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Abstract

Analysis of asymmetric data poses several unique challenges. In this thesis, we pro-

pose a series of parametric models under the Bayesian hierarchical framework to account

for asymmetry (arising from non-Gaussianity, tail behavior, etc) in both continuous

and discrete response data. First, we model continuous asymmetric responses assuming

normal random errors by using a dynamic linear model discretized from a differential

equation which absorbs the asymmetry from the data generation mechanism. We then

extend the skew-normal/independent parametric family to accommodate spatial clus-

tering and non-random missingness observed in asymmetric continuous responses, and

demonstrate its utility in obtaining precise parameter estimates and prediction in pres-

ence of skewness and thick-tails. Finally, under a latent variable formulation, we use

a generalized extreme value (GEV) link to model multivariate asymmetric spatially-

correlated binary responses that also exhibit non-random missingness, and show how

this proposal improves inference over other popular alternative link functions in terms

of bias and prediction. We assess our proposed method via simulation studies and

two real data analyses on public health. Using simulated data, we investigate the per-

formance of the proposed method to accurately accommodate asymmetry along with

other data features such as spatial dependency and non-random missingness simulta-

neously, leading to precise posterior parameter estimates. Regarding data illustrations,

we first validate the efficiency in using differential equations to handle skewed exposure

assessment responses derived from an occupational hygiene study. Furthermore, we also

conduct efficient risk evaluation of various covariates on periodontal disease responses

from a dataset on oral epidemiology. The results from our investigation re-establishes

the significance of moving away from the normality assumption and instead consider

pragmatic distributional assumptions on the random model terms for efficient Bayesian

parameter estimation under a unified framework with a variety of data complexities not

earlier considered in the two aforementioned areas of public health research.
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Chapter 1

Introduction: works inspired by

asymmetric data

Florence Nightingale (1820−1910) once said: “Statistics . . . the most important science

in the whole world: for upon it depends the practical application of every other science

and of every art; the one science essential to all political and social administration,

all education, all organizations based upon experience for it only gives the results of

our experience.” She promoted to improve health care by using the art and science

of statistics and to help people learn from the data (Agresti and Franklin, 2007). As

a pioneer in visual presentation of information and statistical graphics, her work has

inspired generations of people to advocate and apply statistics to improve people’s

lives in public health. She was not alone on the way to promote applied statistics in

heath science. The use of models in health science has a long history. Researchers and

scientists from a wide variety of disciplines are enthusiastic to develop complex and

interpretable stochastic models to derive inference from data generated in real life.

The most widely used, also the simplest model, is the general linear model, which

1
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forms a linear relationship between continuous response and covariates while also ac-

counts for normally distributed random errors. This linear model is easy to use and

the coefficient estimates give straightforward interpretations. Whereas there are sev-

eral assumptions under the general linear model framework, the normality assumption

is non-ignorable. When this assumption is not met, we can use the generalized linear

model (GLM). Nelder and Wedderburn (1972) formalized the GLM and it allows the re-

sponse to follow other parametric distributions (instead of only the Normal distribution

as in the general linear model) by choosing different link functions from the exponential

family accordingly. For example, when response follows a Binomial distribution, we can

use a logit link and do a logistic regression and it works for both continuous and discrete

responses. The general linear model is a special case of the GLM where an identical link

is used. The development from the general linear model to the GLM is a breakthrough

with advantages. The GLM allows to relax the normality assumption on responses. The

link function in the GLM can be different from the distribution assumption for random

components so that there’s more flexibility in modeling. Also in the GLM, estimates

can be obtained by using either the maximum likelihood or drawing inference from

posterior distributions under the Bayesian framework and we can choose the method

accordingly. For example, Zeger and Karim (1991) showed an example using the GLM

to model clustered Gaussian responses, where they assumed an independent Gaussian

random error with mean 0 and variance σ2
ε . This model was casted under a Bayesian

framework using the Gibbs sampling to draw inference from posterior samples.

In scientific research, we do not always get symmetric data. The study of asym-

metric data is not rare in research literatures across different disciplines. For examples,

researchers in marketing have been using the multidimensional scaling (MDS) but there

are no suitable models for analyzing asymmetric data relationships (Harshman et al.,
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1982). Harshman et al. (1982) developed a linear model to rewrite the original asym-

metric matrix into a weight matrix, an asymmetric matrix that specifies the directional

relationships, and a matrix of error terms. This method has a better representation

of asymmetric data and the transformation matrices give useful marketing implica-

tions (Harshman et al., 1982). A common approach adopted for data analysis in these

situations is reverting to the original multivariate normality assumptions after apply-

ing suitable data transformations of responses. Osborne (2010) reviewed the Box-Cox

transformation (Box and Cox, 1964) which has been a great improvement on traditional

approaches (such as square root transformation and log transformation) for normaliza-

tion, where the Box-Cox transformation gave the most symmetrical results compared

to other methods. The application of data transformation can be found in numerous

areas. For example, in the study of environmental properties, the distributions of ele-

ments found in soil and rocks are often asymmetric. Kerry and Oliver (2007) uses data

transformation to reduce asymmetry, and the paper shows how different transforma-

tion methods can be suitable to various situations. Although data transformation can

lead to reasonable empirical results, they may be avoided when a suitable alternative

theoretical model is available because transformation often hinders the underlying data

generation mechanisms due to reduced information, and component-wise transforma-

tion (such as the multivariate cases) does not always lead to joint normality (Jara et al.,

2008). In addition, interpretations on transformed and original planes may not be simi-

lar. Besides, transformations are often not universal, i.e., a transformation used for one

dataset might not work for another. Furthermore, standard log-transformation might

be infeasible (only works for non-negative values).

A remedy of data transformation is to use more flexible parametric families to model

asymmetric data. A considerable amount of research has been done by introducing more

flexible parametric families that can accommodate normality departures (skewness and
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kurtosis), and hence eliminate the need of data transformations. When data exhibit

non-normal behavior, the fidelity of the Gaussian assumption has always been ques-

tioned (Verbeke and Lesaffre, 1996; Ghidey et al., 2004; Lin, 2010). In the context of

linear mixed models (LMMs), the random effects distribution was relaxed using finite

normal mixtures (Verbeke and Lesaffre, 1996), smoothing (Ghidey et al., 2004), a semi-

nonparametric density (Zhang and Davidian, 2001). Much of recent frequentist and

Bayesian advances in regression problems revolve around the attractive and popular

skew-normal (elliptical) distributions (Azzalini and Capitanio, 2003; Sahu et al., 2003).

Related literature in this context is very rich (Lin, 2010; Azzalini, 2005; Arellano-Valle

et al., 2006), and the entire monograph of Genton (2004) is dedicated to discuss recent

developments.

Besides data transformation and the use of flexible parametric families, we can also

handle asymmetry using specified link functions under the GLM framework. When a

link is misspecified, it can lead to bias and inefficiency of the estimates of covariate

coefficients. Thus, it is of significant importance to use the correct link. There are

substantial works done in studying different link functions. Chen et al. (1999) introduced

a latent variable approach using a class of asymmetric link models for binary response

data. Kim (2008) introduced a link based on the flexible generalized t-distribution,

which controls the tails and the scale of the link. The generalized extreme value (GEV)

distribution is also a parametric approach to model skew data, which has been widely

used in a variety of different discipline, such as risk management on financial markets

(Coles et al., 2001; Diebold et al., 2000). Wang and Dey (2010) presents a flexible skewed

link function for modeling binary response data based on the generalized extreme value

(GEV) distribution. Wang and Dey (2011) also uses the GEV link to model ordinal

response data in ecological research.
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In this dissertation, I try to throw some light on the adequacy of normality assump-

tion on random errors / measurement uncertainties and the consequences on parameter

estimation. The research goal is to develop and extend current parametric models

via Bayesian approach to handle skewed datasets with both continuous and binary re-

sponses in applied public health research which are inadequately modeled with Gaussian

assumption. Our data-driven models are built on the unique features of the individual

dataset. The first dataset is about contaminant exposure assessment in evaluating oc-

cupational hygiene, and the second one is about periodontal disease (PD) progression

in the context of dental epidemiology.

1.1 An overview of the motivating datasets that inspire

this dissertation

I applied our models to datasets from two fields in public health: occupational hygiene

and dental epidemiology. The dental epidemiology data have been successfully analyzed

prior to our research (Reich and Bandyopadhyay, 2010; Reich et al., 2013; Bandyopad-

hyay et al., 2009, 2010a,a, 2012; Bandyopadhyay and Canale, 2016), but we emphasis

on modeling the skewness (Chapter 3 and Chapter 4) with different data setups and

providing alternative perspectives to modeling and analyzing this dataset.

1.1.1 Field experiment data in contaminant exposure assessment for

model evaluation in occupational hygiene

The data in section 2.4.2 and section 2.4.3 are collected in an experimental study (Arnold

et al., 2017) when evaluating the well-mixed room model and the two-zone model sys-

tematically to understand contaminant exposure in working environment. Because the

research goal in occupational hygiene is to protect workers’ health and well-being, it’s
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crucial to use appropriate exposure models which can contribute to accurate decision

making. Arnold et al. (2017) pointed out that the accuracy of using subjective opinions

such as personal exposure data for estimation is no better than random chance. There-

fore, objective inputs such as systematic model evaluation are needed. Based on the

widespread industrial applications and range of physical chemical properties, we choose

to use toluene data in our analysis. These experiments are conducted under highly

controlled conditions in exposure chambers, such as well-mixed chamber and near-field

far-field (two-zone) chamber.

In the well-mixed room model, concentrations were measured at six different loca-

tions around the source to obtain spatial profiles of toluene concentrations. The source

was located at the center of the chamber. Measurements were taken until the concen-

tration level in the chamber has reached a steady state. Three levels of ventilation rates

were used in the experiment (details in section 2.4). Since the air in the chamber is com-

pletely well-mixed, measurements at 6 different locations were almost the same. Hence,

without any spatial association we only use measurements at 1 location for analysis. In

the two-zone model experiment, concentrations of toluene were measured at 4 different

locations in the chamber, one at near field and other three at far field. Concentrations

were measured every 90 seconds for 120 minutes until they reach a steady state. For

both well-mixed chamber and two-zone chamber experiments, measurements of the con-

centration level were recorded and transferred into a spreadsheet. Primary analysis of

the contaminant concentrate level of toluene shows that the continuous response data

exhibit skewness and possibly some non-Gaussian tail behavior, which inspired us to

use a flexible parametric linear model under the Bayesian framework when analyzing

the data.
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1.1.2 GAAD dataset

The second application to handle asymmetric data is in dental epidemiology, especially

for periodontal disease (PD). PD is not uncommon in the United States. Oliver et al.

(1998) pointed out that about 50% of U.S. adults over the age of 35 experience early

stages of periodontal disease. If left untreated, it can progress to moderate or severe

PD, which leads to tooth shifting, eventual loss, and other serious health problems.

For instance, if inflammatory proteins and bacteria in the periodontal tissue enter the

blood stream, it can cause coronary disease and stroke (Beck et al., 1996). Besides

effects on the cardiovascular system, there are studies show a positive association be-

tween glycemic control of type 2 diabetes and severe periodontal disease (Tsai et al.,

2002; Bandyopadhyay et al., 2010b; Teeuw et al., 2010). In Chapter 3 and Chapter 4,

we analyze data collected from a clinical study in dental epidemiology to evaluate the

association between glycemic control and periodontitis progression among the Gullah-

speaking African Americans (GAAD) with type-2 diabetes mellitus (T2DM). Studies

show that the African Americans’ community has a higher risk of diabetes compared to

other races in the United States, where possible contributors are genetic traits, preva-

lence of obesity, and insulin resistance(Marshall, 2005). Within the African American

community, the Gullah African Americans are the most genetically homogeneous popu-

lation of the African descent in the United States (Bandyopadhyay et al., 2010b), which

is a suitable and informative population to study the association between PD and type-2

diabetes.

The most important biomarker to assess periodontal disease is the clinical attach-

ment level (CAL). In the GAAD data, CAL was measured for each of the 6 sites of a

tooth, nested within a subject, including various subject-level covariates such as age,

gender, body mass index (indicating obesity status), glycemic level (indicating diabetic



8

status), and tooth-site level covariates such as site in upper/lower jaw, site in tooth type,

etc. With this multivariate response vector, the underlying statistical question was to

investigate and estimate the functions determining the covariate-response relationships.

However, note that this is complicated due to several reasons. First, the dataset ex-

hibits a large volume of missing responses. Second, PD progression is also considered

to be spatially-clustered, i.e., diseased status for a set of closely located tooth-sites are

similar. Furthermore, primary analysis of CAL data exhibits skewness and (possible)

thick tails (Figure 3.1). Therefore, we develop models in Chapter 3 and Chapter 4 that

expand the estimation framework to accommodate all these difficulties, and produce

robust parameter estimates.

1.2 Dissertation overview

A common feature from the 2 datasets in section 1.1 is asymmetric behavior, mostly

skewness and possible non-Gaussian tails in the response. However, we cannot apply

suitable data transformations of the response to revert to the original multivariate nor-

mality assumptions. In our case, standard log-transformation is not feasible for either of

the two datasets. For the occupational hygiene data, any forms of data transformation

for the responses may disrupt the underlying differential equations (DE) framework,

which is the cornerstone of the stochastic model characterizing the complex dynamic

system of industrial hygiene. As for the GAAD data, CAL can have zero values. There-

fore, we need other approaches to accommodate asymmetry.

In this dissertation, I first develop a likelihood-based dynamic linear model using a

discrete version of the underlying DEs to estimate parameters in two chamber experi-

ments that mimic the real-life working environment for occupational hygiene. We com-

pare model fit under Gaussian assumption to other available parametric non-Gaussian
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propositions. Quite interestingly, I find that although the responses look skewed, a

Gaussian fit is comparable to other competing non-Gaussian models (such as a skew-

normal, or a skew-t density for the random terms). However, this is not the same case

for CAL in the GAAD data where I deal with spatially-referenced responses [note that

proximally located sites inside the mouth usually have similar CAL values]. In addition,

substantial missing responses are observed. Given that PD is the major cause of tooth

loss, this missingness is often attributed to be non-random. To mitigate this, in Chapter

3 we develop a new family of parametric statistical model that incorporates skewness,

kurtosis and spatial clustering within a unified framework. With simulation studies and

data analyses, we show that our model produces a better fit and improves parameter

estimation over other Gaussian-based models. We can also model the extreme responses

of CAL, i.e., when the patient has moderate to severe PD. This setup gives us a skewed

multivariate binary response because the number of observations with moderate or se-

vere PD is much smaller compare to the number of observations without that condition.

To accommodate this, in Chapter 4 we applied the GEV link using a multivariate latent

random variable jointly modeled with spatial-clustering and non-random missingness.

Through simulation studies and analysis of the GAAD data, we show that the GEV

link model with informative missingness has the best fit over other symmetric links.

Given the complexities involved in these datasets, a classical inferential frame-

work mostly relying on maximum-likelihood estimation techniques, although feasible,

might appear to be daunting. The associated asymptotic normality results, which are

quintessential to any classical advancements, are not straightforward under complex dy-

namical models, spatial referencing, non-random missingness, and other data features

tackled in my dissertation. One difficulty in handling these datasets is the computa-

tion intensive analyses. Historically speaking, after computers became more available in

the 1950’s, there were great advances in computation techniques which made complex
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models and large datasets applicable. For example, with the help of large electronic

computers, Elveback and Varma (1965) showed how computers can help with stochas-

tic models to obtain information. They use simulated mechanical model to illustrate

stochastic characters of the epidemic model for closed and randomly mixing populations

(Abbey, 1952). Hence, I decisively consider the hierarchical Bayesian formulation, with

the ability to incorporate expert background (prior) information about the unknown

parameters, and relying on the relevant Markov chain Monte Carlo (MCMC) steps for

parameter estimation. For analyses in Chapter 2 and Chapter 3, prediction is almost au-

tomatic relying on posterior predictive distributions (Carlin and Louis, 2008). However,

the generalized extreme value link model in Chapter 4 requires a bit more work to get

posterior predictive samples of the multivariate latent variable because of its spatially-

clustered nature and the closed form full-conditional is unavailable. I approach this

problem by applying Hamiltonian Monte Carlo within Gibbs sampling, which makes

the GEV link model accessible to spatially-clustered data. In addition, computational

codes were developed using a combination of R packages, such as R2WinBUGS (in Chap-

ter 3) and rjags (in Chapter 2), that connects the popular freeware R to other freely

downloadable softwares such as WinBUGS and JAGS. Hence, the methods are appealing

to any practitioner with some basic knowledge about the software.

The rest of this thesis proceeds as follows. Chapter 2 talks about the Bayesian

dynamic modeling and inference for the industrial hygiene dataset. Chapter 3 and

Chapter 4 both accommodate various aforementioned features exhibited by the clinical

study on PD, while Chapter 3 applies flexible parametric models and Chapter 4 develops

joint modeling using the GEV link. Finally, Chapter 5 is the discussion and conclusion

followed by Reference and Appendix.



Chapter 2

Dynamic Bayesian physical

models for occupational exposure

assessment

2.1 Introduction

A primary concern in occupational hygiene (OH) is the estimation of a worker’s ex-

posure to chemical agents. Prediction of exposure through mathematical modeling is

gaining popularity, especially with the advent of the European Community Regulation

(REACH) that requires assessing exposures in a variety of exposure scenarios where

monitoring may not be feasible (Ramachandran, 2008). This is usually achieved by

modeling the physical processes generating chemical concentrations in the workplace.

An accurate representation will deliver better concentration estimates and facilitate

subsequent decision-making in exposure management. Nicas (2002) points out that

mathematical modeling can provide a more precise estimate than estimates derived

using only a few data points collected through monitoring. However, the workplace is

11
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usually too complex for a physical model, or even a class of models. One novel approach

been increasingly studied is a synergy of physical and statistical models to better es-

timate the underlying physical processes in the workplace (Hornung et al., 1994; Keil,

2000; Chen et al., 1999). In this sense, statistical modeling, combined with computa-

tional methods and software, can be an important tool in assessing exposure in the field

of occupational hygiene.

Formal modeling in OH typically proceeds from a deterministic physical model for

pollutant transportation using mass balance to predict the concentration of the contam-

inant, usually a function of time. For example, the so called well-mixed room (WMR)

model (Ramachandran, 2008) assumes a single compartment with uniform pollutant

concentration everywhere in the compartment. Here, the model has two main terms: a

source (or generation) term and a dispersion term. The box has a continuous pollutant

source which releases into a ventilated air space, where the ventilation rate is preas-

signed. The WMR model assumes a constant air flow rate through the well-mixed room

(see Figure 2.1).

A second example is the two-zone model, also known as the near-field far-field model.

It is first introduced by Hemeon(1963), which assumes two well-mixed compartments

and a single source of emission. A compartment near the source of the emission is called

the near-field while a larger chamber that encloses the first compartment but represents

concentration farther away from the source is called the far-field.

Unfortunately, predicting exposure for well-mixed room model and two-zone model

is challenging because (a) the physical assumptions are typically never completely met in

practice, and (b) there is a lack of quantitative knowledge of exposure determinants for

the statistical exposure models that can fit the scenario perfectly (Zhang et al., 2009).

Since most companies do not collect such determinant information routinely, data on

crucial determinants such as ventilation rates and pollutant generation rates are difficult
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to obtain (Kauppinen, 1994). There has been limited research in evaluating model

parameters and assessing model performance. Uncertainty quantification is essential

for estimation and prediction since it is inconceivable to experimentally account for all

sources of variation in the data. For example, a physical parameter of primary interest

in the two-zone model is the rate of air exchange between near-field and far-field. This

parameter is affected by a number of factors such as the presence of a human body, body

movement, and body temperature (Melikov, 1996; Nicas, 1999). It is, however, difficult

and expensive to design experiments that can control for all these factors. Instead,

statistical models that account for uncertainties can make this problem more tractable.

Recent work in melding statistical and physical models in OH include Zhang et al.

(2009) and Monteiro et al. (2014). The former proposed a Bayesian approach regressing

the mean concentration toward the nonlinear solution of differential equations repre-

senting the two-zone model. However, regressing on the solution of the physical model

may prove ineffective due to biases and extraneous variation. Monteiro et al. (2014)

attempted to enrich this work by synthesizing the physical model with experimental

data using a stochastic process. While this enhances inferential performance with re-

spect to predictive coverage, it considerably enhances the uncertainty in estimation of

the model parameters and makes such inference less useful in practice. Neither of the

aforementioned articles explored errors that violated Gaussian assumptions.

This chapter aims to contribute in the following manner. From a statistical model-

ing perspective, we propose a Bayesian dynamic linear model by discretizing the actual

physical model. Rather than working with the non-linear solution to the differential

equations, as was done by Zhang et al. (2009) and Monteiro et al. (2014), discretiz-

ing the differential equations produces a dynamic linear model. This avoids the exact

nonlinear solutions, is easier to compute and, perhaps more pertinently for the prac-

ticing industrial hygienist, can be implemented easily in standard Bayesian software
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environments such as WinBUGS and rjags. Furthermore, we model the measurement

errors on the same scale as that of the concentration and not in a logarithmic or other

transformed scale. Transforming the outcome to model the errors would violate the

underlying physical model, which we find undesirable. Our model comparison results in

fact demonstrate that there’s no substantive differences between assuming Gaussian er-

rors and assuming more sophisticated skewed error distributions. This is a special case

to model asymmetric data using dynamic linear model under Gaussian assumption,

which is quite different from what we do in Chapter 3 and Chapter 4.

Another intended contribution concerns “validation”. Validation of any inferential

framework synthesizing physical and statistical models requires experimentation at two

levels. First, we simulate computer experiments that generate synthetic data by adding

statistical noise to the assumed true states of the well-mixed room and two-zone physical

models. Validation proceeds by ascertaining if a statistical model is able to estimate

the true state of the physical model (i.e., all model parameters) and also by assessing

its predictive capabilities. At a second level, we generate concentration data from a

real laboratory by carefully designing chamber experiments, where we attempt to meet

the assumptions of the models and then monitor the change in exposure levels using

both well-mixed room model and two-zone model (Arnold et al., 2017). These data are

then analyzed using our proposed modeling framework and evaluated in terms of its

inferential capabilities for the true process parameters.

The remainder of Chapter 2 is organized as follows. Section 2.2 offers details per-

taining to the physical models we explore here. Section 2.3 develops the Bayesian

dynamic linear model, different stochastic specifications for the measurement error and

our approach to compare with competing statistical specifications. Section 2.5 presents

simulation studies for the two-zone model. Implementation details for data simulating
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priors information and results are also presented in these sections. Section 2.6 summa-

rizes our findings and discusses directions for future research in this area.

2.2 Physical models

2.2.1 Well-mixed room (WMR) model

The well-mixed room (WMR) model incorporates information about the air flow rate

and the generation rate of contaminant in the workroom with volume Vm3. We assume

a balance in the volumetric rate m3/min of air entering the workroom as Qin and leaving

the workroom as Qout. We drop the subscripts and simply refer to Q as the supply

or exhaust air flow rate of the workroom that might remove some of the contaminants

from the workroom. In addition, there are some other factors that can reduce the

contaminant. For example, the contaminant may get absorbed onto workroom surfaces

(e.g., walls and floor coverings) or chemical reactions (Melikov, 1996; Nicas, 1999). We

denote all these loss mechanisms as a loss rate factor KL (1/min). So the amount of

contaminant in the workroom can be reduced by various loss mechanisms and airflow

rate. The loss rate coefficient, KL, governs the mechanism by which the pollutant

is removed from the room (other than ventilation). Examples of such mechanisms

include adsorption of gases and vapors onto various surfaces (here KL is an adsorption

rate for the particular vapor and surface type) and particle deposition on surfaces by

gravitational settling (KL is now a function of terminal settling velocity for particles

of a given diameter and density), impaction and Brownian diffusion. Thus, KL helps

generalize this model to gaseous as well as particulate air contaminants.

We are concerned with the concentration of a specific contaminant in the workroom

in Figure 2.1. Air enters the room with a supply airflow rate Q and a contaminant

concentration level G. The box is perfectly mixed which creates a uniform contaminant



16

concentration throughout the room. The exhaust rate equals the supply airflow rate Q.

To develop the dynamic model, we start with getting the differential equation. Using

Figure 2.1: Dynamics of the one-zone model.

the principle of mass conservation, we can derives the first-order differential equation:

d

dt
C(t) +

Q+KLV

V
C(t) =

G+ CINQ

V
, (2.1)

where CIN (e.g., in units of mg/m3) is the concentration of the contaminant entering

the room (at a flow rate of Q). Replacing the derivative in (2.1) with finite difference

C(t+ 1)− C(t) yields the discretized model (see detail in A.1),

C(t+ 1) =

(
1− Q+KLV

V

)
C(t) +

G+ CINQ

V
(2.2)

=

(
1− Q+KLV

V

)t+1

C(0) +
G+ CINQ

V

t∑
i=0

(
1− Q+KLV

V

)i
.

We will extend (2.2) to a Bayesian dynamic linear model in section 2.3 and the resulting

model will not explicitly require solving (2.1). Equilibrium of the physical state is

obtained in the limit as t → ∞ and given by lim
t→∞

C(t) = (G + CINQ)/(Q + KLV ) in
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mg/m3.

While CIN may not be equal to C(0) in general, in the experiment discussed here

Arnold et al. (2017), we have CIN = C(0). Then the loss factor KL is identifiable from

Q only if the initial concentration C(0) is not equal to 0. If we assume C(0) = 0, then

the term Q + KLV is still identifiable but not the individual terms Q or KL. These

need to be identified from their prior distributions and will provide estimates sensitive to

the specific choice of priors. Therefore, informative priors are crucial in obtaining solid

estimates. In our subsequent simulations and experimental studies, we have explored

with different choices for C(0). Determined by the chamber condition at t = 0, C(0)

can be either greater than or less than the equilibrium and the asymptotic solution (2.2)

is correct for both conditions. We assume C(0) = 0 as we are entering a clean chamber

with ideal conditions. We explored the idea of a slightly contaminated chamber where

C(0) is about 5% to 10% of the equilibrium. We also use different sets of priors in the

analysis. Further details are available in sections 2.4.2.

Figure 2.2 [panels (a) - (d)] shows the raw density histograms and the associated

Q-Q plots for the raw contaminant concentration level data from the well-mixed work-

room with low generation rate and high generation rate. Those plots present evidence of

departures from the Normality assumptions (i.e., asymmetry). Therefore, the Gaussian

distribution assumption does not seem to be congruous with the response data which ex-

hibits strong left-skewness. One purpose of this paper is to show that when one converts

the physical model into a dynamic framework, the results from assuming a Gaussian

error would not be different from what you get by using some skewed distribution.

The underlying model assumes that the air in the workroom is completely well-

mixed. Therefore, the concentration level at any point in the workroom is the same

as at any other point in time. In other words, there is no spatial variability within

the workroom. The contaminant is dispersed instantaneously throughout the volume of



18

0 50 100 150

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Raw contaminant level (in ppm)

de
ns

ity

(a)

●
● ●

● ●
●●

●●
●●

●●
●●

●●
●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●

●●●●●●
●●●● ● ● ● ●●●

−3 −2 −1 0 1 2 3
0

50
10

0
15

0
x

y

Quantiles of Standard Normal

R
aw

 c
on

ta
m

in
an

t l
ev

el
 (i

n 
pp

m
)

(b)

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Raw contanminant level(in ppm)

de
ns

ity

(c)

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●●

●●●

●●●
●

●●● ●

● ● ● ● ● ● ●

●

−2 −1 0 1 2

0
5

10
15

20

x

y

Quantiles of Standard Normal

R
aw

 c
on

ta
m

in
an

t l
ev

el
 (i

n 
pp

m
)

(d)

Figure 2.2: Well-mixed data: Plot of the density histogram of the raw contaminant concentra-
tion level for WMR model with high generation rate (panel a), WMR model with low generation
rate (panel c), And the corresponding Q-Q plots are presented in panels (b) and (d).
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Figure 2.3: Two-zone data: Plot of the density histogram of the raw contaminant concentration
level for near field contaminant concentration level (panel a), and for the far field contaminant
concentration level (panel c). The corresponding Q-Q plots are presented in panels (b) and (d).
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the workroom, which leads to some simplification of the mathematical solution. This

simplification comes at a cost: the model tends to underestimate exposures in situations

where the workers are very close to the source, and the process is a continuous one once

it has reached a quasi-steady state (i.e, there are no large variations in the process

variables over time). A two-compartment (two-zone) model can compensate for some

of these deficiencies, which we discuss this next.

2.2.2 Two-zone model

The two-zone model assumes the presence of a contamination source in the workplace

and that the region is composed of two well-mixed fields. The near-field is the zone very

near and around the source with volume VN , while the far-field refers to the rest of the

room and has volume VF . The far field completely encloses the near field and we assume

there is some air exchange between the two zones. The contaminant concentration for

the near and far fields are given by CN (t) and CF (t), respectively. The supply and

exhaust flow rates are the same and equal to Q (in units of m3/min). The airflow rate

between the far and near field is β (in units of m3/min). Also, we assume that the con-

taminant’s total mass is emitted at a constant rate G (in units of mg/min). We assume

that the initial concentration level in both fields are zero, the supply airflow is free of

contaminants and has rate Q and the only removal mechanism for the contaminant is

ventilation. Figure 2.4 schematically represents the dynamics of the two-zone system

(Zhou and Schmidler, 2009).

Based on the above assumptions, Monteiro et al. (2014) shows the rates of change

in concentrations can be expressed as

d

dt
C(t) = W(θ1; x)C(t) + g(θ1; x) , (2.3)
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Figure 2.4: Dynamics of the two-zone model.

where C (t) =

CN (t)

CF (t)

, W(θ1; x) =

− β
VN

β
VN

β
VF

− (β+Q)
VF

, g (θ1; x) =

 G
VN

0

, θ1 =

{β,Q,G} and x = {VN , VF }. The functions CN (t) and CF (t) are the exposure concen-

trations at time t in the near and far fields, respectively.

Zhang et al. (2009) and Monteiro et al. (2014) provide explicit solutions to (2.3)

in terms of matrix exponentials when the eigenvalues of W(θ; x) are real and distinct.

They regress the observed (bivariate) concentrations toward the nonlinear solution and

estimate the parameters in θ. Here, we depart from this approach and construct a

dynamic probability model based upon (2.3). This obviates dealing with the nonlinear

solution and provides a more numerically stable template for inference. Replacing the

derivative in (2.3) with the finite difference, we obtain

C(t+ 1) = [I + W(θ1; x)] C(t) + g(θ1; x) = G(θ1; x)C(t) + g(θ1; x) , (2.4)

where G(θ1; x) = I + W(θ1; x). Section 2.3 extends section 2.4 into a full Bayesian

model.

Figure 2.3 panels (a)-(d) show raw data density histograms and the associated Q-Q

plots from the raw contaminant concentration level data collected from the two-zone
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model for both the near-field and far-field. Panel (a) and panel (c) presents histograms

of the raw concentrations from the near and far fields, while panel (b) and panel (d) show

the corresponding Q-Q plots. The two-zone experimental data also exhibit left-skewness

and warrant investigations with non-Gaussian errors.

2.3 Bayesian dynamic linear model and estimation

We will describe how to build the dynamic Bayesian model using the two-zone model

as an example. Equation (2.4), which is discretized from the two-zone differential equa-

tion that represents the actual physical model, and describes the relationship between

C(t + 1) and C(t) and they are estimated recursively in time. C(t) is the mean con-

taminant concentration level at time t which is not observed directly. As Doucet (2000)

has mentioned, we can treat the mean of the contaminant concentration level as a

Markovian hidden signal of interest {C(t), t ∈ T} and call it the hidden process. The

observed contaminant concentration level {Y(t), t ∈ T} is implemented in the obser-

vation (measurement) equation. The relevant hidden information on {C(t), t ∈ T} at

time T and the unknown parameters that we are interested in estimating are included

in the posterior distribution p({C(t), t ∈ T},θ | {Y(t), t ∈ T}). Because of the Gaus-

sian assumption we have for the observations, this linear Gaussian model is known as

the Kalman filter process (Hosseini et al., 2011). Harrison (1976) defined a class of

dynamic linear models, which is system equations that describe how the parameters

get estimated and updated through time and how the observations are dependent on

the current process. The model usually has the following components: (1) time index

(t = 1, 2, . . . , T ); (2) a vector of the observed data at time t, Y(t) =

YN (t)

YF (t)

; (3)
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a vector of the hidden (unobserved) data at time t, C(t) =

CN (t)

CF (t)

; (4) a matrix

of independent variables(predictors), here it’s the identity matrix I; (5) a system ma-

trix G(θ; x); (6) random effects νt and ωt, in the Gaussian model we assume they are

multivariate Normal with mean 0 and covariance Σν and Σω respectively.

We construct a Bayesian dynamic model with two components: (i) a measurement

equation and (ii) a transition equation. The measurement equation, which is also known

as the observation equation (Harrison, 1976), describes the relationship between the

mean concentration level and the observations at any given time and for any given

physical state. It specifies the stochastic process of the observation Y(t) on the current

parameter {θ,C(t)} at time t. The distribution of Y(t) is completely defined by the

parameters at the current process. The transition equation, which is also known as the

system equation, describes how the mean concentration level is updated from the state

at time t to the next state at time t + 1. The fixed system matrix G, specifies the

deterministic derivation of the unknown parameters from time t to time t+ 1. Harrison

(1976) has pointed out that dynamic linear model can be generalized by making matrix

G indeterministic. In our analysis, we keep the matrix G fixed since the experiment

settings don’t vary with time.

We can use the dynamic linear model to do parameter estimation. Kalman (1963)

showed that the dynamic linear model can be used in estimating parameters recursively

as well as updating and revising parameters. In our case, the Markovian hidden value

C(t− 1) can be calculated from the most recent observation values Y(t), the posterior

distribution p(C(t− 1) |Y(t)), and the current random effects νt and ωt.



24

2.3.1 Well-mixed room Bayesian Dynamic Model

Let Y (t) be the observed concentration levels from a well-mixed chamber experiment

and let C(t) denote the mean concentration level at time t. The measurement equation

assumes that Y (t) is a noisy version of C(t). The transition equation constructs the

dynamic update of C(t) based upon the physical model in (2.1) and, more specifically,

in (2.2). Under normality assumption, this yields

Measurement equation: Y (t) = C(t) + νt , νt
iid∼ N(0, σ2) ;

Transition equation: C(t+ 1) =

(
1− Q+KLV

V

)
C(t) +

G+ C(0)Q

V
+ ωt ,

ωt
iid∼ N(0, τ2) .

(2.5)

The collection of model parameters in (2.5) is θ = {KL, G,Q, σ
2, τ2}, where the first

three elements retain their interpretations from (2.1), while σ2 and τ2 are variance terms

accounting for uncertainties in the measurements and in the physical model itself. C(0)

is fixed at either 0 or a small value which is about 5% to 10% of the equilibrium

concentration level.

To construct a full Bayesian model from (2.5), we derive the likelihood function

from the measurement equation and a distribution on the underlying state C(t) from

the transition equation. The specification is completed by assigning prior distributions

to the parameters in θ. The corresponding posterior is proportional to

IG(σ2 | aσ, bσ)× IG(τ2 | aτ , bτ )×Unif(KL | aKL , bKL)×Unif(G | aG, bG)×

Unif(Q | aQ, bQ)×
n−1∏
t=0

N

(
C(t+ 1) |

(
1− Q+KLV

V

)
C(t), τ2

)
×

n∏
t=1

N(Y (t) |C(t), σ2) , (2.6)
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where IG(·, ·) and Unif(·, ·) represent inverse-Gamma and Uniform densities and the

measurements Y (t) are assumed to have been taken at time points t = 1, 2, . . . , n.

2.3.2 Two-zone Bayesian Dynamic Model

Turning to the two-zone model, the analogues of (2.5) are

Measurement equation: Y(t) = C(t) + νt , νt
iid∼ N(0,Σν) ;

Transition equation: C(t+ 1) = G(θ1; x)C(t) + g(θ1; x) + ωt , ωt
iid∼ N(0,Σω) ,

(2.7)

where Y(t) =

YN (t)

YF (t)

 is a 2× 1 vector of the observed concentration levels in the near

and far-fields from a two-zone well-mixed chamber experiment, and C(t), G(θ1; x) and

g(θ1; x) are as defined in (2.3). The corresponding posterior distribution is proportional

to

IG(σ2 | aσ, bσ)× IG(τ2 | aτ , bτ )×Unif(KL | aKL , bKL)×

Unif(G | aG, bG)×Unif(Q | aQ, bQ)×
n−1∏
t=0

N (C(t+ 1) |G(θ1; x)C(t) + g(θ1; x),Σω)×
n∏
t=1

N(Y(t) |C(t),Σν) . (2.8)

The posterior distributions in (2.6) and (2.8) are analytically intractable and are eval-

uated by drawing samples from the posterior distribution using Markov chain Monte

Carlo (MCMC) algorithms, such as the Gibbs sampler and Metropolis random walk

algorithms. MCMC yields samples from a Markov chain that requires an initial “burn-

in” period to gradually converge to its stationary distribution, i.e., the posterior dis-

tribution. Convergence can be diagnosed by running multiple chains with different



26

starting values and assess mixing using, e.g., the Gelman Rubin statistics (Gelman

and Rubin, 1992). MCMC algorithms along with functions for assessing satisfac-

tory mixing behavior are now automated in modeling languages such as BUGS and

rjags, both of which have interfaces within the R statistical computing environment

(http://www.r-project.org/).

2.4 Experimental Chamber Study

2.4.1 Chamber Study Design for WMR Model Evaluation

We focus upon an experiment conducted in a full size exposure chamber (2.0 m×2.8 m×

2.1 m). A detailed description of the chamber construction is presented in Arnold et al.

(2017). A factorial study design was used to evaluate the WMR model across a range

of emission and ventilation rates. Three industrial solvents, acetone, 2-butanone, and

toluene were selected due to their widespread industrial application and range of physical

chemical properties. As shown in Table 2.1, emission rates were selected to accommo-

date instrument sensitivity, delivery mechanism capacity and time required to approach

steady state concentrations. Three ventilation rates, 0.3, 1.3 and 3 ACH, representing

ranges relevant to residential and industrial operations were used. Precise generation

rates, G (mg/min), were achieved by releasing a solvent into the chamber using a Har-

vard Apparatus Pump, Series 11 Elite, (Harvard Apparatus, Holliston, MA) equipped

with a Becton Dickenson 30 ml or 50 ml glass syringe (East Rutherford, NJ). Because

of the relatively high vapor pressures, the solvents evaporated almost immediately upon

delivery, emitting the solvent vapor at a known and consistent generation rate. Each

set of conditions was evaluated 3 times. Thus, for each solvent, 27 studies = 3 emission

rates × 3 ventilation rates × 3 repetitions were conducted.

http://www.r-project.org/
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Solvent
Molar Mass Vaper Pressure Generation rate (mg/min)

(g/mol) (mm Hg) at 25 degree
Low Medium High

Celsius
Acetone 58.08 200 39.5 79.1 116.7

2-Butanone 84.93 71 40.25 80.5 120.75
Toluene 92.14 28.4 43.8 86.5 129.5

Table 2.1: Chamber studies’ solvents’ physical chemical properties

Two Drger X-am 7000 Multi-Gas Monitors (MGM) equipped with Smart PID sen-

sors were used to measure the solvent vapor concentrations in real-time. Each instru-

ment was calibrated by the manufacturer’s instructions using a standard calibration gas

of Isobutylene (IBUT), 100 ppm. To ensure the most accurate results, additional cal-

ibration studies were conducted with each X-am 7000 MGM, quantifying the response

factor to the specific solvent. For toluene, two standard calibration gases of 20 ppm

and 200 ppm were used according to the MGM Technical Manual instructions. Since

standard calibration gases for the other two solvents were not available, sorbent tubes

were used to collect area time-integrated air samples and these were compared with the

time weighted average MGM reported concentrations. These studies were conducted at

three air exchange rates, 0.3, 1.3 and 3.0 ACH to generate a calibration curve. TWA

samples were collected following NIOSH method 2500 using Anasorb 747 sorbent tubes

(SKC model 226-81A, SKC, Inc. Pittsburgh, PA). Sample analysis was conducted by

an AIHA Accredited laboratory following NIOSH method 2500. Response factor was

determined by (2.9) and the reported and observed Response Factor (RF) are reported

in Table 2.2.

Response Factor =
Desired concentration

observed concentration
(2.9)

As we study the concentration of toluene, the source of toluene was located at the

center of the chamber. Measurements were taken until the concentration level in the
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Chemical
Response Factor(RF)

Reported RF Measured RF
Toluene 0.7 0.7

2 Butanone 0.64 0.91
Acetone 1.15 1.5

Table 2.2: Reported and Measured Response Factors

chamber has reached a steady state. For the low ventilation rate (Q = 0.067 m3/min)

experiment set up, concentrations were measured every 90 seconds for 300 minutes in

each location. For the medium ventilation rate (Q = 0.244 m3/min) experiment set

up, concentrations were measured every 90 seconds for 120 minutes in each location.

As for the high ventilation rate (Q = 0.563 m3/min), measurements were taken for

60 minutes in each location. Since the air in the chamber is completely well-mixed,

the measurements at 6 different locations were almost the same. Hence, we will use

measurements at one location to do the analysis. The chamber volume is 11.9 m3 and

the contaminant generation rate is 43.8 mg/min. The ventilation rate varies in three

different levels: (I) low ventilation rate at 0.067 m3/min (II) medium ventilation rate

at 0.244 m3/min (III) high ventilation rate at 0.552 m3/min.

2.4.2 Analysis of the Experimental Well-mixed room model Data

Model comparison between normal, skew-normal, and skew-t

Because the raw CAL data exhibit skewness and possible tail behavior (see Figure 2.2),

we want to start with model comparison to show the dynamic linear model discretized

from the differential equation can absorb the asymmetry and it does not rely on the

parametric assumption of the measurement errors. We show that by using a skew-

normal (SN) and a skew-t (ST) assumptions for the measurement error and compare

with the normality assumption.
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In total, we have 5 competing models with different assumptions for the measurement

errors :

� N : Normal model, where νt
iid∼ N(0, σ2), ωt

iid∼ N(0, τ2) .

� 1SN : Skew-normal model, where νt
iid∼ Skew-normal (η, σ2, λ), ωt

iid∼ N(0, τ2) .

� 2SN: Skew-normal model, where νt
iid∼ Skew-normal (η1, σ

2, λ1),

νt
iid∼ Skew-normal (η2, τ

2, λ2) .

� 1ST: Skew-t model, where νt
iid∼ Skew-t(ξ, σ2, α, ν), ωt

iid∼ N(0, τ2) .

� 2ST: Skew-t model, where νt
iid∼ Skew-t(ξ1, σ

2, α1, ν1),

ωt
iid∼ Skew-t(ξ2, τ

2, α2, ν2)

The definitions of the skew-normal (SN) and skew-t (ST) distributions are proposed

in Sahu et al. (2003). All the 5 models share the same measurement and transition

equations as in (2.5), but we have different distribution assumptions for the error terms.

In the SN distribution, η is the location parameter, σ2 is the scale parameter, and λ

is the shape parameter. In the ST distribution, α is the skewness parameter. Since

our data is left-skewed (see Figure(2.2)), to make sure that α is negative, we use a

truncated normal prior on α where α ∼ N(0, 1000) T (, 0). And ν is the degree of

freedom. The prior on ν is Uniform, ν ∼ Uniform (1, 100). Table A.10 presents the

degree of freedom estimates for the skew-t distribution, which are all greater than 50.

This shows the skew-t density converges to the skew-normal density. Besides flexible

parametric assumption, we also want to see if the initial states and the choice of priors

have an effect. To study the effect of initial states, there are two different initial states

for the concentration: (I) C(0) = 0 (II) C(0) 6= 0 and is fixed at 5% to 10% of the

equilibrium. Here, we set it to 7.5% of the equilibrium. To model with informative
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priors, we assume a Uniform distribution with lower/upper bounds be 5% less/more of

the true value if available:

KL ∼ U(10× 10−5 , 0.02) ,

G ∼ U(41 , 45) ,

1

σ2
∼ U(20 , 100) ,

1

τ2
∼ U(20 , 100) .

For the non-informative priors :

KL ∼ U(10× 10−5 , 0.06) ,

G ∼ U(34 , 100) ,

1

σ2
and

1

τ2
have the same priors and in the informative case.

As for the high ventilation rate setting, the ventilation rate is G = 0.552. Therefore,

the informative prior for Q is Uniform (0.524, 0.580). But three digits priors are too

precise, so we use U ∼ (0.5, 0.6) instead. We developed 4 model setups:

M1: C(0) = 0 with informative priors,

M2: C(0) = 0 with non-informative priors,

M3: C(0) 6= 0 with informative priors,

M4: C(0) 6= 0 non-informative priors,

and for each initial state and prior each setup, we fit 5 competing models with different

measurement error assumptions.
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To select the best model from various competing models such as skew-t and skew-

normal using Bayesian model selection tools, we consider both deviance based criterion

(Spiegelhalter et al., 2002) and the posterior predictive performance (Gelman et al.,

2014a). First, we used the popular Deviance Information Criterion (DIC), and it involves

a measurement of fit, usually a deviance statistic, as well as complexity which is the

number of free parameters in the model. It’s defined as DIC = D(θ) + pD. D(θ) =

−2E{log[f(y|θ)]|y}, f(y|θ) =
∏n
i=1 f(yi|θ) is the likelihood function, E{log[f(y|θ)]|y}

is the posterior expectation of log[f(y|θ)] and pD is the effective number of parameters

in the model, given by pD = D(θ) − D(θ). Since the desired model should exhibit

good fit with a reasonable number of parameters, smaller values of DIC show preferred

models. Besides DIC, we also use the conditional predictive ordinate (CPO) statistic

(Gelfand et al., 1992), derived from the posterior predictive distribution (ppd), for

model selection. Let D be the full data, D(−i) is the data with the ith observation

deleted, and Ω, be our parameter vector. We denote the posterior density of Ω, given

D(−i) by π(Ω|D(−i)). For the i-th observation, the CPOi can be written as CPOi =∫
f(yi|Ω)π(Ω|D(−i))dΩ =

{∫ π(Ω|D)
f(yi|Ω)dΩ

}−1
, i = 1, . . . , n. The CPOi can be interpreted

as the height of the marginal density of the time to event at yi. In absence of a

closed form, a Monte Carlo estimate of CPOi can be obtained using a harmonic-mean

approximation (Dipak, 1997) as ĈPOi =

{
1
Q

Q∑
q=1

1
f(yi|Ωq)

}−1

, where Ω1, . . . ,ΩQ is a

post burn-in sample of size Q from π(Ω|D). A summary statistic of the CPOi’s is the

log pseudo-marginal likelihood (LPML), defined by LPML =
n∑
i=1

log(ĈPOi). Larger

values of LPML indicates better fit.

Table 2.3 shows model comparison results. In the DIC column, we note that the

differences in DIC between a Normal model and a skew-normal model are not bigger

than 10, which is considered to be small enough that the two models are almost equal

in terms of goodness of fit. By the posterior predictive model choice criterion, we get
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similar results with Bayesian p-value and LPML. The degree of freedom estimates for

ST model are greater than 30, suggesting the ST model converges to the SN model

(Table A.10). More details for model comparison for low and medium ventilation rates

are in Table A.9, Table A.11, and Table A.12 .

Model Assumption DIC LPML Bayesian p-value

M1

N 144 19.267 0.434
1SN 145.6 19.253 0.437
2SN 144.6 19.253 0.436
1ST 154.3 20.309 0.526
2ST 148.6 20.291 0.524

M2

N 141 19.267 0.436
1SN 142.6 19.251 0.434
2SN 144.6 19.252 0.437
1ST 139.7 20.285 0.529
2ST 145.4 20.365 0.526

M3

N 143.9 19.267 0.437
1SN 143.6 19.252 0.439
2SN 145.3 19.252 0.435
1ST 142.3 20.228 0.528
2ST 146.4 20.269 0.527

M4

N 140.1 19.267 0.463
1SN 142.6 19.250 0.439
2SN 141.7 19.253 0.434
1ST 141.7 20.233 0.528
2ST 144.8 20.263 0.525

Table 2.3: Values of posterior predictive model choice criterion for WMR model with high
ventilation rate. M1-M4 are 4 model setups that specify the initial concentration level and
priors. For each setup, DIC, LPML, and Bayesian p-value are calculated from the posterior
samples from 5 competing models with different assumptions for the measurement errors.

We conclude that the underlying differential equation that describes the physical

WMR model is adequate in explaining the skewness in the data. We stick with the

Normal model assumption for our further work such as experimental data analysis and

simulation studies.

We fit model in (2.5) to the WMR model chamber experimental data using two

parallel MCMC chains of 20000 iterations each. Convergence diagnostics showed that
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convergence happened after about 2000 iterations. In this data analysis part, we want

to see if the initial values of C(0) matter to the estimation and we also want to see if

the parameters are estimable from data.

Analysis results for data from the low and medium ventilation rates experimental

setups are shown in Table A.2 and Table A.3 in the Appendix. Because the ventila-

tion rates vary, we use Q ∼ U (0.06, 0.07) and Q ∼ U(0.2, 0.3) as informative priors

for the low and medium rate models respectively. We use Q ∼ U (0.001, 0.1) and

Q ∼ U (0.001, 0.5) as non-informative priors for the low and medium rate models re-

spectively. Analysis results for data from a high ventilation experimental setup are

shown in Table 2.4. The concentration at steady state is 80 mg/m3. Therefore, the ini-

tial contaminant concentration level is C(0) = 0 or C(0) = 6. With informative priors,

we have the same results regardless of the initial concentration level and the true values

for G (43.18) and Q (0.552) are included in the 95% CI. As for the non-informative

scenarios, Q is underestimated and the true parameter value is included in the 95%

CI. Also G becomes estimable where the 95% CI captures the true value (43.18) even

without informative priors.

2.4.3 The Two-zone Chamber Experimental Design

In the two-zone model setup, the volume of the near field is 0.104 m3 and the volume

of the far field is 11.796 m3. A floor-based mixing fan was positioned outside the near-

field. The measured average airflow rate through chamber was Q = 0.298 m3/min.

Toluene was vaporized into the chamber using the same Harvard Syringe pump as in

the WMR model and the pump was placed inside a wire mesh box. The generation

rate was calculated to be G = 129.54 mg/min and it’s constant over time. From the

solution to (2.3) (see details in the Appendix A.1), we see that CN → G
Q + G

β and

CF → G
Q as t → ∞. Therefore CN − CF → G

β and we find the steady state solution
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C(0) = 0, informative priors C(0) = 45, informative priors

Estimate
MCSE

Estimate
MCSE

(2.5%, 97.5%) (2.5%, 97.5%)

G
44.03

7.40× 10−3 44.02
7.50× 10−3

(41.52, 45.30) (41.51, 45.30)

KL
0.00216

1.40× 10−5 0.00214
1.41× 10−5

(6.86× 10−5, 0.00746) (6.36× 10−5, 0.00753)

Q
0.54

1.02× 10−4 0.54
1.02× 10−4

(0.525, 0.575) (0.525, 0.575)

σ2 0.025
3.61× 10−5 0.022

3.62× 10−5

(0.016, 0.038) (0.0144, 0.034)

τ2
4.52

7.44× 10−3 4.53
7.28× 10−3

(2.89, 6.96) (2.90, 6.99)

C(0) = 0, non-formative priors C(0) = 45, non-formative priors

Estimate
MCSE

Estimate
MCSE

(2.5%, 97.5%) (2.5%, 97.5%)

G 49.56
4.96× 10−2 47.94

4.81× 10−2

(37.26, 64.30) (36.1, 61.88)

KL
0.013

6.72× 10−5 0.0195
8.89× 10−5

(5.18× 10−4, 0.0352) (9.35× 10−4, 0.0463)

Q
0.35

7.73× 10−4 0.23
1.08× 10−3

(0.21, 0.61) (0.013, 0.56)

σ2 0.022
3.61× 10−5 0.022

3.54× 10−5

(0.0144, 0.034) (0.014, 0.034)

τ2
4.04

6.71× 10−3 3.75
4.41× 10−3

((2.29, 5.26)) (2.33, 5.04)

Table 2.4: Well-mixed model analysis results from experimental data. Ventilation rate is High.
The true values are G = 43.18 and Q = 0.552. We fit the data to 4 competing models with
different initial contaminant concentration and priors. The estimate columns give posterior
mean and the 95% are computed from the posterior sample. MCSE stands for Monte Carlo
standard error for each model.

for β is G
CN−CF . Theoretically speaking, the measured and modeled concentrations

agree reasonably well on steady state. We can calculate β based on the steady state

solution, i.e. β → G
CN−CF = G

CN−GQ
. Therefore, the calculated β is ∼ 129.54

525.178− 129.54
0.298

=

1.43 m3/min.

One innovation in this experiment is the choice of boundary between the near and

far fields. Previously, the boundary has been arbitrarily selected. We used a different
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approach here. The far and near fields are supposed to have distinctly different con-

centrations and it’s unlikely to see a sharp discontinuity at the boundary between the

two zones. We can use the rate of change of concentration to determine the boundary

between the two zones since the rate is not uniform. We used this to define the near

field as a 10 cm high cylinder with a radius of 10 cm with its base on the plane of the

source.

The two-zone model treats the area around the source as a well-mixed box and

identified as the near field, and the far field encompasses the near field and the rest

of the room. There is some amount of air exchange between the two boxes, which

is referred to as the interzonal air flow rate and denoted as β. This model requires

knowledge of room ventilation (Q) and contaminant generation rates (G) in addition to

requiring a non-trivial investment in obtaining this information. This model is useful

for accounting for point-sources of emission that can result in a spatial difference in the

magnitude of exposure due to the concentration close to the source being greater.

2.4.4 Estimation results from the experimental two-zone study data

We fit three models in this section for the experimental data. First, we assume that

C(0) = (0, 0)>. In the second model, because the steady state concentrations are 525

and 411 for the near-field and far-field, and we set the initials at 7.5% of the equilibrium

which is C(0) = (39.375, 30.825)>. In the third model, we assume C(0) is random,

where C(0) ∼ MVN(s,S). We have s = (0, 0)> and S = ( 0.001 0
0 0.001 ). We assume

that concentrations at the near and far fields were measured simultaneously. Below

we present our results using informative priors on the parameters. Details about the

different priors we experimented with are available in the Appendix TableA.1.

With the two-zone experimental data set, we fit the following models:

D1: C(0) ∼ MVN(s,S), where s = (0, 0)> and S = ( 0.01 0
0 0.01 ),
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D2: C(0) = (0, 0),

D3: C(0) = (5, 4),

and the results are shown in Table 2.5. The estimate and (2.5%, 97.5%) are computed

from the posterior sample. MCSE stands for Monte Carlo standard error for each model.

The estimates and MCSE for G and Q are very similar among those 3 models. Both

G and Q are estimable with the true values included in the 95% CI. Estimates for the

inter-zonal airflow β is also similar. Model comparison results for these 3 models are

shown in Table 2.6. One can observe that when C(0) is assumed to follow a multivariate

Normal prior, the model has the smallest DIC, i.e., the best fit among all.

D1 D2 D3
Param. Estimate MCSE Estimate MCSE Estimate MCSE

G
131.9

2.0× 10−2 129.787
1.95× 10−2 131.984

1.96× 10−2
(131.9, 125.3) (123.7, 135.5) (135.8, 135.8)

Q
0.286

2.28× 10−5 0.287
2.17× 10−5 0.286

2.06× 10−5
(0.283, 0.288) (0.283, 0.297) (0.283, 0.294)

β
1.45

3.70× 10−4 1.44
3.83× 10−4 1.48

3.76× 10−4
(1.35, 1.55) (1.33, 1.56) (1.37, 1.58)

Table 2.5: Two-zone model data analysis results from experimental data with informative
priors. The true values are G= 129.54, Q= 0.294, and β = 1.43. We fit the data to 3 competing
models with different initial contaminant concentration and priors. The estimate columns show
the posterior mean and 95% credible intervals which are computed from the posterior sample.
MCSE stands for Monte Carlo standard error for each model.

Model DIC D̄(θ) D(θ̄) pD
D1 1212 1204 1195.818 8.182
D2 5602 5593 5584.889 8.111
D3 3954 3946 3937.911 8.089

Table 2.6: Model comparison results using DIC for two-zone model with experimental data.
We compare 3 competing models with different initial contaminant concentrations and priors.
Model with the smallest DIC has the best fit.
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2.5 Simulation studies

We conducted simulation studies using computer-simulated concentration distributions

for the WMR model and the two-zone model. The analysis and results for the former

are presented in the Appendix A.6, while the two-zone model is presented below.

2.5.1 Data Generation and Methods

The simulated two-zone data is based on the solutions to the deterministic equations

with 200 time points; see, e.g., Zhang et al. (2009) and Monteiro et al. (2014) for the

expressions for the exact solutions to (2.3). We generated observations over a period

of time. Based on the knowledge of industrial hygienists, β, Q, and G are fixed at

7.25 m3/min, 15 m3/min, and 105 mg/min respectively. And VN and VF are fixed at

1.1 m3 and 240 m3 respectively. Unlike Monteiro et al. (2014), who assumed temporally

misaligned data where the measurements at several time points are available in only one

of the fields, we assume that measurements from both fields are obtained simultaneously.

The Bayesian hierarchical model that we used is in (2.7), where we take the sym-

metric covariance matrices as Σν = ( ν1 ν12
ν12 ν2 ) and Σω = ( ω1 ω12

ω12 ω2 ). We implemented our

model using the rjags package available in R, where the true values for the parameters

are β = 7.25, G = 105, Q = 15, and Σν = Σω = ( 1 0.8
0.8 1 ). We assume that the con-

taminant concentrations from near-field (YN (t)) and far-field (YF (t)) are dependent of

each other and the correlation is fairly strong between YN (t) and YF (t). So we set the

correlation between YN (t) and YF (t) as 0.8/1 = 0.8. For better convergence results, we

ran two chains with different initial values for three different scenarios:

S1: Data simulated from ODE solution with C(0) = (0, 0)>,

S2: Data simulated from ODE solution with C(0) = (1.5, 0.5)>,
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S3: Data simulated from ODE solution with C(0) ∼ MVN(s,S), where s = (0, 0)>

and S = ( 0.01 0
0 0.01 ).

For each model, we generated 100 samples, and for each sample we ran 10000 iterations.

2.5.2 Prior Settings

In the model where YN (t) and YF (t) are dependent, we have 9 unknowns which are

θ = {β,G,Q}, Σν and Σω. Based on practical experience and physical principles, we

know that β cannot be huge. The prior for β can be uniformly distributed with lower

bound 0 and upper bound 14.5. Since β is strictly positive, the prior can be log-normal

with mean 0 and a large variance (Zhang et al., 2009). We adopted the uniform prior in

this paper. The priors for G and Q are chosen similarly. The prior for G is uniform with

lower bound 73.5 and upper bound 136.5. The prior for Q is uniform with lower bound

12 and upper bound 18. For the variance-covariance matrix Σν and Σω, we assume an

inverse-Wishart prior (Carlin and Louis, 2008) with the scale matrix S = ( 10 0
0 10 ), and

the degrees of freedom ν = 4.

2.5.3 Simulation Results

This section shows simulation results from the two-zone model. For each parameter, we

compute the (overall) Mean Squared Error (MSE) and Relative Bias (RB), which are

defined respectively as (use parameter G for illustration) MSE = 1
p×M

∑M
i=1

∑p
j=1(Ĝ

(i)
j −

Gj)
2, and RBj = 1

M

∑M
i=1

Ĝ
(i)
j −Gj
Gj

, where Ĝ
(i)
j is the posterior mean of Gj from the ith

simulated data set and Gj is the true value. To get posterior sample inference, we

randomly pick a sample and calculate the mean and 95% CI. For S1, the true values

for the parameters are all included in the 95% CI. All the estimates are very close to

the true values with good coverage probabilities. For S2, we observe that the true value

for G, β, Q and Σν are all included in the 95% CI. The estimates are very close to the
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true values and the coverage probabilities are good. S1 and S2 have very similar results.

Given that S1 and S2 share the same priors and the initial states of C(0) doesn’t matter

much, it’s not surprising that we draw this conclusion. For S3, we can observe that the

true value for parameters G, β, Q and Σν are all included in the 95% credible interval.

The CI is wider compared to S1 and S2 given that it has a larger MCSE. To compare

results between the 3 simulation schemes, S1 and Table S2 show very similar results.

For S3, G and β are underestimated and all the estimates have larger MCSE as well

as larger MSE compared to results for S1 and S2. The reason is that because C(0) is

not fixed in S3, we are adding more variations in this model which resulting in larger

MCSE. DIC results from the three simulation schemes are show in Table 2.8. S3 has

the smallest DIC, thus the best fit.

2.6 Discussion

In this chapter, we introduced a Bayesian linear model, combining prior information on

the physical model and discretizing the differential equations with the observed data

and also accounts for measurement uncertainties by adding dynamic components. In

occupational hygiene, Bayesian approach has gained its popularity by utilizing subjec-

tive information (i.e., informative priors). This chapter shows a statistical modeling

from practicing occupational hygienists’ stand points. This dynamic model approach

provides a narrower CI compared to a straightforward Bayesian nonlinear regression

(Zhang et al., 2009) and as well as to a Gaussian process based on Bayesian melding

(Monteiro et al., 2014). If we compare the width of the CI of the key parameters such

as G, Q, and β, obtained from our method to that from Monteiro et al. (2014) and

Zhang et al. (2009), we notice a decrease in the width of the CI. The reason is that with

the dynamic model, we don’t need to introduce random effects to measure the errors.
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Instead we use variances to account for uncertainties in both the measurements and the

physical model itself.

One advantage of our implementation is that there’s no need to solve the DE, simply

discretizing the DE will do the work. Furthermore, we can take the experimental data

as it is even though it presents some level of skewness, because the discretized model can

capture the skewness in the data set. However, this advantage may not be applicable

to other skewed data, such as the skewness in CAL from the periodontal data set. The

model comparison results in Table 3.2 of Chapter 3 and Table 4.2 of Chapter 4 show

inadequacy under normality assumption compared to non-Gaussian assumption, where

model/link under a skewed assumption fit the data much better. This shows that the

method works for one particular data set may not be the best approach for others.

Hence, it’s very practical to develop data-driven models.

Our data analysis part validates the efficiency in using the underlying differential

equations. Even with a left-skewed data set, the differential equation is able to capture

the data information and incorporate it into a normal framework. We conducted our

data analysis under Gaussian assumption for WMR model and two-zone model. Ad-

ditionally, besides the two-zone model presented in Monteiro et al. (2014) and Zhang

et al. (2009), we also investigated the WMR model case and estimates the loss rate KL.

In this sense, this dynamic approach can be easily applied to multi-zone cases.

Our findings reveal that it’s crucial to set informative priors in order to get precise

estimates of the parameters of interest. Our approach allows us to combine priors on

the actual physical model with the data likelihood. In our experimental data analysis,

our estimates of the air flow rate G, the generation rate Q, the air flow exchange rate

between far-field and near-field β in the two-zone model, and the estimate of KL in

the WMR model are close to the true values showing that our method works efficiently

for both models. It also shows that our model assumptions, both WMR model and
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two-zone model, agree with the reality and are good for prediction. Because industrials

don’t usually collect data that can be used in exposure assessment, we are not able to

test our model using a real-life example. Whereas in Chapter 3 and Chapter 4, we are

able to apply the proposed methods to periodontal data collected from clinical research.
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Param. Model
Estimate

MCSE RB MSE Cover.
(2.5%, 97.5%)

G (105)

S1
104.90

5.31× 10−2 −7.64× 10−4 8.09 96
(99.41, 109.98)

S2
105.81

4.83× 10−3 −8.60× 10−5 97.98 94
(103.63, 106.33)

S3
98.41

4.99× 10−2 1.34× 10−2 4615 99
(84.50, 110.83)

β(7.25)

S1
7.2

3.66× 10−4 −7.47× 10−4 0.39 99
(7.16, 7.23)

S2
7.26

3.33× 10−4 −6.93× 10−5 0.47
99

(7.16, 7.34)

S3
6.8

3.45× 10−3 1.34× 10−2 21.99 99
(5.83, 7.65)

Q (15)

S1
14.89

1.32× 10−2 6.11× 10−4 1.79 100
(13.66, 16.04)

S2
15.04

4.14× 10−3 1.22× 10−3 2.22 100
(13.91, 16.19)

S3
14.46

1.06× 10−2 9.68× 10−3 31.87 100
(12.14, 17.51)

Σνinv[1, 1] (1.0)

S1
8.07

1.93× 10−3 5.51× 10−2 1.18 96
(0.71, 1.05)

S2
1.09

7.77× 10−4 0.03 0.99 97
(0.90, 1.33)

S3
0.88

1.07× 10−3 0.13 4.63 93
(0.64, 1.22)

Σνinv[1, 2](0.8)

S1
0.64

1.74× 10−3 1.53× 10−3 0.69 98
(0.51, 0.81)

S2
0.85

6.96× 10−4 −0.02 0.88 94
(0.67, 1.06)

S3
0.64

1.03× 10−3 −0.014 2.25 97
(0.40, 0.97)

Σνinv[2, 2](1.0)

S1
0.92

2.09× 10−3 5.03× 10−2 1.23 95
(0.76, 1.13)

S2
1.10

7.81× 10−4 0.03 1.23 94
(0.90, 1.34)

S3
1.15

1.41× 10−3 0.134 4.46 93
(0.82, 1.60)

Table 2.7: Two-zone model simulation results, summaries from 3 model setups with differnt
initial contaminant concentraion values. Param. is the parameter and the true values are shown
inside the parenthesis. Posterior mean and 95% credible interval are computed from the posterior
samples. MCSE is the Monto Carlo standard error. RB stands for relative bias , MSE stands
for mean square error, cover. is the coverage probability.
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Model DIC D(θ) D(θ) pD
S1 1148 1140 1131.937 8.063
S2 576.07 562 547.93 14.07
S3 110.1 99.02 87.98 11.04

Table 2.8: Model comparison results using DIC for two-zone model with simulated data. We
compare 3 competing models with different initial contaminant concentrations and priors. Model
with the smallest DIC has the best fit.



Chapter 3

Spatial skew-normal/independent

models for clustered periodontal

data with non-random

missingness

3.1 Introduction

Periodontal disease (PD) usually refers to a collection of inflammatory disease affecting

tissues called periodontium that surround and support the tooth and maintains them

in the maxillary (upper jaw) and mandibular (lower jaw) bones. If left untreated, it can

cause progressive bone loss around the tooth with loosening and eventual loss. It is well

documented that some 5% to 15% of any population is susceptible to severe generalized

periodontitis worldwide (Pourabbas et al., 2005). Being the primary cause of adult

tooth loss, it has been estimated that about 50% of U.S. adults over the age of 35

44
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experience early stages of periodontal disease (Oliver et al., 1998). The most important

biomarker for assessing PD status is the clinical attachment level (CAL) (Darby and

Walsh, 2014), measured in mm (whole numbers) by a periodontal probe. The study aims

at quantifying the disease status of this population as well as the associations between

disease status and patient-level covariates such as age, BMI, gender, HbA1c and smoking

status (Reich and Bandyopadhyay, 2010). The motivating data example for this chapter

and Chapter 4 comes from a clinical study conducted at the Medical University of

South Carolina (MUSC) to determine the PD status of Type-2 diabetic Gullah-speaking

African-Americans (henceforth, GAAD data). The word “Gullah” represents unique

cultural and linguistic patterns to the African Americans living on the Sea Island of

South Caroline (Johnson-Spruill et al., 2009). CAL was measured for each of the 6 sites

of a tooth, nested within a subject, including various subject-level covariates such as age,

gender, body mass index (indicating obesity status), glycemic level (indicating diabetic

status), and tooth-site level covariates such as site in upper/lower jaw, site in tooth type,

etc. With this multivariate response vector, the underlying statistical question was to

investigate and estimate the functions determining the covariate-response relationships.

However, note that this is complicated due to a few reasons. First, the dataset exhibits a

large volume of missing responses (around 27% of these data), typical of any PD dataset,

given that PD is the major cause of tooth loss in adults. This missingness pattern is

monotone and non-ignorable, falls under the not-missing-at-random (NMAR) category

for studying missing data patterns, and earlier modeled using the shared parameter

framework by Reich and Bandyopadhyay (2010) and Reich et al. (2013). Second, PD

progression is also hypothesized to be spatially clustered, i.e., diseased status for a set

of closely located tooth-sites are similar. Spatial modeling for PD data is not new;

see Reich and Bandyopadhyay (2010), Reich et al. (2013) and Boehm et al. (2013)

for a variety of contexts in this vein. Furthermore, a plot of the CAL data exhibits
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(a)

Raw CAL (in mm)

D
en

si
ty

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

●●

●

●

●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●●

●●●

●

●

●

●●

●

●●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●●●

●

●

●

●●●●

●

●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●●●

●

●●

●

●●

●●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●●

●

●●

●●●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●

●

●●●●●●●●●●

●

●

●●●●

●●

●

●●●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●●●

●

●●●●

●

●

●●

●●

●

●●

●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●

●●●●●●

●

●

●●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●

●

●

●

●●●

●●

●●●

●●●●

●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●●●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●●

●

●●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●●

●●●

●●

●●

●

●

●●

●

●●●

●

●

●●●●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●●

●●●●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●●●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●●

●

●●●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●

●

●●

●

●

●

●●●●

●

●●●

●

●

●●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●

●●

●

●●●

●●●●●

●

●

●●

●●

●●●

●●

●●●●●

●

●●●

●

●●●●●

●

●

●

●

●●●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●

●

●

●●●

●

●●

●●

●

●●●●●●

●

●

●

●

●

●

●●●●●

●

●

●●●

●●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●●●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●●●●

●

●

●●●●●●●●

●

●

●

●●

●●

●

●

●

●●●

●●

●●●

●

●●●●●

●

●

●

●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●

●●●

●●

●

●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●●

●●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●●●

●●●

●

●

●

●

●●●●

●

●●

●

●●

●●

●

●●●●

●●●●

●

●

●

●●●

●

●

●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●●●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●●

●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●●●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●●●

●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●●●●●●

●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●

●●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●●

●●

●●●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●

●

●

●●●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●

●●●

●

●

●●

●●●

●●●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●●●

●

●●●

●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●●●●●●●●

●

●●

●

●●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●●

●

●

●●●●●●●

●

●●

●

●●

●

●●

●

●

●

●●●

●●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●

●●

●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●●●●

●●●

●

●●

●

●●

●

●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●●

●●

●

●●●

●

●

●

●

●

●●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●●

●●

●●

●

●

●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●●●

●

●●

●

●

●

●

●

●●●●●●

●●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●●●●●

●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●●

●●

●

●●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●●

●●

●

●

●

●

●●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●●●●

●

●

●●●

●●

●●

●

●●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●

●

●●●

●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●

●

●●●

●

●●●

●

●

●●●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●●

●

●

●

●●

●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●●●●●

●●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●

●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●

●

●●●●

●

●●●●

●●

●

●

●

●

●

●●●●●

●●●

●

●●

●

●●●●●●●●●

●●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●●

●

●

●●

●●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●

●

●●●

●●●

●●●●●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●●

●

●

●

●

●●

●●●●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●

●●●●●

●

●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●●

●

●●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●●●

●

●

●●

●

●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●●

●●

●

●●●

●

●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●●●

●●

●

●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●●●

●

●●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●●●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●●

●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●●●●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●●●●

●

●●●●

●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●

●●●

●

●●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●●●●

●

●

●●●

●●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●●

●●●

●●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●

●●

●

●●

●

●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●●

●

●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●●●●

●

●

●

●●●

●

●

●●●●

●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●●●●●●

●

●●●

●

●●

●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●●●●●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●●●●●

●

●

●●

●

●●●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●●●

●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●●●●●

●

●●

●●●●●●

●●

●●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●●●●●

●●

●●●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●●●●

●

●●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●

●

●●

●

●

●●

●

●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

−4 −2 0 2 4

−
3

−
1

1
3

(b)

Quantiles of Standard Normal

R
aw

 C
A

L
(c)

Empirical Bayes estimates of bi (random effects)

D
en

si
ty

−0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

●
●

●
●

●● ●

●●
●

● ●
●

●
●● ●

●
●

●
●●

●●
●

●

●
● ●●●●

●
●

●
●

●
● ●●● ●●

●

● ●●
●

●●●
●

●

●
●

●

●
● ●●

●●
● ● ●

● ●●
●

● ●
●

●
●

●
●● ● ●●

● ● ●

●
●

●
●● ● ●

●●
●

●

●

●
●●

●
●

−2 −1 0 1 2

−
3

−
1

1
3

(d)

Quantiles of Standard Normal

E
m

pi
ric

al
 B

ay
es

 e
st

im
at

es
 o

f  
b i

(e)

Residuals

D
en

si
ty

0 5 10

0.
0

0.
2

●●

●

●

●●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●●

●●●

●

●

●

●●

●

●●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●●●

●●●

●

●

●

●●●●

●

●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●●●

●

●●

●

●●

●●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●

●

●●●●●●●●●●

●

●

●●●●

●●

●

●●●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●●●

●

●●●●

●

●

●●

●●

●

●●

●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●

●●●●●●

●

●

●●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●

●

●

●

●●●

●●

●●●

●●●●

●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●●●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●●

●

●●●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●●

●●●

●●

●●

●

●

●●

●

●●●

●

●

●●●●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●●●

●●●●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●●●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●●

●

●

●●●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●●

●

●●

●

●

●

●●●●

●

●●●

●

●

●●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●

●●

●

●●●

●●●●●

●

●

●●

●●

●●●

●●

●●●●●

●

●●●

●

●●●●●

●

●

●

●

●●●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●●●●

●

●

●●●

●

●●

●●

●

●●●●●●

●

●

●

●

●

●

●●●● ●

●

●

●●●

●●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●●●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●●●●

●

●

●●●●●●●●

●

●

●

●●

●●

●

●

●

●●●

●●

●●●

●

●

●

●●●●

●

●

●

●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●

●●●

●●

●

●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●●

●●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●●●

●●●

●

●

●

●

●●●●

●

●●

●

●●

●●

●

●●●●

●●●●

●

●

●

●●●

●

●

●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●●

●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●●●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●●●●●●

●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●●

●●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●●

●●

●●●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●●

●

●

●●●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●

●●●

●

●

●●

●●●

●●●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●

●●●

●

●●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●●●

●

●●●

●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●●●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●●●●●●●●

●

●●

●

●●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●●

●

●

●●●●●●●

●

●●

●

●●

●

●●

●

●

●

●●●

●●

●

●

●●

●●

●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●

●●

●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●●●●

●●●

●

●●

●

●●

●

●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●●

●●

●

●●●

●

●

●

●

●

●●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●●

●●

●●

●

●

●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●●●●

●

●●

●

●

●

●

●

●●●●●●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●●●●●

●

●●●

●●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●●

●●

●

●●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●●

●●

●

●

●

●

●●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●●●●

●

●

●●●

●●

●●

●

●●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●

●

●●●

●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●

●

●●●

●

●●●

●

●

●●●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●●

●

●

●

●●

●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●●●●●

●●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●

●●●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●

●

●●●●

●

●●●●

●●

●

●

●

●

●

●●●●●

●●●

●

●●

●

●●●●●●●●●

●●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●●

●

●

●●

●●●

●●

●

●

●

●

●●●

●●

●

●●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●

●

●●●

●●●

●●●●●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●●●●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●

●●●●●

●

●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●●

●

●●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●●●

●

●

●●

●

●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●●

●●

●

●●●

●

●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●●●

●●

●

●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●●●

●

●●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●●●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●●

●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●●●●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●●●●

●

●●●●

●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●

●●●

●

●●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●●●

●●

●

●

●●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●
●

●●●●

●

●

●●●

●●

●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●●●

●●●

●●●●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●

●●

●

●●

●

●

●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●●

●

●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●●●●

●

●

●

●●●

●

●

●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●●●●●●

●

●●●

●

●●

●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●

●●

●●●●●

●

●

●●●●●●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●●●●●

●

●

●●

●

●●●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●

●●●

●

●

●

●

●●●

●

●●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●

●●●●●

●

●●

●●●●●●

●●

●●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●●●●●

●●

●●●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●●●●

●

●●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●●●

●

●●

●

●

●●

●

●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

−4 −2 0 2 4

−
3

−
1

1
3

(f)

Quantiles of Standard Normal

R
es

id
ua

ls

Figure 3.1: GAAD Data: Plots of the density histogram of the raw CAL responses (panel a),
the empirical Bayes’ estimates of random effects (panel c), and the model residuals (panel e),
obtained after fitting a linear mixed model to the dataset. The corresponding Q-Q plots are
presented in panels (b), (d) and (f), respectively.
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possible skewness and (possible) thick tails. For example, Figure 3.1 [panels (a)-(f)]

presents the raw density histogram and associated Q-Q plots for the raw CAL data,

the empirical Bayes estimates of the random effects, and the model residuals, after

fitting a linear mixed model (LMM) to the GAAD data using the lme function in nlme

package in R. These plots clearly reveal evidence of asymmetry (i.e., departures from

the normality assumptions) and presence of possible outliers, which cannot be explained

by a standard LMM fit with Gaussian assumptions. In addition to this, ignoring the

aforementioned features of non-ignorable missingness and spatial clustering can bias

parameter estimates and inference. Hence, we set forward to developing a model that

expand the estimation framework to accommodate all these shortcomings, and produces

robust parameter estimates.

Gaussian assumption is not the best choice when data exhibit non-normal behavior.

Considerable research has been done by introducing more flexible parametric families

that can accommodate skewness and heavy tails, and hence eliminate the need of data

transformations. In the context of LMMs, the random effects distribution was relaxed

using finite normal mixtures (Verbeke and Lesaffre, 1996), smoothing (Ghidey et al.,

2004), a semi-nonparametric density (Zhang and Davidian, 2001). Much of recent fre-

quentist and Bayesian advances in regression problems revolve around the attractive and

popular skew-normal (elliptical) distributions (Azzalini and Capitanio, 2003; Sahu et al.,

2003). Motivated by the thick-tailed normal/independent (NI) densities of Rosa et al.

(2003), Bandyopadhyay et al. (2010a) developed a robust skew-normal/independent

(SNI) framework for bivariate PD data to accommodate both skewness and kurtosis

within the same paradigm, and extended it to tackle censoring in the context of HIV

viral load modeling in Bandyopadhyay et al. (2012).

In the same vein, the literature that accommodates asymmetry (mostly via skew-

elliptical densities) in the context of spatially correlated geostatistical or areal data
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models is also extensive. For geostatistical modeling in point-referenced data, Kim and

Mallick (2004) proposed a skew-normal spatial process and related kriging techniques,

while Palacios and Steel (2006) advocated scale mixing of a stationary Gaussian process

for non-Gaussian data. Zhang and El-Shaarawi (2010) developed spatial interpolation

methods for a class of stationary processes with skewed marginal densities. Incorpo-

ration of asymmetry in the context of spatial GLM and latent variable models appear

in Hosseini et al. (2011) and Irincheeva et al. (2012), respectively. Various non/semi-

parametric (Gelfand et al., 2005; Reich and Fuentes, 2007) and point processes exten-

sions (Ji et al., 2009) are also available. For areal data (which is our case), interest lies

in smoothing and spatial dependence is typically introduced using conditional specifi-

cations and related Markov random field assumptions. Here, Nathoo and Ghosh (2013)

extended the signature (Gaussian) conditionally autoregressive (CAR) setup (Banerjee

et al., 2014) typical to areal data models to non-Gaussian cases via the parametric skew-t

density and a nonparametric Dirichlet process prior. In addition, Bayesian formulations

for multivariate finite mixture models for continuous areal-referenced standardized test

scores appear in Neelon et al. (2014), and two-part spatial models for semi-continuous

emergency expenditure data in Neelon et al. (2015).

Our setup differs from the above in a variety of contexts. None of the formula-

tions above accommodates non-ignorable missing data in their estimation setup. In

addition, the spatial lattice we want to incorporate involves replication (i.e., separate

spatial lattices for each subject), and is fundamentally different from the traditional

disease mapping setting where multiple subjects are observed at each spatial location,

but the spatial lattice is not replicated. In this sense, some identifiability issues due to

a single realization in the spatial skew-Gaussian formulation were pointed out by Kim

and Mallick (2004), and remedied by Genton and Zhang (2012). Fortunately, we do
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not suffer from this inconsistency. To alleviate the inadequacies involved due to un-

realistic Gaussian assumptions, data transformations and non-random missingness, we

extend the multivariate parametric SNI formulation in Bandyopadhyay et al. (2010a)

to asymmetric spatial data. We achieve this by embedding the CAR covariance matrix

in the SNI covariance specification for the random effects, and hence develop a new

class of densities called SNI-CAR. Our approach follows the multivariate skew-normal

development in Sahu et al. (2003), which is readily amenable to the Bayesian regression

problems. Starting with a marginal stochastic representation as in Arellano-Valle et al.

(2007) and Lin (2010), our SNI-CAR formulation provides a unified class of skew-heavy-

tailed densities, particularly attractive for robust parametric inference.

The remainder of this chapter unfolds as follows. Section 3.2 illustrates the moti-

vating GAAD behind this research. In section 3.3, we develop the modeling framework,

with some introductory background on the SNI class of densities. Section 3.4 presents

an outline of the Bayesian estimation scheme, while section 3.5 presents a simulation

study to compare the finite sample performance of the various subclasses from our pro-

posed model. Finally, section 3.6 presents a model comparison table for data analysis

followed by conclusions.

3.2 GAAD Data

The motivating data was collected from a clinical study (Fernandes et al., 2009) con-

ducted at MUSC. The study was primarily aimed to explore the relationship between pe-

riodontal disease and diabetes level (determined by Hba1c, or ‘glycosylated hemoglobin’)

in Type-2 diabetic Gullah-speaking (or simply Gullah) African-Americans (13 years or

older) residing in the coastal sea-islands of South Carolina. The substantial evidence

of adverse effects of diabetes on periodontal health (Taylor and Borgnakke, 2008) has
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Figure 3.2: Graphical illustration of the CAL measures for a tooth. This figure was published in
‘Dental Hygiene: Theory and Practice’, 1st edition, Michele L. Darby and Margaret M. Walsh,
Chapter 17 Page 471, Copyright W.B.Saunders Company (1995)

been extensively explored in dental research. The 2006 American Diabetes Association

(ADA) Standards of Medical Care recommend diabetic patients strive to maintain the

HbA1c < 7, ideally between 4-6 (Control et al., 1993). For this current analysis, we

selected 100 patients with complete covariate information. The primary measure of pe-

riodontal status/progression is defined as the clinical attachment level (CAL), measured

in mm using a manual probe for 6 surfaces per tooth (disto-buccal, mid-buccal, mesio-

buccal, disto-lingual, mid-lingual and mesio-lingual) for all 28 teeth per subject, except

the third molars. Figure 3.2 presents a pictoral description of CAL, in addition to two

other measures, pocket depth (PD) and gingival recession (CEJ-GM). PD is defined as

the distance from the gingival margin to the base of the sulcus/pocket, while CEJ-GM is

the distance between the free gingival margin and the cemento-enamel junction (Darby

and Walsh, 2014). Next, CAL is defined as CAL = PPD− (CEJ-GM).

In addition, several subject level covariates were also collected in the study, namely

Age (in years), Gender (1=Female, 0=Male), Body Mass Index or BMI (in kg/m2),
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smoking status (1 = smoker, 0 = never smoker), glycemic status or Hba1c (1= High-

/uncontrolled, 0 = controlled), etc. About 26% of the subjects are smokers. The mean

age of the subjects is about 55 years with a range from 26-87 years. Female subjects

seem to be predominant (about 73%) in our data, which is not uncommon in Gullah

population (Johnson-Spruill et al., 2009). About 74% of subjects are obese (BMI >=

30) and 64% are with Hba1c = 1 (for subjects with blood sugar level higher than 7

percent), an indicator of high glycemic level. Furthermore, other site-level covariates

include ‘site in gap’ (1 = in gap, 0 = otherwise), site in tooth-type (incisor=1, canine=2,

premolar=3 and molar=4) and site in maxilla (1 = maxilla, 0 = otherwise). Inspired by

Bandyopadhyay and Canale (2016) , we use Figure 3.3 to show various tooth number,

site locations, and maxilla which are the tooth-level covariates.

3.3 Statistical Model

3.3.1 Skew-normal/independent Densities

We start with the definition of the SN distribution proposed in Sahu et al. (2003) as an

alternative to Azzalini and Valle (1996) for straightforward Bayesian inference. A p× 1

random vector Y follows a SN distribution with p× 1 location vector µ, p× p positive

definite dispersion matrix Σ and p× p asymmetry matrix Λ = Diag(λ), where Diag(·)

is a diagonal matrix, λ = (λ1, . . . , λp)
>, written as Y ∼ SNp(µ,Σ,Λ), if its pdf is given

by

f(y) = 2pφp(y;µ,Ω)Φp(Λ
>Ω−1(y − µ); ∆), (3.1)

where Ω = Σ + ΛΛ>, ∆ = (Ip + Λ>Σ−1Λ)−1 = Ip − Λ>Ω−1Λ, Ip is the p × p iden-

tity matrix, φp(.;µ,Σ) and Φp(.; Σ) are, respectively, the p-variate probability density
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Figure 3.3: Tooth number (T1 - T7), site locations (buccal versus lingual), maxilla(upper jaw
versus lower jaw), and tooth types (T7 and T6 are molars; T5 and T4 are premolars; T3 is
canine; T1 and T2 are incisors)

function (pdf) of Np(µ,Σ) and the p-variate cumulative distribution function (cdf) of

Np(0,Σ). Note that for Λ = 0p×p (or λ = 0p×1) where 0p×p and 0p×1 are respectively

a p×p matrix and a p× 1 vector of zeros, (3.1) reduces to the symmetric Np(µ,Σ)-pdf,

while for non zero values of Λ, it produces an asymmetric family of Np(µ,Σ)-pdf’s.

Following Bandyopadhyay et al. (2010a), we define a SNI distribution as a process
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of the p-dimensional random vector

Y = µ+ U−1/2Z, (3.2)

where µ is a location vector, U is a positive random variable with cdf H(u|ν) and pdf

h(u|ν), independent of the SNp(0,Σ,Λ) random vector Z (Arellano-Valle et al., 2007).

Here, the parameter ν is a scalar or vector indexing the distribution of U . Given U = u,

Y follows a multivariate skew–normal distribution with location vector µ, scale matrix

u−1Σ and asymmetry matrix u−1/2Λ, i.e., Y|U = u ∼ SNp(µ, u
−1Σ, u−1/2Λ). Thus, U

affects both Σ and Λ. From (3.1), the marginal pdf of Y is:

f(y) = 2p
∫ ∞

0
φp(y;µ, u−1Ω)Φp(u

1/2Λ>Ω−1(y − µ); ∆)dH(u|ν). (3.3)

The notation Y ∼ SNIp(µ,Σ,Λ, H) will be used when Y has pdf (3.3). When Λ = 0,

the SNI distributions reduces to the respective normal-independent (NI) density (Lange

and Sinsheimer, 1993), represented by the pdf f0(y) =
∫∞

0 φp(y;µ, u−1Σ)dH(u;ν).

We will use the notation Y ∼ NIp(µ,Σ, H) when Y has distribution in the NI class.

This asymmetrical class of SNI distributions includes the skew-t (ST), the skew-slash

(SSL) and the skew contaminated normal (SCN) distributions, all of which accommo-

dates heavier tails than the SN and they all handle more skewness than the Normal

distribution.

From (3.2), and the expressions for the expectation and covariance matrices of Y

(Sahu et al., 2003), it follows that

E[Y] = µSNI = µ+

√
2

π
κ1(ν)λ
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and

V ar[Y] = ΣSNI = κ2(ν)(Σ + ΛΛ>) + (κ2(ν)− κ2
1(ν))

2

π
λλ>

where κα(ν) = E[U−α/2], α ∈ {1, 2} and the moments are well defined. As in Bandy-

opadhyay et al. (2010a), this class of asymmetrical SNI density contains a variety of

skewed densities as its members with various choices of the mixing variable U (Bandy-

opadhyay et al., 2010a), such as:

1. Multivariate skew-normal (SN): H = 1;

2. Multivariate skew-t (ST): H = Γ(ν/2, ν/2), when ν →∞ we get the SN distribu-

tion as the limiting case;

3. Multivariate skew-slash (SSL): H = Beta(ν, 1), the SSL distribution reduces to

the SN distribution when ν →∞;

4. Multivariate contaminated normal (SCN): H =

 ν2, with prob ν1,

1, with prob 1− ν1.

The normal, Student-t, slash and contaminated normal distributions are retrieved by

setting Λ = 0. All these distributions have heavier tails than that of the SN, and can

handle thick tails (kurtosis).

3.3.2 The SNI-CAR Model with Non-random Missingness

Let yi(s) be the CAL response for subject i = 1, . . . , N at spatial location s = 1, . . . , S.

For each subject, there are S = 168 potential measurement locations. Denote yi =

[yi(1), . . . , yi(S)]T , the response vector for subject i. Typical for any PD data, either

all 6 measurements from a tooth are observed, or all observations are missing (given

that probing doesn’t happen for missing tooth). We first develop the SNI-CAR model
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assuming all observations are present, and then extend it to include missingness. Under

a standard linear mixed model (LMM) setup, the observed CAL for subject i can be

written as:

yi = µi + εi, (3.4)

µi = X>i β + θi,

where µi = [µi(1), . . . , µi(S)]> is the vector of true CAL values for subject i for all

the available observations, εi ∼ N(0, σ2IS) is the vector of random errors εi(s), X>i

is p-vector of subject-level (say, age) and site-level (say, site in gap) covariates, β are

the corresponding regression parameters of dimensions p × 1 and θi is the vector of

random effects. Now, to accommodate possible spatial referencing, the latent vector

θi = [θi(1), . . . , θi(S)]> can follow a S-dimensional multivariate normal distribution with

mean zero (E[θi] = 0) and a CAR (Besag, 1974) covariance matrix. The CAR covariance

of θi, denoted by Σi, is given by τ2Q(ρi)
−1, where Q(ρi) = M− ρiD, where D is S×S

the adjacency matrix of the underlying graph whose elements Dss′ equals 1 if locations

s and s′ are adjacent, and 0 otherwise; M is a S × S diagonal matrix with diagonal

elements Mss =
∑

s′ Dss′ representing the number of neighbors for site s; ρi ∈ [0, 1] is the

smoothing parameter controlling the degree of spatial association and τ2 > 0 controls

the magnitude of spatial variation. In the adjacent matrix, we model the adjacent sites

on the same tooth and sites that share a gap between teeth as ‘neighbors’. For issues

with identifiability, henceforth, we assume ρi = ρ for all i, i.e., all subjects have the same

spatial variation. This assumption is not unrealistic from a clinical standpoint, given

that the set of subjects from the GAAD data are all Type-2 diabetic with extremely

homogeneous socio-economic features (Johnson-Spruill et al., 2009). Now, due to the
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presence of possible asymmetry (skewness and thick-tails), we assume θi follows a SNI-

CAR density of dimension S, which we write as θi ∼ SNI-CARS(µ,Σ,Λ, H(·; ν)), where

Σ is the CAR covariance, Λ is a diagonal matrix associated with the skewness parameter,

and H(·; ν) denotes one of the distributions presented in Subsection 3.3.1. Centering

θi to have zero mean, we assume the location parameter µ = −
√

2
πκ1λ. Thus, we

have θi ∼ SNI-CARS(−
√

2

π
κ1(ν)λ1S ,Σ, λI, H(·; ν)), where the skewness parameter

λ is chosen to be a scalar to avoid over-parametrization and identifiability problems.

This representation partitions the skewness component and the spatial component, and

hence provides a flexible way to incorporate multivariate asymmetric spatial random

effects into our modeling.

However, in reality, substantial proportion of missing data is observed from PD stud-

ies, and the GAAD dataset is no exception (Reich and Bandyopadhyay, 2010). Hence,

the complete response vector yi for subject i is incomplete, and can be decomposed

into yoi and ymi , the observed and missing components respectively, according to the

missingness process ∆, which is assumed non-ignorable, i.e., missingness is induced due

to unobserved responses. For instance, in the GAAD study, subjects with higher level

of PD tend to have teeth that had fallen out due to previous incidence of PD. Further-

more, the missingness is monotone, i.e., a missing tooth is never going to come back, and

is different from the non-monotone assumption typical in longitudinal studies. In this

situation, it has been shown that ignoring the missingness process and analyzing ‘only

available’ data can lead to biased parameter estimates (Follmann and Wu, 1995; Reich

and Bandyopadhyay, 2010). Hence, joint modeling of the observed CAL data and the

missingness process is indicated, and we achieve this via the popular shared parameter

models (SPM), where a set of (spatial) random effects induces the interdependence of

the two processes (Follmann and Wu, 1995; Tsonaka et al., 2009).

Note that in our setup, we define the missing process at the tooth level, given that
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we cannot have an observed site and a missing site from the same tooth. Let δi(t) = 1 if

tooth t is missing for subject i, and 0 otherwise, and ∆i denotes the corresponding vector

for subject i. Under this SPM framework, the joint density of yi and ∆ (suppressing i)

can be factored as:

f(yo,ym,∆|Ω) =

∫
f1(yo,ym|θ,Ω)f2(∆|θ,Ω)g(θ|Ω)dθ

where f, f1 and f2 are the respective probability density functions, θ is the vector of SNI-

CAR random effects, and Ω is the parameter vector. From this factorization, it follows

that given θ, the processes y and ∆ are independent. Now, the missing tooth locations

are not random, but are related to the periodontal health of that region inside the

mouth. Hence, for subject i, we allow the missing tooth indicator δi(t) ∼ Bernoulli(pit),

such that

logit(pit) = a0 + b0Z
>
t θi (3.5)

where Z>t θi is the mean of θi at the six observations on tooth t, t = 1, . . . , 28, with

Zt(s) equal 1/6 if site s is on tooth t, and 0 otherwise, and a0 and b0 relate the latent

process to the missing tooth indicator (Reich and Bandyopadhyay, 2010). Note that

since θi(s) is included in both the model for presence of and value of the responses,

both presence and value of the data contribute to the posterior of θi(s), and thus the

posterior of Ω, the full parameter vector under consideration. Also note that b0 = 0

corresponds to independence between the latent true CAL and the location of missing

teeth, in which case the location of missing teeth does not contribute to estimating Ω.

Note that in our current formulation, we assume the missingness process is dependent

only on the (latent) spatial random effects, and not on any covariates. This was assumed

for simplicity of interpretation, and also to avoid identifiability issues; however this can

certainly be relaxed in our estimation framework. Assuming θi ∼ G (the distribution
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function), the joint density of the observed data vector (yi, ∆i) for the ith subject is

obtained from the following marginalization:

f(yi,∆i|G,Ω) =

∫
f1(yi|θi,Ω)f2(∆i|θi,Ω)dG(θi)

3.4 Bayesian Inference

3.4.1 Likelihood, Priors and Posteriors

In this section, we describe our choice of priors and associated posterior distributions

of model parameters to implement Bayesian inference for our SNI-CAR setup. A key

feature of this model is its flexible hierarchical representation. From (3.2) and the

marginal stochastic representation of a SN random vector, it follows that the SNI-CAR

model defined in (3.4) has the following hierarchical representation:

Yi| θ i,Ti = ti, Ui = ui
ind∼ NS(Xiβ + θ i, u

−1
i σ2IS), (3.6)

θ i|Ti = ti, Ui = ui
ind∼ NS(−

√
2

π
κ1(ν)λ1S + u

−1/2
i λti, u

−1
i Σ), (3.7)

Ti|Ui = ui
ind∼ TNS(0, u−1

i IS ;RS+), (3.8)

Ui
iid∼ H(ui|ν), (3.9)

i = 1, . . . , n, where RS+ denotes the Euclidean vector space of all p-tuples of posi-

tive real numbers and TNp(µ,Σ; A) denotes a p-variate truncated normal distribu-

tion for Np(µ,Σ) lying within the hyperplane A. Defining y = (y>1 , . . . ,y
>
n )>, θ =

(θ>1 ,
>
2 , . . . ,

>
n )>, t = (t1, . . . , tn)>, u = (u1, . . . , un)> and I{A}(.) the indicator function
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of the set A, the corresponding likelihood function is given by

L(Ω|y,θ,u, t) ∝
N∏
i=1

[φS(yi; Xiβ + θi, u
−1
i σ2IS)φS(θi;−

√
2

π
κ1(ν)λ1S + u

−1/2
i λti, u

−1
i Σ)

×φS(ti; 0, u−1
i Iq)I{R+

p }(ti)h(ui|ν)[
T∏
t=1

pδitit (1− pit)δit ] (3.10)

where pit =
exp{a0+b0Z>t θi}

1+exp{a0+b0Z>t θi}
, i = 1, . . . , N, t = 1, . . . , T. Now, to complete the Bayesian

specification of the model, we need to put prior distribution on all the unknown param-

eters in Ω = (β, σ2, λ, τ2, ρ, a0, b0). Since we have no prior information from historical

data or from previous experiments, we assign conjugate but weakly informative priors

to obtain well-defined and proper posteriors. A popular choice to ensure posterior pro-

priety in a LMM is to consider proper (but diffuse) conditionally conjugate priors, such

as non-informative Normal priors (with large variance) for the fixed-effects, and inverse

gamma priors for a single variance component (Zhao et al., 2006). In general, we choose:

β ∼ Np(β0,Sβ),

a0, b0 ∼ N(µ0, σ
2
0),

σ2 ∼ IG(τσ, Tσ),

λ ∼ N(λ0, Sλ),

τ2 ∼ IG(a, b),

ρ ∼ Uniform(c, d),

where Np(. , .) is the multivariate normal density, IG(τσ, Tσ) is the inverse gamma (IG)

density with parameters τσ and Tσ respectively. In particular, we used a Uniform(0.95, 1)

prior for ρ [the spatial association parameter] to elucidate some measurable spatial

association in our setup. Finally, the prior distribution for ν, with density π(ν), depends
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on the particular SNI distribution we use Cancho et al. (2011). These are as follows:

(a) Skew-t (ST) model: ν ∼ Gamma(0.1, 0.01)I{(2,∞)}, i.e., the degrees of freedom

parameter ν has a truncated Gamma prior distribution on the interval (2,∞).

The truncation point was chosen to assure a finite variance.

(b) Skew-slash (SSL) model: ν ∼ Gamma(a, b) density, with small positive values of

a and b (b� a).

(c) Skew contaminated normal (SCN) model: ν1 ∼ Uniform(0, 1) and ν2 ∼ Beta(a, b).

Next, assuming elements of the full parameter vector Ω to be independent, the joint

prior distribution is given by

π(Ω) = π(β)π(a0)π(b0)π(σ2)π(λ)π(τ2)π(ρ)π(ν). (3.11)

Combining the likelihood function (3.10) and the prior distributions, the joint posterior

distribution for Ω is now,

π(Ω,u, t|y) ∝ L(Ω|y,θ,u, t)π(Ω). (3.12)

Distribution (3.12) is analytically intractable, but MCMC methods such as the Gibbs

sampler and Metropolis-Hastings algorithm can be used to draw samples, from which

features of marginal posterior distribution of interest can be inferred. In this paper,

we automate this MCMC sampling through a combination of R and WinBUGS software

via the R package R2WinBUGS. Further details on the choice of hyper-parameters and

assessments of convergence appear in the application section.
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3.4.2 Bayesian Model Selection

To select our best model from various competing models such as the SN-CAR, ST-CAR,

SSL-CAR, SCN-CAR and the basic N-CAR using Bayesian model selection tools, we

consider both deviance-based criterion (Spiegelhalter et al., 2002) and measures based on

posterior predictive performance (Gelman et al., 2014a). Due to the mixture framework

and the presence of non-random missingness, we avoided using the popular Deviance

Information Criterion (DIC) (Spiegelhalter et al., 2002). Instead, we used a variant of

the DIC, called DIC3 (Celeux et al., 2006). This is defined as DIC3 = D(θ)+τD, D(θ) =

−2E{log[f(y|θ)]|y}, f(y|θ) =
∏n
i=1 f(yi|θ) is the likelihood function, E{log[f(y|θ)]|y}

is the posterior expectation of log[f(y|θ)] and τD is a measure of the effective number

of parameters in the model, given by τD = D(θ) + 2 log(E[f(y|θ)|y]). Thus, we have

DIC3 = −4E{log[f(y|θ)]|y} + 2 log(E[f(y|θ)|y]). Let θ(q) be the MCMC posterior

sample generated at the iteration q of the algorithm, q = 1, . . . , Q. The first expectation

in this expression can be approximated by D = 1
Q

∑Q
q=1

∑n
i=1 log

[
f(yi|θ(q))

]
. Next,

as recommended by Celeux et al. (2006), the second term in the expression can be

approximated by
∑n

i=1 2 log f̂(yi|θ) with f̂(yi|θ) = 1
Q

∑Q
q=1 f(yi|θ(q)). Model selection

follows the ‘lower is better’ law, i.e., the model with the lowest value of DIC3 is selected.

Besides DIC3, we also used LPML (see details in section 2.4.2). Because the

harmonic-mean identity can be unstable (Raftery et al., 2007), we consider a more

pragmatic route and compute the CPO (and associated LPML) statistics using 500

non-overlapping blocks of the Markov chain, each of size 2000 post-convergence (i.e.,

after discarding the initial burn-in samples), and report the expected LPML computed

over the 500 blocks.
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3.5 Simulation Studies

To demonstrate the effects of fitting various sub-classes of the SNI-CAR formulation

and non-random missingness on subject-level fixed effects, we conduct a simulation

study. We use the full mouth MRF graph leading to S = 168, ρ = 0.99, and no spatial

covariates (such as site in gap). Data are generated from the model

P (yi(s) = observed) = 1− Φ(a0 + b0θi(s)),

yi(s)|yi(s) observed ∼ N(a1 + b1θi(s), σ
2
i )

where θi ∼ ST (x>β1S , τ
2
i Q
−1(ρ), 31S , 4), and ST is the skew-t density with location

(mean) vector x>β1S , covariance matrix τ2
i Q
−1(ρ), the skewness parameter 3, and

the shape parameter (degrees of freedom) 4. Each simulated data set contains data

generated from this model for N = 50 patients. The p = 3 subject-level covariates xi

are generated independently from the N(0, 1) density, and the regression coefficients are

β = (0, 1, 2)/3. Finally, τ2
i = a1 = b1 = 1 and a0 = −1. Under this setup, M = 200

datasets are generated from each of the two designs that varies with the missing data

mechanism b0. They are:

� Design 1: b0 = 0 and σ2
i = 1,

� Design 2: b0 = 1 and σ2
i = 1,

For all designs, the observations within patients are spatially correlated. The subject-

specific variances were all fixed to 1. We analyze each simulated data set using six

models:

� Model 1: Normal (N) model without non-random missingness, that is, b0 = 0,

� Model 2: Skew-normal (SN) and b0 = 0,
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Design Model b0 β0 β1 β2 RB1 RB2 MSE

1 1 - 0.380 0.630 0.900 -0.318 -0.329 0.059
2 - 0.630 0.855 0.995 -0.008 -0.045 0.044
3 - 0.190 0.995 1.000 -0.008 -0.006 0.006
4 0.055 0.520 0.740 0.975 -0.089 -0.162 0.051
5 0.040 0.555 0.875 1.000 0.009 -0.025 0.042
6 0.050 0.160 0.995 1.000 -0.011 -0.005 0.005

2 1 - 0.440 0.705 0.905 -0.341 -0.334 0.048
2 - 0.530 0.885 0.995 -0.148 -0.176 0.027
3 - 0.215 0.865 0.985 -0.128 -0.079 0.015
4 0.780 0.480 0.715 0.930 -0.310 -0.308 0.048
5 1.000 0.615 0.910 1.000 -0.170 -0.215 0.036
6 0.970 0.210 0.920 0.990 -0.027 -0.018 0.011

Table 3.1: Simulation study results. Column labels b0 - β2 give the proportion of 95% intervals
that exclude zero. Columns RB1 and RB2 denote the Relative Bias for parameters β1 and β2,
while the column MSE stands for the overall mean squared error for all parameters.

� Model 3: Skew-t (ST) model and b0 = 0,

� Model 4: Normal model (N) with non-random missingness,

� Model 5: Skew-normal model (SN) with non-random missingness, and

� Model 6: Skew-t (ST) model with non-random missingness,

where all models account for the spatial association via the CAR structure. While

Models 2 and 5 only accommodates asymmetry, Models 3 and 6 includes asymmetry

and heavy tail behavior.

The results are presented in Table 3.1. For each model and each design, we calculate

the proportion of the 95% posterior intervals for b0 and the regression coefficients that

exclude zero. We also compute the (overall) Mean Squared Error (MSE) and Relative

Bias (RB) for the parameters, which are also used in the simulation studies in the

occupational hygiene project (see 2.5.3). MSE = 1
p×M

∑M
i=1

∑p
j=1(β̂

(i)
j − βj)

2, and

RelBiasj = 1
M

∑M
i=1

β̂
(i)
j −βj
βj

, where β̂
(i)
j is the posterior mean of βj from the ith simulated
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data set and βj is the true value.

For Design 1 (that generates ignorable missing data), fitting non-ignorable missing

N and SN models (Models 4 and 5) leads to enhanced power for β1, compared to the

respective Models 1 and 2. However, power remains the same for Models 3 and 6 (the

ST cases). For estimating the null β0, quite interestingly, the power increases in Model

4 compared to Model 1, but reduces for Models 5 and 6 compared to Models 2 and

3, respectively. The RB for both β1 and β2 reduces for Model 4, compared to Model

1 (the N models). However, for SN and ST models, the RBs of β1 and β2 are mostly

comparable between their non-ignorable and ignorable missing counterparts, except for

the SN cases (Models 2 and 5) in β2 where it reduces for Model 5 compared to 2.

For Design 2 (which generates non-randomly missing data), there is a clear improve-

ment in the performance for models that handle non-ignorable missing data (Models

4-6) over the ones that doesn’t (Models 1-3), on the overall. Specifically, for β1, there is

improvement in power (see Column 5) in the non-ignorable models over their ignorable

counterparts. However, for β2, the power is comparable across both Designs and the

6 models. In addition, RB also reduces for the N and ST non-ignorable missingness

models (Models 4 and 6) over their counterparts (Models 1 and 3) for both β1 and β2.

However, this was reversed for the SN models, i.e., the non-ignorable SN model (Model

5) exhibited slightly increased bias over Model 2 for both β1 and β2. The estimated

value of the overall MSE is lower for Model 6 compared to Model 4, same comparing

Models 3 and 1, but strangely, higher for Model 5 versus Model 2.

Overall, we conclude that when the underlying dataset exhibit skewness, tail be-

havior and non-ignorable missingness (Design 2), the skew-t model turns out to be

more flexible and efficient than the skew-normal and the usual normality based CAR

models for parameter estimation. Quite interestingly, even when the data is generated

under ignorable missingness pattern, some non-ignorable missingness model (such as
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the Normal) can present substantially improved parameter estimation compared to its

ignorable counterpart. However, not much differences are noticed in the estimates from

the SN and the ST models. Note that the introduction of various sources of random

heterogeneity via skewness, thick-tails, spatial referencing and non-ignorable missing-

ness indeed complicates our framework. Quite often, these sources are not individually

identifiable, and that precludes us from understanding and estimating the individual

influence of each one of these to the fixed effects estimation.

3.6 Application

In this section, we illustrate our method via application to the GAAD dataset. In

particular, we posit 5 competing models with various choices of densities for θi(s) from

the SNI-CAR class, and perform model comparison to choose the best fitting model.

These models are the (i) N density [Model 1], (ii) SN density [Model 2], (iii) ST density

[Model 3], (iv) SSL density [Model 4], and (v) SCN density [Model 5].

For specific prior choices, we assign the components of β, a0, and b0 independent

Normal(0, Precision = 0.01) priors. For the variance components σ2 and τ2, we assign

a moderately diffuse IG(0.1, 0.01) [with mean 10], and for the asymmetry parameter λ,

Normal(0, Precision = 0.01) prior to accommodate either positive or negative skewness,

and allow the data to determine it. Finally, prior choices for ν are as follows. For the

ST density, note that the choice of ν ∼ Gamma(0.1, 0.01)I{(2,∞)} to achieve a finite

variance led to some issues with convergence of ν and some β. Hence, we decided to use

to ν ∼ Gamma(0.1, 0.01). For the SSL density, the prior for ν is a Gamma(a, b) with

small positive values of a and b (a = 0.01, b = 0.001), primarily to ensure conjugacy. For

the SCN density, ν = (ν1, ν2)T , and once again for posterior conjugacy, both ν1 and ν2

are chosen Beta(1, 1)(= U(0, 1)). For each of these models, we ran 2 chains with widely
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Criterion N-CAR SN-CAR ST-CAR SSL-CAR SCN-CAR
DIC3 47138.79 46430.73 38560.54 42560.37 46470.19
LPML -42187.28 -41944.21 -36468.87 -41358.7 -41966.88

Table 3.2: Model comparison using DIC3 and LPML

dispersed initial values. Posterior estimates were computed using 30000 iterations with

an initial burn-in of 20000, and a thinning of 5. Posterior convergence was assessed

using trace plots, autocorrelation plots, and the Gelman-Rubin scale-reduction factor

R̂ (Gelman and Rubin, 1992). WinBUGS code for fitting the skew-t model is available in

B.2.

Table 3.2 presents the DIC3 and LPML values after fitting the 5 competing models

to the GAAD dataset. Note that all skewed versions produced better fit than the N-

CAR model. In particular, the ST-CAR model produced the best fit among all models

for both criteria. This model comparison result differs from what we got in section 2.4.2,

where the models with skewed errors do not show a better fit compare to the model with

Gaussian random error. Therefore, it’s essential to model our skewed continuous CAL

using a skewed-t distribution where spatial dependency and non-random missingness

are both incorporated into the likelihood.

In Table 3.3, we summarize the posterior estimates of model parameters from the N-

CAR and the (best-fitting) ST-CAR models. We observe that the parameter estimates

for the covariates Age, Gender, Smoker and HbA1c have the same sign in both the

models and are significant (with credible intervals excluding 0), implying that PD status

is usually higher with increasing age, for males, for smokers, and for subjects with

uncontrolled HbA1c. This overwhelmingly satisfies the adverse effect of uncontrolled

diabetes on periodontal health, extensively explored earlier in oral epidemiology (Taylor

and Borgnakke, 2008). However, the estimate of BMI which was significant in the

Normal model turned out to be non-significant for the ST model. Next, while comparing
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parameter estimates corresponding to sites in various tooth-types (with Incisors are the

baseline), we observe that the canines have lower degree of PD, with increasing degree

of PD in the premolars, followed by molars, for both models. This is intuitive, given

that there is a high proportion of diseased molars in this population, and our model

assumes that the missingness is primarily due to previous onset of PD. In addition,

tooth-site located in the ‘gap’ area, and a site in the maxilla (upper jaw) is indicative

of a higher level of PD from both models. Furthermore, b0 is positive and significant in

both models, confirming our assumption that a higher degree of PD status may lead to

a higher probability (proportion) of missing tooth.

Comparing posterior estimates of the variance components σ2 (within-subject vari-

ance) and τ2 (spatial variance), we observe that the posterior mean of σ2 from the

ST-CAR model is lower (with a tighter 95% CI) as compared to that from the N-CAR

model. On the contrary, the estimated posterior mean of the CAR variance τ2 is several

fold higher in the ST model (also with a higher standard deviation), compared to the

estimate from the N model. The posterior estimate of ρ, the spatial association param-

eter from the ST-CAR model is 0.995, reflecting a more realistic value, compared to the

estimate of 0.951 from the Normal model. Posterior mean of δ, the skewness parameter

from the ST model is 1.592, and is significant, conveying some degree of right-skewness

in the non-transformed clustered CAL response. In addition, the estimate of ν (the t

degrees of freedom), also from the ST model is 1.275, implying very thick tails, although

the variance of the t density is undefined (since ν < 2).

Figure 3.4 illustrates the difference between the ST-CAR and the N-CAR model

in terms of prediction by comparing the fitted mean values and their 95% prediction

intervals for a random subject (here, Subject # 52). From the plots, it is clear that the

posterior means of the expected CAL values from the ST-CAR model closely resem-

ble the true values (whenever they are non-missing), compared to the N-model which
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N-CAR ST-CAR
Parameter Mean SD Lower Upper Mean SD Lower Upper

Int. −0.263 0.069 −0.402 −0.123 2.139 0.053 2.041 2.242
Age 0.025 0.0009 0.023 0.026 0.266 0.023 0.231 0.311

Gender −0.163 0.022 −0.204 −0.117 −0.184 0.051 −0.262 −0.093
BMI 0.004 0.001 0.003 0.006 −0.002 0.030 −0.057 0.053

Smoker 0.406 0.027 0.356 0.461 0.234 0.042 0.159 0.302
HbA1c 0.157 0.020 0.119 0.197 0.215 0.029 0.153 0.261
a0 −2.932 0.159 −3.225 −2.631 1.064 0.084 0.921 1.247
b0 1.384 0.121 1.162 1.585 1.406 0.033 1.341 1.472

Canine −0.087 0.033 −0.149 −0.018 −0.088 0.039 −0.164 −0.019
Premolar 0.553 0.237 0.506 0.599 0.442 0.027 0.395 0.494

Molar 1.505 0.036 1.436 1.578 1.629 0.042 1.556 1.708
Gap 0.437 0.026 0.389 0.486 0.655 0.018 0.616 0.684

Maxilla 0.242 0.018 0.205 0.277 0.273 0.054 0.191 0.357
ρ 0.951 0.0008 0.95 0.953 0.995 0.0003 0.995 0.996
τ2 0.771 0.055 0.687 0.871 4.454 0.203 4.047 4.803
σ2 1.445 0.061 1.347 1.557 0.111 0.011 0.093 0.136
δ – – – – 1.592 0.041 1.505 1.642
ν – – – – 1.275 0.009 1.258 1.288

Table 3.3: Parameter estimates derived from the Normal and the ST models, both under
non-random missingness. ‘Lower’ and ‘Upper’ denotes the 2.5% and 97.5% level of the credible
intervals, respectively.
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produces various degrees of over- and under-fitting. In addition, the ST-CAR model

leads to significantly precise estimates (as revealed from the much tighter intervals)

compared to the N-CAR model. The wider intervals from the N-CAR model (which

sometimes do not contain the true CAL response) reflect the increased uncertainty in

prediction due to the choice of an inadequate random effects structure. Note that this

subject (like many other subjects in this dataset) has missing molars. Here, the pre-

diction uncertainty is considerable for these posteriorly-located (missing) molar sites in

the mandibular/buccal and mandibular/lingual regions, for both models. The posterior

prediction estimates for these missing sites from the N-CAR model appear to be sub-

stantially underestimated compared to the ST-CAR model, revealing once again that

an over-simplified model may not estimate the true disease state.

For hierarchical generalized linear mixed-models, use of weakly-informative priors

can lead to inference which are sensitive (Zhao et al., 2006; Natarajan and Kass, 2000)

to the choice of priors on hyperparameters. To investigate this issue, we conducted

sensitivity analysis on the routine use of inverse-gamma prior on variance components,

and choice of the precision parameter for the Normal priors in the components of β,

a0, and b0. In all the results, we focused our attention on the estimation of the fixed

effects parameters β. In particular, we considered an array of weakly-informative to

highly non-informative choice of priors. For example, we took σ2, τ2 ∼ IG(10κ1 , 10κ1),

where κ1 ∈ {−4,−3,−2,−1, 0, 1, 2}, and the Normal precision to be 0.1, 0.01, 0.001.

Although we notice slight changes in the values of fixed effects estimates as well as model

comparison measures, results were quite robust on the overall and did not change any

conclusions regarding our best fitted model, and the posterior estimates.
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(a) CAL fit from the ST−CAR Model
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(b) CAL fit from the N−CAR Model

Figure 3.4: Fitted (prediction) curves and 95% prediction intervals obtained after fitting the
(a) Normal-CAR model, and the (b)Skew-t-CAR model to the GAAD data. ‘Dots’ denote
observed data, ‘solid lines’ denote the posterior mean estimates from the expected curves, and
‘dashed lines’ denote the corresponding 95% pointwise prediction intervals. Maxillary: upper
jaw; Mandibular: lower jaw; Buccal: lip side, and Lingual: Tongue side
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3.7 Conclusions

In this chapter, we extend the class of skew-normal/independent class proposed by

Bandyopadhyay et al. (2010a) under a Bayesian framework to include spatial clustering,

and non-random missingness, with an illustration on modeling PD data. Our analysis

presents the necessity of considering skewness, thick-tails, and various other complexities

observed in modeling PD data in terms of obtaining precise parameter estimates, and

related prediction. The nice hierarchical representation given in (3.6 - 3.9) facilitates

easy implementation using conventional free software, like R2WinBUGS, which seamlessly

connects R with the popular Bayesian software WinBUGS. Furthermore, the methodology

proposed can be easily extended to datasets of this kind observed in epidemiological

studies.

A semi-parametric Bayesian treatment is certainly possible as an alternative (Müller

and Quintana, 2004) ; however, we resorted to developing a parametric class of skew-

densities primarily from the standpoint of easy implementation. Note that a semi-

parametric or non-parametric proposition is often computationally challenging, and can

lead to identifiability issues. Despite various skew-elliptical expositions (Genton, 2004)

that are available, our development follows the skew-normal representation of Sahu et al.

(2003) for elegant Bayesian implementation.

There exists a number of future directions to consider for further exploration. Note

that our choice of using a robust density is primarily from a model-fitting and prediction

standpoint, and precludes a thorough assessment of outliers and influential observations,

the presence of which may have quite certainly affected the posterior estimates. In addi-

tion, we currently explore a spatial setting; whereas, a periodontal clinical trial may lead

to a clustered-longitudinal setup where spatio-temporal modeling is of essence. These

will be considered elsewhere. We can also try other methods to deal with the skewed



72

PD response as such adapting a link function that is suitable for spatial dependency

and non-random missingness and we discuss this in depth in Chapter 4.



Chapter 4

A spatial joint factor model for

extreme valued multivariate

binary data with non-random

missingness

4.1 Introduction

In this chapter we focus on the same GAAD data described in Chapter 3, but we

model the CAL responses in a different manner. In Chapter 3, our response is the

raw CAL which is treated as continuous. Here we follow the American Association

of Periodontology 1999 classification (Armitage, 1999) and transform the continuous

CAL into binary responses based on the periodontal disease status. The severity of PD

recorded at each tooth site is classified in to the following categories:

(a) no PD (CAL = 0 mm),

73
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(b) slight PD (1 ≤ CAL ≤ 2 mm),

(c) moderate PD (3 ≤ CAL ≤ 4 mm),

(d) severe PD (CAL ≥ 5 mm),

(e) missing. (No measurement is taken)

We format the binary response as whether or not the CAL shows moderate to severe

PD status, i.e. CAL ≥ 3. As Figure 3.1 (a) shows the density of the continuous CAL is

concentrated around smaller values of the raw CAL measurements, especially for CAL

≤ 2 mm. We are not surprised to observe that the summary statistic of the binary

response reveals the asymmetry between the number of the observations with moderate

to severe PD status and the number of observations without that condition. Based on

this skewed binary response feature, we take a different modeling approach. Instead of

using a skewed distribution directly to model the skewness as in Chapter 3, we use a

link function that can work with the skewed binary response. The most popular method

to model binary response is the logistic regression with a logit link, which is easy to

explain and implement. Because of the skewness in the binary response, the normality

assumption does not hold for our data. Under this condition, applying a symmetric

link will result in link misspecification which leads to asymptotic bias and inefficient

covariate estimates (Czado and Santner, 1992). One can also use non-Gaussian Markov

random fields for the asymmetric binary response (Jin et al., 2016). However, this is not

applicable to our extremely skewed situation neither. Therefore, we use a generalized

extreme value (GEV) link with an unconstrained shape parameter to accommodate a

variety of skewness situations (Wang and Dey, 2010) to model the extremely skewed

binary response in the GAAD data, which we will show to have a better fit.

After figuring out the big picture, we want to focus on investigating and estimating

the relationship between the patient-level and tooth-level covariates and the response by
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modeling the skewed binary response with the GEV link. However, this is complicated

due to a few reasons. First, the GAAD data exhibit a large volume of missingness

(around 27% of these data), typical of any PD dataset, given that PD is the major cause

of tooth loss in adults. This missingness is non-ignorable, falls under the not-missing-at-

random (NMAR) category for studying missing data patterns, and earlier was modeled

using the shared parameter framework by Reich and Bandyopadhyay (2010) and Reich

et al. (2013). Second, in addition to the traditional site-within-mouth clustering, PD

progression is also considered to be spatially clustered, i.e., diseased status for a set

of closely located tooth-sites are similar. Spatial modeling for PD data is not new;

see Reich and Bandyopadhyay (2010); Reich et al. (2013); Boehm et al. (2013) for a

variety of contexts in this vein. In addition to the skewed binary response, ignoring the

aforementioned features of non-ignorable missingness and spatial clustering can bias

parameter estimates and inference. Hence, we set forward to developing a spatial model

using GEV link and jointly model the non-random missingness. This model insulates

the estimation framework from all these shortcomings, and produces robust parameter

estimates and precise prediction.

Given the complexities involved in this setup, the implementation of a classical in-

ferential framework might appear to be daunting. Hence, we consider a hierarchical

Bayesian formulation, with the ability to incorporate expert background (prior) in-

formation about the unknown parameters, and relying on the computation powers of

the relevant Markov chain Monte Carlo (MCMC) steps for parameter estimation. The

GEV link based Bayesian model provides a flexible modeling framework that simul-

taneously accommodates the complex features including skewness, spatial clustering,

and non-random missingness of the GAAD data, but it also leads to a big compu-

tational challenge due to the large number of latent random variables which do not

have closed-form full conditionals for direct posterior sampling. The convergence issue
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of MCMC arises when estimating the latent random variables from the corresponding

posterior samples. When using the traditional random-walk algorithm, it makes the

Markov chain move extremely slow and takes too many iterations for the chain to move

to the target likelihood region, leading to slow convergence. We approach this issue

by applying Hamiltonian Monte Carlo (HMC) algorithm within Gibbs sampling. The

HMC algorithm is derived from the Hamiltonian dynamics, a derivation of the classical

mechanics, which contribute to the formation of statistical mechanics. We use HMC

algorithm to generate distant proposals by taking large jumps in the likelihood space

to avoid the slow exploration that results from simple random-walk proposal. Thus,

HMC allows the Markov chain to move faster across the likelihood regions and dra-

matically reduces the computation time when estimating the latent random variables.

Posterior samples can also be used for model comparison. We use Watanabe-Akaike in-

formation criterion (WAIC), which is also called widely applicable information criterion

(Watanabe, 2010), based on pointwise calculation of the posterior sample, to evaluate

predictions for new data in a Bayesian context. We prefer WAIC over AIC or DIC

because it averages over the posterior distribution, whereas AIC and DIC only estimate

the performance a partial predictive density by conditioning on a point estimate.

The rest of the chapter is as follows. Section 4.2 introduces GEV distribution and

unified model components. Section 4.3 develops the joint modeling under a Bayesian

framework and some computation details using Hamiltonian Markov chain. Section 4.5

is the application of our proposed model to a PD data set followed by simulation studies

(section 4.4). Section 4.6 is the discussion.
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4.2 Model multivariate extreme value binary data with

GEV link

To specify the notation, let Y = (y1,y2, . . . ,yn)> denote an n × s binary response

vector, where yi(s) denotes the response for subject i, i = 1, 2, . . . , N at location s,

s = 1, 2, . . . , 168. CAL measurements determine the value of the binary response. In

order to model the moderate to severe PD status, we define the following:

� CALi(s) < 3, then yi(s) = 0, i.e., no event.

� CALi(s) ≥ 3, then yi(s) = 1.

CALi(s) ≥ 3 represents the “moderate to severe” of periodontal disease status. We find

that about 17% of yi(s) is 1, which shows asymmetry behavior in the binary response.

Hence, instead of using a skewed distribution directly to model the skewed continuous

response as in Chapter 3, we use a link function that can work with the skewed bi-

nary response. Under non-normality condition, applying a symmetric link will result in

link misspecification which leads to asymptotic bias and inefficient covariate estimates

(Czado and Santner, 1992). Therefore, we use a generalized extreme value (GEV) link,

which allows an unconstrained shape parameter to accommodate a variety of skewness

situations (Wang and Dey, 2010) to model the extremely skewed binary response in the

GAAD data.

The generalized extreme value (GEV) distribution is a family of continuous distri-

butions which consist of Gumbel, Fréchet, and Weibull distributions (Wang and Dey,

2010). To build an appropriate and flexible model accommodating the skewed binary

response, Wang and Dey (2010) proposed the GEV distribution as a link function. The

proposed link function is different from the other generalized extreme value introduced
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by McFadden (1978). In McFadden (1978) definition, it is a family of multivariate dis-

tribution functions with marginal distribution being Type I extreme value distribution

or Gumbel distribution (light-tailed) which is a special case of the GEV distribution

proposed by Wang and Dey (2010). The advantage of the GEV link is the incorpora-

tion of an unconstrained shape parameter to fit a wide range of skewness, which is also

identifiable and estimable based on the skewness of the response curve.

Because our response is not continuous, we introduce a latent variable y?i (s) to

project the binary response onto the real line. In the GLM framework, let

pi(s) = P(yi(s) = 1) = P(y?i (s) ≥ 0). (4.1)

We have the following linear mixed model:

y?i (s) = µi(s) + εi(s) , (4.2)

εi(s) ∼ GEV (0, ξ) ,

(4.1) can be written as:

pi(s) = F (µi(s) + εi(s)), (4.3)

where F is a cumulative distribution function and F−1 determines the link function.

According to Li et al. (2016), the GEV link is the inverse of H which is assumed as

pi = H(µi | ξ) = 1−GEV(−µi; ξ)

=


1− exp{−(1− ξµi)

− 1
ξ

+ }, ξ 6= 0

1− exp{−exp(µi)}, ξ = 0

(4.4)

where GEV(µi; ξ) represents the cumulative probability at x for the GEV distribution
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with location parameter µ = µi and shape parameter ξ. Apply this model specification

to our case, we can rewrite (4.3) with the generalized extreme value link, and our data

likelihood becomes

pi(s) = p(yi(s) = 1) = H(µi(s) | ξ) = 1−GEV(−µi(s); ξ) (4.5)

4.2.1 Incorporating spatial dependence via a multivariate latent vari-

able

Note that the latent random variables, rather than being independent, are considered

to be spatially clusters, which contribute to PD status and missingness. To account for

the spatial correlation in the latent variable µi, we assume that for each i,

µi ∼ MVN(x>i β + ωα,Σ) , (4.6)

where MVN is the multivariate normal density, with x>i β+ωα denotes the mean and Σ

denotes the positive definite s× s variance-covariance matrix (also see in section 3.3.2).

xi is the patient-level covariate matrix and β is the coefficient. ω is the tooth-level

covariate and α is the coefficient. The multivariate latent variable µi is modeled under

a spatial framework by assigning a conditionally autoregressive covariance (CAR) prior

to Σ (Besag, 1974). The CAR of µi(s) is σ2Q(ρ)−1. In the spatial model, ρ ∈ [0, 1]

controls the degree of spatial association and σ2 > 0 controls the magnitude of variation.

Q(ρ) = D − ρW , D is a s× s diagonal matrix where the ith diagonal entry represents

the number of neighbors at location si, W is the adjacency matrix with wii′ = 1 if

si and si′ are considered adjacent, and otherwise wii′ = 0 . We consider horizontal

neighboring teeth to be adjacent, whereas section 3.1 considered both horizontal and

vertical neighbors to be adjacent.



80

4.2.2 Joint factor model with non-random missingness for the location

of the missing teeth

As we described previously, a considerable amount of teeth are missing. The locations

of the missing teeth are not random, and it is related to the periodontal health in that

region of the mouth. Hence, we propose a joint model for the locations of missing teeth

as a function of the latent random variable µi(s). The six observations on a tooth are

either all observed or all unobserved in our data. Let δi(t), the observed data, be an

indicator of whether tooth t =1, . . ., T is missing for patient i and it can be modeled

using the probit regression. Let δi(t) = 1 if the tooth t is missing and δi(t) = 0 if not.

δ?i (t) is a latent continuous variable, Reich and Bandyopadhyay (2010) proposed the

following (also see section 3.3.2):

δ?i (t) = a0 + b0Z
>
t µi + εi(t), (4.7)

εi(t) ∼ N(0, 1) ,

where Zt is a s × t transition matrix such that Z>t µi represents the mean of µi for all

the six observations on tooth t. a0 relates to the random missingness and b0 relates

the information from the latent variable µi to the missingness tooth indicator δ?i (t). If

δ?i (t) > 0, i.e., it follows a truncated Normal distribution where it is bounded above zero

and δi(t) = 1. Otherwise when δ?i (t) < 0, it is a truncated Normal distribution bounded

below zero. We can write the indicator function as δi0(t) = I(δ?i (t) > 0). Therefore, the

probit regression to model the missingness through a shared latent variable with the
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data is :

Pr(δi(t) = 1) = Pr(δ?i (t) > 0)

= Pr(a0 + b0Z
>
t µi + εi(t) > 0)

= Pr(εi(t) < a0 + b0Z
>
t µi)

= Φ(a0 + b0Z
>
t µi)

(4.8)

4.3 Bayesian inference

We showed the prior information for the latent random variable µi in section (4.2.1)

which follows a multivariate Normal distribution with mean x>i β+ωα and the spatially

dependence variance covariance matrix Σ(σ2; ρ). For the variance parameter σ2, which

we do not know much beyond the data, a non-informative prior distribution should

be used (Gelman et al., 2006). The inverse-Gamma (0.1, 0.1), can be used as a non-

informative prior within the conditionally conjugate family. According to Wang and

Dey (2011), the variances for β and α represent the prior belief of whether they will

be near 0. A small value of the variance suggests strong prior belief that β and α are

centered at 0, while a large value suggests a less informative prior. In this sense, we

choose the values to allow variances to be 1000, which gives weak prior belief in β and

α. We have β ∼ MVN(0, Σβ) and α ∼ MVN(0, Σα) where the diagonal elements of

Σβ and Σα equal 1000. This estimation of β and α relies on the information in the data

which is more objective. The shape of the GEV distribution function is highly flexible

with the tail behavior controlled by the shape parameter ξ. As for a less informative

prior for the unconstrained shape parameter, we use Uniform (−1, 1).
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4.3.1 Posterior distributions for the GEV link model

With the data likelihood, spatial dependence, non-random missingness (section 4.2) and

priors, we can write out the posterior distribution function:

n∏
i=1

site∏
s=1

[(1−GEV(−µi(s); ξ))yi(s)][(GEV(−µi(s)))1−yi(s)]

×
n∏
i=1

T∏
t=1

qi0(t)δi(t)(1− qi0(t))1−δi0(t) ×N(a0 |µ0, σ
2
0)×N(b0 |µ0, σ

2
0)

×
n∏
i=1

MVN(µi |x>i β + ωα; Σ(σ2; ρ))× Beta(ρ | aρ, bρ)× IG(σ2 | aσ, bσ)

×MVN(α |aα,Bα)×MVN(β |aβ,Bβ)× IG(ξ | aξ, bξ)

Where qi0(t) = Pr (δi(t) = 1) = N(a0 + b0Z
>
t µi , 1) = Φ(a0 + b0Z

>
t µi)

(4.9)

The full conditional distributions for each parameter follows:

σ2 |Rest ∝
n∏
i=1

MVN(µi |x>i β + ωα; Σ(σ2; ρ))× IG(σ2 | aσ, bσ)

∼ IG

(
σ2 | N ∗ S

2
+ aσ, bσ +

n∑
i=1

1

2
[µi − (xi>β + ωα)]>(D− ρW)[µi − (xi>β + ωα)]

)
(4.10)

β |Rest ∝ MVN(β |aβ,Bβ)×
n∏
i=1

MVN(µi |x>i β + ωα; Σ(σ2; ρ))

∼ MVN (Gg, G),

G = (B−1
β +

n∑
i=1

xiΣ
−1x>i )−1, g =

(
a>β B−1

β +
n∑
i=1

µiΣ
−1x>i −α>ω>Σ−1

n∑
i=1

x>i

)>
(4.11)
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α |Rest ∝ MVN (α |aα,Bα)×
n∏
i=1

MVN (µi |x>i β + ωα,Σ(σ2; ρ))

α |Rest ∼ MVN (α |Hh,H), H =
(
B−1
α + n× ω>Σ−1ω

)−1
,

and h> = a>αB−1
α +

n∑
i=1

µ>i Σ−1ω −
N∑
i=1

β>xiΣ
−1ω.

(4.12)

ρ |Rest ∝ Beta(ρ | aρ, bρ)×
n∏
i=1

MVN(µi |x>i β + ωα,Σ(ρ, σ2)) (4.13)

ξ |Rest ∝ IG(ξ | aξ, bξ)×
n∏
i=1

site∏
s=1

pi(s)
yi(s)[1− pi(s)]1−yi(s)

∝ IG(ξ | aξ, bξ)×
n∏
i=1

site∏
s=1

[1−GEV (−µi(s); ξ)]yi(s)[GEV (−µi(s); ξ)]1−yi(s)

(4.14)

µi(s) |Rest ∝ π(µi)× p(yi |µi)× p(δi |µi) (4.15)

δ?i (t) | a0, b0, δi(t),Rest ∝ Trun. N

[1 Z>t µi

]a0

b0

 , εi0(t)


{δ?i (t)>0}

I(δi(t) = 1)

+ Trun. N

[1 Z>t µi

]a0

b0

 , εi0(t)


{δ?i (t)<0}

(1− I(δi0(t) = 1))

(4.16)
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b0

 |Rest ∝
n∏
i=1

T∏
t=1

N

δi(t) |x[i, t, ]

a0

b0

 , 1


∝ exp

(
−1

2

(
(
a0
b0 )−Mm

)>
M−1

(
(
a0
b0

)
)−Mm

)
M = (

n∑
i=1

T∑
t=1

x[i, t, ]>x[i, t, ])−1

m = (
n∑
i=1

T∑
t=1

δi(t)x[i, t, ])>

(4.17)

We adopt the Gibbs sampler to draw posterior samples of the parameters from their

full conditionals. For parameters σ, β, and α with closed-form full conditionals, we

can use direct sampling to get the posterior samples. For parameters ρ and ξ, we

can use Metropolis-Hastings algorithm within Gibbs sampling. Whereas for the high-

dimensional multivariate latent variables µ, we used within-Gibbs Hamiltonian algo-

rithm to achieve faster mixing and convergence. More details about how to update µi

using an algorithm based on the Hamiltonian dynamics within a Metropolis Markov

chain is in section C.1 and section C.2.

4.4 Simulation study

In the simulation study, we show the efficiency of using the GEV link and informative

missingness on the analysis of model covariates as well as parameters. We use one

quadrant for each patient leaving the total number of sites within each subject to be

= 42. We consider 1 spatial covariate and 1 patient-level covariate. The complete data
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yi(t) are generated from the following:

p(yi(t) = 1) = 1−GEV (−µi(t), ξ) ,

µi ∼ MVN
(
x>i β + ωα; Σ(σ2; ρ)

)
.

After we have the complete data, we add missingness there. δ?i (s) is the missingness

indicator and we have p(δ?i (s) = 1) = Φ(a0 + b0Z
tµi). Each simulation data set has

n = 50 patients. The one subject-level covariates β generated independently from

log N(0, 1) density, and the regression coefficient is β = −2. The spatial covariate is

generated from Binomial (p = 0.5) and the regression coefficient is α = −1. And other

simulation parameters are ρ = 0.975, ξ = −0.5, a0 = −1.5, and b0 = 0.5. Under this

setup, we generated M = 100 datasets with non-random missingness. It’s a 50 × 42

matrix for the binary response (about 20% being 1). The missing data are generated

accordingly (about 25 percent). For the above design, we analyze each data set with

the following 4 competing models:

1. Model 1: GEV link with informative missingness,

2. Model 2: GEV link with missing at random,

3. Model 3: probit link with informative missingness,

4. Model 4: probit link with missing at random,

and all the 4 models are under CAR structure for spatial association. Models 1 and 2

account for the extreme values in the binary response using a GEV link, and Models

3 and 4 are under the normality assumption for the random error and use a probit

link. The simulation results are shown in Table 4.1. For each model, we summarize

the posterior samples and get mean, 95% credible interval, and calculate the coverage
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probability for the regression coefficients and the parameters. We also compute the mean

square error (MSE) and Relative Bias for the regression coefficients and the parameters.

Table 4.1 shows GEV link with non-random missingness (Model 1) gives the largest

Param. M1 (Truth) M2 M3 M4

β
Coverage 88 83 76 80
Relative bias 0.003 −0.004 0.025 0.030
MSE 0.294 0.303 0.328 0.370

α
Coverage 69 45 17 13
Relative bias 0.083 0.117 0.080 0.143
MSE 3.236 3.528 7.647 10.100

ξ
Coverage 99 100 - -
Relative bias −0.948 −0.961 - -
MSE 25.8 26.867 - -

σ2
Coverage 84 80 55 50
Relative Bias 0.026 0.039 0.048 0.051
MSE 0.442 0.429 0.716 0.916

ρ
Coverage 82 80 71 59
Relative Bias −0.007 −0.007 −0.002 −0.002
MSE 0.011 0.014 0.015 0.018

a0

Coverage 85 - 81 -
Relative Bias 0.020 - 0.238 -
MSE 271.796 - 331.371 -

b0

Coverage 82 - 81 -
Relative Bias 0.649 - 0.695 -
MSE 69.105 - 75.374 -

Table 4.1: Simulation study results. Column labels M1 - M4 have give the coverage probability,
relative bias, and mean square error (MSE) for the parameters from the 4 competing models
with different link functions and missingness settings.

coverage probability for the patient-level covariate coefficient β and spatial covariate

coefficient α. As for the parameters, the coverage probabilities in Model 1 are the

largest for σ2 and ρ. For missingness parameters a0 and b0, Models 1 and 3 give similar

coverage probabilities. The Relative Bias for β in Model 1 reduces compared to other

models. When non-random missingness is included, the Relative Biases for α in Models

1 and 3 are comparable between the GEV link and probit link counterparts, and there’s
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a slight increase in Models 2 and 4 with the missing-at-random scenario. There’s a great

decrease in MSE for α in Models 1 and 2 compared to Models 3 and 4. Overall, when the

data exhibit extreme skewness, spatial correlation, and non-ignorable missingness, the

GEV link with non-random missingness model (Model 1) is more flexible and efficient

than the probit link model. Interestingly, the overall fit of the GEV link with random

missingness model (Model 2) is better than that of the probit link with non-random

missingness model. There’s not so much difference between Models 3 and 4 in terms of

Relative Bias and MSE. These simulation results show it is more important to choose

the suitable link to accommodate the skewness feature in the data, while the information

we gain by modeling non-random missingness is a plus.

4.5 Data analysis: the GAAD data

In this section, we analyze the GAAD data set using the model we developed in section

4.2. In the GAAD data, we find that about 27% of the responses are missing, and 17% of

the non-missing responses have CAL ≥ 4 mm. In addition, the subject level covariates

are Age (in years), Gender (1=Female, 0=Male), Body Mass Index or BMI (in kg/m2),

smoking status (1 = smoker, 0 = never smoker), glycemic status or Hba1c (1= High, 0 =

controlled), etc. About 26% of the subjects are smokers. The mean age of the subjects is

about 52 years with a range from 26-87 years. Female subjects seem to be predominant

(about 73%) in our data, which is not uncommon in Gullah population (Johnson-Spruill

et al. 2009). About 74% of subjects are obese (BMI >= 30) and 64% are with Hba1c

= 1 (for subjects with blood sugar level higher than 7 percent), an indicator of high

glycemic level. Furthermore, six tooth number indicators with the first tooth (molar)

serving as the reference tooth, and upper jaw (1 = maxilla, 0 = otherwise). For this

current analysis, we selected 100 patients with complete covariate information. To make
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computation convenient, instead of computing all the posterior samples for the 100×168

multivariate latent random variables, we average CAL measurement for each tooth and

it is now 100 × 28 multivariate binary responses and this greatly reduces computation

time. Whereas in section 3.6, we do not have this complexity and the data analysis is at

site level. Including all the covariates mentioned here, we propose 4 competing models

to fit the data, which are

(a) GEV link model with non-random missingness,

(b) GEV link model with random missingness ,

(c) probit link model with non-random missingness,

(d) probit link model with random missingness,

and they follow the same setting as in the simulation study (see section 4.4).

Because of the complexity of our model, model implementation using standard

Bayesian software such as WinBUGS and rjags is impossible. We carried out our sam-

pling using the free software R (http://www.r-project.org/). We adjust the MCMC

sample size according the speed of convergence, which is monitored using trace plots as

well as Gelman-rubin diagnostics. We ran 2 chains for sensitivity analysis with different

initial values for all 4 models.

First, we want to show Bayesian model comparison results using Watanabe-Akaike

information criterion (WAIC), also called widely applicable information criterion (Watan-

abe, 2010). WAIC is a fully Bayesian approach for estimating the out-of-sample-

expectation. We choose WAIC over AIC or DIC because it averages over the posterior

distribution, whereas AIC and DIC only estimate the performance of a partial predic-

tive density by conditioning on a point estimate. Therefore, WAIC works better to find

the model with precise prediction. We get WAIC based on pointwise calculation of the
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posterior sample to evaluate predictions for new data in a Bayesian context. It accounts

for the computed log pointwise posterior predictive (lppd) density and a correction for

effective number of parameters to adjust for over-fitting.

To calculate the lppd, let {µi(t)s
?
, ξs

?} denote the posteriors sample, and S? is the

number of posterior samples generated which we assume is big enough to capture the

posterior distribution. The log pointwise predictive density (lppd) follows (Watanabe,

2010):

Computed lppd = computed log pointwise predictive density (4.18)

=
n∑
i=1

t∑
t=1

log

(
1

S?

S?∑
s?=1

p
(
yi(t) |µi(t)s

?
, ξs

?
))

.

To calculate the correction for effective number of parameters, it follows:

computed pWAIC =
n∑
i=1

t∑
t=1

Vs?=1S
?
(
log p(yi(t) |µi(t)s

?
, ξs

?
)
, (4.19)

where V S?
s?=1

(
log p(yi(t) |µi(t)s

?
, ξs

?)
represent the sample variance for data point yi(t).

We get the effective number of parameters by summing over all the data points. With

pWAIC as a bias correction, we have :

ˆelppdWAIC = lppd - pWAIC. (4.20)

Gelman et al. (2014b) defined WAIC = −2 × ˆelppdWAIC so as to be on the deviance

scale. Whereas in Watanabes original definition (Watanabe, 2010), WAIC is the nega-

tive of the average log pointwise predictive density. Here we scale WAIC as in Gelman

et al. (2014b), so it is comparable with AIC, DIC, and other measures of deviance.

Table 4.2 shows the WAIC for the GEV link model with informative missingness is
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GEV link probit link

Info missing Yes No Yes No

lppd −467.982 −713.880 −6050.618 −5498.904
pWAIC 250.0503 456.810 4526.432 18261.59
WAIC 1436.064 2341.378 21154.1 47521

Table 4.2: Bayesian model comparison results using WAIC, log pointwise predictive density
(lppd), and bias corrections for 4 competing models with different link functions and missingness
setups. Smaller values of WAIC imply better predictive accuracy.

1436.064 and it is the smallest among all the 4 models. It suggests that the GEV link

with informative missingness model has the best predictive performance among the 4

competing models. The results show the GEV link models have better fit than the

probit link models and this shows the importance of choosing the correct link.

We further compare the model fitting using the fitted prediction interval. To do

that, we first randomly pick a subject (subject 52, same as in Figure 3.4) and get the

posterior samples for the multivariate latent random variable µ(i, t), for t = 1, 2, . . . , 28.

Then we summarize the posterior to get mean and the 95% credible interval for each

tooth for subject 52. Let y52(t)new denote a new observation for subject 52 and tooth

t. We can calculate p(y52(t)new = 1) = 1 − GEV( ˆµ52(t), ξ̂) as well as the 95% CI for

p(y52(t)new = 1). We then plot them against the observed data for yi(t). The probability

should be close to 1 if y52(t) = 1, and p(y52(t)new = 1) should be small if y52(t) = 0.

Figure 4.1 illustrates the difference between the 4 competing models with different link

functions and missingness assumptions. It shows the fitted probabilities from GEV

link with informative missingness model closely represent the observed binary responses

compared to those obtained from other models. It also reveals the GEV link with

informative missingness model gives significantly precise estimates with much tighter

intervals compared to the logit model where wider intervals show increased prediction

uncertainty due to using misspecified link functions. In general, teeth at the lower jaw
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have better predictions compared to teeth at upper jaw. The CI bands for mandibular

are tighter than those for maxillary.

Table 4.3 reports the posterior parameter estimates and the corresponding 95%

credible intervals. Parameters whose 95% credible intervals exclude 0 are considered

significant. The 95% credible interval for age does not include 0 and the posterior

mean is positive. This suggests that periodontal health condition deteriorates with

age. The posterior mean for Female is negative, revealing that males tend to have

higher level of PD than females do. BMI and PD are positively associated for the

GEV link and probit link models both with non-random missingness. Smoking has a

positive influence on PD, with a much higher effect when missing-at-random is assumed

in the model. Uncontrolled HbA1c is a positive indicator of PD which means a patient

with uncontrolled HbA1c is more likely to have moderate to severe PD compared to a

patient with controlled HbA1c after adjusting for all the other covariates. A tooth in the

maxilla exhibits more advanced PD status than non-maxilla tooth, and the association

for GEV link model with non-random missingness is strictly positive. T5, T6 and T7

are positively associated with PD status. The missingness coefficient a0 accounts for

missing at random, and b0, which is the slope relating the latent spatial process, is

significantly positive. This matches the intuition that patients with poor periodontal

health generally have more missing teeth.

One obstacle of applying the GEV link is interpretations. Our model with the

GEV link can not provide direct interpretations of the estimated covariate coefficients.

Hence, we present Figure 4.2 to show the posterior predictive probabilities under vari-

ous combination of covariates. Panel (a) presents the posterior predictive probabilities

Pr(yi(s)
new = 1) from a random subject with Age = 52.03 and BMI = 37.41, under

various combinations of gender, smoking status and HbA1c levels. For instance, the
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(c) Binary response fit from probit link with
non-Random missingness model
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(d) Binary response fit from probit link with
Random missingness model

Figure 4.1: Fitted curves and 95% prediction intervals obtained after fitting (a) GEV link with
informative missingness model, (b) GEV link with random missingness model, (c) Probit link
with informative missingness model, and (d) Probit link with random missingness model to the
GAAD data. Dots denote the observed binary response, ‘solid lines’ denotes the probability
calculated with the posterior mean of the latent variable, and the ‘dashed lines’ are the corre-
sponding 95% pointwise predictive intervals. Maxillary is the upper jaw and mandibular is the
lower jaw.
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GEV link Probit link

Info missing Yes No Yes No

Age
0.092 0.046 0.046 0.076

(0.059, 0.125) (0.020, 0.072) (0.028, 0.065) (0.048, 0.109)

Female
−0.524 −0.863 −0.421 −0.497

(−1.303, 0.252) (−1.480,−0.242) (−0.833,−0.008) (−1.120, 0.138)

BMI
0.023 −0.001 0.011 −0.003

(−0.011, 0.058) (−0.031, 0.027) (−0.007, 0.030) (−0.033, 0.026)

Smoker
0.593 1.199 0.308 0.973

(−0.151, 1.330) (0.609, 1.816) (−0.094, 0.699) (0.337, 1.594)

HbA1c
0.182 0.133 0.129 0.393

(−0.479, 0.848) (−0.450, 0.694) (−0.206, 0.481) (−0.150, 0.953)

Maxilla
0.648 0.238 0.305 0.296

(0.011, 1.276) (−0.340, 0.775) (−0.020, 0.612) (−0.219, 0.870)

T2
−0.322 0.081 −0.205 −0.212

(−0.592,−0.044) (−0.171, 0.433) (−0.333,−0.063) (−0.546,−0.005)

T3
−0.502 −0.106 −0.423 −0.402

(−0.774,−0.210) (−0.431, 0.111) (−0.639,−0.244) (−0.739,−0.067)

T4
0.611 −0.074 0.277 0.292

(0.338, 0.931) (−0.292, 0.140) (0.003, 0.511) (−0.087, 0.605)

T5
1.349 0.659 0.707 0.673

(1.144, 1.595) (0.471, 0.839) (0.438, 0.975) (0.330, 0.922)

T6
3.051 1.624 1.681 1.401

(2.695, 3.350) (1.392, 1.821) (1.468, 1.918) (1.058, 1.684)

T7
2.709 1.724 1.499 1.339

(2.307, 3.217) (1.489, 1.923) (1.299, 1.799) (0.937, 1.850)

a0:missing
−0.169 - −0.055 -

(−0.249,−0.085) - (−0.139, 0.033) -

b0:missing
0.423 - 0.758 -

(0.373, 0.507) - (0.671, 0.853) -

ρ
0.997 0.998 0.997 0.996

(0.996, 0.998) (0.996, 0.999) (0.992, 0.999) (0.962, 0.999)

ξ
−0.004 −0.004 - -

(−0.953, 0.952) (−0.952, 0.954) - -

σ2 0.251 0.136 0.066 0.085
(0.173, 0.352) (0.078, 0.221) (0.043, 0.192) (0.032, 0.145)

Table 4.3: Posterior mean and 95% credible intervals for the covariate coefficients derived from
GEV link and probit link models, under either non-random missingness or random missingness.
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(a)

(b)

Figure 4.2: These figures show the posterior predictive probabilities Pr(yi(s)
new = 1) under

different combinations of covariates. F is female and M is male. S is smoking and N is non-
smoking. H is uncontrolled HbA1c and L is controlled HbA1c. Panel (a) yi(s) from a random
subject with Age =52.03 and BMI = 37.41, and Panel (b) represent a random subject with Age
= 70 and BMI = 58.
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posterior predictive probability of observing moderate to severe PD status for a ran-

dom female smoker at age 52.03 and BMI= 37.41 with uncontrolled / high HbA1c is

0.116, and it is 0.098 for a random female smoker with controlled / low HbA1c. These

probabilities for a male smoker are 0.189 and 0.16, respectively. Panel (b) presents the

posterior predictive probabilities Pr(yi(s)
new = 1) from a random subject with Age =

70 and BMI = 58, under the various combinations which are the same as in panel (a).

For a female smoker with uncontrolled (high) HbA1c, the posterior predictive probabil-

ity of observing moderate to severe PD is about 3% higher than that of a female smoker

with low HbA1c. To interpret the effect of smoking status, Figure 4.2a shows that the

predictive probability of observing a moderate to severe PD tooth from a random male

smoker with controlled HbA1c is 8% higher than that of a male non-smoker with un-

controlled HbA1c. Literatures on studying the relationship between smoking status and

PD show there’s strong evidence that smoking increase the probability of PD (Kinane

and Chestnutt, 2000; Ah et al., 1994). The difference between female smokers and non-

smokers is smaller than the difference between male smokers and non-smokers. With

the same smoking and HbA1c situation, a random female subject is less likely to have

moderate to severe PD compared to a random male subject.

4.6 Discussion

In this chapter, we explore the GEV link and use it to model asymmetric binary data

under a Bayesian framework which simultaneously takes into account the features of

spatial clustering and non-random missingness presented in the data. Our simulation

studies and data analyses show the importance of choosing the right link to accommo-

date skewness and the non-random missingness. When we choose the GEV link over
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other asymmetric link functions such as logit link, we get less biased coefficient esti-

mates and more precise prediction results. A challenge from model implementation is

the convergence of MCMC computation due to the large number of latent random vari-

ables, which do not have closed-form full conditionals for posterior sampling via Gibbs

algorithm. We facilitate this by using the within-Gibbs Hamiltonian algorithm which

makes the MCMC moves much faster compared to any random walk algorithms, which

makes the GEV link applicable to high-dimensional spatial-clustered data.

For further exploration, there are a couple directions to go. First, our model com-

parison is from a model-fitting and prediction perspective, and we can try to study the

influential observations which will certainty have an impact on the posterior samples.

Furthermore, besides GEV link, there are other links that can work with asymmetric

binary response such as the Pareto link. We can also compare the fit between GEV

link and Pareto link using cross validation. In addition, exploring the skewed ordinal

response is possible. Wang and Dey (2011) shows that GEV distribution can be applied

to skewed ordinal data with applications to a survey data set. We will investigate the

feasibility of applying the GEV-link based model to the skewed raw CAL response.



Chapter 5

Discussion

There’s no shortcut when it comes to analyze the complicated health science data. This

dissertation contributes to the manner of developing parametric linear models under

the Bayesian framework to study continuous and discrete asymmetric responses in two

different disciplines in public health research. The motivation to develop these models

comes from the unique features and characteristics of the data. Through simulation

studies and data analysis results, our models fit better in terms of bias reduction and

give more precise prediction results.

In Chapter 2, we introduce the dynamic linear model discretized from a differential

equation under the Bayesian framework with the Gaussian assumption for the random

errors. We show its efficiency by comparing between the skewed-t and skewed-normal

models when handling the skewed continuous response using both simulated data and

real data collected from field experiments in terms of coefficient estimates and prediction.

Besides systematic well-mixed room model and near-field far-field model evaluation

(Arnold et al., 2017), we now have viable new approach in occupational hygiene for

contaminant exposure assessment. This will help occupational hygienists make efficient

exposure assessments and accurate decisions to protect workers from harmful chemical

97
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agents. Giving informative priors allows us to combine experts’ knowledge. This is

useful to adapt variations from the model settings in occupational hygiene. The dynamic

components account for measurement errors can reduce the credible interval length and

lead to less bias. And we can keep the Gaussian assumption on measurement errors even

though the data exhibits non-normality because the differential equation can capture

the skewness.

When analyze the GAAD data, the primary goal is to investigate and estimate the

covariate-response relationships. The continuous response CAL exhibits skewness and

discretizing from the physical model is infeasible. Therefore, we cannot hold on to

the normality assumption for the random errors to model the skewed response. Be-

sides skewness, PD progression is also spatially-clustered. This dataset also exhibits a

large volume of missing responses which falls under the not-missing-at-random (NMAR)

category for studying missing data pattern. Based on these attributes, we develop 2

models.

In Chapter 3, we use a flexible parametric distribution family to model the multivari-

ate continuous response under standard linear mixed model setup. We use skew-normal

and skew-t distributions to compare with the normality assumption in the simulation

study. Simulation studies and data analysis results show the skew-t model has the best

fit. This is not surprising because skew-t controls skewness and kurtosis.

In Chapter 4, we make the continuous CAL into extremely skewed binary responses.

With simulation studies and data analyses results, we show that the GEV distribu-

tion is applicable to multivariate skewed binary data with spatial dependency. Jointly

modeling the response and non-random missingness using a shared latent multivariate

random variable via a GEV link is a major break-through in handling extremely skewed

binary response. By utilizing within-Gibbs Hamiltonian Monte Carlo sampling, we
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tackle the convergence issue of MCMC which makes the spatially correlated latent ran-

dom variables estimable from the corresponding posterior samples. Model comparisons

show a better model fit when use a GEV link compared to a logit link under normality

assumption for the random errors.

This thesis adds to the existing literature for modeling asymmetric responses under

the Bayesian parametric linear model proposition where we explore both continuous

and discrete cases. It offers gains in parameters and regression coefficients estimation

and more precision in prediction when we give appropriate assumptions for the random

errors. This thesis shows this Bayesian framework is rich and flexible and there are

areas for further explorations. Besides occupational hygiene and dental epidemiology,

the methods we introduced here can certainly be applied to accommodate skew data in

other scientific research topics.
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Appendix A

Appendix for Chapter 2

A.1 Solution to 2.1

Given the differential equation that represents the well-mixed room model

dC

dt
+ (

Q+KLV

V
)C(t) =

G+ CINQ

V
,

we want to find the solution to C(t). Let a = Q+KLV
V , b = G+CINQ

V where both a

and b are constants. Multiplying both sides of (2.1) by exp(at), we get exp(at)C ′(t) +

a exp(at)C(t) = b exp(at) which is equivalent to

d

d(t)
exp(at)C(t) = b exp(at) (A.1)
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Take derivative of both sides of Equation (A.1), we can get
∫

d
d(t) exp(at)C(t) =

∫
b exp(at),

which is equivalent to

exp(at)C(t) =
b

a
exp(at) + constant,⇒

C(t) =
b

a
+ constant× exp(−at),⇒

C(0) =
b

a
+ constant, t=0. Therefore, constant = C(0)− b

a
,⇒

C(t) =
b

a

{
1− exp

(
−Q+KLV

V
t

)}

Therefore, C(t) = G+CINQ
Q+KLV

{
1 − exp

(
−Q+KLV

V t
)}

+ C(0) exp
(
−Q+KLV

V t
)

. In most

cases including our chamber study, CIN = C(0). Therefore, the final solution can be

written as: C(t) = G+C(0)Q
Q+KLV

{
1− exp

(
−Q+KLV

V t
)}

+ C(0) exp
(
−Q+KLV

V t
)
.

A.2 Solution to (2.3)

Equation (2.3) can be simplified to produce the following unique solution (Zhang et al.,

2009):

CN (θ; x, t) = G
Q + G

β +G
(
βQ+λ2VN (β+Q)
βQVN (λ1−λ2)

)
eλ1t −G

(
βQ+λ1VN (β+Q)
βQVN (λ1−λ2)

)
eλ2t,

CF (θ; x, t) = G
Q +G

(
λ1VN+β

β

)(
βQ+λ2VN (β+Q)
βQVN (λ1−λ2)

)
eλ1t −G

(
λ2VN+β

β

)(
βQ+λ1VN (β+Q)
βQVN (λ1−λ2)

)
eλ2t.

(A.2)

where λ1 and λ2 are the eigenvalues of W (θ; x).

A.3 JAGS model and code

1. JAGS code to implement the Well-mixed model, where µ(0) is fixed at a nonzero
value.

model {
a <− 1− (Q+ K L * V)/V
b <− (G+ C 0*Q)/V



110

MU[ 1 ] ˜ dnorm( a*C 0+b , inv tau2 )
f o r ( i in 1 : 80 ){
Y[ i ] ˜ dnorm(MU[ i ] , inv s igma2 )
MU[ i +1] ˜ dnorm( a*MU[ i ]+b , inv tau2 )
}
K L ˜ duni f ( 0 . 00001 , 0 . 0 6 )
G ˜ dun i f (34 , 100)
Q ˜ dun i f ( 0 . 0001 , 0 . 5 )
inv s igma2 ˜ dun i f (20 , 100)
inv tau2 ˜ dun i f (20 , 100)
sigma2 <− i n v e r s e ( inv s igma2 )
tau2 <− i n v e r s e ( inv tau2 )
}

2. JAGS code to implement the Well-mixed model, where µ(0) is fixed at 0, and the
parameters have informative priors

model {
a <− 1− (Q+ K L * V)/V
b <− G/V
MU[ 1 ] ˜ dnorm(b , inv tau2 )
f o r ( i in 1 : 80 ){
Y[ i ] ˜ dnorm(MU[ i ] , inv s igma2 )
MU[ i +1] ˜ dnorm( a*MU[ i ]+b , inv tau2 )
}
K L ˜ duni f ( 0 . 00001 , 0 . 0 2 )
G ˜ dun i f (41 , 45)
Q ˜ dun i f ( 0 . 5 , 0 . 3 )
inv s igma2 ˜ dun i f (20 , 100)
inv tau2 ˜ dun i f (20 , 100)
sigma2 <− i n v e r s e ( inv s igma2 )
tau2 <− i n v e r s e ( inv tau2 )
}

3. JAGS code to implement the two-zone model, where µ(0, 0) has a multivariate
rormal prior.

model
{
f o r ( i in 1 : 70 ){
Y[ i , 1 : 2 ] ˜ dmnorm(MU[ i , 1 : 2 ] ,V)
MU[ i +1 ,1 :2 ] ˜ dmnorm(G1%*%MU[ i , 1 : 2 ] + g , W)
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}
MU[ 1 , 1 : 2 ] ˜ dmnorm(mu0 , W)
beta ˜ dun i f ( 0 , 1 4 . 5 )
G˜ dun i f (123 , 136)
Q˜ dun i f ( 0 . 2 , 0 . 4 )
V˜dwish ( r [ , ] , 3 )
W̃ dwish ( r [ , ] , 3 )
mu0 ˜ dmnorm( a , c0 )
W. inv <− i n v e r s e (W)
V. inv <− i n v e r s e (V)
g[1]<−G/vn
g[2]<−0
G1<−I2 [ , ]+ W theta [ , ]
W theta [1 ,1]<−(−beta /vn )
W theta [1 ,2]<− beta /vn
W theta [2 ,1]<− beta / v f
W theta [2 ,2]<−(−( beta+Q)/ vf )
}

4. JAGS code to implement the two-zone model, where µ(0, 0) is fixed at a nonzero
value.

model
{
f o r ( i in 1 : 80 ){
Y[ i , 1 : 2 ] ˜ dmnorm(MU[ i , 1 : 2 ] ,V)
MU[ i +1 ,1 :2 ] ˜ dmnorm(G1%*%MU[ i , 1 : 2 ] + g , W)
}
MU[ 1 , 1 : 2 ] ˜ dmnorm(mu0 , i n v e r s e c 0 )
beta ˜ dun i f ( 0 , 1 4 . 5 )
G˜ dun i f (123 , 127)
Q˜ dun i f ( 0 . 2 8 , 0 . 3 2 )
V˜dwish ( r [ , ] , 3 )
W̃ dwish ( r [ , ] , 3 )
W. inv <− i n v e r s e (W)
V. inv <− i n v e r s e (V)
g[1]<−G/vn
g[2]<−0
G1<−I2 [ , ]+ W theta [ , ]
W theta [1 ,1]<−(−beta /vn )
W theta [1 ,2]<− beta /vn
W theta [2 ,1]<− beta / v f
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W theta [2 ,2]<−(−( beta+Q)/ vf )
}

A.4 Prior settings for the two-zone model

See Table A.1 for priors used in the data analysis for the two-zone model.

Model

Parameters C(0) = (0, 0) C(0) = (39, 30) C(0) ∼ MVN
β U(0, 14.5) U(0, 14.5) U(0, 14.5)
G U(123, 127) U(123, 127) U(123, 127)
Q U(0.28, 0.32) U(0.28, 0.32) U(0.28, 0.32)
V Wishart(( 10 0

0 10 ), 4) Wishart(( 10 0
0 10 ), 4) Wishart(( 10 0

0 10 ), 4)
W Wishart(( 10 0

0 10 ), 4) Wishart(( 10 0
0 10 ), 4) Wishart(( 10 0

0 10 ), 4)
C(0) NA NA MVN(( 0

0 ), ( 10 0
0 10 ))

Table A.1: Prior settings for two-zone models. It shows priors for 3 models with different
assumptions for the initial contaminant concentrations. U is Uniform distribution and MVN
stands multivariate Normal distribution

A.5 Analysis results of low and medium ventilation rate

in Well-mixed model

Table A.2 shows analysis results from experimental data with informative priors when

ventilation is low. At steady state, the concentration level is about 140 ppm, which

is 600 mg/m3. Therefore the initial state is set to be 45 mg/m3. With informative

priors, the value of C(0) has little effect on the estimates or Monte Carlo standard

error (MCSE). For the 2 scenarios with informative priors, the estimates are almost

identical and the MCSE are also very close. The true values for both G (43.18) and

Q (0.067) are included in the 95% CI. As for the 2 non-informative priors scenarios, Q

is underestimated and the true value is included in the 95% CI. But G is not estimable
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with non-informative priors where the 95% CI doesn’t include the true value.

C(0) = 0, informative priors C(0) = 6, informative priors

Estimate
MCSE

Estimate
MCSE

(2.5%, 97.5%) (2.5%, 97.5%)

G
45.12

1.53× 10−3 45.12
1.61× 10−3

(44.55, 45.33) (44.52, 45.33)

KL
6.85× 10−5

4.01× 10−7 6.99× 10−5

4.27× 10−7

(1.15× 10−5, 0.000223) (1.16× 10−5, 0.000227)

Q
6.44× 10−2

4.88× 10−6 6.44× 10−2

4.87× 10−6

(6.38× 10−2, 0.0662) (6.37× 10−2, 0.0623)

σ2 3.92× 10−2

2.67× 10−5 3.93× 10−2

2.68× 10−5

(3.24× 10−2, 0.0473) (3.24× 10−2, 0.0472)

τ2
5.12

3.70×−3 5.13
3.75× 10−3

(4.19, 6.24) (4.19, 6.25)

C(0) = 0, non-informative priors C(0) = 6, non-informative priors

Estimate
MCSE

Estimate
MCSE

(2.5%, 97.5%) (2.5%, 97.5%)

G
78.91

2.50× 10−2 78.81
2.46× 10−2

(72.01, 85.77) (71.89, 85.81)

KL
4.88× 10−3

1.81× 10−5 4.41× 10−3

1.77× 10−5

(6.83× 10−4, 0.00934) (6.87× 10−4, 0.00904)

Q
5.25× 10−2

2.08× 10−4 5.58× 10−2

2.01× 10−4

(3.32× 10−3, 0.0979) (4.88× 10−3, 0.0982)

σ2 3.93× 10−2

2.65× 10−5 3.93× 10−2

2.69× 10−5

(3.23× 10−2, 0.0473 ) (3.24× 10−2, 0.0472)

τ2
2.90

2.11× 10−3 2.91
2.05× 10−3

(2.39, 3.53) (2.39, 3.54)

Table A.2: Well-mixed model analysis results from experimental data with informative priors.
Ventilation rate is Low. The true values are G = 43.18 and Q = 0.067. We fit the data to 4
competing models with different initial contaminant concentration and priors. The estimate and
(2.5%, 97.5%) are computed from the posterior sample. MCSE stands for Monte Carlo standard
error for each model.

Analysis results for data from medium ventilation rate experimental setup are shown

in Table A.3. The steady state concentration is around 178 mg/m3 and the initials

are set at 0 or 13.35 mg/m3. With informative priors, the initial value of C(t) doesn’t

affect the estimates or the Monte Carlo standard error (MCSE) where the estimates and

MCSE are almost identical among these 2 scenarios. The true value for and Q = 0.244
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is included in the 95% CI. The estimates of G and Q and are very close to the true

values. As for the 2 non-informative priors scenarios, we still get similar estimates and

MCSE. Q is underestimated and the true value is included in the 95% CI. But without

enough prior information, G is not estimable.

C(0) = 0, informative priors C(0) = 13.35, informative priors
Estimate

MCSE
Estimate

MCSE
(2.5%, 95.5%) (2.5%, 95.5%)

G
44.80

2.67× 10−3 44.80
3.71× 10−3

(43.37, 45.33) (43.40, 45.32)

KL
4.60× 10−4

2.15× 10−6 4.46× 10−4

3.07× 10−6

(2.24× 10−5, 0.00016) (4.46× 10−4, 2.24× 10−5)

Q
0.24

2.45× 10−5 0.24
3.54× 10−5

(0.23, 0.25) (0.23, 0.25)

σ2 3.24× 10−2

2.53× 10−5 3.25× 10−2

3.55× 10−5

(2.39× 10−2, 0.044) (2.40× 10−2, 0.044)

τ2
3.44

2.65× 10−3 3.45
3.75× 10−3

(2.52, 4.60) (2.54, 4.63)

C(0) = 0, non-informative priors C(0) = 13.35, non-informative priors
Estimate

MCSE
Estimate

MCSE
(2.5%, 97.5%) (2.5%, 97.5%)

G
71.71

3.78× 10−2 71.25
3.79× 10−2

(61.81, 82.11) (60.53, 81.50)

KL
1.51× 10−2

6.53× 10−5 1.48× 10−2

6.31× 10−5

(6.75× 10−4, 0.0317) (7.20× 10−4, 0.0316)

Q
0.189

7.76× 10−4 0.190
7.59× 10−4

(9.47× 10−3, 0.39) (9.36× 10−3 0.38)

σ2 0.032
3.56× 10−5 0.032

3.57× 10−5

(2.39× 10−2, 0.0438) (2.38× 10−2, 0.0436)

τ2
2.38

2.70× 10−3 2.40
2.71× 10−3

(1.743.24) (1.763.26)

Table A.3: Well-mixed model analysis results from experimental data. Ventilation rate is
Medium. The true values are G = 43.18 and Q = 0.244. We fit the data to 4 competing models
with different initial contaminant concentration and priors. The estimate and (2.5%, 97.5%) are
computed from the posterior sample. MCSE stands for Monte Carlo standard error for each
model.
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A.6 Simulation study results for Well-mixed model

A.6.1 Prior Settings

In C(0) = 0 case, prior on G is Uniform(12, 18). Since when C(0) = 0, the term KL+G

is identifiable but not the individuals. Both KL and G can only be estimated from the

priors. To get solid estimates, we need to use more information from the priors. So we

put very informative priors on these two parameters where we have KL ∼ U (0.04, 0.05)

and G ∼ U (100, 110). We also put uniform priors on the precision. 1
σ2 ∼ U (20, 80)

and 1
τ2
∼ U (20, 80). In the C(0) = 0.03 case, we have two sets of priors for KL and G.

We can put very informative priors on both KL and G just as C(0) = 0 case. We also

tried put KL ∼ U(0.01, 0.09) and G ∼ U (73.5, 136.5) as in the non-informative priors

scenario. The priors on precision are the same as the C(0) = 0 case.

A.6.2 Simulation Schemes and Results

The following tables in the section are simulation results from the well-mixed room

model where 100 independent samples were drawn and analyzed in every simulation

setting. The estimates, 95% CI and MCSE are summarized from 1 of the 100 samples.

Relative bias, MSE and coverage probability are based on the 100 independent samples.

Table A.4 shows results when we assume C(0) = 0 with informative priors. In general

we have good coverage probability for all the parameters. As we can see from Table

A.4, the true value for τ2 is not available. That’s because when generating Ct, it’s not

from a normal distribution therefore no variance is need to finish the job. The true

parameter values for G, KL, Q and σ2 are included in the 95% posterior intervals.

Table A.5 shows the simulation results from the well-mixed room model where we

assume C(0) = 0 with non-informative priors. The coverage probabilities are good for

all the parameters. The true parameter values for G, KL, Q and σ2 are included in the
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Param.
Estimate

MCSE RB MSE Cover.
(2.5%, 97.5%)

G(105)
104.54

1.972× 10−2 −3.56× 10−3 1.456× 101 100
(100.21, 109.61)

KL(0.05)
0.0495

3.89× 10−5 −9.88× 10−4 4.96× 10−6 100
(0.0406, 0.0592)

Q(15)
15.022

1.032× 10−2 −3.29× 10−3 6.03× 10−1 100
(12.338, 17.667)

σ2(0.030)
0.30

2.1× 10−5 −5.74× 10−3 8.72× 10−4 95
(0.025, 0.036)

τ2(−)
0.0101

7.139× 10−7 - - -
(0.010, 0.0104)

Table A.4: Well-mixed model simulation results from 100 independent samples using C(0) = 0
with informative priors on the parameters. Param. is the parameter and the true values are
shown inside the parenthesis. Posterior mean and (2.5%, 97.5%) credible interval are computed
from the posterior samples. MCSE is the Monto Carlo standard error. RB stands for relative
bias , MSE stands for mean square error, cover. is the coverage probability.

95% posterior intervals.

Param. Estimate MCSE Relative bias MSE Cover.
(2.5%, 97.5%)

G(105)
97.85

7.41× 10−2 −0.05 2751 100
(79.10, 119.626)

KL(0.05)
4.24× 10−2

9.67× 10−5 −1.09× 10−1 3.08× 10−3 100
(1.71× 10−2, 7.07× 10−2)

Q(15)
14.98

1.22× 10−2 −1.22× 10−3 0.72 100
(12.17, 17.85)

σ2(0.030)
2.89× 10−2

2.08× 10−5 −4.95× 10−3 1.01× 10−3 94
(2.38× 10−2, 3.52× 10−2)

τ2(−)
1.01× 10−2

7.33× 10−7 - - -
(1.00× 10−2, 1.011× 10−2)

Table A.5: Well-mixed model simulation results from 100 independent samples using C(0) = 0
with non-informative priors on the parameters. Param. is the parameter and the true values are
shown inside the parenthesis. Posterior mean and (2.5%, 97.5%) credible interval are computed
from the posterior samples. MCSE is the Monto Carlo standard error. RB stands for relative
bias , MSE stands for mean square error, cover. is the coverage probability.

Table A.6 shows results when we assume C(0) = 0.03 with informative priors. The

coverage probabilities are still goof for all the parameters. As in Table A.6, The true

parameter values for G, KL, Q and σ2 are included in the 95% posterior intervals.
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Param.
Estimate

MCSE RB MSE Cover.
(2.5%, 97.5%)

G(105)
104.686

1.96× 10−2 −3.58× 10−3 14.56 100
(100.249, 109.641)

KL(0.05)
0.050

3.95× 10−5 −6.98× 10−5 4.85× 10−6 100
(0.0407, 0.0594)

Q(15)
14.914

1.05× 10−2 −4.10× 10−3 7.63× 10−1 100
(12.306, 17.615)

σ2(0.03)
0.027

1.89× 10−5 −6.74× 10−3 7.71× 10−4 95
(0.022, 0.032)

τ2(−)
0.01010

7.16× 10−7 - - -
(0.01000, 0.0104)

Table A.6: Well-mixed model simulation results from 100 independent samples using C(0) =
0.03 with informative priors on the parameters. Param. is the parameter and the true values are
shown inside the parenthesis. Posterior mean and (2.5%, 97.5%) credible interval are computed
from the posterior samples. MCSE is the Monto Carlo standard error. RB stands for relative
bias , MSE stands for mean square error, cover. is the coverage probability.

Table A.7 shows results when we assume C(0) = 0.03 with informative priors. The

coverage probabilities are good for all the parameters. As in Table A.7, The true

parameter values for G, KL, Q and σ2 are included in the 95% posterior intervals.

However, the estimates for G is 97.85 which is much smaller than the true value (105).

This shows that when the priors don’t provide enough information, we are unlikely to

get a estimate that is close to the true value. This condition also holds when we assume

C(0) = 0.03 with non-informative priors.

In general, the model with informative priors has a smaller MSE compare to that

with non-informative priors. For example, in the C(0) = 0 case, the values for MSE in

Table A.4 is much smaller than that in Table A.5.

Table A.8 shows model comparison results where DIC is used. In general, the model

has a better fit when the initial value for C(t) is not 0. Based on the DIC values shown

in Table A.8, the model with non-zero initial C(0) and non-informative priors has the

best fit among all the 4 models.
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Param.
Estimate

MCSE RB MSE Cover.
(2.5%, 97.5%)

G(105)
100.47

7.305× 10−2 −0.05 3068 100
(80.25, 120.32)

KL(0.05)
0.0446

9.431× 10−5 −1.16× 10−1 3.5× 10−3 100
(0.0172, 0.0702)

Q(15)
15.15

1.224× 10−2 −3.22× 10−4 7.47× 10−2 100
(12.16, 17.86)

σ2(0.03)
0.0262

1.878× 10−5 −5.34× 10−3 1.08× 10−3 97
(0.0215, 0.0318)

τ2(−)
0.0101

7.163× 10−7 - - -
(0.010, 0.0104)

Table A.7: Well-mixed model simulation results from 100 independent samples using C(0) =
0.03 with non-informative priors on the parameters. Param. is the parameter and the true
values are shown inside the parenthesis. Posterior mean and (2.5%, 97.5%) credible interval are
computed from the posterior samples. MCSE is the Monto Carlo standard error. RB stands for
relative bias , MSE stands for mean square error, cover. is the coverage probability.

Model DIC D̄ pD D(θ̄)
C(0) = 0, informative priors −685.1 −687.2 2.038 −689.238
C(0) = 0, non-informative priors −689.3 −692.2 2.836 −695.036
C(0) = 0.3, informative priors −701.7 −703.8 2.052 −705.852
C(0) = 0.3, non-informative priors −709.9 −712.8 2.875 −715.675

Table A.8: Bayesian model comparison with DIC for the simulated WMR model data. We
compare 4 competing models with different initial contaminant concentrations and priors. Model
with the smallest DIC has the best fit.

A.7 Model comparison for well-mixed room model under

different random errors assumptions
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Model Assump.
Low Vent. Rate Medium Vent. Rate High Vent. Rate

D(θ) pD DIC D(θ) pD DIC D(θ) pD DIC

M1

N 821.7 2.037 823.7 285.9 2.099 288 141.7 2.296 144
1SN 820 3.124 824 287.5 2.375 289.9 143.1 2.507 145.6
2SN 822.8 3.156 825.9 289.4 2.45 291.9 144.8 5.326 144.6
1ST 784.6 43.93 828.6 241.4 65.47 306.9 128.5 25.87 154.3
2ST 552.4 406.6 959 172 144.3 316.3 114.3 34.32 148.6

M2

N 707.2 3.88 711.1 255.1 4.013 259.1 137.2 3.759 141
1SN 706.4 5.063 711.5 256.7 4.142 260.9 138.7 3.946 142.6
2SN 706.3 7.055 713.3 257.9 5.134 263.1 139.3 5.326 144.6
1ST 669.1 47.07 716.2 211.3 47.83 259.1 121.2 18.48 139.7
2ST 630.5 94.79 725.3 173.4 90.99 264.4 115.9 29.46 145.4

M3

N 821.7 2.037 823.7 286 2.096 288.1 141.7 2.274 143.9
1SN 809.9 3.147 813 280.1 2.413 282.5 141.1 2.531 143.6
2SN 803.8 3.201 807 281.8 2.448 284.2 142.5 2.746 145.3
1ST 772.9 44.52 817.4 232.2 61.82 294.2 124.5 17.83 142.3
2ST 864.9 79.54 944.5 174.9 140 314.9 115 31.38 146.4

M4

N 707.4 3.983 711.4 255.3 3.985 259.2 136.7 3.406 140.1
1SN 706.4 5 711.4 256.8 4.231 261 138.6 4.002 142.6
2SN 780.9 4.165 785.1 278.2 3.358 281.6 138.3 3.447 141.7
1ST 669.3 47.6 716.9 210.7 47.19 257.9 122.6 19.36 142
2ST 823.2 74.9 898.1 174.4 103.7 278.1 115.5 29.32 144.8

Table A.9: Values of posterior predictive model choice criterion for WMR model with low,
medium, and high ventilation rates. M1-M4 are 4 model setups that specify the initial concen-
tration level and priors. For each setup, DIC, is calculated from the posterior samples from 5
competing models with different assumptions for the measurement errors.

High vent. rate
Assumption DF M1 M2 M3 M4

1ST ν1 55.95 54.97 54.97 56.7

2ST
ν1 57.45 56.26 57.42 56.23
ν2 52.17 54.87 53.14 58.19

Table A.10: Degree of freedom estimates for the skew-t models, ν1 denotes the df of observed
concentration level Y and ν2 is the df of it’s mean concentration level C.
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Model Assump.
LPML Bayesian p-value L-measure

G P D

M1

N 39.63 0.467 7.88 7.86 15.74
1SN 39.62 0.469 7.80 7.87 15.67
2SN 39.62 0.465 7.81 7.86 15.67
1ST 41.41 0.486 5.64 7.78 13.42
2ST 54.22 0.59 6.37 8.31 14.68

M2

N 39.63 0.470 7.88 7.86 15.74
1SN 39.62 0.468 7.80 7.869 15.669
2SN 39.62 0.468 7.79 7.866 15.656
1ST 41.21 0.49 5.6 7.78 13.38
2ST 41.4 0.48 5.6 7.77 13.37

M3

N 39.63 0.469 7.88 7.87 15.75
1SN 39.63 0.455 7.89 8.10 15.99
2SN 39.62 0.49755 7.80 7.87 15.67
1ST 41.46 0.481 5.6832 7.7764 13.459
2ST 54.49822 0.60075 6.3723 8.3175 14.689

M4

N 39.62554 0.464 7.8798 7.8564 15.736
1SN 39.62584 0.4511 7.87 7.82 15.69
2SN 39.62355 0.4704 7.7985 7.8722 15.671
1ST 41.34306 0.48537 5.753 7.806 13.56
2ST 54.43791 0.5959 6.335773 8.29972 14.63549

Table A.11: Values of posterior predictive model choice criterion for WMR model with low
ventilation rate. M1-M4 are 4 model setups that specify the initial concentration level and priors.
For each setup, LPML, Bayesian p-value, and L- measure are calculated from the posterior
samples from 5 competing models with different assumptions for the measurement errors.
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Model Assumption
LPML Bayesian p-value L-measure

G P D

M1

N 23.50 0.454 2.604 2.596 5.3
1SN 23.49 0.456 2.642 2.656 5.298
2SN 23.50 0.452 2.649 2.650 5.299
1ST 25.250 0.562 1.086 2.626 3.712
2ST 31.874 0.485 1.001 2.267 3.268

M2

N 23.504 0.454 2.610 2.60 5.21
1SN 23.499 0.452 2.657 2.655 5.312
2SN 23.499 0.456 2.650 2.66 5.31
1ST 30.065 0.488 1.010 2.823 3.833
2ST 30.376 0.493 1.025 2.30 3.325

M3

N 23.504 0.455 2.604 2.598 5.202
1SN 23.499 0.485 2.601 2.642 5.243
2SN 23.498 0.452 2.651 2.651 5.302
1ST 25.958 0.576 1.098 2.729 3.827
2ST 31.5935 0.489 0.985 2.261 3.247

M4

N 23.504 0.451 2.607 2.593 5.201
1SN 23.498 0.454 2.648 2.656 5.303
2SN 23.499 0.449 2.651 2.654 5.305
1ST 25.087 0.561 1.076 2.601 3.677
2ST 31.523 0.490 0.980 2.259 3.239

Table A.12: Values of posterior predictive model choice criterion for WMR model with medium
ventilation rate. M1-M4 are 4 model setups that specify the initial concentration level and priors.
For each setup, LPML, Bayesian p-value, and L- measure are calculated from the posterior
samples from 5 competing models with different assumptions for the measurement errors.
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Appendix for Chapter 3

B.1 Parametric forms of the SNI distributions

We now introduce the members of the SNI class.

(i) Multivariate skew-normal (SN) distribution. This is the case when H = 1 (degen-

erate random variable) in (3.3).

(ii) Multivariate skew-t (ST) distribution. This is derived from (3.3) by taking H =

Gamma(ν/2, ν/2), ν > 0 and is denoted as Stp,p(µ,Σ,Λ, ν). The pdf of Y (Lin, 2010)

is:

f(y) = 2p tp(y;µ,Ω, ν)Tp

(√
p+ ν

d+ ν
A; ∆, ν + p

)
, y ∈ Rp, (A-1)

where A = Λ>Ω−1(y−µ) and d = (Y−µ)>Ω−1(Y−µ) is the Mahalanobis distance,

tp(·;µ,Σ, ν) denotes the p-dimensional multivariate Student-t distribution with location

µ, scale matrix Σ and degrees of freedom (df) ν, and Tp(·; Σ; ν) is the cdf of tp(·; 0,Σ, ν).

A particular case of the skew–t distribution is the skew–Cauchy distribution, when

ν = 1. Also, when ν ↑ ∞, we have the SN distribution as the limiting case.

(iii) Multivariate skew-slash (SSL) distribution. It is derived from (3.3), choosing
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H = Beta(ν, 1), ν > 0. It is denoted by SSLp,p(µ,Σ,Λ, ν) and the p.d.f is given by

f(y) = 2pν

∫ 1

0
uν−1φp(y;µ, u−1Ω)Φp(u

1/2A; ∆)du, y ∈ Rp. (A-2)

The SL distribution reduces to the SN distribution when ν ↑ ∞.

(iv) Multivariate skew contaminated normal (SCN) distribution. This arises when H

takes one of two states, i.e. either ν2 or 1, resepctive probabilities ν1 and 1 − ν1. with

ν = (ν1, ν2)>. It is denoted by SCNp,p(µ,Σ,Λ, ν1, ν2). The probability function of U

is

h(u|ν) = ν1I{ν2}(u) + (1− ν1)I{1}(u), 0 < ν1 < 1, 0 < ν2 ≤ 1. (A-3)

It then follows that

f(y) = 2p
{
ν1φp(y;µ, ν−1

2 Ω)Φp(ν
1/2
2 A; ∆) + (1− ν1)φp(y;µ,Ω)Φp(A; ∆)

}
.

Parameter ν1 can be interpreted as the proportion of outliers, while ν2 may be

interpreted as a scale factor. The SCN distribution reduces to the SN distribution when

ν2 = 1.

B.2 WinBUGS code for implementing the best-fitting skew-t

model

model{ # Skew−t CAL model :

p i <− 22/7

f o r ( s in 1 : nsubs ){
eta [ s ] ˜ dgamma( v1 , v1 )
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f o r ( i in 1 : n){
CAL[ s , i ] ˜ dnorm(muCAL[ s , i ] , taueC )
CAL1[ s , i ] ˜ dnorm(muCAL[ s , i ] , taueC )
muCAL[ s , i ]<− theta1 [ s , i ] + aC
# f o r symmetric models
# theta1 [ s , i ] <− mn[ s , i ] + s q r t (1/ eta [ s ] ) * ( theta [ s , i ] )
# f o r skew models
theta1 [ s , i ] <− mn[ s , i ] + s q r t (1/ eta [ s ] ) * ( theta [ s , i ] +

d e l t a *abs ( z [ s , i ]))− s q r t (2/ p i )* d e l t a *k1
z [ s , i ] ˜ dnorm (0 , 1 )
#Covar iates
mn[ s , i ]<− inprod ( x [ s , ] , beta [ ] ) + gap*GAP[ i ] + can* canine [ i ]

+ premol*premolar [ i ] + mol*molar [ i ] + maxl*maxi l l a [ i ]
}
}

# Reparameter ize In te r cept , g iven that some o f the c o v a r i a t e s
were mean−subtracted to a s s i s t convergence

Int <− aC − beta [ 1 ] * valA − beta [ 3 ] * valB

# t model
k1 <− s q r t ( v /2)* exp ( loggam ( ( v−1)/2))/ exp ( loggam ( v /2))
v1 <− v/2
v ˜ dgamma ( 0 . 1 , 0 . 0 1 )

# Skew p r i o r ; note t h i s i s ”lambda” in the paper
d e l t a ˜ dnorm ( 0 , 0 . 0 1 )

# Miss ing tooth model :
f o r ( s in 1 : nsubs ){ f o r ( t in 1 : nteeth ){
MISS [ s , t ] ˜ dbern ( pmiss [ s , t ] )
pmiss [ s , t ]<−max( 0 . 0 0 1 , min ( 0 . 9 9 9 , pmiss1 [ s , t ] ) )
l o g i t ( pmiss1 [ s , t ])<−a0+b0 *( theta1 [ s ,TOOTH[ t , 1 ] ]
+ theta1 [ s ,TOOTH[ t , 2 ] ] + theta1 [ s ,TOOTH[ t , 3 ] ]
+ theta1 [ s ,TOOTH[ t , 4 ] ] + theta1 [ s ,TOOTH[ t , 5 ] ]

+ theta1 [ s ,TOOTH[ t , 6 ] ] ) / 6
} }

# Implementing the i n b u i l t proper CAR p r i o r in WinBUGS
f o r ( s in 1 : nsubs ){

theta [ s , 1 : n ] ˜ car . proper ( zero [ s , ] , C [ ] , adj [ ] , num [ ] , m[ ] ,
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tau2 . car , rho )
f o r ( i in 1 : n){ zero [ s , i ]<− 0 }}

# s e t t i n g up the CAR adjacency matrix :
f o r ( i in 1 : n){m[ i ] <− 1/num[ i ]}
cumsum [ 1 ] <− 0
f o r ( i in 2 : ( n+1)) {cumsum [ i ] <− sum(num [ 1 : ( i −1) ])}
f o r ( k in 1 :N){

f o r ( i in 1 : n){
pick [ k , i ] <− s tep ( k − cumsum [ i ] − e p s i l o n )* s tep (cumsum [ i +1] − k )}
C[ k ] <− 1 / inprod (num [ ] , p ick [ k , ] ) }
e p s i l o n <− 0 .0001

# Pr i o r s and hyper−p r i o r s
f o r ( j in 1 : 5 ){ beta [ j ] ˜ dnorm ( 0 , 0 . 0 1 )}
aC ˜ dnorm (0 , 0 . 0 1 )
gap ˜ dnorm (0 , 0 . 0 1 )
can ˜ dnorm (0 , 0 . 0 1 )
premol ˜ dnorm (0 , 0 . 0 1 )
mol ˜ dnorm (0 , 0 . 01 )
maxl ˜ dnorm ( 0 , 0 . 0 1 )

#Pr ior on s p a t i a l a s s o c i a t i o n
rho ˜ dun i f ( 0 . 9 5 , 1 )
#Pr ior on CAR var iance
sigmasq . car <− 1/ tau2 . car
tau2 . car ˜ dgamma ( 0 . 1 , 0 . 0 1 )
#Pr ior on within−s u b j e c t var i ance
sigmasq . eC<− 1/taueC
taueC ˜ dgamma ( 0 . 1 , 0 . 0 1 )
# Pr ior on the i n t e r c e p t and s l ope f o r the
non−random mis s ingnes s r e g r e s s i o n
a0˜ dnorm (0 , 0 . 0 1 )
b0˜ dnorm (0 , 0 . 0 1 )
}
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Appendix for Chapter 4

C.1 Update latent variable µi using Hamiltonian Markov

chain

Hamiltonian dynamics is a two dimensional systems which is consisted of potential

energy U(q) and kinetic energy K(p), where p is a auxiliary variable represents momen-

tum. The Hamiltonian function can be written as H(p, q) = U(q) + K(p) (as in (C.2)

and C.3). As for our high-dimensional multivariate latent random variable µi under a

spatial framework, we want to sample µi from it’s posterior distribution:

p(µi |Data) ∝ π(µi)× p(yi |µi)× p(yi0 |µi) (C.1)
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Let U(µi) denote the potential energy function for subject i, and it’s given by:

U(µi) = − log
[
π(µi)× L(µi |D)

]
= − log

[
MVN(µi |x>i β + ωα,Σ(ρ, σ2))

]
− log

[
(1−GEV(−µi; ξ))yi(GEV(−µi; ξ))1−yi

]
− log

[
Φ(a0 + b>0 Z>t µi)

yi0(1− Φ(a0 + b0Z
>
t µi))

1−yi0
]

= − logL1 − logL2 − logL3

(C.2)

Derive gradient of U(µi):

∂U(µi)

∂µi
= −∂ logL1

∂µi
− ∂ logL2

∂µi
− ∂ logL3

∂µi

= Σ−1µi − Σ−1(x>i β + ωα)

− yi
gev(−µi; ξ)

1−GEV(−µi; ξ)
+
(
1− yi

) gev(−µi; ξ)
GEV(−µi; ξ)

(C.3)

− yi0
φ(a0 + b>0 Z>t µi)b

>
0 Z>t

Φ(a0 + b>0 Z>t µi)
+ (1− yi0)

φ(a0 + b>0 Z>t µi)b
>
0 Z>t

1− Φ(a0 + b>0 Z>t µi)

The momentum function is defined as K(p) = p>p
2 , where p ∼ MVN(0, I). Neal et al.

(2011) and Chen et al. (2014) both gave example of how to implement HMC using a

leapfrog method and the algorithm is as follows:

pi(t+ ε/2) = pi(t)− (ε/2)× ∂U(q(t))

∂qi
(C.4)

qi(t+ ε) = qi(t) + (ε)× pi(t+ ε/2) (C.5)

pi(t+ ε) = pi(t+ ε/2)− (ε/2)× ∂U(q(t+ ε))

∂qi
(C.6)

There are 2 steps to implement 1 iteration with the algorithm. First, we follow the

leapfrog algorithm to get a proposed q and the auxiliary variable p as shown in (C.4),
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(C.5) and (C.6). Then use the Metropolis to determine if we want to accept or reject

the proposed state as the next state of the Markov chain (see a sample R code in

Appendix C.2). When getting a proposed position variable q for the potential energy,

it’s of great importance to select a suitable leapfrog step size ε. When the step size

is large, the Metropolis gives a low acceptance rate. And if the step size is too small,

the chain moves slowly over the exploration area of the likelihood which can be a waste

of computation time (Neal et al., 2011). After running multiple testing samples, we

decided to start with the step size of ε = 0.0005 which gives an acceptance rate between

75% and 95% dependent on subject i. We calculate the acceptance rate for each subject

i every 500 iterations and adjust the step size if the acceptance rate dropped below 75%

or increase above 95%.

C.2 R code for implementing Hamiltonian algorithm in R

The following R code is adapted from Neal et al. (2011).

update mu i <− f unc t i on ( sub , mu. s tar , accept .mu, r ){
cu r r en t q <− t (mu. s t a r [ r−1,sub , ] )
q <− t ( as . matrix (mu. s t a r [ r−1, sub , ] ) )
# independent standard normal v a r i a t e s
p <− t ( as . matrix ( c ( rnorm (n . teeth , 0 , 1 ) ) ) )
cur r ent p <− p
#update with l e a p f r o g method
f o r ( k in 1 :L){
# Make a h a l f s t ep f o r momentum at the beg inning
##update momentum
p = p − ( e p s i l o n [ sub ] / 2 ) * c a l c u l a t e g r a d i e n t ( mu value=t ( q ) )
# Make a f u l l s t ep f o r the p o s i t i o n
q = q + e p s i l o n [ sub ] * p
# Make a h a l f s t ep f o r the momentum, except at end
o f t r a j e c t o r y
p = p − ( e p s i l o n [ sub ] / 2 ) * c a l c u l a t e g r a d i e n t ( mu value=t ( q ) )
} # c l o s e : f o r ( k in 1 :L)
# Negate momentum at end o f t r a j e c t o r y to make
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the proposa l symmetric
p = −p
# Evaluate p o t e n t i a l and k i n e t i c e n e r g i e s at s t a r t
# and end o f t r a j e c t o r y
current U = ca l cu l a t e U ( t ( cu r r en t q ) )
current K = ( cur r ent p%*%t ( cur r ent p ) ) / 2
proposed U = ca l cu l a t e U ( t ( q ) )
proposed K = (p%*%t (p ) ) / 2

# Accept or r e j e c t the s t a t e at end o f t r a j e c t o r y , r e tu rn ing
#e i t h e r the p o s i t i o n at the end o f the t r a j e c t o r y or the
#i n i t i a l p o s i t i o n c a l c u l a t e accept . r a t e f o r each mu

i f ( l og ( r u n i f ( 1 ) ) < ( current U−proposed U+current K−proposed K ) )
{
accept .mu[ sub ] <− accept .mu[ sub ] + 1
mu. s t a r [ r , sub , ] <− q # accept
} e l s e
{
mu. s t a r [ r , sub ,]<− cu r r en t q
#r e j e c t , mu. s t a r [ r , i , ] = mu. s t a r [ r−1, i , ]
}
re turn ( c (mu. s t a r [ r , sub , ] , accept .mu[ sub ] ) )
}
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