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Abstract   

Sun bears and Asiatic black bears co-occur in Southeast Asia with wide areas of 

overlapping range.  Both species are in decline, and are vulnerable to extinction due 

mainly to habitat loss and illegal hunting. Efforts to conserve bears in Southeast Asia are 

hampered by a lack of basic knowledge of distribution, population trends and habitat 

configuration. To advance the scientific understanding of sun bears and Asiatic back 

bears in this region I investigated fine and broad scale patterns of distribution. In Lao 

PDR, I gathered data on bear occurrence using bear sign transects walked in multiple 

forest blocks throughout the country. To model the country-wide relative abundance of 

bears and habitat quality, I related bear sign to environmental factors associated with bear 

occurrence. Within global sun bear range, I gathered camera trap records of sun bear 

detections from seven sun bear range countries. To generate quantitative measures of sun 

bear population trends, I related sun bear detection rates to tree cover and estimated 

related changes in country and global-level sun bear populations based on tree cover loss. 

To evaluate the global extent of sun bear range connectivity, I used the modelled 

relationship between sun bears and tree cover to create a habitat suitability index, and I 

identified areas of fractured range that have created unnatural subpopulations that are at 

risk from isolation. In Lao PDR, bears selected for areas of high elevation, rugged terrain,  

and areas of high tree density far from roads. My model-based estimates of sun bear 

global population trends predicted that over a 30-year period, sun bear populations in 

mainland southeast Asia have potentially declined by close to 20%, and insular sun bear 

populations have declined by ~50%. I identified seven potential sun bear subpopulations; 

two that are fully isolated with no potential for inter-subpopulation movement, and in the 

other five, inter and intra-subpopulation habitat fragmentation occurs in a continuum of 

severity. My findings advance the understanding of patterns in bear distribution and 

trends in southeast Asia, identify research priorities, and lay a framework for future 

monitoring efforts at country and region-level scales. I conclude with recommendations 

on how to better manage camera trap data for secondary research and sharing. 
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Introduction 

 

One thousand years ago, scientists thought the world was flat, and cartographers wrote 

the words “Here be dragons” on maps to signify dangerous and uncharted territories 

(Best 1988). Now, in the apparent luxuries of the 3rd millennium, we can use Google 

Earth to zoom into a spherical earth for a bird’s eye view of any region of the world.  

Despite all this progress, large portions of the geographic range of many of the world’s 

most charismatic wildlife species remain in a state of uncertainty.  Asia’s bear species 

are a prime example, as species for which we are still uncovering the most basic 

information on their habitat and inhabitable ranges. For Asia’s bears, we are now in a 

period of exponential knowledge growth; for every new piece of information obtained, a 

new portion of the map is illuminated.  

 

Of the eight extant species of bears in the world, brown bears (in Europe and North 

America) and American black bears are faring well in most areas, and are afforded the 

highest levels of scientific understanding, so enabled by adequate funding, technological 

capacity, and long-term data sets (Garshelis et al. 2016, McLellan et al. 2016).  By 

contrast, in developing countries, most notably in Southeast Asia, we have very low 

levels of understanding of bears and populations are thought to be eroding, potentially 

disappearing virtually unnoticed. My research focuses on both bear species that inhabit 

this region: Sun bears Helarctos malayanus and Asiatic black bears Ursus thibetanus. 

Both species are listed as ‘Vulnerable’ by the International Union for Conservation of 

Nature (IUCN; Garshelis and Steinmetz 2016, Scotson et al. 2017). Sun bears and 

Asiatic black bears occupy the same habitats (not just on a broad scale, but in the same 

small forest patches) across much of mainland Southeast Asia. A narrow isthmus on the 

Thai-Malay Peninsula marks the southern geographical range limit for Asiatic black 

bears; southward, sun bears occur alone and at higher densities (Steinmetz 2011).  

Between 2010 - 2013 I conducted field work in the forest of Lao People’s Democratic 

Republic (hereafter Lao PDR), where no other scientific work on bears had been done 

prior to my study. Lao PDR’s extent of natural forest cover is among the highest in the 
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region (over 40%) and it is generally believed to be a stronghold for bears in Southeast 

Asia. As such, Lao PDR represents not only an ideal country for studying the ecologies 

of these two species in varying habitats, but also a country where it is possible to 

implement thoughtful, proactive strategies to preserve ecosystems with both species of 

bears as fundamental functioning components, rather than remnant, isolated, sparse 

populations.  Southeast Asia is experiencing the highest rate of deforestation in the 

world, resulting in dramatic shrinkage of bear habitat (Miettinen et al. 2011). Moreover, 

bears are illegally hunted for their parts, in particular, bile from the gall bladder, which 

is a highly efficacious in treating degenerative and inflammatory ailments and is much 

sought after Traditional Chinese Medicine (Feng et al. 2009).   

 

My dissertation is built across several scales. Chapter one centers on mapping the 

country-wide distribution of sun bears and black bears in Lao PDR. I detected the 

presence of bears by the sign they left in the forest — mainly claw marks on trees they 

climbed for foraging (Steinmetz and Garshelis 2008).  I examined every tree in narrow 

strip transects within eight forest blocks throughout Lao PDR.  I captured the full range 

of eco-geographic variation across the country, while also ensuring adequate, pseudo-

random and independent sampling within each forest block so that I could make valid 

inferences from the data. In addition to bear presence, I collected data on ecological and 

anthropogenic variables thought to influence bear abundance. These data allowed me to 

create a data driven species distribution map that reveals fine scale patterns of bear 

distribution in Lao PDR, and a tool that can be repeatedly applied through time as 

human factors continue to influence patterns of bear distribution change.   

 

Chapters two and three focus solely on sun bears, and broaden out to examine the entire 

sun bear range across mainland and insular Southeast Asia.  Southeast Asia has 

experienced a higher rate of forest loss than any other region of the world, due largely to 

conversion to oil palm and other crops. As such, the range of the forest dependent sun 

bear is shrinking and becoming increasingly fragmented. In chapter two, I undertake the 

first quantitative assessment of the decline of bears over a broad region, based on the 



 

 3 

extent of habitat loss and fragmentation. Prior estimates of sun bear population decline 

are based on expert opinion, inferred from perceived levels of hunting and published 

estimates of forest loss within sun bear range (Scotson et al. 2017). I obtained detection 

data from 2845 camera traps, collected from other studies throughout the region. I have 

combined these data with recently-available high-resolution satellite imagery depicting 

tree cover across all Southeast Asia to relate bear presence to tree cover density (Hansen 

et al. 2013). Using the relationship between tree cover and sun bear detections, I 

estimated related changes in country and global-level sun bear populations based on tree 

cover loss between 2000 and 2014, and have projected declines over a 30-year period.  

 

In Chapter 3, I examine the present-day range connectivity of sun bears and identify 

subpopulations and isolated populations at risk from the nefarious effects of habitat 

fragmentation. In the Pleistocene, sun bear range occurred on one continuous continent, 

stretching northwards from Sundaland, an ancient continent formed collectively by the 

Indo-Malay islands of Borneo, Sumatra and Java, when areas in-between were dry land, 

and limited naturally by the Red River, in north-eastern Vietnam, and unfavorable 

climate and elevations, and competitive exclusion by the Indian Sloth Bear, in Southern 

China and northeast India  (Wallace 1869, Erdbrink 1953, Steinmetz 2006). In present 

day, sun bear range is unnaturally broken up into many subpopulations, created by 

habitat loss and disturbance due to human activities. Characterizing sun bears as modern 

day subpopulations allows us to consider their ability to persist as unnatural 

metapopulations, and steers research by prioritizing investigation into areas where bears 

may be most at risk from local extirpation. 

 

Finally, in Chapter 4, I take the experiences gained from my previous chapters, and 

provide a range of data management best practices and software to improve the 

management and sharing of camera trap data. To build on scientific knowledge of Asian 

bears, and other threatened tropical species, scientists must harness the power of data 

collected and shared from multiple sources.  My thesis research is a small step in a long 

journey to research and conserve bears in Southeast Asia. Rigorous population 
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monitoring is essential for adaptive conservation, because it highlights what is working 

and what is not. Here I make a start, by shedding some light on the distribution, trends 

and range connectivity of bear populations in Southeast Asia. I provide a framework for 

future population monitoring, that is reproducible and can be improved upon, as more 

data become available and the techniques I propose here are developed further.  
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Chapter 1 

 

 

Monitoring sun bears and Asiatic black bears in Lao PDR with 

remotely sensed predictors of distribution and relative abundance 

Scotson L., Ross S., Arnold, T.    

 

Synopsis 
 

  Asiatic black bears Ursus thibetanus and sun bears Helarctos malayanus co-

occur throughout Lao PDR, and populations are thought to be faring better than those in 

neighboring countries. However, bears are in decline throughout Southeast Asia, due to 

habitat loss and human disturbance and knowledge of the distribution and status of 

populations is limited, and based largely on anecdotal information. Range maps are 

coarse, compiled by expert opinion, and basic information on the presence or absence of 

bears is unknown in large portions of Lao PDR. Here we identify biological and 

anthropogenic factors related to bear relative abundance and habitat selection. We use 

these factors to explore patterns of bear distribution by generating species distribution 

maps that reflect the country-wide relative abundance of bears and relative habitat 

suitability. We sampled bear populations within eight study sites in the north, east and 

south of Lao PDR between 2010 – 2013. To create a proximate measure of relative bear 

abundance, and an indicator of habitat suitability, we collected bear sign along forest 

transects and modeled bear sign as a log-linear function of environmental predictors 

associated with habitat assemblages and levels of human disturbance. We found that bears 

tended to favor higher elevation, rugged terrain in areas less accessible by humans. Bears were most 

abundant, and habitat most suitable, in the north and along the eastern border with Vietnam. The southern 

lowland plains are largely devoid of suitable habitat and abundance was relatively low. By using low 

tech bear sign transects, we created a replicable GIS-based monitoring and assessment 

tool for bears in Lao PDR that can be used to identify conservation opportunities and 

monitor changes in bear distribution through time.  Bear populations in Lao PDR are 

threatened by habitat loss and human disturbance. Declines will likely continue in the 
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absence of proactive conservation measures that effectively reduce deforestation within 

bear habitat, and combat illegal hunting and trade. 

 

Introduction 

 

Asiatic black bears Ursus thibetanus and sun bears Helartos malayanus are 

sympatric in Lao PDR, and previously occurred throughout all provinces (Erdbrink 

1953, Lekagul and McNeely 1977). Both species are classed as ‘Vulnerable’ on the 

IUCN Red-list of Threatened species, and populations are projected to decline globally 

by more than 30% in the next 30+ years, due to habitat loss and hunting (Garshelis and 

Steinmetz 2016, Scotson et al. 2017). The IUCN range map, which is identical for sun 

bears and Asiatic black bears in Lao PDR, suggests that currently, bears occur within all 

national protected areas (NPAs) and some provincial protected areas (PPAs; Garshelis 

and Steinmetz 2016, Fig 1), highlighting Lao PDR as a core area for bear conservation, 

However, the fine scale distribution of bears within PAs and their status within forested 

areas outside PAs is uncertain. In order to sufficiently assess and protect bears there is a 

need for baseline survey data that can quantify bear distribution, habitat suitability and 

status within Lao PDR.  

 

Sun bears and Asiatic black bears are currently protected under Lao national legislation, 

the Wildlife and Aquatic Law, 2007, as a Category 1 species, and globally, under the 

Convention on International Trade in Endangered Species of Wild Fauna and Flora 

(CITES; Fredriksson et al. 2008, Garshelis and Steinmetz 2016). Despite the high levels 

of conservation concern for bears, they are heavily exploited in Lao PDR for 

commercial trade in their parts and as cubs (Servheen et al. 1991, Duckworth et al. 1999, 

Foley et al. 2011). Bear trade occurs both locally and internationally, with China, 

Thailand and Vietnam (Servheen et al. 1991, Nooren and Claridge 2001). Bear poaching 

appears to be on the rise, and is thought to be the main factor limiting population size 

and growth (Hunt and Scotson 2011). Bears are also killed when they depredate crops, 

with the value of a poached bear often exceeding the annual value of a crop yield 

(Scotson et al. 2014). The high value of bear products is one reason that pressure from 
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poaching is very high, at the same time law enforcement is inadequate and is failing to 

protect bears in Lao PDR.  

 

Sun bear and Asiatic black bears are dependent on tropical forest to survive. Although 

they are known to exploit plantations and agricultural fields, there is no evidence that 

bears can survive without access to natural forest. Southeast Asia has experienced the 

highest rates of forest loss in the world in the past two decades (Miettinen et al. 2011) 

and the deforestation rate per annum between 2000-2005 was around 1.5% (Sodhi et al. 

2010). The Food and Agricultural Organization (FAO 2015) reported forest cover in Lao 

PDR to be 81.3% in 2015, but this figure includes unquantified areas of non-native 

vegetation and the extent of natural forest is presumably much lower. Agricultural land 

expanded exponentially between 2000 – 2014, and now covers more than 10% of total 

land area (World Bank, 2017).  Lao PDR has a well-developed protected area network, 

with 23 NPAs, and various provincial and district-level PAs (MacKinnon 1997, 

Berkmuller 2000). The success of PA’s, however, is hindered by the rural population’s 

reliance on natural resources, and the lack of  internal funding for forest protection and 

enforcement of wildlife laws (MacKinnon 1997, Berkmuller 2000). Protected area 

management relies heavily on external funding, but currently, only a few sites have long 

term external funding (Wildlife Conservation Society; World Wildlife Fund); in one 

case, a NPA is managed with revenue from a hydropower dam (Molle et al. 2009).    

Despite deficiencies in protection from habitat loss and illegal hunting in Lao PDR, bear 

populations may be faring better than in neighboring Thailand, Vietnam and Cambodia, 

due to a comparatively low human population size and large areas of intact habitat. Lao 

PDR represents an increasingly rare opportunity for proactive conservation, where it is 

possible to implement strategies to preserve ecosystems with bears as fundamental 

functioning components, rather than remnant, isolated, sparse populations. Efforts to 

conserve highly threatened species such as tigers Panthera tigris, Asian elephants 

Elephas maximus, and Sumatran and Javan rhinos; Dicerorhinus sumatrensis and 

rhinoceros sondaicus, have been reactive, representing a struggle, or in some cases a 

failure, to pull species back from the brink of extinction (Berkmüller et al. 1995, 
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Johnson et al. 2016). Proactive conservation of bears in Lao PDR may still be possible, 

but is hampered by lack of the most basic information on bear distribution and status. 

Limited applied research has been conducted on bears, and most information in Lao 

PDR is either anecdotal or a by-product of other studies. In support of the conservation 

management of bears, the development of a Species Distribution Model for bears in Lao 

PDR is needed to improve understanding of the consequences of environmental change 

to bear populations, and inform proactive conservation and monitoring plans through 

time (McShea 2014).  

 

Aims and Objectives  

Using bear occurrence data collected on transects in Lao PDR, we explored bear distribution in 

Lao PDR, by 1) identifying biological and anthropogenic predictors that are related to bear habitat use, 2) 

generating species distribution maps that reflect bear habitat suitability, and the relative abundance of 

bears, throughout Lao PDR and 3) creating a replicable GIS-based monitoring and assessment tool for 

bears in Lao PDR that can be used to identify conservation opportunities and monitor changes in bear 

distribution through time.   

 

Methods    

Study Area 

Lao People’s Democratic Republic (Lao PDR) in Southeast Asia is landlocked 

between Vietnam, Cambodia, Thailand, Myanmar and China and has a land mass of 

236,800 km2. Human population density is the lowest in southeast Asia, at 29 

people/km2, estimated at 6.8 million people in 2015, with an annual growth rate of 1.7% 

(World Bank, 2017). Around 80% of the population lives rurally and depends on 

agriculture (i.e. rice cultivation, sweetcorn) for income, and on wild meat and other 

forest products for subsistence (Berkmuller et al. 1995, Johnson et al. 2016). Lao PDR is 

one of the poorest countries in the region, with a Gross National Income of $5,049, 

ranking 138 out of 187 countries and territories on the 2015 Human Development Index 

(UNDP 2016). Foreign investment, particularly in natural resources (land, mining, 

hydropower) is the main driver of economic growth (UNDP 2016).  
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Study sites 

We sampled within the three biological subunits of Lao PDR; the central 

Indochina tropical lowland plains, the northern Indochina hilly sub-tropical sector, and 

the Annam Trung Son mountain chain (Fig 2). Study sites had a range of elevations and 

varied in the number of villages located with and around sites (Table 1).  In the 

northwest, the Nam Kan National Protected Area (NPA) is dominated by semi-

evergreen forest, with a steep mountainous terrain. The NPA spans two provinces and 

four districts, Muang (district) Houayxai, Muang Mung, and Pha-oudom in Bokeo 

Province and Viangphongkha in Luang Namtha. The adjacent and smaller forest blocks 

of Gnot Namthi Provincial PA and Sam Meuang Product Forest have similar terrain and 

vegetation as the Nam Kan NPA. In the northeast, Nam Et Phou Louey (NEPL) NPA 

has a steep mountainous terrain, with mixed evergreen and deciduous forest, 

interspersed by dry evergreen and upper montane forest. Secondary forest, agricultural 

lands and anthropogenic grasslands are distributed patchily throughout. In the east, 

Nakai Nam Theun NPA, Laving Lavern NPA and Xe Sap NPA, all share similar eco-

geographical characteristics with steep and mountainous topography.  The most 

ecologically distinct feature of these sites is their shared location along the Annamite 

Mountain spine that forms much of the eastern border between Lao PDR and Vietnam. 

The southern-most site, Xe Pian NPA, straddles Chamapsack and Attapeu Provinces, 

and is the largest NPA in southern Lao PDR (Berkmuller et al. 1995).  Xe Pian is a 

mosaic of semi-evergreen, mixed deciduous and dry dipterocarp forests, and wetland 

habitat. Xe Pian is in the lowland plains; elevation is primarily < 200-m, but reaches 

844m within the mountainous region of the northern section.    

Data collection  

Between 2010-2013 we sampled study sites by searching for bear sign while 

walking 500m long line transects, of between 6 - 10-m width, at distances of 2 – 20-km 

from villages. The number of transects ranged from 10 – 36 per site. Transect start 

points were chosen randomly with a random point generator in ArcGIS Geospatial 

Modelling Environment. To reduce time constraints, as some random locations could 
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take up to 5-days to reach, we stratified our sampling by generating a pool of random 

points within park boundaries, and chose a number to visit depending on the time 

available at a given site. We chose points to be spread evenly throughout sites and had 

no prior knowledge of the habitat conditions at each chosen point. We entered the forest 

from villages closest to the random points, walked directly towards each point and 

completed 500-m transects within different distance gradients from villages (0 - 5 km, 5 

- 10 km, 10 - 15 km, 15 – 20 km). In Xe Pian NPA, where habitat is very open, we 

walked long continuous transects. Following data entry, to maintain independence 

between the Xe Pian transects, we created gaps of 1500-m between 500-m segments by 

systematically withdrawing data. To maintain independence, we grouped data from Gnot 

Namthi Provincial PA and Sam Muang Product Forest, which were contiguous and had 

similar habitat conditions.  Transects within all study sites were a minimum of 700-m 

apart (usually more than 1km).  

 

Each line transect was surveyed by a team of four to five people. One person walked the 

midline, measuring the length of the transect with a 10-m rope, monitoring the rest of 

the team and recording all data.  One to two people zigzagged within 5-m strips on 

either side of the mid-line, searching for bear sign. For continuity within field sites, team 

members held the same role for all transects, and those searching for sign alternated on 

each side of the midline. Team members changed between field sites, and all teams were 

trained and led by the same principal investigator (L.S.). Most transects were conducted 

in primary tropical forest (semi-evergreen and mixed deciduous), at elevations between 

500 – 1700-m, and 25% fell within lowland dry dipterocarp forest. We recorded all bear 

sign within transects. These were mainly claw marks on trees (~80%), but also bear 

nests (in tree and on the ground), ground digging, broken rotten wood and broken open 

bee nests. We recorded human disturbance (any evidence of human activity), bear food 

availability (ripe fruit, acorns), forest composition and sign of ungulates. We recorded 

data only within transect boundaries. We included sign on trees that were partially 

within the transect boundaries. Claw marks, bear’s nests, broken bee nests, digging sites, 

scat, tracks and trails were each recorded as one sign. If claw marks of different age 
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categories were observed on one tree, we recorded only the most recent sign. We 

assumed all sign were detected within transects, or that sign were missed at a constant 

rate. Claw marks on trees are visible for more than two years. Sign were aged and 

identified to bear species (where possible) using protocol from Steinmetz & Garshelis 

(2008, 2010).  Sign were left by sun bears and Asiatic black bears, and could rarely be 

identified to species, therefore both species were considered together. We grouped bear 

sign into two age categories: sign < 1 year old (recent sign), and sign of all ages (all 

sign). We assumed that the amount of recent bear sign is directly proportional to the 

number of bears using the site and therefore a measure of relative abundance. Older claw 

marks can remain visible for more than 2 years, and accumulates at variable rates 

compared with recent claw marks (Steinmetz & Garsheslis 2010). Therefore, we 

assumed that all sign is reflective of general habitat use and suitability.  

 

Data analysis   

To optimize the power to make predictions outside our sample sites, we used a 

generalized linear mixed modelling approach to model expected count of bear sign as a 

log-linear function of ecological and anthropogenic predictors. Mixed models are 

appropriate for modelling data that are collected within discrete study sites, because 

inclusion of study sites as a random effect assumes that data collected within the same 

site are more correlated than data collected from different sites (Fieberg et al. 2009). We 

calculated the number of predictors that can be modelled against our response variable 

based on their associated degrees of freedom and our limiting sample size (i.e.  number 

of transects). We created an a priori model, prior to exploring univariate relationships 

between bear sign and predictor variables. This approach reduces the risk of model 

overfitting, and maximizes model strength in making predictions outside the area 

sampled (Babyak 2004, Giudice et al. 2012, Harrell 2015).  We assumed our data 

followed a negative binomial distribution; counts are rarely Poisson distributed and are 

typically over dispersed (Gardner et al. 1995). The negative binomial distribution is 

usually suitable for count data with high frequencies of zeros that can be explained by 

model covariates (Warton 2005).  
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We considered environmental and anthropogenic variables thought to be associated with 

bear presence, collected locally, and extracted from a Geographic Information System 

(GIS). We screened predictors for variation between transects, correlation with other 

variables, data completeness, potentially influential observations and measurement 

errors. We grouped and reduced number of categories in categorical variables where 

possible. Degrees of freedom were calculated as the number of model generated non-

intercept coefficients, if modelled as a linear predictor without interactions. The 

maximum allowance of model parameters (p) associated with predictors is calculated as 

p = m/15 where m is our limiting sample size (i.e. number of transects; Harrell 2015). In 

our sample, m = 99, therefore p = 99/15 = 6.6 model parameters allowed (rounded up to 

7). Transects covered a very small area (0.3 – 0.5 hectares), and may not represent what 

bears are selecting at larger scales. Therefore, we measured predictors within a 350-m 

buffer from the center of transects (0.35 hectares), to explore how bears respond to their 

immediate surroundings. The buffer radius was also small enough to avoid overlaps in 

covariate extraction among adjacent transects.  

Variable screening  

We considered forest type, % tree cover, human influence (Sanderson et al. 

2002), road density, distance to nearest wildlife trading hub, distance to road, latitude, 

distance to river, distance to village, human density, elevation, surface ruggedness, 

temperature and precipitation (Table 2). We selected variables for inclusion in the a 

priori model based on the following criteria: 

i) biological importance to bears 

ii) data availability outside our study sites  

iii) probability that future updates will become available (for predictors that 

change through time)  

iv) independence from other predictors (r < 0.7) 

v) sample variation within study sites (because for variables that showed 

little variation within study sites, the effective sample size was closer to 

7 than 99) 
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Considering these criteria, we selected the variables % tree cover, elevation, surface 

roughness, distance to village and distance to road for inclusion in our a priori model. 

We explored the effects of locally collected predictors, that could not be used for 

landscape level predictions (human disturbance, food abundance, and ungulate sign), 

separately. We chose % tree cover over forest type because of uncertainty in the 

accuracy of the forest type layer, and whether future releases will be available in the 

same format. We derived a 2012 tree cover layer by combining an existing 2000 tree 

cover layer with tree loss data between 2000 – 2012 (Hansen et al. 2013).  Tree cover is 

also a good indicator of differences in forest type, as there is little overlap in % tree 

cover within semi-evergreen and mix-deciduous forest (combined, x̄ = 83.9, SD = 12.7), 

secondary forest (x̄ = 62.6, SD = 34.9), and dry dipterocarp forest (x̄ = 39, SD = 15). 

Elevation is linked to climate and patterns in habitat assemblage (Culmsee and 

Leuschner 2013), and may be related to food availability. We hypothesized that 

elevation is also linked to habitat security, with steeper elevation areas tending to be less 

accessible to humans, and further from human settlements and agriculture, creating 

natural sanctuaries for wildlife. Surface roughness, derived from a digital elevation 

model (DEM), is a measure of fine scale terrain ruggedness (i.e. steepness and 

undulations of terrain). We tested the prediction that bears use rugged terrain to avoid 

humans, due to the difficulty for humans to move through rugged habitat. Distance to 

road and distance to village are both related to accessibility by humans, measured from 

the center of each transect.   

 

We modelled the relationship between the expected count of bear sign as a log-linear 

function of our chosen predictors: 

log(E[Yi]/transect area) = β0 + β1 % Tree Cover  + β2 Elevation  + β3 Slope 

roughness + β4 Distance to road  + β5 Distance to village       

Predictors were centered using z-scores (x-mean/sd), and the transect area was scaled by 

dividing by 100. We ran two identical models with recent sign and all sign as the 

response. We included log(transect area) as an offset in models to account for 

differences in transect area. We evaluated models with diagnostic plots (Pearson 
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residual, residuals versus fitted values, scale-location and QQ), Intraclass Correlation 

Coefficients (ICCs) and Negative Binomial Dispersion Parameters (NBDPs).  ICC is the 

ratio of the between-cluster variance to the total variation, and is the proportion of total 

variation in the response that is accounted for by clustering of observations. ICC can 

also be interpreted as the level of correlation among observations within the same 

cluster, and is an indicator of whether inclusion of a random effect is necessary 

(McCullough and Nelder 1989). NBDP is the dispersion parameter (theta that describes 

the relationship between the variance and the mean in the negative binomial model. 

Very large NBDP’s would suggest that a Poisson distribution is more appropriate, 

whereas very small values are evidence of overdispersion and lend support for the 

negative binomial distribution.     

We created a predictive distribution map by converting all GIS variables into rasters, 

and calculating predicted values for each pixel using our model coefficients in a 

predictive equation:  

E[Yi|X] = exp(β0 + β1 % Tree Cover  + β2 Elevation  + β3 Slope 

roughness + β4 Distance to road  + β5 Distance to village  + log(mean(transect area))  

where  = the variance of the random effect (  was included to generate 

population-level predictions by averaging over the site-level random effects (Young et 

al. 2007, Fieberg et al. 2009). We grouped predicted values into 4 categories: 0.0 – 0.5, 

0.5 – 1.0, 1.0 – 3.0, >3.0, and calculated the proportion of transects where bears were 

detected within each predictive value category to generate a habitat suitability index. We 

interpreted the map generated from the recent sign model as reflective of relative bear 

abundance (Steinmetz and Garshelis 2010, Fredriksson 2012), and the map generated 

from the all sign model as reflective of general habitat suitability.  

We validated models using Spearman’s rank correlation between real and predicted 

values, and an ROC on binary observations (i.e. presence or absence of bear sign on 

transects) by plotting the true positives versus the false positives. We used  ‘leave-one-
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out’ cross validation, alternately removing each transect from our data set, re-running 

the model and using the coefficients to predict the expected number of sign within each 

transect as if it were a new observation to generate more honest measures of predictive 

performance (Abdi and Williams 2010). We repeated the cross-validation process with 

individual study sites as the sample unit, to test how well our models perform at 

predicting counts at new sites.      

Data were analyzed in R version 3.3.1, with R package “glmmADMB”, and GIS 

covariates and predictive maps were generated in ArcGIS Version 10.3.  

Results 

 

Data overview 

We walked 99 transects, surveying an area of 322.7 ha. We observed 165 recent 

signs (found within 43% of transects), and 455 total signs (found within 78% of 

transects). We identified bear species for 34 recent claw marks: 16 sun bear and 17 

Asiatic black bear, with no apparent latitudinal trend in ratio of species from north to 

south. The average density of bear sign on transects was highest in northern Sam 

Meuang Product Forest and Gnot Namthi Provincial Protected Area (2 sites combined), 

and lowest in the southern Xe Pian National Protected Area. Proportions of recent sign 

and old sign (> 1 year) varied between sites, and the lowest incidence of recent sign 

occurred within southern sites (Fig 3).  

 

A priori models of recent bear sign (< 1 year old), and bear sign of all ages 

Our models included 5 fixed-effect covariates, 1 random effect, and 1 dispersion 

parameter (negative binomial distribution), for a total of 7 degrees of freedom (Table 2). 

Testing the appropriateness of a negative binomial distribution, we found that the 

negative binomial recent sign model had an NBDP of 1.89 (SE = 0.46). The negative 

binomial all sign model had an NBDP of 0.85 (SE = 0.30). We concluded that the very 

low NBDP values are evidence that the negative binomial distribution was appropriate 

for our models. When testing the significance of study site as a random effect, we found 
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that the recent sign model had an ICC of 0.18, meaning 18% of stochastic variation 

recent sign, given the predictors, was explained by study site. The all sign model had an 

ICC of 0.017, meaning that only 1.7% of the variation in all sign, given the predictors, 

was explained by study site. We interpreted parameters from the recent sign model with 

a random effect and parameters from the all sign model without a random effect. 

 

Bears were more often detected at higher elevations (P < 0.01), and further from roads 

(P < 0.05). All sign were detected more in areas of high tree cover (P < 0.05) and in 

rugged habitats (P = 0.08). The significance of parameter estimates varied between the 

recent sign model and the all sign model, and the 95% confidence intervals (profile 

confidence intervals generated by R function “confint”) for all predictors are narrower in 

the all sign model (Table 3).  The direction of effects was the same in both models, 

except for distance to village, where the effect changes from neutral, in the recent sign 

model, to positive in the all sign model, however confidence intervals for this variable 

suggested it may not be important (at least inside protected areas), or the effect could be 

a consequence of sampling bias (Fig 4). Elevation and distance to roads were the most 

important predictors in both models, and effect sizes were lower in the all sign model. 

Tree cover was statistically significant (P < 0.05) in the model with all bear sign (Table 

3, Fig 4). The recent sign model predicted relative bear abundance to be highest in the 

mountainous areas of Lao PDR, particularly along the border areas. The all sign model 

predicted a wider area of suitable bear habitat than the recent sign model (Fig 5).   

 

Models with local covariates 

In the recent model that included only locally collected predictors the ICC was < 

1. In the all sign model the ICC was 0.27. We interpreted parameters from the recent 

sign local model without a random effect and parameters from the all sign local model 

with a random effect. The negative binomial recent sign model had an NBDP of 1.2 (SE 

= 0.3) and the Poisson model failed to estimate standard errors. The negative binomial 

all sign model had an NBDP of 2.5 (SE = 0.82). We concluded that the negative 

binomial distribution was appropriate for our models. In both models, bear occurrence 
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was negatively associated with human disturbance (P < 0.001), and had a positive but 

non-significant relationship with ungulate sign and food abundance (Table 4).  

 

Model validation  

A Spearman's rank correlation between observed versus predicted values was 

significant for both models, at 0.337 (P = 0.0007) for recent sign, and 0.535 (P < 0.001) 

for all sign. An ROC curve derived from the ‘leave-one-out’ cross validation that 

removed one transect at a time had a moderate AUC value for the fresh sign model 

(0.63, 95% CI = 0.46 – 0.77), and a good AUC value for the model with all bear sign 

(0.73, 95% CI = 0.53 – 0.89). There was very little difference in ROC curves generated 

from the ‘leave-one-out’ cross validation that removed one study site at a time, which 

had a moderate AUC value for the fresh sign model (0.67, 95% CI = 0.51 – 0.8), and a 

good AUC value for the model with all bear sign (0.73, 95% CI = 0.54 – 0.89).    

 

Discussion 

 

 

Our models of bear relative abundance and habitat suitability performed well 

with a small set of remotely sensed predictors. Remotely sensed predictors were best at 

explaining variation among transects of density of sign of all ages, for which study site 

explained 18% of variation. Conversely, locally collected predictors were best at 

explaining variation among transects of density of recent sign, for which study site 

explained 27% of variation. In our study, bears selected for areas of high elevation, high 

tree density and for sites at greater distance from roads. Contrary to expectations, 

proximity to villages had little association with bear occurrence, with either neutral or 

non-significant positive effects. Similarly, terrain ruggedness had neutral or weakly 

positive effects associated with bear sign intensity. Country-wide variation in eco-

geographic conditions and levels of human disturbance had a pronounced effect on bear 

habitat suitability throughout Lao PDR. Most suitable bear habitat was concentrated in 

the northern Indochina hilly sub-tropical sector, and the eastern Annam Trung Son 

mountain chain. Data and predictions indicated bear abundance to be very low in the 
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southern tropical lowland plains, where there are only small patches of suitable habitat. 

We also found no bear activity within dry dipterocarp forest (Fig 5).  Our predictions 

have some notable differences from the IUCN range map, which has the bulk of definite 

range concentrated within the south of Lao PDR and relatively fewer patches of definite 

range in the north, where there are large areas of unknown range (Fig 1).  

 

One of the most important predictors of the relative abundance of bears was elevation, 

with suitable habitat most concentrated in mountainous areas in the north and in the 

border regions of Lao PDR. We assume that the cooler, wetter conditions and the 

vegetation assemblages associated with higher elevations (Culmsee and Leuschner 

2013) are preferred habitat of bears. Our results appear to contradict findings from a 

similar study in Kao Yai National Park, Thailand, where models of fresh Asiatic black 

bear sign, using sign < 3 months old, revealed no effect of elevation, and found that bear 

habitat selection was largely driven by food availability (Ngoprasert et al. 2011). We 

detected no significant relationship between bear occurrence and fruit abundance. The 

differences between the studies are most likely attributed to differences in sampling, in 

particular the time-scales captured by the age of signs included during surveys. By using 

a wider age category of bear sign, we captured a broad temporal range of habitat and 

elevation use by bears, spanning a wide seasonal variation in food availability, whereas 

using only fresh sign is more suitable to understanding short-term foraging sites of bears 

such as fruit trees and other pulsed food resources.   

 

Bear occurrence in Lao PDR was negatively associated with closer distances to roads 

and human disturbance, and we expect that both of these predictors were closely 

associated with levels of hunting (Brodie et al. 2015). In Thailand, Ngoprasert et al 

(2011) detected no influence of human disturbance on bear habitat use; Thailand is the 

only country in Southeast Asia where bear populations are not in decline (Garshelis and 

Steinmetz 2016), and there is government investment in protected area management 

(Jenks et al. 2011). When hunting levels are low, as is the case in Thailand, bears may 

not be displaced by human activities. This is in contrast to Lao PDR, where evidence of 
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hunting and illegal trade in bears was ubiquitous throughout all of our study sites. The 

strong effects of human influence on bears in Lao PDR suggests that protected areas are 

not providing sufficient protection to bears. However, observed levels of protection 

varied among sites, and this level of protection may have been reflected by study site, as 

a random effect, explaining 18% of variation in density of recent bear sign as a function 

of remotely sensed predictors. Conversely, the models of locally collected covariates, of 

which only local levels of human disturbance had a significant effect on bear sign, are 

opposite to what we found with the remotely sensed covariates. In models with local 

covariates, study site explained very little variation in density of recent sign, but 

explained 27% of variation in all sign.  This result suggests that local levels of human 

disturbance may better explain among-transect variability in density of recent sign 

within study sites, and that the strength of this relationship is diluted over time, with 

local levels of human disturbance less able to explain differences in density of all sign, 

which accumulate over a long period (> 2 years).  

 

In principle, forest protection in Lao PDR is the responsibility of Provincial and District 

offices of Natural Resource and Environment. In practice, however, the level of 

enforcement of wildlife protection laws varied widely among sites, and was dependent 

on external funding. For example, in the northern-most study site, Nam Kan NPA, forest 

patrols and vehicle inspections were commonplace during our surveys, and were a 

consequence of the protected area hosting a popular ecotourism project ‘The Gibbon 

Experience’. Similarly, NEPL NPA had long term financial backing from WCS 

(Johnson et al. 2016) and Nakai Nam Theun NPA has long term support from the Nam 

Theu 2 Power Company (Molle et al. 2009), and active forest patrols were observed in 

both protected areas during our surveys. This was also the case in Xe Sap NPA and Xe 

Pian NPA which are managed by WWF. In contrast, in Gnot Namthi Provincial PA and 

Sam Meuang Product Forest and Laving Lavern NPA, no active management was 

observed. With high financial incentives to poach bears, park funding and patrols are an 

essential part of protected area management. Without these measures, the relatively low 

risk of poachers being caught or penalized leave protected areas open to illegal 
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exploitation. We believe our failure to detect bears in lowland dry dipterocarp forest was 

due to insufficient protection and high levels of human disturbance within this forest 

type. This included widespread domestic livestock grazing within Xe Pian NPA. Bears 

are known to use dry dipterocarp forest in Huai Kha Khaeng Wildlife Sanctuary 

(HKKWS), Thailand, where they feed on fruit and termites (Chongsomchai 2013). 

However, HKKWS is well protected, patrolled and free from livestock, whereas Xe Pian 

NPA was not. Therefore, bears presumably avoid (or do not survive in) dry dipterocarp 

forest in Lao PDR due to the high levels of human disturbance, and would otherwise 

utilize this habitat type if these pressures were absent. 

 

Surprisingly, distance to village had either a neutral or non-significant positive effect on 

bear occurrence, despite villages being associated with human disturbance and hunter 

accessibility (Brodie et al. 2015). The lack of relationship may be an artifact of errors in 

village GIS location data, or possibly due to people from villages within protected areas 

being less likely to hunt. Alternatively, other predictors in our models may be explaining 

similar information as distance to village (i.e. distance to road, tree cover, elevation) and 

the correlation between distance to village with these predictors may be masking its true 

effect.  The neutral effect of distance to village could also be attributed to bear’s 

propensity to forage in human crop fields (Fredriksson 2005, Ngoprasert et al. 2011, 

Guharajan 2016). In Lao PDR bears raid sweet corn crops during July – September. The 

corn ripening season coincides with a period of low fruit productivity in seasonal 

tropical forests, drawing bears into plantations (Ngoprasert et al. 2011). Similarly, in 

Japan, Asiatic black bears selected for agricultural areas in proximity to forest edges 

(Takahata et al. 2014). Feeding from crop fields puts bears at risk of mortality from 

farmers, seeking both to defend their crops, and to profit from the high trading values of 

bears and cubs (Scotson et al. 2014). Corn fields, may therefore bolster productivity in 

times of low food availability, but could also act as ecological traps for bears foraging 

for food during the lean season.   
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Our results suggest that the density of Asiatic black bears and sun bears in Lao PDR is 

approximately equal. Ngoprasert et al (2013) found that abundance of bear sign 

identified to species reflects real differences in population densities.  However, only a 

small proportion of sign in our study was identifiable to species.  We found sign from 

both species in all study sites, with a roughly equal ratio of sign of Asiatic black bears 

and Sun bears (52% Asiatic black bear, 48% Sun bear). We found no north to south 

trend in species ratio. Asiatic black bears are known to dominate in areas of high fruit 

availability, and sun bears incorporate a higher proportion of insects into their diet 

(Steinmetz et al. 2013). At fine scales, these dietary differences coincide with divergent 

elevational preferences; sun bears occur more in lower elevation forests where insect 

availability is high, and Asiatic black bears favor higher elevations, where fruit 

availability is high (Steinmetz et al 2011; Wong and Linkie 2013, Nazeri et al. 2014). At 

broad scales, there is a latitudinal gradient of abundance within overlapping range, with 

sun bears more abundant in the south and Asiatic black bears more abundant in the north 

(Steinmetz 2006). Therefore, in Lao PDR, Asiatic black bears probably occur at higher 

densities in the northern mountainous regions, and sun bears at higher densities in the 

southern lowlands. 

 

Conservation outcomes   

Contraction of bear range, from what was once continuous throughout Lao PDR 

(Erdbrink 1953, Lekagul and McNeely 1977), is a result of rapid habitat clearance, 

human development and exploitation of bears in the past 3 decades (Sodhi et al. 2010, 

Scotson and Brocklehurst 2013, UNDP 2016). Ongoing habitat loss and human 

development will continue to put pressure on bears in Lao PDR. Likewise, the high 

value and international demand for bear cubs, gallbladder and paws undermines the 

efforts of legislation and law enforcement. Despite these challenges, our study 

highlighted opportunities for bear conservation in the region. Our relative abundance 

maps indicated the large availability of suitable habitat for bears in Lao PDR, and 

highlighted several areas in the northern half of the country as highly suitable, in areas 

previously described as status unknown. However, the map also predicted relatively low 
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bear abundance in several southern areas marked as definite bear habitat by the red list 

assessment (Scotson et al. 2017). Further work is needed to verify and track bear status 

in Lao PDR. Sign transects proved a viable alternative to other available methods, and 

were efficient, non-invasive, low tech and easily standardized, and could potentially be 

implemented as a ranger monitoring system. Our map and modeling system also has 

potential in predicting and monitoring the response of bear populations to future human 

developments, by updating future model with variables that are likely to change through 

time (e.g. distance to villages and roads, tree density). Future studies may also consider 

incorporating a measure of financial support on protected area management, to represent 

active protection status.  

 

Our study collected data on bear presence at two time scales, sign < 1 year (recent) and 

sign of all ages (which can be > 2 years old). There was a large difference in the 

predicted bear relative abundance using the recent and all sign models, with high values 

of bear relative abundance over a much larger area using the all sign model. This can be 

interpreted in several ways: (1) all sign covered areas of between year movement of 

bears and picked up habitat and aerial use that may not be regularly used or typical; (2) 

the large decrease in aerial coverage from all sign to new sign maps can be attributed in 

part to a decrease in area of occupancy over time caused by a decrease in population 

size; and (3) the new sign map is a representation of bear distribution and relative 

abundance now, whereas the all sign map represents general bear habitat suitability, in 

other words, where bears should occupy if threats were reduced. Although all three 

interpretations are likely to be true, it is impossible to quantify the contribution of each 

to current bear distribution and abundance indicated by our map. Nevertheless, the data 

indicate a decline in bear populations, highlighting a need for action, and provide a 

habitat suitability map that can guide where conservation actions may have most impact.  

One of the biggest concerns highlighted by this and other studies is the need to deter 

poaching, through improved protected area management and enforcement, and 

restricting, and reducing the incentives driving trade in bears and bear parts in the 

region. Fundamental to resolving these issues is improved law enforcement. This 
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requires funding for facilities and rangers within protected areas but also requires 

training of rangers to more effectively reduce the threat of poaching. Of particular 

concern is the widespread use of wire snares, which is decimating wildlife populations 

throughout much of Southeast Asia (Gray et al. 2017). Snares led to the extirpation of 

tigers from NEPL NPA in recent years, and considering this protected area is one of the 

most intensively managed in Lao PDR (Johnson et al. 2016), the need for new, 

improved strategies to combat poaching is evident. Without measures to reduce 

poaching, bear populations in Lao PDR will almost certainly continue to decline 

(Scotson and Brocklehurst 2013). 
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    Table 1. Characteristics of study sites surveyed for bear sign in Lao PDR 

between 2010 - 2013.    

Site Name Area (km2) Elevation Range (m) Villages1 

Nam Kan National 

Protected Area 1,230 km² 500 - 1500 60 

Gnot Namthi Provincial 

Protected Area 161 km² 600 - 800 12 

Sam Meuang Production 

Forest 787 km² 600 - 900 45 

Nam Et Phou Louey 

National Protected Area 5,959 km2 400 – 2257 100 

Nakai Nam Theun 

National Protected Area 3710 km2 700 - 1500 50 

Laving Lavern National 

Protected Area 900 km2 400 - 1000 50 

Xe Sap National 

Protected Area 1335 km2 700 - 1500 14 

Xe Pian National 

Protected Area 2,400 km2 200 - 844 60 
1Numbers are approximate and include villages located inside and 
around park boundaries. 
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Table 2. Environmental predictors considered for log linear models of bear sign 

collected on line transects in eight study sites in Lao PDR, between 2000 – 2013.  

Predictor Description 

Variability 

within 

study sites 

degrees of 

freedom1 

Include in 

model (Y/N) 

Study site 7 study sites2 NA 1 

Y  

(random 

effect) 

Tree cover 0-100% canopy cover High 1 Y 

Forest type 3 categories3 Low 2 N 

Human 

influence 

index 

 1km2 (Sanderson et al. 

2005) 
Low 1 N 

Road 

density 
Within 10,000-m buffer Low 1 N 

Distance to 

trading post 

Distance in miles to nearest 

known wildlife trading hub 
Low 1 N 

Distance to 

road 

Meters to nearest road from 

middle of transect 
High 1 Y 

Latitude 
Lao PDR ranges from 13 – 

22 °N 
Low 1 N 

Distance to 

river 

Meters to nearest road from 

middle of transect 
High 1 N 

Distance to 

village 

Meters to nearest road from 

middle of transect 
High 1 Y 

Human 

density 
Within 20,000m radius Low 1 N 
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Elevation 
Mean elevation within 

transect 
High 1 Y 

Slope 

ruggedness 

Steepness and undulations 

of terrain 
High 1 Y 

Temperature 
Celsius*10, Annual mean 

and range 
Low 1 N 

Precipitation Annual mean and range Low 1 N 

Ungulate 
Muntjac, Sambar and Wild 

pig sign 
High 1 

Y 

Local model 

Food Ripe edible fruit and acorns High 1 
Y 

Local model 

Human 

disturbance 

Any human sign (e.g. 

cutting, logging, footprints, 

camps) 

High 1 
Y 

Local model 

1Number of regression parameters (coefficients, excluding intercept) needed to model 

each predictor as a linear effect, without interactions (table adapted from Guidice et al. 

2011).  
2Gnot Namthi Provincial Protected Area and Sam Meuang Product Forest are combined 

into one site as they are contiguous with similar ecological and human based conditions.  
3Forest cover extracted from Geographic Information System land cover layer created by 

the Forest Inventory and Planning Division of the Department of Forestry, Lao PDR.   

Categories were reduced from eight categories to three, based on ecological similarity, 

and expected bear use; i) Primary forest (Lower dry evergreen and Lower mixed 

deciduous), ii) Degraded and Secondary forest (bamboo, un-stocked forest), and ii) Dry 

deciduous forest.   
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Table 3. Model coefficients from log linear generalized mixed models, relating count of 

bear sign collected along straight line transects in Lao PDR between 2010-2013 as a log 

linear function of remotely sensed predictors1.  

 

Recent Bear Sign Sign of all ages 

Predictors β1 95% CI β1 95% CI2 

Intercept -3.74 -4.13 – -3.34 -2.63 -2.89 – -2.37 

Elevation (m) 0.90 0.42 – 1.38 0.66 0.37 – 0.95 

Distance to road (m) 0.38 -0.01 – 0.77 0.28 0.06 – 0.49 

Tree cover (%) 0.06 -0.51 – 0.62 0.05 0.10 – 0.85 

Slope ratio 0.12 -0.39 – 0.63 0.22 -0.04 – 0.49 

Distance to village (m) -0.08 -0.52 – 0.36 -0.14 -0.36 – 0.07 

Footnotes 

    1Predictors were centered using x-mean/sd. Models were offset by transect area (m2/100) 
2Profile confidence intervals generated by R function “confint” 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 28 

 

 

 

Table 4. Model coefficients from log linear generalized mixed models, relating count of 

bear sign collected along straight line transects in Lao PDR between 2010-2013 as a log 

linear function of locally collected predictors1.  

 

Recent Bear Sign Sign of all ages 

Predictors β1 95% CI β1 95% CI2 

Intercept -8.9  -9.50 – -8.30  -6.57 -7.24 – -5.89  

Human disturbance  -1.73  -2.69 – -0.76 -0.14  -0.23 – -0.05 

Ungulate sign   0.17  -0.25 – 0.58 0.02  -0.04 – 0.07 

Fruit abundance   0.55  -0.07 – 1.17 0.01  -0.05 – 0.08  

Footnotes 

    1Predictors were centered using x-mean/sd. Models were offset by transect area (m2/100) 
2Profile confidence intervals generated by R function “confint” 
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Figure 1. IUCN range maps for Asiatic black bears and sun bears in Lao 

PDR. Range is identical for each species. Definite range has known bear 

occurrences, probably range is forested areas likely to contain bears based on 

habitat composition and proximity to definite range, Status Unknown is 

forested range which have undergone no formal surveys.  
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Figure 2. Eight field sites where we conducted bear sign transects in Lao PDR, 

between 2010 – 2013; 1) Nam Et Phou Louy National Protected Area (NPA), 2) Nam 

Kan NPA. Lao PDR 3) Sam Meung Product Forest and Gnot Namthi Provincial PA, 4) 

Laving Lavern NPA, 5) Nakai Nam Theun NPA, 6) Xe Sap NPA, 7) Xe Pian NPA. Lao 

PDR has three major biological subunits; A) the Northern Indochina hilly sub-tropical 

sector, with the country’s highest point, 2820-m, B) the Annam Trung Son Mountain 

Chain (a.k.a. the Annamite Mountains) where elevations match those in the north, and 

landscape is dominated by rugged limestone terrain, and C) the Central Indochina 

tropical lowland plains.  
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Figure 3. Density of bear sign per hectare observed within line transects walked 

between 2010 – 2013 in eight sites in Lao PDR. SMGN = Sam Meuang Product Forest 

and Gnot Namthi Provincial Protected Area, NK = Nam Kan National Protected Area 

(NPA), NEPL = Nam Et Phou Louey NPA, LL = Laving Lavern NPA, NKNT = Nakai 

Nam Theun NPA, XP = Xe Sap NPA, XP = Xe Pian NPA.   
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Figure 4. Modelled relationship between distance to village and % tree cover and 

the expected count (E[Y|X]) of bear sign on transects. Bear sign was collected within 

line transects in eight study sites in Lao PDR between 2010 – 2013. Models assumed 

that the log count of bear sign was a linear function of elevation, distance to road, slope 

ruggedness, % tree cover and distance to village. Covariate values were averaged within 

a 350-m radius of the center points of transects.  The left panels display relationship 

from a model of recent bear sign (sign < one year old), and the right panels display 

relationship from a model of all bear all sign (sign of all ages). Plots are generated with 

values generated by the ‘Predict’ function in R, with values for all other covariates fixed 

at their means.  
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Figure 5. Predictive maps of expected count of bear sign in Lao PDR. Predictions 

were generated from log linear models that assumed the log count of bear sign was a 

linear function of elevation, distance to road, slope ruggedness, % tree cover and 

distance to village. Bear sign was collected within line transects in eight study sites in 

Lao PDR between 2010 – 2013. Left: predictions made with a model that included only 

sign less than one year old, reflective of relative abundance of bear populations. Right: 

predictions from model coefficients from a model that included sign of all ages, 

reflective of habitat suitability for bears.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 34 

 

 

Chapter 2 
 

Monitoring range-wide sun bear population trends using forest cover and camera-

trap bycatch data 

  

Synopsis 

 

Monitoring population trend of threatened species requires standardized techniques that 

can be applied over broad areas and repeated through time. Sun bears Helarctos 

malayanus are a forest dependent tropical bear found throughout most of Southeast 

Asia.  We combined data from 2845 camera traps within 49 field sites across sun bear 

range to model the relationship between photo catch rates of sun bears and tree cover.  

We estimated related changes in country and global-level sun bear populations based on 

tree cover loss. Sun bears were detected in all levels of tree cover above 20%, and 

probability of presence was positively associated with areas of high tree cover.  Our 

model-based estimates, cast over a 30-year period, predicted that sun bear populations in 

mainland southeast Asia have potentially declined by close to 20%, with declines 

highest in Cambodia and lowest in Myanmar. Insular sun bear populations were 

predicted to have declined at a much higher rate than the mainland (~50%), and 

surpassed the IUCN criteria for endangered if sun bears were listed on the population 

level. Indonesia and Malaysia experienced the highest country-level declines. Remote 

sensing tree cover data may serve as a useful proxy for monitoring population trends of 

sun bears and other forest dependent species over space and time with an empirical and 

standardized approach.  

 

Introduction 

 

Management and conservation of species and sub-populations threatened with extinction 

requires accurate and reproducible estimates of population trends.  Measuring changes in 

the global status of a species usually requires data collected over broad spatial and 
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temporal scales. Yet most monitoring programs tend to be restricted in scope, with data 

collected within a single study area, and with limited ability to extrapolate to other areas. 

Of the > 5000 mammalian species categorized by the International Union for the 

Conservation of Nature (IUCN) Red List of Threatened Species, > 800 are classed as 

data deficient (status unknown), and 25% are threatened with extinction. Red list 

assessments are usually based on a combination of anecdotal data and expert opinion [1–

3]. For some species, international collaborators combine data from multiple study sites 

to monitor populations on regional and global scales (Ahumada et al. 2011, Linkie et al. 

2013, Chutipong et al. 2014, Mathai et al. 2016). Population change is sometimes 

measured indirectly, by inference using a proxy measure, such as change in habitat 

extent (Buchanan et al. 2008, Bird et al. 2012, Tracewski et al. 2016).  

Data on global population trends for sun bears Helarctos malayanus are deficient. Sun 

bears inhabit the tropical forests of Southeast Asia, and populations are threatened by 

rapid deforestation (Miettinen et al. 2011, Scotson et al. 2017). Sun bears’ global range 

is contracting, and local extirpations are possible within the northern range limits of 

Bangladesh and China and are imminent in Vietnam (Erdbrink 1953, Islam et al. 2013, 

Wen, C., Wang. et al. 2013, Scotson et al. 2017).  Studies that quantify the status of sun 

bear populations are few and limited to small areas. Density estimates are available for 

two national parks in Thailand (Ngoprasert et al. 2015) and population trends have been 

measured in a National Park in Sumatra (Wong et al. 2013a) and several sites in 

Thailand (Steinmetz et al. 2006, Kanchanasakha et al. 2010). Results of these studies 

cannot be readily extrapolated to other regions due to environmental variability among 

regions, nor are they easily compared between sites, because of differences in field 

methods and use of predictors that cannot be derived for areas outside those sampled. 

Therefore, current estimates of sun bear population trend rely on expert opinion, 

augmented by tree cover change estimates taken from the published literature, and by 

perceived levels of hunting (Scotson et al. 2017).  

The IUCN classifies sun bears as vulnerable, estimating that populations have 

declined by ~35% in the past 30 years (Scotson et al. 2017).  A lack of quantifiable data 
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required this estimate to be generated by pooling expert representatives from 8 of 11 

range countries (1 – 5 people per country). Brunei had no representative, and China and 

Bangladesh were both excluded from the assessment because the extent of former range 

in these countries is unclear. The use of expert opinion and antidotal data to forecast 

population trends and to estimate risk of extinction generates a semi-subjective measure, 

that is hard, or impossible, to replicate.  Like many threatened species, sun bears would 

benefit from a more objective method for ongoing monitoring through time. If possible, 

monitoring methods should be feasible, inexpensive, and estimates of trend must be 

comparable between time periods (i.e. methods should stay consistent through time).  As 

an alternative to expert opinion, changes in forest cover and rates of deforestation can be 

used to calculate changes in areas of occupancy and to infer population decline, by 

assuming that the rate of population change is equal to forest loss  (Buchanan et al. 

2008, Bird et al. 2012,  Tracewski et al. 2016). While habitat loss is not the only driver 

of abundance, the IUCN Red List framework permits this measure as a viable alternative 

to estimating population trend in the absence of suitable field data (IUCN 2017a). The 

recent availability of online, satellite-based tree cover change data collected between 

2000 and 2014, enables researches to tailor their measurements of deforestation rates 

(i.e. habitat change) to an area specific to a species of interest (e.g. within its' range 

limits; Hansen et al. 2013).  

Studies that use forest loss as a surrogate for population declines have  measured 

tree cover changes within the geographical and elevational range limits of a species, 

without taking into account species-specific selection for tree cover density  (Buchanan 

et al. 2008, Bird et al. 2012, Tracewski et al. 2016). However, treatment of tree cover as 

a discrete value may be misleading if the density of a species varies at varying levels of 

tree cover. Sun bears are forest dependent, and use a broad spectrum of habitat types. 

Bears select habitat based on food availability and security, favoring interior forest but 

also using secondary, logged and regenerating burnt forests (Te Wong et al. 2004a, 

Steinmetz et al. 2011a, Fredriksson 2012, Nazeri et al. 2012, Cheah 2013, Wong and 

Linkie 2013). Sun bears also feed in, and travel through, agricultural areas close to the 
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forest edge  (Normua et al. 2004, Fredriksson 2005, Cheah 2013, Scotson et al. 2014). 

Sun bear populations experience steeper declines in areas of high deforestation 

compared with areas of low deforestation (Wong et al. 2013a), however the relationship 

between sun bear density and tree density has not yet been investigated. If sun bears 

select for areas of high tree density, the loss or degradation of high tree cover areas 

would have a greater impact on populations numbers than loss or degradation of areas of 

low tree density. Treating tree cover as a continuous variable and allowing estimates of 

population decline to be directly associated with sun bear’s selection for varying levels 

of tree cover would generate a more biologically meaningful population decline estimate 

than if treating tree cover as a discrete variable.  

Here we explore an alternative method to quantifying changes in sun bear 

populations through time that does not rely on expert opinion, and strengthens the direct 

inference of population decline based on forest change by treating tree cover as a 

continuous variable. We develop a simple, replicable univariate model, and explore the 

predictive power of tree cover as a variable that encompasses the underlying processes 

of food availability, shelter, security, human disturbance and mortality risk (factors for 

which data are not yet available in a uniform measure across the entire sun bear range). 

To test the predictive power of tree cover, we used bycatch data pooled from multiple 

camera trap studies within sun bear range, and integrate models using detection/non-

detection data and independent count data as the response to tree cover. If sun bear 

presence is consistently linked to tree cover, deforestation rates could provide a 

standardized proximate measure of sun bear population change through time by working 

remotely with GIS, at least until better data become available. Data driven models have 

the benefit that they can be repeated, and, as these models have explicit assumptions, 

they can also be debated, modified and improved. To evaluate whether changing tree 

cover can be used to monitor sun bear populations, we asked two inter-related questions; 

is sun bear presence correlated with tree cover, and if so, can we use this relationship to 

estimate sun bear population changes through time?  
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Methods 

 

 We combined high resolution (30 x 30 m) tree cover data with camera trap catch rates 

of sun bears, pooled from multiple study sites, to model the relationship between tree 

cover density and sun bear detections, and to estimate population declines associated 

with tree cover loss between 2000 and 2014. We cast our estimates over a 30-year 

period, and compared our results with expert-derived estimates of sun bear decline over 

a similar period.  

 

Remote sensing data 

We processed Global Information System (GIS) data in ArcGIS 10.2; Arc tools referred 

to in the text are capitalized. We downloaded open source satellite-based tree cover 

rasters for the year 2000 (pixels valued from 0-100% tree cover) and tree cover loss 

rasters from between 2000-2012 and 2000-2014 (pixels valued 1 [100% loss of tree 

cover within pixel] or 0 [no loss]; www.globalforestwatch.org, accessed 14th Feb 2017). 

We used Extract Raster to Mask to trim all rasters to the geographic extent of historic 

sun bear range (Erdbrink 1953). We created a 2012 and 2014 tree cover raster with 

Raster Calculator by i) multiplying all loss pixels by 100 to transform pixel values to be 

0 or 100, and on the same scale as the tree cover layer and ii) subtracting the 

transformed loss raster from the year 2000 tree cover raster. All negative values, when 

100 loss was subtracted from a cell with < 100 tree cover, were transformed to zero. 

With the Neighborhood Function, we smoothed the tree cover rasters for all years by 

averaging pixel values over a 6km2 circular area (circular radius =1.38 km), wide 

enough to represent the area of a core sun bear home range (home range estimates of sun 

bears range from 4 - 27.5 km2; Te Wong et al. 2004, Fredriksson 2012, Cheah 2013)) 

and narrow enough to maintain variability in tree cover within the scale of a camera 

trapping site.  

 

Sun bear detections at camera traps  

http://www.globalforestwatch.org/
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We obtained sun bear detection data from 49 non-baited camera-trap studies that were 

conducted within sun bear range between 2000 and 2014 (Fig 1; Table 1). The primary 

objectives of these studies included biodiversity monitoring, and single species surveys 

(e.g. tiger Panthera tigris occupancy, Bornean orang-utan Pongo pygmaeus morio 

terrestrial behavior, sun bear occupancy), but often captured sun bears and many other 

species. Camera trap metadata included a GPS location, the date the camera was set, and 

number of nights the camera was active (trap nights). For six of the 49 sites, only an 

average number of trap nights (across all cameras at the site) was available. We recorded 

the number of independent sun bear detections per unit (independent count data) at sites 

where camera data included timestamps for each picture; detections were considered 

independent if they occurred > 1 hour apart. For all camera trap data from the mainland 

region (study sites=17, camera traps = 843), the number of trap nights was known but 

the time between sun bear detections was unknown so independent detections could not 

be determined.  For these data, we recorded detection/non-detection within a known 

trapping period (data were modelled as a rate, to account for variable-length trapping 

periods). If cameras were set in pairs, we used the data from the second unit. We filtered 

the date to reduce variability in sampling intensity, removing camera units operational 

for < 7 days and > 3 months, and removed field sites with < 10 camera traps.   

 

 

We divided the data by two regions; mainland (all countries north of Peninsular 

Malaysia) and insular (Peninsular Malaysia, Sumatra and Borneo). Major ecological 

differences between these areas (i.e. seasonal versus aseasonal forest; presence of 

sympatric and dominant competitor, Asiatic black bears Ursus thibetanus, in the 

mainland versus absence of this species in the insular region) may cause sun bear 

response to tree cover to vary by region. The mainland data were collected in Thailand, 

Lao and Cambodia, and these data were assumed representative of all other countries in 

that region (Fig 1). China and Bangladesh were excluded from the analysis; sun bears 

may be extirpated in these countries, and the extent of historical range is unknown 
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(Scotson et al. 2017). We analyzed data globally, with mainland and insular data 

combined, and regionally, with mainland and insular data analyzed separately (Table 2).  

 

We recorded the number of independent sun bear detections per unit (independent count 

data); detections were considered independent if they occurred > 1 hour apart. For all 

camera trap data from the mainland region, the time-lag between sun bear detections 

was unknown, so we recorded detection/non-detection within a trapping period. 

aIndependent sun bear detections per unit (independent count data); detections were 

considered independent if they occurred > 1 hour apart. bFor all camera trap data from 

the mainland region, the time-lag between sun bear detections was unknown, so we 

recorded detection/non-detection within a trapping period.  

 

Data analysis 

 

Relating camera trap catch rates to tree cover 

We averaged percent tree cover within a 6km2 circular area at each camera trap 

location. Tree cover values were drawn from whichever raster (2000, 2012, or 2014) 

closest in time to when the camera was active. The 2000 raster was used for units active 

before 2006, 2012 for units active from 2007 – 2012, and 2014 for units that were active 

post 2012. For units active in 2006 we compared raster values from the year 2000 and 

2012; in all cases, the values were very close or identical in value.  

 

We examined the relationship between sun bear detections and forest cover in two ways. 

For most camera traps in the insular region we had catch rate data, and for all units on 

the mainland we had detection/non-detection data; to model both data types 

concurrently, and produce equivalent coefficients, we used two models. In the first, we 

modelled the relationship between the expected catch rate (number of independent 

camera detections/number of trap nights) as a log-linear function of % tree cover: 

 

log(E[Yi]/trap nights) = β0 + β1 % Tree Cover      (equation 1) 
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where E[Yi] represents the expected number of detections at site i  (McCullough & 

Nelder, 1989). For the mainland data, for which independent catch rate was not 

available, we fit binary regression models to the detection/non-detection data (Zi = 1 if 

detected at site i and 0 otherwise), using a complimentary log-log link: 

 

log(-log(1-E[Zi]/trapnights)) = β 0+ β1 % Tree Cover    (equation 2) 

  

The complementary log-log link usually gives similar results to models fit using a logit 

link, but provides a closer connection between the parameters in the two models (eq. 1 

and eq. 2).  Specifically, for Poisson random variables, slope coefficients in count (with 

log link) and presence-absence (with complementary log-log link) models will be 

equivalent (e.g. (Royle et al. 2009)).  We fit both models using the glm function in 

Program R (R Development Core 2012), with family=poisson(link=”log”) when 

analyzing the count data and family=binomial(link=”cloglog”) when modeling the 

detection/non-detection data.  In both cases, we included log(trap nights) as an offset to 

account for variable sampling effort across the different sites.  

 

We used a cluster-level bootstrap, (resampling clusters [study sites] with replacement; 

sites had a minimum of 10 camera traps) to estimate uncertainty in the population-level 

relationship between tree cover and catch rate and detection/non-detection rate. This 

allowed us to relax the assumption that the counts were independent and Poisson 

distributed. Data collected from a single study site (or adjacent sites within a contiguous 

block of forest), by a single research team, were treated as a cluster of correlated 

observations. Observations from different field sites were treated as independent 

clusters.  We refit models to 50,000 bootstrapped data sets. We treated the data 

regionally (mainland and insular separately) and globally (mainland and insular 

combined) to test for differences in response to tree cover between regions, and to 

capture uncertainty in our estimates of β1. 
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Estimating sun bear population decline between 2000-2014 

Camera trap data alone do not allow us to estimate the absolute abundance of 

animals, since the number of detections are influenced by both the density of animals 

and the probability of detecting individuals given they are present (Royle et al. 2014). 

We assume, however, that our models are adequate for modeling the relative density of 

sun bears as a function of tree cover.  The assumption that regression parameters capture 

spatial variability in the relative density of individuals is common among species 

distribution models fit to presence-only data (e.g., (Aarts et al. 2012)).  This assumption 

requires that the probability of detecting bears, when present, is similar across the range 

of tree cover values (if detection is lower in areas of dense forest, estimates would be 

biased low). We further assume the population distribution is in equilibrium (i.e., that 

the number of bears is relatively constant within the surveyed habitat at the time it was 

surveyed) and that future changes in forest tree cover will result in similar relative and 

absolute densities of bears for any given level of forested tree cover.   

 

Given these assumptions, we can estimate relative changes in absolute abundance (N) 

using:  

 

ΔN =  exp(β1[X2- X1])/exp(β1 X1),                                         (equation 3) 

                                                                                                                                                 

which does not depend on any unknown parameters.   

 

We used the estimated regression coefficient, , from the global model (mainland and 

insular data combined) and equation 3 to estimate the % change in the number of sun 

bears, range-wide and by country (excluding China and Bangladesh), between 2000 and 

2014 based on change in % tree cover. We used the bootstrap distribution of regression 

coefficients to calculate percentile-based 95% confidence intervals for these trend 

estimates. We projected sun bear population decline between 2000 – 2030, assuming the 

annual rate of % tree cover change remained constant through time.  
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Results 

 

The relationship between sun bear catch rate at camera traps and % tree cover 

 Sun bears were detected in all levels of tree cover above 20%, and catch rates 

increased with % tree cover within a 6 km2 circular area of camera traps (Fig 2).  

Estimates of (β1) were similar for the insular and mainland models, suggesting 

comparable responses to tree cover between regions (Fig 3). Thus, to project population 

trends, we used the estimated regression coefficient from the analysis of the combined 

(mainland and insular) data (  = 0.47; 95%  

CI = 0.21 - 0.78).  

 

Projected population declines 

 We predicted declines in all sun bear range countries but with varying levels of 

severity. Declines were    predicted to be highest in Indonesia and Malaysia, and lowest 

in Myanmar (Fig 4). The insular region experienced a higher relative level of decline 

than the mainland region (Fig 5). Predicted sun bear population losses over a 14-year 

period, between 2000-2014, were 22% (CI = 13.4 – 28.5) in the insular   region, and 

8.6% (CI = 4.1 - 12.9) on the mainland. Cast over 30 years, assuming tree cover loss 

continues at a constant rate, loss in the insular region may exceed 50% (x̅ = 47.7, CI = 

28.7 – 61.2) and approaches 30% on the mainland (x̅ = 18.4, CI = 8.7 – 27.7). 

 

Discussion 

 

Sun bear catch rate at camera traps was positively correlated with tree cover 

density.  Changes in tree cover over time, derived from satellite imagery, therefor 

provided a standardized, objective and reproducible method to monitor changes in 

global populations through time.  While tree cover alone is not expected to explain sun 

bear presence and population trends, its strength may be as a transcendent variable, 

much like greenness, a satellite derived measure of vegetation reflectance that has strong 

predictive power in modelling grizzly bear population dynamics (Boyce and Waller 

https://en.wikipedia.org/wiki/X%CC%85_and_s_chart
https://en.wikipedia.org/wiki/X%CC%85_and_s_chart
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2012). Tree cover is assumed to be related to unmeasured explanatory variables for 

which we do not have a measure, such as food availability, human disturbance and 

habitat degradation. Wide bootstrap confidence intervals reflect the unmeasured 

variation in local conditions, and serve as a helpful reminder that our models should not 

be used for fine scale interpretations, but are expected to capture broad, landscape-scale 

patterns. Sun bears in the mainland and insular regions face different ecosystem types 

(seasonal versus a-seasonal forest) and different competitive pressures 

(presence/absence of the dominant Asiatic black bear). Yet, the regression parameters 

describing the effect of tree cover on catch rate were similar for the mainland and insular 

models, suggesting that the data can be pooled to increase precision.  Pooling the data 

led to narrower confidence intervals and a slightly higher estimate of β1; the small 

change in estimate is attributable to the pooled data being collectively and analyzed as 

detection/non-detection data within a binary regression model (equation 2), where-as the 

mainland and insular data treated separately were modelled with log-linear-regression 

(equation 1) and binary regression (equation 2) respectively.   

 

Our country-level 14-year estimates (2000-2014) predict that sun bear populations have 

potentially declined at the highest rates in the insular countries of Indonesia and 

Malaysia (including Peninsular Malaysia). Brunei is an outlier, with a low level of 

decline compared with the rest of the insular region. On the mainland, north of the 

Isthmus of Kra, rates of decline followed a longitudinal gradient, being highest in the 

eastern countries (Cambodia, Lao PDR, Vietnam) and lowest in the west (India, 

Thailand, Myanmar, Fig 4). Grouped regionally and cast over 30-years, the 95% 

confidence intervals of the insular estimates overlap with the IUCN expert-derived 

global estimates of sun bear population decline of ~ 35 % for the past 30 years, while the 

upper limit of our mainland estimate is slightly lower (Scotson et al. 2017). In the 

insular region, the upper confidence limits of our predictions meet the Red List criteria 

for endangered, based on a declining population trend of > 50% over a 30-year period.  
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Population declines associated with changes in habitat extent and habitat degradation 

could be driven by several cumulative and inter-related mechanisms that reduce 

reproductive rates and access to resources, and increase mortality and risk of extirpation 

(Staddon et al. 2010, N. M. Haddad et al. 2015, Riitters et al. 2016).  Because sun bears 

are forest dependent with a broad spectrum of habitat use, tree cover may be the most 

appropriate proximate measure of population change. Higher tree cover may be associated 

with more food resources, further distance to edges, and lower accessibility to humans 

(e.g. hunters, gatherers, researchers, loggers). Sun bears select habitat based on food 

availability and security, favoring interior forest but also using secondary, logged and 

regenerating burnt forests (Te Wong et al. 2004b, Steinmetz et al. 2011a, Fredriksson 

2012, Nazeri et al. 2012, Cheah 2013, Wong and Linkie 2013). Sun bears also feed in, and 

travel through, agricultural areas close to the forest edge  (Normua et al. 2004, 

Fredriksson 2005, Cheah 2013, Scotson et al. 2014). Our data support a pattern of broad 

habitat use and a selection for areas of high tree cover; camera traps in our sample 

detected sun bears in all levels of tree cover above 20%, and within areas of highly 

fragmented tree cover, but catch rates were highest at sites with high levels of tree cover.  

 

Long-term global monitoring   

Sun bears and other threatened species require long term, systematic and 

standardized monitoring of population trends across space and time.  In Europe and North 

America, most knowledge of population demographics of bears comes from genetic and 

telemetry studies (e.g. (McLellan 1989, Dahle and Swenson 2003, Kendall et al. 2008). 

Aside from the restrictive expense of these techniques for researchers working on low 

budgets in the tropics, these methods have been difficult to employ with sun bears. 

Researchers have had difficulty in collecting viable hair samples from sun bears due to 

their short pelt (Ngoprasert et al. 2015) and in collecting scats, which persist for a very 

short time in the rainforest, and are rarely encountered (Fredriksson et al. 2006, Steinmetz 

2006). Telemetry studies of sun bears have been challenged by very low capture rates (Te 

Wong et al. 2004b, Fredriksson 2012, Cheah 2013) and data have been insufficient for 

estimating population density and trends.  
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Until now, polling field biologists (i.e., expert opinion) has been the only method 

used to generate estimates of regional and global population trends for sun bears (Scotson 

et al. 2017). Other efforts have been employed on smaller spatial scales (e.g. (Steinmetz 

et al. 2006, Ngoprasert et al. 2012)), and while successful in generating robust site-level 

estimates of population parameters, results cannot be extrapolated to other sites, and 

methods cannot be conducted over a large enough area to monitor regional or global bear 

populations. The IUCN Red List assessment of sun bears relied on a small number of 

people, meaning that each person had a significant influence on the global estimate, 

particularly when only one representative answered for a large extent of the range. The 

free availability of tree cover data, a uniform measure of tree density and temporal 

change over 14 years, between 2000 and 2014, has created new research opportunities in 

studies related to forest loss and fragmentation (e.g.(Donald et al. 2015, Joshi et al. 2016, 

Riitters et al. 2016, Tracewski et al. 2016)). Tree cover may act as a transcendent 

variable, and a viable substitute for causal variables (food availability, hunting pressure) 

that are not available on broad scales. Given the limitations associated with employing 

other monitoring methods over large areas, or in keeping them standardized through time, 

monitoring sun bears with satellite based tree cover change may be the most realistic 

long-term solution because these types of models can be applied repeatedly over time, as 

updates to tree cover data become available.  

 

Limitations   

Here we have shown a relationship between tree cover and sun bear detections. Sun 

bear populations respond to more than just tree cover and our estimates should be 

regarded as reflective of broad-scale patterns and not accurate on a finer level. Site-level 

variation in bear population status, and the associated threats to populations, even in dense 

forests (e.g. hunting, fragmentation), is unaccounted for in our models, resulting in high 

levels of uncertainty at finer scales. Our extrapolation to infer sun bear population decline 

from forest cover loss can be viewed as a hypothesis at one level. This relationship, and 

our results, are valid only to the extent that several important assumptions hold true.  
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Our primary assumption is that sun bear detection rate is related to bear density. Many 

studies assume detection rates are related to density, (Apps et al. 2007, 2016), including 

camera trap studies (Rowcliffe and Carbone 2008),and this underpins the assumptions of 

distance sampling methodology (Buckland et al. 2005).   Nonetheless, we are aware there 

are caveats that influence this relationship. In particular, relative use of different habitats, 

and thus measures of habitat suitability or selection, will vary with both habitat 

availability and population density (Beyer et al. 2010, Matthiopoulos et al. 2011, 2015). 

Our approach also holds the equally important assumption that forest cover is related to 

sun bear foods, and that the quantity of sun bear foods is related to their density. The 

amount of camera-trap data, and the strong correlation between sun bear detection rates 

and tree cover (Fig 2), suggests this is a realistic assumption, even though there will be 

variation across forest types and within forests at different levels of canopy loss. 

Population dynamics within agricultural forests (palm oil and rubber plantations) will 

undoubtedly vary from patterns within natural forests (see below for future research 

considerations). Bears affected by mortality pressure in habitats below carrying capacity 

might not be affected by forest loss because they are heavily hunted, and already reduced 

below food potential. Finally, our models assumed a positive relationship between sun 

bear population change and tree cover density change, and that bears will not simply 

redistribute their numbers within the landscape when tree density changes.  

Violation of these assumptions is inevitable to some degree, in some cases inflating our 

estimates, and in others causing underestimates of decline. Unmodeled effects from 

hunting and habitat fragmentation pressures may cause higher declines than we have 

estimated. Conversely, failure to incorporate the adaptiveness of sun bears to a changing 

landscape may cause inflated estimates. The declines predicted by our models are 

unlikely to be instantaneous, and bears presumably did redistribute themselves in the 

landscape in the short-term, with an unknown time-lag between when deforestation 

occurred and the resulting population declines bringing the food source and mortality 

pressure relationship to equilibrium. Our estimates are regional, and we did not combine 

them to create an over-all global measure of decline because densities may vary greatly 
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between insular and mainland populations (Steinmetz et al. 2011b, Scotson et al. 2017) 

and a simple combination would be biased and/or conceal a steeper decline in a 

significant part of sun bear range. Sun bears population densities are thought to follow a 

north to south gradient, with the highest densities reported in the insular region 

(Steinmetz 2006). Density estimates are rare, with only one unsubstantiated figure for the 

insular region, 26/100km2 (Lee 2014, unpublished data), suggesting sun bears may occur 

at 4-5 x the density of bears on the mainland (Scotson et al. 2017). If this is accurate for 

the insular range, the contribution of this region to overall global decline is much higher 

than if based on range size alone. Reliable density estimates of regional sun bear 

populations would allow an area/density weighted measure to generate more accurate 

decline estimates. 

Conclusions 

 

A full picture of sun bear status requires fine-scale knowledge on the status of 

sub-populations. Many desirable variables, including landscape, anthropogenic and 

biological measures were not available for inclusion. Future researchers might test, 

refine, and improve our analysis with the addition of a more informative suite of 

predictor variables, either at a small geographical scale, or across sun bear range as those 

data become available. Additional variables might include, human disturbance variables 

such as human density, road density, levels and types of land use (Griffiths and Van 

Schaik 1993), forest types and their relative abundance of sun bear foods, agricultural 

lands and their relationship to forest cover and sun bear foods, spatial variation in 

hunting, predation and competitive pressure. Useful landscape variables include habitat 

fragmentation metrics, in combination with sun bear movement parameters, to 

investigate the role of range connectivity (in relation to movement potential) in response 

to tree cover.  Incorporating information about local densities of sympatric Asiatic black 

bears, which might suppress local sun bear populations in mainland Southeast Asia 

(Steinmetz et al. 2011a), could improve estimates by accounting for species competition. 

Other relationships that could be useful to explore include, compensatory responses of 
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sun bears to partial and complete canopy loss, and mechanisms of population decline 

associated with forest cover loss. These factors will undoubtedly improve and refine our 

conclusions and better inform fine scale conservation efforts. Future analyses may also 

explore the utility of data collected in other ways, such as bear sign collected on line 

transects.  

We present an alternative approach to that of expert-based estimates for monitoring the 

population trends of threatened species. We collected the largest catalogue of sun bear 

detection data to date, and made an objective estimate of global population change. Our 

study demonstrates the potential of using camera trap data to monitor threatened species 

even when most were collected on studies for which bears were not a primary focus. The 

conservation community would benefit greatly if more efforts were made to 

systematically classify and manage camera trap imagery for use on a variety of topics 

[56,57, Scotson et al. in review]. Our approach could be repeated for other forest 

dependent species for which optimal habitat may be reflected in selection for tree cover, 

such as Asian elephants Elephas maximus, Sumatran rhinoceros Dicerorhinus 

sumatrensis, Asian tapirs Tapirus indicus and Sumatran tigers Panthera tigris sumatrae  

(Kinnaird et al. 2003, Wibisono et al. 2011, Linkie et al. 2013).  

 

 

 

 

 

 

 

 

 

 

Table 1. Camera trap field sites contributed from across Southeast Asian sun bear range.  
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Study Area Date 

Area 

(Km2)* 

No. of 

Units Contributor information 

Semina Protected Forest, 

Cambodia  2003 123 53 
Wildlife Conservation 

Society 

 Phnom Prich Wildlife 

Sanctuary, Cambodia  2001-07 2,113 119 
Thomas Gray, World 

Wide Fund for Nature 

Siem Bok Forest, 

Cambodia   2001-06 826 32 
Thomas Gray, World 

Wide Fund for Nature 

Siem Pang Forest, 

Cambodia   2003 5 7 
Thomas Gray, World 

Wide Fund for Nature 

Virachey National Park, 

Cambodia   2001 566 9 
Thomas Gray, World 

Wide Fund for Nature 

Semina Protected Forest, 

Cambodia    2004 125 7 
Thomas Gray, World 

Wide Fund for Nature 

Belum-Temengor Forest 

Complex, Peninsular 

Malaysia*  

2011-12 437 452 Reuben Clements 

Kerinci Seblat Tropical 

Rainforest Heritage, 

Sumatra (8 sites)   

2010-11 123 739 Wai Ming Wong 

Semina Protected Forest, 

Cambodia   2000-02 403 92 
Wildlife Conservation 

Society 

Wehea Forest, East 

Kalimantan, Indonesia   2012-13 63 95 Brent Loken 

Batang Hari Forest, 

Sumatra   2008-09 196 21 
 Yoan Dinata, Fauna & 

Flora International  

 Bukit Tiga Puluh 

National Park, Sumatra   2013-14 936 240 Alexander Moßbrucker 

Xe Sap National 

Protected Area, Lao 

PDR   

2013 123 38 
Thomas Gray, World 

Wide Fund for Nature 

Preah Vihear Protected 

Forest, Cambodia   2010-11 353 53 
Wildlife Conservation 

Society  

https://plus.google.com/u/0/115709515461971619671?prsrc=4
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Kuiburi National Park, 

Thailand  2007-12 291 88 Rob Steinmetz 

Kalabakan Forest 

Reserve, Sabah, 

Malaysia (4 sites)   

2011-12 20 592 Oliver Wearn  

Ulu Masen Forest, 

Sumatra  2013 2,702 164 
Matt Linkie, Fauna & 

Flora International 

Virachey National Park, 

Cambodia  2000 1,468 41 
Wildlife Conservation 

Society 

Kirirom National Park, 

Cambodia  2000 933 46 
Wildlife Conservation 

Society  

Kulen Promtep, 

Cambodia  2010-11 419 37 
Wildlife Conservation 

Society  

Hue and Quang Nam 

Saola Reserve, Vietnam  2012-14 210 127 
Thomas Gray, World 

Wide Fund for Nature 

Cholong Forest, Phnom 

Veng, Cambodia 2003-05 32 17 
Thomas Gray, World 

Wide Fund for Nature 

Khieu Forest, Prey Oso, 

Cambodia  2004-06 217 19 
Thomas Gray, World 

Wide Fund for Nature 

Malaysian Borneo (11 

sites)  2003-15 598 209 
Mohd Azlan Jayasilan b 

Abd Gulam Azad 

Preah Vihear National 

Protected Forest, 

Cambodia 

2012-13 512 51 Ai Suzuki 

Forest blocks are named primarily according the IUCN World Database of Protected 

Areas. * Minimum Convex Polygon drawn around perimeter of camera trap units.      

 

 

 

Table 2. Camera trap sun bear detection data, collected between 2000-2013, were 

combined from 49 field sites in 7 out of 11 sun bear range countries. 
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Region No. 

Study 

sites 

Camera traps 

(min/max per site) 

Trap-nights 

(min/max per 

site) 

Counta Detections/total 

unitsb 

Mainland 14 623 (13-126) 26,140 (8-90) NA 379/623 

Insular 17 843 (13-201) 48,752 (8-90) 524 246/843 

Total 31 1,463 (13-201)  74891 (8-90) NA 379/2,022 
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Figure 1. Sun bear range limits and distribution of camera trap field sites from 

which sun bear detection data were collected between 2000-2015. Historic (within 

500 years) sun bear range extends southwards, from southeast Bangladesh, northeast 

India and southern China, throughout most of mainland southeast Asia, and all of 

Malaysia and Indonesia.  Camera trap data were combined from 7 out of 11 sun bear 

range countries and camera traps sampled in all levels of tree cover above 3%. Sun bears 

were not detected below levels of 30% tree cover in the mainland, and 20% tree cover in 

the insular region; areas below these thresholds are blank.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Relationship between catch rates of sun bear at camera traps, active 

between 2000-2015 across southeast Asia, and tree cover from 0-100%. Camera 

traps were active within all levels of tree cover, and were more active in areas of high 
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tree cover. Tree cover values at camera traps, taken from rasters of tree cover were 

averaged over a 6km2 area around camera traps to represent tree cover at the scale of a 

core sun bear range. To explore the assumption that bear detection is related to % tree 

cover, we calculated detection rates (detections/number of trap nights) with values 

pooled for camera active within 9 tree cover categories (0-20, 21–30, 31-41…etc.).  In a 

simple linear regression, catch rates, increased by 1 (to avoid infinite values) and log 

transformed, were positively related with tree cover density (ln([Y+1]/Trap Nights = -

8.16 + 0.03*Tree Cover, p = 0.003, R2 = 0.7, β1 95% CI: 0.01 – 0.04). 

 

 

 

 

 

Figure 3. Estimated regression coefficients and 95% bootstrap confidence intervals 

for β1, relating the log expected catch rate to % tree cover. Tree cover values at 

camera traps, taken from rasters of tree cover in either 2000, 2012 and 2014 (whichever 

was closest to the date of camera operation), were averaged over a 6 km2 area around 
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camera traps to represent tree cover at the scale of a core sun bear range. Regional 

models were fit to data from either the insular and mainland countries, allowing the 

response of sun bears to tree cover to vary by region. The insular data, catch rate per 

camera trap, were modelled using log-linear regression (equation 1) and the mainland 

data, detection/non-detection per camera trap within a trapping period, were modelled 

using a binary regression model with complementary log-log link (equation 2). The 

global model pooled all data, assuming bears respond similarly to tree cover throughout 

the range, and modelled detection/non-detection per camera trap within a trapping 

period using the binary regression (equation 2). Models assumed log catch rate of sun 

bears at camera traps was a linear function of tree cover averaged over a 6km2 circular 

area of camera traps. Data were filtered to reduce variability in sampling intensity, by 

removing cameras active for < 7 days and > 90 days, and study sites with < 10 cameras.  

 
Figure 4. Model-based projections of sun bear population change across southeast 

Asia between 2000 – 2014. Bars, with 95% confidence intervals, show estimates 

generated by binary regression models (Eq 3) fit to the pooled mainland and insular 

data. Models assumed log catch rate of sun bears at camera traps was a linear function of 

% tree cover averaged over a 6 km2 circular area around camera traps.  Country-level 
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declines were predicted to be the most severe in Malaysia and Indonesia, which form the 

bulk of the insular region. On the mainland, declines roughly follow a longitudinal 

gradient, being highest in eastern countries (Cambodia, Lao PRD, Vietnam) and lowest 

in the west (India, Thailand, Myanmar).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Location and scale of sun bear population declines between 2000-2014, 

based on the modelled relationship between sun bear catch rate at camera traps 

and % tree cover. Models assumed log catch rate of sun bears at camera traps was a 

linear function of % tree cover averaged over a 6 km2 circular area around camera traps. 

Declines are plotted on a relative scale and are comparable at the country and regional-
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levels, i.e. the insular region lost a higher % of its regional bear populations that the 

mainland region (north of peninsular Malaysia). Country-level decline estimates are 

summarized in Fig 4.  

 

 

 

 

 

 

 

 

 

Chapter 3  

 

Sun bear range connectivity reveals research and management priorities  
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Synopsis 

 

In this modern era of rapid deforestation across human-dominated landscapes, 

fragmented habitat is breaking up once continuous wildlife ranges into unnatural 

subpopulations, which must function as some form of metapopulation to maintain 

sustainable population dynamics.  In the tropics, where habitat is changing most rapidly, 

high resolution genetics and telemetry data to inform management are limited.  

Therefore, biologists must work with imperfect datasets in innovative ways.  Here we 

present a novel technique, using camera trap and tree cover data, to investigate the 

extent of fragmented habitat within the global sun bear range, and to predict their future 

as modern metapopulations. To visualize sun bear range connectivity, we a created a 

habitat suitability index using the relationship between sun bear occurrence and tree 

cover derived from a separate study. To find potential fractures in range, we identified 

non-viable habitat (areas with < 20% tree cover, patches too small to support viable 

populations), and grouped the remaining habitat into a habitat quality mosaic. We 

visually inspected maps to identify possible subpopulations and to evaluate habitat 

connectivity among and within subpopulations, using habitat quality and severity of 

human disturbance and road network as indicators of barriers to movement. Using these 

methods, we identified seven potential subpopulations; two are fully isolated with no 

potential for inter-subpopulation movement, and in the other five, inter and intra-

subpopulation habitat fragmentation occurs in a continuum of severity.  We describe 

current day sun bear range in terms of the potential to function as human-caused 

metapopulations.  It is clear that sun bears cannot function as their once continuous 

population; instead, subpopulations may require inter-area movements (exchanges of 

individuals), either naturally, via maintaining habitat connectivity, or through human-

assisted translocation. Therefore, we used our results to list regional priorities for sun 

bear research and management. Studying sun bears in the context of modern 

metapopulations is a frontier for bear research and conservation in the tropics. Our 

findings advance understanding of sun bear habitat and subpopulation level 
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fragmentation, use landscape-scale data to investigate spatial population patterns and 

dynamics, and highlight locations where subpopulations are most vulnerable to isolation.  

 

Introduction 

 

Barriers to dispersal, created by oceans, major rivers, mountain ranges, and other 

geographical barriers, is a fundamental mechanism of evolution (Darwin 1859). 

Allopatric speciation, when geographic isolation of subpopulations leads to species 

divergence and increased biodiversity, is the positive side of fragmentation (Baker and 

Bradley 2006). Evolutionary theory suggests that historic changes in Asia’s land 

connectivity, caused by the rise and fall of northern seaways, at the Bering Strait, once a 

land bridge between present day Russia and Alaska, and southern seaways, at the Java 

Sea, the Gulf of Siam and the Straits of Malacca, between the Indo-Malay islands of 

Borneo, Sumatra and Java, led to the allopatric divergence of many tropical species, 

including several of the Asian bears (Hughes et al. 2003, Krause et al. 2008, Kutschera 

et al. 2017).  Human caused fragmentation, however, is recognized as one of the biggest 

threats to the biodiversity that natural barriers to movement once helped create (Tilman 

et al. 1994, Fahrig 2003). Globally, fragmentation has progressed at a rapid rate in the 

past few decades, with the area of interior forest declining at a greater rate than non-

interior, and > 70% of the world’s forest now occurring within 1 km of the forest edge 

(Wade et al. 2003, Nick M Haddad et al. 2015, Riitters et al. 2016).  

 

Sun bears Helarctos malayanus, which occur throughout mainland and insular 

Southeast Asia, are classified as ‘Vulnerable’ on the IUCN red list, and considered to be 

threatened by range fragmentation (Scotson et al. 2017). However there has been no 

formal assessment of connectivity within global sun bear range, and the extent to which 

fragmentation has restricted gene flow and created unnatural subpopulations. 

Conserving a species requires broad understanding of population dynamics at regional 

and sub-continental scales. Protecting a population requires understanding at a finer 

scale, to combat localized extirpations and contracting range. Anthropogenic habitat 
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fragmentation has caused many species that once occurred as spatially continuous 

populations to now resemble spatially disjunct metapopulations, although they might not 

function as such (McCullough 1996). Isolated subpopulations, and subpopulations that 

must spend time in low quality and non-habitat to travel between patches, face higher 

mortality rates, due to a variety of cumulative and interacting factors related to the short 

and long-term impacts of genetic and demographic isolation and often a higher overlap 

with human populations (Krause et al. 2008, Staddon et al. 2010, Nick M Haddad et al. 

2015, Riitters et al. 2016). Global populations of the 8-extant bear species are all 

affected by unnatural fragmentation of habitat (including sea ice) to some degree 

(Scotson et al. in press., Sahanatien and Derocher 2012, Escobar et al. 2015, Dharaiya et 

al. 2016, Swaisgood et al. 2016). Given the cumulative threats from fragmented habitat, 

there is a push to recognize subpopulations as a useful entity to monitor, and monitoring 

authorities are moving to classify subpopulations (i.e. subsets of the global population 

that do not share genetic material with other subsets) into categories of extinction risk , 

with progress made for brown bears Ursus arctos and Andean bears Tremarctos ornatus  

and Polar bears Ursus maritimus (Kattan et al. 2004, Wiig et al. 2015, McLellan et al. 

2016). An understanding of the threats posed by fragmented habitat to sun bears at the 

species and subpopulation level, would allow the development of specific site-level 

priorities for research and active management of sun bear subpopulations and habitat.   

Resilience to fragmented habitat is linked to several factors. Some bear species are more 

resilient than others, and fragmentation can restrict or filter population movement both 

inter- and intra-specifically.   American black bears Ursus americanus persist in 

landscapes dominated by agriculture (Ditmer et al. 2015). This resilience can be 

explained in part by high reproductive rates, and a tolerance, and perhaps even 

exploitation of human food sources and , of high levels of human disturbance (Garshelis 

et al. 2016). Grizzly (brown) bears have comparatively low reproductive rates and 

appear less tolerant of human activities, with populations suffering in response to high 

levels of human disturbance (Craighead et al. 1974, McLellan 1995). Female grizzly 

bears, the primary facilitators of demographic connectivity  are more easily affected by 

fragmented than males, being more prone to avoiding heavy traffic and settlements, and 



 

 61 

less likely to cross transportation and settlement corridors (Gibeau et al. 2002, Proctor et 

al. 2005, 2012). Delayed implantation in American black bear and brown bears give 

both species resilience to ephemeral food supplies (Mead 1989), as do their generalist 

omnivorous foraging strategies and ability to travel large distances to exploit varied food 

resources (including human foods). Fragmented habitat, however, impairs resilience by 

restricting dispersal in times of food shortages and can decrease productivity or increase 

food related mortality.  

 

Sun bear tolerance to habitat fragmentation, and the impact fragmentation has on the 

global population, is not well understood. Sun bears feed in agricultural fields and 

plantations, use narrow corridors of habitat to transition between higher quality patches, 

and can cross major highways (Cheah 2013, Scotson et al. 2014, Cheema 2015, 

Guharajan 2016). Home range, recorded for the insular region, is small compared to 

other bear species (Blanchard and Knight 1991, Bertram and Vivion 2002, Hwang and 

Garshelis 2007). In the mainland region (i.e. all range north of the Isthmus of Kra) home 

range is unknown, but could be larger due to interspecific competition with the 

sympatric Asiatic black bear, which dominate in areas of high fruit availability 

(Steinmetz et al. 2011a). Sun bears are habitat generalists (although dependent on forest) 

and when food is scarce, sun bears living near human crop fields thrived while bears 

with no access to human food starved (Normua et al. 2004, Te Wong et al. 2004). Sun 

bear reproductive rates are low compared to Asiatic black bears, with usually one cub 

produced at a time, presumed to be at around 2 year intervals like other bears 

(Yamanaka et al. 2011, Frederick et al. 2012). Reproductive success is vulnerable to 

periodic famines induced by the El Nino weather patterns, which causes increased 

mortality through starvation, and greater movement through low quality habitat in search 

of food (Te Wong et al. 2004a, Fredriksson et al. 2006). Sun bears and Asiatic black 

bears, are heavily hunted for trade in parts (Scotson et al. in press; Dave Garshelis and 

Steinmetz 2016). When bears occupy small patches, or spend increased time moving 

between patches, they are more likely to encounter predators (including hunters), and are 

more likely to come into conflict with humans (Nielsen et al. 2004, Can et al. 2014).  
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Assessing range connectivity for sun bears faces several methodological problems, and 

requires a unique approach. Data scarcity rules out traditional methods. Few individuals 

have been monitored relative to north American and European bears (e.g. McLellan and 

Hovey 2001, Dahle and Swenson 2003, Kendall et al. 2008), with only 14 wild bears 

radio collared in 4 sites in Malaysia, and trapping effort high relative to success rates 

(Normua et al. 2004, Te Wong et al. 2004, Fredriksson 2012, Cheah 2013). Genetic 

samples (i.e. hair, scat) are hard to collect. The sun bear pelt is short, and hair snaring 

has largely been unsuccessful (Ngoprasert et al. 2015). Collecting scats has worked with 

bears in temperate climates (Robert A. Long, Therese M. Donovan, Paula Mackay et al. 

2007, Swaisgood et al. 2016), but less so with sun bears in the tropics (Fredriksson et al. 

2006, Steinmetz 2009), probably because scat degrades quickly in the tropical forest.  

Limited resources (i.e. time, money) and limited dedicated sun bear research means it’s 

unlikely that such data will become available in the near to distant future.  Globally 

available high resolution tree cover and tree cover change (Hansen et al. 2013), has 

advanced the spatial understanding of sun bear range extent, and on how sun bears 

respond to tree cover (Scotson et al. in review).  With the rapid rate of forest cover 

change, loss and fragmentation, and increasing human populations, it is urgent to use 

what data are available and identify options for maintaining connectivity now, before 

those options are gone.  

 

The goal of this study is to investigate habitat connectivity within the global range of the 

sun bear by addressing the following objectives; we: 1) create a habitat suitably index 

using the modelled relationship between sun bear occurrence and % tree cover, 2) 

identify areas of non-habitat and evaluate other factors that may restrict movement 

within sun bear range 3) assess the connectivity of global sun bear range in terms of 

structural connective (binary habitat/non habitat connectivity) and the potential for 

movement and dispersal.  Finally, to improve understanding of the threats posed by 

fragmented habitat to sun bears at the species and subpopulation level, we translate our 
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findings into specific site-level priorities for research and active management of sun bear 

subpopulations and habitat.   

 

Methods 

 

Overview 

To create a map capturing current connectivity status of sun bear range, we 

began by deriving a 2014 tree cover map from tree cover available for 2000, and tree 

cover loss between 2000-2014. We then created a habitat suitably index using the 

previously modelled relationship between sun bear presence and tree cover (Scotson et 

al in review). We used standardized criteria to identify fractures in sun bear distribution 

and then evaluated the accuracy of our habitat/nonhabitat classes with separate land 

cover and human disturbance data. Next, we visually inspected maps to identify possible 

subpopulations and to evaluate habitat connectivity among and within subpopulations 

using estimates of sun bear dispersal distances. Finally, we quantified the entire spatial 

extent and composition of habitat, and separately calculated the extent that falls within 

the IUCN protected area network (a global network of IUCN designated protected area 

that range from Strict Nature Reserve to Protected areas with sustainable use of natural 

resources; IUCN 2017).  

 

Tree cover processing 

We first had to derive a 2014 tree cover layer by combing an existing 2000 tree 

cover layer with loss data between 2000 – 2014 (Hansen et al. 2013). We processed all 

GIS data in ArcGIS 10.2. We downloaded open-source satellite-based tree cover rasters 

for the year 2000 (pixels valued from 0-100% tree cover) and tree cover loss rasters 

from between 2000 - 2014 (binary pixels valued 1 [loss] or 0 [no loss]). We trimmed 

rasters to the geographic extent of historic sun bear range (Erdbrink, 1953). We created a 

2014 tree cover raster by i) multiplying all binary loss pixels by 100 (100 = loss, 0 = no 

loss) and ii) subtracting the transformed pixels from the year 2000 tree cover raster. All 

negative values were corrected to zero. We smoothed the 2014 tree cover raster, 

averaging pixel values over a 6km2 circular area to match the scale previously used to 
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model sun bear occurrence as a function of tree cover (Scotson et al. in review). We 

excluded China, where sun bears are thought to be almost extirpated; only a tiny patch 

of unknown habitat remains in the western border with Myanmar (Scotson and 

Fredriksson, 2016).  

 

Sun bear Habitat Suitability Index 

Using the derived 2014 tree cover raster as the most recently available tree cover 

data, we populated cells with the relative probability of bear occurrence, first assigning 

all areas < 20% tree cover as zero (bears were never detected within this level of tree 

cover; Scotson et al. in review). Scotson et al (in review) fit a model relating sun bear 

occurrence to tree cover. We used the  from that model to calculate the relative 

probability of sun bear occurnace in each map pixel > 20% tree cover: 

p[i] = exp(  * % tree cover)/ exp( *%tree cover) 

 

where % tree cover is the average tree cover value within 6 km2 circular area of a pixel 

in the year 2014. We used a 6 km2  scale to match that used by Scotson et al (in review) 

to generate  . To smooth out very small patches of fragmented areas that are likely to 

be insignificant to restricting sun bear movement, we broadened the scale to that of the 

mean home range size of sun bears, by averaging all relative probability values over 

11km2 (Nomura et al 2004; Fredriksson 2012; Cheah, 2013).  

 

To examine the compositional quality of patches, we created a Habitat Suitability Index 

(HSI) by grouping all relative probabilities into 4 categories, non-habitat (not suitable 

for bears), marginal (low relative probability of use), sub-optimal (moderate relative 

probability of use) and core habitat (high relative probability of use). The values were 

grouped using Natural Jenks classification in ArcGIS 10.2. Natural Jenks minimized 

variability within classes and maximized variability between classes (North, 2009). We 

expect that in non-habitat, bears are unable to persist, except for moving through short 
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distances between patches of habitat. We expect that marginal habitat may or may not 

allow bears to travel through, depending on the composition of that habitat. We expect 

that sub-optimal and core habitat to be largely natural forest and the most suitable 

habitat for bears.  

 

Structural and potential connectivity of the sun bear landscape  

We created a binary layer of habitat/non-habitat by grouping all marginal, sub-

optimal and core habitat into one category (habitat), and, classified all areas outside 

these polygons, and within the historic range limits of sun bears, as non-habitat. We 

created a mosaic landscape map by extracting the Habitat Suitability Index rasters to 

polygons of marginal, sub-optimal and core habitat. To investigate the potential 

connectivity of the sun bear landscape we had to make several arbitrary decisions on 

viable patch size and the distance threshold for bears to move between patches of habitat 

through non-habitat. In making these decisions we drew from existing knowledge where 

ever possible. First, we removed all patches not likely to support bears, based on patch 

size and distance from neighboring patches.  We decided that any patch smaller than 16 

km2 was not able to support a breeding population of bears and reclassified these as non-

habitat. We chose 16 km2 because this is an average male sun bear’s average home 

range (Normua et al. 2004, Wong ST, Servheen CW 2004, Cheah 2013),  and a male 

home range can overlap several female home ranges and so a patch this small could 

theoretically support a breeding population. We decided that patches from 16 - 100 km2 

were only viable if close enough to other patches for bears to move between more than 

one patch (i.e. connected).    To identify isolated and connected patches we used the 

maximum recorded daily movement of sun bears - 4.5km (Fredriksson 2012) - as the 

most liberal measure of how far a sun bear can move in-between patches of habitat 

through non-habitat (not considering the composition of the non-habitat). We grouped 

all remaining polygons into 3 broad categories; < 100 km2, 100-400 km2 and > 400 km2, 

and we decided that patches < 100km2 in size and > 4.5km from the nearest patch were 

isolated and unable to support a viable population in the long-term. We decided that 

patches < 100 km2, and < 4.5 km from the nearest patch were not isolated, being close 
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enough to other patches for bears to move in-between. Patches 100 - 400 km2 and > 400 

km2 were considered large enough to support a long-term breeding population of bears, 

regardless of distance from other patches. Finally, we compared the remaining polygons 

with the IUCN Sun bear range map, and removed some areas where sun bears are 

known not to occur. We left some patches of tree cover that IUCN classified as 

Extirpated, when these occurred close to, or contiguous to, known range, and could 

theoretically be used by bears.  

 

Ground truthing our habitat classifications    

To check if our classification of habitat into binary and mosaic habitat 

classifications met our expectations, we compared the resulting categories with two sets 

of data, on landcover, and human influence levels. We generated a set of 15,000 random 

points within Non-habitat, and another set of locations within Habitat, divided equally 

between Marginal, Sub-optimal and Core (i.e. 5000 points in each). At each random 

point, we calculated the percent tree cover in 2014, the relative probability of bear 

occurrence (based on tree cover), Human Influence Index (Sanderson et al. 2002), and 

Land Cover according to the Tropical Ecosystem Environment Observations by 

Satellites (TREES; Stibig et al. 2003). Sanderson et al. 2002 created The Human 

Influence Index by combining 9 global datasets related to human density, land use and 

infrastructure and human access to create The Human Influence Index (Sanderson et al. 

2002).  The TREES land cover map is at a 1km2 resolution, with land cover classified 

into 13 categories, with 8 categories considered as viable bear habitat, including a range 

of tropical forest types and a mosaic of woodland, shrub, and croplands, and 3 categories 

we assumed not to be viable habitat (i.e. no data/sea, water, cropland, bare land and 

rock; Stibig et al. 2003).  We reclassified the TREES raster, removing the No Data/Sea 

category, leaving classes 1 - 8 as viable or potentially viable bear habitat, and 9 – 12 as 

non-viable bear habitat. To correct for areas classified as viable bear habitat (categories 

1-8) in the year 2000 that had since been deforested, we calculated % tree cover in 2014 

to each point, and reclassified areas with no tree cover in 2014 as non-viable habitat.  
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We evaluated the dissimilarity of Human Disturbance Index values between our Habitat 

and Non-habitat categories with density plots, simple linear regression, and a Welch 

Two Sample t-test. We used frequency plots to compare the distribution of TREES land 

cover classification values within our mosaic habitat classes.  

   

Identifying subpopulations and patches most threatened by fragmentation  

 To visually identify potential subpopulations of sun bears, and habitat patches at 

risk from becoming isolated (i.e. no connectivity with other patches), we overlaid our 

habitat mosaic with areas of high Human Influence Index (defined as areas with a higher 

than average value of Human Influence in non-habitat), and the road network 

(https://urs.earthdata.nasa.gov, accessed 16th Feb, 2017).  To identify areas within 

subpopulations that are vulnerable to becoming isolated (i.e. “At Risk”), we visually 

inspected all core and sub-optimal habitat patches within the context of the surrounding 

marginal habitat, and landscape features consider to be barriers to movement (roads, 

human influence). We visually identified At Risk areas as having a high concentration of 

surrounding potential barriers to bear movement (i.e. marginal, non-habitat, high Human 

Influence Index and roads). We assumed that these movement barriers are related to 

human activity, and prone to increasing through time, thus causing patches to be 

progressively more vulnerable to becoming isolated.  At Risk patches were either 

isolated already, or thought to be at imminent risk from becoming isolated.  We 

quantified the structure of the binary (habitat/non-habitat) and the composition of 

mosaic (marginal, sub-optimal and core) habitat (Fig 1), by calculating the proportion of 

each within each potential subpopulation.  We also calculated the area of habitat, and the 

proportion of each habitat class, that fell within the IUCN Protected Area network.   

We analyzed data in Arc 10.2.4 and R Version 3.2.2 (R Core Team, 2016).   

 

 

 

Results 
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Landscape metrics  

Core habitat dominated just over half the sun bear range, but very little is 

contained within the IUCN Protected Area network. In 2014, viable habitat covered 77% 

of the historic range limit defined by Erdbrink 1953 (excluding China, where range limit 

is unclear), with 55% classified as Core, 27% as Sub-optimal, and 18% as Marginal 

habitat. Only 18 % of habitat classed as viable bear range falls within the IUCN 

Protected Area network, the bulk of which was classified as sub-optimal habitat (65%) 

with a smaller amount of core (12%) and the remainder marginal (6%) and non-viable 

habitat (16%).   

 

Ground truthing the habitat classes  

Comparing values of the Human Influence Index and TREES land classification 

within habitat (all classes grouped together) and non-habitat supported our assumption 

that habitat is different than Non-habitat. Human Influence Index values, calculated at 

15,000 random points in each habitat and non-habitat areas, were on average 13.8 points 

higher in areas classified as non-habitat (t = -95.2, df = 29658, p < 0.001, x̄ within non-

habitat = 36.7, SD = 13.1, x̄ within habitat = 23, SD = 11.8). When marginal habitat was 

grouped with non-habitat, the average Human Influence index was on average 14.2 

points higher than sub-optimal and core grouped together (t= -100.3, df = 24971, p 

<0.001, x̄ within non-habitat & marginal grouped = 34.6, SD = 13.5, x̄ within sub-

optimal and core grouped = 20.4, SD = 10.4, ). Bear habitat was heavily skewed to 

lower Human Influence Index values (< ~40), however they fell to some extent within 

all values of Human Influence (Fig. 2). TREES land classification values within non-

habitat were more often classified as areas considered as non-viable bear habitat (i.e. 

cropland, shrub, bare land, rock). Second to non-habitat, marginal habitat had the 

highest proportion of points within non-viable bear habitat categories. In sub-optimal 

and core habitat, land classification tended to be areas of potential bear habitat (i.e. 

evergreen, deciduous forest, and other forms of mosaic forest; Fig. 3).  

 

Sun bear subpopulations and areas most at risk from isolation 
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The southeast Asian range of sun bears is broken up naturally, by oceanic 

barriers, into three natural sub-sections; mainland southeast Asia including Peninsular 

Malaysia, Sumatra and Borneo. A mosaic of core, sub-optimal and marginal habitat 

creates potential habitat connectivity throughout much of the range, However, we 

identified a further five potential subpopulations created by fragmentation due to 

diminishing tree cover, levels of human influence and road networks.  With natural and 

un-natural fractures combined, we identified seven potential subpopulations of sun 

bears; i) northern Mainland, ii) Central Myanmar, iii) Central SE Asia, iv) South-central 

SE Asia, v) Thai-Malay peninsula, vi) Sumatra, vii) Borneo (divided by dashed lines in 

Fig. 4; Table 1). Within these potential subpopulations, we identified ‘At Risk’ areas 

where sun bears face further barriers to movement due to habitat fragmentation, human 

influence and roads (red ovals in Fig. 4; Table 2).  

 

Discussion 

 

Sun bear range can be divided into seven broad potential subpopulations; two 

were created naturally by the oceanic barriers among Sumatra, Borneo and mainland 

Southeast Asia whereas five resulted from progressive human-made fragmentation. 

Visualizing the landscape as a mosaic gave us a dynamic view of the compositional 

quality of sun bear range in 2014, allowing us to evaluate how connectivity of range 

affects the movement of bears across the landscape as well as potential metapopulation 

dynamics. Approximately 50% of the area under any level of tree cover within global 

range was classified as good quality habitat (core and sub-optimal), almost entirely over-

lapping sun bear range depicted by the IUCN (Scotson and Fredriksson, in process), and 

further extending into other contiguous areas. Much of this habitat, however, appeared 

to be in a highly-fragmented state, a mosaic of different habitat qualities, with large 

areas of poor quality (marginal) and non-habitat, heavy road networks (particularly in 

mainland Southeast Asia), and areas of high human influence.  It is noteworthy that core 

sun bear range is poorly represented within the IUCN protected area network, which 
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appears to contain primarily sub-optimal bear habitat, with almost 90% of core sun bear 

range falling outside protected areas. 

 

With ongoing rapid deforestation and increasing human development and limited or no 

management to maintain forest cover in sun bear habitat, the integrity of core sun bear 

range is set to degrade further. Creation of up to five subpopulations in mainland 

Southeast Asia and Peninsular Malaysia is a consequence of human development, 

deforestation, agricultural expansion, and a heavy road network. By artificially 

restricting movement and creating demographic and genetic isolation, these relatively 

recent subpopulations challenge the continued existence of sun bears and other forest 

dependent species (Naeem et al. 2009, Sodhi et al. 2010). In some cases, maintaining 

core patches is more important for the overall persistence of subpopulations; in others, 

subpopulations are already isolated within relative small areas, and require human 

intervention to maintain genetic diversity and prevent local extirpation and perhaps even 

restoration of corridors to other patches. Smaller isolated patches are at risk from local 

extirpation unless humans intervene. For patches that remain functionally connected, 

allowing periodic extinctions and recolonizations, further erosion of habitat into 

marginal and non-habitat will degrade connectivity towards a non-equilibrium 

metapopulation, in which long term extinction rates exceed colonization rates 

(McCullough 1996). The future of the potential subpopulations and ‘at risk’ areas we 

have identified within sun bear range depends on societies’ motivations for conserving 

them.   

Sun bears as a form of metapopulation   

Historically, sun bear populations were unlikely to have functioned naturally as 

metapopulations. Metapopulations occur within spatially discrete patches, interspersed 

with non-habitat, among which movement (physical, genetic) must occur for patches to 

be recolonized following periodic extirpations (Hanski and Gilpin 1997, McCullough 

1996). Mountain Sheep in California are an example of a natural metapopulation, with 

subpopulations concentrated in mountain habitat patches, and the persistence of 
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metapopulations dependent on the continued ability of individuals to travel between or 

among populations (Bleich 1999).  Historically, before commercial logging, the majority 

of sun bear range was under continuous tree cover. Rising sea levels that reinstated 

ocean barriers between Sumatra, Borneo and the mainland, created natural island 

metapopulations that presumably left viable populations with minimal risk of excessive 

mortality and habitat exclusion caused by humans (Craighead and Vyse 1996). In the 

past 30 years, however, rapid deforestation and hunting has reduced sun bear 

populations in the mainland by 14% (95% CI = 9 – 28) and in the insular region by 48% 

(95% CI = 29 – 61; Scotson et al. in review). Excess fragmentation across the islands of 

Sumatra and Borneo, and through the mainland continental range, is creating human-

fragmented island metapopulations (Craighead and Vyse 1996). Metapopulations, 

broadly characterized by periodic extirpation and recolonizations within discrete patches 

of habitat, are reliant on the demographic and genetic movement (i.e. immigration and 

emigration of individuals) among patches (Hanski and Gilpin 1997, L.Fahrig 2001, 

Proctor et al. 2015). In a review of global brown bear metapopulations, Craighead and 

Vyse (1996) identified three metapopulation categories that can be applied to the sun 

bear range; continental metapopulations, natural fragmented island populations, and 

human fragmented island populations, some of which may end up being unsustainable 

non-equilibrium metapopulations (McCullough 1996). It is the latter category that we 

focus our recommendations on research management and priorities.   

 

Research and management priorities 

Currently and in the future, sun bear persistence in fragmented landscapes may 

require active management if the species is to function as a sustainable metapopulation. 

We identified 17 priority areas for sun bear research and management; some are entire 

potential subpopulations (delineated by dotted lines in Fig. 4), and other are areas 

between or within potential subpopulations (red ovals, in Fig. 4, Table 2). The 

consequences of habitat fragmentation depend on bear movement between source 

populations (i.e. larger healthy breeding populations) and between source populations 

and adjacent smaller fragmented or isolated subunits. The number of bears within a 
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subpopulation determines its conservation status. Population estimates of bear are rare; 

eventually as researchers begin to collect these data the viability and conservation needs 

of subpopulations will become clearer.   

 

In small fragmented habitat patches that remain functionally connected to large areas of 

core habitat, periodic extinction of bears within small patches is relatively negligible to 

the global population’s stability, as these fragments can be recolonized by movement 

from core patches (Harrison and Harrison 1991, Hanski and Gilpin 1997, Frankham 

2005). If small patches, however, become degraded and isolated to a degree that 

recolonization is impossible, downward trends will lead to permanent local extirpation, 

and shrinkage in total range (McCullough 1996). Applying similar criteria as Craighead 

and Vyse (1996) used on brown bears for sun bears, the habitat suitability index allowed 

us to assess the sun bear landscape, and identify where each region fits into the 

continuum of habitat fragmentation.  For example, mainland southeast Asia fits the 

definition of a continental metapopulation, with potential fractures in several areas. A 

potential fracture in northern Myanmar and central southeast Asia might be caused by a 

break in core habitat, replaced by patchy sub-optimal, marginal and non-habitat, and a 

heavy road network. The IUCN sun bear range map supports this existence of this 

fracture, classifying the area directly south of the northern population limit as unknown 

bear range (Scotson et al. 2017). Similar habitat transitions are evident in north-eastern 

Vietnam, southern Thailand, southern Peninsular-Malaysia, east and west Sumatra, and 

around coastal Borneo, where breaks in core habitat into patchy lower quality and non-

habitat are causing further sub-division of global sun bear range. Monitoring known bear 

movements within these areas will determine whether there is gene flow between 

patches. Natural island subpopulations are evident in Sumatra and Borneo. Potential 

human fragmented island subpopulations exist in central Thailand, northern Cambodia 

and southern Vietnam, where relatively small patches of core habitat are almost entirely 

surrounded by non-habitat, with very little potential for movement between small 

patches and larger neighboring blocks. In southern Cambodia, a moderate sized 

subpopulation is encompassed by non-habitat and roads. Several much smaller, isolated 
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patches are located in southern Myanmar (where it is unclear if bears remain), the 

southern tip of Sumatra, in Way Kambas National Park, which is currently occupied by 

sun bears (Scotson et al. 2017), and on a tiny island of the south-west coast of Borneo (if 

bears are present; Fig 4).  

 

Conclusions    

We present this analysis as way to steer research priorities, and to generate 

baseline information on sun bear range connectivity that can be improved upon once the 

appropriate ecological data become available. We hope our work will lead to studies of 

sun bear subpopulation dynamics and response to patchy environments (Hanski and 

Ovaskainen 2000). Potential research questions include how habitat patch configuration 

influences population viability, bear susceptibility to human disturbance, and dispersal 

characteristics related to the viability of metapopulation dynamics (van Oort et al. 2011), 

however to answer such questions would require intensive population monitoring. In the 

absence of dispersal data for sun bears, the modelled relationship between bear 

occurrence and percent tree cover allowed creation of a coarse, broad overview of the 

global sun bear landscape. Incorporating independent land cover maps into our ground 

truth process allowed us to test how reliable our habitat classifications were. Using 

maximum recorded daily movement as an indicator for how far a bear can move 

between patches through non-habitat had very little effect on reducing the extent of 

structural connectivity. Our binary, habitat/non-habitat, map is assumed to be overly 

optimistic, and weakness was in being unable to distinguish between marginal habitat 

that bears can transit through (i.e. secondary forest, shrub, crop fields, plantations), 

versus that which it cannot (i.e. large highways, urban areas). Given that sun bears have 

been detected in marginal habitats with very low tree cover, including plantations and 

crop fields, it was not possible to identify a definitive edge to habitat in most areas, 

leaving potential connectivity interpretable through the level of human influence and 

road network within an area. The ability to systematically identify edge will improve as 

data on known bear movements and advanced land cover GIS become available. 
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Table 2. Sun bear research priorities within areas perceived to be at the most risk 

from un-naturally fragmented habitat in Southeast Asia in 2014. 

 

   Research Priorities 

ID Location Status 

Confirm 
presence 
/absence 

Population 
viability 

Inter sub-
population 
movement 

Intra sub-
population 
movement 

Possible 
research 

Methods5 

1 Northern 
mainland 
sub-
population 

Confirmed1 

  X X 

T, G, CT 

2 Sub-
population 
divide 
between 
the 
northern-
mainland 
and 
Central SE 
Asia  

Unknown1 

X   X 

SS, I, G, T, 
CT 

3 Central 
Myanmar 
Sub-
population 

Unknown1,2 

X X   

SS, I, G  

4 Northeast 
Vietnam 
range limit  

Unknown1,3 

X X X  
SS, I, G, T, 
CT 

5 Eastern 
Thailand  

Confirmed1 
 X X  

T, G, CT 

6 Central 
Thailand 

Confirmed1 
 X X  

T, G, CT 

7 Southern 
Thailand - 
northern 
Cambodia 

Confirmed1 

 X X  

T, G, CT 

8 Sub-
population 
divide 
between 
southern 
Thailand 
and 
Peninsular 

Confirmed1 

   X 

T, G, CT 
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Malaysia 
9 Southern 

Vietnam 
Mix of 
confirmed 
& 
unknown1 

X X  X SS,I,G,T,CT 

10 Peninsular-
Malaysia 
(several) 

Unknown1,4 X X X  T, G, CT 

11 Eastern 
Sumatra 

Confirmed1  X X  T, G, CT 

12 South-
west 
Sumatra 

Confirmed1  X X  T, G, CT 

13 Southern 
Sumatra  

Confirmed1  X X  T, G, CT 

14 West 
Borneo 

Confirmed1  X X  T, G, CT 

15 South-
west 
Borneo 

Confirmed1  X X  T, G, CT 

16 North-east 
Borneo 

Confirmed1  X X  T, G, CT 

17 Laut 
Island, 
South-east 
Borneo 

Unknown1 X X X  SS, I, G 

Footnotes: 

The ID number identifies the position of each area in Figure 4.    

  
1 IUCN Sun bear range map, in press       
2 Classified as definite in 2006 IUCN range map edition      
3 Rural interviews reported bear presence in 74% of interviews, but there is no distinction 

between Asiatic black bear and sun bear (Crudge et al. 2016) 
4 Maxent habitat suitability models predicted that the only highly suitable habitat in the 

south of Peninsular Malaysia occurs within Endau Rompin National Park (Nazeri et al. 

2012). The IUCN 2016 range map marks several patches in this region as definite.  
5T = radio telemetry, G = genetics, CT = camera traps, SS = Sign surveys, I = rural 

interviews     
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Figure 1. An example of a binary (A) and mosaic (B) habitat raster of Sabah, Borneo. 

The binary raster has values of 1 and 0; habitat and non-habitat, and represents the 

structural connectivity of the landscape. The mosaic raster has pixel values 0 (no 

habitat), 1 (marginal), 2 (sub-optimal) and 3 (core), and represents the varying habitat 

quality of the landscape. The outer line is the country border and the area beyond is the 

ocean.  
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Figure 2. Density plots of Human Influence Index values within areas classified as 

Habitat and Non-habitat within sun bear range. Human Influence Index values 

(Sanderson et al. 2002) were calculated to 30,000 random points generated equally 

within areas of non-habitat and habitat. Human influence Index values were on average 

13.8 points higher in areas classified as non-Habitat (t = -95.2, df = 29658, p < 0.001, x̄ 

within non-habitat = 36.7, SD = 13.1, x̄ within habitat = 23, SD = 11.8) supporting our 

assumption that habitat is different than non-habitat. 
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Figure 3. Frequency plots of land type values from the Terrestrial Ecosystem 

Environment Observation by Satellites (TREES; Stigbig & Beuchle 2003). TREES land 

type values were calculated to 20,000 random points generated equally between Non-

habitat, Marginal, Sub-optimal and Core habitat.   We reclassified land type into 12 

categories; 1-8 are categories in which bear use has been previously detected (1-3 = 

evergreen, 4 = deciduous, woodland, 5 = mangrove, 6 = swamp, woodland, 7-8 = 

Mosaic of woodland, secondary, evergreen and cropland), and 9-12 are considered non-

habitat (9 = Cropland, shrub, 10 = cropland, bare land, 11 = rock, limestone, 12 = 

water). TREES land classification values within Non-habitat were more often classified 

as areas considered as non-viable bear habitat (i.e. cropland, shrub, bare land, rock). 

Second to Non-habitat, Marginal habitat had the highest proportion of points within non-

viable bear habitat categories. In Sub-optimal and Core habitat, land classification 

tended to be areas of potential bear habitat (i.e. evergreen, deciduous forest, and other 

forms of mosaic forest). 
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Figure 4. Sun bear landscape fragmentation and connectivity in Southeast Asia.  

Left: High human influence and road network are assumed to be significant barriers to 

bear movement (i.e. fragmentation) across the landscape. Right: Core and sub-optimal 

contiguous range is assumed to positively impact bear movement (i.e. connectivity), 

although dependent on associated levels of human influence and roads. We visually 

identified 7 subpopulations of sun bears; i) northern Mainland, ii) Central Myanmar, iii) 

Central SE Asia, iv) South-central SE Asia, v) Thai-Malay peninsula, vi) Sumatra, vii) 

Borneo (divided by dashed lines). Within these subpopulations, we identified ‘At Risk’ 

areas where sun bears face further barriers to movement due to habitat fragmentation, 

human influence and roads (identified by solid line ovals).  
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Chapter 4 

 

Best practices and software for the management and sharing of camera trap 

data for small and large scales studies 

 

Synopsis 

 

Camera traps typically generate large amounts of bycatch data of non-target 

species that are secondary to the study’s objectives. Bycatch data pooled from multiple 

studies can answer secondary research questions; however, variation in field and data 

management techniques creates problems when pooling data from multiple sources. 

 Multi-collaborator projects that use standardized methods to answer broad-scale 

research questions are rare and limited in geographical scope. Many small, fixed-term 

independent camera trap studies operate in poorly represented regions, often using field 

and data management methods tailored to their own objectives. Inconsistent data 

management practices lead to loss of bycatch data, or an inability to share it easily. As a 

case study to illustrate common problems that limit use of bycatch data, we discuss our 

experiences processing bycatch data obtained by multiple research groups during a 

range-wide assessment of sun bears Helarctos malayanus in Southeast Asia. We found 

that the most significant barrier to using bycatch data for secondary research was the 

time required, by the owners of the data and by the secondary researchers (us), to 

retrieve, interpret and process data into a form suitable for secondary analyses. 

Furthermore, large quantities of data were lost due to incompleteness and ambiguities in 

data entry. From our experiences, and from a review of the published literature and 

online resources, we generated nine recommendations on data management best 

practices for field site metadata, camera trap deployment metadata, image classification 

data, and derived data products. We cover simple techniques that can be employed 

without training, special software and internet access, to options for more advanced 

users, including a review of data management software and platforms. From the range of 

solutions provided here, researchers can employ those that best suit their needs and 
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capacity. Doing so will enhance the usefulness of their camera trap bycatch data by 

improving the ease of data sharing, enabling collaborations, and expanding the scope of 

research. 

 

Introduction 

 

Use of camera traps to obtain self-triggered photographs of wildlife for ecological 

research is widespread, with a 10% annual growth in scientific publications since the 

early 1990s (Mccallum 2013, Burton et al. 2015). Camera traps typically collect data on 

a diverse array of terrestrial animals, with a wide range of study objectives (Cutler and 

Don 1999, Thorn et al. 2009, Rowcliffe et al. 2014). Camera traps are widely used for 

small fixed-term surveys in areas of conservation significance to collect baseline data, 

often with loose or undefined objectives. Parallel to the increase in camera trap studies, 

the volume of ‘bycatch’ data (i.e. images collected incidentally, and unrelated to the 

study’s objectives) has increased steadily. When combined over multiple sites, bycatch 

data can reveal landscape scale macro-ecological patterns across space and time, and can 

aid in the research of understudied threatened species (Heffernan et al. 2014, McShea et 

al. 2016).  

 

There is a data gap in global monitoring programs, with fewest data available for areas 

highest in biodiversity (Collen et al. 2008). Managing species threatened with extinction 

requires research into species occurrence, population trends, and on population 

responses to changes in the environment, particularly those caused by humans 

(Balmford et al. 2003, Maxwell et al. 2016). These research topics cannot be addressed 

by data collected from a single study site, and require combining data from multiple 

sites across large areas. Such datasets, from small fixed-term studies, are extensive in the 

tropics and provide considerable, often under utilised, information (e.g. Gray et al. 

2012). In the absence of primary data, bycatch data could be key to monitoring progress 

towards the targets of the Convention on Biological Diversity (CBD, (Balmford 2005, 

Dobson and Nowak 2010, O’Brien 2010). Likewise, bycatch data can inform 
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assessments of mammals considered as threatened with extinction, or data deficient, by 

the World Conservation Union (IUCN) Red List of Threatened Species, many of which 

are outside the scope of primary research (Schipper et al. 2008).   

 

To increase use of bycatch data, many challenges need to be overcome. For example, 

varied study objectives, field methods, and data management standards (including data 

sharing policies and restrictions) of research groups create logistical and statistical 

challenges in pooling bycatch data over multiple sites (Olsen et al. 1999, Sanderson and 

Trolle 2005). Large volumes of data can accumulate quickly, and data managers may 

lack motivation to record and classify all images, due to limited time, funding, staff and 

other resources. Project resources (e.g. time, money, personnel) are often used for fund 

raising, training, field work, reporting and administration, with limited resources 

allocated to tasks that are perceived as less urgent, such as data management. 

Furthermore, researchers may under-estimate the expense and time required for effective 

data management.  Bycatch images have been likened to the fisheries bycatch; data are 

either left unclassified, or are filed away and never used or made publicly available 

(O’Brien 2010). Identification errors are also widespread within such datasets. 

Limitations are strongest in small studies working within low-income regions, which 

have fixed budgets and short time frames (e.g. Non-Government Organizations 

[NGO’s], graduate student projects).  

 

Camera trap studies that are ongoing (i.e. not fixed term) accumulate massive amounts 

of data over time. Such studies optimize their efficacy by using standardized sampling 

designs and data management protocols. The Tropical Ecology Assessment and 

Monitoring Network (TEAM), for example, operates in 17 sites globally, in Africa, Asia 

and Latin America. Their use of standard methods on a global scale allows combining 

and analysing data over multiple sites, and enables monitoring of global patterns in 

ecosystems and biodiversity (www.teamnetwork.org). Another ongoing study is The 

Serengeti Lion project, which maintains a fixed grid of 225 camera traps in the Serengeti 

National Park, Tanzania, with a strict protocol used to determine camera placement and 

http://www.teamnetwork.org/
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data processing. These camera traps are used to monitor temporal trends and patterns in 

wildlife communities within the National Park. The camera traps operate continuously, 

accumulating massive numbers of primary and bycatch images. The Serengeti Lion 

project operates an innovative crowdsourced citizen science online platform, Snapshot 

Serengeti, to quickly classify their ever-growing catalogue of images 

(www.snapshotserengeti.org ; Swanson et al. 2016).   

 

Data management is an essential, yet often-neglected skill for wildlife ecologists. A 

survey of 48 American research institutions found that lack of time and teaching 

resources limited student training on management and preservation of data (Strasser and 

Hampton 2012). Researchers who are not part of an academic institution, and those from 

undeveloped regions, may not have access to technology, software, training and 

materials to facilitate good data management. Skilled data management, however, is 

critical for camera traps studies; poor data management systems, lack of standardization, 

and failure to use automated management tools, can result in the loss of significant 

amounts of data, especially bycatch data (Harris et al. 2010). There are multiple 

resources on data management online, in text books, and in the grey and published 

literature (e.g.  Borer et al. 2009, Briney 2015, McGill 2016), with several peer-

reviewed publications focused on the management of camera trap data (e.g. (Tobler et 

al. 2008, Harris et al. 2010, Fegraus et al. 2011, Sundaresan et al. 2011, Sunarto et al. 

2013, Meek and Fleming 2014, Burton et al. 2015, Niedballa et al. 2016). We attempted 

to develop a succinct set of recommendations and to review related resources on data 

management best practices, ranging from very simple techniques that can be employed 

with minimal resources (e.g. without need for training, special software and internet 

access), to options for more advanced users, including a review of data management 

software and platforms. By publishing in an open access journal, our guidelines will 

reach researchers without institutional journal access.  

 

We begin with a case study that reports our experiences assembling and processing 

bycatch camera trap data from multiple datasets in a study measuring global population 

http://www.snapshotserengeti.org/
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trends of sun bears. We use these experiences to identify common data management 

malpractices that create difficulties in using bycatch data for secondary research. 

Subsequently, we make recommendations on data management best practices that are 

focused on enhancing the quality and efficiency of data management, highlighting 

critical information to include within data, and improving the ease of data sharing and 

preservation, and we identify relevant resources available to help researchers follow our 

recommendations. We review currently available camera trap management software and 

platforms for those with more advanced needs, including Wild.ID, Camera Base, CPW 

Photo Warehouse, eMammal, Aardwolf, CamtrapR, and TRAPPER. Finally, we discuss 

the value of good data management practices for enabling sharing and secondary 

research.   

 

Combining camera trap data from multiple sources: a case study 

 

In our case study, like typical data sharing mechanisms reported in the literature (e.g. 

Kratz and Strasser 2015), we obtained data from external studies via email requests. We 

combined data from twelve research groups working in 49 field sites. The primary 

objectives of these studies, which were conducted by NGO’s and graduate students (i.e. 

Dinata 2008, Clements 2013), included species inventories (Mohd-Azlan and Engkamat 

2013), occupancy modelling (Wong and Linkie 2013), understanding habitat use and 

activity patterns (Gray and Phan 2011, Gray et al. 2012), primate terrestrial behaviour 

(Loken et al. 2013) and investigating response to altered habitats (Wong et al. 2013b, 

Spehar et al. 2015). The data consisted of 43 sets of data in several formats (collectively 

referred to here as datasets), including raw camera trap images, pdf tables, GIS 

shapefiles, and (in most cases) single and multi-tab Excel spreadsheets. Data 

contributors commonly expressed difficulties in locating and preparing our requests, and 

communications usually spanned several months. The time it took to process the data 

was the most significant problem we encountered (Table 1). Manipulating the data into 

our desired format (i.e. one standardized dataset) often required substantial manual 

editing and many follow-up questions and requests to contributors. Each dataset took 
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between 2 – 8 hours to process. Many data points (i.e. sun bear records) and three entire 

datasets were discarded due to one or more ambiguities (see Fig 1 for an exaggerated 

example of a ‘problem’ dataset). Missing or ambiguous latitude and longitude data was 

the most persistent issue leading to loss of data; this problem was encountered in all but 

one dataset (Table 1). Data were also lost due to missing or ambiguous dates, gaps in 

trapping effort records, and other unclear entries (e.g. Fig. 1). Of 43 datasets, three were 

unusable (representing data collected from > 400 camera traps), and portions of data 

were lost from 80% of other datasets (Fig. 2). 

 

Contributors to our case study were asked to complete a brief web-based survey of the 

data management protocols used by their group. Respondents (n=8) expressed that they 

were mostly satisfied by their data collection methods, but cited problems associated 

with lack of standard data management protocols and a high turnover in staff responsible 

for data management. In handling metadata, no group used an industry standard method 

(e.g. Ecological Metadata Language); 75% of respondents created a custom 

organizational structure, and 25% used a standard developed exclusively for their 

organization. Data entry and management was the responsibility of a combination of 

field technicians (88%), administrative staff (25%) and research coordinators (75%). In 

50% of cases, data quality was maintained by a process of re-checking by multiple 

people. In 25% of cases, research groups followed a standard protocol for data entry 

intended to minimize risk of human error. In 25% of cases, maintaining data entry 

quality was the responsibility of one person. No respondents reported using automated 

camera trap data entry software. A repeated sentiment in the survey responses was that 

data management practices could be improved by increased standardization, and by 

access to online platforms, which allow storage and sharing of data. Main obstacles to 

data management were a lack of capacity, high turnover of expatriate and local staff, and 

a failure to use pre-developed standardized protocols. Specific ideas expressed by data 

contributors in our case study are incorporated into our list of recommendations below.  
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Recommendations for managing camera trap data 

 

We generated nine key recommendations related to data management practices of the 

four main data types collected by camera trap studies; field site metadata (e.g. forest 

type, season, weather conditions), camera trap deployment metadata (e.g. date, time, 

location, camera trap settings, position, trap nights), image classification data (e.g. 

species identification, behaviour, number of animals), and derived data products (e.g. 

species occurrence, count of detections/non detections per unit/per site, detection rates 

relative to sampling effort). We incorporated recommended best practices from the 

scientific literature, field manuals, online forums and blogs, and have embedded links to 

some of these resources within our recommendations.  

 

1. Adopt a standardized, non-proprietary and transferrable data storage 

format to store all camera trap data. 

In our case study, most of the data contributors used Microsoft Excel to store data. 

Without requiring significant training in relational database design, this tool is preferred 

by many researchers (Herold 2015). A major drawback, however, is that Excel is a 

proprietary, non-transferable format, notoriously unreliable as this tool can invisibly 

interpret and change entered data (e.g. drop leading “0’s and change character strings to 

Julian dates). Propriety software, such as Excel and Microsoft Access, may be 

superseded in the future by incompatible formats, so data stored in these formats could 

become unusable in the same way that external hard drives, CD-ROMs and DVDs may 

one day become outdated and unusable, like the floppy disk. If using Excel, Borer et al 

(2009) recommend storing all data in non-proprietary software formats, such as comma 

separated value (.csv) files, which can be viewed and manipulated in Excel. There are 

several advantages to storing data in open source non-proprietary relational database 

systems such as PostgreSQL or SGLite, or ecology specific tools such as ECOLOG 

(www.ecolog.sourceforge.net/index_e.htm). These formats are available without license 

http://www.ecolog.sourceforge.net/index_e.htm
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fees, are not controlled by developers (e.g. Microsoft), and have wide online 

communities of users which collectively serve as a crowdsourced online help forum. 

These formats work across many different operating platforms, are operated with 

Structured Query Language (SQL), a standard language for relational database 

management systems, and store data in a format that is transferable to a new system or 

software. 

  

2. Accompany all spreadsheets with structured metadata.  

Good management of field and camera trap deployment metadata, regardless of image 

classification, is crucial for long-term preservation and sharing of data. In our case 

study, only two research groups included metadata within their datasheets; lack of 

metadata reduced the interpretability of the datasheets and increased the length of time it 

took to process the data. Metadata, which give descriptive information about the content, 

context and structure of data, should accompany all raw data. When possible, use a 

standard metadata format, such as the Ecological Metadata Language (EML), a metadata 

standard, developed by the ecology discipline for the ecology discipline. EML is a pre-

designed method that can facilitate efficient data sharing. EML works so that the data 

created in, for example, the software Morpho, a free program for storing, cataloguing, 

querying and editing metadata, can be easily ingested into other platforms that are 

programmed to anticipate the EML data structure 

(https://knb.ecoinformatics.org/#tools/morpho). Forrester et al. (2016) describe a 

metadata standard specific to camera trap data, which is compatible with EML and other 

industry standards. At a minimum, researchers should create and provide a ‘ReadMe’ 

file that describes why the data were collected, including objectives, methodology, 

database metadata, definitions of all co-variates, codes and acronyms, point of contact, 

ownership, rules of use and instructions for acknowledgement. A freely available 

template, developed by the University of Minnesota Libraries, can be found here: 

https://z.umn.edu/readme. For detailed descriptions of desirable metadata refer to 

Michener and Jones (2012), Sunarto et al. (2013), Meek and Fleming (2014), and Meek 

et al. (2014).  Much of the metadata associated with camera-trap data (e.g., date and 

https://knb.ecoinformatics.org/#tools/morpho
https://z.umn.edu/readme
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time) can be gleaned directly from the image metadata tags if users process their data 

using camera trap data management software (e.g. eMammal, Wild.ID, Camera Base, 

Aardwolf; Table 2), but it is important to make sure that labels and formats for GPS 

coordinates and date and time stamps are consistent across cameras. 

 

 

3. Record data at the highest possible resolution 

Researchers should use a structure for raw data that minimizes entry errors and promotes 

error checking. All raw data and accompanying metadata should be recorded at the 

highest possible resolution, with other data products derived from these raw data ideally 

using well-documented computer code that facilitates transparency and reproducibility 

(Sandve et al. 2013). McGill (2016) suggests using an instance-row/variable-column 

format, in which each measurement has one row, and each column is a different variable 

or attribute. At minimum, researchers should record the start and end time and date each 

camera trap was active. This information will allow users to determine camera-specific 

measures of sampling effort (i.e. number of trap nights), which is preferable to an 

average measure of effort across all cameras on a site. Ideally, researchers should also 

provide unique times and dates of individual photos, allowing secondary users to 

implement their own criteria for what constitutes an independent detection event. 

Alternatively, it is important to define how data were filtered whenever it is not practical 

to record individual photographs (e.g. 500 photos of a pig-tailed macaque Macaca sp. 

group are recorded over a 60-minute period). TEAM provide a list of data quality 

control measures for camera trap data, which includes recommendations on sampling 

effort (i.e. number of units, trapping periods) and maintaining data quality (access here: 

www.teamnetwork.org/files/protocols/terrestrial-

vertebrate/TEAM_Terrestrial_Vertebrates_Data_Quality_Standards.pdf).   

 

4. Use a clearly documented and consistent geographic coordinate system.  

http://www.teamnetwork.org/files/protocols/terrestrial-vertebrate/TEAM_Terrestrial_Vertebrates_Data_Quality_Standards.pdf
http://www.teamnetwork.org/files/protocols/terrestrial-vertebrate/TEAM_Terrestrial_Vertebrates_Data_Quality_Standards.pdf
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Providing accurate and identifiable Global Positioning System (GPS) locations with 

your data is critical. In our case study, missing or ambiguous latitude and longitude data 

was the most persistent issue leading to loss of data – this problem was encountered in 

all but one dataset (Table 1). Camera trap deployment metadata should be relatable to an 

exact geographic location. The large number of geographical and projected coordinate 

systems available within Global Information Systems (GIS), (i.e. GPS units and 

mapping software) makes it critical to record the coordinate datum that points are 

collected in in the field (e.g. Indian Thailand Datum). Data collected without an accurate  

geographic location are of limited use, and may require significant time to process by 

secondary researchers. A single coordinate system (e.g. Geographic Coordinate WGS 

1984) should be used consistently within each stage of collection, entry and processing 

of data. If changes to the coordinate system are required, they should be carefully 

documented. Store GPS coordinates in a format easily read and transformed by a GIS 

(i.e. numbers only; avoid placing letters or symbols within the same cell as geographic 

coordinates: doing so requires manual editing. See Fig. 1. for an example of this 

problem). Whatever system is used, also report locations in decimal degrees out to 5 

decimal places, placing the location within 1-metre accuracy, and avoiding ambiguities 

with incomplete UTM coordinates and studies that straddle more than one UTM zone. 

Include information on map datums, UTM Zones and geographic coordinate systems 

within the field metadata. If possible, researchers should label and store each camera 

trap location in GPS units (keeping hand written locations as a backup), rather than 

record and transcribe GPS locations from datasheets. Camera trap management 

software, such as those reviewed below and in Table 2, can import labelled waypoint 

files from a GPS unit as text or shapefiles, allowing automated data handling and 

minimizing data entry errors.  

5. Maintain a consistent date-time format.  

In our case study, many data were lost due to missing or ambiguous dates. When dates 

are missing, trapping effort become ambiguous, or impossible to calculate manually. 

Researchers should include dates of camera operation (start date, end date), and date and 
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time of individual pictures in the deployment metadata. Regional differences in date-

time systems (e.g. UK versus USA) can lead to confusion in data entry and 

interpretation. Data managers should choose a date system, specify it clearly in the 

column heading and/or metadata and stick to it consistently within a dataset. An 

example of a well-defined date system is 2011-09-14 00:23:33 (YYYY-MM-DD 

hh:mm:ss). Camera trap management software, such as those reviewed below and in 

Table 2, can automate handing of time and date data and minimizing errors. 

 

6. Record covariate data that might be used to assess detection probability. 

An inability to account for differences in detection probability can lower the value of 

bycatch data.   Therefore, researchers should record factors that influence detection 

probability (e.g. season, habitat type, height of vegetation and tree density) in the field 

metadata (Rowcliffe and Carbone 2008, Nichols 2010).  Likewise, in the deployment 

metadata, include factors that influence species-specific detection probability (e.g. 

camera trap model, settings, position, date, and time of day). Variables that influence 

detection probability are useful to both primary and secondary researchers. However, 

given the multiple factors that can influence detection probability from camera-trap data, 

it is unlikely that researches using by-catch data, particularly from many small fixed-

term studies, will be able to collect sufficient and consistent information for accurately 

modelling detection probability. Nevertheless, it is important to clearly state 

assumptions necessary for drawing valid conclusions from camera-trap data (e.g. 

constant detection probabilities), particularly when analysing data pooled across 

multiple studies.  

 

7. Plan for the eventual identification of all bycatch data on non-target species and 

non-animals. 

Image classification should ideally include all bycatch data as well as target species. 

This effort will allow researchers to later ask different questions of their data (e.g. plant 

phenology, weather patterns, animals’ behaviours) and increase opportunities for data 

sharing and collaborative efforts with other research groups. Classification of all images, 
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however, can be unrealistic when vast quantities of data are collected. As cameras 

become more affordable, with greater memory capacities and battery life, data 

processing has become increasingly limited by human processing capacity.  At a 

minimum, researchers can manage field and metadata, and upload images into an online 

storage system, such as Camera Base (www.atrium-biodiversity.org/tools/camerabase/) 

so that images can be classified later.  Alternatively, engaging citizen scientists to 

catalogue images is an emerging technique that can significantly increase the amount of 

information researchers can extract from large datasets (Swanson et al. 2015). Snapshot 

Serengeti (University of Minnesota Lion Project) and Camera CATalogue (Panthera) are 

examples of citizen science platforms, both hosted by the Zooniverse 

(www.zooniverse.org). Readers seeking more efficient methods to process raw data are 

directed to guidelines included in Harris et al. (2010) and Niedballa et al. (2016), and a 

variety of platforms and software are reviewed below (Table 2).  

8. Manage data as one authoritative set, which can be acted on by multiple users 

consistently and simultaneously.  

Store a single, raw, unedited, and ‘read-only’ copy of image classification and derived 

data products in a central location with regulated access. Data replication and confusion 

can arise when re-editing and renaming multiple file versions (e.g. 

Raw_data_FINAL_FINAL_v3). Multiple downloads by different users can introduce 

errors or unclear versioning in the data being analysed. Create new copies of edited raw 

data, with a record of who made edits and why. Free web-based tools like Open Science 

Framework (http://osf.io/) and GitHub (https://github.com/) capture and record changes 

to files, and log and facilitate version control.  

9. Archive data, and make it available to other researchers with defined conditions 

for reuse.  

This final step allows well-managed data to be discovered and reused by other 

researchers. Consider sharing data on a project page, with clear terms and conditions for 

use. The TEAM Network does this (e.g. www.teamnetwork.org/data/use), and they 

developed software, Wild.ID, that facilitates data management and long-term storage 

(www.teamnetwork.org/solution) in the Wildlife Insight web warehouse. Researchers 

can register on Wildlife Insights (previously The Camera Trap Federation) for open 

http://www.atrium-biodiversity.org/tools/camerabase/
http://www.zooniverse.org/
http://osf.io/
https://github.com/
http://www.teamnetwork.org/data/use
http://www.teamnetwork.org/solution
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access, citation and preservation of data (www.wildlifeinsights.org/WMS/#/shareData). 

Alternatively, eMammal provides a paid online platform for project pages 

(www.emammal.si.edu/participate/science-and-management) with an option for long-

term storage on the Smithsonian Data Repository. A researcher’s local institutional 

repository may provide free services for publicly archiving data, including minting 

Digital Object Identifiers (DOI’s), for better citation of the data collection, and 

preservation of data after the project is complete (e.g. Harvard University’s DataVerse 

or the Data Repository for the University of Minnesota, DRUM). Readers are directed to 

Whitlock (2011), who outline a set of data archiving best practices.  

 

Camera trap data management platforms 

 

Our recommendations highlight the steps researchers can take to improve data quality 

when using non-standardized, custom designed data handling methods. We encourage 

where possible, however, the use of data management software and/or web-based 

platforms that are designed specifically for camera trap data management. Use of these 

programs can reduce data entry errors and data loss, increase efficiency in data 

management, and improve ease of data re-use and sharing. The applications we 

reviewed include Wild.ID, Camera Base, CPW Photo Warehouse, eMammal, Aardwolf, 

CamtrapR, TRAPPER, and Agouti. These systems range from stand-alone desktop 

applications, to extensions of Microsoft Access and R (R Core Team 2016) and web-

based platforms.  We found a wide range of overlapping general features, summarized in 

Table 2, and some unique features, described below, all of which users can consider 

when selecting the system most appropriate for their research needs.  

 

Wild.ID, developed by the TEAM network, is a desktop application designed for 

protected area managers and wildlife professionals. Described as an ‘easy interface’ 

information management platform, Wild.ID can export data to be shared with other 

Wild.ID users.  Users can store data in the Wildlife Insights data repository, a long-term 

cloud-based storage system with additional analytic capability (e.g. Wildlife Picture 

http://www.wildlifeinsights.org/WMS/#/shareData
http://www.emammal.si.edu/participate/science-and-management
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Index; www.wildlifeinsights.org). There is a plug in for TEAM Network members 

(Wild.ID.TEAMPlugin), and multi-language options including English, Chinese, 

Spanish, and Portuguese.  

 

Camera Base and CPW Photo Warehouse are free desktop extensions of Microsoft 

Access. Both are limited to handling tens of thousands of images and therefore are 

suitable for small projects. Unique features of Camera Base include the ability to 

calculate Mean Maximum Distance Moved (MMDM), and to automatically classify 

photos as taken during the day, night, dusk or dawn, based on sunrise and sunset 

calculated for the survey location for each specific date. Camera Base has an interface 

for direct comparison of images from paired cameras (Tobler 2007). Unique features of 

CPW Photo Warehouse include; a capacity for multi-observer species identification and 

user-customized functions via Access query modifications or via VBA and SQL code 

modifications for advanced user (Ivan and Newkirk 2016).  

 

Aardwolf desktop application and camtrapR R package are both free, open source, 

extendable, multi-platform systems suitable for projects with large volumes of data (> 1 

million images). Both systems can handle the complete workflow associated with 

processing camera trap data, from image organization and annotation, identification of 

species and individuals, image data extraction, tabulation and visualization of results, 

and export for other analyses. Aardwolf is designed for small research teams and 

independent researcher’s, boasting minimalistic data management, built for use on 

personal computers, and works with SQlite, MySQL and PostgreSQL (Krishnappa and 

Turner 2014). Aardworlf includes an option to store added metadata (species, etc) as 

.XMP files. CamtrapR R package was designed for flexible and efficient management of 

camera trap data, with a streamlined, reproducible process, including multiple analysis 

options and the possibility to export data to GIS software (Niedballa et al. 2016).  

Species and individual identification is performed outside the package, via custom 

metadata tags assigned in image management software or by moving images into species 

directories.  

http://www.wildlifeinsights.org/
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TRAPPER and Agouti are a web-based platform for managing, classifying, sharing and 

re-use of camera trap data, designed for researchers working alone or within 

collaborators. TRAPPER handles videos and still images, and features spatial filtering 

and web-mapping. TRAPPER is open source, allowing flexible data collection 

protocols, and multiple role-based users to facilitate collaborative projects (Bubnicki et 

al. 2016).  TRAPPER has an Application Programming Interface (API), allowing direct 

access to raw and classified data from a range of software (e.g. QGIS, R, PYTHON, 

KEPLER or VISTRAILS). TRAPPER allows export of metadata in EML standard. 

Advanced users can customize functionalities via Python language; Python scripts for 

some functionalities (e.g., video conversion) are already provided with the software.   

Agouti, at the time of writing, was available, by request, to scientists and non-profit 

organizations, with plans to make it publicly available in the near future (Y. Liefting, 

Personal Communication, May 2017). Agouti is aimed at structured projects, with 

projects set up according to user needs on a per-project basis. Project assess will be 

handled per user by a project administration manager, a single user can manage multiple 

projects, and projects accommodate different user roles within projects (e.g. volunteer, 

professional). There will be a fee for hosting and support costs, although use for 

academic reasons (e.g. MSc thesis) is typically free of charge. Agouti supports both 

photo (most camera trap models and regular cameras) and video (currently .avi, .mov, 

and .mp4). Agouti will include an online data storage solution and follows a metadata 

protocol compatible with the Smithsonian eMammal and Wildlife Insight repositories. 

 

eMammal is designed for landscape scale projects that use citizen science volunteers to 

set cameras and collect and upload data. eMammal includes four main components: i) 

Leopold, a desktop application for viewing, tagging and uploading camera trap photos, 

ii) an expert review tool, iii) a curated data repository for archiving approved data, and 

iv) a web-based platform for managing studies and accessing and analyzing data 

(McShea et al. 2016). Images are stored for free in the Smithsonian Data Repository, 

and are publicly available, with options for 1-3-year embargo, or a permanent embargo 
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on data of species of concern and threatened species. Users can tag their favorite pictures 

and share them on their website and via social media. The desktop app, Leopold, 

facilitates citizen scientist and multiple researcher participation in species-ID, with a 

mandatory expert review/quality control process for species-ID through the web-based 

Expert Review Tool (ERT).  Users can decide whether to open the project to the public 

and take advantage of the citizen scientist option, or to split the images to be identified 

among a set of researchers. There is a one-time set up cost for creation of a custom-made 

home page and project structure, based on information supplied by project managers. 

There is a per-deployment upload cost, to keep the images in a cloud service during the 

citizen scientist and expert review process for species identification. The monthly cost is 

calculated per month of camera activation, and ranges from $3.87 - $4.19, depending on 

number of camera-months (the more you have, the less you pay for each 

unit; www.emammal.si.edu/about/FAQ).   

 

For large-scale long-term projects that produce millions of images each year an option is 

to utilize the recently developed resources provide by the Zooniverse web-platform 

(www.zooniverse.org). Besides online photo storage, Zooniverse offers researchers the 

chance to increase public visibility of projects and to take advantage of citizen science. 

Two of the earliest and widely known camera trap-based Zooniverse projects are 

Snapshot Serengeti (Serengeti Lion Project; Swanson et al. 2015) and Camera 

CATalogue. Camera CATalouge currently engages more than 8,000 volunteers, 

processing approximately 20,000 images per day.  Volunteers are presented with an 

image and asked to tag the species present, using a predefined list of existing species in 

the area, and to record the number of individuals, and what side of the animal is visible. 

Volunteers can confirm the species by comparing it with a preexisting photograph and 

species description.  Algorithms identify uncertain images that require expert review by 

selecting those that do not reach a consensus during citizen scientist classification. 

Accuracy ratings calculated for Camera CATalogue and Snapshot Serengeti are 96% 

and 97.9% respectively (Swanson et al. 2016; R. Pitman pers. comm). These platforms 

http://www.emammal.si.edu/about/FAQ
http://www.zooniverse.org/
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produce outputs that can be paired with R packages such as CamtrapR to create a 

holistic camera trap data management and analytical tool.   

 

The value of sharing data 

 

This paper seeks to convince readers of the benefits of creating a data management plan, 

maximizing the quality and usability of secondary data, sharing data, and preserving it 

for the long term. Likewise, we hope that our set of recommendations and resources 

therein make this considerable task more achievable to researchers at all levels of skill 

and capacity. Data sharing within the scientific community is widely encouraged 

(Hampton et al. 2013); according to the Committee on Responsibilities of Authorship in 

the Biological Sciences, scientists are obligated to make their data available to others in 

a format that other scientists can use in future research (Corrado 2014). Some suggest 

making data sharing a mandatory condition of funders and publishers, and to increase 

the value of sharing by making datasets publishable and citable (Balmford 2005, 

Reichman 2011, Whitlock 2011, Goring et al. 2014). Indeed, many journals now require 

that data are publicly available, including PlosOne, Scientific Reports and all British 

ecology journals.   Some opponents to data sharing are cautious of sharing sensitive data 

on threatened species, when illegal hunting is a primary threat.  Engaging the public in 

“citizen science” has great potential to raise interest in conservation, while expanding 

the scope and scale of research (Swanson et al. 2015).   

 

Data are the currency of research and are payoff for all effort invested in planning, 

fundraising and undertaking research activities. Collection of bycatch data represents a 

significant portion of that time and effort. Sharing and combining data over multiple 

sites harnesses the power of bycatch data, broadens the scope of research, creates multi-

collaborator studies, and leads to valuable scientific publications.  The TEAM network, 

for example, has published several multi-collaborator research papers on community 

structure and population trends of threatened tropical species (Ahumada et al. 2011, 

Jansen and al et 2014, Beaudrot et al. 2016). Likewise, The Serengeti Lion Project has 
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studied the distribution and community interactions of over 30 species across the 

Serengeti landscape (Swanson et al. 2015), and their bycatch data have led to multiple 

collaborations (A. Swanson, pers.comm 2017). Bycatch data pooled across multiple 

smaller studies have led to publications on regional and range-wide studies of many 

threatened mammals in Southeast Asia, including Asian tapir Tapirus indicus, gaur Bos 

gaurus, sambar Rusa unicolor, red muntjac Muntiacus muntjak, wild pig Sus scrofa 

(Lynam et al. 2012), small carnivores in Thailand (Chutipong et al. 2014)and almost all 

the carnivore species occurring on the island of Borneo (Mathai et al. 2016). Bycatch 

data for the Asian tapir, collected mainly on tiger Panthera tigris surveys, led to an 

extension of the known tapir range in Southeast Asia (Linkie et al. 2013). Collaborations 

can allow researchers to estimate population densities of hard-to-detect species, such as 

clouded leopards Neofelis nebulosa; data from one site are often of limited use, but it is 

possible to analyse detections across multiple sites using techniques such as Spatially 

Explicit Capture Recapture (e.g. Gardner et al. 2010). Open and efficient sharing of 

camera trap bycatch data has the potential to create endless research opportunities, 

improving ecological understanding of poorly-studied species, from accessing basic 

information on species distribution and abundance, to allowing the development of 

complex hypotheses related to habitat preferences, lifecycles, behaviour and response to 

human disturbance and management interventions.  
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Table 2 – Part 1. A comparison of camera trap data management software in April 2017. The 
current features of each system were evaluated manually, and by review of user manuals 
and published literature.  

 
Wild.ID Camera Base 

CPW Photo 
Warehouse 

eMammal 

General features         

Platform   Desktop Desktop  Desktop  Desktop  
plus web-warehouse 

Cost (US$) Free Free  
(GNU General 
Public License) 

Free 
 (CPW Reciprocal 
Open Source License 
Agreement) 

Project setup cost of 
$150, and a monthly 
per-camera cost of 
between $3.87 - $4.19 
for image upload and 
species id  

Data Capacity 100,000’s ~2,000,0001 ~800,000 (double 
observer) or 
~2,000,0001 (single 
observer); 
expandable using 
SQL Server 

Unlimited 

Operating System Windows, MacOS Windows Windows, MacOS2, 
Linux2 - 

Software requirements Java  
(free version 
available) 

Microsoft 
Access 2010 
(tested with MS 
Office XP 2002, 
2003, 2007 and 
2010; known 
issues with 
Office 2013), or 
free Microsoft 
Access 2010 
Runtime.  
Windows Media 
Player, or VLC 
Player for 
videos. 

Microsoft Access, or 
free Microsoft Access 
Runtime (2007 or 
newer).                                           

- 

Internet access required No3  
(online 
registration 
required) 

No3  
 

No3  
 

Yes (image 
upload/download)/ 
No3 (species ID; 
processed images 
unloadable later) 

Skill requirements  Low Medium  
(requires 
familiarity with 
MS Access) 

Low/High4 

 
Low 
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Wild.ID Camera Base 
CPW Photo 
Warehouse 

eMammal 

Functionality 
        

Automatic metadata 
import 

EXIF and camera 
custom tags 

EXIF EXIF EXIF 

Customize event 
intervals   

Yes Yes Yes No  
(1-min sequence) 

Identification at 
individual level7 

No Yes Yes No   

Classification by multiple 
observers  

Yes Yes Yes Yes 
  

Visualize/filter images 
by tag or species 

Yes Yes Yes Yes 

 Verify Taxonomic name Yes No No  Yes 

Video No Yes No No 

Output          

Comma separated 
values (.csv) 

Yes Yes Yes Yes 

Summaries6 No Yes Yes Yes,  
as online resources 

Data export for 
occupancy model 

analysis 

No Yes,  
MARK, 
PRESENCE 

Yes,  
MARK, PRESENCE 

No 

Data export for capture-
recapture analysis 

No Yes,  
CAPTURE, 
MARK, DENSITY, 
EstimateS 

Yes,  
MARK, DENSITY,‘secr’ 
R package 

No 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 102 

 

Wild.ID Camera Base 
CPW Photo 
Warehouse 

eMammal 

Support and/or data 
export for activity 
patterns analysis 

No Yes  Yes, 
‘overlap’ R package 

Yes, 
as online resources 

Mapping No Yes, 
exporting to GIS   

Yes, 
spatial queries to 
view data in Google 
Earth or ArcMap 

Yes,  
as online resources 

Photo Reports No Yes,  
suggested 30-50 
images per 
report 

No No 

 Documentation http://wildid.tea
mnetwork.org/hel
p.jsp  

Tobler 2007 

http://www.atri
um-
biodiversity.org/
tools/camerabas
e/files/CameraB
aseDoc1.7.pdf 

Ivan and Newkirk 

2016 

http://cpw.state.co.u
s/Documents/Resear
ch/Mammals/Softwa
re/CPW-Photo-
Warehouse-4.0-User-
Guide.pdf 

McShea et al 2015 

https://emammal.si.ed
u/participate/science-
and-management 

Footnotes: 
1 Limited by Microsoft Access (Ivan and Newkirk 2016) 
2 By installing Windows in a virtual machine environment 
3 After downloading the installer software or package 
4 Medium (through Access) and high (VBA and SQL code modifications) for advanced user 
5 Low for basic use; high 

(python and/or R) for 

advanced use. Good IT 

knowledge to be installed 

(including server 

configuration) and maintained 

(e.g. updating the source code) 
6 Includes everything between simple counts of trap-nights per camera, to detection rates, to species-specific 

detection counts 
7 Recording of individuals uniquely identifiable by natural or artificial marks 
8 Based on the information available at the time of writing (May 2017) 

 

 

 

 

 

 

 

 

 

http://wildid.teamnetwork.org/help.jsp
http://wildid.teamnetwork.org/help.jsp
http://wildid.teamnetwork.org/help.jsp
http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
http://cpw.state.co.us/Documents/Research/Mammals/Software/CPW-Photo-Warehouse-4.0-User-Guide.pdf
http://cpw.state.co.us/Documents/Research/Mammals/Software/CPW-Photo-Warehouse-4.0-User-Guide.pdf
http://cpw.state.co.us/Documents/Research/Mammals/Software/CPW-Photo-Warehouse-4.0-User-Guide.pdf
http://cpw.state.co.us/Documents/Research/Mammals/Software/CPW-Photo-Warehouse-4.0-User-Guide.pdf
http://cpw.state.co.us/Documents/Research/Mammals/Software/CPW-Photo-Warehouse-4.0-User-Guide.pdf
http://cpw.state.co.us/Documents/Research/Mammals/Software/CPW-Photo-Warehouse-4.0-User-Guide.pdf
https://emammal.si.edu/participate/science-and-management
https://emammal.si.edu/participate/science-and-management
https://emammal.si.edu/participate/science-and-management
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Table 2 – Part 2. A comparison of camera trap data management software in April 2017. The current 
features of each system were evaluated manually, and by review of user manuals and published 
literature.  

 Aardwolf camtrapR TRAPPER Agouti8 

General features        

Platform   Desktop  
(web browser: Google 
Chrome suggested) 

R software 
(R Core Team, 2016)    

Web-
warehouse 

Web-warehouse 

Cost (US$) Free  
(GNU General Public 
License 3.0) 

Free Free  
(GNU General 
Public License 
2.0) 

Operating costs shared by 
users 
 

Data Capacity Unlimited (limited by 
user’s computer 
memory) 

Unlimited Unlimited Unlimited  

 

Operating System Windows, Ubuntu, Mac 
OS, Linux 

Windows, MacOS, 
Linux 

Windows, 
Ubuntu - 

Software 
requirements 

Freely available:  
- Node.js,  
- SQLite; 
- ImageMagick; 
- GraphicsMagick; 
- Exiftool 

Freely available: 
- R;  
- ExifTool  

- - 

Internet access 
required 

No3  
 

No3  
 

Yes Yes (possible to run locally, 
and local system acts as 
‘server’)  

Skill 
requirements  

Low Medium  
(requires familiarity 
with R) 
 
 
 
 
 
 
 
 
 
 

Low/High5  Low 
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Aardwolf camtrapR TRAPPER Agouti8 

Functionality 
       

Automatic 
metadata import 

EXIF EXIF and user-
customized tags 

EXIF EXIF 

 

Customize event 
intervals   

No Yes Yes Yes 

Identification at 
individual level7 

Yes Yes Yes Yes 

Classification by 
multiple 

observers  

Yes Yes Yes Yes 

Visualize/filter 
images by tag or 

species 

Yes Yes Yes Yes 

 Verify 
Taxonomic name 

No Yes No No 

Video No No  Yes No 

Output         

Comma 
separated values 

(.csv) 

Yes Yes Yes Yes 

Summaries6 Yes Yes No No 

Data export for 
occupancy model 

analysis 

No Yes,  
PRESENCE, 
‘unmarked’ R package 

No No 

Data export for 
capture-

recapture 
analysis 

No Yes  
‘secr’ R package 

No No 
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Aardwolf camtrapR TRAPPER Agouti8 

Support and/or 
data export for 

activity patterns 
analysis 

No Yes,  
for single-species: 
histograms of hourly 
activity, activity 
kernel density 
estimations and radial 
plots;  
for two-species: 
activity overlaps 

No Yes 

Mapping No Yes, 
in R or export to GIS   
Shapefile  

Yes,  
online and in 
GIS  

Yes, 
online 

Photo Reports No Yes No No 

 Documentation Krishnappa and Turner 

2014 

https://github.com/yat
hin/aardwolf2/blob/ma
ster/README  

Niedballa et al 2016 

https://cran.r-
project.org/web/pack
ages/camtrapR/index.
html  

Bubnicki et al 

2016 

https://bitbucke
t.org/trapper-
project/ 

 http://cameratraplab.org/

agouti/ 
 https://www.agouti.eu 

Footnotes: 
1 Limited by Microsoft Access (Ivan and Newkirk 2016) 
2 By installing Windows in a virtual machine environment 
3 After downloading the installer software or package 
4 Medium (through Access) and high (VBA and SQL code modifications) for advanced user 
5 Low for basic use; high (python and/or R) for advanced use. Good IT knowledge to be installed (including 

server configuration) and maintained (e.g. updating the source code) 
6 Includes everything between simple counts of trap-nights per camera, to detection rates, to species-specific 

detection counts 
7 Recording of individuals uniquely identifiable by natural or artificial marks 
8 Based on the information available at the time of writing (May 2017) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/yathin/aardwolf2/blob/master/README
https://github.com/yathin/aardwolf2/blob/master/README
https://github.com/yathin/aardwolf2/blob/master/README
https://cran.r-project.org/web/packages/camtrapR/index.html
https://cran.r-project.org/web/packages/camtrapR/index.html
https://cran.r-project.org/web/packages/camtrapR/index.html
https://cran.r-project.org/web/packages/camtrapR/index.html
https://bitbucket.org/trapper-project/
https://bitbucket.org/trapper-project/
https://bitbucket.org/trapper-project/
http://cameratraplab.org/agouti/
http://cameratraplab.org/agouti/
https://www.agouti.eu/
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Figure 1: This example problem data sheet includes a collection of errors and 

ambiguous cell entries that we commonly encountered on data sheets contributed to a 

global assessment of sun bears. Data system is undefined, and could be in either UK or 

US system. 1Dates all similar except for SS_5; either this unit was set in a different 

month, or the date is entered incorrectly. 2End date for SS_3 is clearly the US date 

system (mm/dd/yy); system is unclear for all other dates. 3SS_3 has an unusually high 

number of trap nights, and it is unclear if this is an error or real value. 4Coordinates are 

inconsistently formatted and switch between Lat/Long and UTM systems. GIS software 

cannot read Lat/Longs in this format, and inclusion of symbols prevents easy 

transformation. UTM coordinates are missing zone and map datum information (i.e. 

WGS 1984 47N). Longitude for SS_3 is missing so point cannot be projected. 
5Comments are ambiguous – unclear if row of data should be disregarded or not. 
6Unclear why this row has been highlighted in yellow.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 107 

Figure 2: Proportion of common data entry errors encountered in camera trap 

datasheets. Multiple datasheets were contributed by 12 research groups to aid in a range-

wide assessment of sun bears Helarctos malayanus in Southeast Asia; we used this as an 

example case study to illustrate the common errors that occurred in datasheets that led to 

loss of data. Data entry errors were combined into six categories, described in Table 1, 

and occurrence of errors that led to loss of data was calculated as a proportion of the 

number of research groups. 
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