and was rejected based on Criterion 2 because of the high symmetry between left and right 

mirroring voxels. C. Residual motion artifacts, located at the periphery of the brain. This component 

was rejected by Criterion 3. D. Selected component that passed all 3 screening criteria. The spatial 

distribution of this component is concentrated in the left motor cortex. This is an example of 

contralateral activation, as expected from right hand movement. In the patient group, components 

rejected by Criterion 1-3 have similar patterns as shown in A-C.  
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2.3.2  Patients with focal epilepsy 

Patient 1 was diagnosed with frontal lobe epilepsy and underwent left frontal 

craniotomy. In our component selection algorithm, the cut-off value of Ri/o used in 

Criterion 1 is 0.9 and the cut-off value of Corr used in Criterion 2 is 0.16. Three out of 

fifteen components passed Criterion 2.The first component (Fig.  2.3A, Ri/o=2.62, Corr = 

0.12) shows activity in left frontopolar cortex, which falls within the surgical resected 

zone as indicated by the red arrow in postoperative MRI (Fig.  2.3B). Component 2 

(Ri/o=0.90, Corr = 0.16) has two areas of activities (Fig.  2.3C). One is located in the 

midline along the longitudinal fissure, and another near to the left middle frontal gyrus, 

which coincides with another region of resection as shown in Fig.  2.3D. The third 

component (Fig.  2.3E) survived the screening process but was not considered epilepsy-

related by visual evaluation. This is because it has a ring shaped distribution of activity 

around the peripheral of the cortex, which is a typical pattern for residual movement 

artifact. 
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 Patient 2 had left parietal epilepsy. Presurgical EEG showed frequent 

epileptogenic abnormalities over the left central region, which was consistent with a 

 
 

Figure. 2.3 Results from Patient #1 

A and C are the two components selected by the proposed algorithm. They both have high 

lateralization values. This patient had left frontal lobe epilepsy and received surgical resection in left 

frontal lobe. B and D are post-operation MRI, showing two different surgical locations corresponding 

to the two identified components. E shows a typical noisy component that survived the three criteria 

but was rejected by visual insepection. This component has voxels within the brain volume and is 

highly asymmetrical. But the spatial pattern of this component is of a typical residual movement 

artifact.  
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partial seizure disorder. In this patient, the cut-off value of Ri/o in Criterion 1 is 1.2 and 

the mean of Ri/o and cut-off value of Corr used in Criterion 2 is 0.29. Two out of the 

fifteen components passed Criterion 3 and were examined by visual inspection. One first 

component (Fig.  2.4A, Ri/o= 2.2, Corr=0.27) localized in the close vicinity of the surgical 

resected parietal cortex (Fig.  2.4B). This patient received intra-cranial recording and left 

parietal cortical resection. The largest cluster with the highest z-sore of the selected 

component falls in the right parietal cortex, which is in concordance with the resected 

region. The other component was considered not epilepsy-related by visual evaluation 

because it has a similar ring-shaped pattern as shown in Fig.  2.3E in Patient 1.  

 

Patient 3 was diagnosed with left temporal epilepsy and underwent left temporal 

lobectomy. In this patient, the cut-off value of Ri/o in Criterion 1 is 0.50 and the cut-off 

 
 

Figure. 2.4 Results from patient #2 

A shows the only component selected by the algorithm and accepted by visual inspection. This 

component has high lateralization value and is localized in the left parietal lobe. This patient had left 

parietal lobe epilepsy. B shows surgical resection in left parietal lobe, indicated by red arrows. The 

orange cluster in left parietal region shown in A agrees well with the surgical resection in B.  
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value of Corr used in Criterion 2 is 0.12. Only one component was identified by our first 

two criteria (Fig.  2.5A). This component also passed the additional Criterion 3. It has 

activity in left anterior temporal area, which agrees with spikes and sharp waves observed 

from anterior temporal electrodes on ECoG. It also co-localizes to the surgical resected 

zone as indicated by the red arrow in postoperative MRI (Fig.  2.5B). The Ri/o and Corr of 

this component are 0.54 and 0.01 respectively.  

 

Patient 8 was diagnosed with right parietal epilepsy. However, no component was 

identified from the fMRI basing our 3-criterion algorithm. We carefully examined all the 

components from the patient, and noticed that two components had abnormal spatial 

distributions (Fig.  2.6A and 2.6B). Both components show distributed activity in the 

bilateral inferior parietal lobules and posterior cingulate cortex, which resemble typical 

‘default-mode-network’ pattern. Additionally, as shown in Fig.  2.6B, this component 

 
 

Figure. 2.5 Results from Patient #3 

A shows the only component selected by the algorithm and accepted by visual inspection. This 

component is located at the anterior portion of the left temporal lobe. This patient had left temporal 

lobe epilepsy. B shows surgical resection in left temporal lobe. Orange cluster in left temporal lobe in 

A falls well within the surgical resection indicated in B.  
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also has a dorsal/ventral medial prefrontal cortex node which is typical in default mode 

network. However, several extra-network clusters in the right frontal and parietal regions 

were found to be temporally correlated with the default mode network. These clusters 

occur unilaterally in the right hemisphere. According to the clinical report of video EEG, 

ECoG and SPECT, this patient had diffuse seizure onset in frontal central as well as right 

central head regions. The observations of the altered network property and diffuse 

epileptogenesis may suggest the interplay between the two phenomena. Consistent with 

our inconclusive findings, presurgical evaluation of the patient conducted independently 

in the hospital resulted in a conclusion that the patient was not a good surgical candidate. 

 

Information and results of all patients were summarized in Table 2.1 with 

additional information provided in Table 2.2. Out of ten patients studied, nine received 

surgery. Epilepsy related components found in seven patients were highly concordant 

 
 

Figure. 2.6 Results from Patient #8 

A shows one component associated with the bilateral fronto-parietal association cortex, which 

represents a typical resting state network. Additionally, there are also clusters on the right lateral 

frontal and parietal regions. B shows another component associated with the bilateral network, with an 

additional cluster on the right fronto-parietal region. This patient was initially diagnosed with right 

parietal epilepsy. Presurgical ECoG revealed diffuse seizure onset involving a large region 

simultaneously. This patient was not selected to receive surgical resection. 
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with surgical resection. For the patient who did not receive surgery, our analysis showed 

activity lateralized to right parietal lobe, however, overlapping with widespread resting 

state network in bilateral parietal and frontal areas. Diffused epileptic activity is not 

suitable for surgical resection treatment. This finding is consistent with the surgeon’s 

decision not to operate on this particular patient. The algorithm did not identify any 

epilepsy related components in two other patients.  

 

Table 2.1  

++ : Identified components in agreement with surgical resection 

+   : Altered resting state network found consistent with presurgical evaluation 

*   : A component was found in close vicinity to ablation after adjusting the screening threshold 

-    : No epilepsy related component found  
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Patient 

# ICs 

passed 

Criterion 

2 

# ICs passed 

Criterion 3 

# ICs 

concordant    

 Concordant 

cluster w. max 

z-score? 

# clusters in 

concordant 

ICs  

1 3 3 2 yes 6 

        no 7 

2 3 2 1 yes 7 

3 1 1 1 yes 3 

4 3 1 1 yes 7 

5 3 1 0 -- -- 

6 2 2 2 yes 4 

 

      yes 3 

7 2 1 1 yes 5 

8 3 0 -- -- -- 

9 3 3 1 no 4 

10 2 0 0 -- -- 

Table 2.2  

ICA classification results # clusters in concordant ICs:  the total number of distinct clusters that are 

present in each ICs with one cluster that is in concordance with surgical resection. If the 

concordant cluster has the highest z-score, it is indicated as yes in the second-to-last column.  

 

2.3.3 Healthy subjects with motor tasks 

Results from healthy subjects performing motor tasks served as a preliminary 

evaluation of the sensitivity of the proposed algorithm. The method detected lateralized 

motor-task-related components from ICA with minimal supervision and high accuracy 

across all subjects. We examined the spatial and temporal features of the selected 
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components to the timing of the task design. The temporal feature of the selected 

component has time course that correlated with the expected time course based on the 

known stimulus onset convolved with canonical hemodynamic function (HRF). The 

identified components have BOLD activities in the sensorimotor areas correspond to the 

left or right hand. Fig.  2.7 shows group-level average activation maps in the left motor 

area that corresponds to right hand movement across all healthy subjects. Fig.  2.7A 

shows the averaged map obtained from maps of identified motor task related ICs. Fig.  

2.7B shows the averaged map obtained from GLM using expected time course derived 

from experiment design as the main regressor. Temporally, the Pearson’s correlation 

coefficient between the identified IC time course and the expected time course specified 

by the experiment is 0.72 ±0.08.   

 

2.3.4 Healthy subjects during Resting State  

 
Figure. 2.7 Group results in healthy subjects performing right hand motor tasks 

A) Averaged map of selected independent components(IC) from all subjects. B) Group averaged 

activation map obtained from GLM analysis. Expected time course derived from experiment design was 

used as the main regressor.  
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Results from seven healthy subjects during resting state served as a preliminary 

evaluation of the specificity of the proposed algorithm. Identical parameters were applied 

to this data set, and the data was processed to examine whether there were any 

components selected by the algorithm as epilepsy related. In four out of the seven 

subjects, the three objective criteria ruled out all the components, which reflected true 

negative results as expected. In the other three subjects, between one to three components 

were identified by the algorithm as potentially epilepsy related. They represented either 

additional noisy component (Fig.  2.8A), similar to that seen in Fig.  2.3E, that the 

algorithm was not able to screen out or lateralized physiological activities, for example in 

sensorimotor area (Fig.  2.8B). In one out of the three false positive cases, the only 

component identified was associated with noise. In two other cases, both a noisy 

component and a lateralized physiological component were identified. The nature and 

frequency of occurrence of such non-epilepsy component identified by the method is 

similar to what we observed in the patient group. Findings from this study can be used to 

guide further refinement of the algorithm in the future. 
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2.4 Discussion  

For the purpose of both lateralizing and localizing hemodynamic foci in focal 

epilepsy patients, we proposed an automated algorithm that detects epilepsy related 

components from ICA with minimal supervision and high accuracy. Our algorithm was 

evaluated by comparing the identified components to surgical resection. In the current 

patient group we were able to lateralize and localize hemodynamic foci using proposed 

method reasonably well. We also tested the algorithm in healthy subjects with and 

without tasks and the results showed reasonable sensitivity and specificity of the method.  

This proposed method can be easily implemented in the current presurgical 

workup to provide additional information for guiding the surgical resection. The benefits 

are two folds. Firstly of all, the data currently used were collected as part of clinical 

 
 

Figure. 2.8 Examples of spurious components in resting state healthy subjects 

A) Typical noisy component with distributed pattern in small clusters through the brain but mostly 

near to the peripheral or along the midline. B) Unilateral physiological activity in sensorimotor 

area.   
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routine for mapping of eloquent brain to preserve during the surgery. Therefore, to 

implement this method, no additional scans need to be prescribed. Secondly, the 

algorithm is automated and does not require subjective input or excessive training from 

the clinicians. However, at this stage, it is not meant to replace any aspect of the 

presurgical planning process, but rather to further inform each step of presurgical 

planning.  

2.4.1 Method Applications 

The spatial ICA algorithm allows for the computation of as many components as 

the number of time points. We explored a range of different numbers of components from 

twenty to forty five.  The overall patterns of the components remained similar to the case 

of thirty components. But when a larger number of components were used, there were 

occasional splits of components in a few subjects. This will result in false positives by 

using the symmetry measure, as split components can be asymmetrical but symmetrical 

when combined. Therefore, the number of components used in the ICA decomposition 

was set to thirty, as it represented a good tradeoff between computation efficiency and 

separation of components in our data set. The optimal number may vary among subjects 

and different groups, but we used thirty for all the subjects studied. 

In the patients we studied, the surgical resection sizes are typically large, except 

in the case of one patient, #9, who received focal ablation. In the six patients where we 

found ‘overlapping’ clusters with surgical resection, four had temporal lobectomy, where 

the resection size is approximately 3.5 cm in length. The identified clusters in the four 

temporal cases are much smaller and fall within the surgical resection area. In patient#1, 
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the clusters identified are comparable in size with the two separate resection areas. The 

degree of overlap is about 80%. In the case of patient#2, the identified cluster is roughly 

two times greater than the actual resection but covers the resection completely.  

2.4.2 Method Assumptions 

In this study, we aimed to identify epilepsy related components from components 

produced by spatial ICA of resting state fMRI. Characteristics of task related fMRI 

independent components (ICs) of healthy subjects were previously discussed by De 

Martino et al. (De Martino et al. 2007) and applied in the context of focal epilepsy 

(Rodionov et al. 2007). In our approach, instead of comprehensively studying all 

different types of ICs, we focused mainly on extracting epilepsy related components by 

applying three basic assumptions.  

The first assumption is that neurological activity dominant components should 

locate mainly inside the brain volume. This was assessed by calculating the ratio between 

the numbers of voxels with activity inside vs. outside of the brain volume. Secondly, we 

focused on focal epilepsy patients and assumed that this group of patients have unilateral, 

epilepsy related BOLD foci. Most successful surgeries in epilepsy often involve patients 

with focal epilepsy because of the isolated epileptogenic zone. Therefore, it is clinically 

important to noninvasively identify suitable candidates as well as to localize epilepsy foci 

for resection. We thus targeted this group of patients with unilateral, instead of bilateral 

epilepsy related BOLD activities. With this condition, we could easily separate epilepsy 

related components from other neurophysiological components associated with auditory 

or occipital activation, resting-state networks, and major endovascular activities. These 
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non-epilepsy components often have a symmetrical spatial distribution, which will lead to 

a high correlation score, Corr, when the signals between mirroring voxels of the left and 

right hemispheres were compared. The third assumption is that BOLD fluctuations due to 

neurological activity have a frequency range near to 0.01 to 0.1 Hz. Some noisy 

components may fall within the perimeter of the brain and have asymmetrical distribution, 

but these components often have dominant frequency fall below 0.01 Hz or above 0.1 Hz 

due to artifacts from aliasing of cardiac and respiration activity or scanner susceptibility.  

In the first noise reduction step we used median Ri/o as cut-off, which represents 

thresholding at 50%. This may appear to be too aggressive. At this cut-off, the actual cut-

off value of Ri/o was 0.74±0.28 among all patients. This means there are still a relatively 

large number of voxels outside of the brain comparing to inside of the brain at the cut-off 

level. Such a component may still be relatively noise dominant. Certainly an even more 

stringent cut-off value may further control the specificity of the algorithm, but it may also 

result in less sensitivity in detecting actual epilepsy related components. The current cut-

off level, therefore, seems to be appropriate for this group studied.   

The concept of lateralization has traditionally been used in epilepsy diagnosis. For 

example, scalp EEG is often used in clinic to initially lateralize epileptogenic zone and to 

guide placement of intracranial electrodes. In the application of fMRI, Negishi and 

colleagues (Negishi et al. 2011) found lateralized fMRI connectivity could serve as a 

predictor of the surgical outcome. When a patient has lateralized connectivity pattern, 

they found their surgical outcome is likely to be seizure free. In this study, we applied the 

same concept to the fMRI data analysis. By taking advantage of the spatial resolution of 
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fMRI, we aimed to not only lateralize but also to localize epileptic activities in patients 

with focal epilepsy.   

2.4.3  Model-free approach  

A number of previous studies have explored the utility of fMRI alone, both ictal 

and interictal, using data driven approaches. Ictal fMRI studies reported have shown 

concordance between identified IC and seizure onset (LeVan et al. 2010; Thornton et al. 

2010), but ictal events are hard to capture in a limited time window of the scanning time. 

Several other studies have reported using interictal resting state fMRI and compared the 

accuracy using simultaneously acquired EEG-fMRI in a general linear model (GLM) 

(Rodionov et al. 2007; LeVan and Gotman 2009; LeVan et al. 2010; Lopes et al. 2012). 

Unlike the aforementioned studies, we focused on the localization value of interictal 

fMRI without simultaneously acquired EEG in focal epilepsy. We compared our results 

with surgical resection and follow-up. Resection with seizure free outcome is considered 

as the ground truth for evaluation of the localization accuracy.   

This data-driven, exploratory approach using ICA has several advantages. First of 

all, knowledge of the precise timing of interictal epileptic discharges (IEDs) is not 

required. Scalp EEG has a long history in the diagnosis of epilepsy. Abnormalities 

observed on EEG can be used to classify epilepsy types and lateralize epileptic area. 

However, in cases when EEG is absent, or when clear epileptiform discharges are not 

well formed, our results suggested that it is still possible to extract epilepsy related 

activities using fMRI analysis alone. Secondly, motion residual artifacts or various 

physiological noises do not need to be modeled explicitly. In conventional GLM-based 
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fMRI analysis, movement parameters and other physiological noises need to be 

accounted for to improve the effects caused by epileptic activity. However, using ICA 

analysis, these noisy components are often well separated automatically. Thirdly, the 

complexity and variability of HRF can be circumvented. The HRF is the link between 

electrophysiological events and hemodynamic responses in the brain. There has been 

growing evidence suggesting variability of the HRF in different areas of the brain and 

among individuals. Simultaneously acquired EEG and fMRI can provide insight into the 

nature of the HRF, but for our specific purpose of assessing the localization value of 

fMRI-alone recording without EEG, the knowledge of HRF is not required. Furthermore, 

if simultaneously acquired EEG is available, this method can offer a way to study 

epilepsy specific HRF characteristics.  

2.4.4 Resting-state network  

Components representing the resting-state networks including default mode 

network (DMN) were found in all patients. Previous studies also showed that networks 

including the default mode network are involved in epileptic activity (Archer et al. 2003; 

Laufs and Duncan 2007; Zijlmans et al. 2007; Blumenfeld et al. 2009; Bai et al. 2010) 

and other pathological brain diseases such as Alzheimer’s (Greicius et al. 2004; Buckner 

et al. 2005). However, the primary goal of our proposed method is to lateralize and 

localize the hemodynamic foci for presurgical evaluation purpose. Regions in the resting 

state network are hypothesized to be involved in multiple cognitive functions (Raichle 

and Snyder 2007) and are rarely the target for surgical removal. Therefore, we design the 

algorithm to detect areas that can be surgical targets instead of other brain networks that 

are not suitable for current surgical treatment, although those regions might also be 
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impacted or involved in complicated epileptic activities. Our method identified the DMN 

components as neurological sources with high spatial signal to noise ratio, i.e. high Ri/o 

values. But the correlation coefficient indices of the DMN components are much higher 

than the selected component due to the symmetric nature, Corr=0.51± 0.10 for DMN 

components vs. 0.18 ± 0.09 for epilepsy foci components. As reported previously, DMN 

may be altered by epileptic events in both focal as well as generalized epilepsy (Laufs 

and Duncan 2007; Blumenfeld et al. 2009; LeVan and Gotman 2009; Zhang et al. 2010, 

2011; Voets et al. 2012). Interestingly, in the case of Patient 8 we also found two 

components representing altered DMN or resting-state networks. In addition to activities 

in the typical bilateral fronto-parietal association cortex, there were also unilateral 

clusters in the right frontal and central parietal regions (Fig.  2.6A and 2.6B). This 

statistical dependency between the right central parietal and frontal clusters with the 

resting state network may shed some light in explaining this patient’s seizure 

characteristics. In the surgical report of this patient, it was mentioned that she had diffuse 

onset involving a large region simultaneously on ECoG and was therefore not suitable for 

operation. No abnormal pattern was found in other patients DMN components. The 

spatial and temporal features of DMN in focal and generalized epilepsy will be examined 

more thoroughly in future studies.  

2.4.5 Method limitations 

Although the proposed method worked reasonably well in the current patient 

group, where patients only had unilateral focal epilepsy, this method was not intended to 

be an all-encompassing approach that will detect all epilepsy foci in all focal epilepsy 

cases. The current method was designed to detect epileptic activities with unilateral 
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origin. If we know ahead of time that the epileptic activities originate bilaterally, the 

method will not provide additional insight. Fortunately in partial epilepsy, there are a 

good portion of surgical patients with epileptogenic foci located unilaterally. It may also 

be able to detect bilateral multifocal epileptic activity if the distribution of the foci is not 

symmetrical. However, it may not be suitable for detecting epileptogenic foci located 

near to the midline or symmetrically in both hemispheres. Sometimes, the BOLD 

response of unilateral spike activity may appear to be bilateral. In these cases, our method 

will not capture such a component, which may explain why we did not detect an epilepsy 

related unilateral component in patient #5 and #10. 

This method is also not perfect in rejecting all non-epilepsy components. As seen 

in both patient and healthy subject resting state results, there are a small number of non-

epilepsy related components selected by the algorithm. These components can be largely 

summarized into two categories: 1) Additional noise that was not captured by the noise-

reduction procedure. Such components often have distributed small clusters (Fig.  2.8A) 

often near to the peripheral of the brain boundary (Fig.  2.3E). A further improvement in 

the algorithm could potentially exclude such components. For example, the brain 

boundary can be slightly shrunk so that activities of the voxels in close vicinity of the 

boundary can be disregarded from evaluation, since they are often prone to residual 

movement artifacts. 2) Unilateral physiological activities that are mislabeled as epilepsy 

related (Fig.  2.8B). Such components may be resulted from unilateral activation in 

eloquent cortex. In patient #2 for example (Fig.  2.4A), the identified epilepsy component 

was in close vicinity to the left sensorimotor area. Fortunately in this case, additional 

evidence from ECoG, surgical resection and the seizure free outcome indicated the 
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accuracy of the selection. But for future application, if the algorithm identifies an area 

overlapping with eloquent cortex, as we saw in two of the healthy subjects, additional 

care should be given to exclude false detection of other physiological activities that are 

not related to epilepsy.  

One additional implicit assumption of this method is the symmetry of the 

anatomical structure. Because the symmetricity calculation was based on the relative 

location to the ACPC plane specified on the anatomical MRI. The current method may 

not be sensitive to slight contoured ACPC plane or small imbalance of anatomical sizes 

between the left and right hemispheres. But if the brain is largely asymmetrical due to 

prior surgery, a large lesion or congenital distortions, this method will not be applicable.  

In the present study we proposed an ICA-based automated method to lateralize 

and localize hemodynamic foci in focal epilepsy patients for presurgical evaluation. Focal 

activities identified by our method were in concordant with surgical resection in majority 

cases studied. Our findings suggest the possibility of noninvasively and accurately 

localizing hemodynamic epileptic foci using fMRI alone in presurgical planning. Overall, 

this is a feasibility study to demonstrate the value of the proposed method. Additional 

features can be incorporated in the algorithm to improve reliability and performance. A 

larger patient population needs to be studied to test the broad applicability of this method. 

This proposed method can be easily implemented in the current presurgical workup to 

provide additional information for guiding the surgical resection.  
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 Chapter 3 Multimodal Imaging of Generalized Epilepsy 

 

3.1  Introduction  

Idiopathic generalized epilepsy (IGE) is characterized by various combinations of 

generalized tonic-clonic seizures, absence seizures, myoclonus (Blumenfeld 2005; Zhang 

et al. 2011), and generalized spike-and-wave discharges (GSWD) observed during 

interictal periods on electroencephalography (EEG) recordings (Hamandi et al. 2006; 

Moeller et al. 2011; Zhang et al. 2011). Focal spike-wave complexes occasionally are 

observed interictally in patients with IGE, although ictal EEG recordings show only 

generalized-onset seizures and no focal-onset seizures in IGE (Drury and Henry 1993; 

Seneviratne et al. 2012). Unlike focal or partial epilepsy, which has a confined range of 

influence, IGE affects the whole or a larger portion of the brain often without obvious, 

known cause (Engel 2001). Among drug-resistant epilepsy, patients with focal epilepsy 

may receive surgical resection to become seizure free. On the other hand, patients with 

generalized epilepsy do not have such a treatment option. Recently deep brain stimulation  

(Johnson et al. 2013) has been hypothesized as a way to treat epilepsy patients (Fisher et 

al. 2010). Therefore, it is important to distinguish the driver (or source) versus recipient 

(or sink) to understand how the epileptic activities propagate to the entire brain.  

In the recent decades, it has been generally agreed that the highly interconnected 

circuitry of the cortex and thalamus plays a crucial role for generalized epilepsy 

(Blumenfeld 2005).  There is general agreement that both cortex and thalamus participate 

in the generation of typical spike-wave seizures, but their relative importance is still 

unclear. Previous works using EEG-functional magnetic resonance imaging (fMRI) and 
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anatomical MR-based study (Bernhardt et al. 2009) indicated the involvements of 

thalamus, default mode network (Raichle et al. 2001; Fox et al. 2005), cerebellum, 

caudate nuclei and corticocortical networks in the generations of GSWDs (Blumenfeld 

2003, 2005; Gotman et al. 2005; Hamandi et al. 2006; Bernhardt et al. 2009; Blumenfeld 

et al. 2009). However, the exact interplay between the cortical and sub-cortical structures 

remains to be further explored.   

The goal of the present study is to use noninvasive, multimodal imaging 

techniques to elucidate the underlying mechanisms that generate GSWDs in IGE patients. 

Specifically, we aim to map the cortical networks associated with GSWDs and 

investigate the causality between cortex and thalamus during GSWDs.  We first 

performed EEG-informed fMRI analysis and identified regions of interest (ROI). We 

then tested the specific connectivity patterns by seed-based connectivity analysis in fMRI 

data. The seeds include both regions determined by the EEG-informed fMRI analysis and 

additional ones identified by EEG waveforms.  ROIs that exhibited network properties, 

i.e. the ones that share temporal profile with remote regions, were further subjected to the 

Granger Causality analysis to identify sources and sinks within the networks. 

EEG and fMRI are two noninvasive neuroimaging tools used in epilepsy research 

and clinical applications. EEG has a long history being used as an important diagnostic 

tool for epilepsy. EEG has the benefit of having high temporal resolution but often 

suffers from limited spatial resolution. With the advancement of source imaging 

techniques (Lantz et al. 2003; Holmes et al. 2010; Koessler et al. 2010), successfully 

localizing epileptic activity in focal epilepsy is possible (Sohrabpour et al Epub.; Lantz et 

al. 2003; Michel et al. 2004; Ding et al. 2007; Lai et al. 2011; Yang et al. 2011; Lu et al. 
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2012a; He and Ding 2013). However, very few studies have looked into using dense-

array EEG to study the temporal dynamics of the sources in IGE (Jung et al. 2005). With 

complementary high spatial and temporal resolution, simultaneous fMRI and EEG (Liu 

and He 2008) has been shown to provided valuable information in diagnosis of epilepsy 

(Pittau et al. 2012; Zhang et al. 2015).  

Seed-based connectivity analysis using resting state fMRI is another common 

technique in studying of both healthy and diseased neurological networks (Greicius et al. 

2009; Moeller et al. 2011; O’Muircheartaigh et al. 2012). Using this technique, remote 

areas that share the same temporal characteristics can be identified. Compared with EEG-

informed fMRI, seed-based connectivity analysis does not rely on precise knowledge of 

the EEG event timing, which can be difficult to obtain given the noisy signal collected 

concurrently with fMRI. However, it requires prior knowledge in determining the ROIs 

as seeds. In our study, we used regions identified by the EEG-informed fMRI result as 

seed in conjunction with other areas that may potentially be involved in the network 

activities in generating GSWDs. By using seed-based analysis, we can obtain a more 

specific network level activity than using EEG-informed fMRI alone.  

Once we establish a network that is involved in generating GSWDs, the next 

question is which node in the network is driving the others. Directed connectivity 

measures based on the concept of Granger causality (Granger 1969) has been proposed 

(Kaminski and Blinowska 1991; Goebel et al. 2003; Babiloni et al. 2005) to discern the 

causal relationship among different temporal series. The direction can be estimated with 

the following rationale: the driver is earlier than the recipient implying that the driver 

contains information about the future of the recipient not contained in the past of the 
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recipient while the reverse is not the case. The directed transfer function (DTF) has been 

used to quantify the directionality and strength of the connectivity profile among different 

brain regions (Kaminski and Blinowska, 1991). DTF has been successfully applied in the 

field of epilepsy research, to identify sources (active or efferent sources) and sinks 

(passive or afferent sources) that may play important roles in generating seizures and 

interictal activities (Babiloni et al. 2005; Ding et al. 2007; Wilke et al. 2010; Lu et al. 

2012b). Built upon the DTF method, which computes the overall connectivity strength in 

a given time window, an adaptive DTF (ADTF) method was developed to study the time-

variant propagation of interictal spike (Wilke et al. 2008, 2011a).  The ADTF method 

may be able to captures the temporal dynamics of the propagation and shed light in the 

inter-play among the networks in the genesis and propagation of GSWDs.  

3.2  Methods  

3.2.1 Subjects 

3.2.1.1 Patients 

Ten patients (mean age 33+/- 14, three female) with idiopathic generalized 

epilepsy syndromes were recruited from the Department of Neurology of the University 

of Minnesota, USA. The patients included in this study were selected based on the 

criteria that there were visible interictal GSWDs recorded from clinical EEG (with rare 

focal spikes only if GSWDs were frequent interictally), normal brain MRI (or normal 

brain CT in subjects 5 and 10), and a clinical diagnosis of IGE. All the patients were 

evaluated by board certified epileptologists. The patients’ data are summarized in Table 1. 
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Written informed consent was obtained from all patients. The study has been approved by 

the Institutional Review Board of the University of Minnesota.  

3.2.1.2 Healthy controls  

Ten healthy volunteers (ages 21-31 years, 26±2.4 years, 6 males) participated in 

this study. All subjects had written consent according to a protocol approved by the 

Institutional Review Board of the University of Minnesota. A total of two functional MRI 

scans, each lasting for six minutes, were recorded from each subject while lying in the 

MR scanner quietly. Individual structural MRI was also collected.   

3.2.2 Data recording and preprocessing  

3.2.2.1 EEG recording  

64-channel EEG caps were placed on patients’ scalp. One electrode was placed on 

patients’ back to record cardiac activity for noise removal purpose.  Electrode 

impedances were brought below 20 kΩ. The EEG was amplified using MR-compatible 

amplifiers (BrainAmp MR 64 plus, BrainProducts, Germany) and recorded at 1000 Hz. 

Two sessions of EEG were recorded both inside and outside of the scanner experiment.  

During outside scanner recording, each patient was instructed to sit still and rest with 

eyes open. Outside-scanner recording lasted about 30 minutes. During inside scanner 

recording, each patient was asked to lie still and relax. Each recording lasted for 6 to 20 

minutes. We recorded simultaneous EEG and fMRI for at least a total of 40 minutes for 

each patient. Experiment setup is illustrated in Fig.  3.1. 
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3.2.2.2 In-scanner EEG preprocessing  

The MR gradient artifact was removed using a principal component analysis 

(PCA)-based optimal basis set (OBS) algorithm (Niazy et al. 2005).  When detecting and 

removing the cardioballistic artifact (CBA), ECG signal from a single electrode on the 

subject’s back, was used. The timing of each heartbeat artifact in this channel was 

determined using an R-peak detection algorithm adapted from Liu et al (Liu and He 2008; 

Liu et al. 2012). The final artifact correction procedure is based on a combination of ICA, 

OBS, and an information-theoretic rejection criterion (Liu et al. 2012). Briefly, the signal 

is decomposed into independent components, which are rejected if the mutual 

information between the component’s time course and the CBA artifact is sufficiently 

high. The remaining components are then divided into epochs around each heartbeat and 

an optimal basis set is obtained across all epochs to fit and remove the artifacts. Detection 

of bad electrodes and data epochs was performed before CBA detection, and again after 

CBA correction. Electrodes were first re-referenced to a common average of electrodes 

connected to the same amplifier, and then to the combined average. Together with EEG 

data obtained from outside of MR scanner, the EEG signal was filtered and down-

sampled to 256 Hz.  

 

Figure. 3.1 Experiment setup for simultaneous EEG-fMRI 
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3.2.2.3 MRI recording and preprocessing  

We used 3 T Siemens Magnetom Trio and Skyra MR scanners (Germany) with 16 

channel head coil. The echo planar imaging (EPI) volumes underwent several 

preprocessing steps including three-dimensional (3-D) motion correction, slice scan time 

correction and linear trend removal. Then, the fMRI data were aligned with the 

anatomical MR images. All fMRI data were pre-processed for slice scan time correction, 

3-D motion correction and temporal filtering. Matlab based toolbox SPM8 (Ashburner et 

al. 2010) was used for EEG-informed fMRI analysis. BrainVoyager QX software (Brain 

Innovation, Maastricht, Netherlands) was used for the seed-based connectivity analysis. 

Similar preprocessing steps were implemented in both software.  All subject had 

individual structural MRI. In each set of structural MRI, there were 176 contiguous 

sagittal slices with 1 mm slice thickness (matrix size: 256 * 256; FOV: 256 mm * 256 

mm; TR/TE=20 ms/3.3 ms). Whole-brain functional images with BOLD contrast were 

acquired using gradient echo planar imaging sequence (32 axial 3-mm thick interleaved 

slices with 0.3-mm gap; TR/TE = 2000 ms/30 ms; flip angle = 90°; matrix size: 64 * 64; 

FOV: 192 mm * 192 mm). Structural MRIs were normalized via alignment to the 

anterior-posterior commissural line and then transformation into Talairach space. FMRI 

data were spatially coregistered to the anatomical MRI. 

3.2.3 ICA analysis of EEG 

Independent Component Analysis (ICA) is a widely used data-driven technique to 

separate spatio-temporal signals into spatial components that are independent from each 

other through the selected time segment. Infomax ICA algorithm (Bell and Sejnowski 
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1995; Delorme and Makeig 2004) was used to decompose the spatio-temporal 

electrophysiological data into multiple independent components (ICs) using a time-by-

space formulation. ICA was performed on EEG obtained both in- and out- of the scanner 

to identify GSWD related components for the subsequent EEG-informed fMRI analysis.  

3.2.4 EEG-informed fMRI analysis  

In the EEG-informed fMRI analysis, the important issue is the identification of 

GSWD timing based on EEG collected in the scanner. Although the artifact removal 

algorithm used was adequate in removing the majority of noise, it is still possible that 

some GSWDs were distorted by the residual noise and were rendered difficult to identify 

using visual inspection. Comparing to baseline activity, GSWDs are characterized by 

synchronized large amplitude discharges that present in multiple channels. Such large 

changes in activities are visible in both raw EEG and independent components related to 

the GSWD activities.  Therefore, the temporal correlation between the two signals can be 

used in this study for the selection of GSWD components. This method is similar to what 

was previously described in seizure imaging (Yang et al. 2011b). Once an IC of interest 

was identified from out-scanner EEG, it can be used as a benchmark for the IC selection 

from in-scanner EEG. The detailed steps are as following.   

For EEG obtained outside of the scanner, timing of each GSWD was marked by 

two trained epileptologists. Each ten second time window containing one or multiple 

GSWD(s) was selected and concatenated to form a GSWD-dense EEG.  The cross 

correlation between the time course of each IC and the averaged time course of all of the 

EEG channels was computed (Yang et al. 2011b). The IC with the maximum absolute 
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cross correlation valued was selected as most representative of the GSWD activity. ICA 

was also performed on in-scanner EEG after artifact removal. The same IC selection 

method was applied to ICs from in-scanner EEG. The correlation between the spatial map 

of the selected IC from in-scanner EEG and that from out-scanner EEG was computed to 

ensure accuracy. Since both spatial maps from in- and out- of the scanner represent the 

same GSWD activities, the two should share similar spatial pattern. The timings of 

GSWD were then identified basing on the time course of the selected IC.   

The regressor of the general linear model (GLM) was constructed using identified 

time points convolving with the canonical hemodynamic response function (HRF) (Jann 

et al. 2008; Marques et al. 2009). The final design matrix was composed of the regressor 

that represents GSWD activity and the 6 movement parameters as previously described 

(Marques et al. 2009). The group level analysis was performed using SPM8 (Ashburner 

et al. 2010). Individual T-statistic images were averaged using random-filed theory to 

correct for multiple comparison errors.  

3.2.5 Seed-based ROI analysis  

Seed-based ROI analysis was performed in BrainVoyager QX. FMRI data was 

filtered using a band-pass filter (0.009Hz~0.15 Hz) to reduce low frequency drift and 

high-frequency noise (Lowe et al. 1998; Seeley et al. 2007). The ROIs used in this study 

were informed by the EEG-informed fMRI results, with additional seeds added based on 

EEG waveform where the regions with the strongest GSWD discharges. Such areas 

include the left and right superior gyri and the middle frontal superior gyrus. A seed in 

the anterior nucleus of the thalamus was also included, as it was the stimulation target of 
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the SANTE trial (Fisher et al. 2010). Seeds were selected in the Brainvoyager software 

by referencing Talairach Client’s (Lancaster et al. 1997, 2000) archive of Talairach labels 

and selecting a central coordinate for each seed.  The time courses of both seed 

coordinates was regressed against all brain voxel time courses to create two brain maps of 

r-values for each fMRI scan.  A p-value threshold less than 0.05 with correction via 

Bonferroni multiple comparisons was used to identify which voxels were significantly 

correlated with the seed location. All images were smoothed using a 2.0 mm full width at 

half maximum (FWHM) Gaussian kernel within BrainVoyager.  The resulting voxels 

were clustered and counted to record a total volume of significantly correlated 

connectivity for each fMRI scan.  At the group level, a second-level, random-effects 

analysis was performed. Connectivity maps were created with the same threshold levels 

and smoothing parameters described above. Only voxels with correlation less than the p-

value of 0.05 corrected using the Bonferroni method, are reported as significant across 

subjects.   

3.2.6  EEG source imaging  

Generalized spike-and-wave discharges (GSWD) were selected from the interictal 

EEG of each patient via visual inspection. Source reconstruction was performed at the 

peak of each individual spike using three different inverse methods: dipole fitting (He et 

al. 1987; Homma et al. 1987) low resolution electromagnetic tomography (LORETA, 

Worrell et al., 2000; Pascual-Marqui et al., 1994) and standardized LORETA (sLORETA, 

Pascual-Marqui, R. D., 2004). CURRY7 software was used to perform the analysis. A 3-

D source space within the brain volume was considered for the solution space of the 

inverse problem. A pre-defined fixed mesh was set within the brain volume to serve this 
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end. We employed the realistic geometry boundary element model (BEM) (He et al. 1987; 

Hamalainen and Sarvas 1989) head model with four surfaces (skin, outer skull, inner 

skull and cortex), separating three compartments, scalp, skull, and brain (Fuchs et al. 

1998). Homogeneous electrical conductivity within each layer was assumed, with 

conductivity ratio between the skull and brain as 1:20. (Lai et al. 2005; Zhang et al. 

2006b). To make results more accurate, we built subject-specific BEM models by 

segmenting the MR images from individual patients using CURRY7 software. In order to 

study the propagation pattern of the GSWD, source localization was performed at every 

15 ms window for a representative GSWD. 

3.2.7 Granger causality analysis  

In each of the selected well-formed GSWDs, an epoch of approximately 400 ms 

before and 600 ms after the peak of the spike was extracted for the subsequent continuous 

source localization as described above. The distributed current density of the underlying 

neuronal activity was estimated to obtain the source waveform at each voxel. Time series 

of the source waveforms corresponding to three ROIs, i.e. left mediodorsal nucleus of the 

thalamus, right mediodorsal nucleus of the thalamus and the medial frontal cortex, were 

selected. These anatomical locations were chosen based on analysis previously described 

in the seed-based connectivity analysis. The three source waveforms were subjected to 

the DTF computation, similar to the procedure previously described (Ding et al. 2007; Lu 

et al. 2012b) Nonparametric permutation tests were conducted to test the significance of 

the obtained directional DTF values. 5000 times of phase shuffling of the original input 

signal were performed. The threshold was set at p< 0.01 to consider a DTF value as 

significant. As a step towards computing the overall DTF value between two time series, 
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the contribution of each frequency point, at 1 Hz increment, was computed automatically. 

Since different frequencies might carry information differently, DTF output at each 

frequency point was averaged across all spikes spanning form 1 to 125 Hz to show the 

contributions of different frequency bands. Additionally, adaptive DTF (ADTF, Wilke et 

al., 2011, 2008) was performed on individual spikes to study the time varying feature of 

the information flow at different time points of the spike-slow wave complex.  This 

measure will aid in delineating the temporal changes of the connectivity strength and 

determining the dynamics in initiation and propagation of the GSWDs.   

3.3 Results  

Patient information is summarized in Table 3.1.  
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3.3.1  EEG-informed fMRI  

Figure 3.1A shows in one patient, a segment of the EEG waveforms. Five out of 

fifty corresponding IC time courses are shown in Fig.  3.2B. Fig.  3.2C shows the 

histogram of the temporal cross-correlation coefficients between each IC and the global 

field potential. The red rectangle indicates the correlation coefficient of the selected IC. 

Spatial weight distribution of the selected components is shown in Fig.  3.2D. The cross 

correlation between the spatial weight of this IC and that of out-scanner EEG is 0.99. The 

cross correlation between the time course of the selected IC and the averaged time course 

 

Table 3.1  
PT, patient; GTC, generalized tonic-clonic seizure; IGE, idiopathic generalized epilepsy; AED, anti-

epileptic drug  
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of all the EEG is 0.73. On a group level, the correlation between the spatial weight of the 

selected IC and that of out-scanner EEG is 0.99±0.01. The cross correlation between the 

time course of the selected IC and the mean global field potential is 0.71±0.05. Group-

level EEG informed fMRI results are shown in Fig.  3.3 The highest activations were 

observed in anterior cingulate cortex, bilateral mediodorsal nuclei, left caudate nucleus, 

bilateral insula and bilateral sensorimotor areas.   

 

 

 

 

 

 

Figure. 3.2  Characteristics of the selected independent component (IC) to represent GSWDs 

A. Waveform of an example segment of the EEG spike. B. Time courses of five ICs. Red rectangle 

indicates the time course of the selected IC. C. Distribution of the temporal correlation coefficients between 

all ICs and the global field potential. The red rectangle indicates the correlation coefficient of the selected 

IC. D. Topological map of the selected IC. The activity is centered at the medial frontal area.  
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3.3.2  Seed-based connectivity study  

Seed-based connectivity analysis with seed in left, right superior gyrus, and the 

insula showed these regions are connected bilaterally (Fig.  3.4 A, B and E).  But seeds in 

middle frontal superior gyrus, caudate nucleus and sensorimotor cortex are only 

temporally correlated to the close vicinities (Fig.  3.4 C, D and F).  

Group average of seed-based analysis in ACC in both patients with IGE and 

healthy controls are shown in Fig.  3.5A. The total voxel counts among all activities that 

are correlated to the ACC were significantly different between patients with IGE and 

healthy controls (p<0.05 by nonparametric Wilcoxon Test, Fig.  3.5B). There was a linear 

positive trend between the degree of connectivity between ACC and the thalami, 

reflected by the number of voxels in the thalami that are correlated with the ACC time 

 

Figure. 3.3 Group results from EEG-informed fMRI using GLM 

Z-axis is indicated in blue. Activities are found in medial frontal cortex, bilateral mediodorsal nuclei, 

caudate nuclei, bilateral insula and sensorimotor cortex.  
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course, and the frequency of GSWDs (Fig. 3.5C). Activities in the thalami that are 

correlated with ACC are located in the bilateral mediodorsal nuclei.  

Group comparison of seed-based analysis in mediodorsal nuclei of the thalamus 

between patients with IGE and healthy controls are shown in Fig.  3.6A. The total voxel 

counts among all activities that are correlated to the mediodorsal nuclei were significantly 

different between patients with IGE and healthy controls (p<0.05, Fig. 3.6B). There was a 

similar linear trend between the degree of connectivity and the frequency of GSWDs (Fig. 

3.6C) as seen previously in Fig. 3.5C.  

 

Figure. 3.4 Seed based analysis in the patient group 

A. Seed in the right superior gyrus. B. Seed in the left superior gyrus. C. Seed in the mediofrontal 

superior gyrus. D. Seed in the right caudate nucleus. E. Seed in the left insula cortex. F. Seed in the left 

sensorimotor cortex.  
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Figure. 3.5 Seed based analysis at medial frontal cortex 

A.  Seed-based connectivity analysis between healthy controls and patients with generalized epilepsy. 

Within the thalamus, voxels in the mediodorsal nuclei are related to the seed in the patients but not in 

controls. Seed location: medial frontal lobe. B. Voxel counts of the total number of voxels in the two 

groups that are correlated to the seed activity in medial frontal lobe. C. Scatter plot of voxel counts in 

the thalamus and the occurrence rate of GSWDs. Gp: group; HC: healthy control; GE: generalized 

epilepsy 
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3.3.3 Granger causality analysis 

The connectivity patterns among the ROIs as measured by DTF are depicted in 

Figure 3.7A. The blue and two red dots represent the ACC area in the medial frontal 

cortex and the two mediodorsal nuclei respectively. The arrows between the dots indicate 

 

Figure. 3.6 Seed based analysis at dorsal medial thalamus 

A.  Seed-based connectivity analysis between healthy controls and patients with generalized epilepsy. 

Voxels in the medial frontal cortex are related to the seed in the patients but not in controls. Seed 

location: mediodorsal nuclei of the thalami. B. Voxel count of the total number of voxels in the two 

groups that are correlated to the seed activity in medial frontal lobe. C. Scatter plot of voxel counts in 

the medial frontal cortex and the rate of GSWDs.  
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the directionality of the flow, where the arrows are pointing from one area, the “source” 

toward another, the “sink”.  The strengths of the information flowing from the medial 

frontal cortex is only about half in strength as the reverse direction. Figure 3.7B 

quantitatively illustrates this difference in strengths in the two directions. The difference 

in strength between the two directions is statistically significant (p<0.05).  The time 

varying feature of the causality as results of the ADTF analysis is shown in Fig.  3.7C. 

The blue and red traces show the group averaged temporal changes of the connectivity 

during GWSD. The black trace shows an averaged EEG waveform. The most significant 

exchange seems to occur as early as 50 ms before the peak of the spike, initiated by the 

thalamus. The averaged information flow spanning the entire frequency range (1-125Hz) 

is plotted in Fig.  3.6D by averaging over all spikes. There is a considerable variability 

but alpha and low gamma bands appear to have the most contribution.  
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3.3.4  EEG source imaging  

Group averaged EEG source localization results from seven patients are shown in 

Fig.  3.8.  Five to thirty five spikes were collected and analyzed for EEG source 

localization in each patient. Current density distributions from all spikes of each patient 

were averaged to obtain the group averaged current density map. Group average results 

with the highest current density value located in the medial frontal region as shown in Fig. 

3.8 A. Group ICA with concatenated spikes from all patients were also performed. The 

one component with the highest temporal correlation (0.89±0.03) with the global average 

time course was selected. Source localization on the selected IC spatial map was 

 

Figure. 3.7 Granger Causality Analysis 

A. Illustration of the connectivity patterns among different ROIs. The arrows indicate the directions and 

relative strengths of information flows. Red: ACC; Blue: Mediodorsal Nuclei of Thalamus.  B. 

Averaged information flow between thalamus nuclei and medial frontal cortex. Labels on the x-axis 

indicate the direction of flow. Cor: medial frontal cortex, Tha: mediodorsal nuclei. p<0.05. C. Results 

of ADTF analysis of one spike with the accompanying EEG waveform. D. Averaged frequency 

contribution in information flow (y-axis).  
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performed to yield the current density distribution and dipole localization as shown in Fig.  

3.8 B.  

  

In order to study the propagation pattern of the GSWD, source localization was 

performed at every 15 ms window for one representative GSWD. Five intervals are 

 

Figure. 3.8 EEG source localization results 

A. Group average source localization results of all spikes. B. Time course of an example of 

independent component that has the highest correlation with the GSWD activity. C. Source 

localization using the spatial map of the independent component in B. D. Source localization at 

different time points of the GSWDs. Cortex was set at 50% transparency.   
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shown in Fig.  3.8 C. All the current density distributions were displayed at 80% of 

maximal intensity.  

3.4 Discussion 

3.4.1 Seed-based connectivity  

Seed-based connectivity analysis was performed with a focus on two specific 

structures: anterior cingulate cortex in the medial frontal lobe and the mediodorsal nuclei 

in the thalamus. These two structures have been previously mentioned in works of IGE 

but not been specifically studied. Medial frontal cortex has been known to generate 

GSWDs on EEG. However it was also thought that the sources can be much more 

distributed only with center of gravity located near to the midline instead of having the 

actual focus in the medial frontal cortex. Using the seed-based connectivity analysis, we 

were able to specifically target this region and find its remote connections in the thalamus. 

This connection in IGE patients was more prominent compared with healthy controls.  

Surprisingly, activity of just the mediodorsal nuclei, not the entire thalamus, is 

significantly correlated to the medial frontal lobe. Activation in mediodorsal nuclei has 

been previously seen anecdotally  in a patient with history of generalized tonic-clonic 

seizure (Aghakhani 2004). In agreement with this finding, all ten patients in the present 

group have generalized tonic-clonic seizure. Another previous study by Moeller and 

colleague found that in 6 children patients with IGE (Moeller et al. 2008). They saw 

symmetrical medial thalamic activation, which is also in agreement with our observation. 

When we put the seed in the mediodorsal nuclei, its connectivity with the medial frontal 

cortex was replicated as expected in the IGE patients and again absent in healthy controls. 
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In fact, the specific cortical projections of mediodorsal nucleus to the frontal cortex has 

long been reported in rodents and monkeys (Leonard 1969; Krettek and Price 1977; Price 

and Drevets 2009). However, the different degree of connection between IGE patient 

group and the control group is unexpected. It may be explained that a strengthened 

connection between the two structures in each patient can make the spread of GSWDs 

and seizure activity progress quickly. Furthermore, the degrees of connectivity between 

these two structures also seem to be positively correlated, albeit not statistically 

significant, with the discharge rate of GSWDs. Interestingly, a similar fMRI connectivity 

study (Moeller et al. 2011) on IGE patients showed slight difference in connectivity for 

seed in the left mediodorsal nucleus of the thalamus compared with control. This is in 

partial agreement with our findings. The reason they did not see bithalamic correlation, or 

the connection between the thalamus and the cingulate cortex could be due to the fact that 

Moeller and colleagues selected the GSWD-free periods for their analysis, where we did 

not make such selection. Therefore, the effect they observed is weaker compared with 

ours.   

However, bilateral superior gyri and the middle frontal superior gyrus, where 

strong GSWDs are observed from raw EEG, do not seem to be involved in a 

thalamocortical level network activity. Left and right superior gyri did show temporal 

correlation between the two. And bilateral insula showed such correlation as well.   

Despite the preprocessing steps taken in reducing the effect of noise, the 

periphery of the cortex is still prone to movement artifacts in the fMRI recording. 

Therefore, seeds-based analysis in close vicinity of the periphery may contain erroneous 
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connection caused by noise rather than neurophysiological activities, as seen in Fig.  3.3E, 

coronal view.   

3.4.2 Functions of ACC in GSWD 

Devinsky et al. (Devinsky et al. 1995) reported that the anterior executive region 

formed by ACC around the rostrum of the corpus callosum has numerous projections into 

motor systems, which can be linked to the motor response such as uncontrolled jerking 

movement in tonic-clonic seizure. There is also evidence indicating correlation between 

the neural activity in the ACC and the degree of consciousness in patients with disorders 

of consciousness (DOC) (Qin et al. 2010). It was shown that slow delta wave activity was 

generated  in the frontal area accompanying loss of consciousness post secondarily 

generalized partial seizures and complex partial seizures (Blumenfeld et al. 2009; Yang et 

al. 2012). This may partially explain another significant symptom of generalized epilepsy, 

such as the momentary loss of awareness during or post seizures. 

3.4.3  Functions of mediodorsal nuclei  

 The central role of mediodorsal nuclei has been shown in the interconnected 

medial frontal cortico-striato-pallido-thalamic and amygdalo-striato-pallido-thalmic 

networks in multiple animal models ranging from rats to monkeys (Russchen et al. 1987; 

Ray and Price 1992, 1993; Price and Drevets 2009). The projections from mediodorsal 

nuclei to the amygdala and hippocampus form important circuitries that regulate 

emotions and memory (Price and Drevets 2009). Not surprisingly, depression and 

memory loss are some of the prominent comorbidities in patients with epilepsy (Nilsson 

et al. 1997; Hesdorffer et al. 2000). However, we did not see explicit change in the seed-
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based functional connectivity between mediodorsal nuclei and amygdala or hippocampus. 

These changes may be too subtle or not time linked to GSWDs.  

3.4.4 Predictive value of connectivity and epileptic activity  

 We initially hypothesized that the degree of global connectivity to the thalamus, 

which is defined as the total voxel counts within the brain that are correlated to the seed 

in the thalamus, may be indicative of the rate of occurrence of GSWDs. However, it 

appeared not to be the case. Instead, the number of voxels in the thalamus that are 

connected with the ACC alone appears to be positively correlated to the rate of GSWDs. 

Since ACC is probably where most of the GSWD signals are produced, the degree of 

connection between thalamus and ACC may be able to serve as a predictor of the level of 

activity observed on scalp. However, because of the limited recording period (up to 2.5 

hours total) of EEG in each patient, the actual GSWD rate may deviate from the value we 

obtained. This limitation could influence the strength of the correlation between the 

connectivity and discharge rate.  

3.4.5 Hemodynamic Response Function 

 In this study, we used canonical HRF to convolve with spike timing to construct 

regressor in the EEG-informed fMRI step. Canonical HRF is the most widely used 

function to represent the link between electrophysiological activity and the corresponding 

hemodynamic activity. However, there have been several recent studies pointing out that 

a canonical HRF may not be the best in presenting the actual function, as it may vary 

from person to person or may even change from location to location (Bai et al. 2010; 

LeVan et al. 2010). To mitigate this issue, we opted for canonical HRF basis functions 
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with time and dispersion derivatives which can model small differences in the latency 

and the duration of the peak response (Ashburner et al. 2010).  

3.4.6 EEG source estimation  

Additionally, we performed source reconstruction using sLORETA (Fig.  3.9). 

The source of GSWD is located in the medial frontal lobe, more specifically, at the 

anterior cingulate cortex (ACC). Consistent with our results, Rodin et al. (1994) used 

regional dipoles to localize source of generalized epilepsy activities, and the location of 

equivalent dipole was around the midline of baso-frontal area. This location suggested by 

EEG source localization appeared to be plausible, given the general predominance of 

EEG in fronto-central region (Montalenti et al. 2001; Aghakhani 2004). However a few 

recently published works suggested that potential spurious results may be yielded when 

applying source estimation methods to wide spread spike and wave discharges 

(Kobayashi et al. 2005; Daunizeau et al. 2010; Wennberg and Cheyne 2013). Wennberg 

and Cheyne (2013) reported that despite intracranial evidence of cortical origins, the 

scalp EEG during K-complex was localized to deep brain regions using either dipole 

localization or distributed current density source imaging. While this finding was based 

on a low-density scalp electrode configuration (27 electrodes), Wennberg and Cheyne’s 

results suggested the possibility of mislocalization of widespread bi-hemispheric 

activities to mid-deep brain. In our study, since there were no intracranial recordings in 

the patients studied, we cannot preclude the possibility of mislocalization of EEG sources 

due to technical limitations in solving the EEG inverse problem. However, our high-

density EEG recording- (64-channel) based source analysis did return source locations 

that are in agreement with the EEG-informed fMRI results, a technique (Gotman et al, 
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2005) that is not based on inverse solutions. The middle frontal region was implicated by 

both approaches in the group of patients we studied. Further investigations are needed 

with regard to source localizations of GSWD. One possible approach is to validate using 

intracranial recordings. Another approach is to integrate BOLD fMRI to improve the 

EEG source localization accuracy (Dale and Sereno 1993; Liu and He 2008; Daunizeau 

et al. 2009, 2010; Pittau et al. 2012).  

 

To test the validity of the EEG source localization result and rule out the possibility that 

the GSWDs are formed by a group of distributed sources near to the surface of the cortex, 

we conducted a simulation study. A single deep dipole and two surface dipoles were 

simulated separately. The arrangement of the dipoles were such that the resultant surface 

topography is similar to what we observed in the patient data.  

 
Figure. 3.9 Simulation of a single dipole deep on the midline 

Blue Pin: location of simulated dipole; Orange-Red: Distributed source localization results using 

sLORETA; Right: scalp topography. Left: scalp topography 
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A deeper source near the thalamus was occasionally observed in some patients 

when performing source localization for several spikes. But such spikes occurred much 

less frequently compared to spikes in the medial frontal region. One possible explanation 

is that volume conduction can render deep brain sources hard to detect, even using 

LORETA, which is considered to have the least bias in the ability of correct localization 

in 3-D space (Pascual-Marqui et al. 1994; Worrell et al. 2000; Wang et al. 2011). Also, in 

order to acquire the highest signal-noise ratio (SNR), we only chose the peak of the spike 

to localize the source. During the onset-to-peak interval, the propagation of electrical 

activity from the original source may already be in progress. 

3.4.7 Causality measures  

 

Figure. 3.10 Simulation of two superficial dipoles  

A. Orange-Red: sLORETA source localization results, SNR=10 dB; B. Orange-Red: sLORETA 

source localization results, SNR=1 dB; C. Green and red pins: locations and orientations of the 

simulated dipoles; D. Simulated scalp topography 
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DTF and ADTF of EEG activity have been previously applied in finding driving 

sources in epileptic activities (Ding et al., 2007; He et al., 2011b; Lin et al., 2009; Lu et 

al., 2012b). Our DTF findings showed a reciprocal causal relationship between the frontal 

cortex and the thalamus, where thalamus serves more as a driver. Specifically, 

mediodorsal nuclei of the thalamus have strong projection to the medial frontal cortex in 

the ACC area. The reverse projection is much weaker in comparison, approximately at 

half of the strength. The reciprocal directionality of Granger Causality is generally 

accepted (Ding and He 2013). This particular thalamocortical reciprocal relationship is 

also in agreement with the understanding of the interconnected thalamocortical circuitry 

in generating spontaneous spike-waves in IGE (Blumenfeld 2005). The crucial role of 

thalamus as part of the cortico-thalamo-cortical network, in sustaining seizures has been 

shown recently by Paz et al. in a rat model with optogenetics  (Paz et al. 2013). Based on 

our ADTF finding (Fig.  4.6C), which shows the temporal evolution of the connectivity 

strength, thalamus seems to play the main role from the initiation to the propagation of 

the GSWDs. The main changes in the connectivity strength from the thalamus to the 

cortex occur as early as 50 ms before the start of the spike. It drops after the end of the 

slow wave discharge. This is in agreement with previously reported by Moeller et al 

(Moeller et al. 2008) using EEG-fMRI, information exchange among the thalamocortical 

precedes the peak of the spike GSWD, though the changes we observes occur only 50 

milliseconds prior to the GSWD events, as opposed to the seconds level window 

observed by Moeller et al.  

  There are a few considerations regarding our approach that are worth noting.  

First, due to volume conduction effect, the time courses extracted using weighted 
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minimum norm type of inverse source estimation algorithms might be smeared. It could 

result in cross-talk and false interactions. Other source localization approaches, such as 

nulling, where nulling constraints are used to cancel signals from specific cortical 

locations beamforming (Cheung et al. 2010; Hui et al. 2010), might be able to decrease 

such effects. However, these methods are not without their own limitations. For example, 

nulling beamformer requires that we know the locations and extent of the sources to be 

canceled. Such information is often not available in practical applications. Another 

potential issue with our model is that we only studied the relationships between the 

medial frontal cortex and the mediodorsal nuclei of the thalamus. This is because these 

structures were implicated by our EEG informed fMRI and fMRI connectivity analysis. 

Other anatomical entities, such as other nuclei in the thalamus that were not included in 

the present study, or hippocampus, may potentially play a role in the network of 

generating GSWDs as well. Although seed-based connectivity analysis was performed on 

anterior nucleus and caudate nucleus of the thalamus (Supplement Fig. ure S1) (Fig.  

4.3D), we did not see they were involved in network level activity. Clusters that are 

temporally correlated to the seeds were confined to the close vicinity of each seed itself. 

It is possible but unlikely, that the network activity was not in the form of temporal 

correlation and thus was not detected by our analysis method. Lastly, other causality 

measures, such as phase slope index (PSI) (Marzetti et al. 2008; Nolte et al. 2008), 

effective connectivity methods (DCM) (Friston 2009; Murta et al. 2012) and structural 

equation models (SEM) may provide additional insight. Since such methods all require 

prior anatomically motivated assumptions, this ACC-mediodorsal nuclei network may 

serve as a model framework.  
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  A few other approaches using different recording systems may also help 

circumvent the volume conduction issue. For example, functional MRI, has excellent 

spatial resolution. But fMRI has limited temporal resolution due to hemodynamic effects. 

It was disputed whether fMRI can be a viable tool to study causal relationships, 

especially in the context of epilepsy research (David et al. 2008).  It has been shown 

recently that by using a faster sampling rate, at the order of 250- 500ms repetition time 

(TR) it was possible to detect a multivariate network using Granger causality in several 

simulation studies (Deshpande et al. 2010a, 2010b; Rogers et al. 2010). Unfortunately, 

the TR used in our study ranged from 2000 ms to 2500 ms. It may be too slow to 

delineate meaningful causal information at a scale of milliseconds or lower. With 

advancement in MRI acquisition techniques using multiband approaches, TR can be 

shortened to 400ms (Feinberg et al. 2010; Uğurbil et al. 2013). At this rate, we may be 

able to extract causal information using fMRI time courses in future studies. Invasive 

recording using intracranial electrodes planted in the thalamus and cortex may provide 

the most direct measures of the neurophysiological activity and dynamic changes of 

GSWDs. Similar approach using Granger Causality and electrocorticalgraphy (ECoG) 

have been previously applied in seizure imaging with success (Wilke et al. 2008, 2010, 

2011a). 

By combining the complementary strengths of EEG and fMRI, we showed 

consistent results concerning the originating and propagation of GSWDs. EEG-informed 

fMRI revealed multiple brain regions that may be involved in GSWDs. By means of 

seed-based fMRI, we tested the specific network level activity and found temporal 

correlation between cortical and bithalamic BOLD activities. According to the Granger 
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Causality analysis the mediodorsal nuclei of the thalamus serve as the main driver from 

the initiation and throughout the propagation of the GSWDs. Once validated, this work 

may provide insight in understanding the enigmatic etiology of generalized epilepsy and 

offer guidance in treatments. Thalamus, especially the mediodorsal nuclei, may serve as 

potential targets for deep brain stimulation to treat patients with drug-resistant 

generalized epilepsy.  
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 Chapter 4 Functional Neuroimaging of Thermal Pain Stimulation 

 

4.1 Introduction  

Chronic pain is one of the biggest medical burdens to our society, affecting 20% 

of the adult population (Breivik et al. 2006). The costs associated with management and 

treatment of chronic pain is estimated to be over $260 billion each year in the United 

States alone (Tracey and Mantyh 2007; Gaskin and Richard 2012). Functional imaging of 

neurological responses associated with pain processing is of vital importance to better 

understand the mechanisms of pain perception. The establishment of an objective way for 

measuring and quantifying pain is in great need for better pain management in patients 

suffering from chronic pain.  

Electroencephalography (EEG) is a noninvasive monitoring technique, which is 

widely used to probe neurological disorders with high temporal resolution. Few attempts 

have been made to use EEG to map the active brain regions in pain patients (Bromm 

2004; Stern et al. 2006). Myriad studies have been published on the correlation between 

evoked potential and transient painful stimuli using EEG. The strong relationship 

reported by these studies is promising in terms of the possibility of using objective 

measures to quantify acutely elicited pain (Bromm and Chen 1995; Chang et al. 2002b; 

Valeriani et al. 2002; Arendt-Nielsen and Chen 2003). There is a growing number of 

studies on the cortical responses to sustained painful stimulations that last several  

seconds or longer (Backonja et al. 1991; Chen and Rappelsberger 1994; Ferracuti et al. 

1994; Chang et al. 2002b; Nir et al. 2012; Wager et al. 2013). As opposed to transient 

pain produced by laser evoked potential, contact heat evoked potential (CHEP) can 
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produce longer lasting pain sensation (Chen et al. 2001). Although tonic stimulation at 

the order of several seconds or minutes may not involve the same neurological responses 

as clinical chronic pain,  it may trigger coping strategies (Huber et al. 2006; Nir et al. 

2012), which can be different than that evoked by transient stimuli. Therefore, we chose 

to focus on subject’s neural response to tonic painful stimulation in the present study.  

Alpha rhythm has been reported extensively as being correlated to both transient 

and tonic noxious painful experiences (Chen and Rappelsberger 1994; Huber et al. 2006; 

Domnick et al. 2009; Nir et al. 2010). Other frequency bands including theta, beta and 

gamma activities have also been reported to be related to pain perception (Raij et al. 2004; 

Gross et al. 2007; Sarnthein and Jeanmonod 2008; Zhang et al. 2012). There has not been 

clear consensus on determining which rhythmic band has the most reliable correlation 

with different levels of elicited pain.  

Additionally, to our knowledge, not many works have attempted to image the 

sources in the brain involved in pain at the cortical level using EEG (Moont et al. 2011), 

though a number of fMRI studies have been published (Boly et al. 2007; Ploner et al. 

2010; Wager et al. 2013). Many studies based on both chronic pain and stimulated pain 

paradigm have shown several key cortical areas that are consistently responding to pain 

processing: anterior cingulate cortex (ACC), prefrontal cortex (PFC), insular cortex (IC), 

primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) (Craig et al. 

1996; Tracey and Mantyh 2007; Zhuo 2008; Wager et al. 2013). However, temporal 

dynamics among nodes of the network responsive to tonic painful stimuli have not yet 

been previously examined.  
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In order to study the temporal dynamics on a network level in response to 

different levels of stimuli, causal connectivity analysis can be performed. Directed 

connectivity measures based on the concept of Granger causality (Granger 1969) has 

been proposed (Kaminski and Blinowska 1991; Goebel et al. 2003; Babiloni et al. 2005) 

to discern the causal relationship among different time series. The directed transfer 

function (DTF) has been used to quantify the directionality and strength of the 

connectivity profile among different brain regions (Kaminski and Blinowska, 1991). DTF 

has been successfully applied in the field of epilepsy research to identify sources and 

sinks that may play important roles in generating seizures and other epileptic activities 

(Ding et al., 2007; Lu et al., 2012b; Wilke et al., 2010). The direction can be estimated, if 

by including the time series of the driver node (or source) in predicting the time series of 

the recipient node (or sink), it decreases the variance of the error. This intuitively means 

that the source plays an important role in determining the value of the sink and thus 

establishes the Granger causality between the nodes (Babiloni et al. 2005; He et al. 2011a, 

2011b). This is on the basis that one node contains information about the future of the 

other while the reverse is not the case.  

The goal of the present study was to investigate the effects of sustained thermal 

pain on the rhythmic brain activities of healthy subjects, measured by high-density 64-

channel EEG. In this study, we systematically examine the dominant frequency ranges 

and brain regions that are most responsive to tonic painful stimuli, and investigate the 

neural correlates of the perceived pain using the scalp EEG. We further explored changes 

in temporal dynamics, at a network level, among major cortical regions that respond to 

painful stimuli and compared the connectivity patterns with and without stimulation and 
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at different temperatures.  

4.2 Materials and Methods  

4.2.1 Subjects 

Twenty one (seven female, mean age±SD: 25±3.7) healthy volunteers were 

recruited for the experiment. None of the subjects had any neurological or psychiatric 

disease history. None of the subjects had any ongoing chronic pain. The study was 

approved by the Institutional Review Board of the University of Minnesota and was 

conducted according to the Declaration of Helsinki. The stimulus intensity applied was 

kept within each subject’s individual tolerance level.   

4.2.2 Experiment Paradigm 

Each subject experienced a sustained painful stimulus using a thermal stimulator 

(CHEPs, Medoc Ltd, Ramat Yishai, Israel) with the thermode placed on the dorsum of 

their left or right wrist (Fig.  4.1). The thermode delivers heat to the skin through direct 

contact. The size of the thermode is 2.7cm in diameter. Depending on individual 

 

Figure. 4.1 Experiment Design 

A. Stimulation setup. The thermode was placed at the dorsum of the subject’s wrist. B. Stimulation 

paradigm. Thermal stimulation was applied continuously for 30 seconds in each trial with an inter-trial 

interval of 60 seconds for ten trials. Subjects were asked to describe and rate the pain received at the 

end of each 10-trial session.  
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tolerance, the temperature of the thermode was kept at a range from 40 to 47 degrees 

Celsius for 30 seconds during the stimulus-on condition. Then the temperature dropped to 

and stayed at 32 °C for 60 seconds during the stimulus-off condition. Each recording 

session had 10 epochs of 30 seconds ‘on’ and 60 seconds ‘off’. The thermode was moved 

slightly after each recording session to avoid sensitization or habituation on the same 

stimulation site. EEG signal was collected with a 64-channel system (Neuroscan 

Synamps 2, Compumedics Inc, Charlotte, USA).   

4.2.3 Subjective Numerical Pain Ratings  

Subjects were asked to rate the level of pain on a 0-10 scale, where 0 was defined 

as ‘no pain’ and 10 as ‘the worst pain imaginable’. The rating was obtained at the end of 

each recording. The subjects were asked to describe if the pain sensation changed 

throughout the recording period.  

4.2.4 Data Analysis  

Raw EEG was recorded at 1000 Hz and down-sampled to 256 Hz, and the EEG 

data were then high-pass filtered at 1 Hz. 60Hz power line noise was removed with a 

notch filter. Continuous EEG data (25 seconds in length) were segmented from both the 

30-second stimulation-on and stimulation-off portions in each epoch. The 25 second 

segments were selected during each trial and belonged to time intervals that started 4.5 

seconds after the start of stimulation (for stimulation-on segments) or the end of it (for 

stimulation-off segments). This was done to avoid any artifacts caused by transient 

effects of rapid heating or cooling. Ten pairs of segmented data of stimulation-on and 

stimulation-off were concatenated sequentially in their original sequence.   
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The concatenated data were subsequently submitted to extended Infomax 

independent component analysis (ICA) (Delorme and Makeig 2004; Yang et al. 2011b, 

2012). ICA is a widely used data-driven technique to separate spatio-temporal signals 

into spatial components that are independent from each other through the selected time 

segment. The temporal, spectral and spatial characteristics of the components were used 

to identify and remove artifacts in the electrophysiological recordings such as eye 

movements, muscle movements, etc. Components corresponding to eye blinks are noise-

ridden and thus were excluded from further analysis (Makeig et al. 2002; Debener et al. 

2005, 2006; Yang et al. 2011b, 2012). After removing artifacts, the remaining 

components were recombined to obtain noise-free electrophysiological signals.  

4.2.5 Frequency analysis  

Time-frequency information was obtained using spectrogram to capture the 

temporal changes in power in each of the following frequency bands: delta (1-4Hz), theta 

(4-8 Hz), alpha (8-13Hz), beta (13-30 Hz), Gamma (30-125 Hz) and total (1-125 Hz). 

Two different calculations of power change were performed in the study to quantify the 

power spectral changes in the EEG data and ICs. The first type of power change was 

based on the EEG sensor data and it was calculated from all recorded EEG channels. The 

second type of power change was calculated using all of the non-noisy ICs obtained from 

the previous ICA decomposition step. In order to compute global frequency changes, 

electrodes were grouped into four main regions: frontal, left parietal, right parietal and 

occipital regions (illustrated in Fig.  4.3B).  

4.2.6 Canonical correlation analysis of frequency contribution  
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In order to find the region that is most tightly modulated by the stimulation, a 

goodness of fit (GOF) index was developed to quantify the correlation between the actual 

stimulation time course and the estimated stimulation time course, which was obtained by 

analyzing the power fluctuations of the spectrogram. Each step of this analysis is 

illustrated in Fig.  4.2. Spectral analysis was performed on the concatenated EEG of each 

electrode as described earlier (Fig.  4.2, Step 1). The time course of the power fluctuation 

in each rhythmic band was used to construct a matrix X to fit the stimulus time course Y 

(Fig.  4.2, Step 2). Mathematically, β was estimated such that: 

  Y = β⃑ × X + ε,         (4.1) 

where X is the power matrix. Y is the time course of the stimulus which varies between 0 

and 1, with 0 being the stimulation-off state and 1 being the stimulation-on state.  

The weighting matrix β⃑ , was computed using an inverse algorithm described in (Tadel et 

al. 2011). The modeled stimulus time course Y' was then obtained from 

  Y′ = β⃑ × X,          (4.2) 

at each electrode (Fig.  4.2, step 3). The correlation between the modeled time course Y' 

and the time course of the actual stimulus Y was calculated to quantify the goodness of fit 

(GOF). The goal was to find a set of β so that the GOF can be maximized. A high GOF 

index indicates that the stimulation paradigm can be more accurately perceived from the 

recorded EEG data, and thus locations with high GOF index are considered to be more 

responsive to the stimulus.  
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4.2.7 Statistical analysis  

Statistical analyses were performed using R statistical computing software (R 

Core Team 2013). Power changes in the alpha band were used as the fixed effect in 

relation to which the correlation between the temperature of stimulation and the pain 

scales reported by subjects were calculated. It is important to note that individual subjects 

were used as random effect in the analysis of variance (ANOVA), in order to account for 

subject-specific variability in stimulation responses. 

 

Figure. 4.2 Steps in GOF calculation 

Step 1, the time course of each power band was computed at each electrode. Step 2, canonical analysis was 

performed to compute the weighting matrix β so that the correlation between resulted Y’ (in Step 3) and 

stimulation time course Y was maximized. Step 3, calculate the expected stimulation time course Y’ 

based on the β matrix obtained in Step 2. Step 4, compute the GOF value, or correlation, between Y’ 

and Y at each electrode. GOF: goodness of fit.  
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4.2.8 Localization and imaging of pain from EEG 

Brain sources representing activation due to pain were localized and imaged by 

solving the EEG inverse problem (He et al. 2011b; He and Ding 2013). The boundary 

element method (BEM) (He et al. 1987; Hamalainen and Sarvas 1989; Fuchs et al. 1998) 

was used to establish the relation between scalp potential and underlying neural activity. 

In the BEM model, the head volume conductor was separated into three conductive layers 

(the brain, the skull and the skin layers) with conductivity of 0.33 S/m, 0.0165 S/m and 

0.33 S/m, respectively (Oostenveld and Oostendorp 2002; Lai et al. 2005; Zhang et al. 

2006a). Low Resolution Electromagnetic Tomography (LORETA) (Pascual-Marqui et al., 

1994) was used to calculate the three-dimensional current density source .  

4.2.9 Granger Causality Analysis  

In an effort to further investigate the network level effect of the painful 

stimulation, we performed Granger causality analysis on a time course extracted from 

five ROIs based on previous literature (Tracey and Mantyh 2007; Wager et al. 2013). The 

ROIs were in the anterior cingulate cortex (ACC), left primary sensory cortex, right 

primary sensory cortex, left insula cortex, and right insula cortex. An epoch of 5 seconds 

before and 5 seconds after the stimulation onset was extracted. Ten epochs of 

stimulation-on and 10 epochs of stimulation-off during each session were used for the 

subsequent source localization over the selected epochs, from each subject. Time series’ 

of the source waveforms corresponding to the five ROIs were selected. It has been 

reported these anatomical locations are closely related to pain processing (Tracey and 

Mantyh 2007; Wager et al. 2013). The five time series were subjected to the DTF 
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computation, similar to the procedure previously described in the literature (Babiloni et 

al., 2005; Ding et al., 2007; He et al, 2011a; Kaminski and Blinowska, 1991; Lu et al., 

2012; Wilke et al., 2010). Non-parametric permutation tests were conducted to test the 

significance of the obtained directional DTF values. The phase of the original input 

signals were shuffled 5000 times to form surrogate data. The threshold was set at p< 0.01 

to consider a DTF value as significant for the permutation test (Wilke et al. 2008, 2011b). 

After the thresholding, a t-test was performed to examine whether there is any statistical 

difference between the stimulation-on and stimulation-off condition.  

4.3 Results  

4.3.1 Subjective Pain Rating 

 The correlation between subjective pain rating and the stimulation temperature 

was 0.67 for stimulating the left hand and 0.64 for stimulating the right hand. The 

majority of subjects reported that for each temperature the first one or two epochs were 

most painful and afterwards the intensity became stable. The numeric rating was based on 

the overall experience.     

4.3.2 Global Power Change  

To test if there are any pain induced changes at any specific location or in any 

specific frequency range, percentage power change in each frequency band was 

calculated at each electrode. The most severe pain that was experienced by each subject 

occurred when the highest temperatures were stimulated, although the actual tolerable 

highest temperatures differed among subjects. A group-averaged topoplot was computed 

when the stimulation was on the left wrist at the highest temperature (Fig.  4.3A). 
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Electrodes were grouped into four main regions: frontal, left parietal, right parietal and 

occipital regions (Fig.  4.3B). There was a global desynchronization observed in the 

lower frequency bands (1-13 Hz) in all four regions (Fig.  4.3C). Alpha band was 

observed to have the most pronounced reduction in power by the stimulation of pain 

sensation. Changes in power in beta and gamma bands are not statistically significant. 

The reduction in alpha power was mainly concentrated in the contralateral somatosensory 

area near electrode C4 (Fig.  4.3A). The maximal decrease in the alpha power was 27%. 

 

4.3.3 Goodness of Fit  

In order to quantify the relative contribution of the different frequency bands to 

the painful stimulation, we used a canonical correlation analysis to model stimulation 

with the time course of each frequency band as described in the method section. The 

 

Figure. 4.3 Percentage power changes caused by presence of thermal stimulation 

Group results of maximum temperature for each subject. Panel A shows the topoplot of changes in 

power in a particular frequency at each electrode. Global desynchronization was observed in the lower 

frequency band 1-30 Hz across all scalp electrodes.  The colorbars are set to individual minimum and 

maximum value. The heights of the bars represent the maximum absolute change. Panel B shows how 

the electrodes were divided into four groups of frontal, left parietal, right parietal and occipital. Panel C 

shows the average changes in power in each frequency range in each brain region. Alpha band shows 

the most power deduction in the contralateral side of the somatosensory region.  
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resulted group level goodness of fit (GOF) between actual stimulation and modeled 

expected stimulation is presented as a topoplot. Fig.  4.4A shows when stimulation was 

on the left, the highest correlation is in the contralateral somatosensory region on the 

right. Among all frequency bands, alpha has the most contribution. To allow group level 

analysis, the weights for each frequency band were normalized by the total power of the 

weights, i.e. 𝛽𝛼
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 

𝛽𝛼

√𝛽𝛼
2+𝛽𝛽

2+𝛽𝛾
2+𝛽𝛿

2+𝛽𝜃
2 

 , where 𝛽𝛼, 𝛽𝛽, etc. are the calculated 

weights corresponding to frequency bands alpha, beta, etc.  (Fig.  4B). Beta and theta 

bands have smaller contributions than alpha band. The weights of beta and theta band are 

0.2 and 0.3 respectively.  

4.3.4 EEG Correlation with Temperature and Subjective Pain Rating  

Since alpha power at the sensorimotor region was found to be most responsive to 

 

Figure. 4.4 Goodness of Fig results and frequency contributions 

A. Goodness of Fit (GOF) for each electrode when the stimulation was on the left hand. 

Contralateral somatosensory region near C4 and CP4 have the maximum GOF value, namely 0.34. 

B. Group average of normalized β weighting of each power band at the maximum GOF region, i.e. 

CP4 electrode. Alpha band has the largest weight followed by theta and delta.  
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the thermal stimulation, it was further investigated if it had any predictive values for the 

thermal pain. A group level linear regression analysis was performed treating subjects as 

random effects to account for individual variance. When the stimulation was on the left, 

the reduction of alpha power in the contralateral region (electrodes C2, C4, CP2, CP4) 

was found to be correlated to the subjective pain rating (Fig.  4.5A). The changes were 

also shown to be correlated with the actual temperatures the subject was experiencing 

(Fig.  4.5B). However, there did not exist such a linear correlation relationship when the 

other frequency bands were regressed to the pain ratings (Fig.  4.5C) or stimulation 

temperature (Fig.  4.5D).                                             

 

Figure. 4.5 Linear regression between percentage power changes and pain rating or stimulation 

intensity 

A and B: alpha power changes versus subjective pain ratings and stimulation temperatures. Red dotted 

line is the fitted linear regression p<0.001. C and D: power changes in other frequency bands versus 

subjective pain ratings and stimulation temperatures. No statistically significant linear relationship was 

observed. Subjects were treated as random effects.  
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4.3.5 Source Localization 

Neurological sources that were most responsive to stimulation were estimated 

using the spatial map of selected ICs. We assigned numerical values to the binary 

stimulation condition so that when the stimulation is off, the value is 0, and when the 

stimulation is on, the value is 1.  The selected component (Fig.  4.6A) showed a tight 

coupling between the power fluctuation and the stimulation status throughout the 

stimulation process. The correlation coefficient was -0.45 between the power change and 

the stimulation condition (Fig.  4.6B). EEG source localization results were also obtained 

by using both the distributed current density model and dipole source localization. 

Results from the two source imaging models were projected to the structural MRI of the 

Montreal Neurological institute (MNI) brain (Collins et al. 1994). Both the peak of the 

current density (orange gradient color) and the fitted single dipole (blue pin) (He et al. 

1987; He and Musha 1992) were located at the right post-central gyrus in the parietal 

lobe (Fig.  4.6C). The threshold for cortical current density was set at 80% of the source 

maximum. Other alpha power-rich components were also checked for their response to 

the stimulation paradigm but were not found to be significantly correlated to the 

stimulation status (Fig.  4.6D and 4.6E).  
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Figure 4.6 Inverse estimation of neurological sources that were related to pain perception 

A and B. the topoplot and the spectral changes of the independent component that is most tightly 

modulated by stimulation status, i.e. ‘on’ versus ‘off’, indicated by the white line. The correlation 

value between the time course of the power changes and the stimulation is -0.6. C. localization results 

using both distributed cortical current density and dipole fitting. Both results were projected to the 

anatomical MR image of the MNI brain. Both the peak of the cortical current density (in orange 

gradient color) and the fitted single dipole (blue pin) were located at the SI area corresponds to 

contralateral wrist. The threshold for cortical current density was set at 80%. D and E: additional 

alpha-power dominant components on the ipsilateral side (D) and in the occipital lobe (E). The alpha 

power of these two components was not strongly coupled to the stimulation status.  
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4.3.6 Stimulation on the Right 

 

To assess if there is any difference in perception on right vs left hand stimulation, 

we also conducted the same analysis when the stimulation was applied on the right hand 

(Fig.  4.7). The findings were similar but of the contralateral side, i.e., left hemisphere. 

Alpha power on the contralateral somatosensory region, in the left hemisphere, was found 

 

 

Figure. 4.7 Results when the stimulation was delivered on the right hand 

A. alpha power in the left parietal region was most reduced by the presence of stimulus. B. the 

contralateral somatosensory region is most responsive to stimulation as quantified by GOF 

index. C. the independent component that was most coupled to the stimulation status. D. the 

relative contribution of each spectral band. Alpha band has the highest weight. E. and F. 

correlation between changes in alpha power and subjective pain rating as well as stimulation 

temperature.  
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to be most responsive to the thermal stimuli (Fig.  4.7A). The best fitted area was found 

to be in the left somatosensory region (Fig.  4.7B), reflected by the high GOF index near 

electrode C3 and CP3. An independent component was identified to be tightly modulated 

by the presence of painful stimulus, as seen in the time-frequency plot (Fig.  4.7C). 

Through the canonical correlation analysis, the alpha band appeared to have the highest 

weight in all power spectra in response to the stimulation (Fig.  4.7D). A linear 

relationship was found between changes in alpha power and the subjective pain ratings 

(Fig.  4.7E) and stimulation temperature (Fig.  4.7F). Overall, a big discrepancy between 

stimulation on the left- vs right-hand side was not observed.  

4.3.7 Granger Causality Analysis  

The strengths of Granger causality connectivity values were compared between 

stimulation-on versus stimulation-off at different temperatures (Fig.  4.8) when the 

stimulation was applied on the right side. At the highest stimulation temperature (Fig.  

4.8, top row), where the pain ratings were between 7 and 10, there were more 

connectivity differences between the two stimulation statuses compared the temperatures 

that elicited no pain sensation (Fig.  4.8, bottom row). Stimulus induced changes in 

connectivity, in terms of both pattern and strength. At high degree as well as intermediate 

degree of pain (Fig.  4.8, middle row), there were connections originated from the 

contralateral side of the sensory region, i.e. left sensory cortex, and projected to other 

areas, most commonly to the contralateral (left) insula. Such difference in connectivity 

observed is the strongest in theta band, followed by alpha and delta, but not in the beta or 

gamma bands.  
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4.4 Discussion  

In this study, we have evaluated the temporal, spectral and spatial changes in the 

cortical activity of a group of healthy human subjects in response to tonic elicited pain. 

The major finding of our study was a decrease in lower frequency power throughout all 

of the electrodes over the scalp, most prominently in the alpha band when the pain index 

increased. The maximal decrease in alpha power was found to be concentrated in the 

contralateral somatosensory region. The degree of power decrease was correlated to both 

the stimulation temperature and the subjective pain rating.  

Functional imaging of brain networks associated with pain processing is of vital 

importance to better understand the mechanisms of brain function in response to pain and 

consequently help develop new pain-relief therapies. Pain response in the brain is a 

 
 

Figure. 4.8 Granger causality analysis at different temperatures with stimulation site on the right 

Top row: Difference in connectivity between stimulation on versus stimulation off at the highest 

degree of pain for each subject. Middle row: Difference in connectivity between stimulation on versus 

stimulation off at the medium degree of pain. Bottom row: Difference in connectivity between 

stimulation on versus stimulation off at the lowest degree of pain. 
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complex process which involves multiple cortical brain regions such as the primary and 

secondary somatosensory cortices, the anterior cingulated cortex, and the insular cortex 

(Bromm 2001). Recent advancement in neuroimaging techniques suggests the possibility 

of mapping the brain structure and networks that are involved in pain processing (Chen 

2001; Ploner et al. 2002; Stern et al. 2006; Roberts et al. 2008). Our results reveal that 

contralateral somatosensory regions (SI, SII) were most responsive to painful stimuli. 

This is consistent with the consensus that SI and SII are part of the pain network (Zhuo 

2008). These regions represent the sensory aspect of painful experience and can be 

thought of as pain gateways. Additionally EEG recordings in patients with high levels of 

chronic pain reveals increased activity in theta and low beta bands within the medial 

prefrontal cortex (mPFC), which includes the anterior cingulate cortex (ACC) and insula 

cortex (IC) (Stern et al. 2006). These regions are known to be related to the emotional 

aspect of pain processing (Craig et al. 1996; Tracey and Mantyh 2007; Zhuo 2008; 

Wager et al. 2013). Therefore, we extracted the temporal changes in these regions in the 

source space by solving for the underlying sources within the brain using the EEG 

inverse solution. By applying Granger causality analysis, we were able to observe that the 

presence of a painful stimulus can induce changes in the temporal dynamics among these 

nodes of the pain perception in contrast to the effects of innocuous stimulus (Fig.  4.8).  

4.4.1 Comparison with transient stimulation findings  

The evolution of pain using phased painful stimuli have been thoroughly 

examined and reported previously (Kakigi et al. 2005; Domnick et al. 2009; Huang et al. 

2013). The specific finding of our work of contralateral somatosensory rhythm 

modulation was similar to studies with transient stimuli that lasted less than 40 ms, where 
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there is also a decrease in alpha power (Ploner et al. 2006; Hu et al. 2013). Cortical 

response to exogenous painful stimuli is well characterized using measures such as peak-

to-peak amplitude of the N2-P2 evoked potential (Kakigi et al. 2005; Nir et al. 2012; 

Huang et al. 2013). In the present study, we focused on the neural responses to sustained 

rather than transient stimuli. This is because clinical pain often lasts longer than 

milliseconds, even for pain from acute injury (Huber et al. 2006; Nir et al. 2012). We 

recognized that tonic stimulations on the order of minutes are not able to completely 

capture the psychological impact of chronic pain on patients, but it could potentially shed 

some light in pain-coping strategies that may aid our understanding of chronic pain. For 

example, the difference in connectivity patterns at high levels of pain versus non-painful 

warmth sensations may provide insights in how information flows among brain regions 

from sensory input (somatosensory cortex) to the insula cortex and anterior cingulate 

cortex. Weights of different frequency bands can potentially be used in the future for 

estimating pain level, but further research on a larger population is warranted to improve 

specificity of the measure.   

4.4.2 Comparison with other tonic stimulations 

Reductions in alpha band were seen in previous works on tonic stimulation using 

both heat and cold-presser tests (Backonja et al. 1991; Chen and Rappelsberger 1994; 

Ferracuti et al. 1994; Chang et al. 2002b; Huber et al. 2006; Egsgaard et al. 2008; Nir et 

al. 2012).  Among these, the research by Nir is one of the most recent works. Similar to 

our experimental setup, they collected continuous EEG while subjects received 5 minute 

long stimulations at three different temperatures. They reported that a decrease in lower 

alpha band (7-10 Hz) power in bilateral temporal regions is correlated with levels of pain 
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(Nir et al. 2012). In contrast to their approach, we did extensive EEG source localization 

and connectivity analysis to further explore the underlying mechanisms of tonic pain 

stimulation. Application of tonic chemical stimuli, such as injection of capsaicin or a 

hypertonic saline also showed a reduction in alpha power and an increase in beta power 

(Chang et al. 2004). We did not see an augmentation of beta activity but our finding that 

alpha frequency is the most responsive frequency to tonic painful stimuli is consistent 

with these findings previously reported. 

4.4.3 Roles of different rhythmic bands  

In this study, the frequency band that is the most correlated to the stimulations’ 

presence is alpha. Theta and delta bands also showed decrease in power, but these 

changes were not statistically significant when tested for their predictive power in the 

different pain intensity analysis (Fig.  4.5). There have been mixed results in terms of 

theta power changes as a result of external painful stimulation. An increase of theta 

power in ipsilateral frontal electrodes during painfully cold stimulation has been reported 

by a few groups (Backonja et al. 1991; Ferracuti et al. 1994; Chang et al. 2002b). But at 

the same time,  a diminished theta activity (Huber et al. 2006) has been reported, which is 

similar to our findings. Beta power changes seem to lack consensus as well (Backonja et 

al. 1991; Ferracuti et al. 1994; Chang et al. 2002b; Huber et al. 2006). We did not observe 

significant changes in the beta band using measures explored here. 

In contrast with our findings, what we found about theta frequency’s role in 

facilitating changes in connectivity has not been reported before. Several previous studies 

reported theta dominance in resting EEG/MEG  in patients with neurogenic pain or other 
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pathologies, including tinnitus and Parkinson’s disease versus control (Llinás et al. 1999; 

Sarnthein et al. 2003, 2006). It has been suggested that thalamocortical dysrhythmia may 

be the cause or result of several neurological symptoms (Llinás et al. 1999; Sarnthein et 

al. 2006).  We did not study a pathological condition here. But in the current 

experimental setting, theta rhythm seems to be carrying the information from sensory 

input to ACC and insula. This may suggest the relationship between theta rhythm and 

pain perception.   

4.4.4 Individual Differences  

Data on individual personality or trait differences that may affect subjective 

differences in pain perception were not explicitly collected or correlated with pain rating 

in contrast to what was done by Coghill and colleagues (Coghill et al. 2003). Instead, 

individual differences were treated as random effects to account for some of the variances 

and to achieve a higher statistical power. This is because the primary goal of this study 

was to find a set of metrics that most commonly occur in the general population. The 

importance of inter-subject variance should be emphasized in the effort of objectively 

quantifying pain, since pain is a subjective experience. A set of customized parameters 

such as propensity to anxiety, history of pain or trauma, general pain tolerance or 

sensitivity may be taken into account in future studies of this type for more objective 

measures of pain.  

4.4.5 Salient pain 

One debate about neural imaging of pain, as a result of external stimuli, is 

whether the phenomena observed are results of pain or merely saliency. This work is not 
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an attempt to separate the two. In fact, we do not feel the need to separate the two. 

Modulation of spontaneous rhythmic activities by external stimulation has been 

previously reported in studies of non-noxious stimuli (Pfurtscheller and Lopes da Silva 

1999; Yuan et al. 2010). A decrease in alpha power was previously found as a cortical 

response in other cognitive tasks such as reading sentences (Luo et al. 2010), complex 

decision making (Davis et al. 2011),  object recognition (Freunberger et al. 2008) and 

arithmetic tasks (Miwakeichi et al. 2004). Anticipatory alpha rhythms that preceded the 

actual stimulus was found to be reduced in a painful CO2 laser stimulation (Babiloni et al. 

2006, 2008). Our results showed that pain stimuli suppressed the contralateral alpha 

rhythm, which is consistent with these previous findings.  

It is true that pain may not be the exclusive cause of such rhythmic modulation. 

But previous studies with similar tonic thermal stimulation settings investigated this issue 

with competing auditory stimulations (Chang et al. 2002a; Huber et al. 2006) or with 

manipulation of attention (Huber et al. 2006). Chang’s group found that unpleasant 

auditory stimulation and intramuscular injection of hypertonic saline induced similar 

degrees of arousal and unpleasantness. However, muscle pain induced a significant 

decrease of alpha activity compared to the baseline, but aversive auditory stimulation did 

not produce any significant changes in alpha activity compared to baseline as measured 

by EEG. Huber’s work further tested the specificity of EEG in measuring human pain by 

directing subjects’ attention to or away from the pain they were experiencing and found 

there was no significant difference in EEG activity between different levels of attention. 

These results indicate that specific EEG patterns are associated with human pain 

processing. However, their findings, where stimulation temperature was only provoking 
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warmth sensation but not pain (at 41.1 ±1.6°C), were different from ours. They found no 

difference in EEG changes between tonic heat pain as opposed to tonic non-painful heat 

stimulation, whereas we saw a linear trend between stimulation intensity and EEG 

decrease in delta, theta and, most predominantly, alpha band. This is in agreement with 

the fMRI findings in the second study by Wager’s group recently published (Wager et al. 

2013). They found that the fMRI responses increased with subjective pain rating on a 

continuum across painful and non-painful events.  

The anatomical areas involved in pain and saliency frequently overlap specifically 

in the dorsal ACC (dACC) and fronto-insula (FI) (Seeley et al. 2007; Sridharan et al. 

2008). Furthermore, salient responses often change with stimulation intensity just as 

elicited pain does.  But according to recent works by Wager and colleagues, by using the 

similar stimulation paradigm, they were able to find pain-specific fMRI markers that 

include the ROIs in our connectivity analysis, including the somatosensory cortex, insula 

and ACC, among other regions (Wager et al. 2013).  

4.4.6 Study limitations  

As the connectivity analysis was based on the source space time course from EEG 

inverse estimations, there are a few cautionary notes that are worth mentioning. First of 

all, areas such as the periaqueductal gray matter, amygdala, hypothalamus and 

cerebellum were not included in the present study. We focused on the relationships 

among the anterior cingulate cortex, bilateral insula and the bilateral somatosensory 

cortex, because these structures were reported most widely as being involved in pain 

processing in the literature (Tracey and Mantyh 2007; Zhuo 2008; Wager et al. 2013). 
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Another note on our model is that because of the volume conduction effect, there may be 

a potential of cross-talk among closely located nodes of the brain volume which causes 

the EEG signal arising from different locations to smear and mix together which can lead 

to spurious connectivity. A few methods, including nulling beamforming (Cheung et al. 

2010; Hui et al. 2010), have been developed to address this issue. However, based on our 

results, this may seem unlikely because the nodes selected are relatively far apart. Lastly, 

other causality measures, such as using phase slope of the cross-spectra  (Nolte et al. 

2008), effective connectivity methods (DCM) (Friston 2009; Murta et al. 2012) and 

structural equation models (SEM) were not explored here. But findings here may be 

useful in formulating the models in DCM in the future. 

 Granger causality measures reported here can be implemented in functional MRI, 

as it has excellent spatial resolution. However, fMRI has limited temporal resolution due 

to hemodynamic effects; but it has been shown recently that by using a faster sampling 

rate, on the order of 250- 500 ms repetition time (TR), it is possible to detect a 

multivariate network using Granger causality in several simulation studies (Deshpande et 

al. 2010a, 2010b; Rogers et al. 2010).  With advancement in MRI acquisition techniques 

using multiband approaches, TR can be shortened to 400ms (Feinberg et al. 2010; 

Uğurbil et al. 2013). At this rate, we may be able to extract causal information using 

fMRI time courses in future studies.  

In summary, we found that the spontaneous rhythms in all frequency bands except 

gamma band were suppressed globally at the presence of tonic painful thermal 

stimulation. The greatest changes were observed in the alpha power on the contralateral 

side of the somatosensory region. The degree of suppression may reflect the levels of 
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applied painful stimulation. There was also increased connectivity among major brain 

regions responsive to pain that were revealed through causality analysis. Although the 

current finding is based on the study of sustained pain from external stimuli in healthy 

subjects, it would help broaden our understanding of cortical response to patients with 

chronic pain.  
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 Chapter 5 Functional Neuroimaging of Pain in Sickle Cell Disease 

 

5.1 Introduction  

Sickle cell disease (SCD) is an inherited blood disorder that results in chronic 

pain and a decrease of life expectancy. This disorder causes red blood cells (RBC) to 

deform into sickled shapes that cause recurrent ischemia-reperfusion injury which leads 

to organ damage, pain, and impaired oxygenation (Rees et al. 2010) There are many 

complications associated with SCD, but the most common reason for hospitalization is 

pain. Pain for SCD is unique because it can start in infancy and progressively increase 

throughout the life of the patient, causing chronic pain. Frequent episodes of acute pain, 

where patients feel intense pain that can last for days, can also occur due to vasoocclusive 

crises caused by venule occlusion from sickled RBC (Platt et al. 1991). Both neuropathic 

pain and nociceptive chronic pain pathways have been implicated in SCD (Wang et al. 

2010b).One major challenge in the treatment of pain from sickle cell disease (SCD) is the 

current lack of an objective measure of pain. Imaging methods, such as EEG and fMRI, 

can be utilized in order to better understand the mechanisms of pain in SCD and offer the 

potential to develop objective methods to assess pain.  

Functional brain imaging methods have found that during resting state, or the 

absence of a task, that the brain is active and forms specific patterns of activity called 

resting state networks (RSN). Certain RSN have been identified using functional 

magnetic resonance imaging (fMRI), including the default mode network (DMN), 

salience, sensory motor, and attention (Farmer et al. 2012). The DMN is active during 
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wakeful rest and may be related to introspection and self-referential thought (Raichle et al. 

2001; Greicius et al. 2004). The regions of the DMN include the lateral and inferior 

parietal lobes, medial prefrontal cortex (mPFC), and posterior cingulate cortex (PCC). 

DMN is a prevalent network dynamic that appears in the absence of overt behavior and is 

thought to be responsible for a host of visceral mental activities.  Altered DMN activity 

was first observed in Alzheimer’s disease (Greicius et al. 2004) and more recently in a 

number of other neurological disorders,  including epilepsy (Gotman et al. 2005)  and 

chronic pain (Buckner et al. 2005, 2008). Temporomandibular disorder chronic pain 

patients have exhibited hyper-connectivity between the mPFC and other DMN regions 

due to pain rumination (Kucyi et al. 2013, 2014). The functional connectivity between the 

DMN and the insular cortex (IC) is increased for chronic lower back pain patients (Kong 

et al. 2010; Loggia et al. 2013). These abnormalities in functional connectivity suggest 

that chronic pain conditions alter resting state activity. In this work, we hypothesize that 

in SCD patients, the default-mode-network (DMN) is less active in comparison to healthy 

subjects.  We hypothesize that the level of DMN in patients with SCD is altered by the 

condition and may serve as a potential biomarker for correlating with pain in these 

patients.  

5.2 Method 

5.2.1 Healthy subjects  

We recorded 17 healthy volunteers (11 of them were female. Mean age was 28.6 

± 10.6 years). All subjects met the MR safety criteria and gave their written informed 

consent. None of the subject reported any previous neurological or psychiatric disorder, 
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psychoactive medication or history of drug abuse. The study was approved by the 

Institutional Review Boards (IRB) of the University of Minnesota respectively. 

5.2.2 SCD patients  

14 patients with SCD (8 of them were female. Mean age was 24.9 ± 6.7 years) 

were recruited by physicians at Fair View Hospital and Minnesota Children’s 

Hospital.  They participated in this study with written consent according to a protocol 

approved by the Institutional Review Board of the University of Minnesota.  

5.2.3 MRI recording  

We used 3 T Siemens Magnetom Trio scanner (Germany) with 16 channel head 

coil. Each subject was instructed to lie quietly in the scanner for two scans, each lasting 

for six minutes. Additionally, individual anatomical MRI data were collected which were 

consisted of 176 contiguous sagittal slices with 1 mm slice thickness (matrix size: 256 * 

256; FOV: 256 mm * 256 mm; TR/TE=20 ms/3.3 ms) on a 3T MRI system (Siemens 

Trio, Siemens, Erlangen, Germany). Whole-brain functional images with BOLD contrast 

were acquired using gradient echo planar imaging sequence (32 axial 3-mm thick 

interleaved slices with 0.3-mm gap; TR/TE = 2000 ms/30 ms; flip angle = 90°; matrix 

size: 64 * 64; FOV: 192 mm * 192 mm).  

5.2.4 FMRI preprocessing  

All fMRI data were pre-processed for slice scan time correction, 3-D motion 

correction and temporal filtering using both BrainVoyager QX software (Brain 

Innovation, Maastricht, Netherlands) and Matlab (SPM8, Ashburner 2010). All brains 
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were aligned to the anterior-posterior commissural line and normalized by transformation 

into Talarirach space. FMRI data were then spatially coregistered to the structural MRI. 

5.2.5 Seed based analysis  

A seed region of interest (ROI) was selected by referencing Talairach Client’s 

(Lancaster et al., 2000, 1997) archive of Talairach labels. Seeds were placed in central 

locations of the four main default mode nodes: medial prefrontal cortex, left- /right- 

lateral and inferior cortex, and the posterior cingulate cortex. Seeds were also placed in 

selected areas corresponds to pain processing of insula cortex. The time courses of both 

seed coordinates was regressed against all brain voxel time courses using BrainVoyager 

to create two brain maps of r-values for each fMRI scan.  A p-value threshold less than 

0.05 with correction via Bonferroni multiple comparisons was used to identify which 

voxels were significantly correlated with the seed location. All images were smoothed 

using a 2.0 mm full width at half maximum (FWHM) Gaussian kernel within 

BrainVoyager.  The resulting voxels were clustered and counted to record a total volume 

of significantly correlated connectivity for each fMRI scan.  For the group level analysis, 

connectivity maps were created with the same threshold levels and smoothing parameters 

described above. Only voxels with correlation less than the p-value of 0.05 corrected 

using the Bonferroni method, are reported as significant.   

5.2.6 Independent Component Analysis of fMRI data 

Independent component analysis (ICA) in the spatial domain was performed using 

Brain Voyager QX. Detailed methodological principles of ICA decomposition 

implemented in Brain Voyager QX were previously described (Formisano et al., 2004; 
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De Martino et al., 2007). Thirty components were computed and the voxel intensities of 

each IC maps were converted to z-scores. The spatial maps were color coded to reflect 

the absolute value and sign. It should be noted that the sign of each voxel value does not 

correspond to BOLD activation or deactivation. A positive value represents that the time 

course of the particular voxel is positively correlated with the time course of the IC. A 

higher z-score represents a higher correlation coefficient. As pointed out previously, the 

z-values have no statistical significance, as no hypothesis was tested (McKeown et al., 

1998; De Martino et al., 2007).  

5.2.7 Template-based selection of IC 

A similar concept was previously described by Grecius et al (Greicius et al. 2004). 

Briefly, a template of the default mode network was obtained by averaging default mode 

activities in 10 healthy subjects. Cross correlation between the spatial pattern of each IC 

and the template representing the default mode network was computed in patients and in 

all healthy controls.  

5.3 Results 

5.3.1 Decreased DMN using ICA  
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Fig.  5.1 compares the default-mode network as detected by the ICA approach in 

patients versus controls. In healthy controls (Fig.  5.1A and C), significant clusters were 

found in PCC, bilateral inferior parietal cortex and medial prefrontal cortex. In contrast, 

in SCD patients no activation of DMN related IC was observed (Fig.  5.1B and D).  

 

5.3.2 Decreased DMN using fMRI connectivity analysis  

Using seed-based connectivity analysis Fig.  5.2 compares the default-mode 

network in patients versus controls. In healthy controls (Fig.  5.2A and C), significant 

clusters were found in PCC, bilateral inferior parietal cortex and medial prefrontal cortex. 

In contrast, in SCD patients no activation of DMN related IC was observed (Fig.  5.2B 

and D).  

 

Figure. 5.1 DMN activity using template-based ICA 

A. DMN in a single healthy control B. DMN in SCD a single patient. C.  DMN in group level healthy 

controls. D.   DMN in group level SCD patients. 
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5.2.3 Connectivity in insula cortex  

Fig. 5.4 compares the difference in bilateral insular functional connectivity 

between SCD patients and healthy controls. The connectivity between the left and right 

insula appears to be stronger in SCD patients versus controls, especially when the seed is 

placed in the left insula (Fig.  5.4 A and B, bottom row).  

 

Figure. 5.2  DMN activity using seed-based connectivity analysis 

A. DMN in a single healthy control B. DMN in SCD a single patient. C.  DMN in group level healthy 

controls. D.   DMN in group level SCD 



111 
 

 

5.4 Discussion   

5.4.1 Decreased DMN in other pain and compare results  

Our findings in DMN are in agreement with other studies of chronic back pain 

using fMRI (Baliki et al. 2008). In Baliki’s work, a visual attention task was used and 

DMN in patients displayed a reduced deactivation compared with controls. In our study, 

we used resting state fMRI with two analysis methods using blind source separation of 

ICA and seed-based connectivity analysis. Chronic pain in SCD patients are suitable to 

be studied from the angle of DMN as the spontaneous painful sensation may produce 

salient percepts in the absence of exogenous input (Foss et al. 2006; Baliki et al. 2008).  

5.4.2 Decreased DMN integrity in other disease 

Altered connectivity of DMN during resting state is a prevalent phenomenon 

among mental disorders and ageing population (Greicius et al. 2004; Damoiseaux et al. 

2008; Broyd et al. 2009). In healthy aging population, it has been shown that connectivity 

 

Figure. 5.3 Difference in connectivity between bilateral insula 

A. Seed based results in the patient group. B. Seed based results in the healthy control group. Bilateral 

connectivity is strengthened in the patient group compared with controls. IC: insular cortex 
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between the right hippocampus and other regions of the DMN including the dorsal MPFC, 

ACC, middle temporal gyrus and right PCC is reduced (Damoiseaux et al. 2008). In 

Alzheimer’s disease, where DMN connectivity is widely investigated, 

5.4.3 Other pain areas  

Acute pain studies on healthy controls have implicated multiple regions that are 

active to brief noxious stimuli. The most consistent regions across studies include the 

primary somatosensory cortex (S1), secondary somatosensory cortex (S2), anterior 

cingulate cortex (ACC), insular cortex (IC), prefrontal cortex (PFC), thalamus (Th), basal 

ganglia, and cerebellum (Apkarian et al. 2005; Apkarian, Hashmi, and Baliki 2011; Shao 

et al. 2012; Lee and Tracey 2013). The areas of S1, S2, and Th are related to sensory-

discriminative pain processing, while ACC and IC are linked to affective-emotive pain 

processing (Moisset and Bouhassira 2007). Chronic pain has similarities and differences 

to acute pain activation regions. Chronic pain alters the brain structure and causes 

reduction in gray matter (Farmer, Baliki, and Apkarian 2012; Ceko et al. 2013; Maeda et 

al. 2013). Activity in the PFC was different between heat allodynia and normal heat pain, 

indicating neuropathic pain may induce physiological changes in the forebrain (Casey, 

Lorenz, and Minoshima 2003). Experimental pain applied to healthy controls and clinical 

chronic pain patients revealed that patients more frequently involve the PFC, IC and ACC 

compared to controls to process pain, where controls mainly involve S1, S2, and Th 

(Apkarian et al. 2005; Moisset and Bouhassira 2007; Lee and Tracey 2013). Our study 

demonstrated that SCD patients had activity in the IC during wakeful rest. 
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Functional neuroimaging studies have documented IC activation is associated 

with different functional roles including modulation of affective-emotional processing, 

cognitive and affective processes during learning, and aversive pain processing (Paulus 

and Stein 2006). The anterior IC has also been implicated to be sensitive to salient events 

(Menon and Uddin 2010). Emotional processing of sadness, happiness, anger, fear, 

empathy, and compassion all activate the IC (Damasio et al. 2000; Lamm and Singer 

2010). The IC activation observed in SCD patients could be caused by any of these 

reasons; however, it is unlikely that the salience network was active. The salience 

network organizes neural responses to significantly intense stimuli, and none were 

presented in this study (Chiong et al. 2013). Emotional processing could have activated 

IC in SCD patients because mild to severe depression is frequently (44%) seen in SCD 

patients (Hasan et al. 2003). The insular cortex is an important structure involved in 

depression (Sprengelmeyer et al. 2011). Chronic pain is another candidate for IC 

activation. Fibromyalgia patients had greater connectivity between the DMN and IC 

compared to healthy controls (Napadow et al. 2010). Chronic back pain patients had this 

same trend and showed that IC activity also reflected the duration of spontaneous pain 

(Loggia et al. 2013; Baliki et al. 2006). IC activation observed in our study is most likely 

linked to DMN as well since subjects were in resting state, indicating chronic pain is the 

most likely reason for the IC activity. 

5.4.5 Methodological limitations and future studies  

Our current method is based on fMRI with fine spatial resolution but limited 

temporal resolution. Our results do not provide mechanistic explanation of this decreased 

DMN in SCD patients. We postulate that this phenomenon is pain specific because it has 
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also been observed in other chronic pain conditions (Baliki et al. 2008).  In order to have 

a more mechanistic understanding of how DMN is decreasing in activity and how it is 

linked to neurophysiological manifestations, we would include concurrent EEG in our 

future study. EEG with its high temporal resolution, and direct measurement of 

underlying neurological activity, it can be correlated with fMRI. There have been some 

previous attempts in deploying simultaneous EEG and fMRI to study DMN in healthy 

subjects. However such studies often yield disparate results.  

One confounding factor in our finding that may influence its specificity to pain is 

the role of medication. It is possible that medications for pain management are causing 

the altered connectivity of DMN. Observations from other type of chronic pain cannot 

help parse this out.  

  



115 
 

 

 Chapter 6 Conclusions and Perspectives 

 

6.1  Conclusions  

Functional neuroimaging offers a great opportunity to noninvasively study the 

underlying activities in the normal as well as diseased brain. In this dissertation, we have 

investigated utilizing EEG source imaging and functional MRI in the diagnosis and 

management of epilepsy and pain.  

One important application of functional neuroimaging techniques in detecting and 

localizing pathological activities lies in pre-surgical evaluations of patients suffering from 

intractable epilepsy. In one of the studies presented here, we have proposed an ICA-based 

automated method to lateralize and localize hemodynamic foci in focal epilepsy patients 

for presurgical evaluation. Focal activities identified by our method were in concordance 

with surgical resection in the majority of cases studied. Our findings suggest the 

possibility of noninvasively and accurately localizing epileptic foci using fMRI alone in 

presurgical planning. This was a feasibility study to demonstrate the value of the 

proposed method. Additional features can be incorporated in the algorithm to improve 

reliability and performance. A larger patient population needs to be studied to test the 

broad applicability of this method. This proposed method can be easily implemented in 

the current presurgical workup to provide additional information for guiding the surgical 

resection.  

Unlike for patients with focal epilepsy, surgical resection is not a viable treatment 

option for patients suffering from generalized epilepsy. Furthermore, the underlying 
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mechanism of generating wide spread epileptic activity remains poorly understood. 

Therefore in order to provide benefits to these patients, there is a pressing need to 

improve our understanding of the neural network and mechanism of action in order to 

develop novel therapeutic approaches such as deep brain stimulation. In the second study 

presented, by combining the complementary strengths of EEG and fMRI, we showed 

consistent results concerning the genesis and propagation of GSWDs. EEG-informed 

fMRI revealed multiple brain regions that may be involved in GSWDs. By means of 

seed-based fMRI, we tested the specific network level activity and found temporal 

correlation between cortical and bithalamic BOLD activities. According to the Granger 

Causality analysis the mediodorsal nuclei of the thalamus serve as the main driver 

throughout the initiation and the propagation of the GSWDs. Once validated, this work 

can provide insight in understanding the enigmatic etiology of generalized epilepsy and 

offer guidance in treatments. This work suggests the thalamus, especially the mediodorsal 

nuclei, may serve as potential targets for deep brain stimulation to treat patients with 

drug-resistant generalized epilepsy.  

Another field of application of such noninvasive imaging techniques is to provide 

better understanding of how the brain processes pain and ultimately to provide an 

objective measure of pain. For the study of exogenously elicited pain, by using scalp 

EEG we found that the spontaneous rhythms in all frequency bands except gamma band 

were suppressed globally at the presence of tonic painful thermal stimulation. The 

greatest changes were observed in the alpha power on the contralateral side to the 

stimulus in the somatosensory area. Additionally, the results suggested that the degree of 

suppression may reflect the level of applied painful stimulation. There was also increased 
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connectivity among major brain regions that responsive to pain, which was revealed 

through causality analysis. Although the current finding is based on the study of sustained 

pain from external stimuli in healthy subjects, it would help broaden our understanding of 

cortical response to patients with chronic pain.  

In addition to external pain, we also studied patients with sickle cell disease, as 

they often suffer from chronic or acute pain as a result of the disease. We found that 

through fMRI based functional connectivity analyses, the resting state neural network in 

patients deviated from those of the healthy controls with both positive and negative 

effects. The default mode network, which is a ubiquitous resting state activity believed to 

be responsible for a host of cognitive functions such as memory consolidation and 

introspection, is reduced in patients with SCD compared to controls. On the other hand, 

insula cortex, which is a key node in the pain network, showed a marked increase in 

bilateral synchrony in patients with SCD as opposed to healthy controls.  

In summary, the present dissertation research developed and evaluated the 

spatiotemporal imaging approaches for the non-invasive mapping of network activities in 

the diseased and normal brain. Evaluations were conducted in both patient and healthy 

control groups in order to test the clinical applicability of such noninvasive imaging tools. 

Regarding epilepsy, two investigations have been conducted to study the localization of 

hemodynamic foci in focal epilepsy patients and the widespread GSWDs of generalized 

epilepsy patients. The spatial resolution has been further improved by adding the 

component of fMRI through an EEG-fMRI integrated imaging framework. For the 

application in pain study, two investigations were conducted to study changes in network 

level activity due to external pain in healthy subjects and spontaneous pain in patients 
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with SCD. All of the results that were obtained suggest the importance of noninvasive 

spatiotemporal neuroimaging approaches for solving clinical problems and for 

investigating neuroscience questions. Furthermore, an improved understanding of 

neurological diseases and their mechanisms would help us to develop and deliver curative 

treatments of neurological diseases. 

6.2  Perspectives  

 In addition to the development and progress obtained in the present dissertation 

research, there are remaining challenges, which also represent opportunities for future 

improvement of techniques and clinical applications. 

6.2.1  Prospective clinical studies in focal epilepsy patients 

We have demonstrated the feasibility and accuracy of the fMRI-based 

noninvasive, localization approach for the presurgical evaluation of patients with focal 

epilepsy through comparison against invasive procedures in a retrospective study. 

However, before applying a new neuroimaging method to clinical routines, prospective 

studies of large groups of patients are crucial in order to design a protocol that is most 

suitable for clinical applications. It will be important, in these prospective studies, to 

include the noninvasive seizure imaging protocol into the routine evaluation of epilepsy 

patients. The results of fMRI localization need to be presented in the pre-surgical 

conference, during which neurologists and neurosurgeons determine surgical plans based 

on the information obtained through various pre-surgical diagnostic resources. Surgical 

plans, including both the plan to implant intracranial electrodes as well as the plan to 

resect brain tissue, shall be determined in two ways. The first plan is determined based on 
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conventional procedures without fMRI localization results. The second plan is 

determined with the fMRI localization results. If the outcomes of the two plans are the 

same, this would indicate that fMRI localization is consistent with conventional 

procedures, and could potentially be used to reduce or eliminate the need for separate 

iEEG in the future. Alternatively, the outcome of the plan including fMRI localization 

results could suggest more or less iEEG coverage or resection, which would indicate that 

fMRI localization, provides additional useful information to the conventional procedures. 

In optimal cases, when fMRI localization conforms to anatomical MRI and other 

noninvasive neurological tests, patients could proceed directly to resection without the 

need of another surgery to implant iEEG. The difference between the outcomes of the 

two plans will show the extent to which such a noninvasive fMRI localization protocol 

can change the conventional clinical practices of the surgical treatment of epilepsy. The 

yield and accuracy of the resulting iEEG recording and the success rate of surgery will be 

important measures to determine the significance and the added value of such a new 

protocol.  

6.2.2  Deep Brain Stimulation in Generalized Epilepsy Patients  

 In the study of patients with generalized epilepsy, we demonstrated the reciprocal 

relationship between thalamus, especially the mediodorsal nuclei of the thalamus and the 

medial frontal cortex. Our causal analysis suggested that the thalamus seems to be the 

driving force in initiating GSWDs. In order to validate these findings, depth electrodes 

should be implanted in these areas to provide direct evidence. Effects of stimulation 

delivered at either location can be measured by other intracranial electrodes or scalp EEG 

to determine whether thalamus is indeed responsible for generating GSWDs. Furthermore, 



120 
 

the mediodorsal nuclei of the thalamus could be tested as a potential DBS target similar 

to studies conducted in the anterior nuclei of the thalamus in the SANTE trial.  

6.2.3 EEG-fMRI Study of Pain  

 The two present studies on pain were based on EEG or fMRI individually. Using 

EEG in healthy subjects receiving elicited external painful stimulation, we found changes 

in resting state rhythmic oscillations as well as patterns of connectivity among nodes 

responsible for pain processing. In patients with sickle cell disease, we used fMRI to find 

changes in connectivity patterns compared with controls. However, in order to bridge the 

gap between neural electrophysiological phenomena as measured by EEG and metabolic 

based activity as shown in fMRI, we need to perform both EEG and fMRI concurrently, 

especially given the benefits discussed in the epilepsy application. Therefore, the next 

step would be to study both healthy controls and patients suffering chronic pain using the 

two modalities simultaneously. With this method, we can probe into the neural correlates 

of default mode network and insula cortex activity, which currently remains unclear. 

Additionally, machine learning techniques can be applied to such concurrent 

electrophysiological and hemodynamic imaging to derive biomarkers of pain, which 

could aid the development of an objective measure of pain and new therapeutic 

approaches for pain in the near future.  
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