
   

 

 

Nano-scale Heat Transfer in Nanostructures: 
Toward Understanding and Engineering Thermal 

Transport  

 

 
A DISSERTATION 

SUBMITTED TO THE FACULTY OF 

UNIVERSITY OF MINNESOTA 

BY 

 

Jihong Ma 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

Advisor: Traian Dumitricã 

 

May 2017 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Jihong Ma 2017



 i 

Acknowledgements 

I would firstly like to thank my PhD thesis advisor, Prof. Traian Dumitricã, for 

his tremendous help and guidance in my academic career. His insightful suggestions 

enabled me to perform important and interesting research at the frontier of nanoscale 

material science.  

I would also like to thank my PhD committee members, Prof. Terrence Simon, 

Prof. Andre Mkhoyan, Prof. Michael McAlpine and Prof. Traian Dumitricã, for 

spending their time and effort to serve on my committee and provide useful comments. 

I sincerely appreciate the support from my colleague, Dr. Ilia Nikiforov, who 

patiently answered many of my questions during the early stages of my study. I would 

also like to thank my other colleagues, Dr. Yuezhou Wang and Mr. Hao Xu for their 

support in my career development. 

I would like to acknowledge all my collaborators for their excellent work and 

meaningful discussions, including Dr. Shiyun Xiong, Dr. Sebastian Volz, Dr. Peter 

Kroll, Dr. Efstathios Meletis, Ms. Atreyi Dasmahapatra, Dr. Changguo Wang, and Mr. 

Yuanpeng Liu.  

I would like to thank Mr. Albert Swanson’s family for their generous donation 

to support my thesis writing in my final year.  

Finally, I would like to thank my parents for their spiritual support to complete 

my PhD. I would also like to thank my husband Gabriel Al-Ghalith for his tremendous 

help in my life and career, including dramatically speeding up my code, optimizing my 

computer system, compressing my files with high speed, and generating graphs and 

videos for some of my published work. 

All the calculations presented in this thesis were performed on Minnesota 

Supercomputer Institute, Extreme Science and Engineering Discovery Environment, 

and High-End Computing Capability from NASA. 



   ii 

 

Abstract 

Heat transfer is vital throughout research and industry. This thesis focuses on 

heat transfer in nanostructures and amorphous materials, in which the arrangement of 

atoms is crucial for the effectiveness of heat transport. Defects and mechanical 

deformations in a material which cause displacement or reconfiguration of atoms 

relative to that material’s “normal” or “pristine” condition can dramatically influence 

its heat transport efficiency. Since the 1950’s, there has been little progress in 

understanding the defects–thermal transport property relationship. Using novel 

numerical techniques and large-scale computations performed on modern 

supercomputers, I have studied heat transport in nanomaterials containing various 

defects and mechanical deformations. From the properties of atomic vibrations in my 

simulations, the effects these deformations have on heat transport can be deduced.  

Three research projects are presented in this thesis. The study of heat transport 

in screw-dislocated nanowires with low thermal conductivities in their bulk form 

represents the knowledge base needed for engineering thermal transport in advanced 

thermoelectric and electronic materials. This research also suggests a new potential 

route to lower thermal conductivity, which could promote thermoelectricity. The study 

of high-temperature coating composite materials helps with the understanding of the 

role played by composition and the structural characterization, which is difficult to be 

approached by experiments. The method applied in studying the composition-structure-

property relationship of amorphous Silicon-Boron-Nitride networks could also be used 

in the investigation of various other similar composite materials. Such studies can 

further provide guidance in designing ultra-high-temperature ceramics, including space 

shuttle thermal protection system materials and high-temperature-resistance coating. 

The understanding of the impact of bending and collapsing on thermal transport along 

carbon nanotubes is important as carbon nanotubes are excellent materials candidates 
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in a variety of applications, including thermal interface materials, thermal switches and 

composite materials. The atomistic study of carbon nanotubes can also provide crucial 

guidance in multi-scale study of the materials to enable large-scale thermal behavior 

prediction. 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

Heat transfer, or heat, is thermal energy in transit due to a special temperature 

difference. Heat transfer has been studied as early as 1701, when Sir Isaac Newton 

formulated the law of cooling. In modern times, this area is affecting almost every 

sector of our life and industry. For instance, it is fundamental to thermoelectric devices, 

high-performance electronics, and micro-scale or nano-scale thermal management. 

Broadly, the known heat transfer mechanisms are classified into three 

categories1: conduction, which is the transfer of energy from more energetic particles 

to less energetic particles of an object through interactions between particles; 

convection, which is the energy transfer due to bulk movement of fluids; and radiation, 

which transfers thermal energy through electromagnetic waves. Among these three 

mechanisms, heat conduction dominates in solids. For the materials of interest in this 

thesis, the heat carriers are lattice vibrations, or phonons.  
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The modern principles of heat conduction in solids were formulated2 by Peierls, 

in 1929. The interest in the role of defects on thermal conductivity started in 1950, in 

conjunction with the research on thermoelectric materials3,4. In nano-scale, the 

arrangement of atoms helps determine how well heat is transported through the 

material. Defects and mechanical deformations in a material, which manifest in 

displacement or reconfiguration of atoms relative to their “normal” or “pristine” 

condition, can dramatically influence how efficiently heat is conducted through it. This 

is because phonons travel relatively large distances in solids (mean free paths of 10-

100 nm), they are sensitive even to distant structural defects, on which they scatter. As 

such, the thermal conductivity is very subtle to microstructure. In fact, early 

measurements of thermal conductivity in solids aimed to study lattice defects4. Owing 

to recent technological progresses (for instance, the growth of the nanowires and the 

atomistic simulations), we view this conjuncture as an opportunity for engineering 

phonon scattering via nanostructure complexity. 

1.1.1 Heat Transfer in Screw-dislocated 

Thermoelectric Nanowires 

Thermoelectricity is the conversion of temperature differences to electric 

voltage. Thermoelectric materials are now attracting considerable attention due to the 

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Voltage
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recently demonstrated advances and strong global demand for cost-effective, pollution-

free forms of energy conversion5. Applications include refrigerators, which, unlike 

traditional coolers, avoid emitting harmful refrigerants; regeneration of electricity from 

waste heat; and radioisotope thermoelectric generators, using the heat released by the 

decay of radioactive material into electricity, a strategy adopted by the “Curiosity” 

space robotic rover on Mars6. However, the conversion efficiency of current 

thermoelectric materials is low, making the price so high that most of them can only 

serve applications where cost is less critical. Advances in thermoelectric materials are 

necessary to eliminate these restrictions. 

The efficiency of the conversion from thermal energy to electricity is measured 

by the dimensionless figure of merit ZT, which is defined as  

 𝑍𝑍𝑍𝑍 =
𝜎𝜎𝑆𝑆2𝑇𝑇
𝜅𝜅

 (1-1) 

where 𝜎𝜎, 𝑆𝑆, 𝜅𝜅  and  𝑇𝑇 denote electrical conductivity, the Seebeck coefficient, thermal 

conductivity and temperature, respectively. Desired efficiency of solid state 

thermoelectric devices7 is 𝑍𝑍𝑍𝑍 ≅ 3 to 4. From the definition of ZT, we can see that by 

lowering 𝜅𝜅, 𝑍𝑍𝑍𝑍 will get closer to the desired value. It has been reported that in the case 

of Silicon (Si), which is a good representative of the nanostructures in 

thermoelectricity, 𝜅𝜅 will be substantially reduced in nanowires (NWs) with respect to 
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that in bulk materials8–13. Meanwhile, the presence of native oxides, defects, surface 

ripples, surface roughness14 and germanium (Ge) coatings26 will further decrease 𝜅𝜅, 

thus increasing 𝑍𝑍𝑍𝑍. Until today, the best thermoelectric materials have 𝑍𝑍𝑍𝑍 between 1 

and 2. Hence, additional mechanisms to lower 𝜅𝜅 are desirable.  

Line defects, often referred to as dislocations, are most often associated with 

mechanical properties of materials. As discussed in the highly-cited review of 

Klemens15, it has been long recognized by physicists the role of dislocations as 

important sources of phonon scatterings due to their spatially-extended character. 

According to Klemens, in bulk, dislocations lead to a significant decrease in 𝜅𝜅 in the 

direction perpendicular to the dislocation line. Recent experiments indicate that both 

NWs and nanotubes (NTs) can be grown via the propagation of an axial screw 

dislocation16. No one had ever explored the thermal transport along the dislocation line 

in screw-dislocated NWs and NTs.  

Regarding the choice of materials, we note that bulk and nanomaterial forms of 

lead selenide (PbSe) alloys and silicon germanium (SiGe) alloys are intensively 

investigated for high performance thermoelectrics17,18. Thus, lower thermal 

conductivity can be expected by introducing screw dislocation in PbSe NWs and SiGe 

NWs. The gained understanding can be used to engineer dislocations that minimize (for 

thermoelectrics) or maximize (for high power electronics) or minimize thermal 
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conductivity of structures, depending on their applications. 

1.1.2 Thermal and Mechanical Studies of 

Amorphous Silicon-Boron-Nitride Network 

Ultra-high-temperature ceramics are a class of synthetic materials with superior 

thermal, mechanical, and oxidation resistance properties. They have various industrial 

applications including space shuttle thermal protection system materials19,20 and high-

temperature-resistant coatings21,22. One focus of protective coating research has been 

amorphous Silicon Nitride (Si3N4) containing B (a-Si−B−N), in particular a-Si3B3N7
23, 

a ternary material synthesized via the sol−gel route24. Especially because of the 

experimental difficulties associated with the structural characterization of amorphous 

materials, computer simulations are playing an important role in understanding the 

structure properties relationship. Important experimental results have been already 

reproduced by atomistic calculations carried out on computer-generated networks. For 

example, molecular dynamics simulations found that the a-Si3B3N7 networks exhibit a 

very high resistance against crystallization, up to 1,900 K25,26. In good agreement with 

experimentation27, molecular dynamics simulations also predicted that the a-Si3B3N7 

bulk modulus ranges between 50−250 GPa, depending on its density28. Hence, a 

comprehensive study of a-Si-B-N network with molecular dynamics simulations is 
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feasible and reliable to guide industrial applications of these ultra-high-temperature 

ceramics. 

1.1.3 Thermal and Mechanical Studies of 

Deformed Carbon Nanotubes 

A carbon nanotube (CNT) can be described as a seamless cylindrical hollow 

tube formed by wrapping a single sheet of pure graphite (a hexagonal lattice of carbon, 

similar to a chain link fence), see Figure 1. Since Iijima29 reported his experimental 

observation of CNTs using transmission electron microscopy, the study of CNTs has 

flourished. Due to their special sp2 C-C bonds and their hollow quasi-one dimensional 

structure, CNTs present extraordinarily high 𝜅𝜅 in the axial direction30–34 and excellent 

mechanical properties35–40. Their high 𝜅𝜅 along the tube direction motivated exploratory 

research for a wide variety of applications of CNTs, including reinforced composites41, 

field emission devices42, sensors and probes42 and thermal interface materials43–45.  

When polymer composites filled with CNTs is under compression, a nonlinear 

elastic “kinking” response is often encountered, see Figure 2. The effect of the buckling 

kink of CNTs on their thermal conductivity has been investigated in both 

experiments46,47 and simulations (atomistically and mesoscopically)48–51. However, no 
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(a) 

(b) 

Figure 1. (a) A bent single-walled carbon nanotube with a kink formed. (b) a 
bent double-walled carbon nanotube with a kink formed. 
 

Figure 2. An armchair single-walled carbon nanotube. 
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clear conclusion on whether the thermal transport is affected by the bending or not had 

been reached.  

Their tube-like structures are also susceptible to collapsing52–61, which could 

impact their physical properties. However, the relation between collapsing and thermal 

transport remains to be discovered, as most 𝜅𝜅 studies of CNTs only focus on the ones 

with small diameters30,31,48–50,62–65, despite the wide applications of CNTs with large 

diameters66–68. Experimental52–57 and computational59–61 studies have discovered that 

CNTs with large cross-sectional diameters (>~2.5nm) present an energetically 

favorable flat conformation due to surface van der Waals interactions, Figure 3, and the 

closest wall-wall distance is about 3.36 Å. The potential influence of the deformation 

on thermal transport along CNTs is important in understanding quasi-one dimensional 

Force 

Force 

 “Closed edge” region 

Figure 3. Formation of a flattened CNT from a cylindrical CNT, viewed along the 
tube. 
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phonon scattering mechanisms, which can further provide guidance in their 

applications. 

1.2 Theoretical Background 

1.2.1 Dislocation Theory 

Dislocations are defined as boundaries between deformed and non-deformed 

regions in crystalline structures. In other words, a dislocation line represents the slip 

front of propagation of a line defect. The Burgers vector, which is generally used to 

define a dislocation in a crystal, depicts the direction and amount of slip. Its magnitude 

gives a characteristic discontinuity of displacement caused by dislocation.  There are 

two basic types, edge and screw, Figure 469, which are just extreme forms of all possible 

dislocations. 

Dislocations are most often associated with mechanical properties of materials. 

They allow plastic deformations to occur at lower applied stresses since they permit 

glide of one entire crystal plane over the one below, in a discrete way. Besides, the 

motion, multiplication and interaction of dislocations cause strain hardening, a common 

phenomenon in which continued deformation increases the strength of a crystal. The 
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strength and ductility, and thereby the mechanical behavior of a crystal, are controlled 

by dislocations.  

Dislocations distort the crystal structure in a complex manner. While away from 

the dislocation line, the deformation field can be well described with linear elasticity, 

the highly deformed core region is inaccessible to continuum methods, and it is largely 

treated on an empirical basis.  For example, consider a screw dislocation of Burgers 

vector’s magnitude 𝑏𝑏. The elastic strain energy is calculated by integrating the strain 

energy density and by simply adding an empirical term 𝐸𝐸𝑐𝑐,  

(a) (b) 

Figure 4. Schematic representation of (a) edge and (b) screw dislocations in a simple 
cubic crystalline material, where filled circles denote the lattice points of a crystal, b 
is a Burgers vector, hatched area and dashed line illustrate the slip plane and 
dislocation line, respectively. 
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 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  (𝐺𝐺𝑏𝑏2 4𝜋𝜋⁄ )ln (𝑅𝑅 𝑟𝑟𝑐𝑐⁄ )+𝐸𝐸𝑐𝑐 (1-2) 

where 𝐺𝐺 is the shear modulus of a material, 𝑅𝑅 and 𝑟𝑟𝑐𝑐 denote the outer dimension of the 

structure and the dislocation core size, respectively.  

What is less commonly appreciated is that dislocations naturally arise during 

growth70, Figure 5 (a)71. In fact, they are of importance for the growth of both bulk 

crystals and nanomaterials72–74. This is because the screw dislocation offers a non-

vanishing growth step allowing the growth to advance in a spiral manner without the 

need for nucleation of a new layer.   

The dislocations occurring during growth are often in the form of pipes, Figure 

5 (b)75. An early explanation for the pipe formation was given by Frank76. He showed 

that for a super screw dislocation (with large 𝑏𝑏), a state of equilibrium exists, in which 

(a)                  (b)    

Figure 5. (a) Screw dislocations in bulk SiC.  Experimental images showing a micropipe 
or open-core dislocations. The right side shows an enlarged image. (b) Screw dislocations 
in a PbS NW. Electronic microscopy of the “pine tree” NW (left) and schematic 
representation of screw-dislocation-driven trunk growth (right). 
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the core is an empty pipe. Frank’s model predicts the equilibrium radius 𝑅𝑅 for the pipe 

from the balance between the energy due to the screw dislocation given by Equation 

(1-2) and the created surface energy. For these reasons, the pipes are referred to as 

open-core dislocations. More recently, nano-pipes and other dislocation types, 

including closed-core super screw dislocations have been observed in GaN77,78.  

Recent experiments16 presented convincing evidence that both NWs74,79 and 

NTs72,73 can be grown via a common mechanism of the propagation of an axial screw 

dislocation, Figure 5 (b). According to classical crystal growth theory, the 

supersaturation of a system can be manipulated to dictate the growth mechanism. At 

low supersaturation, dislocation-driven spiral growth prevails, at intermediate the 

layer-by-layer growth dominates, while at high supersaturation dendritic growth sets 

in. Screw dislocation line defects provide an endless source of crystal steps to enable 

nanostructure growth at low supersaturation conditions. As yet, screw dislocations have 

been identified in a variety of quasi-one-dimensional materials73,74,80–84 including PbSe.  

What is important here, is that the understanding of dislocation-driven growth16 just 

reached the point where realistic progress can be made towards growing nanomaterial 

with controllable morphologies (Burgers vectors, chirality, NTs or NWs), in large 

quantities, and at reasonable costs. Unfortunately, little is known about the way the 

dislocations influence the properties of these new states of matter. 
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1.2.2 The Classical Theory of Heat Transfer 

In the early theory of Klemens15, the various scattering mechanisms (acting 

simultaneously) are treated as perturbations to the harmonic approximation, i.e. the 

motion of the individual atoms in the crystal lattice can be represented as an ensemble 

of excitations, each of which has a well-defined energy and crystal momentum. When 

quantized, these excitations are referred to as phonons, i.e. lattice vibrations. Phonons 

carry energy as they propagate through crystals and thus contribute to 𝜅𝜅 . For the 

harmonic approximation, phonons are the quantum eigenstates of the atomic system, 

which can propagate without dissipation, thus resulting in an infinite 𝜅𝜅. The finite 𝜅𝜅 in 

all solids is due to dissipation, which must occur by phonon scattering of either each 

other (anharmonic interactions), or from imperfections of the lattice (point defects, 

dislocations, interfaces, etc.)85. 

As we treat phonons as pseudo particles traveling through solids, we find, from 

the kinetic theory of gases, in a certain approximation the following expression for the 

thermal conductivity, 

 𝜅𝜅 =
1
3
𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 (1-3) 
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where 𝐶𝐶𝑣𝑣 denotes the heat capacity at constant volume, 𝑣𝑣 is the average particle 

velocity, which is the speed of the sound at this level of the theory, and 𝑙𝑙 is the phonon 

mean free path, i.e. either the 

characteristic length for scattering of 

phonons off each other or off a 

structural defect. 

In Figure 686, we see that at low 

temperature regime, the size effect 

matters as the mean free path is long 

enough to allow that phonon scattering 

occurs at the surface. Thus, 𝜅𝜅 can be 

expressed, instead of Equation (1-3), 

as follows: 

 𝜅𝜅 ≈ 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣 (1-4) 

where 𝐷𝐷 is the size of the specimen. As the temperature gets lower, the only factor that 

changes 𝜅𝜅 is the heat capacity 𝐶𝐶𝑣𝑣, which, according to Debye’s approximation, has the 

following relation with temperature: 

 𝐶𝐶𝑣𝑣 ∝  𝑇𝑇3 (1-5) 

Figure 6. Thermal conductivity of a highly 
purified crystal of sodium fluoride. At low 
temperature, κ~T3; at higher temperature, κ~T-1. 
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Thus, 𝜅𝜅 is also proportional to 𝑇𝑇3 until the size effect does not matter. While at 

higher regime, where 𝜅𝜅 decreases with the increase of the temperature, the mean free 

path 𝑙𝑙 ≪ 𝐷𝐷, when the size effect doesn’t exist. At this state, the heat capacity 𝐶𝐶𝑣𝑣 can be 

treated as a constant. Hence the magnitude of mean free path l dominates. At higher 

temperatures, the total number of excited phonons is proportional to T, so that the 

collision frequency of a given phonon is proportional to the number of phonons, which 

leads to the mean free path 𝑙𝑙 ∝  𝑇𝑇−1.  Hence 𝜅𝜅 is proportional to 𝑇𝑇−1 as well. 

The atomistic theory of 𝜅𝜅 incorporating defects was first studied in detail by 

Klemen15,87, Carruthers88, Ziman89, and Callaway90, by whom the various scattering 

mechanisms (anharmonicity, point defects, and dislocations, etc.) are treated as 

perturbations to the harmonic Hamiltonian. Scattering probabilities are then computed 

with the Fermi Golden rule, while transport properties were captured by the Boltzmann 

transport equation (BTE) for the probability distribution function 𝑓𝑓𝜆𝜆 of the phonons in 

the state 𝜆𝜆: 

 −𝑣𝑣𝜆𝜆
𝜕𝜕𝑓𝑓0𝜆𝜆

𝜕𝜕𝜕𝜕
∇𝑇𝑇 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆  (1-6) 

where 𝑓𝑓0𝜆𝜆 is the equilibrium Bose-Einstein distribution. Here, the usual assumption of 

the local equilibrium is made on the left-hand side of the equation. The solution to this 

equation is so complicated that we would use the relaxation time approximation (RTA) 

as a standard approach. The approximation is stated as follows:  
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• if a probability distribution function for a given phonon mode is not an 

equilibrium distribution, then the scattering strength is proportional to the 

deviation from equilibrium with some characteristic time constant τ that 

incorporates all the information about the scattering processes; 

•  each relaxation mode is independent of all the others, and thus, all other 

modes are considered to be in equilibrium. 

With these two approximations, Equation (1-6) can be simplified as 

 −𝑣𝑣𝜆𝜆
𝜕𝜕𝑓𝑓0𝜆𝜆

𝜕𝜕𝜕𝜕
∇𝑇𝑇 =

𝑓𝑓𝜆𝜆 − 𝑓𝑓0𝜆𝜆

𝜏𝜏𝜆𝜆
 (1-7) 

Nonetheless, investigations85,91 have demonstrated that the RTA underestimates 

𝜅𝜅. Within the RTA, the value of 𝜅𝜅 can be expressed as a generalization of the Equation 

(1-3): 

 𝜅𝜅𝑖𝑖𝑖𝑖 = �𝐶𝐶𝑣𝑣𝑣𝑣𝑖𝑖𝜆𝜆

𝜆𝜆

𝑣𝑣𝑗𝑗𝜆𝜆𝜏𝜏𝜆𝜆 (1-8) 

where 𝑖𝑖, 𝑗𝑗 are the Cartesian indices, and 𝜆𝜆 is as denoted before, the phonon states.  

After invoking Debye’s approximation for phonon dispersion, 𝜅𝜅 writes as an 

integral over all possible phonon frequencies 𝜔𝜔 
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 𝜅𝜅 = (1 2𝜋𝜋2𝜐𝜐)⁄ � 𝐶𝐶𝑣𝑣(𝜔𝜔)𝜏𝜏(𝜔𝜔)𝜔𝜔2
𝜔𝜔𝑑𝑑

0
𝑑𝑑𝑑𝑑 (1-9) 

where 𝜔𝜔𝑑𝑑 is the Debye frequency, and 𝜏𝜏 is the phonon lifetime. The contribution of 

each scattering effect is mixed in via the Matthiessen rule92 

  1 𝜏𝜏⁄ = 1 𝜏𝜏𝑠𝑠⁄ + 1 𝜏𝜏𝑐𝑐⁄ + 1 𝜏𝜏𝑑𝑑⁄ + ⋯  
 

(1-10) 

where the three terms (𝜏𝜏𝑠𝑠, 𝜏𝜏𝑐𝑐, 𝜏𝜏𝑑𝑑) aim to capture the effect of dislocations15 as follows: 

• 𝜏𝜏𝑠𝑠, the contribution from the scattering on the linear-elastic strain field of the 

dislocation 

 1 𝜏𝜏𝑠𝑠⁄ ∝ 𝑁𝑁𝑑𝑑𝑏𝑏2𝛾𝛾2𝜔𝜔 (1-11) 

where 𝑁𝑁𝑑𝑑 is the dislocation density, 𝑏𝑏 is the magnitude of the Burgers vector, and 𝛾𝛾 the 

Grüneisen parameter (capturing the effect of volume change on vibrational properties). 

• 𝜏𝜏𝑐𝑐, the contribution from the scattering on the non-linear elastic region of the 

dislocation 

 1 𝜏𝜏𝑐𝑐⁄ = 𝑁𝑁𝑑𝑑�𝑟𝑟𝑐𝑐4 𝜈𝜈𝑝𝑝2� �𝛾𝛾𝛾𝛾3 (1-12) 

where as before 𝑟𝑟𝑐𝑐 is the radius of the core and 𝜈𝜈𝑝𝑝 is the phonon phase velocity. This 

result is based on approximating the strain in the core as the one resulting from a line 

of vacancy defects88. 

• 𝜏𝜏𝑑𝑑, the dislocation dynamics93,94 term 
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 1 𝜏𝜏𝑑𝑑⁄ ∝ 𝜔𝜔−1 (1-13) 

which accounts for the dislocation motion. 

Regarding bulk materials, the phenomenological theory of Klemens predicts 𝜅𝜅 

reduction due to dislocations. However, as has been recognized before, this theory 

underestimates 𝜅𝜅 by at least an order of magnitude in comparison with the experimental 

data. For example, Sproull et al.95 measured the impact of dislocations on the 𝜅𝜅 of LiF 

crystals. They found that the reduction in 𝜅𝜅 is much larger than Klemens' predictions87. 

Even when enhanced with more complex effects, significant deviations still exist 

between phenomenological modeling and experiment88,96. In addition, it is essential to 

note that the impact of dislocations on 𝜅𝜅 also depends on temperature. When the density 

of line or point defects is low enough (for GaN97, it’s lower than 106 cm−2), the defects 

scatter appreciably only at temperatures below 100 K98–101 and insignificantly 

otherwise97. On the contrary, at temperatures greater than 100 K, 𝜅𝜅 decreases with a 

logarithmic dependence for materials with dislocation densities in the range of 107–

1010 cm−2 such as GaN97. This might be attributed to the fact that the mean free path is 

directly related to the temperature. When at higher temperature, the mean free path is 

so short that it cannot be easily affected by the sparse defects. But when the density is 

high enough, the phonons can be scattered by the dislocations. Otherwise, at lower 

temperature, the mean free path is long enough to allow the phonons to be scattered by 
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the less dense defects.  

In this respect, our MD simulations should bring significant improvements as 

they allow for an accurate account for the dislocation core region. Note that estimates 

for the core radius rc range from b to 5b, where b is the magnitude of the Burger’s 

vector and the displacement field of the core, needed in Klemens theory, is unavailable 

for continuum methods. Here, we are concerned with super screw dislocations (with 

large b). Additionally, we note that the classical term (1-12) doesn’t capture explicitly 

the size of the Burgers vector and doesn’t distinguish between open and closed-core 

dislocations. Thus, the classical theory does not allow exploring the phonon 

engineering of screw dislocations.  

Regarding nanostructures, it is important to recognize that there is an essential 

difference between the thermal conductivity reduction captured by Klemens in terms 

(1-11) and (1-12), and the problem of thermal transport in screw dislocated 

nanostructures. Klemens refers to scattering of the phonon states (eigenstates of the 

harmonic ideal problem) on the linear and non-linear elastic strains localized around 

the dislocation line, Figure 7. By contrast, in our proposed studies of Si, PbSe and SiGe 

NWs and NTs, we encounter the unexplored case of thermal transport along the screw 

dislocation line. Due to the objective periodicity of the strain field of the dislocation, 

which extends over the whole nanostructure, we are interested in the thermal transport 
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through phonon carriers that are eigenstates of the strained dislocation core (that are 

satisfying the Bloch theorem generalized for helical symmetry102). Hence the classical 

theory doesn’t apply. 

 

The only point common to Klemens’s theory is the 𝜅𝜅  reduction via the 

dislocation dynamics. However, term (1-13) is likely unsuitable as the dislocation 

dynamics in NWs is often specific (different than in bulk, see Ref.103). In NW the 

dislocations are in the close vicinity of surfaces, and interaction of the core with the 

surfaces gains in importance. For more insight, it is useful to view it in a continuum 

elasticity perspective: A stable axial screw dislocation residing in a cylindrical rod 

(with a diameter order of magnitude larger than a NW) couples to a twisting 

Incident 
Phonons in 
Klemens’ 
Theory 

Phonons 
we study 

here 

Phonons  
Scattered  

by Dislocation 
  

Figure 7. Schematics showing the 
essential differences between the  
classical Klemens’ theory and our 
proposed line of research. 
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deformation known as the “Eshely twist” of magnitude Ω𝐸𝐸 , Figure 7. This twist is 

visible in the experimental Figure 5 (b). Apparently, none of these effects (attraction by 

surfaces and twisting) are accounted for in equation (1-13). Thus, new mechanisms 

need to be uncovered. 

1.3 Methodology 

1.3.1 Boundary Conditions 

In molecular dynamics (MD), each atom is treated as a point mass whose 

velocity and position are computed by time integration of the classical Newton’s 

equations. The computational task is to solve the set of coupled differential equations 

given by 

 𝑚𝑚𝑖𝑖
𝑑𝑑2𝒙𝒙𝒊𝒊
𝑑𝑑𝑡𝑡2

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙𝒊𝒊

 (1-14) 

where 𝑚𝑚𝑖𝑖 and 𝒙𝒙𝒊𝒊  are the mass and position vector of the i-th particle, and 

φ(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … ,𝒙𝒙𝒏𝒏) denotes the potential energy ranging from a simple pairwise atomic 

interaction for PbSe104, to the Stillinger-Weber three-body potential for SiGe105, and 

even to the more complicated ab initio fully quantum mechanical methods. However, 
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the number of atoms in a real system is usually so large that it is impossible to substitute 

all the positions of atoms into the potential function. Thereupon, by taking advantage 

of the inherent translational symmetry of the crystal structure with the periodic 

boundary condition (PBC), we can significantly reduce the number of atoms that need 

to be calculated.  

 𝒙𝒙𝑖𝑖,𝜁𝜁 = 𝜁𝜁𝑻𝑻 + 𝒙𝒙𝑖𝑖 (1-15) 

where 𝑻𝑻  is the translational periodicity and 𝑖𝑖 = 1,2, …𝑛𝑛𝑇𝑇 ,  where 𝑛𝑛𝑇𝑇  denotes the 

number of atoms in the periodic cell. If we choose modest but sufficient number of 

atoms and properly set the PBC’s, we can obtain the solutions with acceptable accuracy. 

Nevertheless, in some cases, the translational periodicity of the structure is extremely 

large and with rotational symmetry, as some cases in this thesis, PBC might not be a 

good choice. Here, we utilize the objective molecular dynamics106 (OMD) which 

incorporates not only the translational symmetry of the structure, but also the helical 

and/or rotational symmetry, i.e. objective boundary condition (OBC), as in Figure 8. In 

my completed thesis work, only the rotational combined with the translational 

symmetry in one dimension is involved: 

 𝒙𝒙𝑖𝑖,𝜁𝜁 = 𝜁𝜁𝑻𝑻 + 𝑹𝑹𝜁𝜁𝒙𝒙𝑖𝑖 (1-16) 
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where 𝑹𝑹 denotes the rotational matrix 

 𝑹𝑹 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0

0 0 1
� (1-16) 

and  𝑻𝑻 is along the z (axial) axis. Thus, the velocity 𝒗𝒗𝑖𝑖,𝜁𝜁 can be expressed as 

 𝒗𝒗𝑖𝑖,𝜁𝜁 = 𝑹𝑹𝜁𝜁𝒗𝒗𝑖𝑖 (1-17) 

In this way, the realizable number of atoms within an objective unit cell enables the 

calculation with both accuracy and efficiency. 

Figure 8. (a) A pristine and (b) a screw-dislocated Silicon nanowire with 2b Burgers 
Vector. By applying the periodic boundary condition along the z direction and the 
objective boundary condition (translating along the z direction and rotating about the z-
axis) on the simulated unit cells (the light green part) in (a) and (b), we can obtain 
infinitely long pristine and screw-dislocated Silicon nanowires, respectively. 
 

2b z z 
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1.3.2 The Green-Kubo Method 

Unlike fluids, the transport of heat in solids is derived from correlations in the 

motion of atoms around their equilibrium locations. Green-Kubo uses the fluctuation-

dissipation theorem to derive an exact mathematical expression for 𝜅𝜅, which is given 

by a time integral over the equilibrium flux autocorrelation function   

 𝜅𝜅𝛼𝛼𝛼𝛼 =
𝑉𝑉

𝑘𝑘𝐵𝐵𝑇𝑇2
� �𝑗𝑗𝛼𝛼(0)𝑗𝑗𝛽𝛽(𝑡𝑡)�𝑑𝑑𝑑𝑑 
∞

0
 (1-18) 

where 𝜅𝜅𝛼𝛼𝛼𝛼 is a component of the lattice thermal conductivity tensor (𝛼𝛼 and 𝛽𝛽 = x, y and 

z), 𝑉𝑉 is the volume of the system, 𝑘𝑘𝐵𝐵 the Boltzmann constant, 𝑇𝑇 the temperature, 𝑡𝑡 is 

the autocorrelation time. The angular brackets indicate ensemble average over 

microstates j.   

            MD uses a discretized version of (1-18) and a method for calculating the 

instantaneous heat flux 𝒋𝒋. The heat current is the time rate of change of the “energy 

moments”, 

 𝒋𝒋(𝑡𝑡)𝑉𝑉 =
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝒓𝒓𝑖𝑖𝜖𝜖𝑖𝑖
𝑖𝑖

 (1-19) 

where 𝜖𝜖𝑖𝑖 is the total energy of particle i, comprising kinetic and potential components, 
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 𝜖𝜖𝑖𝑖 =
1
2
𝑚𝑚|𝑣𝑣𝑖𝑖|2 +

1
2
�𝜑𝜑
𝑗𝑗

�𝑟𝑟𝑖𝑖𝑖𝑖� (1-20) 

Substitute Equation (1-20) to Equation (1-19), we can get 

 𝒋𝒋(𝑡𝑡) =
1
𝑉𝑉
��𝒗𝒗𝑖𝑖𝜖𝜖𝑖𝑖 +

1
2
� 𝒓𝒓𝑖𝑖𝑖𝑖 ∙ �𝑭𝑭𝑖𝑖𝑖𝑖 ∙ 𝒗𝒗𝑖𝑖�
𝑗𝑗,𝑗𝑗≠𝑖𝑖

�
𝑖𝑖

 (1-21) 

In solid, only the second term on the right-hand side of Equation (1-21) dominates in 

contributing to thermal energy transport. Thus, for pairwise potentials, the heat current 

typically writes107 

 𝒋𝒋(𝑡𝑡) =
1

2𝑉𝑉
� 𝒓𝒓𝑖𝑖𝑖𝑖 ∙ �𝑭𝑭𝑖𝑖𝑖𝑖 ∙ 𝒗𝒗𝑖𝑖�
𝑖𝑖,𝑗𝑗,𝑖𝑖≠𝑗𝑗

 (1-22) 

For three-body potentials, like the Stillinger-Weber potential105, the three-body 

contribution must be taken into account. Therefore, the flux expression is more 

complicated108, 

 𝒋𝒋(𝑡𝑡) =
1
𝑉𝑉
�
1
2
� 𝒓𝒓𝑖𝑖𝑖𝑖 ∙ �𝑭𝑭𝑖𝑖𝑖𝑖 ∙ 𝒗𝒗𝑖𝑖�
𝑖𝑖,𝑗𝑗,𝑖𝑖≠𝑗𝑗

+
1
6

� �𝒓𝒓𝑖𝑖𝑖𝑖 + 𝒓𝒓𝑖𝑖𝑖𝑖� ∙ �𝑭𝑭𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝒗𝒗𝑖𝑖�
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑖𝑖≠𝑗𝑗≠𝑘𝑘

� (1-23) 

In MD, the integration time is MΔt (not ∞), and equation (1-18) takes the form107,  
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 𝜅𝜅𝛼𝛼𝛼𝛼 =
𝛥𝛥𝛥𝛥
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�
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𝑁𝑁 −𝑚𝑚

𝑀𝑀
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� 𝑗𝑗𝜶𝜶(𝑚𝑚 + 𝑛𝑛)𝑗𝑗𝛽𝛽(𝑛𝑛)
𝑁𝑁−𝑚𝑚

𝑛𝑛=1

 (1-24) 

where 𝑀𝑀 is the number of steps over which the ensemble average is calculated, N is the 

total number of time steps after equilibration has been reached, and 𝛥𝛥𝛥𝛥 is the MD time 

step. The MD can be carried out under periodic boundary conditions (PBC) or objective 

boundary conditions106,109 (OBC).  

1.3.3 The Direct Method 

            The direct method, is also known as non-equilibrium molecular dynamics 

(NEMD), in which a temperature gradient is imposed on the atomistic sample by 

thermostatting different “bath” regions at different temperatures. A variety of 

thermostatting options are available in Trocadero and LAMMPS, including Langevin110 

and Nosé-Hoover111,112. The simulated portion of the material usually has one long 

y 

z 

x 

Hot Reservoir Cold Reservoir Heat Flux 

Figure 9. A CNT set up for calculating thermal conductivity along the axial direction 
(z direction) with NEMD. The red rings in the two ends are fixed ends. The pink rings 
next to the red ones are hot and cold reservoirs, respectively. The heat flux flows from 
the hot reservoir to the cold reservoir along the tube. 
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dimension and a smaller cross-section. The temperature gradient is imposed along the 

long dimension. For bulk simulations, PBC will be used on the sides (x and y 

directions). Regarding the treatment of the long side (along z), two options exist in the 

literature113, either to keep the end atoms fixed, or impose PBC. Here, we only use the 

fixed boundary condition, as shown in Figure 9. 

           In NEMD the goal is to reach steady state. The variation in temperature across 

the length of the sample becomes meaningful at steady state. A linear temperature 

profile is expected between thermostats. Then, the thermal conductivity can be 

determined as 

 𝜅𝜅 = −𝑗𝑗(
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)−1 (1-25) 

            This method is plagued by size effects, due to phonon scattering at the 

thermostatting boundaries and restrictions on the maximum phonon mean free path. In 

NWs, the size effects are real in the x and y directions and they will be captured in 

simulations. More specifically, thermal conductivity of a sample is prone to size effects 

when the dimensions fall below 5-10 times the phonon mean free path.  Nevertheless, 

procedures are in place in order to determine the bulk thermal conductivity of a material 

from molecular dynamics simulation. The usual way is to extrapolate the finite size 

thermal conductivity up to the bulk value as follows: 
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 𝜅𝜅(𝐿𝐿) =  𝜅𝜅 ∞ �
𝐿𝐿𝑧𝑧

𝐿𝐿𝑧𝑧 + 4𝑙𝑙∞ 
� (1-26) 

where 𝐿𝐿𝑧𝑧 is the length of the simulation cell, and  𝜅𝜅 ∞ are the phonon mean free path 

and thermal conductivity in an infinite system (i.e., bulk crystal or nanowire).     

 

Chapter 2 

Thermal Transport in Screw-dislocated Nanowires 

and Nanotubes 

Nanostructures grown by screw dislocations have been successfully synthesized 

in a range of materials, including thermoelectric materials, but the impact of these 

extended crystallographic defects on thermal properties of these nanostructures is not 

known. We investigate thermal transport in Si, PbSe and SiGe nanowires storing screw 

dislocations via non-equilibrium molecular dynamics and equilibrium molecular 

dynamics simulations. The inherent one-dimensionality and the combined presence of 

a reconstructed surface and dislocation yield ultralow thermal conductivity values. Our 

simulations suggest that the large dislocation strain field in nanowires may play a key 
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role in suppressing the thermal conductivity of thermoelectric nanomaterials to increase 

their thermoelectric figure of merit. This work was published in Ref114 and Ref115. 

 

2.1 Introduction 

Thermoelectric (TE) devices116 have found applications in various areas, from 

aerospace and petroleum to consumer electronics and automobiles. Unfortunately, 

current TE devices suffer from low energy conversion efficiency, which is limited by 

the performance of the current TE materials. The conversion efficiency is characterized 

by the dimensionless figure of merit 𝑍𝑍𝑍𝑍 = 𝜎𝜎𝑆𝑆2𝑇𝑇/𝜅𝜅 at the absolute temperature T. The 

ZT components of electrical conductivity (𝜎𝜎), Seebeck coefficient (S), and thermal 

conductivity (𝜅𝜅) are interdependent. Low 𝜅𝜅 is an important consideration in ensuring 

high ZTs. Enhanced ZT values as high as close to 2 have been reported in materials with 

spontaneous nanoscale phase segregation or pressed from ball-milled nanoscale grains 

or synthetic nanostructures5,117,118 Exploring novel 𝜅𝜅-lowering strategies is of interest 

as ZT values larger than 3 are needed for increasing the energy conversion efficiency 

of these thermoelectric devices to the level found in mechanical systems. 
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Recently, Jin et al.16,74,119,120 discovered that screw dislocations play an 

important role in the growth of anisotropic nanomaterials, such as PbSe nanowires 

(NWs). The entire volume of these nanostructures is in close proximity to the 

dislocation core with the largest strain field. In general, dislocations and strain121 play 

a less important role in bulk low- 𝜅𝜅  thermoelectric materials, which are often 

characterized by strong lattice anharmonicity. However, in Bi0.5Sb1.5Te3, it has been 

reported that lattice 𝜅𝜅 lowering by dislocation-scattering, reinforced by liquid phase 

compaction, gives dramatic ZT improvement (~1.86 at 320 K)122. Therefore, it remains 

an open question whether screw dislocations can result in a major suppression of 𝜅𝜅 in 

nanostructures with both high and low 𝜅𝜅 in their pristine forms. 

2.2 Thermal Conductivity in Screw-dislocated 

Silicon Nanowires and Nanotubes 

In this work, I combine modern theories based on atomistic simulations in order 

to understand how the thermal properties of <110> silicon (Si) NWs and NTs 

accommodating axial screw dislocations with closed and open cores might differ from 

the more studied pristine forms. After computing the screw-dislocated NW and NT 

structures with objective molecular dynamics106 (MD), we used two main methods, the 
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direct method123 and the atomistic Green function method124–126 (simulations were 

carried out by Dr. Shiyun Xiong), to reveal an important reduction in 𝜅𝜅. This finding 

presents significant interest for nanoscale thermoelectricity.  

I simulated a set of pristine and screw-dislocated Si <110> NWs and NTs with 

cubic diamond structure and hexagonal cross sections. The number of 111 layers L in 

the cross-section was taken to be 12, 16, 20 and 30, so that the radii of the created NWs 

ranged from 18.8 Å to 47.1 Å. Next, from the pristine L =12 NW we created a set of 

(L,h) NTs, by systematically removing central atomic layers. We label by h the number 

of 111 inner layers that have been removed. Finally, in all these structures we introduce 

screw-dislocations with the axis located at the center. We considered minimal Burgers 

vector of magnitude b =3.8 Å and multiples of it, 2b and 3b. In 1b NWs, the created 

core structure is the Hornstra core, where all atoms remain fourfold coordinated.  

Screw-dislocations twist NWs and NTs. This is the Eshelby twist127 ƔE, which 

is well known at the macroscale. The presence of ƔE creates challenges for atomistic 

simulations as it prevents the applicability of the standard periodic boundary 

conditions. Here, in order to find optimal morphologies (corresponding to minimum 

energy) we used objective MD106 coupled with a Tersoff classical potential128. The 

method allows for performing simulations of screw-dislocated NWs and NTs under 
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arbitrary twist in an economic fashion, always using the same N, the number of atoms 

located in the primitive cell of the pristine structure.  

Examples of optimized structures are shown in Figure 10.  Each structure 

corresponds to the minimum of the computed total energy vs. twist angle θ. As 

illustrated in Table 2-1, in accordance with Eshelby theory127 we find that ƔE increases 

with the magnitude of the Burgers vector. Moreover, the obtained ƔE and formation 

energies of the dislocations compare very well with those computed with a higher-level 

quantum mechanical description of bonding129, thus indicating the reliability of our 

modeling. Note also that dislocation does not affect the surface structural 

relaxation72,129,130. 

Having identified the atomic positions inside the objective cell and ƔE, we 

constructed long nanostructures. We computed 𝜅𝜅  with the direct method, based on 

nonequilibrium classical MD at a 300 K mean temperature. During our MD runs, the 

NWs and NTs maintain their crystalline structure as well as the central location of the 

dislocation. Thereby, we recognize that scattering contributions by defects and 

dislocation motion15 are not included in our results. Nevertheless, our MD simulations 

are subject to size effects. Therefore, for the (12,0) NWs and (12,4) NTs, we simulated 

structures with lengths of 10, 20, 30, and 40 nm. The computed finite-size 𝜅𝜅 has been 

extrapolated123 to predict κ for the infinitely-long case, Figure 11 (a) and (b).  
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Table 2-1. Number of Si atoms in the objective cell, twist, energetics, and thermal 
conductivity of (12,0) NWs and (12,4) NTs. The magnitude of the Burgers vector (1b, 
2b, and 3b, where b =3.8 Å) is indicated in the subscript notation. 
 

(L, h) N ƔE (deg/Å) Ed (eV/Å) 𝜅𝜅 (W/mK)b) 

(12, 0) 228 0 0 50 

(12, 0)b 228 0.19 (0.19a)) 0.79 (0.94a)) 36 

(12, 0)2b 228 0.39 (0.36a)) 2.05 (2.15a)) 20 

(12, 0)3b 228 0.56 (0.53a)) 3.74 (3.40a)) 12 

(12, 4) 204 0 0 28 

(12, 4)b 204 0.18 0.09 23 

(12, 4)2b 204 0.35 0.35 17 

(12, 4)3b 204 0.52 0.77 12 

a) These values, shown here for comparison, were obtained with a density-
functional theory-based method129;  

b) These values correspond to infinitely-long structures.  

Consistent with previous studies, we find that the presence of surfaces in pristine 

Si NWs leads to significant 𝜅𝜅 reduction. For example, in a (12,0) NW we measured 𝜅𝜅 

= 50 W/mK, which represents 25% of the bulk Si value9 of 196 W/mK This value is 

consistent with previous studies employing MD and Tersoff potentials131 and is larger 

than in experiments12 because realistic effects, such as surface effects9,14, are not 

included in our MD simulations. Nevertheless, our pristine structures only serve here 

as useful references, to help us distinguish the potential impact of screw-dislocations.  
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 Remarkably, a screw dislocation leads to a sizable 𝜅𝜅  decrease. The values 

entered in the last column of Table 2-1, show a consistent decrease in 𝜅𝜅  with the 

magnitude of the Burgers vector. Likewise, an open core dislocation in NTs is reducing 

𝜅𝜅 to a similar extent. For example, in both (12,0)3b NWs and (12,4)3b NTs, 𝜅𝜅 = 12 

W/mK, which represents only 6% of the bulk value.  

(a) 
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Figure 10. Optimal configuration (left) and total energy vs. twist angle (right) for (a) 
(12,0)b NW and (b) (12,4)b NT. The dashed line indicates the cut made to create the 
dislocation. 
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For more insight, Figure 11 (c) shows the computed 𝜅𝜅 for a series of NWs 20 

nm in length. In Eshelby’s theory, the amount of twist depends inversely on the cross-

sectional area, so it decreases with the NW diameter. For example, a (30,0)b NW stores  

twist of only 0.03 deg/Å. Fortunately, Figure 11 (c) demonstrates that the Eshelby twist 

doesn’t play a key role for heat transport. For this reason, the other panels of Figure 11 

compare only pristine and untwisted dislocated structures. Additionally, the surface 

morphologies of pristine and untwisted and dislocated NWs are practically identical, 

Figure 12, and thus no differences in the phonon-surface scattering should be expected.  

In Figure 11 (d) we compare the dependence of 𝜅𝜅 on the Burgers vector for NTs 

with different inner diameters. In pristine NTs, we find that the effect of the gradual 

increase of the inner surface is beneficial for thermoelectricity, as it leads to a 𝜅𝜅 

decrease. When accounting for the size effects in the same manner as in Figure 11 (b), 

we obtained a 56% 𝜅𝜅 reduction between pristine (12,4) NTs and (12,0) NWs (see Table 

2-1). This is an interesting result by itself considering the recent progress in the 

synthesis of pristine Si NTs132. Examining now the data for screw-dislocated cases, we 

find that as the NT’s wall gets thinner, the impact of screw dislocations on 𝜅𝜅 

diminishes: while in (12,2) NT the strain field leads to a significant 𝜅𝜅 reduction, in 

(12,8) NT, 𝜅𝜅 is hardly affected by the size of the Burgers vector. Overall, this study 

shows that the 𝜅𝜅 reduction is strongly linked to the complex screw dislocation core.  
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One way to match our notable MD results is to go beyond the harmonic 

approximation and accept that phonons can be scattered by other phonons. Indeed, the 

harmonic approximation is permissible as long as atoms remain very close to their 

equilibrium positions, forming bond lengths of 2.36 Å. Instead, in screw-dislocated 

NWs, large strains are involved. For example, we identified bond lengths measuring 

2.5 Å in the Hornstra core of the (12,0)1b Si NW. Thus, strain-induced anharmonicity  
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Figure 11. Dependence of 1/𝜿𝜿 on 1/Lz for pristine and SD (a) (12,0) NWs and (b) 
(12,4) NTs. The intercept of the linear fit with the vertical axis gives 𝜿𝜿  for 
infinitely-long structures. Relative comparison of 𝜿𝜿 for (c) NWs and (d) NTs with 
Lz = 20 nm. The filled (open) symbols correspond to untwisted (twisted) 
structures. Here b = 3.8Å. 
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Figure 12. Cross section of untwisted (12,0) Si NWs with the size of the Burgers 
vectors marked under each structure. Selected surface bond lengths are shown. The 
dashed line indicates the cut made to create the dislocation. 
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of the interatomic potential, which leads in turn to phonon-phonon scatterings133,134, 

should be expected. Because MD includes the full interaction potential, these 

anharmonic effects are already present in the MD data of Figure 11. 

An attractive feature is that the effect uncovered here can act in combination 

with the known 𝜅𝜅 limiting mechanisms. To illustrate this point, we have performed 

exploratory MD calculations on (12,0) Si NWs coated with four layers of Ge. After 

accounting for the size effects, we obtained that the addition of a Ge shell leads to 𝜅𝜅 = 

40 W/mK for NW with pristine core, and to the even smaller values of 28.6, 11.8, and 

7.2 W/mK for (12,0)b, (12,0)2b, and (12,0)3b NWs, respectively.  

2.3 Thermal Conductivity in Screw-dislocated 

Lead Selenide and Silicon Germanium Nanowires  

In this work, I investigate the phonon scattering on dislocations in lead selenide 

(PbSe) and silicon germanium (SiGe) NWs containing screw dislocations with various 

sizes of the Burgers vectors. Both materials present low 𝜅𝜅 in their bulk forms. For 

example, at 300 K, 𝜅𝜅 = 2.2 W/mK in PbSe135 and 𝜅𝜅 = 10 W/mK in Si0.5Ge0.5
136. By 

equilibrium molecular dynamics simulations, we uncover the significant thermal 

conductivity reduction in both systems and further demonstrate the robustness of the 
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proposed effect by comparing it with two other effects – surface roughness and vacancy 

defects – for which 𝜅𝜅 lowering is consistently computed with the same methods. 

We have considered PbSe < 100 > NWs with a square 2.45 X 2.45 nm2 cross-

section and a rock-salt crystalline structure, and SiGe  < 110 > NWs with a 4.33 X 3.75 

nm2 rectangular cross-section in which one type of atom is bonded in a tetrahedral 

geometry with four atoms of another type. The latter system is in the spirit of the early 

work of Abeles137, where the idea of computing the thermal conductivity of SiGe alloys 

starting from an ordered virtual crystal was first introduced. The SiGe NW with a 

crystalline ordered structure represents a model system for investigating, separately, 

the potential effect of dislocations on 𝜅𝜅. 

We introduce screw dislocations with the axis at the center, see Figure 13, with 

minimal Burgers vectors (b = 6.12 Å in PbSe and 3.92 Å in SiGe) and larger (super 

screw dislocations with even multiples, n, of b). For this, I used the morphologies of 

the pristine NW structures. Starting from the NW center, the atoms in the vicinity of 

the cut-plane were gradually displaced along the NW axis until atomic displacements equal 

to the to the magnitude of the desired Burgers vector were reached and maintained up 

to surface atoms. The chosen location of the dislocation axis does not cross any atomic 

site, see Figure 13 (a). Note that the axial crystallographic orientation has an important 

role in the structural and thermal stability of NWs138. Here, the selection of the axial 
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orientation of the NWs was based on the experimental input for PbSe74,82, and on 

energetic considerations related to the minimum size of the Burgers vector for SiGe. The 

lateral surface of NWs also has a remarkable effects on properties139. While in the 

previous section, I explored screw dislocations in NWs with hexagonal cross-

sections114, here, I consider NWs with rectangular cross-sections. 

We carried out a series of equilibrium MD simulations with LAMMPS140 to 

investigate the stability and thermal attributes of the dislocated NWs. For PbSe 

Figure 13. (a) Atomistic representation of stress-free configurations of the screw-
dislocated unit cells of PbSe (top) and SiGe (bottom) NWs. The black line indicates the 
intersection of the cut-plane with the cross-section. (b) Side views of the dislocated and 
twisted PbSe (left), and dislocated and untwisted SiGe (right) NWs. (c) Formation 
energy (energy measured with respect to pristine NW) vs. twist rate. 
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structures, we adopted the interatomic potentials developed by Schapotschnikow et 

al.104, which is a combination of Lennard-Jones (LJ) and Coulomb potentials, 

𝑈𝑈𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖� = 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑟𝑟𝑖𝑖𝑖𝑖� + 𝑈𝑈𝐿𝐿𝐿𝐿�𝑟𝑟𝑖𝑖𝑖𝑖� =
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜀𝜀0𝑟𝑟𝑖𝑖𝑖𝑖
+ 4𝜀𝜀𝑖𝑖𝑖𝑖 ��
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𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
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6

� (2-1) 

where 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between i and j, 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝜎𝜎𝑖𝑖𝑖𝑖 are the LJ parameters, 𝑞𝑞𝑖𝑖 and 𝑞𝑞𝑗𝑗 

are partial charges on atom i and j, and 𝜀𝜀0  is the dielectric constant of a vacuum. 

Parameters of the LJ potential for the same type of atoms are defined as in Ref104; and 

for different types of atoms, the Lorentz-Berthelot mixing rules have been applied. In 

order to improve the simulation efficiency, instead of using 10 nm as the cut-off radius 

for electrostatic interactions as indicated in their paper, we applied Ewald summation 

to describe the long range electrostatic interactions. The lattice constant at 0 K and the 

bulk modulus in the rock salt141 structure are 6.06 Å and 52.9 GPa, respectively, with 

our adapted method, which are comparable to the values obtained in their paper141, 6.06 

Å and 54.3 GPa, and other experimental measurements,142, as well as the first principle 

calculations143,144. Thus, the cut-off radius approach can be safely replaced with Ewald 

summation. 

The potential for PbSe systems has never been employed in thermal transport 

studies. To verify the potential, we are using MD simulations to calculate 𝜅𝜅, I, firstly, 

calculated a series of cubic bulk PbSe structures with different sizes, side lengths 
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varying from 2.4 nm to 7.3 nm with periodic boundary conditions (PBC) applied in 

three directions. Initially, the structures were fully relaxed with a conjugate gradient 

energy minimization algorithm. The structures were evolved for 10 ps in the 

isothermal-isobaric ensemble to raise the temperature to 300 K in a vacuum. Then they 

were thermally equilibrated at 300 K for another 10 ps each in both canonical and 

microcanonical ensembles. The MD time step was set to 1 fs. Another 100 ps in 

microcanonical ensembles were carried out with the velocity Verlet integral after 

equilibrium, to calculate the heat flux. Then the Green-Kubo formula is applied to 

calculate 𝜅𝜅. The results are shown in Figure 14. We can see that the κ is converged at 

around 3.2 W/mK when the side length reaches 3.7 nm, which is comparable to the 

results of the first principle calculations in Ref.135. Hence, this hybrid potential is 

sufficiently robust for predicting 𝜅𝜅 of the bulk PbSe phase. 

We then took a similar procedure to calculate a series of pristine PbSe NWs with 

2.45 X 2.45 nm2 cross-sectional area (xy plane) and different lengths in the z direction. 

PBC was applied only in the z direction. The lengths of the calculated pristine structures 

vary from 3.06 nm to 30.13 nm in the z direction. 𝜅𝜅 has converged when the length is 

approximately 5 nm.  These results are presented in Figure 15.  
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For SiGe, I used the three-body Stillinger–Weber potential105,145, which have 

been previously used to study thermal properties of SiGe systems121,146,147. 𝜅𝜅  was 

Figure 14. Thermal conductivity of bulk PbSe structures with different side lengths. 
The blue circles are calculated with MD simulation. The red line is the result from 
first-principle calculations. 
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obtained by averaging the calculated thermal conductivities over the number of 

ensembles. From Figure 16 we can see that the averaged 𝜅𝜅 of a pristine SiGe NW has 

converged to 5.1 W/mK after 25 ensembles. The error bar can be estimated as ±0.1 

W/mK.  

Screw-dislocated NWs possess Eshelby’s twist rates129,130,148 of nb/πR2, where 

πR2 is the cross-sectional area of the NW and nb is the size of the Burgers vector, in 

agreement with classical theory127. Periodic and objective boundary conditions106 were 

applied in the z direction, thus mimicking the simulation of infinitely long, straight or 

uniformly twisted NWs. 

Figure 16. Convergence of thermal conductivity of pristine SiGe NWs 
with the number of ensembles. The shaded area represents the error bar. 
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In preparation for the 𝜅𝜅 calculation for the screw-dislocated NWs, the initial 

structures were relaxed with a conjugate gradient energy minimization algorithm. The 

calculation results presented in Figure 13 (c) indicate that for a PbSe NW storing a 

dislocation with minimal Burgers vector magnitude 1b, the optimal twist rate is 0.57 

deg/Å. This twist lowers the formation energy of the dislocation by 31 %. Similarly, in 

a SiGe NW, the optimal twist rate of 0.15 deg/Å lowers the formation energy by 27 %. 

In the center of the relaxed NWs we did not observe the formation of homoelemental 

bonds. Nevertheless, the hetero-elemental bonds were severely strained. For example, 

in 4b PbSe NWs, bond lengths in the core region measured 3.2 Å, which represents a 

5.6 % stretching with respect to the pristine case. Similarly, in 1b SiGe NWs, bonds are 

stretched by 6.7 %. On the one hand, in PbSe, our MD simulations obtained that without 

twist, the dislocation quickly migrates to the surface, leaving behind the pristine NW 

structure. Nevertheless, the Eshelby twist retains the dislocation at the central location, 

allowing us to compute the correlations in the vibration of the atoms around their 

strained positions. To comply with the Eshelby’s twist, the sizes of the periodic cells 

used in our simulations were 21.4 nm (4b), 30 nm (2b), and 60 nm (1b). On the other 

hand, in SiGe NWs we find that accounting for the Eshelby’s twist is not essential. Due 

to the strong Si–Ge bonds, the screw dislocation is retained at the center of the NW 

throughout the simulation. The simulation cells used for computing 𝜅𝜅 were 3.92 nm in 

length. 
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𝜅𝜅 for NWs was also obtained using the Green–Kubo formula. As an example of 

the convergence of our MD simulations, Figure 17 (a) shows the computed 𝜅𝜅 as a 

function of the correlation time used to evaluate 𝜅𝜅. 

 

Figure 17. (a) Averaged integration (dark line) of heat flux over 30 
ensembles (gray lines). Data represent the calculation of a pristine SiGe 
NW. (b) 𝜅𝜅 vs. n for nb PbSe and SiGe NWs. The black triangle represents 
𝜅𝜅 of a pristine PbSe NW under 1.2 deg/Å twist. 
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We now examine the impact of screw dislocations on thermal transport. The 

results presented in Figure 17 (b) demonstrate that the presence of a dislocation is 

associated with ultra-low 𝜅𝜅 values. Specifically, the screw dislocation lowers 𝜅𝜅 of the 

pristine PbSe and SiGe NWs by ~80% (4b) and ~70% (1b), respectively. All dislocated 

NWs present 𝜅𝜅 values below ~1 W/mK. By comparison, our previous calculations114 

Figure 18. Comparison of the phonon density of states (PDOS) of the (a) 
core and (b) surface region of pristine and 2b PbSe NWs. Both NWs are 
twisted by 1.2 deg/Å. Insets show the core and surface regions of the 
twisted NW. 
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obtained 𝜅𝜅 values of 36 W/mK in 1b Si NWs with similar diameters. The effect is 

attributed to the efficient phonon scattering onto the dislocation core. Specifically, the 

strain at the core introduces anharmonicities, which enhance the phonon–phonon 

scattering processes. Based on the previous analysis149, it can be expected that the core-

induced anharmonicities are shortening the lifetimes of phonons, causing reductions in 

the phonon mean free paths. In Figure 18 (a) we compare the phonon density of states 

(PDOS) for the core regions of pristine and screw-dislocated PbSe NWs. We observe 

significant differences in the phonon spectrum. This result indicates that the dislocation 

core plays an important role in lowering 𝜅𝜅  as its presence affects phonon–phonon 

scattering. Note that both NWs are twisted by 1.2 deg/Å, so the observed differences 

cannot be attributed to torsional deformation.  

In explaining the origin of the results of Figure 17 (b), we can rule out potential 

changes in phonon-surface scattering. First, in Figure 18 (b) there is little difference 

between the surface PDOS of the pristine and 2b PbSe NWs, both twisted by 1.2 deg/Å. 

Second, we recall that all the NWs considered so far have smooth surfaces, which were 

allowed to reconstruct during the structural relaxation stage and the MD runs. The 

boundary scattering of the heat-carrying phonons should be largely specular, as the 𝜅𝜅 

values of the pristine stress-free NWs are not dramatically reduced with respect to the 

corresponding bulk values. For example, in the pristine PbSe NW there is a 36% 

reduction from the computed 3.2 W/mK value of the bulk phase. The specular 
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scattering of the phonons onto these surfaces leads, in turn, to an efficient scattering of 

phonons onto the core of the dislocation. Note that our test simulations demonstrated 

that the torsional deformation of the NW is not changing the dominant specular surface 

scattering mechanism into a diffuse one: in Figure 17 (b), it can be seen that 𝜅𝜅 of the 

PbSe NW twisted by 1.2 deg/Å is within the error bar of the corresponding stress-free 

structure. 

Diffuse surface scattering on rough surfaces or interfaces is a recognized 

mechanism for 𝜅𝜅 reduction in NWs14,150–152. To get a glimpse into this scattering regime, 

in a series of MD simulations, we have explored how a progressive increase in surface 

scattering impacts 𝜅𝜅  of pristine and 1b SiGe NWs. In this respect, the NW 

morphologies were modulated with surface ripples, such as in the NW morphology 

shown in Figure 19 (a). The volume fraction of the removed atoms ns provides a way to 

characterize the roughness of the modulation. On the one hand, our calculations 

obtained a sizable decrease in 𝜅𝜅  with ns for the pristine NW, achieving saturation 

around ns = 10%. This 𝜅𝜅 decrease likely originates in the trapping of phonons within 

the ripples. This trapping effect lowers the average phonon group velocity. On the other 

hand, 𝜅𝜅 of 1b SiGe NWs is practically insensitive to ns. This result suggests a scenario 

in which the scattering onto the dislocation core and the rippled surface act 

simultaneously to reduce 𝜅𝜅. The surface roughness appears as a competing mechanism 
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as this process reduces the phonon scattering rate onto the dislocation core. 

Nevertheless, the NWs considered here are ultrathin. We expect that the surface 

scattering is a less effective 𝜅𝜅 -lowering mechanism when the NW diameter gets 

larger146. 

In my simulations, I have also considered vacancy point defects, which are also 

known to have an important impact on 𝜅𝜅. When defects are randomly distributed and 

the concentration is low, 𝜅𝜅 is inversely proportional to the concentration of defects, nv. 

Previous MD studies on carbon nanotubes31 and crystalline silicon153 have indeed led 

to an inverse power-law relation, 𝜅𝜅 ∝ 𝑛𝑛𝑉𝑉−𝛼𝛼, with the power constant 𝛼𝛼 equal to 0.79 and 

0.74–1.04, respectively. Our calculation results shown in Figure 19 (b) reveal a similar 

decrease with 𝛼𝛼 ~ 1 for both pristine PbSe and SiGe NWs and achieve saturation when 

nv ~ 2%. At saturation, the reduction in 𝜅𝜅 due to vacancies is less than the one achieved 

by dislocations alone. Furthermore, our calculations also considered the case when 

dislocations and vacancies act simultaneously. It can be see that 𝜅𝜅 of the 1b SiGe NW 

presents a small increase with nv until the same saturation value is achieved. This 

behavior suggests that scattering on vacancy is also a competing mechanism as it 

reduces the phonon scattering rate onto the dislocation core.  
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Figure 19. (a) SiGe NW with modulated surfaces. Side views of the < 100 > (top) 
and < 110 > (bottom) facets. The volume fraction of the removed surface atoms 𝑛𝑛𝑠𝑠 
is 2.9%. Thermal conductivity vs. 𝑛𝑛𝑠𝑠  for pristine and 1b SiGe NWs. The fitted curve 
is 1 / (1 + 0.44𝑛𝑛𝑠𝑠0.69 ) (b) Thermal conductivity vs. the concentration of vacancy 
defects 𝑛𝑛𝑉𝑉 for PbSe (left) with fitted curve 1 / (1 + 𝑛𝑛𝑉𝑉0.98) and SiGe (right) with fitted 
curve 1 / (1 + 0.93 𝑛𝑛𝑉𝑉0.92) NWs. 𝜅𝜅0 is the thermal conductivity of the corresponding 
pristine NW. For SiGe NWs the cumulative effect (dislocation-surface modulation 
and dislocation-vacancy) was computed. 
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2.4 Conclusion  

In conclusion, I have investigated < 110 > Si, < 100 > PbSe and  < 110 > SiGe 

NWs as model quasi-one-dimensional nanostructures with low thermal conductivities 

and different types of bonds. MD simulations revealed that screw dislocations are stable 

inside straight Si NW, SiGe NW structures and Eshelby’s twisted PbSe NWs. The 

phonon scattering onto the dislocation core stabilized at the NW center leads to 

important reductions in 𝜅𝜅 of the ideal lattice. The presented comparison with scattering 

onto rough surfaces and vacancies indicates that the new screw dislocation effect is 

comparable with and can have priority over other competing 𝜅𝜅-lowering mechanisms. 

The presented MD results provide hope for experimentally detectable difference of this 

effect over the bulk and surfaces of nanostructures. At the same time, they may have 

important implications for thermoelectric materials, as phonon scattering on 

dislocations could provide a new avenue for defect engineering of 𝜅𝜅. 
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Chapter 3 

Atomistic Study of Amorphous Silicon-Boron-

Nitride Networks 

In this work, through computational modeling, I explored the effects of 

boron−nitrogen (BN) composition on the thermal and mechanical properties of 

amorphous silicon−boron−nitride (a-Si−B−N), a synthetic ceramic material with 

superior thermal protection, mechanical attributes, and oxidation resistance at high 

temperatures. Network-derived Si−B−N models optimized with ab initio molecular 

dynamics serve as input structures for classical molecular dynamics simulations. 

Atomistic Green−Kubo simulations on relaxed supercells and structural relaxations on 

strained cells are used to screen the thermal and mechanical properties of a collection 

of network structures with low enthalpies of formation. We find that when the material 

is composed of well-mixed parts rather homogeneously spread within the material, the 

thermal conductivity and elastic constants are isotropic and exhibit a weak dependence 

on composition and network structure. In contrast, when separation into BN-rich layers 

occurs, the material exhibits anisotropic behavior, with an increase in thermal 
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conductivity along the layer direction and a decrease in elastic constant in the cross-

layer direction. The insights provided into the composition−structure−property 

relationships can be useful for the rational design of amorphous Si−B−N materials 

targeting high-performance coating applications. This work has been published in 

Ref154. 

3.1 Introduction 

In recent years, atomistic simulations are assuming a guiding role in the effort 

of optimizing the properties of advanced coating materials155–159. In a-Si−B−N, 

understanding the role played by composition is of great importance for the future 

design of this new material. So far, a-Si−B−N structures have been explored to 

understand the impact of the BN : Si3N4 ratio onto mechanical properties27,28,160,161. 

Using classical MD simulations, Griebel et al.160 derived strain−stress curves of 

selected a-Si3BN5, a-Si3B2N6 and a-Si3B3N7 models and found that increasing the B 

content increases the Young’s modulus. In this work, I extend the scope of the previous 

studies by revealing how composition and structure might influence a combination of 

properties desirable for coating applications. Using a combination of atomistic 

numerical methods, we screen a library of low enthalpy a-Si−B−N networks ( a-Si3BN5, 
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a-Si3B3N7, and a-Si3B9N13 ) to predict from extensive atomistic simulations the thermal 

conductivity and mechanical stiffness with different BN contents.  

3.2 Methods 

The initial simulated structures were generated and optimized with density 

functional theory (DFT), which was carried out by the group at the University of Texas 

at Arlington. Due to the large computational costs associated with ab initio calculations, 

I then explored the properties of the ab initio-molecular-dynamics-generated networks 

with interatomic potential energy models. The lower computational cost for the 

classical Hamiltonian enables a more accurate spatial representation of the disordered 

networks and more efficient screening of the structure−composition−property 

relationship. The classical MD calculations were performed with the code LAMMPS140. 

We treat the Si−N and B−N interactions with the bond-order Tersoff potential and 

parameters given in ref162. For Si−Si, N−N, B−B, and Si−B interactions, only repulsion 

is modeled because these bonds are not present in the ab initio-molecular-dynamics-

derived structures and are unlikely to appear in experiment163. Additionally, it is known 

that homoelemental N−N bonds are energetically unfavorable164. Thermal and 

mechanical properties of the structures treated with the Tersoff potential were extracted, 

as described next. 
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Because a-Si−B−N are insulators electronically, phonons are the main thermal 

energy carriers. We have computed their thermal conductivity (𝜅𝜅) in the classical limit 

from long equilibrium MD runs. In preparation for 𝜅𝜅 measurements, the supercells 

constructed based on ab initio MD annealed structures were first evolved in the 

isothermal−isobaric ensemble at the desired temperature and a pressure of 0 bar for 375 

ps, then in the canonical ensemble for 225 ps, and finally in the microcanonical 

ensemble for another 205 ps in order to achieve good equilibration. We compute the 

instantaneous microscopic heat current on the MD-generated microstates and then 𝜅𝜅 

was extracted with the Green−Kubo formula (see Chapter 1). Each MD time step is 

0.15 fs long. 

To gain insight into the mechanical behavior, we have examined the response 

to applied strains of a-Si−B−N structures described with the same Tersoff potential. 

Since the analysis is focused on the linear regime, we simulated cells with ∼1 nm side 

lengths placed under periodic boundary conditions. External strain was applied by 

elongating the simulation box size in one direction by 0.02 Å at each iteration, followed 

by conjugate gradient energy minimization. The specimens were allowed to shrink or 

expand in the other two directions to ensure that the system is under uniaxial loading. 

The corresponding potential energies were then recorded for each step of strain. The 

stress and Young’s modulus (Y) along a specific direction were calculated from the 

first and second derivatives of the total potential energy with respect to the strain, 
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normalized by the cross-sectional area. For each considered structure, external strain 

was applied in all three Cartesian directions. 

3.3 Structures and Energetics of Amorphous 

Silicon-Boron-Nitride Networks 

Figure 20 and Figure 21 present the collection of structures that will be 

considered in this study. It can be seen that the process of searching for local minima 

generates nearly cubic unit cells containing about 100 atoms. Lattice parameters, 

densities of selected structures at each considered stoichiometry, and numbers of 

undercoordinated atoms are presented in Table 3-1. According to our definition, Si, B, 

and N atoms are undercoordinated if they have fewer than four (Si), three (B), and three 

(N) first neighbors within the cutoff distances, which are set as 20% larger than the 

experimental values of Si−N and B−N bond lengths of 1.72 Å and 1.43 Å, 

respectively23. We see that, for all values of χ, the employed ab initio MD generation 

procedure gives models with very few or no undercoordinated atoms. 

The network generation process produces nearly homogeneous a-Si−B−N 

structures. Only when second-nearest neighbor statistics are examined do these 

structures present a slight trend for B-N-B preference165. However, for the high BN 
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content structure Si3B9N13, we also find segregation of h-BN layers. Figure 21 shows 

examples of model structures without (models 1−3) and with (models 4−6) h-BN layers 

containing Si atoms. It can be observed that the h-BN layers are connected by covalent 

S−N and B−N bonds. Similar BN phase segregation was found previously in B-doped 

Si3N4/SiC ceramics166. 

  

 

Figure 20. Unit cells of (a) a-Si3BN5 (𝝌𝝌 = 0.5) and (b) a-Si3B3N7 (𝝌𝝌 = 0.75) models. 
Models 1−3 are nearly homogeneous. Color scheme: Si (yellow), B (red), N (blue). 
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Figure 21. Unit cells of a-Si3B9N13 (𝝌𝝌 = 0.9) models. Models 1−3 (top row) are 
nearly homogeneous. Models 4-6 (bottom row) present h-BN segregation. Color 
scheme: Si (yellow), B (red), N (blue). 
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Table 3-1. Comparison of Selected a-Si−B−N Cells with Different χ Values, 
Described with DFT and Tersoff Models 

χ 0.00 0.50a) 0.75a) 0.90a) 1.00 

Number of Atoms 112 108 104 100 256 

Lattice Lengths  

a (Å) 12.05 10.49 12.32 10.19 13.06 

b (Å) 10.12 10.27 9.35 9.99 12.52 

c (Å) 9.75 10.22 9.24 9.31 12.77 

Lattice Angles  

α (deg) 85.62 88.78 95.85 83.54 88.05 

β (deg) 88.61 91.78 70.97 91.31 93.17 

γ (deg) 95.62 87.44 98.27 88.75 88.69 

Density (g/cm3) 3.16 2.99 2.87 2.57 2.53 

DFT Modelb)  

∆𝐻𝐻𝑓𝑓 (eV/atom) 0.21 0.24 0.32 0.26 - 
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Number of UC atomsc) 3 0 0 0 0 

Tersoff Model  

∆𝐻𝐻𝑓𝑓 (eV/atom) 0.31 0.24 0.14 0.08 0.26 

Number of UC atoms 2 0 0 0 1 

a) Model 1 in Figure 26 and Figure 27 (b). 
b) With van der Waals correction. 
c) UC stands for undercoordinated atoms. 
 

Because of the h-BN segregation effect, we have also included in our study BN-

rich structures that were not fully relaxed. Specifically, we have considered an a-BN 

system taken from the very first annealing cycle after the model obtained after 7 ps in 

an ab initio MD at 2200 K was relaxed. This “intermediate” model, listed in the last 

column of Table 3-1, serves the purpose of having a balance between three- and four-

fold-coordinated B. 

The DFT energies 𝐸𝐸𝑎𝑎−SiBN of the computed networks cannot be used directly to 

compare the stability of structures with identical compositions. The relative stability of 

structures with different compositions depends on the way the structural parts BN and 

Si3N4 mix to form the network. Therefore, we follow here the approach of binary-phase 
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thermodynamics and define for the quasi-binary composition (BN)χ(Si3N4)1−χ a per-

atom enthalpy of formation, ∆𝐻𝐻𝑓𝑓: 

∆𝐻𝐻𝑓𝑓 =
𝐸𝐸𝑎𝑎−SiBN(𝜒𝜒) − 𝑛𝑛𝑝𝑝�(1 − 𝜒𝜒)𝐸𝐸Si3N4 + 𝜒𝜒𝐸𝐸BN�

𝑛𝑛𝑎𝑎
 (3-1) 

Here 𝑛𝑛𝑝𝑝 is the number of BN and Si3N4 parts in the structures. For example, a-

Si3B3N7 comprises three parts BN and one part Si3N4. Thus, 𝑛𝑛𝑝𝑝 = 4 and χ = 0.75. We 

propose to measure ∆𝐻𝐻𝑓𝑓 with respect to the crystalline β-Si3N4 and h-BN phases. Thus, 

we take 𝐸𝐸𝛽𝛽−Si3N4 = −58.69 eV and Eh‑BN = −17.89 eV, which are the energies computed 

with DFT. 𝑛𝑛𝑎𝑎 is the number of atoms in one a-Si−B−N unit. 

Figure 22 plots the calculated ∆𝐻𝐻𝑓𝑓for selected network structures with lowest 

DFT energies at each considered χ. Our data do not reveal significant distinctions in the 

thermochemical stability of the structures with various χ values. The χ = 0.9 structures 

emerge as only slightly more stable than the χ = 0.75 ones. The different models with 

the same χ values are close in energy. As can be noted from Figure 20, models 2 and 3 

with χ = 0.75 present rather large voids in their network structure. This structural aspect 

is not reflected in the ∆𝐻𝐻𝑓𝑓  values, which were both calculated as 0.33 eV/atom. A 

similar observation about the role of structure can be made at χ = 0.9, where we 

identified significant segregation of the h-BN layers: In Table 3-2, we compare χ = 0.9 
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structures with and without h-BN layer segregation. It can be seen that both structure 

types present similar densities and ∆𝐻𝐻𝑓𝑓 values.  

 

 
 
 
 
 
 

  

Figure 22. Per-atom enthalpies of formation of 
(BN)𝜒𝜒(Si3N4)1−𝜒𝜒 structures plotted as a function of χ, which is the BN 
molar fraction. Red circles represent the Tersoff data, while black squares 
show the DFT data. Open symbols refer to nearly homogeneous structures, 
while solid symbols refer to structures presenting h-BN layer segregation. 
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Table 3-2. Comparison of χ  = 0.9 Cells Described with DFT and Tersoff Modelsa) 

 Model 

 1 2 3 4 5 6 

Number of atoms 100 100 100 100 100 100 

Lattice Lengths       

a (Å) 10.19 9.43 9.70 10.25 9.26 9.88 

b (Å) 9.99 9.84 9.90 9.36 10.47 9.06 

c (Å) 9.31 9.76 9.82 9.37 9.17 9.97 

Lattice Angles       

α (deg) 83.54 85.44 89.15 87.82 91.47 88.94 

β (deg) 91.31 86.84 88.21 94.66 89.61 93.46 

γ (deg) 88.75 90.64 91.52 95.59 86.94 89.42 

Density (g/cm3) 2.57 2.68 2.56 2.71 2.72 2.71 

DFT Modelb)       
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∆𝐻𝐻𝑓𝑓 (eV/atom) 0.26 0.24 0.25 0.24 0.25 0.21 

Number of UC atomsc) 0 0 0 1 1 0 

Tersoff Model       

∆𝐻𝐻𝑓𝑓 (eV/atom) 0.08 0.10 0.09 0.08 0.04 0.04 

Number of UC atoms 0 0 0 7 1 0 

a) Model 1 – 3 are nearly homogeneous. Models 4−6 present h-BN segregation. 
All these models were considered in Figure 26 and Figure 27 (b). The unit cells 
for these models are shown in Figure 21. 

b) With van der Waals correction. 
c) UC stands for undercoordinated atoms. 

We next investigated these network structures with the Tersoff potential 

description. The atomic positions were further allowed to relax via energy minimization 

to the new equilibrium positions. The stopping tolerance for energy is 1.0 X 10−8 eV 

and that for force is 1.0 X 10−8 eV/Å. From Tables 3-1 and 3-2, it can be seen that the 

relaxed structures present very few undercoordinated atoms, a feature that is in 

agreement with the original DFT network structures. The energies of the relaxed 

structures were used to compute ∆𝐻𝐻𝑓𝑓. For consistency, we used as reference values 

𝐸𝐸𝛽𝛽−Si3N4  = −38.46 eV and 𝐸𝐸h−BN  = −15.13 eV, which are the per-unit energies 

computed with Tersoff potential. As can be seen from Figure 22 and Tables 3-1 and 3-

2, the ∆𝐻𝐻𝑓𝑓 values computed with the Tersoff potential are generally in good agreement 
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with the DFT values. There is a trend of the Tersoff model to underestimate 

(overestimate) ∆𝐻𝐻𝑓𝑓 at large (small) χ. 

We have also probed the structural description of a-Si−B−N networks in the 

MD context. We have evolved, at 300 K for 100 ps, our set of a-Si−B−N structures 

with a velocity Verlet algorithm and a 0.15 fs time step, and we have characterized the 

atomistic structure of the homogeneous a-Si−B−N networks by computing the radial 

distribution function (RDF). RDF describes the likelihood of finding a neighboring 

atom in the spherical shell of a central atom. The interatomic potential cutoff radii in 

our simulations are 2.62 and 1.79 Å for Si−N and B−N interactions, respectively. As 

shown in Figure 23, only Si−N and B−N bonds are located within the potential cutoff 

radius. We note also that, for the χ = 0.75 structure, the RDF peaks at 1.75 Å for Si−N 

and 1.47 Å for B−N are very close to the experimental values of 1.72 and 1.43 Å, 

respectively23. This agreement indicates that the short-range order is well described by 

our classical MD approach. 

Analysis of MD velocity data for the same set of model structures indicated that 

the added BN bonds should be thermally active, as they show distinct vibrational 

features in the phonon density of states (DOS) and partial phonon density of states 

(PDOS). Figure 24 (a) shows that the phonon modes of a-Si3N4 are mainly distributed 

below ∼35 THz, while the a-BN phonon modes have a broader frequency range (0−60 
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THz) with a distinct peak at ∼45 THz. With increasing χ, this peak forms and its 

intensity increases. The PDOS data shown in Figure 24 (b) further reveal that this peak 

originates in the vibrations of B atoms. We have compared the area under the 

unnormalized DOS and PDOS spectra to obtain the proportions of phonon modes in 

the structure due to the vibrations of different atom types. As shown in Figure 24 (c), 

we find that the portion of B modes increases monotonically with the BN fraction. 

When we recall that B forms bonds only with N atoms, it follows that this bond 

proportion effect concerns the B−N bonds. This interpretation is in agreement with the 

data presented in Figure 24 (d) and (e), where the 45 THz peak can be identified only 

in the PDOS of N atoms. Note that a previous MD study23 also reported the vibrational 

frequency of B−N stretching mode at ∼45 THz. 
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Figure 23. Radial distribution function for a set of a-Si−B−N structures with 
different χ values: (a) a-Si3N4, χ = 0; (b) a-Si3BN5, χ = 0.5; (c) a-Si3B3N7, χ = 
0.75; (d) a-Si3B9N13, χ = 0.9; and (e) a-BN, χ = 1. 
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Figure 24. (a) Normalized phonon density of states of a-Si−B−N structures, 
identified in the legend by their χ values. (b) Partial phonon density of states of B 
and (c) portion of B modes with respect to all phonon modes as a function of χ. The 
dashed line connecting the values of the end phases is shown for comparison. (d, e) 
Partial phonon density of states of (d) N and (e) Si. In panel d, the down arrow points 
to the B−N stretching model. 
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3.4 Properties of Amorphous Silicon-Boron-

Nitride Networks 

Having probed the suitability of the Tersoff treatment for simulating a-Si−B−N 

films via comparison with our DFT results and the available experimental and MD data, 

we now turn our attention to utilizing this description for predicting how the atomistic 

structure and composition influences thermal and mechanical properties. 

In our calculations for κ, we have considered only the collection of 

representative network structures with low enthalpies summarized in Figure 22. This is 

because even with the efficient Tersoff Hamiltonian, evaluation of κ is still a difficult 

task. For example, because the ensemble average of the auto-correlation of heat flux 

exhibits nonergodic long-time oscillations, averaging over multiple MD runs is 

required167. Here, each reported κ value for a given model represents the average κ 

measured from 20 MD measurement runs, each lasting 100 ps. Error bars represent the 

standard error based on 20 individual measurements. 

We first considered one nearly homogeneous network model for each χ and 

performed MD simulations at room temperature. Supercells with different side lengths 

were studied by periodically repeating the optimized cell obtained from ab initio MD. 
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Figure 25 (a) shows an example of the averaged integral of heat flux autocorrelation 

function for a-Si3BN5 with ∼4 nm side length. There is good convergence after τ = 5 

ps.  

As demonstrated in Figure 25 (b), accounting for finite-size effects is important 

in predicting κ. The simulation cell size dictates the maximum phonon wavelength 

present in the simulation. For all χ, κ increases with the supercell size as additional long 

wavelength phonons become available for heat transport. The crossover behavior 

observed at ∼3 nm suggests that the long-wavelength phonons bring a more significant 

contribution to κ for a-Si3B9N13 than for a-Si3B3N7. When κ converges, at side lengths 

larger than 4 nm, the κ of a-Si3BN5, a-Si3B3N7, and a-Si3B9N13 are calculated as 2.3 ± 

0.1, 3.0 ± 0.1, and 3.1 ± 0.5 W/mK, respectively. (Each κ value reported here is the 

average value of κxx, κyy, and κzz, which means the κ value in x, y and z directions, 

respectively). 

 Figure 25 (c) suggests that the BN addition to a-Si3N4 leads to a monotonic 

increase in κ. The increase is weak, such that a linear interpolation between the values 

of the binary compounds overestimates the MD-computed κ. This observed trend may 

be a signature of the fact that h-BN has a larger longitudinal speed of sound than β-

Si3N4, that is, 16 km/s168 vs. 9.9 km/s169. Although a reduction of these values is 

expected in the amorphous phases, the speed of sound will still depend on the local 
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order and nature of the bonds170. (To clarify the connection between κ and the speed of 

sound, recall that kinetic theory defines κ as 1/3Cvvgl, where Cv and l denote the specific 

heat and phonon mean free path, respectively. The phonon group velocity vg for heat-

conducting long-wavelength phonons is approximately the speed of sound. This 

Figure 25. (a) Cumulative integral (blue) of the heat flux autocorrelation function averaged 
over 20 ensembles (gray) for ∼4 nm-sized a-𝐒𝐒𝐒𝐒𝟑𝟑𝐁𝐁𝐍𝐍𝟓𝟓 (χ = 0.5). (b) Dependence of κ on 
supercell size. (c) Dependence of κ on χ. The dashed line connecting the values of the end 
phases is shown for comparison. The continuous line connecting the data points is to guide 
the eye. T ≈ 300 K. 
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relationship predicts the minimum κ of a material at high temperatures, in which case 

Cv is close to a χ-independent constant and l approaches the interatomic spacing 

limit171,172.) 

Our further investigations focused on the network-model dependence of κ. 

Figure 26 shows that the computed κ values for our collection of nearly homogeneous 

models (models 1−3 for each χ) are all contained in the 2.0−3.5 W/mK range. Overall, 

this plot shows that while κ has a weak dependence on the network model 

representation, the variation of κ from different models is larger than, or on the same 

Figure 26. Structure dependence on thermal conductivity of a-𝐒𝐒𝐒𝐒𝟑𝟑𝐁𝐁𝐍𝐍𝟓𝟓 (χ = 0.5), a-
𝐒𝐒𝐒𝐒𝟑𝟑𝐁𝐁𝟑𝟑𝐍𝐍𝟕𝟕  (χ = 0.75), and a-𝐒𝐒𝐒𝐒𝟑𝟑𝐁𝐁𝟗𝟗𝐍𝐍𝟏𝟏𝟏𝟏  (χ = 0.9). The horizontal axis refers to the 
network model number. Lines connect κ points with the same χ value. For models 4−6 
with χ = 0.9, we have also plotted the values of diagonal elements of the thermal 
conductivity matrix. 
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order as the standard error resulting from κ computation by the Green−Kubo method. 

Thus, to gain an ensemble representation, further averaging of the individual values for 

models with the same χ was performed. The obtained values, listed in the first line of 

Table 3-3, maintain the already noted trend of a weak increase of κ with χ. 

 
Table 3-3. Model-Averaged Thermal Conductivity and Young’s Modulus as a 
Function of χa) 

χ 0.50 0.75 0.90 

κ (W/mK) 2.3 ± 0.2 2.5 ± 0.4 2.8 ± 0.2 

Y (GPa) 209 ± 30 203 ± 32 239 ± 25 

a) For each value of χ, models 1−3 have been considered as an average. 

In contrast with the nearly homogeneous models, the h-BN segregation in χ = 

0.9 models has a significant impact on thermal transport. In Figure 26, it can be seen 

that the individual κ values for models 4−6 are greater than the values obtained for 

models 1−3. This increase is associated with a significant increase in κ anisotropy, 

which can be seen in Figure 26. Model 4 provides a good example for observing 

anisotropy, since the h-BN layers are oriented along the x direction. On one hand, in 

the y and z directions we obtained κyy = 5.9 ± 0.3 W/mK and κzz = 5.8 ± 0.4 W/mK. 

These values are significantly larger than the κ of a-BN due to the crystallinity of the 

formed h-BN layers. On the other hand, in the x direction we obtained κxx = 1.0 ± 0.1 
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W/mK, a value that falls well below κyy and κzz and that is comparable with the thermal 

conductivity across layers in h-BN173. For comparison, the diagonal elements calculated 

for model 1 with χ = 0.9 are κxx = 3.6 ± 0.3 W/mK, κyy = 2.7 ± 0.3 W/mK, and κzz = 3.0 

± 0.2 W/mK. 

We have screened the elastic properties for the same collection of structures. 

Figure 27 (a) presents the computed stress−strain curves for selected nearly 

homogeneous networks with different χ values. While different slopes are associated 

with the different χ structures, we see that the network elasticity is not increasing 

monotonically with the concentration of added stiff B−N bonds. This is likely a 

signature of the specific structural environment seen by the atoms, a situation causing 

nonaffinity in deformation. As can be noted from Figure 27 (b), the model-specific Y 

values fluctuate in the 170−270 GPa interval. The elastic behavior of models 1−3 is 

isotropic. This transpires from the error bars, which represent the standard error based 

on measurements performed in the three Cartesian directions. For a more realistic 

representation of Y as a function of χ, we have performed averaging of the values given 

by the different models. The Y values, listed in the second line of Table 3-3, suggest a 

weak increase of Y with χ. We also note that the obtained Young’s modulus for a-

Si3B3N7 is in very good agreement with the ab initio prediction (∼200 GPa) given in 

Ref163. 
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In Figure 27 (b), it can be seen that h-BN segregation in the χ = 0.9 model has a 

strong effect on Y. For models 4−6, it can be seen that the diagonal components of Y 

present very different values. For example, for model 4 in the y and z directions, we 

obtained Yyy = 623 GPa and Yzz = 628 GPa. Such large values can be expected along 

the h-BN layers. On the other hand, in the x direction we obtained Yxx = 57 GPa, a 

value that falls significantly below the Y values computed for the nearly homogeneous 

networks. Moreover, we observed that this structure exhibits failure at elongation 

strains of only 4%, when the covalent bonds connecting the layers break. 

Figure 27. (a) Selected stress−strain curves and (b) structure dependence of Young’s 
moduli of a-Si3BN5 (χ = 0.5), a-Si3B3N7 (χ = 0.75), and a-Si3B9N13 (χ = 0.9). In panel b, 
the horizontal axis refers to the network model number. Lines connect data points with 
the same χ value. For models 4−6 with χ = 0.9, we have also plotted the values of diagonal 
elements of the Y matrix. 
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3.5 Conclusion 

In summary, a-Si−B−N ceramics with different BN content (a-Si3BN5, a-

Si3B3N7, and a-Si3B9N13) were modeled as chemically ordered random covalent 

networks with a computational protocol that involved ab initio MD simulations. The a-

Si−B−N networks obtained this way exhibit very few or no undercoordinated atoms 

and a weak variation in thermochemical stability. Furthermore, atomistic simulations 

based on Tersoff potentials were performed to evaluate κ and Young’s moduli of the 

network models obtained by ab initio MD simulations. For each composition, it was 

necessary to average κ and Y over different network models. The main finding of this 

investigation is that thermal and mechanical properties depend weakly on the BN 

content, as long as the network structure lacks segregation into h-BN layers. 

Understanding the relationship between composition and thermal and 

mechanical properties is of great importance for developing a-Si−B−N coatings able to 

provide protection against thermal impact and mechanical loads. The principal 

conclusion of the presented investigation is that it is unworthy to pursue compositions 

as high as χ = 0.9 (a-Si3B9N13). This is because large χ promotes BN layer segregation, 

an effect that severely weakens the structure in the cross-layer direction and increases 

thermal conductivity along the layer direction. Instead, our study identifies χ = 0.5 (a-
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Si3BN5) and χ = 0.75 (a-Si3B3N7) as the compositions least prone to segregation into h-

BN layers. These compositions exhibit a combination of low thermal conductivity and 

large mechanical stiffness suitable for coating applications. The methods of 

investigation used here show promise for studying the 

composition−structure−properties relationship in more complex quaternary amorphous 

ceramics26,174–176. Furthermore, the results can be applied in multiscale simulation 

frameworks177,178 to enable system-scale predictions for mechanical behavior. 
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Chapter 4 

Thermal Transport in Deformed Carbon 

Nanotubes  

The carbon nanotubes’ resilience to mechanical deformation is a potentially 

important feature for imparting tunable properties at the nanoscale. Using 

nonequilibrium molecular dynamics and empirical interatomic potentials, we examine 

the thermal conductivity variations with bending and collapsing in the thermal transport 

regime where both ballistic and diffusive effects coexist. These simulations are enabled 

by the realistic atomic-scale descriptions of uniformly curved, buckled and twisted 

nanotube morphologies obtained by imposing objective boundary conditions. The 

study of bent carbon nanotubes has been completed and published in Ref63,64,179. The 

study of the flattened carbon nanotube is in preparation. 
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4.1 Introduction 

The combination of extremely high thermal conductivity31–34,180,181 (𝜅𝜅 ) and 

exceptional mechanical properties36,38,39,182–186 of carbon nanotubes (CNTs) motivated 

the usage of this material for developing a variety of applications, including 

multifunctional materials187,188, thermal switches, and thermal interface materials44,45,189. 

Their tube-like structures are susceptible to buckling36,65,182,186,190–192 and collapsing52–

61. When a SWCNT bends, it does not break. Instead, the strain energy is lowered by 

the formation of a structural kink35,36,179,190,191,193.The relation between the thermal 

transport and the bending deformation modes of single-walled carbon nanotubes 

(SWCNTs) had not been well established. Little investigation has been done on the 

thermal transport along flattened SWCNTs. The potential effects of bending and 

buckling are important for the fundamental understanding of phonon scattering 

mechanisms in quasi-one dimensional structures as well as for applications. 
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4.2 Thermal Transport in Single-walled Carbon 

Nanotubes Under Pure Bending 

The 𝜅𝜅 of stress-free SWCNTs extends from ballistic to diffusive throughout a 

range of temperatures and diameter-dependent lengths180. We are concerned with the 

thermal conductance regime exhibited by SWCNTs with lengths (l) less than the 

phonon mean free path (lMFP). In this regime, atomistic molecular dynamics (MD) 

simulations181,191,193 performed on SWCNTs up to hundreds of nanometers in length 

obtain that 𝜅𝜅  increases with length. The increase demonstrates the substantial 

contributions to thermal transport of the additional long-wavelength phonons created 

by increasing the SWCNT length194. The mechanics of CNT bending is well understood, 

and there is good quantitative agreement between theory and experimentation. For 

example, the observed critical strains for wavelike rippling193 of multiwalled CNTs are 

only within a few percent of the modeling predictions35,190. In contrast, in the thermal 

domain, no uniform conclusion has been reached, even qualitatively. Experiments46,47 

uncovered the robustness of heat transport along bent CNTs in both the diffusive and 

the ballistic regimes. In contrast, theoretical studies48–50,195 considering the ballistic 

regime have revealed that bending and buckling cause 𝜅𝜅 reductions. 
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There could be several reasons for the discrepancy between the experimental 

and theoretical results. A first explanation suggests that 𝜅𝜅 reductions could be related 

to the challenges in simulating a bent SWCNT at the atomistic level. Indeed, the 

standard MD formulation under periodic boundary conditions is unusable since 

bending is incompatible with translational symmetry. For this reason, researchers often 

rely on finite-size cluster representations, by considering SWCNTs as long as 50 nm. 

A bending deformation is usually imposed by rotating the two ridged ends to a target 

angle. Besides the disadvantage of introducing spurious effects, the procedure leads to 

deformed nanotubes with small bending portions (typically 8 nm long) and large 

straight ends48. Such morphologies are not similar with the ones investigated in 

experiment196, where the bent portions are approaching the mean free path of the 

SWCNT. A related explanation brings up the observed diameter and length dependence 

for the onset of buckling190. The condition for buckling is fulfilled earlier in longer and 

large-diameter SWCNTs. If thermal transport is strongly influenced by bending, only 

large-diameter SWCNTs might exhibit robust thermal transport since less geometrical 

curvature and strain effects are needed to develop buckling. A final explanation invokes 

the differences in SWCNT length considered in experiments and current MD 

simulations. While experiments are probing the ballistic regime near its upper limit, 

simulations are considering tube lengths l well below lMFP. The SWCNT length limits 

the longest possible phonon wavelength that can exist. The origin of the discrepancy 
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may originate in the contribution of the low frequency phonons that are not accounted 

for in the MD simulations considering short tubes. We find that the conjuncture of the 

first and last explanations is correct. By increasing the lengths of the considered bent 

SWCNTs closer to lMFP, our MD simulations predict that thermal transport becomes 

insensitive to buckling deformation. 

 To simulate realistically bent SWCNTs, we employ the generalization of 

periodic MD termed objective MD106,109,197. With this method, the whole simulated 

SWCNT is in pure bending, which represents a condition of stress where only a bending 

moment is applied. Our objective boundary conditions write  

Here, N is the total number of atoms located at positions ri located in the primary 

cell. 𝒓𝒓𝑖𝑖,𝜁𝜁 represents the positions of the corresponding atoms in the image cell indexed 

by ζ, and R denotes the applied rotation of angle θ performed around the z axis, which 

is the rotation axis. As θ is the only constraint imposed here, the atoms are free to move 

away or towards the rotational axis. The curvature s of the SWCNT, then, is not 

imposed, but here, N is the total number of atoms located at positions ri  in the primary 

cell. 𝒓𝒓𝑖𝑖,𝜁𝜁 represents the positions of the corresponding atoms in the image cell indexed 

by ζ, and R denotes the applied rotation of angle θ performed around the z axis, which 

is the rotation axis. As θ is the only constraint imposed here, the atoms are free to move 

𝒓𝒓𝑖𝑖,𝜁𝜁 = 𝑹𝑹𝜁𝜁𝒓𝒓𝑖𝑖 ,            𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁. (4-1) 



   84 

 

away from, or towards, the rotational axis. The curvature s of the SWCNT, then, is not 

imposed, but it is the result of energy minimization. By varying θ, we are able to 

generate bent SWCNTs with different curvatures. For example, Figure 28 (a) shows a 

bent morphology of a (10,10) SWCNT supercell with l = 30.75 nm containing 5000 

carbon atoms. The bending angle is θ = 60 deg, and the shape of the relaxed bent tube 

is nicely smooth. The curvature defined as s = θ / l is everywhere 0.106 nm−1. 

In an earlier work190 , it had been demonstrated that, in spite of the imposed 

objective periodicity, objective MD is able to describe the expected localized buckling 

of SWCNTs and all related essential details, including scaling with diameter and length 

of the critical curvature beyond which SWCNTs behave nonlinearly. Building on this 

work, which considered SWCNT supercells up to 16 nm in length, here we report that 

Figure 28. Objective MD configurations of a (10,10) SWCNT bent (a) without and (b) 
with a kink. The atoms located inside the simulation cell are represented in blue. Atoms 
in the ζ = −1 and ζ = 1 image cells are shown in pink. The measured curvatures are (a) 
0.034 𝐧𝐧𝐦𝐦−𝟏𝟏 and (b) 0.044 𝐧𝐧𝐧𝐧−𝟏𝟏. 
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the method can capture bending and localized kinking of much larger SWCNT portions. 

Referring to Figure 28, as we further increase θ, a single kink develops as shown in 

Figure 28 (b) for θ = 77.14 deg. Using this approach, we build a collection of bent 

structures comprising (10,10) and (6,6) SWCNTs up to 90 nm in length. 

Relying on the objective bent morphologies, we perform nonequilibrium 

molecular-dynamics (NEMD) simulations140 to understand the thermal transport. The 

interatomic interactions are described with the adaptive intermolecular reactive 

empirical bond order (AIREBO) potential198, which includes a Lennard-Jones term 

describing the van der Waals interactions experienced by the C-C atoms located in the 

2–10.2 Å space interval. The nonbonded interactions at the kink should manifest into 

an increase of the phonon scattering rate. The proposed NEMD simulation setup is 

shown in Figure 29 (a) for a (10,10) SWCNT. One unit cell at each end is fixed in order 

to impose the bending constraints. Such a small size is sufficient in view of the short 

range of the potential. Four other unit cells next to each end are set as the hot and cold 

heat baths, respectively. In order to minimize the thermal boundary resistance effect, 

the length of the bath regions is increased in the subsequent calculations involving 

(10,10) SWCNTs. We use six unit cells for l ≤ 55.4 nm, 12 unit cells for l = 65.2 nm, 

and 18 unit cells for l = 90 nm. The time step that we use in the NEMD simulations is 

0.5 fs. Initially, the whole dynamic system is equilibrated at 300 K with the help of a 

Nose-Hoover thermostat. Next, the temperatures of the two heat baths are rescaled at 
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every time step to maintain Th = 310 K and Tc = 290 K, respectively. The velocity 

Verlet algorithm is used for time integration. A steady state is reached after 1000 ps. 

The rate of kinetic energy exchange between the two baths is obtained as 

𝑄𝑄 =
1
2

 〈𝑄𝑄ℎ − 𝑄𝑄𝑐𝑐〉 (4-2) 

Here 𝑄𝑄ℎ and 𝑄𝑄𝑐𝑐 are the instantaneous heat currents flowing into and away from the hot 

and cold baths to maintain the temperature gradient. 𝑄𝑄ℎ − 𝑄𝑄𝑐𝑐 equals the difference in 

instantaneous kinetic energies of the atoms located in the hot and cold bath regions. 

The angle brackets indicate a statistical average taken here over the last 5000 ps after 

the steady state is reached. The thermal conductivity is then calculated as  

𝜅𝜅 =  −𝑞𝑞 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
−1

 (4-3) 

where q is the heat current per cross-section area A, and x is the axial position. We 

define A by assuming a 0.34 nm thickness for a one-atom-thick tube wall. The local 

temperature T is computed by statistically averaging the kinetic energy of the atoms 

located on three subsequent unit cells. 

We first examine short (in comparison with lMFP) SWCNTs before and after 

their buckling threshold. We consider SWCNTs with different diameters and lengths 

to provide an opportunity to probe different curvature regimes. 



   87 

 

 

  

Figure 29. (a) Setup for the NEMD simulation with unidirectional flux. 
Temperature profiles in bent (6,6) SWCNT, (b) ideal (unkinked), and (c) kinked. 
The total length is 24.6 nm. Temperature profiles in a bent (10,10) SWNT with (d) 
ideal (unkinked) and (e) kinked structure. The total length is 45.5 nm. Circles are 
the local temperatures of the unkinked regions. The red triangles in (c) and (e) 
represent the temperature in the kink region. Fitted lines are shown in all figures. 
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Figure 29 (b) – (e) display the obtained temperature profiles along the nanotube 

length for selected curvatures. For the unkinked cases, we extract the 𝜅𝜅 by considering 

the temperature gradient observed in the linear region. We exclude the temperature 

points from the regime near the thermal baths, since these points are largely affected 

by the undesirable effect of phonon scattering at the interfaces between thermostatted 

and nonthermostatted regions. For both SWCNTs, we obtain that the central kink is 

associated with a pronounced thermal gradient over a length lk. Unlike the interface 

effect mentioned above, the thermal resistance at the kink is a real effect. We account 

for it with a series model, where the overall conductivity writes 

1
𝜅𝜅

=  
1 − ϕ
𝜅𝜅𝑖𝑖

+
ϕ
𝜅𝜅𝑘𝑘

 (4-4) 

Here, 𝜅𝜅𝑖𝑖  and 𝜅𝜅𝑘𝑘  denote the local thermal conductivities obtained from the slopes 

identified in the unkinked and kinked regions. ϕ =  𝑙𝑙𝑘𝑘 / 𝑙𝑙 is the length fraction of the 

kinked region. The above model is appropriate since there is no direct interaction 

between the two SWCNT sections around the kink. There is only one path for the heat 

flux, through the kink. 

Table 4-1 summarizes our simulation results with all considered curvatures. The 

overall 𝜅𝜅 values entered in the last column demonstrate that the 𝜅𝜅 reduction occurs in a 

gradual manner and that the reduction is small for both nanotubes. By the time the (6,6) 



   89 

 

SWCNT develops buckling, we measure a 44 % decrease in κ with respect to the zero-

curvature reference case. For the longer and larger-diameter (10,10) SWCNTs, the 

reduction is of 20 %, which is still significant. (The difference in values reflects the 

smaller critical curvature for buckling in a larger-diameter SWCNT.) We also see that 

at the kink location, the local thermal conductivity differs significantly from the rest of 

the tube. For both nanotubes, 𝜅𝜅𝑘𝑘 is about 36 % of the unkinked region. For a more 

transparent characterization of the kink, we estimate the equivalent length of a pristine 

SWCNT that will give a similar effect. This equivalent length is calculated as lkκ0=κk, 

where 𝜅𝜅0 is the pristine thermal conductivity. For the (10,10) CNTs, we find that the 

equivalent lengths are 11.90 and 20.27 nm, for τ equal to 0.044 and 0.047 nm−1, 

respectively. Interestingly, these values are larger than the 9-nm value reported for 

kinks formed under 6 % compressive strain195. 

The thermal resistance at the kink is attributed to the local strain. To gain more 

insight into the underlying microscopic mechanism, we analyze the local phonon 

density of states (LPDOS) around the kink and the corresponding region of the 

unkinked and straight (10,10) SWCNT structures. The LPDOS is obtained by 

decomposing into Fourier space the MD time-correlation function of the atomic 

velocities at 300 K. Figure 30 reveals major differences only for the optical G-mode 

phonons with frequencies around 52 to 54.2 THz (as described with the AIREBO 

potential198). It can be expected that a bending strain affects the G modes since they 
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correspond to the C-C bond-stretching motion. We see that as s increases, the G peak 

lowers, broadens, and then splits into two peaks. The shift to lower (higher) frequencies 

corresponds to a decrease (increase) of the force constants for the C-C bonds elongated 

(compressed) under the bending deformation. The broadening allows for the optic 

phonons to provide more scattering channels for the heat-carrying acoustic modes 

through Umklapp scattering, especially in the acoustic-acoustic-optic scattering, where 

the sum of two acoustic frequencies must equal the optic frequency. Thus, we 

conjecture that the MD computed κ lowering with increasing s can originate in the G-

band broadening. 

 
Table 4-1. Thermal conductivities of bent (6,6) and (10,10) SWNTs with l much 
smaller than lMPF. The straight case is shown for a comparison. 

SWCNT l (nm) s (nm-1) 
𝜅𝜅𝑖𝑖 

(W/mK) 

𝜅𝜅𝑘𝑘 

(W/mK) 
𝜅𝜅𝑘𝑘/𝜅𝜅𝑖𝑖 ϕ 

𝜅𝜅 

(W/mK) 

(6, 6) 24.6 0.000     120.7 

  0.106     89.2 

  0.133 83.7 29.9 35.7 % 13 % 67.5 

(10, 10) 45.5 0.000     155.8 
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  0.034     154.5 

  0.041     146.4 

  0.044 143.2 51.5 36.0 % 8.7 % 124.1 

  0.047 141.4 30.2 21.4 % 8.7 % 107.1 

We now examine the consequences of increasing l in order to probe the 

explanation which attributes the κ robustness to the additional low-frequency acoustic 

phonons that emerge as l ∼ lMFP. In Figure 31, we compare the size dependence of κ for 

a (10,10) SWCNT in the straight and bent (with s = 0.034 nm−1 and s = 0.047 nm−1 ) 

states. Relying on the recent detailed investigations199, we adopt the view that in NEMD 

simulations with unidirectional heat flux, the whole SWCNT length determines thermal 

conductivity. Thus, in Figure 31, we plot κ against l, which comprises the heat bath 

regions. We see that as the sample length increases, the maximum allowable phonon 

wavelength increases. For the stress-free tubes, we attribute the κ increase with length 

to the effective contribution of the long-wavelength phonons. We also see that there is 

no distinction in the conductivity variations of the straight and ideally bent states, 

suggesting that the transport in ideally bent SWCNTs is ballistic, as in the stress-free 
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case. Finally, our data demonstrate that the impact of the kink diminishes quickly as l 

increases.  

 

 While for l = 24.8 nm, κ differs by 38 % from the ideal straight state; at l = 90 

nm, the difference reduces only to 5.7 %. Thus, our simulations confirm the robustness 

of the thermal transport observed in experiments. Note that our MD-calculated thermal 

Figure 30. LPDOS in a 45.5-nm-long (10,10) SWCNT as a function of 
frequency, for a straight structure shown as a black curve, an unkinked bent 
structure with s = 0.034 nm−1  shown as a red curve, and a kinked bent 
structure with s = 0.047 nm−1 shown as a green curve. LPDOS is calculated 
over a portion comprising nine unit cells. 
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conductivities do not include quantum effects. The quantum-corrected κ are 

estimated200 as 84 % of those presented in Figure 31. The quantum-corrected 

temperature is 260 K when the MD temperature is 300 K. 

 

 

Figure 31. Thermal conductivity in a (10,10) SWCNT as a function of the sample 
length, for the following structures: straight, blue squares; bent (unkinked) with s 
= 0.034 nm−1, green triangles; and bent (kinked) with s = 0.044 nm−1, magenta 
circles. Lines represent exponential fitting of the length dependence. 
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4.3 Thermal Transport in Flattened Single-walled 

Carbon Nanotubes  

 𝜅𝜅 of stress-free single-walled CNTs (SWCNTs) increases with tube length (l) 

until it reaches the phonon mean free path (𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀)33,180,194,199,201. In this work, we are 

concerned with SWCNTs with lengths under 1 𝜇𝜇𝜇𝜇, which cover both ballistic and 

diffusive regimes. We applied non-equilibrium molecular dynamics (NEMD)123 to 

study thermal conductivities along SWCNTs with different lengths and chirality. A 

thorough comparison of phonon relaxation time, phonon group velocity, phonon 

dispersion curves and phonon density of states (PDOS) between cylindrical and 

flattened SWCNTs are conducted to provide understanding of their differences in 𝜅𝜅. In 

addition, a deep analysis of the three most commonly used potentials in molecular 

dynamics calculations of carbon-based materials is presented. 

Our large-scale atomistic molecular dynamics simulations are performed with 

LAMMPS140. Three different interatomic potentials are used to study the structures: the 

adaptive intermolecular reactive empirical bond order (AIREBO) potential198, which 

includes a Lennard-Jones term (LJ) describing the van der Waals interactions 
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experienced by the C-C atoms located in the 2-10.2 Å space interval, and is expressed 

as 

𝑉𝑉𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿 = 4𝜀𝜀 ��

𝜎𝜎
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

− �
𝜎𝜎
𝑟𝑟𝑖𝑖𝑖𝑖
�
6

� (4-5) 

where the energy parameter 𝜀𝜀 = 0.00284𝑒𝑒𝑒𝑒 and the distance parameter 𝜎𝜎 = 3.4 Å; a 

combination of the second-generation reactive empirical bond order (REBO-II) 

potential202 and the LJ potential; and a combination of optimized Tersoff (Tersoff-

2010) potential203 and the LJ potential, which describes the interlayer interaction of the 

grey and the red layers shown in the Tersoff model in Figure 32 (a). The connection of 

the two layers (the purple parts) is described with Tersoff-2010 only to avoid the strong 

repulsion of LJ potential. To be consistent, the parameters and cut-off distances in the 

LJ terms in all the above three potentials are the same. We use REBO+LJ and 

Tersoff+LJ to refer to the latter two potentials. The original Tersoff potential204 is also 

widely used to study C-C interactions. However, due to its intrinsic drawback in 

describing the bending behavior205 and the lattice dynamics of graphene203,206, we will 

not discuss its application in this work. The optimized Tersoff-2010 is developed by 

adjusting the attraction term in the original Tersoff potential, which displays a 

significant improvement in both obtaining the 𝜅𝜅 values of graphene and fitting the 

dispersion curves of all acoustic phonon branches in graphene203,206. 
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To study the behavior of CNTs with large diameters at room temperature, a series of 

(30, 30) armchair, (50, 0) zigzag and (20, 50) chiral cylindrical and flattened SWCNTs, 

which respectively have dimeters of 4.1nm, 3.9nm and 4.9nm in their cylindrical form, 

are investigated. Initially, a Nose-Hoover thermostat is used to equilibrate the 

cylindrical SWCNTs at 300K. After the system reaches equilibrium, a 0.01𝑒𝑒𝑒𝑒/Å force 

is added in transverse direction for 200 ps to squeeze the structure. The system is then 

freed in transverse direction and is equilibrated again under microcanonical ensemble 

for another 200 ps. Periodic boundary conditions are applied in the axial direction 

during the whole process. The van der Waals attraction of the closest walls (region 1) 

overcomes the stress at the circular edges (region 2) due to the C-C covalent bonding, 

resulting in a stabilized flattened SWCNT shown in Figure 32 (a). The width of the 

flattened SWCNTs in the transverse direction (y direction shown in Figure 32 (c)) with 

a certain chirality remains the same modeled with the same potential. For example, for 

zigzag SWCNTs modeled with AIERBO, the width in the transverse direction remains 

to be 7.17 Å when the diameter of the cylindrical tube is >~ 2.5 nm. It’s worth noting 

that after a brief transverse compression, although the cross-sectional view of the 

relaxed flattened CNTs described with different potentials all present dumbbell-like 

shapes, the areas of region 1 are different. The area of region 1 depends on the bending 

stiffness of the monolayer graphene sheet. The stiffer the graphene sheet that comprises 

the SWCNT, the more difficult it is for the vdW attractions to hold walls together. The 
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bending moduli of monolayer graphene under infinitesimal bending curvature207 are 

0.91eV, 1.41eV and 2.29eV, calculated with AIREBO, REBO-II and Tersoff-2010 

potentials, respectively. It can be seen that the bending modulus calculated with REBO-

II is the closest to that calculated with ab-initio205, which gives 1.46eV. The reason 

AIREBO gives the lowest bending modulus is because, compared to REBO-II, 

AIERBO adds an additional “torsional term” to describe the rotation about a single C-

C sp3 bond198, which is much softer than the C-C sp2 in benzene-ring structures like 

graphene and CNTs. Therefore, the conformation described with REBO+LJ in Figure 

32 (a) is the most accurate among all the three proposed shapes. The bending stiffness 

also affects the atomic vibration in the out-of-plane mode, which determines the out-

of-plane optical phonon mode, the ZO mode, in graphene. A “softer” graphene sheet 

described with AIREBO makes the ZO mode in graphene blue-shifted. On the contrary, 

a “stiffer” graphene sheet described with Tersoff-2010 overestimates the frequencies 

of ZO mode in graphene. REBO-II gives the best description of the ZO mode. A 

detailed comparison can be obtained in Ref206. The shift of the ZO mode in the phonon 

dispersion relation may affect the acoustic-optical phonon scattering mechanism, 

resulting in a different thermal conductivity. For example, the underestimation of the 

frequency of the ZO mode in graphene described with AIREBO interferes the 

propagation of the acoustic phonons, which produces a lower thermal conductivity 

compared with that calculated with Tersoff-2010. Hence, even though ZO mode is not 
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the main contributor to thermal transport, it is important in influencing the phonon 

scattering mechanisms, which, in turn, determines the magnitude of 𝜅𝜅. 

The proposed NEMD simulation for a (30,30) SWCNT set-up is shown in Figure 

32 (b) and (c). One unit cell at each end is fixed to prevent the center of the mass of the 

system from moving. Four other unit cells next to the fixed cells are set as hot and cold 

reservoirs. The time step throughout all the simulations is 0.5 fs. The system is initially 

equilibrated at 300K with a Nose-Hoover thermostat. Then the two reservoirs are 

rescaled at every time step to maintain 𝑇𝑇ℎ = 310𝐾𝐾 and 𝑇𝑇𝑐𝑐 = 290𝐾𝐾, respectively. The 

velocity Verlet algorithm is used for time integration. A steady state is reached after 

1000 ps for 𝑙𝑙 ≤ 120𝑛𝑛𝑛𝑛  and 3000 ps for 𝑙𝑙 > 120𝑛𝑛𝑛𝑛 . The heat fluxes along the 

SWCNTs are obtained by calculating the differences of the rates of the kinetic energy 

extraction from the two reservoirs: 

𝑄̇𝑄 =
1
2

< 𝑄̇𝑄ℎ − 𝑄̇𝑄𝑐𝑐 > (4-6) 

where 𝑄̇𝑄ℎ and 𝑄̇𝑄𝑐𝑐 are the instantaneous heat currents flowing into and away from the 

hot and cold reservoirs to maintain the temperature gradient. The angular brackets 

indicate a statistical average taken over the last 500 ps for 𝑙𝑙 ≤ 120𝑛𝑛𝑛𝑛 and 1000 ps for 

𝑙𝑙 > 120𝑛𝑛𝑛𝑛 after steady state is reached. 𝜅𝜅 is calculated with the Fourier’s Law: 

𝜅𝜅 = −𝑞̇𝑞 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
−1

(4-7) 
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Figure 32. (a) The formation of flattened SWNCTs and the view along axial 
direction (z direction) in the flattened SWCNTs. (b) and (c) show the 
transverse view (along y and x directions) of the flattened SWCNTs. The 
difference in the transverse view of flattened (30, 30) and (50, 0) SWCNTs 
in y direction is shown in (b).  
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Figure 33. Thermal conductivity of cylindrical (blue, magenta, and black 
symbols) and flattened (red, green and cyan symbols) CNTs with different 
tube lengths calculated with AIREBO (blue and red), REBO+LJ (magenta 
and green), and Tersoff+LJ (black and cyan). The circles, squares, triangles 
and diamonds represent the thermal conductivity of (30, 30), (50, 0) and 
(20, 50) CNTs, and zigzag bilayer graphene nanoribbons. The bilayer 
graphene nanoribbons with rough surface simulated with Tersoff+LJ 
potential is represented with cyan pentagons. Fitted curves are represented 
by solid lines. 
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where 𝑞̇𝑞 is the heat flux per unit cross-sectional area, which is defined by the thickness 

of one-atom-layer tube wall, 0.34 nm, multiplied by the circumference of one ring of 

the SWCNT in the cross-section view. 𝑧𝑧 is the axial position. 𝑇𝑇 is the local temperature 

obtained by statistically averaging the kinetic energy of the atoms located on two 

subsequent unit cells. 

Our main results are summarized in Figure 33, which shows a noticeable 𝜅𝜅 

reduction for long, flattened SWCNTs compared to cylindrical ones, as calculated with 

AIREBO, REBO+LJ, and Tersoff+LJ, which display ~ 30 %, ~ 26 %, and ~ 3 % 𝜅𝜅 

reductions. The amount of reduction of 𝜅𝜅 depends on the degree of deformation of the 

cross-section, i.e. the larger area that region 1 has, and the more strain in region 2, the 

more significant in the 𝜅𝜅 can be lowered. We speculate the lowering of 𝜅𝜅 may be due 

to the van der Waals interaction in region 1, which allows phonon-phonon scattering in 

the out-of-plane transverse direction. In addition, the large strain in region 2 may also 

hinder the movement of atoms in the transverse and shear directions, thus diminishing 

the ability to transport heat in the axial direction. We can also see that the Tersoff+LJ 

model gives the highest 𝜅𝜅  value, which is the closest value to the experimental 

measurements32. 

To further understand the scattering mechanism, phonon relaxation time (𝜏𝜏𝑍𝑍) 

for acoustic phonon modes is investigated, which reflects the average time between 
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successive phonon scattering events in each phonon branch. In pristine SWCNTs, there 

are four acoustic modes208: two degenerate translational acoustic (TA) modes, 

corresponding to atomic movement perpendicular to the axial direction, which include 

the out-of-plane mode similar to the flexure mode (ZA mode) in graphene; a twist mode 

(TW), corresponding the torsional movement of atoms around the axis, which can be 

analogous to the in-plane mode in graphene; and a longitudinal mode (LA), 

corresponding to the atomic movement along the axial direction.  𝜏𝜏𝑍𝑍 is evaluated with 

the spectral energy density209, 

Φ(𝑞𝑞𝑧𝑧,𝜔𝜔) =
1

4𝜋𝜋𝜏𝜏0𝑁𝑁𝑇𝑇
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(4-8) 

where 𝑘𝑘𝑧𝑧 is the z component of the wave vector, 𝜔𝜔 is the angular frequency, and 𝜏𝜏0 is 

the integration time constant, here we use 𝜏𝜏0 = 250 ps. Index 𝛼𝛼 represents x, y and z 

directions. 𝑣𝑣𝛼𝛼 �
𝑙𝑙
𝑏𝑏; 𝑡𝑡� is the 𝛼𝛼 component of the instantaneous velocity of atom b with 

mass m inside unit cell l. B is the number of atoms in a unit cell. 𝑁𝑁𝑇𝑇 is the number of 

unit cells in the simulation domain, here we have 𝑁𝑁𝑇𝑇 = 50. The shape of the frequency 

spread for each mode can be fitted with the Lorentzian function 

Φ(𝑞𝑞𝑧𝑧,𝜔𝜔) =
𝐼𝐼

1 + [(𝜔𝜔 − 𝜔𝜔𝑐𝑐)/𝛾𝛾]2 (4-9) 
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where I is the peak magnitude, 𝜔𝜔𝑐𝑐 is the frequency at the peak center, and 𝛾𝛾 is the half-

width at half-maximum. 𝜏𝜏𝑍𝑍 is defined by 𝜏𝜏𝑍𝑍 = 1/2𝛾𝛾. The local 𝜏𝜏𝑍𝑍 of cylindrical and 

flattened armchair SWCNTs are investigated to illustrate the difference in 𝜅𝜅, see Figure 

35. The average 𝜏𝜏𝑍𝑍  for each phonon mode calculated with different potentials are 

summarized in Table 4-2. 

 

Table 4-2. Comparison of average τZ for each phonon mode in cylindrical and flattened 
SWCNTs. 

Potential Chirality Morphology Region TA (ps) TW (ps) LA (ps) 

AIREBO 

(30, 30) 

Cylindrical  1.353 0.465 0.452 

Flattened 

1 1.230 
(-9.1%) 

0.556 
(+19.6%) 

0.418 
(-7.5%) 2 0.507 

(-62.5%) 
0.374 

(-19.9%) 

Average 0.869 
(-35.8%) 

0.465 
(0.0%) 

(50, 0) 

Cylindrical  1.938 0.504 0.349 

Flattened 

1 1.471 
(-24.1%) 

0.550 
(+9.1%) 

0.319 
(-8.6%) 2 0.836 

(-56.9%) 
0.414 

(-17.9%) 

Average 1.154 
(-40.5%) 

0.482 
(-4.4%) 

REBO+ 
LJ 

(30, 30) 

Cylindrical  1.521 0.563 0.416 

Flattened 

1 1.116 
(-26.6%) 

0.606 
(+7.6%) 

0.413 
(-0.7%) 2 0.673 

(-55.8%) 
0.463 

(-17.8%) 

Average 0.895 
(-41.2%) 

0.534 
(-5.3%) 

(50, 0) 

Cylindrical  2.484 0.574 0.325 

Flattened 1 1.357 
(-45.4%) 

0.683 
(+19.0%) 0.324 (-

0.3%) 2 1.340 0.572 
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Note: the percentage in the parenthesis denotes the change in 𝝉𝝉𝒁𝒁, compared to those of cylindrical 
structures. 

From Table 4-2 we can see that for flattened SWCNTs, 𝜏𝜏𝑍𝑍 of the TA modes in 

region 2 is the most significantly reduced phonon modes in all the structures simulated 

with all the three potentials. This means that the large strain due to the severe bending 

in region 2 is the main reason for the reduction in TA phonon transport. It is also 

obvious that the reduction rates of 𝜏𝜏𝑍𝑍  of TA and TW modes in region 2 are more 

significant in the armchair SWCNT than that in the zigzag SWCNT, within the same 

potential model. For example, modeled with REBO+LJ potential, the reduction of 𝜏𝜏𝑍𝑍 

of TA modes in region 2 in the (30, 30) SWCNT is 55.8 %, compared to that in the (50, 

0) SWCNT, which is 46.1 %. This is because of the difference in bending energy in

graphene under large bending curvature207. Even though the tangential bending moduli 

along the zigzag and armchair directions are the same under infinitesimal bending 

(-46.1%) (-0.4%) 

Average 1.349 
(-45.7%) 

0.628 
(+9.4%) 

Tersoff+
LJ 

(30, 30) 

Cylindrical 1.251 0.485 0.458 

Flattened 

1 1.221 
(-2.4%) 

0.566 
(+16.7%) 

0.421 
(-8.1%) 2 0.641 

(-48.8%) 
0.455 

(-6.2%) 

Average 0.931 
(-25.6%) 

0.510 
(+5.5%) 

(50, 0) 

Cylindrical 1.911 0.529 0.309 

Flattened 

1 1.403 
(-26.6%) 

0.610 
(+15.3%) 

0.306 
(-1.0%) 2 1.276 

(-33.2%) 
0.502 

(-5.1%) 

Average 1.340 
(-29.9%) 

0.556 
(+5.1%) 
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curvature, as bending curvature increases, the monolayer graphene becomes 

anisotropic and presents different bending moduli along zigzag and armchair directions. 

Under the same bending curvature, the strain energy of monolayer graphene is higher 

for bending along the zigzag direction, which corresponds to the larger strain in region 

2 in the armchair SWCNT. Hence TA and TW phonons in region 2 are scattered more 

significantly in flattened (30, 30) SWCNTs than those in flattened (50, 0) SWCNTs. 

The TA modes in region 1 for all flattened structures modeled with all potentials also 

decrease. Region 1 in a flattened SWCNT can be compared to a bi-layer graphene 

nanoribbon with a 3.36 Å spacing, see Figure 34 (a). The thermal conductivity of a bi-

layer graphene in the in-plane direction is lower than that of a single-layer graphene 

due to phonon scattering in the inter-plane direction210–213, especially ZA phonon 

scattering214, which is comparable to our TA mode scattering in region 1 in flattened 

SWCNTs. It is also noticeable that the 𝜏𝜏𝑍𝑍 reduction rate of 𝜏𝜏𝑍𝑍 of TA mode in region 1 

is more significant in the flattened (50, 0) SWCNT than that in the flattened (30, 30) 

SWCNT. For flattened (30, 30) SWCNTs, region 1 viewed from the y direction 

resembles the interplane direction of a AB stacking bilayer graphene which has a 50% 

mismatch, see Figure 32 (b), bottom left. While for flattened (50, 0) SWCNTs, region 

1 is neither AA stacking nor AB stacking, which has 100% mismatch, see Figure 32 

(b), bottom right. The fewer atoms overlapping, the more phonon mismatch there will 
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be, which causes phonon scattering in the cross-plane direction, i.e. TA phonon 

scattering. Thus, more TA phonons in (50, 0) SWCNTs are scattered in region 1. 

Considering both effects, the average TA phonon scattering rate for the whole structure 

is the same for (30, 30) and (50, 0) SWCNTs. 𝜏𝜏𝑍𝑍 of TW in region 1 in all flattened 

structures are either close to or higher than those of the cylindrical SWCNTs. This is 

because unlike in cylindrical SWCNTs, region 1 in flattened SWCNTs is almost flat 

and has little tension due to bending. The less strain there is, the easier the phonons can 

be transported215. However, the overall effect of flattening does not alter many of the 

TW modes (the change of 𝜏𝜏𝑍𝑍 is within 10%). Similarly, due to the strain effect in region 

2 in flattened SWCNTs, 𝜏𝜏𝑍𝑍 of the LA modes is also decreased, but also within 10%. 

Hence, 𝜏𝜏𝑍𝑍 is most significantly lowered in the TA branch in flattened SWCNTs. The 

average TA scattering rate calculated with Tersoff+LJ is less than that calculated with 

the other two models. This is because the flattened SWCNTs with Tersoff+LJ model is 

the least severely flattened and the strain in region 2 is the smallest due to the large 

bending modulus of graphene with this potential.  

(a) 
3.36Å 

(b) 
3.36Å 

Figure 34. Bi-layer graphene (a) without and (b) with rough edges. 
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 Another important factor determining 𝜅𝜅 is the phonon group velocity along the 

axial direction, 𝑣𝑣𝑔𝑔,𝑧𝑧 . In order to calculate 𝑣𝑣𝑔𝑔,𝑧𝑧 , lattice dynamics calculations216 are 

conducted, which can also provide solutions to analyze the phonon dispersion relation. 

The core equation for lattice dynamical calculations is 

𝑫𝑫�(𝑘𝑘𝑧𝑧)𝝃𝝃 = 𝑚𝑚𝜔𝜔2𝝃𝝃 (4-10) 

Where 𝑫𝑫�(𝑘𝑘𝑧𝑧) is the dynamical matrix, which can be obtained from 

𝑫𝑫�(𝑘𝑘𝑧𝑧) = �𝑫𝑫(𝑹𝑹)𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧∙𝑹𝑹
𝑹𝑹

 (4-11) 

Where R represents equilibrium lattice sites of a unit cell, 𝑫𝑫(𝑹𝑹) is the force constant 

matrix, 𝑫𝑫�(𝑘𝑘𝑧𝑧)  is Hermitian for real valued wave numbers 𝑘𝑘𝑧𝑧 , 𝜔𝜔  is the phonon 

frequency for each 𝑘𝑘𝑧𝑧. Solutions of 𝜔𝜔 for armchair and zigzag cylindrical and flattened 

SWCNTs with different potential models are shown in Figure 36 and Figure 37. Due to 

the flattening effect, the TA mode in the flattened SWCNTs at 𝑘𝑘𝑧𝑧 → 0 has a 𝜔𝜔 ∝ 𝑘𝑘𝑧𝑧2 

relation, resembling that of the flexure mode in graphene; while TAs mode in the 

cylindrical SWCNT remains the typical 𝜔𝜔 ∝ 𝑘𝑘𝑧𝑧 relation at 𝑘𝑘𝑧𝑧 → 0. The breakdown of 

symmetry about z-axis and the strain effect also produce fewer degenerate solutions, 

allowing for more optical-acoustic phonon scattering channels. Different potentials 

cause the difference in phonon frequencies of the out-of-plane optical mode, i.e. the TO 

mode, which resembles the ZO mode in graphene. As discussed before, although this 
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mode is not the main factor of heat transport, it has influence on the acoustic-phonon 

scattering effects. As can be seen, in the Tersoff-LJ model, the TO mode has a much 

higher frequency than that in the other two models, thus providing less acoustic-

acoustic-optical phonon scattering channels, resulting in a higher thermal conductivity, 

see Figure 33. 

 Based on Equation (4-11), we further calculate 𝑣𝑣𝑔𝑔,𝑧𝑧, which is expressed as 

𝑣𝑣𝑔𝑔,𝑧𝑧 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑘𝑘𝑧𝑧

= −
Im�𝑎𝑎𝑎𝑎𝝃𝝃𝐻𝐻𝑫𝑫�𝑅𝑅𝝃𝝃�

2𝑚𝑚𝑚𝑚|𝝃𝝃|2  (4-12) 

Where 𝜆𝜆 = 𝑒𝑒𝑖𝑖
𝑘𝑘𝑧𝑧𝑎𝑎
2 , 𝑎𝑎 is the length of the unit cell in z direction, the superscript H denotes 

a complex-conjugate transpose, 𝑫𝑫�𝑅𝑅  is the dynamical matrix of the neighboring unit 

cells. The calculated results for (30, 30) SWCNTs are shown in Figure 38. The average 

𝑣𝑣𝑔𝑔,𝑧𝑧  for the cylindrical and flattened SWCNTs are 838.86 m/s and 782.39 m/s 

calculated with AIREBO, 883.06 m/s and 855.42 m/s with REBO+LJ, 882.65 m/s and 

868.95 m/s with Tersoff+LJ, respectively. Although a slight decrease in 𝑣𝑣𝑔𝑔,𝑧𝑧  is 

observed in the flattened SWCNT, the main values and the distribution of 𝑣𝑣𝑔𝑔,𝑧𝑧 over all 

the frequencies remain the same. Hence, the structural difference has little effect on 

𝑣𝑣𝑔𝑔,𝑧𝑧. The scattering effect is the main reason for 𝜅𝜅 reduction in the flattened SWCNT. 

 To gain more insight into the microscopic mechanism of how the strain effects 

in the flattened SWCNT affect the phonon modes at different frequencies, PDOS are 
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obtained by decomposing into the Fourier space the MD time-correlation function of 

the atomic velocities at 300 K. For cylindrical SWNCTs, we calculate the PDOS of the 

whole structure. For flattened SWCNTs, we calculated the local PDOS of region 1 and 

region 2 separately to observe the different effect on phonons due to different 

structures. The calculated results are shown in Figure 39. As we can see, major phonon 

peaks in region 2 in the flattened SWCNTs are slightly lowered compared to region 1 

and those in cylindrical SWCNTs. Additionally, more optical phonons emerge in the 

high frequency range (55~60 THz for AIREBO and REBO+LJ models, and 50~55 THz 

for Tersoff+LJ models) in the flattened SWCNT, which is an indication of the severe 

strain in region 2. Overall, the change in PDOS can be neglected. 

To understand the mechanism of phonon scattering, we used Non-equilibrium 

Green’s function to calculate thermal conductance217,218 G of SWNCTs with harmonic 

approximation, 

𝐺𝐺(𝑇𝑇) =
ℏ2𝜔𝜔2

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇2
� 𝜏𝜏(𝜔𝜔)

𝑒𝑒ℏ𝜔𝜔/𝑘𝑘𝐵𝐵𝑇𝑇

(𝑒𝑒ℏ𝜔𝜔/𝑘𝑘𝐵𝐵𝑇𝑇 − 1)2 𝑑𝑑𝑑𝑑 (4-13) 

where  ℏ is the Planck constant, 𝑘𝑘𝐵𝐵 is the Boltzmann constant and 𝜏𝜏(𝜔𝜔) is the phonon 

transmission. The results calculated with QuantumWise package219 for (30, 30) 

SWCNTs with REBO+LJ potential is shown in Figure 40. As we can see, there is very   
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  Figure 35. Phonon relaxation time for different phonon modes. The top, middle and 
bottom figures represent phonon relaxation time calculated with AIREBO, REBO+LJ and 
Tersoff+LJ, respectively. The left and right figures represent (30, 30) and (50, 0) 
SWCNTs, respectively. TW1 and TA1 represent the twist modes and transverse acoustic 
modes in region 1, respectively. Similarly, TW2 and TA2 denote the twist modes and 
transverse acoustic modes in region 2, respectively. 
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Figure 36. Phonon dispersion relations of cylindrical (upper, blue) and flattened 
(lower, red) (30, 30) SWCNTs calculated with AIREBO (left), REBO+LJ (middle) and 
Tersoff+LJ (right). The black arrows denote the acoustic phonon branches (TA, TW 
and LA) and the out-of-plane optical phonon branch (TO) which are most important 
in determining the thermal conductivity of the studied SWCNTs. 
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Figure 37. Phonon dispersion relations of cylindrical (upper, blue) and flattened 
(lower, red) (50, 0) SWCNTs calculated with AIREBO (left), REBO+LJ (middle) and 
Tersoff+LJ (right). The black arrows denote the acoustic phonon branches (TA, TW 
and LA) and the out-of-plane optical phonon branch (TO) which are most important 
in determining the thermal conductivity of the studied SWCNTs. 
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Figure 38. Acoustic phonon group velocities of cylindrical (upper, blue) and 
flattened (lower, red) (30, 30) SWCNTs calculated with AIREBO (left), 
REBO+LJ (middle) and Tersoff+LJ (right).  
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Figure 39. Phonon density of states of (30, 30) (left) and (50, 0) (right) SWCNTs 
calculated with AIREBO (top), REBO+LJ (middle) and Tersoff+LJ (bottom) 
potentials. The cylindrical SWCNTs are represented with blue curves. Region 1 and 
2 in flattened SWCNTs are represented in red and green curves, respectively. 
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little difference in G calculated with harmonic approximation in cylindrical and 

flattened SWCNTs. Therefore, the reduction in thermal conductivity of the flattened 

SWCNT calculated with REBO+LJ lies in the anharmonic phonon-phonon scattering. 

As we mentioned before, the shapes of flattened SWCNTs resemble that of a bi-

layer graphene nanoribbon. Here we also studied the thermal transport along a bare-

edged zigzag graphene nanoribbon with the same number of atoms per unit length as 

that of the (30, 30) SWCNT, Figure 34 (a). The 𝜅𝜅 values of different lengths calculated 

with different potentials are represented with diamonds in Figure 33. It can be seen that 

Figure 40. Thermal conductance of (30, 30) SWCNTs with REBO 
potential. The thermal conductance of cylindrical and flattened 
SWCNTs are shown in blue and red curves. 
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𝜅𝜅 of the flattened SWCNTs are very close to that of the bi-layer graphene nanoribbon. 

The flattened surface of region 1 in the flattened SWCNTs resembles that of a bi-layer 

graphene nanoribbon surface. In addition, the large strain in region 2 of the flattened 

SWCNTs has an equivalent effect in scattering phonons as the bared-edges of the bi-

layer graphene nanoribbons. To support this hypothesis, we make the edges of the bi-

layer graphene rougher by removing and adding atoms on the edges while keeping the 

total number of atoms the same, Figure 34 (b). The 𝜅𝜅 values calculated with Tersoff+LJ 

are shown as cyan pentagons in Figure 33. As some phonons are easily trapped in the 

rough edges, 𝜅𝜅 is significantly reduced compared to the model shown in Figure 34 (a). 

A similar discussion can be found in Ref115. This indicates that the flattened SWCNTs, 

or close-edged bi-layer graphene, can be a good candidate to replace bi-layer graphene 

nanoribbons for thermal transport applications. Compared to cylindrical SWCNTs, 

flattened SWCNTs are also susceptive to twists, similar to graphene nanoribbons220. 

We have investigated 𝜅𝜅 in twisted flattened SWNCTs (Figure 41) with different twist 

angles (0 ~ 5.5 deg/nm) with Tersoff+LJ and found no significant change in 𝜅𝜅, which 

shows the robustness of the flattened SWCNTs in conducting heat. 

 

 

Figure 41. A twisted flattened (30, 30) SWCNT. 
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4.4 Conclusion 

I studied the effect of pure bending strain and the flattening effect on the thermal 

transport of SWCNT with different sizes. NEMD simulations reveal that the kink 

developed under bending exhibits a much larger resistance-related effective length than 

previously suggested. In the short-l regime, the overall κ exhibits a sizable decrease by 

the time buckling occurs. The κ reduction is most significant in small-diameter 

SWCNTs, which display a higher critical curvature for buckling. The flattening effect 

has a very minor impact on thermal transport along SWCNTs. The finding is important 

since significant tunability of the thermal conductivity characteristic for the l ≪ lMFP 

regime is interesting for applications. As l ∼ lMFP, thermal conductivity becomes robust 

as the heat-carrying long-wavelength phonons become insensitive to the localized 

buckling deformation. SWCNTs with large diameters also have important applications 

in mechanical and thermal applications. Understanding their thermal behavior when 

they are flattened is crucial in guiding their applications. 
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Chapter 5 

Conclusion 

 In this work, heat transfer in solids is studied with modern computational 

methods, which explicitly simulate microscopic heat carriers, or phonons. Atomistic 

simulations, particularly molecular dynamics techniques, allow us to generate a large 

amount of data documenting how atoms vibrate around defects or under mechanical 

deformation. By processing these data with statistical physics methods, I am able to 

relate the motion of hundreds of thousands of atoms to measurable thermal properties 

of the structure.   

One limitation of MD is the relatively small (on the order of hundreds of 

thousands) number of atoms that can be simulated. Fortunately, it is not necessary to 

do calculations on every single atom of the solid, as boundary conditions of the 

simulated cell have the advantage of significantly simplifying the underlying 

calculations. Periodic boundary conditions offer a simplified approach to simulating 

structures with only translational symmetry, such as a bulk crystal or a straight pristine 

nanowire. In this thesis, I consider structures that have not only translational symmetry, 
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but also rotational and/or helical symmetry. Examples of such structures are NWs with 

screw dislocations (Chapter 2), purely bent carbon nanotubes (Chapter 4), and twisted 

flattened carbon nanotubes (Chapter 4). For these structures, standard molecular 

dynamics under periodic boundary conditions cannot be used. Instead, I performed 

these calculations with a novel method named objective molecular dynamics. This 

method exploits the aforementioned boundary conditions to match the helical/rotational 

symmetry of the structures at hand in order to make the simulations computationally 

affordable.  

The knowledge gained in this research has important implications for renewable 

energy and thermal management in electronics. The finding in Chapter 2, which shows 

that dislocations can lower thermal conductivity significantly, presents enormous 

importance for the development of new thermoelectric materials with very high heat-

electricity conversion efficiency, and has already attracted interest in experimental 

studies. The thorough study of thermal and mechanical properties of a high-temperature 

coating composite, namely the amorphous Silicon-Boron-Nitride networks discussed 

in Chapter 3, provides practical guidance in designing high-performance coatings. The 

investigation method in this study also promises broad applicability to other 

composition-structure-properties relationships in more complex composite materials. 

The study of carbon nanotubes and bi-layer graphene presented in Chapter 4 shows the 

effect of mechanical deformation in tube-like structures on heat transport through 
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carbon nanotubes, which has implications for applications of CNTs in thermal interface 

materials. At the same time, the discoveries in this work also resolve some conflicts 

between experimental measurements and numerical simulations, as the results shown 

in this thesis are in agreement with similar experimental discoveries. The studies in this 

thesis also provide important routes to developing high-performance functional 

materials. It is likely that these nano-scale heat transfer studies will soon move from 

computation to experiments, and further industrial applications. 
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