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Abstract

I perform a series of studies of the magnetism of 4d and 5d transition metal compounds.

In particular I concentrate on the realization of anisotropic magnetic Hamiltonians by

use of the spin-orbit coupling to tie together the real space geometry and spin space

magnetism.

In the first part, I derive the magnetic Hamiltonians of Sr2IrO4 and Na2IrO3 from

microscopic parameters. The difficulty of these calculation arises from the fact that

many microscopic parameters, such as Hund’s coupling, spin-orbit coupling, and crystal

field distortions are all of the same order and thus have to be treated on an equal

footing. The competition and cooperation of these interactions leads to a rich magnetic

Hamiltonians with many different anisotropic interactions. My calculations provide a

clear dependence of these interactions on the microscopic parameters. This in turn can

be used experimentally to single out and enhance given anisotropies by changing the

microscopic parameters.

In the second part I propose experimental measurements for the anisotropic inter-

actions. In particular I study how different anisotropic interactions contribute to the

anisotropy in the Curie-Weiss temperatures of these compounds. I show that the dif-

ference of Curie-Weiss temperatures along particular axes gives a way to measure the

strength of the anisotropic interactions in the compounds.

In the last part, I study how the multitude of the magnetic anisotropies determine

the magnetic ground state in 4d and 5d compounds. We have developed a new method

to calculate the fluctuational contribution to the free energy in anisotropic Hamiltonians

at any temperature within the magnetically ordered phase. The calculation can be done

for both classical (which includes only thermal fluctuations) and quantum (quantum and

thermal fluctuations) systems. I also study the effects of external magnetic field applied

to the nearest neighbor Kitaev-Heisenberg model, a model of particular interest for

α−RuCl3.
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Chapter 1

Introduction

1.1 Motivation for studying 4d and 5d transition metal

compounds

The interest in the magnetism of 4d and 5d transition metal compounds started from

two separate sources. The first source is the comparison to the high-TC unconventional

superconductors. The similarities between iridates and cuprates led to a still ongoing

search for a new family of superconductors in the former. The second source of interest in

4d and 5d compounds is the possibility of realizing anisotropic magnetic Hamiltonians.

Strong spin-orbit coupling (SOC) in the heavy elements plays an important role in

allowing anisotropic magnetic interactions by entangling real space geometry with spin

space magnetism. Anisotropic magnetic Hamiltonians such as the honeycomb Kitaev

model [3] are of interest as possible realizations of topological quantum computers that

are immune to the problem of decoherence of quantum states due to local noise. By

storing the quantum information in inherently non-local topological states it becomes

safe from noise that affects only a part of the system.
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Figure 1.1: (a) Square lattice formed by Ir atoms (big circles) encapsulated by cor-
ner sharing oxygen (small circles) octahedra with staggered pattern of rotation of the
octahedra. Figure taken from [1]. (b) The honeycomb lattice with 3 types of Kitaev
bonds: red, blue, and green bonds have the Kitaev interaction of x, y, and z spin com-
ponents, respectively. The site labels A-D are the labels of the 4 sublattices in the Klein
transformation of the Kitaev-Heisenberg model.

1.2 Strong magnetic interactions as a possible source of

superconductivity

The details of the pairing mechanism in cuprates and iron pnictides are still unknown,

however it has been speculated that it is magnetic in origin. The idea was to search for

compounds with similar, but stronger magnetic properties which would have a stronger

pairing and as a result a higher TC . This sparked a particular interest in Sr2IrO4 [4, 5],

which has a very similar structure to cuprate parent compounds La2IrO4 and Ba2IrO4.

Each of the magnetic sites of these compounds (Ir and Cu) are surrounded by an oxygen

octahedron. The octahedra form a square lattice with a staggered rotation pattern (see

Fig.1.1a). The square lattice layers of the magnetic sites are separated by layers of

nonmagnetic Sr, La, or Ba atoms. This allows us to view the compounds as a set of

isolated 2D magnetic layers with negligible interlayer coupling.

Sr2IrO4 has a particularly large ”weak” ferromagnetic moment of ∼ 0.14µB [5] per
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site in the layer, which is about 2 orders of magnitude larger than the corresponding

ferromagnetic moment in La2IrO4. This sparked an ongoing search for the superconduc-

tivity in doped Sr2IrO4. So far a pseudogap phase with Fermi arcs have been detected

[6], however no smoking gun evidence of superconductivity.

1.3 Spin orbit coupling as a source of anisotropic spin

Hamiltonians

The second source of interest in the 4d and 5d compounds stems from the possibility

of realizing anisotropic spin models, such as the exactly solvable Kitaev honeycomb

model [3]. In the Kitaev model the honeycomb lattice consists of 3 types of bonds

(see Fig.1.1b). On each bond type only one component of the spins interacts. Namely,

red bonds only interact via x components, blue via y components, and green via z

components:

H =
∑

<ij>red

Sxi S
x
j +

∑
<ij>blue

Syi S
y
j +

∑
<ij>green

Szi S
z
j (1.1)

This Hamiltonian is anisotropic and thus very different from the isotropic Heisenberg

interactions that usually results from superexchange calculations in one-band Hubbard

model. The standard superexchange calculation runs as follows: suppose there are two

sites with one electron (or hole) on a single orbital on each site. If the orbitals of the two

sites have a finite overlap integral, then an electron from one site has a finite probability

to hop to its neighbor. This costs electrostatic energy since it brings the two electrons

close to each other on a single site. However, in the context of second order perturbation

theory we can use this as a virtual, temporary state to lower the energy of the ground

state of the system:

δE =
< 1, 1|Tj,i|0, 2 >< 0, 2|Ti,j |1, 1 >

Egs − Evs
(1.2)

where Ti,j is the hopping operator from site i to j, Egs is the ground state energy and

Evs is the energy of the virtual, excited state. The |ni, nj > represent states with ni

electrons on site i and nj electrons on site j. Note that this correction to the ground

state energy is identically zero when the two electrons have the same spin due to the

Pauli principle. Thus, the closer the spins are to antiferromagnetic (AFM) alignment,
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Figure 1.2: Orbital composition of the pseudospins. Figure taken from [1].

the lower the energy of the state is due to this correction. Rewriting this in terms of

spin variables leads to an isotropic AFM (J > 0) Heisenberg interaction:

H = J ~Si · ~Sj (1.3)

Thus, in order to get an anisotropic Hamiltonian, like the Kitaev model of equation

1.1, something beyond this simple approach is needed. SOC binds together the spin

space and the real space of orbitals into a total angular momentum, which will act as

the magnetic degrees of freedom, pseudospins (schematically presented in Fig. 1.2).

The orbital character of these pseudospins means that different pseudospin states will

have different overlap integrals, namely they have a real space shape. As a result we

can use this shape and real space geometry in order to construct anisotropic types of

interaction. Note that SOC is only possible with multiple orbitals per site. This allows

ferromagnetic (FM) interactions since the two spins on the same site can be on different

orbitals, avoiding the Pauli principle.

1.4 Mott insulating state assisted by spin-orbit coupling

Since the superexchange calculations are perturbative by nature, they are only valid

when when the hopping is small. In other words, the compound in question has to be

insulating. Iridates have an odd number of valence electrons per site, which necessarily

leads to a metallic state from a naive band theory picture. Coulomb repulsion can

localize the odd electrons on their sites giving rise to a Mott insulator [7]. However, the

Coulomb repulsion in iridates, U ≈ 1.8 eV, is too small to provide a gap for the broad

5d bands of such a heavy atom as Ir. Since experimentally it has been shown that the

compounds are indeed insulators [4, 8], there has to be something else to explain the

insulating behavior. The answer was found by B. J. Kim et al [2]: other interactions
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in the system split off parts of the 5d bands leaving only a small portion that is thin

enough to open a gap with the modest Coulomb interaction. First, the cubic crystal

field of the oxygen octahedron surrounding each Ir ion splits the 5d orbitals into the eg

and t2g (see Fig. 1.3). The splitting is 10Dq ≈ 3.5 eV, which is relatively large. Since

there are 5 electrons in the Ir4+, they all occupy the three low-energy t2g orbitals. 5d

orbitals have an angular momentum of l = 2. However, if we project out the high-energy

eg orbitals the three remaining t2g orbitals effectively behave like leff = 1, up to an

overall sign of the angular momentum matrices.

The SOC (with λ ≈ 0.4 eV) couples the spin s = 1/2 with l = 1 orbital momentum.

As a result of this we get a lower laying manifold of eigenstates of total angular momen-

tum J = 3/2 and higher doublet of J = 1/2. Four out of five electrons in Ir4+ completely

fill the J = 3/2 quadruplet. The fifth electron half-fills the J = 1/2 states. Thus the

strong crystal field raises in energy completely empty portions of the 5d orbitals. Si-

multaneously, SOC lowers completely full portions. This leaves only the J = 1/2 bands

close to the Fermi energy. The J = 1/2 bands are considerably narrower (bandwidth

of about 0.5 eV) and thus the small Coulomb interaction is now sufficient to open up

a gap, leading to a spin-orbit assisted Mott insulator state. The J = 1/2 states act as

the pseudospins in the magnetic superexchange.

1.5 Research summary

In this dissertation I explore the many consequences that large SOC has on the mag-

netism of the 4d and 5d compounds. I start by calculating the effective magnetic

Hamiltonians using superexchange in Sr2IrO4 and Na2IrO3 [9, 10]. I include the tetrag-

onal and trigonal distortions of the cubic crystal field present in these two compounds,

respectively. In Na2IrO3 due to the the extended nature of the 5d orbitals as well as the

honeycomb geometry with Na atoms at the center the further neighbor interactions are

also found to be important and anisotropic in nature. My calculations lead to the J-D

model for Sr2IrO4 and J1-K1-Γ1-J2-K2-J3 model for Na2IrO3. Corrections to the J-D

model accounting for staggered tetragonal distortions suggested by optical experiments

are made to account for the spin canting angle disparity.

I then calculate the effects of the various anisotropic interactions on the anisotropy of
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Figure 1.3: Spin-orbit assisted Mott insulating state in Sr2IrO4. Figure taken from [2].

the Curie-Weiss temperatures and the gyromagnetic tensor for the most general models

proposed for Sr2IrO4, Na2IrO3, α-RuCl3, (α, β, γ)-Li2IrO3 [9, 10, 11, 12]. We propose

that experimental measurements of the anisotropy in the Curie-Weiss temperatures can

be used to estimate the anisotropic Γ1 superexchange constant as well as bond depen-

dent anisotropy due to further crystal distortions, such as the monoclinic distortion in

Na2IrO3. We also show that the staggered crystal field pattern suspected in Sr2IrO4

can be observed in the anisotropy of the Curie-Weiss temperatures.

The J1-K1 model has been of a particular interest as this is the minimal model that

can explain a zigzag pattern state experimentally found in α-RuCl3 [13, 14, 15]. We

explore the effects that a uniform external magnetic field has on this model using Monte-

Carlo simulations [16]. We find a competition of the anisotropic thermal fluctuations

with the magnetic field, which leads to many new phases, including partially- and fully-

incommensurate spiral states.

Anisotropic magnetic models can often lead to accidental degeneracies, lifted via the

order-by-disorder mechanism [17, 18]. We developed a new method for calculating the

free energy corrections due to the thermal and quantum fluctuations in generic bilinear

anisotropic Hamiltonians [19, 20]. We use this method to show how the direction of the
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zigzag order parameter is chosen in Na2IrO3 and α-RuCl3 [21].

1.6 Outline of the dissertation

The dissertation is structured as follows:

• In Chapter 2 I present a derivation of the minimal magnetic model of Sr2IrO4 from

microscopic parameters. Keeping SOC, crystal field distortions, and Hund’s cou-

pling all on equal footing I have arrived at a highly anisotropic J1-D1 model. The

competition between the isotropic Heisenberg interaction J1 and the anisotropic

Dzyaloshinsky-Moriya interaction D1 lead to a canted AFM structure as the mag-

netic ground state [1, 9]. The canted component from all sites adds up to give the

experimentally observed small ferromagnetic moment in the compound.

• In Chapter 3 I have performed a similar calculation for Na2IrO3. This lead to the

J1-K1-Γ1-J2-K2-J3 [10], a model with many competing anisotropic interactions. I

show that this model gives the experimentally observed zigzag phase as the ground

state. Interestingly, unlike most 3d compounds, where the magnetic ground state

usually stems from one or two dominant interactions while the rest only account for

small corrections, in Na2IrO3 there are many interactions of the same order. Their

competition and cooperation is what drives the zigzag phase with the particular

direction of the magnetic moments, a topic that I discuss in more detail in the

final chapter of the dissertation.

• Next Chapter 4 focuses on the J1-K1 model, relevant to RuCl3. I explore how

this model behaves when uniform external magnetic field is applied using classi-

cal Monte-Carlo simulation. We find a competition between thermal fluctuations

of the Kitaev interaction and the magnetic field that leads to a plethora of new

interesting phases. A linear superposition of 3 zigzag states with peculiar canting

pattern exists at low magnetic fields. At intermediate field strengths we found a

partially incommensurate spiral phase, in which 2 spin components are incommen-

surate, while the third is commensurate. At higher fields a fully commensurate

spiral phase sets in. At fields just below saturation a more standard 120◦ order
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sets in [22, 16]. We presented a phase diagram of the model as a function of field

strength and temperature.

• Chapter 5 focuses on the effects the anisotropic interactions have on the Curie-

Weiss (CW) temperatures. We show that the measurement of the anisotropic

Curie-Weiss temperatures presents a way to estimate the different anisotropies

found in the compounds. In tri-coordinated Kitaev compounds the antisymmetric

off-diagonal interaction Γ1 as well as the bond dependence of the anisotropic inter-

actions due to structural distortions can be measured from the CW. In Sr2IrO4 we

also found that, unlike most case, the anisotropic gyromagnetic factor also enters

the CW temperature expressions.

• Chapters 6 and 7 present a method for calculating the fluctuational contribution

to the free energy of classical and quantum anisotropic spin systems, respectively,

using Hubbard-Stratonovich transformation. The method gives the means to pre-

dict direction of the order parameter chosen via order-by-disorder in systems with

degenerate ground states [19, 20]. We use this method to show that the Kitaev

interactions in minimal models of Na2IrO3 and RuCl3 prefer magnetic moments

along cubic axes. While this fits the experimental observations in RuCl3, the di-

rection magnetic moments in Na2IrO3 is settled by another mechanism, which I

discuss in the following chapter.

• In the final Chapter 8 I show how the competition and cooperation of the various

interactions in Na2IrO3 and RuCl3 selects the direction of the zigzag order pa-

rameter [21]. Particularly, I pointed out the importance of symmetric off-diagonal

interaction Γ1 in the selection of the 45◦ direction between cubic axes experimen-

tally observed in Na2IrO3. I find that the mean field contribution of the relatively

small Γ1 coupling prefers to put the magnetic moments in the 45◦ direction. This

puts it at a competition with the fluctuational contribution from the considerably

larger Kitaev interactions, K1 and K2. However, due to the difference in order

of the contribution (MF vs fluctuations) the smaller Γ1 interaction wins over K1

and K2 interactions.



Chapter 2

Interplay of many-body and

single-particle interactions in

iridates and rhodates.

2.1 Introduction

5d transition metal oxides, in which orbital degeneracy is accompanied by strong rela-

tivistic SOC, recently received considerable attention, both in experiment and in theory.

In these systems the SOC might be comparable to, or even stronger than the Coulomb

and Hund’s couplings, and the CF interactions arising from surrounding oxygen atoms

in a nearly octahedral environment. As a result of this unusual hierarchy of on-site

interactions, novel quantum and classical states with non-trivial topology and interest-

ing magnetic properties might be stabilized. Fascinating examples of such properties

include the Mott insulator ground state of Sr2IrO4 [5, 2, 23, 24, 25, 26, 27, 28, 29, 30, 1,

31, 32, 33, 34], the potential spin-liquid ground state of Na4Ir3O8 [35, 36], the anoma-

lous Hall effect in the metallic frustrated pyrochlore Pr2Ir2O7 [37, 38, 39, 40, 41, 42],

non-trivial long-range order, and moment fluctuations in its sister compound Eu2Ir2O7

[43, 44], unusual magnetic orderings in the honeycomb compounds Na2IrO3 and Li2IrO3

[45, 46, 8, 47, 48, 49, 50, 51], and others.

The main focus of this chapter is on developing a theoretical framework which will

9
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Figure 2.1: Ir-O-Ir bond in the presence of octahedra rotations in one IrO2 layer. x
and y are the global axes adopted for the intermediate oxygen atoms. xA(B) and yA(B)

are local axes on sublattices A and B. (a): local Z̃ orbital on Ir ion overlaps with py
oxygen orbital in the global reference frame. (b): local Ỹ orbital on Ir ion overlaps with
pz oxygen orbital in the global reference frame.

allow us to understand the microscopic nature of magnetism in the iridium compounds

described above. In these systems, the magnetic degrees of freedom are determined by

Ir4+ ions in 5d5 electronic configurations.

The super-exchange Hamiltonians for layered iridium oxides were firstly derived in

the seminal paper by Jackeli and Khalliulin [1]. They found that the super-exchange

Hamiltonian describing the coupling between J = 1/2 Kramers doublet states on the

square lattice, like in Sr2IrO4, is predominantly of isotropic Heisenberg super-exchange

character, while anisotropic terms become relevant only in the presence of lattice dis-

tortions. On the honeycomb lattice, like in Na2IrO3, the interaction between J = 1/2

Kramers doublet states is highly anisotropic even in the absence of lattice distortions.

The anisotropic part of the super-exchange coupling has the very peculiar form of the

Kitaev interaction. This originates from the competition between SOC and correlation

effects, and is non-zero only in the presence of Hund’s coupling.

In the present study, we go beyond this work and derive effective super-exchange spin

Hamiltonians rigorously starting from the exact eigenstates of the single ion microscopic

Hamiltonian. Here, we will be primarily interested in the magnetic properties of the

insulating iridium oxides with tetragonal symmetry, in which the Ir ions occupy a square

lattice, as in the case of Sr2IrO4. While this particular compound is very interesting and
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has recently attracted much attention [5, 2, 23, 24, 25, 26, 27, 28, 30, 1, 31, 32, 33, 34],

the approach proposed here can not only be easily used to understand the magnetic

properties of other iridates belonging to the Ruddlesden-Popper series Srn+1IrnO3n+1,

but can also be applied to systems with different lattice geometries.

The magnetic properties of Sr2IrO4 are very unusual. Below 240 K, Sr2IrO4 is

a canted antiferromagnet with a small in-plane ferromagnetic moment (∼ 0.1µB) [5],

which, however, is one to two orders of magnitude larger than that of the analogous

canted antiferromagnet La2CuO4. Another important experimental finding is that this

canting disappears with pressure [28]. These two observations indicate a very strong

coupling between magnetic properties and the crystal lattice, which in the presence of

SOC can be understood through the coupling of orbital magnetization to the lattice.

Consequently, as the orbital magnetic moment contributes to the total magnetic moment

of Ir ions, there is a strong dependence of the magnetic degrees on lattice degrees of

freedom.

Two types of lattice distortions are present in Sr2IrO4 even at ambient pressure:

tetragonal distortion and staggered rotation of IrO6 octahedra (see Fig.2.1). The stag-

gered nature of the IrO6 octahedra rotation leads to a doubling of the unit cell and the

formation of a two-sublattice structure. The tetragonal distortion moves the electronic

ground state away from the strong SO limit J = 1/2 state by mixing J = 1/2 and

J = 3/2 states. Thus in order to understand the magnetism of this system, one needs

first to understand the nature of the magnetic degrees of freedom. In our approach we

identify the magnetic degrees of freedom by dealing with the exact eigenstates of the

full single ion microscopic Hamiltonian which includes both SOC and CF interactions.

In this work, we will obtain dependencies of the magnetic interactions on microscopic

parameters characterizing the system. In addition, we will study how the properties of

Sr2IrO4 depend on external pressure [28] and chemical substitution [29, 52, 53]. In

particular, we will discuss the case when iridium is substituted with rhodium [52, 53].

Rh substitution, unlike other chemical substitutions, does not change the band filling.

However, it varies the SOC, and the Coulomb and Hund’s coupling strengths, because

on one side the 4d orbitals of Rh ions are less extended, tending to enhance the electronic

repulsion and thereby increasing correlation effects, and on the other side, as Rh is a

lighter ion, the SOC is smaller. Thus, when the content of Rh increases, the overall
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balance of on-site interactions changes, and as a result one might expect the appearance

of new magnetic phases and doping-driven phase transitions. Although this direction

has been recently explored experimentally in a few cases [52, 53], it still remains to be

investigated theoretically.

The chapter is organized as follows. In Sec. 2.2, we introduce the single ion micro-

scopic model appropriate for the description of the physical properties of the iridates

and rhodates, in which five electrons or, equivalently, one hole occupy the three-fold de-

generate t2g orbitals and experience strong SOC and crystal field (CF) interactions. We

first obtain one-particle eigenstates taking into account only SOC and CF interactions,

and then compute two-particle excited eigenstates fully considering correlation effects.

In Sec. 2.3 we derive an effective super-exchange Hamiltonian by integrating out the

intermediate oxygen ions and performing a second order perturbation expansion in the

hopping parameters around the atomic limit. In Sec. 2.4, we present our results on the

magnetic interactions and show how these interactions depend on various microscopic

parameters of the model. We also discuss the application of the results obtained to real

compounds. Finally, in Sec. 2.5 a summary of the work is presented.

2.2 Single ion Hamiltonian

2.2.1 One-particle eigenstates

In Sr2IrO4, the Ir+4 ions are sitting inside an oxygen cage forming an octahedron. The

octahedral crystal field splits the five 5d orbitals of Ir into a doublet of eg orbitals at

higher energy and into the low-lying three-fold degenerate t2g multiplet. In iridates,

the energy difference between the eg and t2g levels is large. Because of this, the five

electrons occupy the low lying t2g orbitals and the on-site interactions, such as the

SOC, Coulomb and Hund’s interactions, and the crystal field interactions, lowering the

symmetry further, can be considered within the t2g manifold only. In this limit, the

SOC has to be projected to the t2g manifold, resulting in an effective orbital angular

momentum leff = 1.

It is more convenient to describe the low-spin state of the d5-configuration of Ir+4

ions by using the hole description. In the local axes bound to the oxygen octahedron

the t2g orbitals of Ir ions are |X〉 = |yz〉, |Y 〉 = |zx〉, and |Z〉 = |xy〉. Examples of the
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lobe structure of the d-wave orbital |xy〉 of Ir are shown in Fig.2.1 (blue lobes). In the

absence of interactions, these one-hole states are completely degenerate. The SOC and

CF interactions, described by the single-ion Hamiltonian

Hλ,∆ = λ
−→
S · −→L + ∆L2

z, (2.1)

give rise to a splitting of the levels according to the symmetry of the underlying lattice.

In the tetragonal system, the orbital angular momentum basis is defined by |Lz = 0〉 =

|Z〉, |Lz = ±1〉 = − 1√
2
(±|X〉 + ı|Y 〉), where the quantization axis is taken along the

tetragonal z axis. In the absence of tetragonal distortion, the energy eigenstates are the

angular momentum eigenstates |J, Jz〉. The full single-particle Hilbert space is, thus,

given by a six-component vector Ĵ = {|12 , 1
2〉, |12 ,−1

2〉, |32 , 3
2〉, |32 , 1

2〉, |32 ,−1
2〉, |32 , −3

2 〉}. The

vector Ĵ can be expressed in terms of the basis set of t2g-orbitals as

Ĵ =



0 − 1√
3

0 − ı√
3
− 1√

3
0

− 1√
3

0 ı√
3

0 0 1√
3

− 1√
2

0 − ı√
2

0 0 0

0 − 1√
6

0 − ı√
6

√
2
3 0

1√
6

0 − ı√
6

0 0
√

2
3

0 1√
2

0 − ı√
2

0 0


Â1 , (2.2)

where Â1 = {|X↑〉, |X↓〉, |Y↑〉, |Y↓〉, |Z↑〉, |Z↓〉} is a six-component vector, and ↑, ↓ indicate

spin states. The ground state is a Kramers doublet |J = 1
2 , Jz〉 at energy E0 = −λ and

the excited state form a quartet |J = 3
2 , Jz〉 at energy E1 = 1

2λ. However, in Sr2IrO4,

the tetragonal distortion is present and is not small. It arises because the oxygen

octahedra are elongated along the z axis. In the hole representation, ∆ = ∆tet > 0 and

the t2g orbitals are split into a singlet state |Z〉 with energy −∆ and a doublet state

(|X〉&|Y 〉) with energy ∆/2. In the presence of both the tetragonal distortion and the

SOC, the eigenfunctions of the Hamiltonian (2.1) are given by components of a vector

Ψ̂ = {|Ψ1〉, |Ψ2〉, |Ψ3〉, |Ψ4〉, |Ψ5〉, |Ψ6〉}, which in terms of t2g-orbitals are given by

Ψ̂ = M̂ tet
θ Â1 , (2.3)
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where

M̂ tet
θ =



0 1√
2
cθ 0 ı√

2
cθ sθ 0

− 1√
2
cθ 0 ı√

2
cθ 0 0 sθ

− 1√
2

0 − ı√
2

0 0 0

0 − 1√
2
sθ 0 − ı√

2
sθ cθ 0

1√
2
sθ 0 − ı√

2
sθ 0 0 cθ

0 − 1√
2

0 ı√
2

0 0


,

where, for shortness, we denote cθ = cos θ and sθ = sin θ. The angle variable θ is

determined by tan(2θ) = 2
√

2 λ
λ−2∆ and takes care of the competition between the

tetragonal distortion and the SOC [1].

The eigenstates of the Hamiltonian (2.1) are given by the following three doublets:

the ground state doublet (|Ψ1〉&|Ψ2〉) with energy E(1,2) = 1
2(∆−λ

2 )−1
2

√
2λ2 + (∆− λ

2 )2 =

− λ√
2

cot θ, the intermediate doublet (|Ψ4〉&|Ψ5〉) with energy E(4,5) = 1
2(∆ − λ

2 ) +

1
2

√
2λ2 + (∆− λ

2 )2 = λ√
2

tan θ and the upper doublet (|Ψ3〉&|Ψ6〉) with energy E(3,6) =

∆ + λ
2 . Note that the ground state doublet |Ψ1〉&|Ψ2〉 is different from the |J = 1

2 , Jz〉
doublet as well as the Lz = 0 doublet!

In Sr2IrO4, there is also a staggered rotation of neighboring oxygen octahedra by

an angle ±α about the z-axis (see Fig.2.1 (a) and (b)) leading to the formation of a

two-sublattice structure. We denote these two sublattices as A and B. Because the

crystal-field interaction on Ir 5d orbitals is diagonal only in the local cubic axes bound

to the oxygen octahedron, in the presence of the octahedra rotations, atomic states on

sublattices A and B have to be defined in the local basis. Then, the states on sublattices

A and B are given by

Ψ̂A = M̂ tet
θ



|X̃↑e−
ıα
2 〉

|X̃↓e
ıα
2 〉

|Ỹ↑e−
ıα
2 〉

|Ỹ↓e
ıα
2 〉

|Z̃↑e−
ıα
2 〉

|Z̃↓e
ıα
2 〉


(2.4)
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and

Ψ̂B = M̂ tet
θ



|X̃↑e
ıα
2 〉

|X̃↓e−
ıα
2 〉

|Ỹ↑e
ıα
2 〉

|Ỹ↓e−
ıα
2 〉

|Z̃↑e
ıα
2 〉

|Z̃↓e−
ıα
2 〉


, (2.5)

where the phase factors e±
ıα
2 appear after the projection of the spin states onto the

local reference frame. Initially the spin states are defined in the global reference frame.

2.2.2 Two-hole states in the presence of interactions, SOC and tetrag-

onal distortion.

The many-body part of the single ion Hamiltonian is given by the three-band Hubbard

Hamiltonian of the form:

Hint = U1

∑
i,α

niα↑niα↓ +
1

2
(U2 − JH)

∑
i,σ,α 6=α′

niασniα′σ

+ U2

∑
i,α 6=α′

niα↑niα′↓ + JH
∑
i,α 6=α′

d†iα↑d
†
iα↓diα′↓diα′↑

− JH
∑
i,α 6=α′

d†iα↑diα↓d
†
iα′↓diα′↑ , (2.6)

where U1 and U2 are the Coulomb repulsion among electrons in the same and in different

t2g orbitals, respectively, and JH is the Hund’s coupling constant. Due to the cubic

symmetry, the relation U1 = U2 + 2JH holds. The annihilation and creation electron

operators, diασ and d†iασ refer to Ir orbitals at site i, of type α (X, Y or Z) and with

spin σ =↑, ↓, niασ = d†iασdiασ. In order to obtain Hint in the hole picture, we substitute

d†ασ → aασ and nασ → 1 − hασ, where hασ = a†ασaασ, and a†ασ and aασ are the hole

creation and annihilation operators.

We first compute energy eigenvalues of Hint. We consider ground states with one

hole on the Ir ion and excited states, in which the Ir ion can have two holes or no holes.
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The corresponding energies are

E1h = 10U2

E0h = 15U2

E
(1)
2h = 6U2 − JH

E
(0)
2h = 6U2 + JH

E
(00)
2h = 6U2 + 4JH

(2.7)

There are 6 × 5/2 = 15 partly degenerate two-hole states: six spin singlets and three

triplets. Let the vector |I〉 = |I;n〉 denote the two-hole eigenstates. It is convenient to

represent them using the cubic orbital basis:

Î = M̂2Â2, (2.8)

where

Â2 = { X↑X↓, X↑Y↑, X↑Y↓, X↑Z↑, X↑Z↓, X↓Y↑, X↓Y↓,

X↓Z↑, X↓Z↓, Y↑Y↓, Y↑Z↑, Y↑Z↓, Y↓Z↑, Y↓Z↓, Z↑Z↓}

is the two-hole orbital basis, and the transformation matrix M̂2 can be easily obtained.

Explicitly, vector Î consists of the following elements:

(i) symmetric state with singlet pairs on the same orbital S = 0, α = α′

|I; 1〉 =
1√
3

(
a†X↓a

†
X↑ + a†Y ↓a

†
Y ↑ + a†Z↓a

†
Z↑

)
with energy equal to E1 = E

(00)
2h = 6U2 + 4JH = Ed.

(ii) two degenerate antisymmetric states with singlet pairs on the same orbital S =

0, α = α′

|I; 2〉 =
1√
2

(
a†X↓a

†
X↑ − a

†
Y ↓a

†
Y ↑

)
|I; 3〉 =

1√
6

(
a†X↓a

†
X↑ + a†Y ↓a

†
Y ↑ − 2a†Z↓a

†
Z↑

)
with energies equal to E2,3 = E

(0)
2h = 6U2 + JH = Es.

(iii) three states with singlet pairs on different orbitals S = 0, α 6= α′:
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|I; 4〉 =
1√
2

(
a†X↓a

†
Y ↑ − a

†
X↑a

†
Y ↓

)
|I; 5〉 =

1√
2

(
a†Y ↓a

†
Z↑ − a

†
Z↑a
†
Y ↓

)
|I; 6〉 =

1√
2

(
a†Z↓a

†
X↑ − a

†
X↑a

†
Z↓

)
with E4,5,6 = E

(0)
2h = 6U2 + JH = Es.

(iv) Nine states with triplet pairs on different orbitals S = 1, α 6= α′:

|I; 7〉 =
1√
2

(
a†X↓a

†
Y ↑ + a†X↑a

†
Y ↓

)
|I; 8〉 = a†X↑a

†
Y ↑

|I; 9〉 = a†X↓a
†
Y ↓

|I; 10〉 =
1√
2

(
a†Y ↓a

†
Z↑ + a†Y ↑a

†
Z↓

)
|I; 11〉 = a†Y ↑a

†
Z↑

|I; 12〉 = a†Y ↓a
†
Z↓

|I; 13〉 =
1√
2

(
a†Z↓a

†
X↑ + a†Z↑a

†
X↓

)
|I; 14〉 = a†Z↑a

†
X↑

|I; 15〉 = a†Z↓a
†
X↓

with energies E7,..,15 = E
(1)
4 = 6U2 − JH = Et. This gives three different excitation

energies:

∆E1 = Ed + E0h − 2E1h = U2 + 4JH

∆E2 = Es + E0h − 2E1h = U2 + JH (2.9)

∆E3 = Et + E0h − 2E1h = U2 − JH

In the presence of the SOC and lattice distortions, the two-hole states |I;n〉 are

mixed, and the true two-hole eigenstates are obtained by diagonalization of the full

on-site Hamiltonian

Hint+λ,∆ = Hint +Hλ,∆ . (2.10)
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To this end, it is convenient first to represent the |I;n〉 states in terms of the eigenstates

of Hλ,∆. The two-hole eigenstates of the SOC part of the Hamiltonian are simply given

by product states |J , µ〉 ≡ |J1, J1z; J2, J2z〉:

|J , 1〉 ≡ |12 , 1
2 ; 3

2 ,
3
2〉

|J , 2〉 ≡ |12 ,−1
2 ; 3

2 ,
3
2〉

|J , 3〉 ≡ |12 , 1
2 ; 3

2 ,
1
2〉

|J , 4〉 ≡ |12 ,−1
2 ; 3

2 ,
1
2〉

|J , 5〉 ≡ |12 , 1
2 ; 3

2 ,−1
2〉

|J , 6〉 ≡ |12 ,−1
2 ; 3

2 ,−1
2〉

|J , 7〉 ≡ |12 , 1
2 ; 3

2 ,−3
2〉

|J , 8〉 ≡ |12 ,−1
2 ; 3

2 ,−3
2〉

|J , 9〉 ≡ |12 , 1
2 ; 1

2 ,−1
2〉

|J , 10〉 ≡ |32 , 1
2 ; 3

2 ,
3
2〉

|J , 11〉 ≡ |32 ,−1
2 ; 3

2 ,
3
2〉

|J , 12〉 ≡ |32 ,−3
2 ; 3

2 ,
3
2〉

|J , 13〉 ≡ |32 ,−1
2 ; 3

2 ,
1
2〉

|J , 14〉 ≡ |32 ,−3
2 ; 3

2 ,
1
2〉

|J , 15〉 ≡ |32 ,−3
2 ; 3

2 ,−1
2〉

(2.11)

In short, these states can be written as

|J , µ〉 =
6∑

γ1,γ2=1

mµ
γ1,γ2b

†
γ1b
†
γ2 |vac〉, (2.12)

where µ = 1, ..., 15 refers to the component of the vector Ĵ , b†γ is an operator creating

a hole of the type γ = 1, ...6, which refers to the component of the single-hole vector Ĵ .

The tensor m̂ has the following non-zero elements

m1
1,3 = m2

2,3 = m3
1,4 = m4

2,4 = m5
1,5 =

m6
2,5 = m7

1,6 = m8
2,6 = m9

1,2 = m10
4,3 =

m11
5,3 = m12

6,3 = m13
5,4 = m14

6,4 = m15
6,5 = 1 .
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If, in addition to the SOC, the lattice distortion is present, the two-hole states |J̃ , µ〉
are given by the products of two |Ψn〉 states. The explicit form of the vector |J̃ , µ〉 can

be easily obtained from Eq.(2.11) by the following substitution:

|12 , 1
2〉 → |Ψ1〉,

|12 ,−1
2〉 → |Ψ2〉,

|32 , 3
2〉 → |Ψ3〉,

|32 , 1
2〉 → |Ψ4〉,

|32 ,−1
2〉 → |Ψ5〉,

|32 ,−3
2〉 → |Ψ6〉.

(2.13)

The complete Hamiltonian matrix has the same block diagonal structure in the space of

states |J , µ〉 and
∣∣∣J̃ , µ〉. Therefore, below we will omit the tilde sign and use notations

|J , µ〉 in a general sense.

In the |J , µ〉 basis, the Hamiltonian matrix is given by

〈J , µ′|Hint+λ,∆|J , µ〉 = εµδµ′µ + (2.14)
15∑
n=1

En〈J , µ′|I, n〉〈I, n|J , µ〉

where εµ is the energy of the |J , µ〉 state, and the 〈J , µ|I, n〉 denote components of

the overlap matrix. The diagonalization of (2.14) gives energy eigenstates of the full

Hamiltonian

|D, ξ〉 =

15∑
µ=1

cξµ|J , µ〉 , (2.15)

where ξ = 1, ...15 and cξµ denote the eigenvectors. We denote the energy eigenvalues

as Eξ. As a final remark, we also note that in the limit JH = 0 and ∆ = 0, the

Hamiltonian matrix (2.14) is diagonal with E1 = ... = E8 = −λ/2−U2, E9 = −2λ−U2,

and E10 = ... = E15 = −λ− U2.

2.3 Derivation of the super-exchange Hamiltonian

In systems with tetragonal symmetry, the Ir-O-Ir bonds are close to 180◦. In these

systems, in general, the contribution to the super-exchange coupling from direct Ir-Ir
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hopping may be neglected because the Ir ions are quite far from each other. The dom-

inant contribution to the super-exchange is from the hopping via intermediate oxygen

ions, so-called oxygen-assisted hopping. Because intermediate states with two holes on

the oxygen ion have high-energy and, thus, can be neglected, we may integrate out the

oxygen degrees of freedom to obtain an effective oxygen-assisted hopping between Ir

5d-states. Then applying a second order perturbation theory expansion in the effective

hopping parameters, we obtain a super-exchange Hamiltonian in the following form:

Hex,n,n′ =
∑
ξ

1

εξ
PHt,n,n′Qξ,n′Ht,n′,nP , (2.16)

where

P =
∑

σn=±1

|1/2, σn/2;n〉〈n; 1/2, σn/2| (2.17)

is the projection operator onto the ground states with one hole at site n. The projection

operators onto two-hole intermediate states |D, ξ;n′〉 with excitation energy εξ at site

n′ are then given by

Qξ,n′ = |D, ξ;n′〉〈n′;D, ξ| = D†ξ,n′Dξ,n′ . (2.18)

The excitation energies of the intermediate states are εξ = E0h + Eξ − 2E1h.

The connection between the Kramers doublet ground states at site n (γ = 1, 2) and

the full manifold of states at site n′ (γ′ = 1, 2, ..., 6) is given by the projected hopping

term:

PHt,n,n′ =
2∑

γ=1

6∑
γ′=1

T γ,γ
′

n,n′ b
†
n,γbn′,γ′ , (2.19)

where the elements of the matrix T γ,γ
′

n,n′ describe an overlap between |J, Jz〉 or |Ψγ〉 states

in the absence or in the presence of the tetragonal distortion, respectively.

To obtain the matrix elements of T γ,γ
′

n,n′ we first consider the hopping operator on

the square lattice in the simplest case with no tetragonal distortion, ∆ = 0, and no

rotations of the IrO6 octahedra. Without loss of generality we consider x-bonds, and

then using symmetry arguments we obtain transfer matrix elements along y-bonds.

Along an x-bond the hopping occurs either through py- or pz-orbitals of oxygen. The
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py− orbital overlaps with |Z〉 = |xy〉 and pz− orbital overlaps with |Y 〉 = |zx〉 orbitals of

iridium. Correspondingly, we denote the hopping amplitudes as tZ,y and tY,z. However,

on the undistorted lattice tZ,y = tY,z and to simplify notations we denote the hopping

amplitude as t. Integrating over the oxygen ions, the effective hopping between Ir ions

can be approximated as teff = t2/∆pd, where ∆pd is the charge-transfer gap. In our

calculations we consider teff = 0.13 eV. The effective hopping Hamiltonian between Ir

ions along the x-bond is then given by

Hx
t = teff

∑
n

(
a†Zσ,naZσ,n+x + a†Y σ,naY σ,n+x + h.c.

)
(2.20)

Expressing operators a†Zσ,n, etc., in terms of b†γ,n operators, we get

Hx
t =

∑
n

∑
γ,γ′

T γ,γ
′

n,n+x(b†n,γbn+x,γ′ + h.c.) (2.21)

where the elements of the effective transfer matrix, T γ,γ
′

n,n+x, between γ and γ′ orbitals

can be written as

T γ,γ
′

n,n+x = teff

(
τγ,γ

′

Z + τγ,γ
′

Y

)
. (2.22)

Here we use the following notation:

τγ,γ
′

Z = γ′〈J, Jz|T̂ |pyσ〉〈pyσ|T̂ |J, Jz〉γ , (2.23)

τγ,γ
′

Y = γ′〈J, Jz|T̂ |pzσ〉〈pzσ|T̂ |J, Jz〉γ ,

where T̂ are hopping operators connecting neighboring Ir and O orbitals. In matrix

form τZ , τY are given by

τ̂Z =
1

3



1 0 0 −
√

2 0 0

0 1 0 0
√

2 0

0 0 0 0 0 0

−
√

2 0 0 2 0 0

0
√

2 0 0 2 0

0 0 0 0 0 0


(2.24)

and
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τ̂Y =
1

6



2 0 0
√

2 0 −
√

6

0 2
√

6 0 −
√

2 0

0
√

6 3 0 −
√

3 0
√

2 0 0 1 0 −
√

3

0 −
√

2 −
√

3 0 1 0

−
√

6 0 0 −
√

3 0 3


(2.25)

In the presence of tetragonal distortion and octahedra rotations, as in the case of

Sr2IrO4, the transfer matrix elements are more conveniently described using the global

coordinate system. The hopping between γ and γ′ states is then given by

T̄ γ,γ
′

n,n+x = teff

(
τ̄γ,γ

′

Z + τ̄γ,γ
′

Y

)
, (2.26)

where modified transfer matrices are defined as

τ̄γ,γ
′

Z = γ′〈ΨB|T̂ |pyσ〉〈pyσ|T̂ |ΨA〉γ , (2.27)

τ̄γ,γ
′

Y = γ′〈ΨB|T̂ |pzσ〉〈pzσ|T̂ |ΨA〉γ .

Explicitly, ˆ̄τZ and ˆ̄τY are given by

ˆ̄τZ = c2
α



s2
θ 0 0 sθcθ 0 0

0 s2
θ 0 0 sθcθ 0

0 0 0 0 0 0

sθcθ 0 0 c2
θ 0 0

0 sθcθ 0 0 c2
θ 0

0 0 0 0 0 0


(2.28)

and
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ˆ̄τY =
1

2



c2
θe

2ıα 0 0 −sθcθ 0 cθe
2ıα

0 c2
θe
−2ıα −cθe−2ıα 0 −sθcθ 0

0 −cθe−2ıα e2ıα 0 sθ 0

−sθcθ 0 0 s2
θe

2ıα 0 −sθ
0 −sθcθ sθ 0 s2

θe
−2ıα 0

cθe
−2ıα 0 0 −sθ 0 e−2ıα


(2.29)

Next, we apply PHt,n,n′ to the D†ξ,n′ state and obtain

PHt,n,n′D
†
ξ,n′ = (2.30)

2∑
γ=1

6∑
γ′=1

T γ,γ
′

n,n′ b
†
n,γbn′,γ′

15∑
ν=1

6∑
γ1,γ2=1

cξ,νm
ν
γ1γ2b

†
n′,γ1

b†n′,γ2

=

2∑
γ,γ′=1

6∑
γ1=1

15∑
ν=1

T γ,γ1n,n′ cξ,ν(mν
γ1γ′ −mν

γ′γ1)b†n,γb
†
n′,γ′ .

Here the terms with b†n′,γ1b
†
n′,γ2

for γ1, γ2 > 2 are projected out by the operator Pn′ .

Finally, using the following relation,

PHtQξ,n′HtP = [PHtD
†
ξ,n′ ][PHtD

†
ξ,n′ ]

†, (2.31)

where

PHt,n,n′D
†
ξ,n′ =

∑
σ,σ′=±1

Aξσ,σ′b
†
n,σb

†
n′,σ′ (2.32)

with

Aξn,n′;σ,σ′ =

6∑
γ1=1

15∑
ν=1

T σ,γ1n,n′ cξ,ν(mν
γ1σ′ −mν

σ′γ1) , (2.33)

we write the exchange Hamiltonian as

Hex,n,n′ =

2∑
σ,σ′=1

2∑
σ1,σ′1=1

15∑
ξ=1

(2.34)

1

εξ
{Aξn,n′;σ,σ′b†n,σb

†
n′,σ′A

ξ
n′,n;σ′1,σ1

bn′,σ′1bn,σ1} .
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Figure 2.2: (a) The anisotropic exchange couplings δJxy, δJz and the DM constant D
in meV (shown by red diamonds, green circles and blue squares lines, respectively) as
functions of Hund’s coupling, JH . (b) The exchange couplings Jx, Jy, Jz in meV (shown
by gray squares, cyan circles and magenta diamonds lines, respectively) as functions of
Hund’s coupling, JH . The microscopic parameters of the model are considered to be
α = 0 rad, ∆ = 0.15 eV, U2 = 1.8 eV, λ = 0.4 eV, teff = 0.13 eV.

We note that Aξn′,n;σ′,σ =
(
Aξn,n′;σ,σ′

)∗
. In the following, in order to shorten notations,

we omit the site indices denoting Aξn,n′;σ,σ′ ≡ Aξσ,σ′ and Aξn′,n;σ′,σ ≡
(
Aξσ,σ′

)∗
. We also

observe that
∑

ξ
1
εξ
Aξσ,σA

ξ
σ1,−σ1 = 0, since Aξσ,σ and Aξσ1,−σ1 connect different groups of

states |D, ξ〉 and are therefore ”orthogonal”. Defining operators Bnσσ′ = b†n,σbn,σ′ , we

may write the superexchange Hamiltonian (2.34) in the form

Hex,n,n′ =

15∑
ξ=1

1

εξ
{ (2.35)

Aξ↑↑

(
Aξ↑↑

)∗ (
Bn↑↑Bn′↑↑ +Bn↓↓Bn′↓↓

)
+

Aξ↑↓

(
Aξ↑↓

)∗ (
Bn↑↑Bn′↓↓ +Bn↓↓Bn′↑↑

)
+

Aξ↑↓

(
Aξ↓↑

)∗ (
Bn↑↓Bn′↓↑ +Bn↓↑Bn′↑↓

)
+

Aξ↑↑

(
Aξ↓↓

)∗ (
Bn↑↓Bn′↑↓ +Bn↓↑Bn′↓↑

)
}

Next, we introduce pseudospin operators Sαn = 1
2

∑
σ,σ′=±1 τ

α
σ,σ′b

†
σ,nbσ′,n with the

Pauli matrices τασ,σ′ , α = x, y, z and ρn =
∑

σ=±1 b
†
σ,nbσ,n and express operators Bnσσ′
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in terms of pseudospin operators as

Bn↑↑ = Szn + ρn

Bn↓↓ = −Szn + ρn

Bn↑↓ = S+
n (2.36)

Bn↓↑ = S−n .

This allows us to write the super-exchange Hamiltonian (2.35) on the bond n, n′ in

terms of the magnetic degrees of freedom of Ir4+ as

Hex,n,n′ = JzS
z
nS

z
n′ + JxS

x
nS

x
n′ + JyS

y
nS

y
n′ (2.37)

−D(SxnS
y
n′ − SynSxn′) +Wρnρn′ ,

where the coupling constants are given by the following expressions:

Jz = −2
∑
ξ

1

εξ

(
Aξ↑↑

(
Aξ↑↑

)∗
+Aξ↓↓

(
Aξ↓↓

)∗
(2.38)

−Aξ↑↓
(
Aξ↑↓

)∗
−Aξ↓↑

(
Aξ↓↑

)∗)
,

Jx = −2
∑
ξ

1

εξ

(
Aξ↑↑

(
Aξ↓↓

)∗
+Aξ↓↓

(
Aξ↑↑

)∗
(2.39)

+Aξ↑↓

(
Aξ↓↑

)∗
+Aξ↓↑

(
Aξ↑↓

)∗)
,

Jy = 2
∑
ξ

1

εξ

(
Aξ↑↑

(
Aξ↓↓

)∗
+Aξ↓↓

(
Aξ↑↑

)∗
(2.40)

−Aξ↑↓
(
Aξ↓↑

)∗
−Aξ↓↑

(
Aξ↑↓

)∗)
,

D = 2ı
∑
ξ

1

εξ

(
Aξ↑↓

(
Aξ↓↑

)∗
−Aξ↓↑

(
Aξ↑↓

)∗)
, (2.41)

W = −2
∑
ξ

1

εξ

(
Aξ↑↑

(
Aξ↑↑

)∗
+Aξ↓↓

(
Aξ↓↓

)∗
+

Aξ↑↓

(
Aξ↑↓

)∗
+Aξ↓↑

(
Aξ↓↑

)∗)
(2.42)
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The last interaction term W gives a constant energy shift and we will omit it. It

is also convenient to rewrite the remaining terms introducing the following notations:

δJz = Jz − Jy, δJxy = Jx− Jy on x-bond and δJz = Jz − Jx, δJxy = Jy − Jx on y-bond.

Then, Hex,n,n′ can be written as

Hex,n,n′ = JSnSn′ −D(SxnS
y
n′ − SynSxn′) (2.43)

+δJzS
z
nS

z
n′ + δJxy

(
Sn · rn,n′

) (
Sn′ · rn,n′

)
,

where rn,n′ is the unit vector along the n, n′ bond. In this form the nature of inter-

actions between pseudospin moments S is more clear. The first term describes the

Heisenberg isotropic interaction with a coupling constant J = Jy on the x-bond. We

note that for any possible set of microscopic parameters, the isotropic exchange is the

dominant exchange and has AFM nature. The second term is a Dzyaloshinsky-Moriya

(DM) interaction with a coupling constant D, which leads to a spin canting in the xy-

plane proportional to the ratio D/J . The third term describes an additional Ising-like

interaction of z-components of spins. δJz > 0 favors AFM ordering of spins along the z

axis and works as an easy axis anisotropy. δJz < 0 supports FM ordering of spins along

the z axis and works as an easy plane anisotropy. The last term is a pseudo-dipolar

interaction. Finally, the total superexchange Hamiltonian is given by

H =
∑
〈n,n′〉

Hex,n,n′ , (2.44)

where summation is over all bonds of the lattice.

2.4 Results and discussions

2.4.1 Application to Sr2IrO4

Below we present our results on how the exchange coupling constants Jx, Jy, Jz and

anisotropic couplings δJxy, δJz and D depend on the microscopic parameters of the

system. We first note that the main role of the Coulomb repulsion is to determine the

overall energy scale for the couplings. In all computations we take U2 = 1.8 eV, which

lays inside the range of values, 1.5 eV-2.5 eV, characteristic for iridates [32, 34]. We

will mostly set the SOC constant to be equal to λ = 0.4 eV - the value associated with
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Figure 2.3: (a) The anisotropic exchange couplings δJxy, δJz and DM constant D in
meV (shown by red diamonds, green circles and blue squares lines, respectively) and
(b) the exchange couplings Jx, Jy, Jz in meV (shown by gray squares, cyan circles and
magenta diamonds lines, respectively) as functions of the rotation angle α. The other
microscopic parameters considered to be ∆ = 0.15 eV, U2 = 1.8 eV, JH = 0.3 eV,
λ = 0.4 eV and teff = 0.13 eV.

Ir ions in the literature, however, we will also consider the smaller value λ = 0.22 eV,

which was suggested in the experimental work by Haskel et al [28].

Sr2IrO4 is also characterized by various structural distortions, the most important

of which are the tetragonal distortion and rotations of the oxygen octahedra. Both

of them are present even at ambient pressure. In calculations we either consider the

tetragonal distortion and the angle of rotation to be equal to ∆ = 0.15 eV and α = 0.2

rad, respectively, or we study how the exchange parameters depend on these quantities.

Finally, we consider the hopping parameter between Ir ions to be equal to teff = 0.13

eV, which is slightly lower than the values 0.2-0.3 eV suggested by ab-initio calculations.

These values of hoppings give too large values of exchange couplings if all other param-

eters are set as we described above. We believe, however, that hopping parameters

obtained within density functional theory are often reduced when correlations are taken

into account.

The effect of Hund’s coupling. In Fig.2.2 (a) we plot the anisotropic couplings

δJxy, δJz and the DM interaction constant D as functions of Hund’s coupling, JH , in

the absence of octahedral rotations, α = 0. In this case, the components of the vectors



28

Aξσ,σ′ (2.33) satisfy the following conditions:∑
ξ

1

εξ
(Aξ↑↑)

2 =
∑
ξ

1

εξ
(Aξ↓↓)

2 ,

∑
ξ

1

εξ
(Aξ↑↓)

2 =
∑
ξ

1

εξ
(Aξ↓↑)

2 . (2.45)

This symmetry reflects the fact that in the absence of the octahedra rotations there

is no spin dependent hopping and, consequently, no DM interaction. The anisotropic

terms δJz and δJxy are also zero at α = 0 and JH = 0 eV, but they acquire finite values

at JH 6= 0. We note that the Ising-like interaction, δJz < 0, makes the xy-plane the

pseudospin’s easy plane.

In Fig. 2.2 (b) we plot the exchange couplings Jx, Jy, Jz as functions of the Hund’s

coupling. On the x-bond, the isotropic exchange J = Jy. It is antiferromagnetic

for all considered values of JH and its strength varies in the range J ∈ (78 − 95)

meV for JH ∈ (0 − 0.5) eV. This compares well not only with an estimate J = 51

meV obtained by ab initio many-body quantum-chemical calculations [54], but also

with experimental findings in SrIr2O4, for which resonant inelastic x-ray scattering [25]

and resonant magnetic x-ray diffuse scattering measurements [27] indicate the isotropic

exchange to be J ' 60 meV and J ' 100 meV, respectively.

The effect of staggered rotations of IrO6 octahedra. The dependencies of the anisotropic

couplings δJxy, δJz and D and the exchange constants Jx, Jy, Jz on the strength of the

staggered rotations of the IrO6 octahedra, α, are presented in Fig.2.3 (a) and (b). We

first note that the isotropic exchange coupling J = Jy ∈ (64− 87) meV remains in good

agreement with experimental estimates in the whole range of values of α considered.

However, most importantly, the DM interaction becomes the dominant anisotropy even

at small α. At α ' 0.2 rad (11.5◦), the DM interaction is already about 23 meV, which

roughly corresponds to third of the isotropic interaction (see Fig.2.3 (b)). Such a large

ratio between the DM interaction and the isotropic Heisenberg exchange is very unusual

and has never been observed in 3d transition metal oxides.

The other anisotropic interactions, both the pseudo-dipolar in-plane interaction,

δJxy, and the Ising-like term, δJz, remain relatively small at finite values of α. We

note that δJz changes sign above some angle of octahedra rotation, αc ' 0.1 rad, but,

as it remains a subdominant interaction, the magnetic moments remain lying in the
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Figure 2.4: (a) The anisotropic exchange couplings δJxy, δJz and DM constant D in meV
(shown by red diamonds, green circles and blue squares lines, respectively) as functions
of the tetragonal CF splitting computed for α = 0.2 rad (b) The dependencies of the
isotropic exchange J on the strength of the tetragonal CF splitting ∆. Green squares,
orange circles, blue diamonds, magenta triangles lines correspond to α = 0; 0.1; 0.2; 0.3
rad, respectively. The other parameters are λ = 0.4 eV, U2 = 1.8 eV, JH = 0.3 eV and
teff = 0.13 eV.

xy-plane.

The effect of tetragonal distortion. Significant changes in the super-exchange pa-

rameters are caused by the tetragonal distortion. At ambient pressure the tetragonal

distortion is about ∆ ' 0.1 eV, however, larger values can be easily reached under pres-

sure [28]. In Fig.2.4 (a) we plot the dependencies of the anisotropic exchange couplings

δJxy, δJz and the DM coupling, D, on the strength of the tetragonal distortion, ∆. An

increased tetragonal distortion leads to a substantial decrease of both D and δJz, but

the overall hierarchy of anisotropic interactions remains the same. We see that if α

was not changing under pressure, the magnetic anisotropy would remain an easy plane

anisotropy for all values of the tetragonal distortion.

In Fig. 2.4 (b) we present the results on how the isotropic exchange depends on ∆ at

different values of α. We see that the isotropic part of the exchange coupling increases

with increasing strength of the tetragonal distortion. We also see that its dependence

on ∆ has a quantitatively similar character for all α, with the largest values of J reached

at α = 0. Importantly, for all values of α and ∆, the isotropic exchange remains the

dominant interaction with respect to the anisotropic terms.
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Figure 2.5: The mean field magnetic phase diagram in the parameter space of rotation
angle α and the SOC coupling λ computed (a) in the absence of the tetragonal distor-
tion, ∆ = 0 eV and (b) in the presence of the tetragonal distortion, ∆ = 0.15 eV. In
both parameter sets, the obtained magnetic structure is coplanar antiferromagnet with
varying spin canting angle φ = [π− (φA−φB)]/2, where φA and φB are the polar angles
of spins on sublattices A and B. The color on the plots indicates the scale for which
the angle φ changes with dark blue being the smallest and gray being the highest value
of the angle φ. The canted spin order is stabilized by a staggered rotations of oxygen
tetrahedra in the presence of the SOC. (c) The dependence of the spin canting angle
φ = 1/2 tan−1 (D/J) (in units of α) on the strength of the tetragonal CF splitting ∆
computed for λ = 0.22 eV (orange squares line) and λ = 0.4 eV (purple circles line).
The other microscopic parameters are chosen to be U2 = 1.8 eV, JH = 0.3 eV, and
teff = 0.13 eV, α = 0.2 rad.
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Magnetic phase diagram. Finally, we compute a magnetic phase diagram of the

model 2.43. The model allows for two distinct magnetic phases: a coplanar (or collinear)

two-sublattice antiferromagnet with spins lying in the xy-plane, and a collinear phase

with spins pointing along the c-axis. The coplanar phase is characterized by a spin

canting angle φ, which is simply given by φ = 1/2 tan−1 (D/J). The dependence of the

spin canting angle φ (in units of α) on ∆ computed for α = 0.2 rad, corresponding to

the angle of octahedral rotations at ambient pressure, and JH = 0.3 is presented in Fig.

2.5 (c). We can see that in the cubic case, ∆ = 0, the ratio φ/α is equal to unity and,

therefore, spins are canted exactly like the IrO6 octahedra. At finite ∆, the ratio φ/α is

smaller than one, suggesting that in the presence of the tetragonal distortion the spin

structure has an additional rigidity with respect to canting.

A magnetic structure can be determined by minimizing the classical energy taking

into account all exchange couplings present in the model. Assuming that in the presence

of a staggered rotation of oxygen octahedra, the magnetic structure is defined by two

magnetic sublattices, A and B, and that the orientation of the magnetic moments can be

described with the help of four angles, θA, θB, φA, φB, we can write the classical energy

as

Ecl(θA, θB, φA, φB) = Jz cos θA cos θB + (2.46)

(Jx + Jy)

2
sin θA sin θB(cosφA cosφB + sinφA sinφB)

−D sin θA sin θB(cosφA sinφB − sinφA cosφB) .

One can easily check that the contribution of the pseudo-dipolar interaction to the

classical energy cancels out. Thus, for any set of microscopic parameters, the classical

ground state is determined by the competition between the DM interaction and the

Ising-like anisotropy in the presence of a dominating AFM isotropic exchange.

In Fig.2.5 (a) and (b) we present a mean field magnetic phase diagram, where for

each set of parameters the magnetic structure is determined by minimizing Ecl with

respect to θA, θB, φA, φB. We considered two cases: Fig.2.5 (a) displays a phase diagram

computed in the absence of tetragonal distortion (∆ = 0 eV) and Fig.2.5 (a) displays

a phase diagram computed in the presence of the tetragonal distortion (∆ = 0.15 eV).

In both cases we considered the Hund’s coupling to be equal to JH = 0.3 eV. Both

phase diagrams contain only the coplanar antiferromagnet with varying canting angle
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φ = [π− (φA− φB)]/2, where φA and φB are polar angles of spins on sublattices A and

B. The color on the plots indicates the magnitude scale of the angle φ: dark blue colors

correspond to the smallest and light gray colors correspond to the highest values of the

angle φ. As we discussed above, in the absence of the tetragonal distortion, the canting

of magnetic moments rigidly follows the octahedral rotation and the canting angle φ is

exactly equal to the rotation angle α for all values of the SOC strength (see Fig.2.5(a)).

However, once the tetragonal distortion is present, the canting angle φ becomes smaller

than α. Moreover, the ratio φ/α decreases with decrease of the SOC constant (see

Fig.2.5(b)).

We have to note that our findings are not in full agreement with the phase diagram

presented by Jackeli and Khalliulin in Ref. [1], which shows that at large values of

tetragonal distortion the spin-flop transition from the in-plane canted spin state happens

to a collinear antiferromagnetic order along the z-axis. Instead, we found that at the

considered set of parameters the tetragonal distortion may lead to a disappearance of

the ferromagnetic moment and a stabilization of the antiferromagnetic order in the easy

xy plane.

Our findings are, however, in qualitative agreement with both pressure experiments

in SrIr2O4 [28] and the x-ray resonant magnetic scattering study comparing the magnetic

and electronic structures of SrIr2O4 and BaIr2O4. [29] The first study shows that when

the tetragonal distortion due to pressure becomes relatively strong, about 17 GPa,

the ferromagnetic order disappears. This magnetic transition was not attributed to

the gradual disappearance of the IrO6 rotations under pressure, because it would have

likely resulted in some kind of structural transition which was not observed. They also

found that the application of pressure up to at least 40 GPa does neither destroy the

insulating behavior nor, probably, the antiferromagnetic order. However, the direction

of the antiferromagnetic order parameter was not determined. The second study shows

the general robustness of the basal-plane antiferromagnetic order in single-layer iridates.

They found that in both SrIr2O4 and BaIr2O4, the antiferromagnetic component is

oriented along the [110] direction despite the fact that moving from SrIr2O4 to BaIr2O4

the tetragonal distortion is nearly doubled.
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Figure 2.6: (a) The anisotropic exchange couplings δJxy, δJz and the DM constant D
(in meV) as functions of SOC constant λ shown by red diamonds, green circles and blue
squares lines, respectively. (b) The DM constant D (in meV) as function of rotation
angle α. Black squares, cyan circles, blue diamonds lines correspond to λ = 0.2; 0.3; 0.4
eV, respectively. (a) and (b) The tetragonal field is considered to be equal to ∆ = 0.2
eV. (c) The isotropic exchange J (in meV) and (d) the spin canting angle φ (in units
of α) as functions of SOC constant λ. Gray squares, cyan circles, magenta diamonds
lines correspond to ∆ = 0.1; 0.2; 0.3 eV, respectively. (a),(c) and (d) The rotation angle
is considered to be equal to α = 0.2 rad. The remaining parameters are JH = 0.5 eV,
U2 = 2.5 eV, and teff = 0.1 eV.
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2.4.2 Application to Sr2Ir1−xRhxO4.

In this section we take a look at the properties of the Sr2Ir1−xRhxO4 family of com-

pounds, which results from substituting Sr2IrO4 by Rh ions [52]. Doping iridates with

Rh ions does not change the band filling since Rh and Ir are in the same family of ele-

ments. However, the 4d orbitals of Rh are smaller than the 5d orbitals of Ir, which leads

to a higher Coulomb repulsion, Hund’s coupling and tetragonal CF splitting. Smaller

atoms (such as Rh) also have reduced relativistic effects, including SO coupling. The ef-

fective hopping is reduced both due to a smaller overlap of the less extended 4d orbitals

as well as due to the increased Coulomb repulsion. All of this increases the importance

of correlation effects and CF splitting as compared to that of SOC.

We also note that Sr2RhO4, the limiting case of Rh doping, shares with Sr2IrO4 the

structural feature of staggered octahedra rotations about the axis perpendicular to the

Rh/Ir planes. The angles of rotation are similar to each other: ∼ 9.4◦ for Sr2RhO4 and

∼ 12◦ for Sr2IrO4 [52]. This structure is preserved at intermediate levels of doping. As a

result in the doped compounds the same interaction components are present as in pure

Sr2IrO4 (Coulomb, Hund, SOC, CF, oxygen-assisted hopping, lattice distortions). Thus

we expect the magnetic Hamiltonian to have the same structure of interactions. What

changes is the overall energy balance of on-site interactions, which in the Rh-doped

iridates eventually leads to the appearance of different magnetic phases compared to

those in pure iridium compounds.

Let us note that a reduced hopping simply leads to a decrease of the energy scale of

all interactions (both the isotropic term and the anisotropies). The effects of reduced

SOC are more intricate since SOC is the only interaction that mixes the orbital and

the spin degrees of freedom of the holes. Thus we also expect the energy scale of the

anisotropies to be reduced as compared to the isotropic term. This, however, does not

diminish the importance of the anisotropic terms as their essential role is to break the

SU(2) symmetry of the isotropic interaction.

In Fig. 2.6 (a) and (c) we plot the dependencies of the anisotropic and isotropic

interactions, respectively, on the strength of λ. We adjust all other parameters in

accordance with the rhodium doping picture discussed above: ∆ = 0.2 eV, α = 0.2

rad, JH = 0.5 eV, U2 = 2.5 eV, and teff = 0.1 eV. A similar set of parameters might

be realized at low Rh doping. As expected the overall energy scale of the magnetic
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interactions is decreased due to Coulomb repulsion and smaller hopping. In Fig. 2.6

(a) we also see that once the SOC becomes too small relative to other interactions

to effectively mix the orbital and spin degrees of freedom the anisotropic interactions

quickly drop and reach zero in the limit of no SOC.

The behavior of the isotropic interaction is more interesting as it is weakly nonmono-

tonic as a function of SO-coupling. This can be explained when we look at different

values of ∆. Gray, cyan, and magenta lines in Fig. 2.6 (c) show the isotropic interaction

corresponding to ∆ = 0.1, 0.2, 0.3 eV, respectively. Since cubic orbitals have different

hopping amplitudes due to the staggered rotations of the octahedra and the orbital

symmetries, the orbital composition of the ground state also determines the isotropic

part of the exchange Hamiltonian. As the orbital composition is very sensitive to the

interplay between the SOC and the CF, the small changes in their relative contribution

lead to a non-monotonic behavior of J .

Fig. 2.6 (b) shows the dependence of the DM anisotropy on the staggered rotation

angle α computed for λ = 0.2; 0.3; 0.4 eV (respectively, black, cyan and blue lines). As

is the case for the pure Sr2IrO4 compound the DM interaction depends heavily on the

angle but as we discussed above the overall range of DM interactions is smaller.

Finally, in Fig. 2.6 (d) we present the spin canting angle φ (in units of α) as a

function of the SOC constant λ for various values of the tetragonal distortion ∆. As

expected, the canting angle is zero in the limit of zero SOC and is increasing with

increasing λ, demonstrating the key role of SOC in the entanglement of the spin and

lattice degrees of freedom. As we discussed above, the spin canting angle is suppressed

by the tetragonal distortion.

Our findings are in a qualitative agreement with experimental findings for the

Sr2Ir1−xRhxO4 family of compounds showing that Rh doping rapidly suppresses the

magnetic transition temperature TC from 240 K at x = 0 to almost zero at x = 0.16

[52]. The disappearance of long range magnetic order at small doping in real com-

pounds is a rather complicated phenomenon, related to both the reduction of magnetic

interactions but also to the more metallic behavior of doped compounds. This aspect,

however, can not be considered in our approach based on the assumption of a Mott

insulator. We can only speculate that in Rh-doped iridates the splitting between the

J = 1/2 and the J = 3/2 states is substantially smaller than in pure iridium systems
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and, consequently, these two manifolds are strongly mixed by both Hund’s coupling and

tetragonal CF. The latter leads to a wider bandwidth and more metallic behavior. In-

terestingly, at high Rh doping, the system again becomes insulating, however for rather

different reasons. There is an energy level mismatch for the Rh and Ir sites that makes

the hopping of the carriers between Rh and Ir ions more difficult. The randomness of

the Rh/Ir occupations gives rise to Anderson localization and an insulating state [52].

The magnetically ordered phase reappeared at x > 0.4, but because of frustration it has

rather low ordering temperature TC of the order half a Kelvin. This magnetic phase

needs to be studied in details both experimentally and theoretically.

2.5 Summary

In this chapter we provided a theoretical framework for the derivation of the effective

super-exchange Hamiltonian governing magnetic properties of transition metal oxides

with partially filled 4d and 5d shells. We particularly focused on iridates and rhodates

– materials which exhibit a rich variety of behavior owing to the interplay of correlation

effects, strong SOC and lattice distortions. Our approach allows one to relate the non-

trivial magnetic behavior observed in these materials to their microscopic parameters.

We show that the pseudospin super-exchange interactions governing the magnetic prop-

erties of this class of insulating materials have anisotropic components of unusual types,

leading not only to a dimensional reduction in pseudospin space (i.e. easy plane or easy

axis anisotropy), but also to the chiral DM interaction and to additional frustration by

bond-dependent interactions.

How to derive exchange couplings from a given Hubbard-type Hamiltonian in the

Mott-insulating regime is generally well understood. What gives rise to a certain com-

plexity in our case is the combination of interactions and single particle energy shifts

operating in different Hilbert subspaces. We restrict our consideration to the case of

a ground state configuration of a single hole per transition metal ion in a pseudospin

doublet state in one of the d-orbital multiplets. The exchange process then involves

intermediate states with either zero holes or two holes. The latter states are governed

by the Coulomb interaction components, especially the Hund’s coupling. These ionic

eigenstates need to be constructed and must be projected on to the single particle states
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describing the hopping processes. The resulting exchange couplings are then given by

summation over all relevant intermediate eigenstates of the corresponding hopping ele-

ment squared over the excitation energy of the intermediate state.

The proposed theoretical approach can be applied to compute exchange couplings

in iridium and rhodium oxides with different lattice geometries. Many of these systems

have been suggested as candidates for either interesting magnetic orders or spin-liquid

behavior in the Mott insulator regime. Although the approach is quite general and can

be applied to a variety of compounds, in this chapter we focused on the single-layer

Sr2IrO4 and Sr2Ir1−xRhxO4 compounds, which have received much attention recently.

For these systems we first derive the isotropic and anisotropic interactions analytically

and then study their dependencies on microscopic parameters such as Hund’s and SOC

coupling, and the strength of the lattice distortions.

Our results are the following. First, the overall strengths of the exchange couplings

calculated by us appear to be in good agreement with experimental data, where avail-

able. While the Ising-like and pseudospin anisotropic interactions are typically not

larger than ten percent of the isotropic exchange, the DM coupling is unusually large.

It may be as large as 50% of the isotropic exchange coupling for realistic values of the

octahedra rotation angle. This emphasizes the importance of the SOC.

We computed the magnetic phase diagram of the model in the approximation of

treating the pseudospins as classical objects.. We show that for the parameter set most

closely corresponding to the actual microscopic parameters of Sr2IrO4, the magnetic

ground state of this compound is a coplanar canted antiferromagnet. This finding is

in agreement with the experimental observation of the weak ferromagnetic moment

accompanying the ground-state antiferromagnetic order in Sr2IrO4. We computed the

spin canting angle and show that its magnitude scales with the angle of the staggered

rotations of the IrO6 octahedra, as observed experimentally.

Finally, we studied how the properties of the pure iridium systems are changed with

Rh doping. We show that Rh doping significantly modifies the hierarchy of many-body

and single-particle interactions: the weaker SOC combined with a stronger Coulomb in-

teraction on Rh sites lead to overall smaller magnetic interactions and a weaker coupling

between magnetic and structural degrees of freedom.



Chapter 3

Importance of anisotropic

exchange interactions in

honeycomb iridates. Minimal

model for zigzag

antiferromagnetic order in

Na2IrO3.

3.1 Introduction

In the previous chapter, we applied the Mott insulator scenario, extending the origi-

nal study by Jackeli and Khaliullin [1], and developed a theoretical framework for the

derivation of effective super-exchange Hamiltonians that govern the magnetic properties

of systems with strong SO coupling. We showed that the super-exchange Hamiltonian

describing interactions between the pseudospins might have unusual anisotropic com-

ponents. Moreover, these anisotropic interactions might be the dominating interactions

between magnetic moments. The form of these anisotropic interactions may also be quite

unusual. In particular, they do not need to be confined to the traditional anisotropic

38



39

x 

z 

 Na 
 O-px 

 O-py 

 O-pz 

 Ir z 

~ z 

y 

 Ir 
 Ir 

y 

x 

(b) 

pz
 

pz
 

A B 

y 

x 

Figure 3.1: (a) Schematic representation of A2IrO3 structure. x−, y− and z− n.n. Ir-Ir
bonds are shown by red, green and blue solid lines. x̃−, ỹ− and z̃− second n. n. Ir-Ir
bonds are shown by red, green and blue dotted lines. Thick magenta lines represents
Ir-O-Na-O-Ir second n. n. super-exchange paths. (b) Undistorted 90◦ Ir-O-Ir bond.
Local axes for Ir4+ ions on A and B sublattices are the same as the global axes. Two
possible super-exchange paths via upper or lower oxygen are shown.

interaction types acting equally on all sites of the lattice (i.e. easy-plane or easy-axis

anisotropy). Instead, the anisotropic interactions might involve coupling between dif-

ferent components of spins sitting on different lattice sites. The Dzyaloshinskii-Moriya

(DM) interaction [55, 56] and the Kitaev interaction on the honeycomb lattice [3, 46]

are salient examples of such interactions. We focused on iridates and rhodates with

tetragonal symmetry, e.g. we studied in detail the magnetic interactions in Sr2IrO4

[5, 2, 23, 24, 57, 58].

In this chapter, we study the magnetic properties of A2IrO3 [8, 47, 48, 49, 59]

(A=Na,Li) in which the Ir4+ ions occupy the sites of a honeycomb lattice. The nearest-

neighbor (n. n.) super-exchange in honeycomb iridates in the absence of lattice distor-

tions, the so-called Kitaev-Heisenberg (KH) model, was first proposed in Refs. [1, 46].

They showed that in these systems the coupling between n. n. Ir magnetic moments

occurs through both direct exchange between Ir4+ ions and through a super-exchange

coupling mediated by an intermediate oxygen along the 90◦ Ir-O-Ir bond. The latter

process gives rise to a nonzero anisotropic interaction between pseudospins, which has

the form of the aforementioned Kitaev interactions, but only for a finite value of the

Hund’s coupling. The KH model correctly captures the nature of the anisotropic part
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of the magnetic interactions in Na2IrO3 honeycomb compounds and also predicts some

non-trivial properties of these compounds at finite temperatures [50, 51]. Nevertheless,

the model does miss some essential features: it does not account for both the zigzag

magnetic order and for the spectrum of magnetic excitations in Na2IrO3 measured in

neutron scattering experiments [48, 49, 59]. Partly, this is because the original KH

model neither includes further neighbor interactions, which have been shown to play a

significant role in stabilizing the zigzag antiferromagnetic ordering in Na2IrO3 [12, 59],

nor lattice distortions, which might also be essential for these compounds.

Here we revisit the KH model [1, 46] and derive its extension up to second neighbor’s

interactions, starting from the exact eigenstates of the single-ion microscopic Hamilto-

nian which equally includes both the SO coupling and the trigonal distortion. In this

context, our work differs from the recent study by Bhattacharjee, Lee and Kim [60], in

which the effective spin Hamiltonian was derived by setting the energy scale associated

with trigonal distortion to infinity first, followed by that of the SO energy scale. We

show that the effective spin Hamiltonian on the honeycomb lattice, whose bonding ge-

ometry is shown in Fig. 3.1 (a), contains several anisotropic spin interactions among

which the strongest is the Kitaev interaction between nearest neighbors.

We also compute the super-exchange interaction between the second neighbors form-

ing two triangular sublattices, and find that it is of a form similar to the n. n. inter-

action, i.e. the dominant part can be written as a sum of isotropic Heisenberg and

anisotropic Kitaev terms. These interactions are only slightly smaller than the n. n.

Kitaev interactions. Other anisotropic interactions, which couple different components

of spins on a given bond, are significantly smaller and most of them are non-zero only

in the presence of trigonal lattice distortions. In this respect they are different from the

Kitaev-like interactions which are present even in the ideal structure.

The magnetic phase diagram which emerges from our study is presented in Fig. 3.5.

This is the key result of this chapter. We argue that the zigzag magnetic order, experi-

mentally observed in Na2IrO3, is stabilized by the interplay of four major interactions:

isotropic antiferromagnetic and anisotropic ferromagnetic Kitaev interactions for n. n.

bonds, isotropic ferromagnetic and anisotropic antiferromagnetic Kitaev interactions for

the next-nearest neighbors. Unlike in other theoretical studies of magnetic properties of

Na2IrO3 [12, 14, 61, 62], in our model the zigzag phase is stabilized for both the correct
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signs of n. n. interactions, and even without invoking third neighbor interactions.

The rest of the chapter is organized as follows. In Sec. 3.2, we introduce the single ion

microscopic model appropriate for the description of the physical properties of iridates

on the honeycomb lattice. We first obtain one-particle eigenstates taking into account

only SO coupling and trigonal CF interaction. We then compute two-particle excited

eigenstates fully considering correlation effects. Then, in Sec. 3.3, we briefly review the

derivation of an effective super-exchange Hamiltonian for these systems. All technical

details of the derivation can be found in the previous chapter. In Sec. 3.4, we obtain

hopping matrices for neighboring iridium ions. Our calculation is based on a tight-

binding fitting of ab-initio electronic structure in the presence of trigonal distortion

performed by Foyevtsova et al [63]. In Sec. 3.5, we present our results on the magnetic

interactions. We show that these interactions can be most generally represented by a

3× 3 bond-dependent exchange coupling matrix. We show that, while the Kitaev-type

of anisotropy is determined by the inequality of its diagonal elements due to the Hund’s

coupling, the off-diagonal matrix elements are anisotropies mostly caused by the trigonal

crystal field. In Sec. 3.6, taking into account only the dominant interactions, we perform

classical Monte Carlo simulations and obtain the low-temperature phase diagram of the

minimal super-exchange model for honeycomb iridates. We conclude in Sec. 3.7 with a

summary and discussion of our results.

3.2 Single-ion Hamiltonian

3.2.1 One-particle eigenstates

In all iridates considered here, the Ir4+ ions sit inside an oxygen cage forming an octa-

hedron. This octahedral CF splits the five 5d orbitals of Ir4+ into doubly degenerate eg

orbitals at higher energy and into the three-fold degenerate t2g multiplet. In iridates,

the energy difference between eg and t2g levels is large and is typically of the order 2-3

eV. Because of this, the five electrons occupy only the low lying t2g orbitals. As a con-

sequence, the on-site interactions, such as the SO, Coulomb and Hund’s interactions,

as well as additional symmetry-lowering CF interactions, e.g. the trigonal CF, can be

considered within the t2g manifold only. In this limit of large octahedral CF, the SO

coupling has to be projected onto the t2g manifold, assuming an effective orbital angular
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momentum L = 1. In terms of local axes, which are bound to the oxygen octahedron,

the t2g orbitals of Ir ions are |X〉 ≡ |yz〉, |Y 〉 ≡ |zx〉, and |Z〉 ≡ |xy〉. The SO and

trigonal CF interactions give rise to a splitting of the levels according to the symmetry

of the underlying lattice. In the case of the honeycomb iridates, A2IrO3, the trigonal

CF arises from a compression of the oxygen cages along the [111] directions (local C3

axis). At ambient pressure, the splitting of the t2g levels due to the trigonal CF is about

110 meV [64] which is smaller, but of the same order of magnitude as the SO coupling,

which is about 400 meV. Therefore, here we treat the SO coupling and the trigonal CF

interactions on the same footing. Also, it is believed that much larger values of the

trigonal distortion can be reached by applying uniaxial pressure.

Since the Hamiltonian is time-reversal invariant, the ground-state of the single-ion

single-hole (5d5 configuration of Ir4+ ion) is a Kramer’s doublet, which we represent as

a pseudospin-1/2. However, the choice of the two orthonormal states within the dou-

blet that would represent the pseudospin-up and pseudospin-down states deserves some

well-inspired consideration, as this choice determines the coordinate system of the final

super-exchange Hamiltonian. Since the most prominent anisotropy, the Kitaev inter-

action, has the simplest form in the coordinate system bound to the cubic axes of the

oxygen octahedron environment, we choose the two orthogonal states that correspond

to this particular Cartesian reference frame. In the absence of the trigonal distortion,

the ground state doublet is simply a Jeff = 1/2 doublet and the good choice of the states

within it are the Jzeff = ±1/2 states. In the presence of the trigonal distortion, the choice

of the representation is not as straightforward since the ground state doublet contains a

mixture of both Jeff = 1/2 and Jeff = 3/2 states. To resolve this, we first find a random

set of orthonormal states within the doublet and then make linear combinations of them

in such a way that pseudospin-1/2 “up-state” has no |Jeff = 1/2, Jzeff = −1/2〉 compo-

nent, whereas pseudospin-1/2 “down-state” has no |Jeff = 1/2, Jzeff = 1/2〉 component.

Namely, we allow the trigonal CF to admix the Jeff = 3/2 states to the Jeff = 1/2 states,

but we do not allow the latter to mix among themselves.

In the most simple form, the single-ion Hamiltonian can be written when the axis

of the quantization of angular momentum is along the [111] direction:

Hλ,∆ = λS · L + ∆L2
[111], (3.1)
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where L[111] denotes the component of the angular momentum along the [111] axis. Here

the first term describes the SO coupling and the second term describes the trigonal CF.

However, this form is not useful if we want to obtain our final result in the Cartesian

reference frame bounded to the cubic crystallographic axes. If now we rewrite the CF

term in terms of it’s eigenstates, then the Hamiltonian (3.1) becomes:

Hλ,∆ = λS · L +
∆

3

(
−2|a1g〉〈a1g|+ |e+

g 〉〈e+
g |+ |e−g 〉〈e−g |

)
, (3.2)

where the crystal field eigenstates include the low-energy singlet |a1g〉 and the higher

energy doublet |e±g 〉. The singlet state can be written as

|a1g〉 = ν̂x|X〉+ ν̂y|Y 〉+ ν̂z|Z〉, (3.3)

where ν̂ = (ν̂x, ν̂y, ν̂z) is the unit vector parallel to the [111] trigonal axis (ν̂j = 1/
√

3).

The doublet state can be conveniently written using the following chiral basis:

|e+
g 〉 = ν̂xe

−iω|X〉+ ν̂ye
+iω|Y 〉+ ν̂z|Z〉,

|e−g 〉 = ν̂xe
+iω|X〉+ ν̂ye

−iω|Y 〉+ ν̂z|Z〉,
(3.4)

where ω ≡ 2π/3. Now, that the CF part of the Hamiltonian is written in an L-

independent way, we are free to choose the angular momentum quantization axis along

the cubic z direction for our basis.

The basis we use is Ĵ = {|12 , 1
2〉, |12 ,−1

2〉, |32 , 3
2〉, |32 , 1

2〉, |32 ,−1
2〉, |32 ,−3

2〉}. The details

of this basis and its relation to the basis of the cubic orbitals are given in the previous

chapter. The Hamiltonian matrix in this basis is given by

Ĥ =



−λ 0 − (1−ı)∆
3
√

6
0 (1+ı)∆

3
√

2
ı∆
3

√
2
3

0 −λ ı∆
3

√
2
3

(1−ı)∆
3
√

2
0 − (1+ı)∆

3
√

6

− (1+ı)∆

3
√

6
− ı∆

3

√
2
3

λ
2

(1+ı)∆

3
√

3
ı∆

3
√

3
0

0 (1+ı)∆

3
√

2

(1−ı)∆
3
√

3
λ
2 0 ı∆

3
√

3
(1−ı)∆

3
√

2
0 − ı∆

3
√

3
0 λ

2 − (1+ı)∆

3
√

3

− ı∆
3

√
2
3 − (1−ı)∆

3
√

6
0 − ı∆

3
√

3
− (1−ı)∆

3
√

3
λ
2


. (3.5)

Diagonalization of Ĥ leads to three doublets at energies

E(1,2) = −∆

6
− λ

4
− 1

2

√
2λ2 + (∆− λ

2
)2,
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corresponding to eigenstates |Φ1〉 and |Φ2〉,

E(3,4) = −∆

6
− λ

4
+

1

2

√
2λ2 + (∆− λ

2
)2,

corresponding to eigenstates |Φ3〉 and |Φ4〉, and

E(5,6) =
∆

3
+
λ

2
,

corresponding to eigenstates |Φ5〉 and |Φ6〉. Within the ground state doublet (|Φ1〉 and

|Φ2〉) we choose the orthonormal states such that the Jzeff = ±1/2 states do not mix

with each other as mentioned above.

3.2.2 Two-hole states

In Chapter 2 we explained how to obtain two-hole eigenstates. We refer the reader there

for details, as we only briefly outline the main steps and set notations here.

The full two-hole Hamiltonian is the sum of two contributions: a single-particle

term, Hλ,∆, which includes the SO coupling and trigonal CF, and the many-body part,

Hint, given by the Coulomb interaction, U2, and the Hunds coupling, JH . There are

6× 5/2 = 15 partly degenerate two-hole eigenstates obtained by diagonalization of the

full on-site Hamiltonian

Hint+λ,∆ ≡ Hint +Hλ,∆ . (3.6)

We denote energy eigenstates of the full Hamiltonian (3.6) as

|D, ξ〉 =

15∑
µ=1

cξµ|⊕⊕, µ〉 , (3.7)

where the two-hole basis states |⊕⊕, µ〉 are simply given by direct products of eigenstates
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|Φ1〉, ...|Φ6〉 diagonalizing one-particle Hamiltonian (3.5):

|⊕⊕, 1〉 ≡ |Φ1Φ2〉
|⊕⊕, 2〉 ≡ |Φ1Φ3〉
|⊕⊕, 3〉 ≡ |Φ1Φ4〉
|⊕⊕, 4〉 ≡ |Φ1Φ5〉
|⊕⊕, 5〉 ≡ |Φ1Φ6〉
|⊕⊕, 6〉 ≡ |Φ2Φ3〉
|⊕⊕, 7〉 ≡ |Φ2Φ4〉
|⊕⊕, 8〉 ≡ |Φ2Φ5〉
|⊕⊕, 9〉 ≡ |Φ2Φ6〉
|⊕⊕, 10〉 ≡ |Φ3Φ4〉
|⊕⊕, 11〉 ≡ |Φ3Φ5〉
|⊕⊕, 12〉 ≡ |Φ3Φ6〉
|⊕⊕, 13〉 ≡ |Φ4Φ5〉
|⊕⊕, 14〉 ≡ |Φ4Φ6〉
|⊕⊕, 15〉 ≡ |Φ5Φ6〉

(3.8)

We denote by cξµ and Eξ, correspondingly, the eigenvectors and eigenvalues and ξ =

1, ...15.

3.3 Derivation of the super-exchange Hamiltonian

The super-exchange process which couples the magnetic moments of Ir4+ ions originat-

ing from the Kramers’ doublet ground states involves intermediate states with either

zero holes or two holes. As discussed in Sec.3.2.2, the latter states are governed by the

Coulomb and the Hund’s interaction, as well as by the SO coupling and the trigonal

CF. The connection between the Kramers’ doublet ground states Φ1 and Φ2 at site n

(γ = 1, 2) and the full manifold of Φ-states at site n′ (γ′ = 1, 2, ..., 6) is given by the
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projected hopping term:

PHt,n,n′ =
2∑

γ=1

6∑
γ′=1

T γ,γ
′

n,n′ b
†
n,γbn′,γ′ , (3.9)

where the elements of the matrix T γ,γ
′

n,n′ will be derived in the next section. For the

moment, let us derive the super-exchange Hamiltonian treating T γ,γ
′

n,n′ as generic hopping

matrix between either n. n. or next n. n. Ir4+ ions.

The super-exchange Hamiltonian, obtained by the second order perturbation theory,

can be written as

Hex,n,n′ =
∑
ξ

1

εξ
PHt,n,n′Qξ,n′Ht,n′,nP , (3.10)

where

P =
∏
n

∑
σn=±1

|1/2, σn/2;n〉〈n; 1/2, σn/2| (3.11)

is the projection operator onto the ground states with one hole at site n. The projection

operators onto two-hole intermediate states |D, ξ;n′〉 with excitation energy εξ at site

n′ are given by

Qξ,n′ = |D, ξ;n′〉〈n′;D, ξ| = D†ξ,n′Dξ,n′ . (3.12)

The excitation energies of the intermediate states are εξ = E0h +Eξ − 2E1h. Rewriting

operator Dξ,n as Dξ,n =
∑15

ν=1

∑6
γ1,γ2=1 cξ,νm

ν
γ1γ2b

†
γ1,nb

†
γ2,n, where by b†γ,n we denote an

operator creating a hole of the type γ = 1, ...6, which refers to the component of the

single-hole vector Φ̂ at the site n and the tensor m̂ has only two non-zero elements for

each state ν:

m1
1,2 = m2

1,3 = m3
1,4 = m4

1,5 = m5
1,6 =

m6
2,3 = m7

2,4 = m8
2,5 = m9

2,6 = m10
3,4 =

m11
3,5 = m12

3,6 = m13
4,5 = m14

4,6 = m15
5,6 = 1

and

m1
2,1 = m2

3,1 = m3
4,1 = m4

5,1 = m5
6,1 =

m6
3,2 = m7

4,2 = m8
5,2 = m9

6,2 = m10
4,3 =

m11
5,3 = m12

6,3 = m13
5,4 = m14

6,4 = m15
6,5 = −1 .
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It is convenient to rewrite the Hamiltonian (3.10) in the second-quantized form:

Hex,n,n′ =
2∑

σ,σ′=1

2∑
σ1,σ′1=1

15∑
ξ=1

1

εξ
{Aξn,n′;σ,σ′b†n,σb

†
n′,σ′A

ξ
n′,n;σ′1,σ1

bn′,σ′1bn,σ1} , (3.13)

where we have defined coefficients Aξn,n′;σ,σ′ as

Aξn,n′;σ,σ′ =

6∑
γ1=1

15∑
ν=1

T σ,γ1n,n′ cξ,ν(mν
γ1σ′ −mν

σ′γ1) . (3.14)

Next, we define the magnetic degrees of freedom with the help of the pseudospin

operators Sαn = 1
2

∑
σ,σ′=±1 τ

α
σ,σ′b

†
σ,nbσ′,n and the density operator ρn =

∑
σ=±1 b

†
σ,nbσ,n.

With α = x, y, z, we denote the spin component index and τασ,σ′ are the Pauli matrices.

Then, the super-exchange Hamiltonian (3.13) on the bond n, n′ can be written in terms

of the magnetic degrees of freedom of Ir4+ as

Hex,n,n′ =
∑
αβ

Ξαβn,n′S
α
nS

β
n′ +Wρnρn′ , (3.15)

α, β label Cartesian components of pseudospins. The first term represents the most

general bilinear form of the super-exchange Hamiltonian. The second term gives a

constant energy shift and we shall hereafter omit it. We also note that because of time

reversal symmetry, there are no terms of the kind Sαnρn′ . The exchange coupling matrix

Ξαβ on the bond n, n′ has the form

Ξn,n′ =


Jx Jxy Jxz

Jyx Jy Jyz

Jzx Jzy Jz

 (3.16)

The hermiticity property of the Hamiltonian implies Ξ†n′,n = Ξn,n′ . In the following,

we shall call Ξαβ1 and Ξαβ2 the exchange coupling matrix for nearest and second near-

est neighbors, respectively. Because of the lack of the tight-binding parameters for

third nearest neighbors, we will not derive the Ξαβ3 matrix and treat the third neighbor

coupling as isotropic.
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3.4 The hopping matrix

3.4.1 The nearest neighbors hopping matrix

In A2BO3 compounds, the honeycomb lattice of Ir4+ ions is embedded in the cubic

lattice and corresponds to one of the (111) planes. Three kinds of honeycomb lattice

bonds, denoted as x, y and z and drawn by red, green and blue solid lines in Fig. 3.1

(a), correspond to the cubic face diagonals along vectors (0,1,1), (1,0,1) and (1,1,0),

respectively.

We first consider the hopping matrix between neighboring Ir4+ ions. The strongest

n. n. hopping is via an intermediate oxygen ion. For each pair of n. n. Ir4+ ions,

there are two Ir-O-Ir paths and the total hopping amplitude arises as a sum of these

two hoppings. The direct hopping between nearest Ir ions is also not negligible due to

the extended nature of 5d orbitals. Thus, the total hopping Hamiltonian comes from

two contributions: Ht = HO−assist +Hdir.

We focus our discussion on the hopping along a single z-bond because the system

is translationally invariant and contributions from x and y bonds can be obtained by

rotational symmetry. Along the z−bond, the 90◦ hopping occurs via pz−orbitals of

oxygen ions, which, following Ref. [1], we call the upper and the lower one (see Fig.

3.1 (b)). The upper pz−orbital overlaps with the X orbital of the Ir4+ ion on the A

sublattice and with the Y orbital on the B sublattice. Vice versa, the lower pz−orbital

overlaps with the Y orbital of the Ir4+ ion on the A sublattice and with the X orbital

of the Ir4+ ion on the B sublattice. The overlaps of X and pz and Y and pz are equal.

Thus, we have tX,z = tY,z = tpdπ. We next integrate out the upper oxygen ion and

compute the effective hopping between Ir4+ ions through the upper Ir-O-Ir bond. The

amplitude of the effective Ir-Ir hopping is then equal to t1o = t2pdπ/∆p and ∆p stands

for the charge transfer gap. The hopping via the lower oxygen is just the complex

conjugate of the hopping via the upper oxygen. The direct hopping along a z-bond has

the biggest matrix element for diagonal hopping between nearest Z orbitals. We denote

the amplitude of this hopping as td. In our calculations for n. n. hoppings, we will

use the value of the oxygen assisted hopping equal to t1o = 230 meV and the direct

hopping equal to td = 67 meV. These values were obtained by Foyevtsova et al [63].

by tight-binding fitting of ab-initio electronic structure calculations in the presence of
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trigonal distortion.

For the ultimate derivation of the super-exchange Hamiltonian we do not need the

whole 6× 6 hopping matrix but only its first two lines connecting ground state doublet

Φ1 and Φ2 to all six states belonging to Φ̂. Combining contributions from the two paths

(via the upper and via the lower oxygens), and adding direct hopping, we obtain the

effective hopping Hamiltonian between n. n. Ir4+ ions along the z-bond

Hz
t =

∑
n

∑
γ,γ′

T γ,γ
′

1,n,n+z(b
†
n,γbn+z,γ′ + h.c.), (3.17)

where b†γ,n is an operator creating a hole on site n of the type γ = 1, ...6, which refers

to the components of the vector Φ̂. The hopping matrix is given by

T1,n,n+z =

(
〈Φ1|T̂1|Φ1〉 〈Φ1|T̂1|Φ2〉 〈Φ1|T̂1|Φ3〉 〈Φ1|T̂1|Φ4〉 〈Φ1|T̂1|Φ5〉 〈Φ1|T̂1|Φ6〉
〈Φ2|T̂1|Φ1〉 〈Φ2|T̂1|Φ2〉 〈Φ2|T̂1|Φ3〉 〈Φ2|T̂1|Φ4〉 〈Φ2|T̂1|Φ5〉 〈Φ2|T̂1|Φ6〉

)
(3.18)

Let us analyze the structure of the hopping matrix (3.18) in the absence of trigonal

distortion, ∆ = 0. In this case, the single-hole vector Φ̂ is nothing else but the vector Ĵ =

{|12 , 1
2〉, |12 ,−1

2〉, |32 , 3
2〉, |32 , 1

2〉, |32 ,−1
2〉, |32 ,−3

2〉} diagonalizing the SO interaction. In this

limit, the two transfer amplitudes via upper and lower oxygen interfere in a destructive

manner and, because of this, the only non-zero elements of the effective transfer matrix

are

T 1,6
n,n+z = T 2,3

n,n+z = − 2ı√
6
t21o

and their complex conjugates, where γ = 1, 2 correspond to |1/2,±1/2〉 and γ = 3, 6

correspond to |3/2,±3/2〉 states. As was shown in Refs. [65, 1] this massive cancellation

of hopping terms in the absence of trigonal distortion leads to a vanishing isotropic part

of the super-exchange mediated by oxygen ions. The non-zero n. n. isotropic term is,

therefore, entirely determined by the direct hopping td between d-orbitals of the Ir ions.

3.4.2 The second neighbor hopping matrix

Next, we derive the hopping matrix for second neighbors. Six bonds between second

neighbors Ir4+ ions on the honeycomb lattice correspond to (2,1,-1), (1,2,1), (-1,1,2),

(-2,-1,1), (-1-2,-1), (1,-1,-2) bonds, which we call x̃, ỹ, z̃, and x̃, ỹ, z̃ bonds, respectively.

Then, the second neighbor x̃−bond connects two Ir ions which are also connected by
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Figure 3.2: The matrix elements of the tensor Ξαβ1 on the z-bond as functions of
trigonal crystal field, ∆, and Hund’s coupling, JH . The diagonal n. n. exchange
couplings Jx1 , J

y
1 , J

z
1 in meV (shown by blue, green and red lines, respectively) plotted

as functions of (a) ∆ (in eV) and (e) JH (in eV). The n. n. Kitaev interaction K1 and
the n. n. isotropic exchange J1 (shown by brown and green lines, respectively) plotted as
functions of (b) ∆ (in eV) and (f) JH (in eV). The DM-type antisymmetric off-diagonal
interactions Dx

1 , D
y
1 , D

z
1 in meV (shown by blue, green and red lines, respectively)

plotted as functions of (c) ∆ (in eV) and (g) JH (in eV). The symmetric off-diagonal
interactions Γx1 , Γy1, Γz1 in meV (shown by blue, green and red lines, respectively) plotted
as functions of (d) ∆ (in eV) and (h) JH (in eV). For (a)-(d) and (e)-(h) plots we put
JH = 0.3 eV and ∆ = 0.1 eV, respectively. Other microscopic parameters of the model
are considered to be U2 = 1.8 eV, λ = 0.4 eV, t1o = 230 meV, td = 67 meV and t2o = 95
meV.
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two n. n. Ir-Ir bonds of y− and z− type, and ỹ− and z̃−bonds connect Ir4+ ions which

are connected by x− and z−, and x− and y−bonds, respectively. In Fig. 3.1 (a), we

also use the same color coding for the second neighbor bonds as for n. n. bonds: x̃−,

ỹ−, z̃− bonds are shown by red, green and blue dotted lines.

Similarly to the hopping between nearest neighbors, there are also two kinds of

hoppings connecting second neighbors (see Fig. 3.1 (a)): the hopping along the path Ir-

O-Na-O-Ir, and the direct one. The indirect hopping t2o is large both because it comes

from four Ir-O-Na-O-Ir paths but also because it takes advantage of the extended nature

of the s−orbital of the Na ion. In the ideal structure, it is equal to t2o = 82.1 meV,

and in the presence of the trigonal distortion it is even larger, t2o = 94.7 meV [63]. The

direct hopping between second neighbors is significantly smaller than the one between

nearest neighbors and also significantly smaller than the hopping along the Ir-O-Na-O-

Ir path. In our derivation of the second neighbor super-exchange Hamiltonian, we will

neglect all second neighbor hoppings except t2o.

Explicitly, the hopping matrix element between second neighbor Ir ions along the

z̃-bond comes from the following processes:

Path1 : Ir (Y )→ O (pz)→ Na (s)→ O (pz)→ Ir (X)

Path2 : Ir (Y )→ O (pz)→ Na (s)→ O (py)→ Ir (X)

Path3 : Ir (Y )→ O (px)→ Na (s)→ O (pz)→ Ir (X)

Path4 : Ir (Y )→ O (px)→ Na (s)→ O (py)→ Ir (X)

Summing over all these four paths, shown by thick magenta lines in Fig. 3.1 (a), we

obtain the effective hopping Hamiltonian between second neighbor Ir4+ ions along the

z̃-bond

H z̃
t =

∑
n

∑
γ,γ′

T γ,γ
′

2,n,n+z̃(b
†
n,γbn+z̃,γ′ + h.c.), (3.19)

where, formally, the hopping matrix T2,n,n+z̃ has the same structure as T1,n,n+z given

by Eq. (3.18).
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Figure 3.3: The matrix elements of the tensor Ξαβ2 on the z-bond as functions of
trigonal crystal field, ∆, and Hund’s coupling, JH . The diagonal n. n. exchange
couplings Jx2 , J

y
2 , J

z
2 in meV (shown by blue, green and red lines, respectively) plotted as

functions of (a) ∆ (in eV) and (e) JH (in eV). The second neighbor Kitaev interactions
K2 and K ′2, as well as the second neighbor isotropic exchange J2 in meV (shown by
brown, orange and green lines, respectively) plotted as functions of (b) ∆ (in eV) and
(f) JH (in eV). The DM-type antisymmetric off-diagonal interactions Dx

2 , D
y
2 , D

z
2 in

meV (shown by blue, green and red lines, respectively) plotted as functions of (c) ∆
(in eV) and (g) JH (in eV). The symmetric off-diagonal interactions Γx2 , Γy2, Γz2 in meV
(shown by blue, green and red lines, respectively) plotted as functions of (d) ∆ (in eV)
and (h)JH (in eV). For (a)-(d) and (e)-(h) plots we put JH = 0.3 eV and ∆ = 0.1 eV,
respectively. Other microscopic parameters of the model are considered to be U2 = 1.8
eV, λ = 0.4 eV, t1o = 230 meV, td = 67 meV and t2o = 95 meV.
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3.5 The exchange coupling tensors Ξαβ
1 and Ξαβ

2

We show in Fig. 3.2 and Fig. 3.3 how the matrix elements of the exchange coupling ten-

sor Ξαβ, defined in Eq.(3.16), computed for both nearest and second neighbor Ir4+ ions

depend on the microscopic parameters (trigonal distortion, Hund’s coupling, Coulomb

interaction and SO coupling). We note right away that the main role of the Coulomb

repulsion is to determine the overall energy scale for the couplings. Thus, in all com-

putations we take, for definitiveness, U2 = 1.8 eV, which is lying inside the range of

values, 1.5 eV-2.5 eV, characteristic to iridates. We also set the SO coupling constant

to λ = 0.4 eV since it is the value associated with Ir4+ ions in the literature [62]. As we

already mentioned before, we compute all exchange interactions for either z-nearest or

for z̃ next n. n. bonds. Interactions for other bonds can be obtained using symmetry

arguments or, even simpler, one needs to permute indices of bonds and couplings. This

is illustrated in Fig. 3.4.

3.5.1 Effect of trigonal distortion.

Here we study the dependencies of the exchange couplings on the trigonal distortion,

∆. At ambient pressure, the trigonal crystal field splitting in both Na2IrO3 and Li2IrO3

is about 110 meV [64]. However, it is also believed that a much stronger trigonal

distortion can be reached under pressure. In this subsection, the exchange parameters

were computed for a fixed Hund’s coupling, JH = 0.3 eV.

In Fig. 3.2 (a)-(d), we plot the ∆-dependencies of the matrix elements of the tensor

Ξαβ1 on the z-bond. The diagonal matrix elements Jx1 , J
y
1 , J

z
1 are shown in Fig. 3.2

(a). We see that while the Jx1 and Jy1 couplings are positive and degenerate for all

values of the trigonal splitting, Jx1 = Jy1 = J1, the Jz1 coupling is first negative but

then changes sign at ∆ ' 0.21 eV. The anisotropic n. n. Kitaev interaction, K1, may

be defined as the difference between diagonal elements. On the z-bond, it is simply

given by K1 ≡ Jz1 − J1. We plot J1 and K1 in Fig. 3.2 (b). Notice that while the n.

n. isotropic exchange is antiferromagnetic and is rapidly growing with ∆, the Kitaev

interaction is ferromagnetic and is almost independent of the magnitude of the trigonal

field.

The behavior of the off-diagonal terms Jxy1 , Jyx1 , Jxz1 , Jzx1 , Jyz1 , Jzy1 is shown in Fig.
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3.2 (c) and (d). All the matrix elements are real valued. In these plots, instead of

showing the off-diagonal elements explicitly, we plot their DM-like antisymmetric (c)

and symmetric combinations (d). We define them as follows:

Dx
1 =

1

2
(Jyz1 − Jzy1 )

Dy
1 =

1

2
(Jzx1 − Jxz1 )

Dz
1 =

1

2
(Jxy1 − Jyx1 ) (3.20)

Γx1 =
1

2
(Jyz1 + Jzy1 )

Γy1 =
1

2
(Jzx1 + Jxz1 )

Γz1 =
1

2
(Jxy1 + Jyx1 )

In the absence of the trigonal distortion, ∆ = 0, the inversion symmetry prohibits

the existence of DM-type antisymmetric interactions, and thus Dx
1 = Dy

1 = Dz
1 = 0.

The symmetric combinations are allowed but at ∆ = 0 only Γz1 6= 0. The symmetric

interactions Γx1 = Γy1 become non-zero at finite ∆. The DM terms Dx
1 = Dy

1 also become

non-zero at ∆ 6= 0, and then linearly grow with ∆.

In Fig. 3.3 (a)-(d), we plot the ∆-dependencies of the second neighbor interactions.

The diagonal elements of the tensor Ξαβ2 on the z̃-bond are presented in Fig. 3.3 (a).

We see that at small ∆, Jx2 , J
y
2 , J

z
2 are only slightly weaker than the n. n. diagonal

interactions (see Fig. 3.2 (a)). There is also no degeneracy between them: all of the

second neighbor diagonal elements are different from each other except Jz2 = −Jy2 . If

we define the isotropic exchange as Jy2 = J2, and anisotropic second neighbor Kitaev

interactions as K2 ≡ Jz2 − Jy2 = −2J2 and K ′2 ≡ Jy2 − Jx2 , then the interaction on the z̃-

bond can be written as J2SS+K2S
zSz−K ′2SxSx. We plot J2, K2 and K ′2 as a function

of ∆ in Fig. 3.3 (b). Note that for all values of the trigonal distortion, J2 < 0, K2 > 0

and K ′2 > 0, and also K2 � K ′2. It is also important to remember that J2, K2 and

K ′2 all come from the same process and are governed by the same hopping parameter

t2o. This is in the contrast to the n. n. couplings, J1 and K1, for which the super-

exchange processes in the absence of the trigonal distortion are completely distinct –

J1 is determined by the direct hopping, with amplitude td, and K1 is determined with

amplitude t1o, mediated by the hopping through the intermediate oxygen.
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The second neighbor off-diagonal couplings are plotted in Fig. 3.3 (c) and (d). Again,

we combine them into antisymmetric and symmetric combinations, using definitions

similar to Eq.(3.20). Contrary to the n. n. case, at ∆ = 0 we see that all interactions

Dx
2 = Dy

2 = Dz
2 = Γx2 = Γy2 = Γz2 = 0. At finite value of the trigonal distortion, all of

them acquire non-zero values but remain subdominant interactions even at relatively

large ∆.

3.5.2 Effect of Hund’s coupling.

Before concluding this section, here we look in detail on the dependence of the exchange

couplings on the Hund’s interaction, JH . Here we fix the trigonal distortion equal to

∆ = 0.1 eV.

In Fig. 3.2 (e) and Fig. 3.3 (e), we plot Jx1 , J
y
1 , J

z
1 and Jx2 , J

y
2 , J

z
2 diagonal elements

of Ξαβ1 and Ξαβ2 , respectively. We see (Fig. 3.2 (e)) that at JH = 0, the n. n. diagonal

couplings are all equal, Jx1 = Jy1 = Jz1 . Consequently, in the absence of the Hund’s

interaction, the n. n. Kitaev interaction K1 = 0 (Fig. 3.2 (f)). All n. n. off-diagonal

couplings are also zero at JH = 0 (see Fig. 3.2 (g) and (h)). On the contrary, at JH = 0

the next n. n. diagonal couplings are only partially degenerate: Jx2 = Jy2 = −Jz2 . As a

result, the dominant Kitaev interaction is between the second neighbors K2 6= 0 (Fig.

3.3 (f)). The smaller Kitaev interaction is still zero, K ′2 = 0. The second neighbor off-

diagonal couplings are all non-zero but very small (see Fig. 3.3 (g) and (h)). Thus, at

JH = 0 the leading anisotropic term is the Kitaev interaction between second neighbors,

K2.

With increasing JH , the n. n. Kitaev interaction K1 rapidly grows while the second

n. n. K2 very slightly decreases. As a result, K1 becomes the dominant interaction

at values of Hund’s coupling larger than 0.15 eV. The other exchange couplings also

change with JH , but they remain subdominant interactions. Overall, we note that the

n. n. interactions are more sensitive to the strength of the Hund’s coupling than the

second neighbors.

Let us summarize the results obtained in this section. From Fig. 3.2 and Fig. 3.3 we

see that for reasonable values of microscopic parameters, the dominant interactions are

J1, K1, J2 and K2 couplings. Moreover, at ∆ = 0.11 eV and JH = 0.3 eV, the values of

the trigonal distortion and the Hund’s coupling characteristic for Na2IrO3 compound,
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the Kitaev interactions K1 and K2 are the largest interactions dominating not only all

other anisotropic interactions but even the n. n. and second n. n. isotropic interactions.

3.6 Magnetic phase diagram

3.6.1 Effective super-exchange model for Na2IrO3.

We now discuss how the above results apply to the case of Na2IrO3. As we already

discussed above, we take the values of the microscopic parameters most closely related

to Na2IrO3: λ = 0.4 eV, ∆ = 0.1 eV, JH = 0.3 eV, U2 = 1.8 eV, and hopping matrix

elements equal to t1o = 0.23 eV, td = 0.067 eV and t2o = 0.095 eV [63]. We obtain the

following values of the exchange couplings: J1 = 5.8 meV, K1 = −14.8 meV, J2 = −4.4

meV, K2 = 7.9 meV. The calculated n. n. exchange constants are in fair agreement with

the results of ab-initio quantum chemistry calculations by Katukuri et al [61]: J1 ' 3

meV and K1 ' −17 meV.

Our results for the n. n. couplings confirm the previous conclusion [8, 47, 48, 49, 59]

that the super-exchange model with only n. n. couplings is insufficient to explain

the experimentally observed zigzag magnetic order even in the presence of the trigonal

distortion. Recall that in the original Kitaev-Heisenberg model [1, 46], the isotropic and

Kitaev exchange couplings were parametrized by a single parameter α as J1 = 1 − α
and K1 = 2α. Taking J1 and K1 obtained for the trigonal distortion ∆ '0.1 eV, we

get α ' 0.57, which corresponds to the stripy antiferromagnetic order instead of the

zigzag-type order. Neglecting the trigonal distortion and taking J1 = 1.4 meV and

K1 = −15.2 meV obtained at ∆ =0 eV, we get α ' 0.83 corresponding to the spin

liquid, which was desired but not observed in Na2IrO3 [8, 47, 48, 49, 59].

This shows that, in addition to the antiferromagnetic Heisenberg and ferromagnetic

Kitaev n.n. interactions, the minimal model has to include further neighbor interactions.

As we saw in Sec.3.5, the dominant microscopic Ir-Ir couplings also include next n. n.

ferromagnetic Heisenberg and antiferromagnetic Kitaev interactions, which also must

be considered.

Thus, let us study the following super-exchange Hamiltonian:

H = J1

∑
〈n,n′〉γ

SnSn′ +K1

∑
〈n,n′〉γ

SγnS
γ
n′
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+J2

∑
〈〈n,n′〉〉γ̃

SnSn′ +K2

∑
〈〈n,n′〉〉γ̃

SγnS
γ̃
n′ (3.21)

+J3

∑
〈〈〈n,n′〉〉〉

SnSn′ ,

where J1 > 0, K1 < 0, J2 < 0, K2 = −2J2 > 0, and J3 > 0. Note that in our formula-

tion of the minimal model (3.21), we also include the third neighbor antiferromagnetic

coupling, which was suggested to be crucial for stabilizing the zigzag magnetic order in

the previous works [12, 59].

It is very important that the presence of the second n. n. Kitaev interaction does not

change the space group symmetries of the effective model: the model (3.21) has the same

symmetries as the original Kitaev-Heisenberg model. The schematic representation of

the n.n. and second n. n. interactions is shown in Fig. 3.4. As in Fig. 3.1 (a), the

solid lines correspond to n. n. bonds and dotted lines correspond to the second n. n.

Kitaev interaction. We also note that the same form of the second neighbor interactions

was previously obtained [66, 67] in the limit U →∞ of the Kane-Mele-Hubbard model

[68, 69]. It was shown that the second n. n. Kitaev interaction might be an important

interaction necessary to stabilize the incommensurate spiral order with ordering peaks

located inside the first Brillouin zone in Li2IrO3 [70].

3.6.2 The magnetic phase diagram

We computed the phase diagram of the effective model (3.21) with classical Monte Carlo

simulations based on the standard Metropolis algorithm. To explore the physics of the

model (3.21), we fix n. n. interactions to J1 = 3 meV and K1 = −17 meV values,

which were obtained by quantum chemistry calculations by Katukuri et al [61] and are

within the range of parameters obtained by us. We compute the phase diagram not

only for ferromagnetic, J2 < 0, but also for antiferromagnetic, J2 > 0, second neighbor

interaction. This allows us to compare our findings with other phase diagrams that

were previously obtained in the literature [12, 61]. The simulations were performed at

low temperature T = 0.1J1, at which for the full range of the considered parameters

the model is in the magnetically ordered state.
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J1𝑺𝑺 + K1𝑆𝑥𝑆𝑥 

J1𝑺𝑺 + K1𝑆𝑧𝑆𝑧 

J2𝑺𝑺 + K2𝑆𝑥𝑆𝑥 

J2𝑺𝑺 + K2𝑆𝑦𝑆𝑦 

J2𝑺𝑺 + K2𝑆𝑧𝑆𝑧 

J1𝑺𝑺 + K1𝑆𝑦𝑆𝑦 

Figure 3.4: Schematic representation of the effective super-exchange model for Na2IrO3.
Color coding is the same as in Fig. 3.1 (a). X, Y and Z t2g electronic orbitals,
participating in the super-exchange, are shown by red, green and blue small circles.

The phase diagram of the model (3.21) in the limit of zero second neighbor Kitaev

interaction, K2 = 0, is presented in Fig. 3.5 (a). A more realistic phase diagram

computed with K2 = −2J2 is presented in Fig. 3.5 (b). Even at first glance, we see that

the second n. n. Kitaev interaction suppresses the ferromagnetic and spiral phases and

stabilizes the antiferromagnetic zigzag and stripy phases.

In order to get a better sense of the basic structure of the different states composing

the phase diagrams, we also performed a numerical Fourier transform of a snapshot

of the ground state spin configuration at a given point of the phase diagram. From

that Fourier transform, we computed the corresponding spin structure factor, which

allows us to determine the dominant wavevectors of that configuration. We plot the

spin structure factors in Fig. 3.5 (c).

Phase diagram of the J1 − J2 − J3 −K1 − 0 model (Fig.3.5 (a)).

The K2 = 0 phase diagram is very rich, but overall it is qualitatively similar to both

the classical phase diagram of the J1−J2−J3−K1 [12, 61] and of the pure Heisenberg

J1 − J2 − J3 model on the honeycomb lattice [59]. It displays the ferromagnetic (blue



59

region), the stripy (rose region) and the zigzag antiferromagnetic states (green region),

the 3Q−incommensurate spiral state (white region), the 120◦ order (cyan region) and

a very particular multi-Q incommensurate state (dark cyan region), which we call an

”intermediate” phase, as it always separates the 120◦ order from either the stripy or

the zigzag phases. The Néel antiferromagnetic order is also one of the possible ground

states of the model. However, the n. n. Kitaev term, K1, and the second neighbor

Heisenberg term, J2, destabilize it in favor of the stripy and zigzag phases. The Néel

order is realized only at values of J3/J1 > 1, which are not shown in the Fig. 3.5 (a).

The simplest state we find on the phase diagram is the ferromagnetic state which

is characterized by a single Q = (0, 0) wavevector. This state is the ground state in

the region of large ferromagnetic J2 and small J3 couplings. As J2 is decreased and J3

is increased, the ferromagnetic state becomes unstable with respect to a spiral state,

which is built out of three incommensurate wavevectors related by C3 rotation. Because

the ordering Q vectors are not connected by reciprocal lattice vectors, the spiral phase

represents an example of a 3Q−incommensurate order. Note that the magnitude of the

ordering wavevector |Q| varies throughout the phase.

The stripy and zigzag antiferromagnetic orders are found for both ferromagnetic and

antiferromagnetic J2 interaction of intermediate strength. However, while the stripy

order is found at small values of the third n. n. interaction, J3, the experimentally

observed zigzag order is found only at values J3 ≥ 0.35J1 which seem too large given

that tight-binding hopping amplitudes are clearly dominated by the n. n. and the

second neighbor terms [63]. Both the stripy and the zigzag phases are single-Q orders,

characterized by one of the symmetry related wavevectors: Q1 = (0, 2π
3 ), Q2 = (π3 ,

π√
3
)

and Q3 = (−π
3 ,

π√
3
).

The stripy and the zigzag phases are separated by a 120◦ state characterized by one

of the Q1 = ( 4π
3
√

3
, 0), Q2 = ( 2π

3
√

3
, 2π

3 ) and Q3 = (− 2π
3
√

3
, 2π

3 ) wavevectors. Because these

vectors are connected by the reciprocal lattice vectors, this is a coplanar single-Q spiral

which describes the 120◦ spin ordering within each of the two sublattices forming the

honeycomb lattice. As x, y and z components of spins are all equally modulated in this

120◦ state, the spins in this state are lying in one of the (111) planes.

The transition from the stripy and the zigzag states into the 120◦ state is not direct; it

happens through the intermediate phase. This transition can be understood by looking
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Figure 3.5: Phase diagrams of the effective model (3.21) obtained with the classical
Monte Carlo simulations at low temperature T = 0.1J1 for (a) second neighbor Kitaev
interaction equal to K2 = 0, (b) second neighbor Kitaev interaction K2 = −2J2. The
simulation is done for J1 = 3 meV and K1 = −17 meV. The blue, rose, green, white,
cyan and emerald regions show the ferromagnetic (FM), the stripy, the zigzag, the in-
commensurate 3Q−spiral, the 120◦ structure and the intermediate state, respectively.
(c) The structure factors obtained as a Fourier transform of a snapshot of a given con-
figuration for each of these magnetic phases. Sharp peaks appear at the corresponding
ordering wavevector.
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at the evolution of the spin structure factors. We find that before the onset of the

120◦ state the transition from a single-Q stripy (or a single-Q zigzag) state to a state

defined by a superposition of the three different stripy (zigzag) phases occurs. The

structure factor for this state is characterized by the presence of six peaks situated in the

middle of the edges of the first BZ hexagon. These peaks split into two incommensurate

peaks with Q vectors sliding along the edges (see Fig. 3.5 (c) for the structure factor

corresponding to the Intermediate phase) until they reach wavevectors at the hexagon’s

corners characterizing the 120◦ structure. Here, we note that this 120◦ state separating

the stripy and the zigzag phases was also obtained by Rau et al [71] as a classical

ground state of the n. n. super-exchange in the presence of the symmetric off-diagonal

exchange.

Here a comment is in order. In each of the stripy and the zigzag phases obtained in

the Kitaev-Heisenberg models without further neighbor interactions [46, 14, 50, 51], the

spins were aligned along one of the cubic directions. The spin direction was locked to

the spatial orientation of a stripy or a zigzag pattern defined by the wavevector Q. Both

the locking of the spin direction and the way the translational symmetry is broken, i.e.

the choice of Q, are defined on the classical level.

In the absence of J2 and J3 interactions, the stripy phase is stabilized only for the

ferromagnetic n. n. Kitaev interaction, K1 < 0, and the zigzag phase is stabilized only

for the antiferromagnetic n. n. Kitaev interaction, K1 > 0. Consider the stripy order

with ferromagnetic z-bonds. In this state, the spins and, therefore, the order parameter

are pointing along z cubic axis. This state has the lowest classical energy, because such

a direction of the order parameter maximizes the energy gain due to the ferromagnetic

Kitaev interaction on ferromagnetic z-bonds. The same reasoning explains why the

spins in x and y stripes are pointing along the x and y axes respectively.

Next, consider the zigzag order characterized by ferromagnetic x− and y−bonds. In

this state, the spins also point along the z cubic axis because it maximizes the energy

gain due to the antiferromagnetic Kitaev interaction on the antiferromagnetic z− bonds.

In the presence of further neighbor couplings the situation is different. As we can

see in Fig. 3.5 (a), both the stripy and the zigzag order can be stabilized for the

ferromagnetic n. n. Kitaev interaction. While the situation for the stripy phase is the

same as before, where the spins point along the cubic direction corresponding to the label
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of the ferromagnetic bond to gain energy from the ferromagnetic Kitaev interaction, the

direction of the zigzag order parameter is not defined on the classical level. Instead,

there are two ferromagnetic bonds in the zigzag phase, e.g. x and y. Thus, all zigzag

states characterized by an order parameter pointing along any direction in the xy-plane

are classically degenerate. The direction of the order parameter is then selected by order

from disorder mechanism, in which spin fluctuations (quantum or thermal) remove the

accidental degeneracy and select the true ordered state. We have checked with Monte

Carlo simulations that thermal fluctuations again choose the states in which spins point

along either x or y cubic directions. The full finite-temperature phase diagram for the

model (3.21) will be published elsewhere.

Phase diagram of the J1 − J2 − J3 −K1 −K2 model (Fig. 3.5 (b)).

In Fig. 3.5 (b), we present the magnetic phase diagram of the model (3.21) when the

second neighbor Kitaev interaction is equal to K2 = −2J2, as predicted by our theory

when the second neighbors are coupled only through the Ir-O-Na-O-Ir superexchange

path. We see that the phase diagram greatly simplifies. The second neighbor Kitaev

term suppresses the spiral and the ferromagnetic phases in favor of the stripy and zigzag

order which now dominate for antiferromagnetic and ferromagnetic J2, respectively.

These two phases are still separated by the 120◦ order and Intermediate phase, but both

the 120◦ phase and, especially, the Intermediate phase shrink significantly. However,

the most important effect of the second neighbor Kitaev term is that for sufficient

ferromagnetic J2 < 0, it stabilizes the zigzag even for J3 = 0.

It is worth noting that addition of non-zero K2 interaction also does not determine

the direction of zigzag order parameter on the classical level. For the zigzag order with

antiferromagnetic z-bonds discussed above, all states with spins lying in the xy-plane

remain classically degenerate. This can be understood as follows. In the zigzag order

with antiferromagnetic z-bonds, the second n. n. z̃-bonds are ferromagnetic while the x̃-

and ỹ-bonds are antiferromagnetic. Thus, the antiferromagnetic K2 coupling on these

bonds will keep the spins in the xy-plane. However, since there is an equal number of

x̃- and ỹ-bonds, the K2 interaction does not lift the classical degeneracy. A particular

spin direction, x or y, is again chosen by fluctuations.
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3.7 Conclusions

Spin interactions beyond nearest neighbors in honeycomb iridates may change the phase

diagram in essential ways. Our aim in the present chapter has been to derive the spin

exchange interactions from a plausible microscopic model and to determine the cor-

responding phase diagram. In the first part we have calculated the effective super-

exchange Hamiltonian in second order perturbation theory in the hopping amplitudes,

treating the many-body and the single-electron aspects on an equal footing. We demon-

strated that in the presence of strong SO coupling, this effective Hamiltonian forms a

tensor with non-equivalent diagonal and non-zero off-diagonal elements. We performed

a detailed analysis of the magnetic interactions as a function of the Hund’s coupling

representing the electronic correlations and the trigonal CF splitting which governs

the single-electron physics. We showed that the main role of the Hund’s coupling is

that it is responsible for the appearance of the Kitaev anisotropic interactions via the

non-equivalence of the diagonal elements. The trigonal CF also affects the diagonal in-

teractions, however, it’s dominating role is in controlling the strength of the off-diagonal

interactions. While these interactions might be significantly increased by external pres-

sure, at ambient pressure the trigonal CF distortion is small and, consequently, the

off-diagonal interactions are subdominant. Thus, we neglected off-diagonal terms in

the derivation of the super-exchange model (3.21), which we believe is the minimal

model to describe the Na2IrO3 compound. This model includes five Ir-Ir couplings:

n. n. antiferromagnetic Heisenberg and ferromagnetic Kitaev interactions, next n. n.

ferromagnetic Heisenberg and antiferromagnetic Kitaev interactions, and third n. n.

antiferromagnetic Heisenberg interaction.

The study of the classical phase diagram for this minimal model constitutes the

second part of the chapter. We computed the low temperature phase diagram of the

effective model (3.21) with classical Monte Carlo simulations. Due to the presence of

the anisotropic Kitaev interactions and the frustration introduced by the competition

of the spin couplings between n. n. and second neighbors, the resulting phase diagram

is very rich. It contains both various commensurate states and incommensurate single-

Q and multi-Q phases, whose regions of stability are controlled by the ratios between

competing exchange constants. We showed that the second neighbor Kitaev term plays
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an important role in the stabilization of the commensurate antiferromagnetic zigzag

phase which has been experimentally observed in Na2IrO3. In our simulations, we

found this phase to be the ground state for parameters of the model of both the correct

signs and magnitudes.



Chapter 4

Kitaev-Heisenberg model in a

magnetic field: order-by-disorder

and

commensurate-incommensurate

transitions

4.1 Introduction

In this chapter, we discuss field-induced phenomena in the honeycomb KH model based

on a complete temperature-field phase diagram obtained from our extensive classical

Monte Carlo simulations. We focus on the fate of the zigzag phase, which is relevant

for Na2IrO3 and α-RuCl3, when the magnetic field is applied perpendicular to the hon-

eycomb plane, i.e. along the [111] direction, and the discrete rotational symmetry of

the lattice is preserved. Our main findings are summarized in the field-temperature

H-T phase diagram of the KH model presented in Fig. 4.1. In addition to the low-

temperature commensurate phases discussed in Ref. [22], we have uncovered intriguing

65
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discontinuous commensurate-incommensurate transitions and novel triple-Q incommen-

surate zigzag states at high magnetic field. We show that while our findings are remi-

niscent of the Z2 vortex crystal one encounters in looking at the triangular KH model

[72, 73], which arises from the commensurate 120◦ state through a kind of a nucleation

transition, in our case the origin of the incommensurate zigzag state is different and is

driven by entropic selection.

The chapter is organized as follows. In section 4.2, we briefly review the basics

of the KH model and discuss the states constituting the zero-field ground state phase

diagram of the model. In section 4.3, we present the main results of this chapter. We

show that at low fields and low temperatures the commensurate triple-Q zigzag state is

stabilized by the magnetic field. On the other hand, thermal fluctuations at finite tem-

peratures select the collinear single-Q zigzag order. The transition between these two

phases is, therefore, determined by the competition between the entropic and Zeeman

energy gain. At intermediate field strength, our Monte Carlo simulations uncover other

phase transitions, first into the partially incommensurate and then into the fully incom-

mensurate zigzag phases. Importantly, all these low- and intermediate-field transitions

are hidden in the magnetization curves. Also, our analysis suggests that the observed

commensurate-incommensurate transitions are driven by entropic selection. At high

magnetic fields, our Monte Carlo simulations and the classical instability analysis at

the saturation field show that a
√

3×
√

3 order is stabilized below the saturation field.

In section 4.4, we discuss the nature of the field induced phase transitions based on

the annealing and heating simulations and present the temperature dependence of the

zigzag order parameters. We conclude in section 4.5. After the summary I provide some

technical details of the calculations in Sec 4.6

4.2 Model

We consider the KH model subject to a magnetic field

H = J
∑
〈ij〉

Si · Sj + 2K
∑
〈ij〉γ

Sγi S
γ
j −H ·

∑
i

Si. (4.1)

Here γ = x, y, and z denote the three distinct NN bonds of a honeycomb lattice. The

spin quantization axes are taken along the cubic axes of the IrO6 octahedra. The first J
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Figure 4.1: The field-temperature (H-T ) phase diagram of the KH model with parame-
ter ϕ = 0.7π. Dashed and solid lines denote first and second-order phase transitions, re-
spectively. There are five ordered phases at low temperatures. Other than the

√
3×
√

3
order at high field, the phase diagram is dominated by four distinct zigzag phases:
single-Q canted zigzag (I), triple-Q commensurate zigzag (II), triple-Q partial incom-
mensurate zigzag (III), and fully incommensurate 3Q zigzag (IV). The corresponding
structure factors and spin snapshots are shown in Fig. 4.2. T and H are measured in
units of overall exchange energy scale A.

term is the isotropic Heisenberg exchange, while the second Kitaev term describes the

bond-dependent Ising coupling between spin components.

Already at zero field, the KH model exhibits several interesting phases depending

on the relative strength of the two competing terms. A convenient parametrization is to

write J = A cosϕ and K = A sinϕ, where A > 0 is the overall energy scale of exchange

interaction. In addition to the conventional ferromagnetic and Néel orders, the classical

phase diagram includes two collinear antiferromagnetic (AF) states with spontaneously

broken C3 symmetry, called the zigzag and stripy AF orders. Remarkably, all magnetic

phases survive quantum fluctuations and remain stable in the limit of S = 1/2, except

for two small regions of ϕ close to π/2 and 3π/2 where quantum spin liquids emerge as

the ground states.
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4.3 Classical H-T phase diagram

The zigzag phase, which is our primary interest in this work, occupies almost a quarter

of the phase space (0.501π . ϕ . 0.9π) of the KH model at T = H = 0 [14]. Here we

focus on the KH model with parameter ϕ = 0.7π and employ Monte Carlo simulations

to study the H-T phase diagram. Our extensive simulations result in an unexpectedly

rich phase diagram shown in Fig. 4.1, which is dominated by four distinct zigzag phases

labeled by I, II, III, and IV. In addition, a non-collinear
√

3 ×
√

3 order is stable in a

magnetic field just below the saturation and low temperature regime. The representative

snapshots and the corresponding spin structure factors of these five ordered phases are

shown in Fig. 4.2. In the following, we discuss the properties of these phases and their

numerical characterizations.

4.3.1 Low field strength: triple-Q zigzag order

We begin with the single-Q zigzag order (phase I), which is the low-T phase of the

KH model at H = 0. This ordered state is characterized by collinear spins forming

ferromagnetic zigzag chains, which are anti-collinearly staggered along the direction

perpendicular to the chains; see Fig. 4.2(a). Importantly, the direction of collinear spins

is locked to orientation of the zigzags. There are three degenerate zigzag states that are

related to each other by symmetry; they correspond to the three staggering wavevectors:

Q1,2 = (±π,−π/
√

3), and Q3 = (0, 2π/
√

3), which are the middle M points of the

Brillouin zone (BZ) edges. The collinear zigzag phase can be characterized by an Ising

order parameter φm, which is the odd-parity one-dimensional irreducible representation

of the little group corresponding to wavevector Qm. A general multiple-Q zigzag state

is then described by a pseudo-vector of three Ising parameters: φ = (φ1, φ2, φ3). In

terms of the triplet order parameter, the spins in a general zigzag state are expressed as

Sγi = ±φm S exp(iQm · ri); where ± is used for the two sublattices of honeycomb, and

the spin component γ = x, y, z corresponds to m = 1, 2, 3, respectively.

In the framework of the Ginzburg-Landau theory, the transition into the zigzag phase

is described by a free-energy expansion in terms of the pseudo-vector order parameter φ.
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Up to quartic order, it reads:

F = r|φ|2 + u|φ|4 + g φ1φ2φ3 + v
∑
m 6=n

φ2
mφ

2
n. (4.2)

While this free energy respects the C3 symmetry of the KH model, the first two terms

actually preserve a O(3) rotational symmetry of the pseudo-vector φ, indicating an

emergent continuous degeneracy of the zigzag states. Indeed, explicit calculation shows

that all multiple-Q zigzag states satisfying |φ| = constant are degenerate at the mean-

field level [46, 21].

This accidental degeneracy is lifted by the cubic g and quartic v terms of Eq. (4.2). In

the absence of magnetic field, the cubic term is not allowed by time-reversal symmetry.

On the other hand, thermal and quantum fluctuations select the collinear single-Q zigzag

order [50, 74]. This order-by-disorder phenomenon indicates a repulsive interaction, v ∼
v0+v1T , with v0,1 > 0; the two terms correspond to quantum and thermal contributions,

respectively. On the other hand, a finite g is allowed when time-reversal symmetry is

explicitly broken by a magnetic field. This cubic interaction term favors a zigzag order

with coexisting φm, irrespective of the sign of g.

Physically, the accidental continuous degeneracy of the zigzag states results from

the frustrated exchange interactions of the KH model. It also indicates that the phase

might be very sensitive to magnetic field. Here we employ large-scale Monte Carlo

simulations to investigate the thermodynamic phases induced by the external field along

the [111] direction. Our Monte Carlo simulations indeed find a triple-Q zigzag order

(phase II) that is favored by the cubic term in a large portion of the phase diagram;

see Fig. 4.1. The spin configuration of the triple-Q zigzag corresponding to a pseudo-

vector φ ∝ (1, 1, 1) is shown in Fig. 4.2(b). The three spin components participate in

ordering along different zigzag directions characterized by the three wavevectors Qm,

giving rise to a non-coplanar magnetic structure. Our variational calculations based on

a quadrupled unit cell, which encompasses general zigzag patterns, also verifies that the

triple-Q zigzag state is energetically favored by any finite H.

The transition between phases I and II results from the competition between the v

and g terms in F , i.e., between the entropic selection and Zeeman energy gain. As the

system crosses this phase boundary from the low field side, the broken C3 symmetry

of phase I is restored. Interestingly, this phase transition has almost no noticeable
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(a) (e)(d)(c)(b)

Figure 4.2: Magnetic phases in the honeycomb KH model. Top row shows the spin
structure factors obtained from simulations at T = 0.005; Corresponding snapshots of
the spin configurations are shown in the bottom row. The three spin components are
shown here with red, green, and blue colors. The five phases shown here are (a) single-
Q collinear zigzag order (H = 0.016), (b) commensurate triple-Q non-coplanar zigzag
(H = 0.48), (c) coexistence of commensurate and incommensurate triple-Q zigzag phase
(H = 1.02), (d) incommensurate triple-Q zigzag phase (H = 1.34), and (e)

√
3 ×
√

3
order (H = 1.4). T and H are measured in units of A.

effects on the magnetization curve, as shown in Fig. 4.3(a). It is clearly seen that the

magnetization increases smoothly with H in the small to intermediate field regime.

On the other hand, the field dependence of the zigzag order amplitude |φ|, shown

in Fig. 4.3(b), exhibits a small kink and a conspicuous drop at intermediate fields,

respectively, indicating hidden phase transitions in the seemingly linear magnetization

curves.

To distinguish the various zigzag orders and particularly to quantify the broken C3

symmetry, we introduce a doublet order parameter ζ with components:

ζ1 = (φ2
1 + φ2

2 − 2φ2
3)/
√

6, ζ2 = (φ2
1 − φ2

2)/
√

2, (4.3)

which characterizes the disparity of the three zigzag patterns. Physically, a nonzero

ζ corresponds to a spontaneously broken C3 symmetry. As discussed above, thermal

fluctuations at zero field select one of the three collinear zigzag orders, giving rise to a

large |ζ|, while the doublet parameter vanishes in the symmetric triple-Q zigzag phase

at low temperatures. Indeed, as shown in Fig. 4.3(c), the amplitude of the doublet order

parameter decreases with increasing field strength, signaling a transition into a more
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symmetric zigzag phase.

4.3.2 Intermediate field strength: novel commensurate-incommensurate

transitions

At intermediate field strength, our Monte Carlo simulations uncover another phase

transition hidden in the seemingly smooth magnetization curve. As shown in Fig. 4.3(b)

and (c), both order parameters φ and ζ exhibit a pronounced discontinuity at H ∼ 0.8

for temperatures T . 0.02. In particular, the sudden increase of |ζ| indicates that the

C3 symmetry is again broken when crossing this first-order transition from the low-field

side. Detailed examinations show that this new zigzag order (phase III in Fig. 4.1)

is a novel partially incommensurate (IC) phase. Its spin structure factor, shown in

Fig. 4.2(c), exhibits four peaks at IC wavevectors close to the M points, along with two

larger peaks remaining at the midpoints of the BZ edges.

A particular IC zigzag order can be understood as the corresponding order parameter

acquiring a long-wavelength modulation, i.e. φm(r) ∼ cos(km · r + θ0), where θ0 is a

constant phase, km = εQm is parallel to the corresponding zigzag wavevector and

ε � 1. The corresponding spin component thus has a spatial dependence: Sγi ∼
eiQm·ri cos(km · ri + θ0). In momentum space, since Qm ≡ −Qm up to a reciprocal

lattice vector, the single peak at the original commensurate M point splits into two IC

peaks at (1± ε)Qm.

In phase III, two of the zigzag order parameters, say φ1 and φ2, undergo this mod-

ulation instability while the third one φ3 remains commensurate. This asymmetry is

responsible for the broken C3 symmetry. In real space, this phase exhibits a stripy

superstructure on top of the underlying zigzag pattern. As the field is further increased,

the remaining commensurate zigzag parameter also undergoes a C-IC transition, giving

rise to a fully IC state corresponding to phase IV in Fig. 4.1. As shown in Fig. 4.2(d),

the structure factor of this fully IC zigzag exhibits six peaks at momenta that are close

to the M points, but inside the BZ. This second C-IC transition is also marked by the

decrease of the ζ parameter, hence partially restoring the C3 symmetry of the system;

see Fig. 4.3(c).

The observed C-IC transitions might be partially driven by entropic selection. Since
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Figure 4.3: Monte Carlo simulations of KH model subject to a magnetic field along
the [111] symmetric direction. (a) Magnetization projected onto the field direction as
a function of H for varying temperatures. (b) Amplitude of zigzag order parameter
φ = |φ| (left axis) and the

√
3×
√

3 order parameter ψ (right axis) versus field strength.
(c) Field dependence of the order parameter ζ = |ζ| characterizing the disparity of the
three zigzags. Both temperature T and field strength H are in units of the exchange
energy scale A. The simulations are performed on the KH model with parameter ϕ =
0.7π, where single-Q collinear zigzag order is the ground state. The number of spins is
Ns = 2× 602.
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thermal fluctuations tend to favor collinear spin configurations, one of the reasons be-

hind the stabilization of the IC order can be due to the increase of spin collinearity.

The technical details section 4.6.2 at the end of the chapter characterizes various zigzag

phases using the nematic order parameter. Indeed, we find that the IC zigzag state has

a larger value of the nematic order than in the triple-Q zigzag phase. Phenomenologi-

cally, these two C-IC transitions result from the softening of the gradient terms of the

zigzag order parameters. We can again understand the nature of these two transitions

from the Ginzburg-Landau formalism. For convenience, we introduce a triplet of order

parameters ξ = (ξ1, ξ2, ξ3) which measure the incommensurability of the corresponding

zigzag ordering. More specifically, we define ξm = Q̂m ·∇φm. Note that modulations of

φm that are perpendicular to Qm are not considered here, since they are not observed

in our simulations. Up to the sixth-order, the free-energy of the gradient terms reads

Fgrad = a|ξ|2 + b|ξ|4 + c|ξ|6 + d
∑
m 6=n

ξ2
mξ

2
n + e ξ2

1 ξ
2
2 ξ

2
3 . (4.4)

Interestingly, the conventional scenario in which the IC phase is caused by the softening

of the stiffness constant a→ 0 would lead to a continuous phase transition in the Landau

theory. Moreover, the quartic interaction term will immediately select a zigzag state

with either a single IC zigzag (d > 0) or a fully IC zigzag (d < 0). These results are

inconsistent with our numerical simulations. Instead, the observed discontinuous C-IC

transitions can be attributed to a negative quartic term b < 0 while a remains positive

throughout the transitions, a scenario similar to the first-order transition close to a

tricritical point [75]. Here a sixth-order term with c > 0 is required for stability of the

system.

The first three terms preserve a pseudo-O(3) rotational symmetry of the modula-

tion parameters ξ. Similar to the free-energy in Eq. (4.2), this symmetry indicates a

continuous degeneracy of IC zigzag orders. The exact IC order is determined by the

interactions among the ξm parameters, which are represented by the last two terms in

Fgrad. A dominant e > 0, corresponding to a strong repulsion between the modulation

parameters, favors the partially IC phase III in which one of the three ξm is zero. On

the other hand, a large attractive interaction among the modulations ξm, represented by

a d < 0 term, would drive the system into a fully IC state with restored C3 symmetry.
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4.3.3 High field strength:
√

3×
√

3 magnetic ordering

At large magnetic field, the IC zigzag phase is connected to a
√

3 ×
√

3 order through

a first-order transition, which manifests itself in the huge jump in magnetization at

H ∼ 1.35 at low temperatures (see Fig. 4.3(a)). This phase is characterized by a Bragg

peak at the K point of the BZ, which also serves as the relevant order parameter. A

clear jump of the
√

3×
√

3 order parameter ψ can be seen in Fig. 4.3(b).

To verify our numerical results for high values of magnetic field, here we perform

an explicit stability analysis of the fully polarized state. Specifically, we search for the

most unstable normal mode of the KH Hamiltonian in a magnetic field. In a large field

limit, all spins are polarized: Si = S n̂, where n̂ = ê[111] is a unit vector pointing along

the [111] direction. For convenience, we will set S = 1 in the following discussion. We

next introduce two unit vectors êa = (êx + êy − 2êz)/
√

6 and êb = (êy − êx)/
√

2, where

êx,y,z are unit vectors pointing along the three cubic axes. The three vectors êa, êb and

n̂ form an orthonormal basis.

As field is decreased, spins start to deviate from the n̂ direction. We next introduce

a two-component vector σi = (σai , σ
b
i ) and write the spin field as

Si =
√

1− |σi|2 n̂ + σai êa + σbi êb. (4.5)

It is then easy to see that the individual spin component can be expressed as

Sγi =
1√
3

√
1− |σi|2 +

√
2

3
σi · tγ , (4.6)

where tx = (1
2 ,
−
√

3
2 ), ty = (1

2 ,
√

3
2 ), and tz = (−1, 0) are the lattice vectors ( see Fig.

4.4). Using this expression, we expand the spin interaction term Sγi S
γ
j to second order

in σ:

Sγi S
γ
j =

1

3

(
1− |σi|

2

2
− |σj |

2

2

)
(4.7)

+

√
2

3
tγ · (σi + σj) +

2

3
(σi · tγ)(σj · tγ),

In particular, the isotropic Heisenberg exchange interaction Si ·Sj =
∑

γ S
γ
i S

γ
j becomes

Si · Sj =

(
1− |σi|

2

2
− |σj |

2

2

)
+ σi · σj . (4.8)
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Substituting these expressions into the KH Hamiltonian, we obtain

H = E0 +
1

2
(H − 3J − 2K)

∑
i

|σi|2 (4.9)

+J
∑
〈ij〉

σi · σj +
4K

3

∑
〈ij〉γ

(σi · tγ)(σj · tγ).

where E0 = (3J + 2K)N − 2HN , and N is the number of unit cells of the honeycomb

lattice. The terms linear in σ in Eq. (4.7) cancel each other in the lattice sum. We note

that the Hamiltonian Eq. (4.9) can serve as a starting point for the quantum mechanical

treatment of the magnon condensation. The spin “deviations” σa,bi are now quantum

operators satisfying the commutation relations [σai , σ
a
j ] = [σbi , σ

b
j ] = 0, and [σai , σ

b
j ] =

iSδij . In fact, the Holstein-Primarkoff boson operators are expressed as ai = (σai +

iσbi )/
√

2S. The magnon bandstructure is then obtained by diagonalizing the resultant

magnon Hamiltonian using the Bogoliubov transformation. Magnetic instability occurs

when one of the magnon bands touches zero as the field strength is decreased.

Here we treat the spin deviations σi as classical variables and simply analyze the

eigenmodes of the corresponding classical Hamiltonian. In particular, this classical

instability analysis provides a direct comparison with the classical Monte Carlo simu-

lations presented in the main text. To this end, we introduce Fourier transformation

σi = 1√
N

∑
k σs(k)eik·ri to diagonalize the quadratic Hamiltonian Eq. (4.9). Here each

site i = (r, s) is labeled by the Bravais lattice point r and the sublattice index s = 1, 2,

ri = r + ds is the actual physical position of site-i, r = n1t
x + n2t

y are Bravais lattice

points, and d1 = (0, 0) and d2 = dz = (0, 1√
3
) are basis vectors for the two sublattices.

The lattice geometry is shown in Fig. 4.4.

Substituting the Fourier expansion into Eq. (4.9), the spin Hamiltonian becomes

H = E0 +
∑
k

U∗k ·Hk · Uk (4.10)

where the 4-component vector Uk = [σa1k, σ
b
1k, σ

a
2k, σ

b
2k]. The interaction matrix Hk has

the following form:

Hk =


εH 0 fk + gaak gabk

0 εH gabk fk + gbbk

f−k + gaa−k gab−k εH 0

gab−k f−k + gbb−k 0 εH

 . (4.11)
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Figure 4.4: The honeycomb lattice with three types of nearest neighbor bonds. Here

tx = (1
2 ,
−
√

3
2 ), ty = (1

2 ,
√

3
2 ) are two primitive translations. Extended magnetic unit cells

used in our variational calculation of the KH model. The quadrupled unit cell (yellow
shaded sites) corresponding to the general ordering composed of three wavevectors Q1 =
(−π,−π/

√
3), Q2 = (0, 2π/

√
3), and Q3 = (+π,−π/

√
3). The tripled unit cell (green

shaded sites), on the other hand, describes the
√

3×
√

3 type ordering with a wavevector
K = (4π/3, 0).

The matrix elements are

εH =
1

2
(H − 3J − 2K), (4.12)

fk = =
J

2

(
eik·dx + eik·dy + eik·dz

)
, (4.13)

gaak =
K

6

(
eik·dx + eik·dy + 4eik·dz

)
, (4.14)

gbbk =
K

2

(
eik·dx + eik·dy

)
, (4.15)

gabk = − K

2
√

3

(
eik·dx − eik·dy

)
. (4.16)

Here the three vectors dx,y = (±1
2 ,
−1

2
√

3
), and dz = (0, 1√

3
) connect nearest-neighbors in

honeycomb lattice. As the field strength H is reduced, the magnetic instability starts

at the k∗ points at which λmin(k∗) touches zero; here λmin(k) is the smallest eigenvalue

of the matrix H(k). Figure. 4.5 shows the contour plot of λmin(k) in k-space. As can be

seen, the function λmin(k) has minima at the K points, indicating that the instability

will take place at the corner of the Brillouin zone. The resultant
√

3 ×
√

3 magnetic

ordering is consistent with our Monte Carlo simulation results at high field.
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Figure 4.5: Contour plot of the minimum eigenvalue of H(k), showing minimum at the
K points QK = (4π

3 , 0).
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4.4 Temperature dependence and hysteresis

Here we present the temperature dependence of the zigzag order parameter φ and ζ com-

puted from annealing and heating simulations. At small field, as shown in Fig. 4.6(a)

for H = 0.2, the zigzag order parameter φ increases monotonically as temperature is

lowered. On the other hand, the amplitude of the doublet order parameter ζ, which char-

acterizes the disparity of the three zigzag Ising parameters φm, shows a non-monotonic

temperature dependence; see Fig. 4.6(b). As discussed in section 4.3.1, the doublet order

parameter vanishes identically in a perfect triple-Q zigzag state, while ζ = |ζ| reaches

its maximum value in a single-Q zigzag. The re-entrant behavior shown in Fig. 4.6(b)

thus corresponds to an intermediate single-Q zigzag phase that is stabilized by thermal

fluctuations at finite temperatures. The absence of hysteresis from the annealing and

heating simulations points to a continuous transition between the single and triple Q

zigzag phases.

At high field H = 0.92, annealing simulation from a disordered state shows a

monotonic growth for both order parameters φ and ζ with decreasing temperature; see

Fig. 4.6(c) and (d). From the H-T phase diagram shown in Fig. 1, there are two low-T

zigzag phases at this field value: the single-Q commensurate phase I and the partially

incommensurate phase III at lowest temperatures. Since the C3 symmetry is broken in

both phases, the ζ order parameter describing the disparity of the three zigzag chains

is nonzero throughout the low-T ordered regime. Interestingly, our simulations also

find that the incommensurate zigzag phase III coexists with the commensurate triple-Q

zigzag II state over a wide range of temperatures, as demonstrated by the pronounced

hysteresis loop from the annealing and heating simulations shown in Fig. 4.6(c) and (d).

In the heating simulations, the spins are initialized to the commensurate triple-Q zigzag

state obtained from the variational minimization discussed above. At zero temperature,

this triple-Q phase with three coexisting zigzag Ising order parameters φ1 = φ2 = φ3

is characterized by a vanishing ζ. As T increases, we find that the triple-Q state is a

very robust local minimum and remains stable until T ∼ 0.1, above which the system

decays spontaneously into the partially incommensurate zigzag phase III as indicated

by a sudden increase of the ζ order parameter.
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Figure 4.6: Temperature dependence of order parameters φ = |φ| and ζ = |ζ| from
annealing and heating simulations. Panels (a) and (b) are obtained with H = 0.2, while
(c) and (d) are obtained with H = 0.96.
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4.5 Summary

To summarize, we have investigated the finite temperature phase diagram of the KH

model subject to a magnetic field. Our extensive Monte Carlo simulations have un-

covered several novel zigzag orders and phase transitions. Of particular interest is the

existence of two intriguing IC zigzag orderings at intermediate to large field regime.

Interestingly, these unusual zigzag states are completely hidden in the magnetization

measurement, which shows a smooth growth of magnetic moment with increasing field.

These intriguing IC zigzags might be identified in high-field µSR experiments which

provide a powerful means of measuring the internal magnetic field distribution caused

by the presence of the peculiar field texture. The C-IC transition could be observed

experimentally using inelastic neutron scattering techniques.

One last and yet very important question to address is the relevance of the obtained

results to the real materials. Although zigzag phases have been detected in Na2IrO3 and

α-RuCl3, the spin Hamiltonian of both compounds remains uncertain, and it probably

involves both other anisotropic interactions and further neighbor isotropic couplings

[71, 11, 76, 21, 77, 78, 79]. In particular, the NN off-diagonal exchange Γ may play an

important role in both Na2IrO3 and α-RuCl3, e.g. in fixing the global directions of the

spins in the zigzag state at zero field [21]. Although the effects of a magnetic field in these

more realistic models have yet to be investigated in detail, given the frustrated nature

of spin interactions in such spin-orbit Mott insulators, we expect similar field-induced

phases to occur in real materials, which is left for future studies.

4.6 Technical details

4.6.1 Variational ground states

In this technical section, we present a variational calculation for the classical ground

states of the KH Hamiltonian. We consider magnetic structures with both a quadrupled

unit cell and a tripled unit cell as our ansatz; see Fig. 4.4. In the former case, the 8-

site spin structure includes the simple ferromagnetic and Néel orders with Q0 = 0,

as well as the general zigzag and stripe orders characterized by wavevectors Q1 =

(−π,−π/
√

3), Q2 = (0, 2π/
√

3), and Q3 = (+π,−π/
√

3). As discussed in the previous
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section, magnetic instability from the saturated state starts at the K = (4π/3, 0) points

of the BZ. The corresponding eigen-mode belongs to the class of magnetic states with a

tripled unit cell containing 6 inequivalent spins. In both cases, each spin in the extended

unit cell is parametrized by two angles: Si = S(sinβi cosαi, sinβi sinαi, cosβi). The

total variational energy Evar({αi, βi}), which is a function of these angle variables, is

then minimized to obtain the variational ground states.

Next we discuss the characterization of the minimum-energy solution in the quadru-

pled unit cell. We first define vector order parameters that correspond to wavevector

Q0 and the three Qm (m = 1, 2, 3) at the M -points of the BZ. By labeling the 8 in-

equivalent sites according to Fig. 4.4, these vector order parameters are basically linear

transformations of the eight spins {Si}:

M = 1
8(S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8),

L = 1
8(S1 − S2 + S3 − S4 + S5 − S6 + S7 − S8),

N1 = 1
8(S1 − S2 − S3 + S4 + S5 − S6 − S7 + S8),

N2 = 1
8(S1 + S2 − S3 − S4 − S5 − S6 + S7 + S8),

N3 = 1
8(S1 − S2 + S3 − S4 − S5 + S6 − S7 + S8), (4.17)

R1 = 1
8(S1 + S2 − S3 − S4 + S5 + S6 − S7 − S8),

R2 = 1
8(S1 − S2 − S3 + S4 − S5 + S6 + S7 − S8),

R3 = 1
8(S1 + S2 + S3 + S4 − S5 − S6 − S7 − S8).

Here the Q0 = 0 part includes M, which is the simple ferromagnetic order, and L which

describes the staggering of sublattice magnetization. The vectors Nm characterize the

odd-parity zigzag order with wavevectors Qm. And finally, the even-parity combinations

corresponding to the stripe order are given by the three vector parameters Rm. For

spin Hamiltonians that preserve the SU(2) or O(3) spin rotational symmetry, or if the

spin rotations are decoupled from the real-space symmetry operations, these vectors are

the appropriate order parameters for the characterization of the magnetically ordered

states.

However, the presence of the anisotropic Kitaev term in the KH Hamiltonian ex-

plicitly breaks the spin rotational symmetry, and only generalized symmetry operations
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that involve discrete rotations in both spatial and spin spaces are preserved. For ex-

ample, permutations of the three vector parameters Nm (by the C3 rotations) must

be accompanied by the corresponding rotation in spin space. Consequently, instead of

the vector parameters listed above, the proper order parameters are given by the irre-

ducible representations of the group of combined symmetry operations. For instance,

as discussed in the main text, a multiple-Q zigzag order is characterized by a triplet of

Ising parameters φ = (φ1, φ2, φ3). Similarly, a multiple-Q stripe order is described by

a triplet η = (η1, η2, η3). In terms of these Ising order parameters, the corresponding

vector parameters are Nm = φm êγ and Rm = ηm êγ . Here m = 1, 2, 3 corresponds to

γ = x, y, z. Our direct numerical minimization finds that combined C3 symmetry is

preserved in the variational ground states in the parameter regime of our interest. As a

result, for example, the symmetric zigzag order with φ1 = φ2 = φ3 is specified by only

one scalar parameter.

In the limit of H → 0, the only nonzero order parameters are the three vectors Nm

while all other vectors vanish. The magnetic field not only induces a finite magnetization

M, but also generates other small secondary order parameters due to the hard constraint

of fixed spin length |Si| = S. Through our direct numerical minimization, we find that

the variational ground state of the KH model can be described by six scalar parameters

m, `, φ, φ̄, η, and η̄:

M = m (êx + êy + êz)/
√

3,

L = ` (êx + êy + êz)/
√

3,

N1 = φ êx/
√

3 + φ̄ (êy + êz)/
√

6,

N2 = φ êy/
√

3 + φ̄ (êz + êx)/
√

6,

N3 = φ êz/
√

3 + φ̄ (êx + êy)/
√

6, (4.18)

R1 = η (êy + êz)/
√

6 + η̄ êx/
√

3,

R2 = η (êz + êx)/
√

6 + η̄ êy/
√

3,

R3 = η (êx + êy)/
√

6 + η̄ êz/
√

3,

With these variational parametrization, the energy density of the 8-site spin structure
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Figure 4.7: Variational ground-state calculation of KH model at ϕ = 0.7π in the mag-
netic field along the [111] direction : (a) Magnetization given by the ferromagnetic order
parameter m as a function of field strength. Also shown for comparison is the magne-
tization curve obtained from Monte Carlo simulations at a temperature T = 0.005. (b)
The amplitude of the various order parameters defined in Eqs. (4.18) and (4.21) versus
H. T and H are measured in units of A.
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is

ε = −Hm− 1

2
(3J + 2K)(`2 −m2)

+
J

2

(
φ2 + φ̄2 − η2 − η̄2

)
(4.19)

−K
(
φ2 − φ̄2 + η2 − η̄2

)
.

The two exchange terms of the KH Hamiltonian are parametrized as J = A cosϕ, and

K = A sinϕ. For a strong ferromagnetic Kitaev interaction (K > 0), as in the case of

KH parameter ϕ = 0.7π, the two dominant orderings are zigzag order characterized by

φ and the stripe order characterized by η. The zigzag pattern is further favored by a

ferromagnetic Heisenberg term with J < 0, again as in the case of ϕ = 0.7π. Indeed,

as shown in Fig. 4.7, a significant stripe order η appears at high field in addition to the

dominant zigzag order φ. Finally, we note that the Néel order ` and φ̄, η̄ are secondary

parameters with small amplitude.

We next turn to the characterization of the magnetic structure with tripled unit

cell. Other than the usual ferromagnetic M and Néel order L, we are most interested

in the order parameter corresponding to the
√

3 ×
√

3 type pattern. This long-range

order is characterized by a wavevector K = (4π/3, 0). For convenience, we define

ω = exp(iK · tx) = exp(i 2π/3). Using the labeling of the six inequivalent spins in Fig.

4.4, the appropriate vector order parameters are then given by

V1 = 1
3 (S1 + ω S3 + ω2 S5),

V2 = 1
3 (S2 + ω S4 + ω2 S6). (4.20)

Here the subscript 1, 2 refers to the two sublattices of the honeycomb lattice. Consistent

with the linear stability analysis discussed in the previous section, we find that the
√

3×
√

3 structure indeed has a lower energy compared with the general 8-site ansatz in

the high field regime. Moreover, our direct minimization shows that the
√

3×
√

3 order

can be characterized by a complex order parameter ψ as follows:

V1 = +ψ (êx + ω êy + ω2 êz),

V2 = −ψ (ω2êx + ω êy + êz), (4.21)

where the phase of ψ is field dependent. Fig. 4.7 summarizes our numerical calculation

of the variational ground states. Other than the fully polarized state at high field,
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there are two nontrivial ordered states separated by a first-order phase transition at

Hc ∼ 1.37. The low-field phase is the symmetric triple-Q order with a dominant zigzag

order parameter φ. While the only nonzero order at H → 0 is given by φ = 1, all other

order parameters are induced by the magnetic field and grow gradually with increasing

H. Interestingly, a small Néel order is generated by the field. Moreover, the stripe order

characterized by η becomes quite significant in the intermediate field regime. For field

strength above Hc, all order parameters related to three Qγ wavevectors suddenly drop

to zero. The high-field ground state corresponds to a finite ψ, indicating the
√

3×
√

3

type long-range order.

We note that the variational ground states are consistent with the Monte Carlo

simulations for regimes where the ground state is the commensurate triple-Q zigzag

(smallH), and the
√

3×
√

3 order (largeH). The two methods give very consistent values

for the Hc of the first-order transition and the saturation field; see the comparison in

Fig. 4.7(a). However, since the variational calculation is restricted to commensurate unit

cells, it cannot address the commensurate-incommensurate transitions and the novel

incommensurate zigzag orders observed in Monte Carlo simulations. The variational

approach, nonetheless, provides a guideline of the underlying energetics and serves as a

useful double check for the large-scale simulations.

The triple-Q zigzag order has an interesting canting pattern. At H = 0, the eight

inequivalent spins point in the eight symmetry-related 〈111〉 directions. As H is in-

creased, the two spins pointing along [111] and [1̄1̄1̄], are completely unaffected by the

field. The other six spins cant towards the direction of the field, with the canting angle

increasing as a function of the field magnitude. At intermediate field, this canted triple-

Q zigzag gives way to the incommensurate zigzag orders, phases III and IV discussed

in the main text. As discussed above, the variational calculation based on 8-sublattice

unit cell cannot describe the corresponding C-IC transitions. Finally, at high enough

magnetic field it is no longer energetically favorable to keep one spin in the direction

opposite of the field and the results of the calculation revert back to single-Q com-

mensurate zigzag phase with canted spins from our variational calculation. However,

it should be noted that this high-field two-sublattice zigzag is only a metastable state.

As shown in Fig. 4.7, the six-sublattice
√

3 ×
√

3 order is the ground state in the field

regime immediately below the saturation field.
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4.6.2 Nematic order

In this section, we characterize the various zigzag phases using the nematic order pa-

rameter. The nematic phase of liquid crystals is marked by a preferred direction of

the molecules. While ordered magnetic phases such as ferromagnetic or Néel order give

rise to a nonzero nematic order parameter, an intriguing possibility is a phase which

breaks the rotational symmetry while preserving the time-reversal symmetry. Such a

spin nematic phase has been discussed in several quantum and frustrated magnetic sys-

tems. Here we are interested in the so-called uniaxial order parameter as a measure

of the collinearity of spins. Specifically, we first compute the second-rank tensor order

parameter:

Qαβ =
3

2
〈Sα Sβ〉 − 1

2
δαβ, (4.22)

where Sα is the α component of spin. The uniaxial order parameter λQ is then given

by the largest eigenvalue of a 3 × 3 matrix whose elements correspond to the above

second-rank tensor. A full collinear spin configuration, e.g., a ferromagnetic or Néel

order, is characterized by a maximum λQ = 1, while a completely disordered state has

a vanishing uniaxial order parameter.

Fig. 4.8 shows the field dependence of the uniaxial order parameter λQ obtained

from our Monte Carlo simulations for three different temperatures. As discussed in

the main text, the low-temperature phase at small field is the collinear single-Q zigzag

state. A rather large λQ ≈ 1 in this regime is consistent with this conclusion. As H is

increased, the transition into the triple-Q zigzag phase is marked by a pronounced drop

of the uniaxial order parameter as demonstrated in Fig. 4.8. In fact, the second-rank

tensor Qαβ vanishes identically in a perfect triple-Q zigzag state. As the field strength is

further increased, the tilting of spins toward the [111] direction gradually increases the

uniaxial parameter. Interestingly, λQ exhibits small jumps at the two C-IC transitions,

i.e. from zigzag phase II to III and from III to IV. Since thermal fluctuations tend

to favor collinear spin configurations, the observed jumps of λQ imply that the C-IC

transitions might be partially driven by entropic selection. Finally, the transition from

the zigzag phase IV to the
√

3×
√

3 order at Hc ∼ 1.37 is accompanied by a pronounced

increase of the uniaxial order parameter.
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Figure 4.8: Field dependence of the uniaxial nematic order parameter λQ at vari-
ous temperatures. The arrows indicate the small jumps of λQ at the commensurate-
incommensurate phase transitions. T and H are measured in units of A.



Chapter 5

Calculation of gyromagnetic

tensor and Curie-Weiss

temperatures in anisotropic spin

systems

5.1 Introduction

In this chapter I discuss how the anisotropic nature of the interactions is explicitly re-

vealed in the anisotropy of the magnetic susceptibility, gyromagnetic factors and Curie-

Weiss (CW) temperatures. Indeed, this has been observed in all 4d and 5d SOC assisted

Mott insulators which we consider here. For instance, in α-RuCl3 the ab-component

of the susceptibility in the honeycomb plane is almost an order of magnitude larger

than the component perpendicular to the plane [15]. In most of the compounds with

bond-dependent interactions, all three components of susceptibility also show strong

deviation from the CW behavior as a function of temperature [80]. This is in stark

contrast with Heisenberg exchange systems where the low-temperature susceptibility

reflects the g-factor anisotropy observed at high temperatures, even in the presence of

spatially anisotropic exchange interactions.

The observed anisotropy of the magnetic susceptibilities and CW temperatures raises

88
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an important question of how to extract the CW temperatures and the elements of

anisotropic susceptibility tensor in real systems. This question is far from being trivial as

it requires a more accurate analysis of the experimental data as now all these quantities

should be described in a tensorial form. Though, it is not new and has been discussed

in the literature, we believe it is worth providing a systematic description for a proper

procedure.

In this context, we first focus on deriving a general procedure for calculating CW

temperatures for generic bilinear anisotropic magnetic Hamiltonians with anisotropic

gyromagnetic tensor. We then apply this method to find the effect these anisotropies

have on the CW temperatures of α−RuCl3, Na2IrO3, (α, β, γ)−Li2IrO3, and Sr2IrO4.

We find that in all but the last material the anisotropy of the CW temperatures are

caused by the symmetric off-diagonal interaction Γ as well as bond dependence of Kitaev

and Γ interactions caused by structural distortions. While the role of Γ interaction

in the generation of the CW anisotropy has been discussed before [71], not much is

known about the effect of the bond dependent anisotropies. We note that experimental

measurements of CW temperatures along all three principal axes allow to estimate

the anisotropies independently. In Sr2IrO4 we also find that the two sublattices have

different anisotropic gyromagnetic tensors due to staggered tetragonal distortions. The

components of the gyromagnetic tensors enter the CW temperature expressions and as

a result contribute to the anisotropy of the CW latter.

The chapter is organized as follows: In section 5.2 we give a general procedure for

deriving the magnetic susceptibility of materials with anisotropic Hamiltonians. We

also calculate the anisotropic gyromagnetic tensor for ions in octahedral local environ-

ment with tetragonal or trigonal distortions. In section 5.3 we focus on tri-coordinated

with subsection 5.3.1 dedicated to layered 2D honeycomb materials and calculation of

the CW temperatures for the most general models proposed for the compounds. We

discuss the specific applicability of the model to α−RuCl3 and Na2IrO3. In subsec-

tion 5.3.2 we consider the nearest neighbor (n.n.) models on 3D honeycomb materials,

(β, γ)−Li2IrO3. In section 5.4 we study the Sr2IrO4 CW temperatures. We give our

conclusions and final remarks in section 5.5.
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5.2 Magnetic susceptibility in anisotropic magnetic Hamil-

tonian

5.2.1 General formalism

A general anisotropic magnetic Hamiltonian in the applied magnetic field term has the

following form:

H =
∑
〈i,j〉,α,β

Sαi J αβij S
β
j −

∑
α,β,i

Sαi gαβi Bβ, (5.1)

where J αβij is the interaction matrix, gαβi is the gyromagnetic tensor. In the mean field

(MF) approach, this lattice Hamiltonian is replaced by the energy of a non-interacting

system of pseudospins:

HMF = −
∑
i,α

Sαi hαi = −Nuc

∑
µ,α

Sαµhαµ, (5.2)

where in the last equality µ is the sublattice index, and Nuc is the number of unit cells

in the sample. The local field is defined as

hαµ = −
∑
β

∑
j

Jαβµj 〈S
β
j 〉 − gαβµ Bβ

 . (5.3)

Its magnitude and direction, h0 and ~eµ, are respectively given by

hµ =

√∑
α

(
hαµ
)2
, eαµ =

hαµ
hµ

=
hαµ√∑
α

(
hαµ
)2 . (5.4)

In the MF approximation, we can easily write down the partition function for a single

pseudospin as

Z = Treβ
∑
α Sαµhαµ = Treβ

~Seµµ ~hµ , (5.5)

where ~Seµµ is a spin operator, representing the spin on sublattice µ, measured along

the direction of ~hµ. Naturally, there are two more spin operators orthogonal to Seµµ
that we can define, however their expectation values are zero since they are directed

perpendicular to the magnetic field. Thus we can find the expectation value of Seµµ :

〈Sαµ 〉 = eαµ〈S
eµ
µ 〉 = eαµ

TrSeµµ eβS
eµ
µ hµ

TreβS
eµ
µ hµ

= 1
2e
α
µ tanh(

βhµ
2 ) ≈ β

4h
α
µ =

∑
β χ

αβ
0 hβµ (5.6)
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where we use β � 1 to approximate the hyperbolic tangent and χαβ0 = β
4 δ

αβ. The result

was derived for S = 1/2, but can be generalized to any S leading to χαβ0 = β
3S(S+1)δαβ

as the bare spin susceptibility. Explicitly, we have

〈Sαµ 〉 =
∑

β χ
αβ
0 hβµ = −∑β χ

αβ
0

∑
γ

(∑
j J

βγ
µj 〈S

γ
j 〉 − g

βγ
µ Bγ

)
. (5.7)

Collecting terms with spin expectation values on the left side, this equation can be

rewritten in matrix form as

Λ̂〈 ~S〉 = Ĝ ~B, (5.8)

where the Λ̂ and Ĝ are block-diagonal matrices (each block corresponding to a sublattice

µ) with elements equal to:

Λαγ = δαγ +
∑
β,j

χαβ0 Jβγµj = δαγ +
β

3
S(S + 1)

∑
j

Jαγµj , (5.9)

and

Gαγ =
∑
β

χαβ0 gβγµ =
β

3
S(S + 1)gαγµ . (5.10)

By inverting the Λ̂ matrix, we get an expression for the full pseudospin susceptibility

with respect to applied field:

〈 ~S〉 = Λ̂−1Ĝ ~B = χ̂s ~B, (5.11)

where χ̂s = Λ̂−1Ĝ. However, in experiments a magnetic susceptibility is measured

instead. To find it, the spin susceptibility should be multiplied by the gyromagnetic

factor:

~m = ĝ〈 ~S〉 = ĝΛ̂−1Ĝ ~B = χ̂ ~B, (5.12)

where

χ̂ = ĝΛ̂−1Ĝ (5.13)

is the matrix that gives the magnetic response of individual sites in the unit cell.

Note that ĝ, Λ̂, Ĝ, and χ̂ are 3N by 3N matrices, where N is the total number of

sites µ in one unit cell. Inverting such large matrices analytically is computationally

prohibitive. At high temperatures Λ̂−1 can be approximated in Eq. (5.9):

(Λ̂−1)αγ ≈ δαγ − β

3
S(S + 1)

∑
j

Jαγµj , (5.14)
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This greatly simplifies the calculation for systems with large unit cells and thus large

matrices. The calculation of χ̂ according to Eq. (5.13) from here is a simple multipli-

cation of matrices. We now calculate the susceptibility of the material as a whole by

summing up the responses of the individual sites in the unit cell:

χ̂αβm =
1

N

N∑
µ=1

N∑
ν=1

χ̂αβµ,ν (5.15)

where µ and ν label sites in the unit cell.The 3 by 3 matrix χ̂m is now the magnetic

response of the whole material per unit atom (which gives that extra factor of 1/N).

Diagonalization and high temperature expansion of this matrix is the next step of the

calculation. Comparison to the CW law in the form χ̂m = C
T−Θ̂

, where C is a Curie

constant, and Θ is a Curie-Weiss constant, yields the expressions for the anisotropic

Curie temperatures.

5.2.2 Ground state Kramers doublet in the tetragonally or trigonally

distorted systems.

It is more convenient to describe the low-spin state of the d5-configuration of Ir4+, Rh4+

or Ru3+ ions by using the hole description. Then the ground state electronic structure of

these ions is described by a Kramers doublet which is a combination of spin and orbital

wave functions. If the local symmetry is cubic, i.e. in the absence of the trigonal or

tetragonal distortions, the ground state doublet is simply a ~J = ~leff + ~s = 1/2 and the

good choice of the states within it are the Jz = ±1/2 states. Henceforth, we represent

J by S and denote ~leff ≡ ~L. As the orbital composition of the Jz = ±1/2 states has

been discussed in chapters 2 and 3 I refer the reader there.

Note also that the eigenstates of the spin operators Sz and Se3 are related to each

other by

Se3 = ê3 · σ =

 1
2
√

3
1−i
2
√

3
1+i
2
√

3
− 1

2
√

3

 (5.16)

Diagonalization of this matrix gives the eigenstates of Se3 in the basis of eigenstates of

Sz.

In the presence of either tetragonal or trigonal distortion, the Kramers doublet states
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can be now written in a common form as [1]

|Ψ1〉 = cθ|+ 1, ↓〉 − sθ|0, ↑〉
|Ψ2〉 = −cθ|+ 1, ↓〉+ sθ|0, ↑〉, (5.17)

where cθ ≡ cos θ and sθ ≡ sin θ. For the case of tetragonal distortions the states on the

right are in the form |Lz, Sz〉 and for the case of trigonal distortions they are |Le3 , Se3〉.
Also, the angle

θ =
1

2
arctan

2
√

2λ

λ− 2∆

gives the relative strength of the spin orbit coupling λ and tetragonal/trigonal splitting

∆. The choice of the overall phase of the Ψ1 and Ψ2 states corresponds to the choice

of the ê1 and ê2 axes. In the case of no distortions the coefficients reduce to the

Clebsch-Gordan coefficients. Here we note that the monoclinic distortion cannot lift the

degeneracy of the ground state doublet. However, it can complicate the structure and

analysis of the ground state wave-functions, so here we will not consider the monoclinic

distortion for the purpose of calculating the gyromagnetic tensor.

Using Eq. (5.17), we can compute the matrix elements of Jen operators in the basis

of the Ψ1 and Ψ2 states:

〈Ψ1|J~e1 |Ψ1〉 = 0,

〈Ψ1|Je1 |Ψ2〉 =
√

2 cθsθ − s2
θ/2,

〈Ψ2|Je1 |Ψ1〉 =
√

2 cθsθ − s2
θ/2,

〈Ψ2|Je1 |Ψ2〉 = 0,

〈Ψ1|Je2 |Ψ1〉 = 0,

〈Ψ1|Je2 |Ψ2〉 = −i
(√

2 cθsθ − s2
θ/2
)
,

〈Ψ2|Je2 |Ψ1〉 = i
(√

2 cθsθ − s2
θ/2
)
,

〈Ψ2|Je2 |Ψ2〉 = 0,

〈Ψ1|Je3 |Ψ1〉 = 1/2,

〈Ψ1|Je3 |Ψ2〉 = 0,

〈Ψ2|Je3 |Ψ1〉 = 0,

〈Ψ2|J~e3 |Ψ2〉 = −1/2.

(5.18)

While the matrix elements of Je3 are good quantum numbers even in the presence of

trigonal distortions, the eigenvalues of Je1 and Je2 are no longer good quantum numbers
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when the octahedra are distorted along the [111] axis. Note that the matrix elements

of Je1 are purely real and those of Je2 are purely imaginary with the correct signs, so

we made the correct choice of the phase/axes combination. When there is no distortion

(∆ is set to zero) we recover the expected ±1/2 and ±i/2 for Je1 and Je2 respectively.

5.2.3 The gyromagnetic tensor for pseudospins-1/2 in the tetragonally

or trigonally distorted systems.

We derive the gyromagnetic tensor by equating the phenomenological Hamiltonian de-

scribing the coupling of magnetic field to the pseudospin-1/2 states, described by the Ψ1

and Ψ2 states, with the spin Hamiltonian describing the coupling of magnetic field to the

spin and orbital angular momenta with the gyromagnetic factor of 2 and 1, respectively:

µBB · (−L + 2S) =
∑

αβ=x,y,z

BαgαβµB
1

2
σβ (5.19)

where σ denoting the Pauli matrices representing the ground state Kramers doublet.

The orbital contribution on the left hand side has an extra negative sign originating

from the leff = 1 representation of the t2g orbitals. The gyromagnetic tensor gαβ can

now be found by calculating the matrix elements of both sides in the basis of Ψ1 and

Ψ2 states defined in Eq.(5.17). We find that the gyromagnetic tensor is given by

ĝ =


−2(
√

2 cθ + sθ)sθ 0 0

0 −2(
√

2 cθ + sθ)sθ 0

0 0 −1− 3 c2θ

 ,

(5.20)

where the principal axes for the tetragonal systems are the cubic directions x̂, ŷ, and ẑ

and for the trigonal systems are the ê1, ê2, and ê3. As expected, when distortion is set

to zero, the gyromagnetic tensor is isotropic and its diagonal matrix elements are equal

to −2.

For the case of the trigonal distortion, it is useful to rewrite the gyromagnetic factor
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Figure 5.1: Dependence of the gyromagnetic factor on tetragonal (trigonal) distortion
computed for λ = 0.4 meV.

in the cubic basis as well. For this purpose we use the rotation matrix:

R =


1√
6
− 1√

2
1√
3

1√
6

1√
2

1√
3

− 2√
6

0 1√
3

 (5.21)

Then the gyromagnetic tensor in the cubic basis has the following form:

ĝcub = R̂ĝR̂T =
1

3


gc + 2gab gc − gab gc − gab
gc − gab gc + 2gab gc − gab
gc − gab gc − gab gc + 2gab

 ,

(5.22)

where we denote gab = −2(
√

2 cθ + sθ)sθ and gc = −(1 + 3 c2θ).

We plot the dependence of the gyromagnetic factor on the distortion strength in Fig.

5.1. When there are no distortions the gyromagnetic factor is uniform and is equal to

-2. As the distortion strength is increased the gyromagnetic factor along the distortion

symmetry axis separates from the other two components.
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Figure 5.2: The 2D honeycomb lattice. The red, green and blue bonds label the n.n.
Kitaev x, y, and z bonds, respectively.

5.3 Application I: Susceptibility and Curie temperature of

the tri-coordinated Kitaev materials.

5.3.1 Layered honeycomb A2IrO3 materials.

Here we consider a general model relevant to layered honeycomb materials and in further

subsections we will apply it to specific materials. The 2D honeycomb lattice can be seen

in Fig. 5.2. We include Heisenberg isotropic interactions up to third neighbors, Kitaev

interactions up to the second neighbor and Γ interaction on n.n. The Kitaev nearest

neighbor bonds are colored red, green, and blue for x, y, and z Kitaev labels, respectively.

The next nearest neighbor (n.n.n.) Kitaev label is the label missing from the two n.n.

bonds connecting the sites. Namely, two next nearest neighbors connected by an x and

a y nearest neighbor bonds are connected by a z̃ next nearest neighbor bond. Note that

several of the materials of interest have a monoclinic distortion, reducing the crystal’s

symmetry from C3 to C2. In order to include the effects of the monoclinic distortion, we

allow the interactions on the n.n. bonds parallel to the C2 symmetry axis be different

from those on the other two kinds of the n.n. bonds, and, similarly, the interactions on

the n.n.n. bonds perpendicular to the C2 symmetry axis be different from the other two
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kinds of the n.n.n. bonds. For concreteness, we assume that the n.n. bond along the C2

symmetry axis is the z bond, and we denote the interactions along this bond as K̄1 and

Γ̄1. Consequently we denote the interactions on the n.n.n. z bond as K̄2. Note, that for

our purposes here any bond anisotropy in the Heisenberg interactions is not relevant,

because the Heisenberg interactions always enter the calculations as a sum over all

bonds, and thus a system with bond-anisotropic Heisenberg interactions will yield the

same result as the system with isotropic Heisenberg interactions equal to bond average

of the anisotropic case. Thus we are considering the Jα1 -K1-K̄1-Γ1-Γ̄1-Jα2 -K2-K̄2-Jα3

model:

H =
∑
〈i,j〉α

Jα1 SiSj +
∑
〈〈i,j〉〉α

Jα2 SiSj +
∑

〈〈〈i,j〉〉〉α

Jα3 SiSj

+
∑

〈i,j〉γ=x,y

K1 Sγi S
γ
j + Γ1(Sαi Sβj + Sβi Sαj )

+
∑
〈i,j〉z

K̄1 Szi Szj + Γ̄1(Sxi Syj + Syi Sxj )

+
∑
〈〈i,j〉〉γ̃

K2 S γ̃i S
γ̃
j +

∑
〈〈i,j〉〉z̃

K̄2 S z̃i S z̃j . (5.23)

where the α = 1, 2, 3 labels any generic bond anisotropy of the Heisenberg interaction

For the monoclinic distortions it distinguishes one bond type (α = 3) and the other two

bond types (α = 1, 2). As was noted above for the purposes of the CW calculations

the Heisenberg interaction always enters the calculation as bond average. Thus in the

following the Heisenberg interactions on different bonds will be united into:

Jav
1 = 1

3

∑
α J

α
1 (5.24)

Jav
2 = 1

3

∑
α J

α
2 (5.25)

Jav
3 = 1

3

∑
α J

α
3 (5.26)

In this case, the Λ matrix of Eq. (5.9) in the Cartesian coordinates reads

Λ =


Λ1 Λ′2 Λ′1

Λ′2 Λ1 Λ′1

Λ′1 Λ′1 Λ2

 (5.27)
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where

Λ1 = 1 + β
3S(S + 1)(3Jav

1 + 6Jav
2 + 3Jav

3 +K1 + 2K2)

Λ2 = 1 + β
3S(S + 1)(3Jav

1 + 6Jav
2 + 3Jav

3 + K̄1 + 2K̄2)

Λ′1 = β
3S(S + 1)Γ1

Λ′2 = β
3S(S + 1)Γ̄1

The Ĝ matrix of Eq. (5.10) is simplest in the ê1, ê2, ê3 basis, in which the gyro-

magnetic tensor has the diagonal form of Eq. (5.20). We thus rotate the Λ̂ matrix into

this basis as well. The resulting Λ̃ matrix is not diagonal as the ê1 and ê3 components

remain mixed:

Λ̃ =


Λ̃1,1 0 Λ̃1,3

0 Λ̃2,2 0

Λ̃3,1 0 Λ̃3,3

 (5.28)

where

Λ̃1,1 = 1 +
β

3
S(S + 1)

(
3Jav

1 + 6Jav
2 + 3Jav

3 + (5.29)

1

3
(K1 + 2(K̄1 +K2 + 2K̄2 − 2Γ1) + Γ̄1)

)
,

Λ̃2,2 = 1 +
β

3
S(S + 1)

(
3Jav

1 + 6Jav
2 + 3Jav

3 +K1 + 2K2 − Γ̄1

)
,

Λ̃3,3 = 1 +
β

3
S(S + 1)

(
3Jav

1 + 6Jav
2 + 3Jav

3 +

1

3
(2K1 + K̄1 + 2(2K2 + K̄2 + 2Γ1 + Γ̄1))

)
,

Λ̃1,3 = Λ̃3,1 =

√
2β

3
S(S + 1)

(
K1 − K̄1 + 2K2 − 2K̄2 − Γ1 + Γ̄1

)
Consequently, the tensor of magnetic susceptibility, χm, is also not diagonal in the ê1,

ê2, ê3 basis.

Diagonalization of χm gives the susceptibility along the three principle axes, from

which we also calculate the CW temperatures. To simplify the calculations we use the

high temperature approximation and expand all the expressions in β up to the second

order. At this order, the ê1, ê2 and ê3 are the principal axes, and the three CW
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temperatures are:

Θê1 = −1

3
S(S + 1)

(
3Jav

1 + 6Jav
2 + 3Jav

3 +
1

3
(K1 + 2K̄1 + 2K2 + 4K̄2 − 4Γ1 + Γ̄1)

)
Θê2 = −1

3
S(S + 1)

(
3Jav

1 + 6Jav
2 + 3Jav

3 +K1 + 2K2 − Γ̄1

)
Θê3 = −1

3
S(S + 1)

(
3Jav

1 + 6Jav
2 + 3Jav

3 +
1

3
(2K1 + K̄1 + 4K2 + 2K̄2 + 4Γ1 + 2Γ̄1)

)
The differences between these temperatures are:

Θê1 −Θê2 = −1

9
S(S + 1)

(
2(K̄1 −K1) + 4(K̄2 −K2)− 4(Γ̄1 − Γ1)

)
(5.30)

Θê2 −Θê3 = −1

9
S(S + 1)

(
(K1 − K̄1) + 2(K2 − K̄2)− 5Γ̄1 − 4Γ1

)
(5.31)

= −1

9
S(S + 1)

(
(K1 − K̄1) + 2(K2 − K̄2) + 5(Γ1 − Γ̄1)− 9Γ1

)
Θê3 −Θê1 = −1

9
S(S + 1)

(
(K1 − K̄1) + 2(K2 − K̄2) + 8Γ1 + Γ̄1

)
(5.32)

= −1

9
S(S + 1)

(
(K1 − K̄1) + 2(K2 − K̄2) + (Γ̄1 − Γ1) + 9Γ1

)
From these expressions we see that in these models the anisotropy of CW temper-

ature comes from two sources. First is the Γ1 interaction that separates the Θê3 from

Θê1 and Θê2 . The second source is the monoclinic distortion which further separates

Θê3 , as well as splits Θê1 and Θê2 .

The Jα1 -K1-K̄1-Γ1-Γ̄1-Jα2 -K2-K̄2-Jα3 model is much more general and complex than

necessary to describe any given layered honeycomb compound. However, by setting

some of the interactions to zero we can easily specialize this model to different materials,

which is what we do in the following subsections.

α-RuCl3

We now consider the physics of α−RuCl3. The microscopic calculations for α−RuCl3

showed that the super-exchange for this compound is dominated by the n.n. interactions

and emphasized the importance of the off-diagonal n.n. Γ1 interactions [11, 81, 82]. In

the parameter range relevant to α−RuCl3, all these studies agree that the n.n. Kitaev

interaction, K1, is ferromagnetic, and the off-diagonal exchange Γ1 is antiferromagnetic,

both of which are significantly larger than the Heisenberg interaction Jav
1 . We first



100

consider the case of C3. Neglecting the monoclinic distortions for the moment allows us

to give an estimate of Γ1 from the anisotropy of the CW temperatures. To specialize

the general equations of the previous section to this model with C3 symmetry we set

Jav
1 = Jav

2 = K2 = K̄2 = 0, K1 = K̄1, and Γ1 = Γ̄1. Using the experimental values

Θab = 37 K and Θc = −150 K from Sears et al [15], we can calculate Γ1 ≈ 21.5 meV

which is larger than the values ab initio calculations give (Γ1 ≈ 8.0 meV) [11]. This

suggests that monoclinic distortions, do indeed play a significant role in this compound,

accounting for at least some portion of the anisotropy of the CW temperatures.

Assuming the C2/m structure we now allow K1 6= K̄1 and Γ1 6= Γ̄1. As we are

unaware of any experimental work that measures anisotropy between Θê1 and Θê2 for

the compound, we are unable to separate out the monoclinic and Γ1 contributions to

the anisotropy. Instead we calculate the CW temperatures for the ab initio values of

K1 = −7.5 meV, K̄1 = −5.0 meV, Γ1 = 5.9 meV, Γ̄1 = 8.0 meV, Jav
3 = 2.8 meV for

comparison with future experiments: Θê1 = 7.6 K, Θê2 = 20.6 K, and Θê3 = −43.3 K.

Na2IrO3

Here we consider the most general model J1-K1-Γ1-J2-K2-J3 model relevant for Na2IrO3

[10]: For realistic sets of the parameters describing Na2IrO3, one gets the following signs

of the interactions: J1 > 0, K1 < 0, Γ1 > 0, J2 < 0, K2 > 0, and J3 > 0, and confirms

that n.n. Kitaev interaction is the dominant one [10, 61, 11].

Substituting the values of interactions from Winter [11], we get Θê1 = 0.68 K,

Θê2 = −9.57 K, Θê3 = −16.34 K.

5.3.2 3D honeycomb materials

Here we study the susceptibility and CW temperature for β-Li2IrO3 and γ-Li2IrO3 com-

pounds. Their bipartite orthorhombic tri-coordinated 3D lattice structures are shown

in Fig. 5.3. The magnetic unit cell has four sites in β−Li2IrO3 (see Fig. 5.3(a)) and

eight in γ-Li2IrO3 (see Fig. 5.3(b)). From the ab-initio calculations, the super-exchange

interactions between magnetic moments on the Ir ions are expected to be dominated

by n.n. interactions. Again, as in the case of α-RuCl3, the off-diagonal exchange Γ1

is expected to be important. We will focus on J1-K1-Γ1-like models. Both compounds

have several structurally different types of bonds. To keep with the spirit of generality
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Figure 5.3: The structure of (a) β-Li2IrO3 and (b) γ-Li2IrO3. The bonds are color
coded according to their Kitaev label: red, green and blue correspond to x, y and z
bonds, respectively.
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we will have different coupling constants for these bonds. Note that just as in the 2D

materials the Heisenberg interaction enters the calculation only as a bond average, Jav
1 .

The spin superexchange Hamiltonian for each lattice is expected to preserve the

lattice symmetry, which, due to SOC, simultaneously acts on the spin and lattice basis

vectors. The C2 rotation symmetry present on both lattice structures interchanges x

and y bonds, and thus the interactions on these bonds should be the same (up to the

sign). The sign of Γ1 interaction is bond dependent due to the crystal symmetry as

was shown by Lee and Kim [83]. This bond dependence of sign plays an important role

causing the Γ1 contribution from x and y bonds to cancel out and completely disappear

from the results of the calculation.

Since the exact local structure of the oxygen octahedra is not yet fully experimentally

specified we use a uniform gyromagnetic factor g for both compounds. As a result we

get a uniform Curie constant of C = 1
3g

2S(S + 1).

Hyperhoneycomb β-Li2IrO3

In β-Li2IrO3 shown in Fig. 5.3(a) the Kitaev z-bonds (blue) are structurally different

from x and y. Thus, we give the z-bonds different exchange parameters, namely K̄1

and Γ̄1, whereas x- and y- bonds will have K1 and Γ1.

Within this model the principal axes of the magnetic susceptibility tensor χ̂m in

the (x̂, ŷ, ẑ) basis are 1̂ = (0, 0, 1), 2̂ = 1√
2
(1, 1, 0), and 3̂ = 1√

2
(−1, 1, 0). The CW

temperatures along these axes are then:

Θ1̂ = −1
3S(S + 1)(3Jav

1 + K̄1) (5.33)

Θ2̂ = −1
3S(S + 1)(3Jav

1 +K1 + Γ̄1) (5.34)

Θ3̂ = −1
3S(S + 1)(3Jav

1 +K1 − Γ̄1) (5.35)

And all the combinations of their differences are:

Θ1̂ −Θ2̂ = −1
3S(S + 1)(K̄1 −K1 − Γ̄1) (5.36)

Θ1̂ −Θ3̂ = −1
3S(S + 1)(K̄1 −K1 + Γ̄1) (5.37)

Θ2̂ −Θ3̂ = −2
3S(S + 1)Γ̄1 (5.38)

Note that the Γ1 interaction on x and y bonds cancels out of the CW temperatures,

leaving only Γ̄1 on the z bonds. This happens due to the bond dependence of the sign
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on the x and y bonds. When the contribution of all bonds is summed up the equal

number of bonds with positive and negative Γ1 cancel each other out. Like in the 2D

compounds Γ̄1 on the z bonds can be calculated from Θ2̂ −Θ3̂.

γ-Li2IrO3

Here we again employ the J1-K1-Γ1 model, however here there are 3 kinds of structurally

different bonds. All x and y bonds have the same couplings (up to the sign of Γ1),

namely J1, K1, and Γ1. The z bonds that are a part of a complete hexagon have

couplings K in
1 and Γin

1 . The z bonds that are not part of a complete hexagon and

instead connect hexagons in different planes have couplings Kout
1 and Γout

1 . As before

Heisenberg interactions enter the calculation only as a bond average, and thus there is

no need to introduce different variable for J1 or each bond. Just like in β-Li2IrO3 we

use uniform gyromagnetic factor g, which gives the Curie constant of C = 1
3g

2S(S + 1)

across the board. The principal axes of this compound are the same as in β-Li2IrO3

as well: 1̂ = (0, 0, 1), 2̂ = 1√
2
(1, 1, 0), and 3̂ = 1√

2
(−1, 1, 0). The CW temperatures are

then:

Θ1̂ = −1
6S(S + 1)(6Jav

1 +Kout
1 +K in

1 ) (5.39)

Θ2̂ = −1
6S(S + 1)(6Jav

1 + 2K1 + Γout
1 + Γin

1 ) (5.40)

Θ3̂ = −1
6S(S + 1)(6Jav

1 + 2K1 − Γout
1 − Γin

1 ) (5.41)

And all the combinations of their differences are:

Θ1̂ −Θ2̂ = 1
6S(S + 1)(2K1 −Kout

1 −K in
1 + Γout

1 + Γin
1 ) (5.42)

Θ1̂ −Θ3̂ = 1
6S(S + 1)(2K1 −Kout

1 −K in
1 − Γout

1 − Γin
1 ) (5.43)

Θ2̂ −Θ3̂ = −1
3S(S + 1)(Γout

1 + Γin
1 ) (5.44)

Similarly to β−Li2IrO3 the Γ1 on the x and y bonds cancels out due to the bond

dependence of the sign.
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5.4 Application II: susceptibility and Curie temperature

of Sr2IrO4 and Ba2IrO4

Since it has been suggested [84] that the tetragonal distortion on the two sublattices of

Sr2IrO4 is different, we use two different non-isotropic gyromagnetic factors for them.

Following the notation of section IIB we set the angles θA and θB, which parametrize the

strength of the SOC and the tetragonal distortion on sublattices A and B, respectively.

The unit cell gyromagnetic factor then consists of the two blocks corresponding to the

sublattices along the diagonal:

ĝ =

(
ĝA 0

0 ĝB

)
(5.45)

where ĝA and ĝB are 3x3 matrices identical to 5.20 with the appropriate sublattice index

on the θ angles. We consider the model with 4 parameters:

H =
∑

〈i,j〉γ=x,y

J SiSj +K Sγi S
γ
j −Dz(Sxi Syj − S

y
i Sxj ) + δJz Szi Szj , (5.46)

where J is isotropic Heisenberg interaction, K is the pseudodipolar (or compass) like

anisotropy which gives Ising interaction of x components on the horizontal bonds and

y components on the vertical bonds, respectively. The Dz is the z component of the

DM interaction, and δJz is an Ising interaction of z components on all bonds. Using

this model we follow the procedure outlined in Sec. 5.2 above to arrive at the CW

temperatures and constants. The unit cell susceptibility matrix in this case is diagonal

in the cubic basis, so the cubic axes are the principal axes. The Curie constants have a

combination of the gyromagnetic factors from both sublattices:

Cx = 1
6S(S + 1)λxy

Cy = 1
6S(S + 1)λxy (5.47)

Cz = 1
6S(S + 1)λz

where

λxy = 4
(
s2
θA

(
√

2cθA + sθA)2 + s2
θB

(
√

2cθB + sθB )2
)

= ((gA)2
xy + (gB)2

xy) (5.48)

λz =
(
(1 + 3c2θA)2 + (1 + 3c2θB )2

)
= ((gA)2

z + (gB)2
z) (5.49)
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The CW temperatures now also include a dependence on the gyromagnetic factor:

Θx = −4(2J+K)S(S+1)(gA)xy(gB)xy
3λxy

(5.50)

Θy = −4(2J+K)S(S+1)(gA)xy(gB)xy
3λxy

(5.51)

Θz = −8(J+δJz)S(S+1)(gA)z(gB)z
3λz

(5.52)

Note the complete absence of the Dzyaloshinsky-Moriya interaction from these ex-

pressions. The interaction canceled out when we added up the contributions from the

two sublattices to get the response of the entire unit cell. The first two CW tempera-

tures, Θx and Θy, are identical. For comparison we also calculate the Curie constants

and temperatures for the case when the tetragonal distortion on the two sublattices is

the same, namely when θA = θB = θ:

Cx = 1
3S(S + 1)g2

xy (5.53)

Cy = 1
3S(S + 1)g2

xy (5.54)

Cz = 1
3S(S + 1)g2

z (5.55)

Θx = −2
3(2J +K)S(S + 1) (5.56)

Θy = −2
3(2J +K)S(S + 1) (5.57)

Θz = −4
3(J + δJz)S(S + 1) (5.58)

And the differences between the CW temperatures are:

Θx −Θy = 0 (5.59)

Θx −Θz = −2
3(K − 2δJz)S(S + 1) (5.60)

Θy −Θz = −2
3(K − 2δJz)S(S + 1) (5.61)

5.5 Summary

In this chapter I presented a recipe for computing CW temperatures for generic bilinear

anisotropic spin systems. We also calculated the gyromagnetic tensor for magnetic

ions with strong spin-orbit coupling in octahedral environment with tetragonal and

trigonal distortions. Combining these two results we showed that staggered tetragonal
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A B

AB

Figure 5.4: Square lattice of canted octahedra in Sr2IrO4 and Ba2IrO4. The red
circles represent the magnetic Ir sites, the blue circles are oxygen atoms that form the
octahedra. The dashed red and green lines represent the nearest neighbor bonds with
compass interaction of x and y components, respectively. A and B label sublattices with
different gyromagnetic tensors.



107

distortion pattern of Sr2IrO4 leads to CW temperatures that depend on the values of the

gyromagnetic tensor along its principle axes. We show that the Dzyaloshinsky-Moriya

interaction has no effect on the CW temperature expressions.

We also found that the anisotropy of CW temperatures in tri-coordinate systems

such as α−RuCl3, Na2IrO3, and (α, β, γ)−Li2IrO3 stems from two main sources. The

first source is the symmetric offdiagonal interaction Γ present to some degree in all of

the mentioned materials. Curiously, for the case of the 3D honeycomb (β, γ)−Li2IrO3

materials only the Γ interaction on the z-bonds has an effect on the anisotropy, while

the contribution from the x- and y- bonds cancels out from the CW expressions due to

the bond dependent sign of the Γ interaction. The second source of the CW anisotropy

is the bond dependence of the strength of the anisotropic exchange couplings (K1, K2,

Γ1). In the case of 2D layered honeycomb materials this is usually due to monoclinic

distortions of the crystal, while in 3D honeycomb materials the z-bonds are already

separated from x and y in the ideal crystal.

The two sources of the anisotropy can be separated from each other by separate CW

measurements along 3 independent axes in each case. When such experimental results

are available our work presents a way to estimate the values of Γ and of the differences

of the same anisotropic couplings on different bonds in these materials.



Chapter 6

Lifting mean-field degeneracies in

anisotropic classical spin systems

6.1 Introduction

In previous chapters I have shown that in transition metal oxides the interplay of the

strong spin-orbit coupling (SOC), crystal field (CF) interactions, and electron corre-

lations may lead to compass-like anisotropic interactions between magnetic degrees of

freedom [85]. These anisotropic interactions have a generic form JαijS
α
i S

α
j in which α

depends on the direction of the particular link or bond and S denotes spin or pseudospin

degrees of freedom describing magnetic or orbital degrees of freedom.

There are two possible scenarios for the selection of the direction of the order pa-

rameter in these systems. In the most generic anisotropic biquadratic models, it might

be selected already at the mean field level by off-diagonal pseudospin interactions even

if these interactions are subdominant with respect to diagonal couplings [21, 77]. In

exchange models with only diagonal interactions, i.e. in the compass-like models [85],

the magnetic orders with different directions of the order parameters are degenerate

on the mean field level. However, this classical degeneracy is accidental and can, in

principle, be lifted by the order by disorder mechanism which selects a discrete set of

states, each with a particular direction of the order parameter.

The thermal [17] and quantum order-by-disorder [18] mechanisms selecting a par-

ticular spin ordering pattern from a classically degenerate manifold of states have been

108



109

proposed to be at play in a number of condensed matter systems [86, 87, 88, 89, 90,

91, 92, 93, 94, 95]. However, while in most of the cases the quantum fluctuations are

considered only at zero temperature, only a few works discuss the quantum order by

disorder at finite temperatures [94, 95].

The models in which compass-like anisotropies are dominating, or also the pure

compass models, have been known for a long time. These models appear naturally

in strongly correlated electron systems as minimal models to account for interactions

between pseudospins describing orbital degrees of freedom [96, 97, 98, 99, 100, 101].

The compass-like anisotropies also arise as interactions between magnetic degrees of

freedom in systems with strong SOC, which might be realized in 4d and 5d transition

metal oxides [1]. However, in these systems, due to the extended nature of 4d and 5d

orbitals, the compass interactions are always accompanied by the usual SU(2) symmetric

Heisenberg-type exchange. These models are especially interesting because while the

pure compass-like models are rare, the combined Heisenberg-compass models have been

shown to be minimal models describing the magnetic properties of various materials. A

review of the different realizations of compass models [96, 97, 98, 99, 100, 101, 1, 102, 103,

3, 46, 104, 105, 106, 107, 108, 9, 10, 109, 110], their physical motivations, symmetries,

unconventional orderings and excitations may be found in the recent review by Nussinov

and van den Brink [85].

One of the common features induced by compass-like anisotropies is frustration,

arising from a competition of interactions along different directions and leading to the

macroscopic degeneracy of the classical ground state and in addition to rich quantum

behavior. In many cases, the pure compass models do not show conventional magnetic

ordering because the degeneracy of the classical ground state is connected to discrete

sliding symmetries of the model [98, 102]. Because these symmetries are intrinsic sym-

metries of the model, they can not be lifted by the order-by disorder mechanisms.

Instead, the direct consequence of the existence of these symmetries is that the natu-

ral order parameters for pure compass models are nematic, which are invariant under

discrete sliding symmetries.

The nematic order present in the compass model is usually fragile and is easily

destroyed by the presence of the isotropic Heisenberg interaction which breaks some

of the intrinsic symmetries of the model. In Heisenberg-compass models, some of the
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degeneracies become accidental. In these models, the true magnetic order might be

selected by fluctuations via an order by disorder mechanism [21], removing accidental

degeneracies and determining both the nature and the direction of the order parameter.

Despite the simplicity of these models, the interplay of the Heisenberg and compass

interaction leads to very rich phase diagrams even in the simplest case of the square

lattice [106]. For classical systems this mechanism requires finite temperatures, where

entropic contributions of fluctuations to the free energy become effective.

In this chapter, we will be interested in studying the directional ordering transi-

tions in the Heisenberg-compass model on the cubic lattice [107]. From a historical

perspective, the three-dimensional 90◦-compass model was the first model of this kind

proposed by Kugel and Khomskii [96] in the context of the ordering of the t2g orbitals

in transition metal oxides with perovskite structure and then studied in more details

by Khaliullin [107] in application to LaTiO3. The formal procedure which we will be

using here is based on the derivation of the fluctuational part of the free energy by inte-

grating out the Gaussian fluctuations, and determining which orientations of the vector

order parameter correspond to the free energy minimum. To do so, we first express

the partition function as a functional integral over classical fields. In this chapter, we

consider classical spins at finite temperature. Our starting point in evaluating this exact

representation of the partition function is the mean-field solution, which usually does

not reflect the anisotropic character of the interaction referring to the crystal lattice

axes. As a next step, we evaluate the contribution of Gaussian fluctuations to the free

energy of the mean field ordered state. The latter carries the information embodied

in the anisotropic spin interaction and therefore allows to define preferred directions of

the spin order with respect to the lattice. We will not go beyond the simple evaluation

of the contribution of fluctuations, e.g., by incorporating the fluctuation contribution

self-consistently.

For simplicity, we choose the parameters of the model such that the ground state

is ferromagnetic, i.e. we consider the Heisenberg interaction to be ferromagnetic and

allow the compass interaction to be both ferromagnetic and antiferromagnetic. For

any ferromagnetic and weak antiferromagnetic compass interactions, the minima of the

fluctuational part of the free energy are attained if the spontaneous magnetization vector

points along one of the cubic axes.
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This chapter is organized as follows. In section 6.2 we introduce the functional

integral representation of the partition function for the spin systems with interactions

described by the most general bilinear form of the super-exchange Hamiltonian. In Sec.

6.3, we apply this framework to compute the angular dependence of the fluctuational

part of the free energy for the ferromagnetic Heisenberg-compass model on the cubic

lattice. Our results are presented and discussed in Section 6.4. At the end of the chapter

some technical details are presented.

6.2 Representation of the partition function

We consider a system of identical classical spins S on a lattice, interacting in an

anisotropic fashion as indicated in the introduction, defined by the Hamiltonian

H =
1

2

∑
j,j′

∑
αα′

Jα,α
′

j,j′ S
α
j S

α′
j′ , (6.1)

where j, j′ label the lattice sites, α, α′ = x, y, z label the three components of the spin

and S2 = 1. For the models with compass-like anisotropic and Heisenberg isotropic

interactions of spins, the interaction is diagonal in spin space, α = α′. The Jα,αj,j′ -matrix

elements are different for the (j, j′)-bonds along direction γ with γ = α and γ 6= α.

However, since our consideration is also valid for the case when α 6= α′, in the following,

we will keep both indices.

We will be interested in the long-range ordered phases of the system. The mean

field approximation of the order parameter usually leads to a highly degenerate man-

ifold of states, e.g., a ferromagnetic state with spontaneous magnetization pointing in

any direction. This degeneracy is lifted by the anisotropic components of the spin inter-

action, but only at the level of the fluctuation contribution to the free energy (action)

Sfl. In the following, we outline a method allowing to calculate Sfl, which is based on

the Hubbard-Stratonovich transformation of the partition function for spin systems de-

scribed by the generic Hamiltonian (6.1). I present the details and discuss justifications

for this method in the Technical section at the end of this chapter.

The partition function of the system is given by the integral over the Boltzmann
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weights of configurations

Z =

∫
[dSj ] exp[−β

∑
jα,j′α′

Jαα
′

jj′ S
α
j S

α′
j′ ]δ(S

2
j − 1), (6.2)

where β = 1/kBT is the inverse temperature, Sαj are the components of the spin operator

at site j.

It is useful to represent the Hamiltonian in the basis of the eigenfunctions χn;j,α of

the spin exchange matrix, defined by∑
j′,α′

Jαα
′

jj′ χn;j′,α′ = κnχn;j,α .

For spins on a periodic lattice these eigenstates are labeled by a wavevector q (inside

the first Brillouin zone) and index ν, characterizing three principle axes of the matrix

Ĵ . Thus |n〉 = |q, ν〉 and the normalized eigenfunctions take the form

χq,ν;j,α =
1√
N
eiq·Rjuν,α ,

where N is the number of lattice sites, the uν,α are orthonormal real-valued eigenvectors,

i.e.,
∑

α uν,αuν′,α = δνν′ and κq,ν are the eigenvalues of the spin exchange interaction

matrix.

We now define the normal amplitudes of the spins as

Sq,ν =
∑
j,α

χq,ν;j,αS
α
j

and express the Hamiltonian as

H =
∑
q,ν

κq,νS
∗
q,νSq,ν , (6.3)

where S∗q,ν = S−q,ν . Commutation of classical spins allows us to employ a Hubbard-

Stratonovich transformation in terms of classical fields ϕq,ν in order to represent the

interaction operator as a Zeeman energy operator of spins in a spatially varying magnetic

field. As a result, one finds the following representation of the partition function:

Z =

∫
[dϕ] exp

(
−β
[∑

q,ν

|κq,ν |−1ϕ∗q,νϕq,ν − Sloc({ϕ∗q,ν , ϕq,ν})
])
, (6.4)



113

where the integration volume element is given by

[dϕ] = Πq,ν

iβdϕ∗q,νdϕq,ν

2π|κq,ν |
.

The contribution to the action in the case of classical spins is given by

Sloc({ϕ∗q,ν , ϕq,ν}) = β−1
∑
j

ln
[
sinh(2βϕj)/2βϕj

]
, (6.5)

where ϕ2
j = (ϕxj )2 + (ϕyj )

2 + (ϕzj )
2 , with ϕαj ≡

∑
q,ν s(κq,ν)ϕq,νχ

∗
q,ν;j,α and s(κq,ν) = 1

for κq,ν < 0 and s(κq,ν) = i for κq,ν > 0. The Hubbard-Stratonovich identity used

to derive the above functional integral is different for eigenmodes ϕq,ν with positive or

negative eigenvalue κq,ν , leading to the appearance of a complex-valued ϕj . The details

of evaluating Sloc({ϕ∗q,ν , ϕq,ν}) can be found in the Technical section at the end of the

chapter.

6.3 Application to the cubic lattice

6.3.1 Isotropic Heisenberg interaction

In order to demonstrate how to perform the evaluation of the above representation of

the partition function, we consider first the isotropic ferromagnetic Heisenberg model

with nearest neighbor interactions on the cubic lattice. In this case, the Hamiltonian

(6.1) reads

H = J
∑
〈j;j′〉

∑
α

Sαj S
α
j′ , (6.6)

where the lattice summation is over nearest neighbors 〈j, j′〉−bonds and J < 0. For the

isotropic exchange interaction, the eigenvalues, κq,ν = J
∑

α cos qα, are independent of

ν, κq,ν = κq, and hence are degenerate.

A uniform ferromagnetic mean-field solution is found by solving the saddle point

equation

∂

∂ϕMF
S = − ∂

∂ϕMF
N
[
|κq=0|−1(ϕMF )2 − β−1 ln[sinh(2βϕMF )/2βϕMF ]

]
= 0, (6.7)

where we used ϕMF
q,ν =

√
NϕMF δq,0m0,ν , ϕj = ϕMF , m0,ν for the components of the

unit vector along the magnetization in the reference frame defined by the principal axes
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of the interaction matrix (which are the cubic axes in this case), and N is the number of

lattice sites. The solution of Eq.(6.7) gives us a non-linear equation for the mean-field

parameter:

2|κq=0|−1ϕMF − 2 coth(2βϕMF ) +
1

βϕMF
= 0 (6.8)

We solve this equation numerically at each temperature and get ϕMF (T ). Linearizing

Eq. (6.8) near the transition, we find the transition temperature Tc = β−1
c = 2|κq=0|/3.

We note in passing that a different length of the classical spin vector |S| = S0 may

be simply scaled back to the unit length by changing the temperature as T ′ = S2
0T .

Choosing S2
0 = 3/4 appropriate for quantum spin S = 1/2, we find the renormalized

transition temperature T ′c = |κq=0|/2 , which agrees with the quantum mean-field tran-

sition temperature.

The fluctuation contribution is obtained by expanding the action in the fluctuation

field δϕq,ν = ϕq,ν − ϕMF
q,ν about the mean field solution to the lowest order:

S = S0 + Sfl (6.9)

S0 = N |κq=0|−1ϕ2
MF −NT ln[sinh(2βϕMF )/2βϕMF ].

For Gaussian fluctuations, the fluctuation part of the free energy, or equivalently

the action, Sfl, is a bilinear function of δϕq,ν . It is given by

Sfl{δϕq,ν} =
∑

q;ν,ν′

Aq,νν′δϕ
∗
q,νδϕq,ν′ , (6.10)

where we defined matrix elements of Aq,νν′ describing the weight of the Gaussian fluc-

tuations of wavevector q and polarization ν as

Aq,νν′ = |κq,ν |−1δν,ν′ −
2

3

[
βc(δν,ν′ −m0,νm0,ν′) + 3βrm0,νm0,ν′ ]s(κq,ν)s(κq,ν′)

]
(6.11)

Here, for shortness we introduced r = 1/(2βϕMF )2 − 1/ sinh2(2βϕMF ).

In the limit of small q, it is instructive to separate the fluctuations into longitu-

dinal (along m0) and transverse (perpendicular to m0) components, δϕl
q = m0 · δϕq

and δϕtr
q =

∑
µ=1,2 mµϕ

tr
q,µ, respectively. We defined δϕtr

q,µ = mµ · δϕq, with m1 =

(m0×z)/| sinθ| and m2 = m1×m0, where cos θ = m0·z. Despite the complex nature of

fluctuational fields, their separation into transverse and longitudinal modes is possible in

the limit of small q, because the interaction eigenvalues κq,ν < 0 and thus, s(κq,ν) = 1
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Figure 6.1: The magnitude of the action Sfl(θ, φ) defined by Eq. (6.18) is plotted on the
surface of the unit sphere. The preferred directions of the magnetization, corresponding
to the minima of the free energy, are shown by deep blue color. The energy scale is shown
in units of J . J = −1 and K = 0.75: the preferred directions of the magnetization are
along the cubic axes.
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in this region of the BZ for any polarization component ν. Then, the longitudinal

fluctuations contribute to the free energy as

Sfl,l =
∑
q

[
|κq|−1 − 2βr

]
(m0·δϕl

q)(m0·δϕl
−q). (6.12)

The transverse fluctuations are gapless in agreement with Goldstone’s theorem:

Sfl,tr =
∑
q,κq<0

[
|κq|−1 − 2

3
βc

]
(δϕtr

q ·δϕtr
−q) (6.13)

since limq→0

[
|κq|−1 − 2

3βc
]

= 0.

6.3.2 Fluctuations due to anisotropic compass interactions

Next, in addition to the isotropic Heisenberg term, let us take into consideration an

anisotropic compass interaction, K. The constraint that the ferromagnetic mean field

solution remains stable is satisfied for all negative (ferromagnetic) values of K and for

positive values K < |J |.
In the presence of the anisotropic compass interaction, the model (6.1) reads

H =
∑
j;j′

∑
α

Jαjj′S
α
j S

α
j′ , (6.14)

where the exchange interaction is given by

Jαjj′ =
1

2
δj′,j+τ [J +Kδα,|τ |] (6.15)

The index τ = ±x,±y,±z labels nearest neighbor sites, where |τ | = x, y, z specifies a

direction in spin space (x for bonds along the x-direction, etc.). The eigenvalues of the

operator Jαα
′

jj′ defined in the previous section are given by

κq,ν =
∑
α

(J +Kδα,ν) cos qα. (6.16)

The eigenvectors uν are again along the three cubic axes, such that the components are

uν,α = δν,α. This time the three eigenvalues for given q are not degenerate (except in the

limit q→ 0) and the fluctuation contribution to the free energy will therefore depend on

the orientation of the spontaneous magnetization. We may again use the representation
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of the partition function Z as a functional integral over the Fourier components ϕq,ν of

the auxiliary field.

Provided J < 0 and K < |J |, the mean-field solution ϕMF is given as before by

solving the transcendental equation (6.8) numerically. The fluctuation contribution to

the free energy is obtained by expanding the action in the fluctuation field about the

mean field solution to lowest order. We get

Z = C exp(−βS0)

∫
[dδϕ] exp(−βSfl{δϕq,ν}), (6.17)

where the fluctuation part of the action is given by Eqs.(6.10) and (6.11) In the follow-

ing, we show that by comparison to the isotropic model, Eq. (6.17) manifestly breaks

rotational invariance, which results in a selection of preferred directions of the order

parameter, which minimize the free energy.

The 3× 3-matrix Aq,νν′ may be diagonalized and has eigenvalues λγ,q and eigenvec-

tors vγ,q, γ = 0, 1, 2. This allows us to express
∑

νν′ Aq,νν′δϕ
∗
q,νδϕq,ν′ =

∑
γ λγ,qδϕq,γδϕ−q,γ ,

where δϕq,γ = vγ,q · δϕq. The integration over the fluctuation amplitudes may now be

performed and gives

Sfl = β−1 1

2

∑
q

ln |λ0,qλ1,qλ2,q|, (6.18)

where we chose s(κq,ν) = ±i for κq,ν > 0, following the procedure described at the end

of the chapter. Alternatively, we may use that |λ0,qλ1,qλ2,q| = | det{Aq,νν′}|, saving the

trouble of having to determine the eigenstates of Aq,νν′ .

Let us now derive the explicit expression for the fluctuation contribution for an arbi-

trary orientation of m0 = (sin θ cosφ, sin θ sinφ, cos θ). Inserting this into the definition

of Aq,νν′ given by Eq.(6.11), we find its elements to be

Aq,00 = |κq,x|−1 − 2
3s(κq,x)s(κq,x)(βc(1− s2

θc
2
φ) + 3βrs2

θc
2
φ)

Aq,01 = −2
3s(κq,x)s(κq,y)(3βr − βc)cφsφs2

θ

Aq,10 = Aq,01

Aq,02 = −2
3s(κq,x)s(κq,z)(3βr − βc)cφcθsθ

Aq,20 = Aq,02

Aq,11 = |κq,y|−1 − 2
3s(κq,y)s(κq,y)(βc(1− s2

θs
2
φ) + 3βrs2

θs
2
φ)

Aq,12 = −2
3s(κq,y)s(κq,z)(3βr − βc)sφcθsθ

Aq,21 = Aq,12

Aq,22 = |κq,z|−1 − 2
3s(κq,z)s(κq,z)(βcs

2
θ + 3βrc2θ),

(6.19)
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where, to shorten notations, we denote sin θ(φ) ≡ sθ(φ) and cos θ(φ) ≡ cθ(φ). The

interactions are defined as

κ−1
q,x = 1/ [(J +K) cos qx + J cos qy + J cos qz] (6.20)

κ−1
q,y = 1/ [(J +K) cos qy + J cos qx + J cos qz] (6.21)

κ−1
q,z = 1/ [(J +K) cos qz + J cos qx + J cos qy] (6.22)

We see that the matrix Aq,νν′ has a rather complex structure as a function of q and

angles θ and φ. This gives rise to a complex behavior of the eigenvalues λ0,q, λ1,q and

λ2,q.

6.4 Results and discussions

We now present the results obtained for Sfl(θ, φ) by performing numerical integration

in Eq.(6.18). The angular dependence of Sfl(θ, φ) is presented in Figs. 6.1, where the

magnitude of Sfl(θ, φ) as a function of orientation of the spontaneous magnetization

is shown as a color-coded plot on the unit sphere. The calculations in Figs. 6.1 are

performed at temperature β = βc + 1 and assuming J = −1. We see that Sfl(θ, φ) has a

non-trivial dependence on the direction of the order parameter defined by angles θ and

φ. This peculiar angular dependence of Sfl(θ, φ) is inherited from non-trivial angular

dependencies of λ0,q, λ1,q and λ2,q.

In Fig. 6.1, we present the profile of Sfl(θ, φ) computed for K = 0.75. We can see

that Sfl(θ, φ) is minimized when the magnetization is directed along one of the cubic

axes. We note that the cubic directions are also selected for other values of the compass

interactions, both antiferromagnetic as well as ferromagnetic, where the ferromagnetic

state is the mean field solution (K < |J |).

6.5 Summary

The magnetic properties of heavy transition metal oxides such as iridates and others

are emerging as a new fascinating field offering opportunities to realize strongly frus-

trated quantum spin systems in the laboratory. In these systems, the combination of

multiband electronic structure and strong Coulomb and Hund’s couplings with strong
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spin-orbit interaction can give rise to extremely anisotropic spin exchange interactions

of the compass type. Mean field solutions of these models are often untouched by the

anisotropies of the model and show the full isotropy of pure Heisenberg models, in con-

trast with experimental observations. In this chapter, we addressed the question how

the system selects special preferred directions of the mean field order parameter vector.

We restricted ourselves to the case of a ferromagnetic order parameter, but an analogous

question exists for antiferromagnetic or more complicated ordered structures. We find

that the high degeneracy of the ferromagnetic mean-field solution is lifted by the free en-

ergy contribution from thermal fluctuations. We calculated the fluctuation contribution

for a Heisenberg-compass model of classical spins on a three dimensional cubic lattice

with nearest neighbor interactions - an isotropic Heisenberg coupling J < 0 (which we

take as the energy unit), and a compass coupling K. The ferromagnetic state is found

if K < |J |. Rather than exploring the full phase diagram, we focused on one typical

temperature T = Tc/(1 +Tc), where Tc is the mean-field transition temperature and all

temperatures are measured in units of |J |. For values of K < 1, the system is found

to choose preferred directions of the spontaneous magnetization along one of the cubic

axes. In the temperature regime considered here, we expect the classical approximation

to be valid.

6.6 Technical details

6.6.1 General formulation

The Hubbard-Stratonovich (H-S) transformation is based on the mathematical identity

exp[−ax2] =
1√
π|a|

∫
dy exp

[
− y

2

|a| + 2s(a)xy)

]
, (6.23)

where we defined

s(a) =
{ 1 , if a < 0

ı , if a > 0.
(6.24)

For a > 0 we may as well use s(a) = −i. We will later make use of this ambiguity

when we evaluate the y-integrals approximately, which may lead to imaginary-valued

contributions.
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In the above H-S-transformation, x may be a number or an operator. In the case it

is an operator, we use the eigenfunctions |n〉 of x̂ defined by

x̂|n〉 = xn|n〉

to prove that

exp
[
−ax̂2

]
|n〉 = exp

[
−ax2

n

]
|n〉 =

1√
π|a|

∫
dy exp

[
− y

2

|a| + 2s(a)xny)

]
|n〉

=
1√
π|a|

∫
dy exp

[
− y

2

|a| + 2s(a)x̂y)

]
|n〉.

This identity also works for complex (non-Hermitian) x and y:

exp[−ax̂†x̂] =
i

2π|a|

∫
dy∗dy exp

[
−y
∗y

|a| + s(a)(x̂†y +H.c.)

]
We now turn to the case of the partition function of a spin system with generic

interaction Hamiltonian (1). In order to use the mathematical identities we need to

represent the Hamiltonian (1) in terms of normal coordinates. To this end we define

the normalized eigenstates of the exchange interaction operator∑
j′,α′

Jαα
′

jj′ χn;j′,α′ = κnχn;j,α, (6.25)

in terms of which we have

Jαα
′

jj′ =
∑
n

κnχ
∗
n;j,αχn;j′,α′ , (6.26)

where χn;j′,α′ form a complete and orthonormal set of eigenfunctions and thus obey

∑
j,α χ

∗
n;j,αχn′;j,α = δn,n′ , (6.27)∑

n χ
∗
n;j,αχn;j′,α′ = δj,j′δα,α′ .

For spins on a periodic lattice, the eigenstates |n〉 = |q, ν〉 are labeled by wavevector

q and spin component ν, and the eigenfunctions take the form

χq,ν;j,α =
1√
N
eiq·Rjuαqν (6.28)
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where uαqν are normalized real valued eigenvectors, i.e.
∑

α u
α
qνu

α
q,ν = 1, and κq,ν are

the eigenvalues of the spin exchange operator. We now define the normal amplitudes of

the spin operators as

Sq,ν =
∑
j,α

χq,ν;j,αS
α
j (6.29)

and express the Hamiltonian (1) as

H =
∑
q,ν

κq,νS
∗
q,νSq,ν , (6.30)

where S∗q,ν = S−q,ν .

We seek to apply the above mathematical identities (A1)-(A3) to each normal com-

ponent separately. This requires the normal components of the spin operators to com-

mute with each other, which is certainly true for the classical spins. Then using the

Hubbard-Stratonovich transformation one may express the Boltzmann weight operator

of each normal mode in terms of normal field amplitudes ϕq,ν as

exp[−βκq,νS
∗
q,νSq,ν ] = ıβ

2π|κq,ν |
∫ ∫

dϕ∗q,νdϕq,ν (6.31)

exp
[
−β{|κq,ν |−1ϕ∗q,νϕq,ν + s(κq,ν)(S∗q,νϕq,ν +H.c.)}

]
The complete Boltzmann weight operator may be expressed, again using the com-

mutability of the normal mode operators, as

exp[−β∑q,ν κq,νS
∗
q,νSq,ν ] =

∫
[dϕ] (6.32)

exp[−β∑q,ν{|κq,ν |−1ϕ∗q,νϕq,ν + s(κq,ν)(S∗q,νϕq,ν + h.c.)}],

where ϕ∗q,ν = ϕ−q,ν . The integration volume element is given by

[dϕ] = Πq,ν

iβdϕ∗q,νdϕq,ν

2π|κq,ν |
Next, we find that the partition function of an interacting classical spin system on an

infinite periodic lattice may be expressed as

Z = C
∫

[dϕ] exp
[
−β∑q,ν |κq,ν |−1ϕ∗q,νϕq,ν − Sloc({ϕq,ν})

]
,

where C is a constant. The contribution Sloc({ϕq,ν}) to the action is given by

Sloc({ϕq,ν}) =
1

β

∑
j

lnWj (6.33)
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and Wj is computed by taking into account the constraint of the unit length of classical

spins, S2
j = 1, and integrating over all directions of spin at each lattice site:

Wj =
∫ dSjdΩj

2π exp
[
2β
∑

α ϕ
α
j S

α
j

]
δ(S2

j − 1)

=
∫ dΩj

4π exp
[
2β
∑

α ϕ
α
j S

α
j

]
=

sinh 2β|ϕj |
2β|ϕj | . (6.34)

This gives

Sloc({ϕq,ν}) =
1

β

∑
j

ln[
sinh 2β|ϕj |

2β|ϕj |
]. (6.35)

Here we defined the complex-valued three-component field ϕαj at each lattice site j as

ϕαj =
∑

q,ν s(κq,ν)Re{ϕ∗q,νχq,ν;j,α} =
∑

q,ν s(κq,ν)ϕq,νχ
∗
q,ν;j,α = ϕαR,j + iϕαI,j .

Observing that κq,ν = κ−q,ν , we get

ϕαR,j = Re{ϕαj } =
∑

q,ν,κq,ν<0 ϕq,νχ
∗
q,ν;j,α (6.36)

ϕαI,j = Im{ϕαj } =
∑

q,ν,κq,ν>0 ϕq,νχ
∗
q,ν;j,α.

The field amplitude is determined by

ϕj =
√

(ϕR,j + iϕI,j)
2, (6.37)

where ϕR,j =
(
ϕxR,j , ϕ

y
R,j , ϕ

z
R,j

)
and ϕI,j =

(
ϕxI,j , ϕ

y
I,j , ϕ

z
I,j

)
.

We now derive the contribution of Gaussian fluctuations to the free energy for the

ferromagnetic mean field state which we denote as ϕMF . To this end, we expand

Sloc({ϕq,ν}) (6.35) in terms of the fluctuation amplitudes and separate the mean-field

and fluctuational contributions. First, we expand the field amplitude ϕj to bilinear

order in the fluctuation amplitudes:

ϕj = ϕMF + δϕj , (6.38)

δϕj =
1

2ϕMF
[2ϕMF · (δϕR,j+iδϕI,j) + δϕ2

R,j − δϕ2
I,j ]

− 1

2ϕ3
MF

[ϕMF · (δϕR,j + i δϕI,j)]
2.
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Using Eq. (6.36), we now obtain the expressions for δϕj and δϕ2
j in terms of ϕ∗q,ν and

ϕq,ν , keeping quadratic (Gaussian) terms only:∑
j

δϕj =
1

2ϕMF

∑
q,ν,ν′

δν,ν′s(κq,ν)s(κq,ν′)ϕ
∗
q,νϕq,ν′ −

1

2ϕMF

∑
j

δϕ2
j (6.39)

∑
j

δϕ2
j =

∑
q,ν,ν′

s(κq,ν)s(κq,ν′)m0,νϕ
∗
q,νϕq,ν′m0,ν′ .

Next, we expand Eq. (6.35) step by step as

sinh 2β|ϕj | = sinh(2β(ϕMF + δϕj))

= sinh(2βϕMF )[1 + 2(βδϕj)
2] + cosh(2βϕMF )2βδϕj

and further

ln [sinh(2βϕj)/2βϕj ] = ln [sinh(2β(ϕMF + δϕj))]− ln [2β(ϕMF + δϕj)]

= ln [sinh(2βϕMF )/(2βϕMF )] + [2βϕMF coth(2βϕMF )− 1]
δϕj
ϕMF

+
1

2

[
− (2βϕMF )2

sinh2(2βϕMF )
+ 1

]
(
δϕj
ϕMF

)2.

The fluctuation part of the local part of the free energy is then given by

−β−1δ
∑
j

ln[sinh(2βϕj)/2βϕj ] = −4

3
βcϕMF

∑
j

δϕj (6.40)

− 1

2βϕ2
MF

[1− (2βϕMF )2

sinh2(2βϕMF )
]
∑
j

δϕ2
j ,

where we have used that 2βϕMF coth(2βϕMF ) − 1 = 4
3βcβϕ

2
MF . Substituting the

expressions for δϕj , δϕ
2
j and defining r = 1/(2βϕMF )2 − 1/ sinh2(2βϕMF ), we get the

fluctuation contribution to the free energy

Sfl{δϕq,ν} =
∑

q;ν,ν′

Aq,νν′δϕ
∗
q,νδϕq,ν′ , (6.41)

where we defined matrices Aq,νν′ describing the weight of Gaussian fluctuations of

wavevector q and polarization ν as

Aq,νν′ = |κq,ν |−1δν,ν′ −
2

3
[βc(δν,ν′ −m0,νm0,ν′) +

3βrm0,νm0,ν′ ]s(κq,ν)s(κq,ν′) (6.42)



124

The fluctuation matrix Aq,νν′ will in general be non-Hermitian, and its eigenvalues

will be complex. We now use that Aq,νν′ is an even function of q and divide q-space into

qx > 0 (M>) and qx < 0 (M<). Note that the choice of qx for dividing the BZ in half is

arbitrary, and we could also do it with a help of qy and qz. For modes ϕq,ν with q ∈M>,

we choose s(κq,ν) = +i, whereas for modes with q ∈M< we choose s(κq,ν) = −i, where

κq,ν > 0 in both cases. Then we have A−q,νν′ = A∗q,νν′ and as a result of the functional

integration we will get

Z = ZMF

∫
[dδϕ] exp

[
−β∑q,ν,ν′ Aq,νν′δϕ

∗
q,νδϕq,ν′

]
= ZMF exp

[
−1

2

∑
q∈M>

ln(det(Aq,νν′) det(A∗q,νν′))
]

= ZMF exp
[
−1

2

∑
q ln | det(Aq,νν′)|

]
, (6.43)

where

ZMF = exp
[
−βN |κq=0|−1ϕ2

MF

]
[sinh(2βϕMF )/(2βϕMF )]N .



Chapter 7

The free energy of quantum spin

systems: Functional integral

representation

7.1 Introduction

The purpose of this chapter is to present a general approach to compute the free energy

of quantum spin systems with anisotropic interactions and study how spin fluctuations

explicitly break the degeneracy at the mean-field level and select a particular direction

of the order parameter from the manifold of classically degenerate states at finite tem-

peratures. The formal procedure which we will be using here is based on the derivation

of the fluctuation-induced part of the free energy on top of the mean field contribu-

tion, which then allows to determine the orientations of the vector order parameter

corresponding to the symmetry related free energy minima.

In general, the calculation of the free energy of a quantum spin system is complicated

by the fact that the spin operators are non-canonical, which limits the usefulness of

renormalized perturbation theory, the usual tool in dealing with quantum many-body

systems [111, 112]. Here we explore a different approach: decoupling of the bilinear

interaction operators by way of HS transformations [113, 114]. Our approach differs

from a previous derivation [115, 116, 117] of a path integral representation of interacting

125
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quantum spin systems in terms of Hubbard-Stratonovich fields in that it applies to

anisotropic spin systems and is not restricted to ultralow temperatures but allows to

calculate the contribution of Gaussian fluctuations to the free energy at all temperatures

in the ordered phase. This requires introducing space and time-dependent HS-fields,

which are integrated over. The resulting quantum trace over an exponential involving

spin operators (a kind of Zeeman interaction of spins with the HS-induced ”magnetic

field”), may be done explicitly. The result is a representation of the partition function

in terms of an infinite power series in the interaction. The series may be summed up

explicitly in the case of an Ising-type interaction or in the case of classical spins [19, 21].

In the general case of the bilinear interaction of quantum spins, only the Gaussian

fluctuation contribution to the free energy of an ordered state may be derived in a

compact form. Higher order corrections are accessible, but involve increasingly complex

expressions.

This chapter is organized as follows: In Section 7.2, the representation of the par-

tition function is introduced. Section 7.3 describes the Mean Field approximation. In

Section 7.4 we present the evaluation of the free energy in the approximation of Gaus-

sian fluctuations about the mean field order parameter. We apply the derived formalism

to the quantum Heisenberg-compass spin model in Section 7.5. Finally, we draw con-

clusions in Section 7.6.

7.2 Representation of the partition function

The form of the bilinear Hamiltonian as well as the partition function were given in the

previous chapter starting with Eq. 6.1. I thus refer the reader there for these first few

steps. Here we will start with the HS transformation which we do in a slightly different

format that will be more useful for the quantum system.

7.2.1 Hubbard-Stratonovich transformation

We apply the HS transformation to each normal component separately. This transfor-

mation is based on the mathematical identity (defining x = Re{Sq,ν}, y = Im{Sq,ν},
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and a = βκq,ν)

exp
[
−a(x2 + y2)

]
=

1

π|a|

∫
dudv

{exp
[
−u2+v2

|a| + 2(xu+ yv)
]

, a < 0,

exp
[
−u2+v2

|a| + 2i(−xu+ yv)
]

, a > 0

In the second equality we made use of the freedom to choose the imaginary prefactor

to be +i or −i . Here the auxiliary variables u, v are components of the HS field ϕq,ν ,

which we choose to be u = Reϕq,ν and v = Imϕq,ν in the first equation (valid if a < 0)

and v = Reϕq,ν and u = Imϕq,ν in the second equation (valid if a > 0). We may

combine both cases by defining a function s(κq,ν) = 1 if κq,ν < 0 and s(κq,ν) = −i
if κq,ν > 0 . Then, in the first equation (xu + yv) = Re{s(κq,ν)Sq,νϕ

∗
q,ν}, whereas

in the second equation i(−xu + yv) = Im{Sq,νϕ
∗
q,ν}, which may also be expressed as

Re{s(κq,ν)Sq,νϕ
∗
q,ν}. In both cases, whether s(κq,ν) is real or imaginary valued, the

term in the exponent linear in Sq,ν is real valued. In Eq.(7.1), x+ iy may be a number

or an operator.

The application of the HS transformation requires the normal components of the

spin operators to commute with each other, which is true for classical spins. Then using

the HS transformation one may express the Boltzmann weight operator of each normal

mode in terms of classical fields ϕq,ν and represent the interaction operator as a Zeeman

energy operator of spins in a spatially varying magnetic field [19]. Note that in Ref.

[19] we used a slightly different convention for the definition of variables u, v above.

In order to make use of the Hubbard-Stratonovich transformation for the compu-

tation of the partition function of a quantum spin system, for which the Sq,ν do not

commute, we need to represent the Boltzmann operator as an evolution operator in

imaginary time and apply the Suzuki-Trotter discretization [118], allowing to write

down the partition function in terms of products over time slices [111]. Explicitly, we

have

Z = Tr [exp (−βH)] = Tr

[
Tτ exp[−ε

M∑
n=1

H(τn)]

]
, (7.1)

where Tτ is the imaginary time ordering operator, and we sliced the imaginary time

interval [0, β] into M = β/ε infinitesimal intervals each of length ε, and τn = nε,

n = 1, 2, ...M . Since ε is small, and will be taken to zero at the end, we may now
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expand each exponent in Eq. (7.1) as

exp[−εH(τn)] = 1− εH(τn) +O(ε2), (7.2)

and approximate

Tτ exp[−ε
M∑
n=1

H(τn)] = Tτ

M∏
n=1

exp[−εH(τn)], (7.3)

where

exp [−εH(τn)] = exp
[
−ε∑q,ν κq,νS

∗
q,ν(τn)Sq,ν(τn)

]
=
∏

q,ν exp[−εκq,νS
∗
q,ν(τn)Sq,ν(τn)] +O(ε2). (7.4)

Now, at each instant τn we may perform the HS transformation separately and express

the Boltzmann weight operator of each normal mode in terms of normal field amplitudes

ϕq,ν(τn) as

exp
[
−εκq,νS

∗
q,ν(τn)Sq,ν(τn)

]
= (7.5)

C−1
q,ν

∫
dϕ∗q,νdϕq,ν exp

[
−ε
{
|κq,ν |−1ϕ∗q,ν(τn)ϕq,ν(τn)− 2Re{s(κq,ν)S∗q,ν(τn)ϕq,ν(τn)}

}]
.

The partition function (7.1) may therefore be expressed as

Z =
1

C
Tr

[
Tτ

∫
[dϕ]

M∏
n=1

exp

[
−ε
{∑

q,ν

(
|κq,ν |−1ϕ∗q,ν(τn)ϕq,ν(τn)

−2Re{s(κq,ν)S∗q,ν(τn)ϕq,ν(τn)}
)}]]

=
1

C

∫
[dϕ]

M∏
n=1

exp

[
−ε
∑
q,ν

|κq,ν |−1ϕ∗q,ν(τn)ϕq,ν(τn)

]

×Tr

Tτ∏
j,α

exp
[
−εBα

j,eff (τn)Sαj (τn)
] , (7.6)

where the spatially and “temporally” varying local magnetic field Bα
j,eff(τn) is defined

by

Bα
j,eff(τn) = −2ϕαj (τn), (7.7)

ϕαj (τn) =

3Ns∑
q,ν=1

Re{s(κq,ν)χ∗q,ν;j,αϕq,ν(τn)}.
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In Eq. (7.6), we also defined the integration volume element as

[dϕ] = Πq,ν,n dϕ
∗
q,ν(τn)dϕq,ν(τn)

and the normalization factor C as

C =

∫
[dϕ]

M∏
n=1

exp

[
−ε
∑
q,ν

|κq,ν |−1ϕ∗q,ν(τn)ϕq,ν(τn)

]
.

7.2.2 Trace over quantum spin states

We may now perform the trace over the quantum spin states. As spin operators on

different sites commute, the trace may be split up into a product of traces Trj over

single spin Hilbert space

Z = 1
C′

∫
[dϕ] (7.8)

exp
[
−
∫ β

0 dτ
∑

q,ν |κq,ν |−1ϕ∗q,ν(τ)ϕq,ν(τ)
]∏

j Θj ,

where we defined

Θj =
1

2
Trj

{
Tτ
∏
n

exp

[
2ε

∑
α=x,y,z

ϕαj (τn)Sαj

]}
. (7.9)

The factors 1
2 in front of the trace are compensated by corresponding factors in the

normalization, leading to C ′ = C/2Nt , where Nt is the total number of spins.

We note that the factors under the trace, exp
[
2εϕj(τn) · Sj

]
, may be cyclically

permuted. This suggests that the terms at n = 1 and at n = M should be equal, in

order to avoid an unphysical discontinuity when passing from n = 1 to n = M . In other

words, we assume periodic boundary conditions, ϕq,ν(τn) = ϕq,ν(τn + β). This implies

that the Fourier frequencies ωn of ϕq,ν(τ) are bosonic Matsubara frequencies.

The spin trace may be performed by inserting suitable representations of the unit

operator in single spin space at each time step

1̂ =
∑
s=±1

|s; en〉〈s; en|, (7.10)

where en ≡ e(τn) = ϕj(τn)/|ϕj(τn)| denotes the spin quantization axis at time τn and

|s; en〉 ≡ |sn〉, s = ±1 are corresponding two-component spin eigenvectors, obeying
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(S · en)|sn〉 = s
2 |sn〉. The assumed periodic boundary condition implies that eN = e1

such that e(β) = e(0) and e(τ) is a periodic function of period β.

Now, inserting the unit operator expressed in the basis of eigenstates of each factor

eεϕn·σ to the left and right of that factor in the Eq. 7.9, we may express Θj as

Θ =
1

2
Tr
{
eεϕN ·σ.......eεϕ2·σeεϕ1·σ

}
=

1

2

∑
s1,s′1,s2,..

〈s1|eεϕN ·σ|s′N 〉〈s′N |...|s′2〉〈s′2|eεϕ2·σ|s2〉〈s2|s′1〉〈s′1|eεϕ1·σ|s1〉.(7.11)

Here, for notational brevity, we suppressed the site index j and defined ϕn = ϕj(τn),

where ϕ = (ϕx, ϕy, ϕz) is the vector in spin space.

Next, we need to compute the matrix elements 〈s′n|eεϕ1·σ|sn〉 and the inner products

〈sn+1|s′n〉. The former are diagonal by construction:

〈s′n|eεϕn·σ|sn〉 = δsns′n exp[εϕnσ
z
snsn ], (7.12)

where ϕn = |ϕ(τn)| =
√

(ϕx)2 + (ϕy)2 + (ϕz)2. The inner product is given by

〈sn+1|s′n〉 = 〈sn+1, en+1|s′n, en〉
= 〈sn+1| exp[−i(en+1 × en) · σ]|s′n; en+1〉 (7.13)

= δsn+1s′n − i(en+1 × en) · σsn+1s′n +O(ε2).

Next we define the infinitesimal angle of rotation of the quantization axis en+1 into

en as εΩn+1,n = (en × en+1) and express Θ as

Θ = 1
2Tr{eεϕNσzeiεΩ1,N−1·σeεϕN−1σ

z
...

...eiεΩ3,2·σeεϕ2σzeiεΩ2,1·σeεϕ1σz}, (7.14)

where we denote the quantization axis at time τ = 0 as e1 = e(0) = ẑ. In a continuum

approximation, we have

en+1 = e(τn+1) = e(τn) + εė(τn) +O(ε2), (7.15)

where ė(τ) = ∂e/∂τ .

The factors in the product on the r.h.s. of the Eq.(7.14) commute under the time

ordering operator, so we may now express Θ as

Θ =
1

2
Tr
{
Tτ exp

[∫ β

0
dτ{iΩ(τ)+ϕ(τ)e(0)} · σ

]}
, (7.16)
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where Ω(τn) = Ωn+1,n = e(τn) × ė(τn). The term iΩ(τ) may be identified with the

well-known Berry phase term.

Although a general evaluation of this expression involves only a trace over a single

spin, it appears to be difficult. We therefore consider the following approximations.

The field Ω is by definition a fluctuation field, i.e. it vanishes at the mean field level.

It therefore makes sense to expand Θ in powers of Ω. In zeroth order we have

Θ(0) = 1
2Tr{eεϕNσzeεϕN−1σ

z
.....eεϕ2σzeεϕ1σz} (7.17)

= 1
2Tr{e

∫
dτϕ(τ)σz} = coshβϕ0,

where the time average ϕ0 is defined as

ϕ = β−1

∫ β

0
dτϕ(τ). (7.18)

We note for later that Θ(0) contains contributions from both longitudinal and transverse

fluctuations about the mean field configuration.

In first order in Ω we find

Θ(1) = 1
2 iε
∑N−1

n0=1 Tr{eεσz
∑N
n2=n0+1 ϕn2 [Ωn0+1,n0 · σ]e

εσz
∑n0
n1=1 ϕn1}. (7.19)

Higher order contributions in Ω may be derived but they lead to increasingly complicated

expressions. In a continuum approximation, we may express Θ(1) as

Θ(1) =
i

2

∫
dτ0Tr{eσzΦ(β,τ0)[Ω(τ0) · σ]eσ

zΦ(τ0,0)}, (7.20)

where Φ(β, τ0) =
∫ β
τ0
dτϕ(τ) has been defined. We now recall that σz = e(0) ·σ and use

eσ
zΦ = cosh Φ + σz sinh Φ to get

Θ(1) = i

∫
dτ0[cosh Φ(β, τ0) sinh Φ(τ0, 0)

+ sinh Φ(β, τ0) cosh Φ(τ0, 0)][Ω(τ0) · e(0)], (7.21)

where we also used Tr{σ} = 0, Tr{σzσλ} =2δλ,z = Tr{σλσz} and Tr{σzσλσz} = 0.

Using another identity, sinhx cosh y + coshx sinh y = sinh(x + y), and the periodic

boundary condition relations Φ(β, τ0) + Φ(τ0, 0) = Φ(β, 0) = βϕ0 we get

Θ(1) = i[Ω0 · e(0)] sinh(βϕ0), (7.22)
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where Ω0 ≡
∫
dτ0Ω(τ0).

The partition function Eq. (7.8), which includes the first order correction in Ω0, is

then given by

Z =
1

C ′

∫
[dϕ] exp[−β(Sκ + Sloc + S0)], (7.23)

where the interaction part of the action is given by

Sκ = β−1

∫ β

0
dτ
∑
q,ν

|κq,ν |−1ϕ∗q,ν(τ)ϕq,ν(τ) (7.24)

and the local part of the action Sloc = Sstat
loc +Sdyn

loc has both static and dynamic contri-

butions:

Sstat
loc = −β−1

∑
j

ln cosh(βϕj,0) (7.25)

Sdyn
loc = −iβ−1

∑
j

tanh(βϕj,0)[Ωj,0 · ej(0)], (7.26)

and S0 = β−1 lnC ′.

Our results agree with those of Ref. [115] except for an additional term involving the

product of two time derivatives of the transverse field components at equal times. Such

a term arises from expansion of Eq.7.16 in second order in Ω, if the time arguments are

kept equal. The fluctuations we will be interested in (e.g. spin waves) are long-range

correlated in time such that it does not make sense to single out only the equal time

products of Ω. We also note that Angelucci and Jug [115] did not pay attention to

the fact that the HS transformation changes its character if the eigenvalues κq,ν of the

interaction kernel change sign.

7.3 Mean field solution

In this section, we consider the simplest case and compute the mean field free energy for

the range of parameters of the model (6.1), for which the mean-field solution is a collinear

magnetic state. In this case we can write ϕj,µ(τ) = ϕMFm̂, where m̂ is a normalized

3-component vector pointing in the direction of the spontaneous magnetization, which

is the same for all sublattice sites µ. The trace in spin space is obtained as

ΘMF
j,µ =

1

2
Trj{e−βϕ

MF[σ·m]} = cosh(βϕMF),
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where the mean field expression for the fields ϕq,ν(τ) is given by ϕMF
q,ν = (NNs)

1/2δq,0ϕ
MFmq,ν ,

where N is the total number of unit cells and Ns is three times the number of the sub-

lattices in the unit cell. The normalized unit vector mq,ν = N
−1/2
s

∑
µ,αm

αuµαq,ν is

expressed in terms of the eigenvectors uµαq,ν . The mean-field partition function (7.8) can

be easily evaluated and equals

ZMF =
1

C ′
exp

[
−NNs

{
β|κ0|−1(ϕMF)2 − ln

(
cosh(βϕMF)

)}]
, (7.27)

provided κq=0,ν = κ0 is independent of ν. Here ϕMF is the value minimizing the free

energy FMF = −β−1 lnZMF and is given by the solution of the transcendental equation

2|κ0|−1ϕMF = tanh(βϕMF). (7.28)

The full partition function is given by

Z =
ZMF

C ′

∫
[dδϕ] exp [−βδS] ,

where δS =δSstat+δSdyn is the fluctuational part of the action.

Despite the anisotropic form of the interactions in the Hamiltonian (6.1), the mean-

field solution is highly degenerate with respect to the orientation of the spontaneous

magnetization vector m̂. It is therefore of interest to calculate the corrections to the

mean-field solution capturing the anisotropy of the free energy with respect to the order

parameter orientation.

7.4 Evaluation of the free energy in the Gaussian approx-

imation

The first systematic free energy correction is that from Gaussian fluctuations about the

mean-field solution obtained by expanding the free energy, or equivalently the action,

to lowest order in the fluctuation field δϕq,ν(τ) = ϕq,ν(τ)− ϕMF
q,ν . Introducing the time

Fourier transform

ϕq,ν(τ) =
∑
ωn

ϕq,ν,ωn exp [iωnτ ] ,
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where ωn = 2πnβ−1 are bosonic Matsubara frequencies, we immediately get the follow-

ing bilinear form of the Gaussian fluctuation part of the action:

δS{δϕq,ν} = β−1
∑

q,ν,ν′

∑
ωn

Aq,ωn;νν′δϕ
(+)∗
q,ν,−ωnδϕ

(+)
q,ν′,ωn

, (7.29)

where we defined

δϕ
(+)
q,ν,ωn =

1

2
[s(κq,ν)δϕq,ν,ωn + s∗(κq,ν)δϕ∗−q,ν,ωn,]. (7.30)

Here the fluctuation matrix elements Aq,ωn;νν′ describe the weight of the Gaussian

fluctuations of wavevector q, frequency ωn and polarization ν.

Here, a comment is in order. The fields δϕ do not obey the relation δϕ∗q,ν(τ1) =

δϕ−q,ν(τ1), i.e. their spatial Fourier transforms are not real-valued, which leads to the

combination of fluctuation amplitudes at momenta q and −q, weighted by the phase

factors s(κq,ν). Only symmetric combination of the fields, gives contribution to the

free energy because the antisymmetric combination with δϕ
(−)
q,ν,ωn = 1

2 [s(κq,ν)δϕq,ν,ωn −
s∗(κq,ν)δϕ∗−q,ν,ωn ] drops out.

7.4.1 Static fluctuations

We start by considering the contribution of static Gaussian fluctuations to the free

energy. The expansion of Sstat
loc in terms of fluctuation amplitudes up to second order is

given by

δSstat
loc = −β−1δ{∑j ln cosh(β[(ϕMFm̂ + δϕiµ,0)2]1/2) (7.31)

= −1
2

∑
j{βcδϕ2

iµ,0 + βm(m̂ · δϕiµ,0)2},

where βm = (1−t2)β−βc and βc = 1
Tc

. Here t = tanh(βϕMF) denotes the dimensionless

measure of magnetization, which is zero at Tc and rises monotonically upon cooling

to the saturation magnetization (t = 1) at T = 0. The components of δϕiµ,0 may be

expressed in terms of the momentum space fluctuation amplitudes δϕq,ν,0 = ϕq,ν,0−ϕMF
q,ν

as

δϕαiµ,0 =
∑
q,ν

Re{s(κq,ν)χ∗q,ν;jαδϕq,ν,0}. (7.32)
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Now, we can rewrite δSstat
loc in the same form as in Eq.(7.29):

δSstat = β−1
∑

q;ν,ν′

Astat
q,νν′δϕ

(+)∗
q,ν,0δϕ

(+)
q,ν′,0, (7.33)

with the matrix Astat
q,νν′ found to be

Astat
q,νν′ = β[(|κq,ν |−1 − βc

2
)δνν′ −

βm
2
mqνmqν′ ]. (7.34)

Now the integration over the fluctuation amplitudes may be performed, with the

result

Zstat = ZMF

C′

∫
[dϕ] exp

[
−βδSstat

]
= ZMF exp

[
−βδF stat

]
, (7.35)

which gives the free energy contribution to be equal to

δF stat =
1

2
β−1

∑
q

ln det{Astat
q,νν′}. (7.36)

7.4.2 Dynamic fluctuations

We now turn to the dynamic fluctuations, obtained by expanding Sdyn
loc to quadratic order

in the finite frequency Fourier components δϕj,ωn of the time-dependent fluctuation

fields. First we note that Ω0 =
∫
dτ0Ω(τ0) may be expressed in terms of the transverse

fluctuation amplitudes δϕtr,α
j (τ) =

∑
α′ Pαα′δϕ

α′
j (τ), where Pαα′ = δαα′ −mαmα′ , as

Ωj,0 =
∫ β

0 dτδej(τ)×δėj(τ)

= 1
(ϕMF)2

∫ β
0 dτδϕtr

j (τ)× ∂
∂τ δϕ

tr
j (τ) (7.37)

=β2
cβ
t2
∑

ωn
iωnδϕ

tr
j,−ωn × δϕtr

j,ωn
.

The contribution of this Ω0-term to the action is then given by (taking ej(0) = m̂)

δSdyn
loc = − i

β

∑
j

tanh(βϕMF)[Ωj,0 · ej(0)]}]. (7.38)

It is instructive to write components of the fluctuation amplitudes in the following form

(j ≡ (i, µ))

δϕαiµ(τ) =
∑3Ns

q,ν=1 Re{s(κq,ν)N−1/2e−iqRiuµαq,νδϕq,ν(τ)}
= 1

2N
−1/2

∑3Ns
q,ν=1 u

µα
q,ν{s(κq,ν)e−iqRiδϕq,ν(τ) (7.39)

+s∗(κq,ν)eiqRiδϕ∗q,ν(τ)},
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where we have assumed that eigenfunctions uµαq,ν = (uµαq,ν)∗ = uµα−q,ν are real-valued and

inversion symmetric. Performing the Fourier transform in time, we get

δϕαiµ,ωn = 1
2

1√
N

∑
q,ν,ωn

uµαq,ν{s(κq,ν)e−iqRiδϕq,ν,ωn

+s∗(κq,ν)eiqRiδϕ∗q,ν,−ωn}. (7.40)

The contribution of the Ωj,0-term (7.37) to the local action is then given by

δSdyn
loc = − i

β

(iββ2
c )

t

∑
q,ωn,ν,ν′

ωnDqνν′

[
s(κq,ν)δϕq,ν,ωns(κ−q,ν′)δϕ−q,ν′,ωn +

s∗(κq,ν)δϕ∗q,ν,−ωns
∗(κ−q,ν′)δϕ

∗
−q,ν′,−ωn + s(κq,ν)δϕq,ν,ωns

∗(κq,ν′)δϕ
∗
q,ν′,−ωn +

s∗(κq,ν)δϕ∗q,ν,−ωns(κq,ν′)δϕq,ν′,ωn

]
=
β2
c

t

∑
q,ωn,ν,ν′

ωnDqνν′δϕ
(+)
q,ν,−ωnδϕ

(+)∗
q,ν′,ωn

, (7.41)

Dqνν′ =
∑
µ

∑
α1,α2,α3

∑
α′2,α

′
3

mα1εα1α2α3Pα2α′2
Pα3α′3

u
µα′2
qν u

µα′3
qν′ .

The dynamic fluctuation expression for the interaction part of the action (7.24) is

then given by

δSκ = 1
β

∫ β
0 dτ

∑
q,ν |κq,ν |−1δϕq,ν(τ)δϕ∗q,ν(τ) =

=
∑

q,ωn 6=0,ν |κq,ν |−1δϕ
(+)
q,ν,ωnδϕ

(+)∗
q,ν,−ωn . (7.42)

Adding the two contributions we find

δSdyn = β−1
∑

q,ωn 6=0;ν,ν′

Adyn
q,ωn;νν′δϕ

(+)∗
q,ν,ωnδϕ

(+)
q,ν′,ωn

, (7.43)

where Adyn
q,ωn;νν′ is given by

Adyn
q,ωn;νν′ = β[|κq,ν |−1δνν′ + β2

c t
−1ωnDqνν′ ]. (7.44)

One may now perform the integration over the fluctuation amplitudes resulting in

Zdyn = ZMF exp
[
−βδFdyn

]
,
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which gives the free energy contribution to be equal to

δFdyn =
1

2β

∑
q,ωn 6=0

ln det{Adyn
q,ωn;νν′}. (7.45)

In summary, in the approximation in which the corrections to the free energy come

predominantly from Gaussian fluctuations, the partition function is found to be

Z =
ZMF

C ′
exp

[
−β(δF stat + δFdyn)

]
.

As a sanity check, in the Technical details section at the end of the chapter we compute

the contribution of dynamic fluctuations to the free energy at low temperature T << Tc

and show that the contribution of transverse fluctuations from the functional integral

representation (7.45) recovers the spin wave theory result.

7.5 Lifting mean-field degeneracies in quantum Heisenberg-

compass spin model

As a concrete application of the formalism describe above, in this section we compute

the contribution of Gaussian fluctuations to the free energy in the quantum Heisenberg-

compass model on the cubic lattice. This model is one of the simplest models described

by Eq. (6.1), in which the interaction matrix has only diagonal elements:

Jααj,j′ =
1

2
δj′,j+τµ [J +Kδα,µ] ,

where τµ = ±x,±y,±z labels nearest neighbor bonds. The eigenvalues of the exchange

operator are given by

κq,ν =
∑
α

(J +Kδα,ν) cos qα.

The three eigenvectors uqν point along the three cubic axes, such that the components

are uαqν = δν,α, α = x, y, z. Provided J < 0 and K < |J | the ferromagnetic mean

field solution ϕMF is given by the solution of the non-linear equation 2|κ0|−1ϕMF =

tanh(βϕMF).

The fluctuation contribution is described by a 3× 3-matrix

Aq,ωn,νν′ = δωn,0A
stat
q,νν′ + (1− δωn,0)Adynq,ωn,νν′

, (7.46)
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Figure 7.1: (a) The magnitude of the Gaussian contribution to the free energy δF(θ, φ)
computed for J = −1, K = −1.1 and β = βc + 1 is plotted on the surface of the unit
sphere. The minima of the free energy are shown by deep blue color. The preferred
directions of the magnetization are along the cubic axes. The energy scale is shown in
units of J .



139

whose matrix elements can be easily obtained for arbitrary orientation of magnetization,

m̂ = (sin θ cosφ, sin θ sinφ, cos θ). Using Eq.(7.34), we get the following expression for

the static contribution:

Astatq,νν′ =


dq,x gx,y gx,z

gy,x dq,y gy,z

gz,x gz,y dq,z

 , (7.47)

where dq,ν = |βκ−1
q,ν | − bmm

2
ν − btr, gνν′ = −bmmνmν′ , κ

−1
q,ν = 1/(3Jγq + K cos qν),

γq = 1
3

∑
β cos qβ, bm = 1

2(1 − t2), btr = 1
2βcβ. We recall that t ≡ tanh(βϕMF) is a

dimensionless measure of the magnetization.

The dynamical matrix is defined by Eq. (7.44), which for the cubic lattice simplifies

to

Adynq,ωn,νν′
= β−1[|κq,ν |−1δν,ν′ (7.48)

+ ωnβ
2
c t
−1
∑

α1,α2,α3
mα1εα1α2α3Pα2νPα3ν′ .

The matrix Aq,ωn,νν′ may be diagonalized for fixed q,ωn. Its eigenvalues λν,q,ωn =

λν,q,ωn(θ, φ) have a rather complex dependence on angles θ and φ, implying an angular

dependent profile of the fluctuation free energy δF = δF(θ, φ). After integrating over

the fluctuations, we obtain

Z =
ZMF

C ′
exp [−βδF ] , (7.49)

δF =
1

2β

∑
q,ωn,ν

lnλν,q,ωn + const .

In performing the summation over the Matsubara frequencies, we need to regularize

the expression by subtracting a term ln[ωnβ
2
c /βt] from lnλν,q,ωn , which will guarantee

convergence of the ωn summation. The subtracted term corresponds to the fluctuation

free energy at the transition point.

In Fig. 7.1, we show the angular dependence of δF(θ, φ) computed for representative

parameters J = −1 and K = −1.1. The magnitude of δF(θ, φ) is presented as a color-

coded plot on the unit sphere, where the minima and maxima of the free energy are

shown by deep blue and red color, correspondingly. We see that the minima of δF(θ, φ)

are achieved when the magnetization is directed along one of the cubic axes. This finding
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clearly shows that while mean field free energy is isotropic, the fluctuation free energy

depends upon the direction of the order parameter, indicating that the contribution of

fluctuations to the free energy removes the degeneracy of the equilibrium state found

on the mean field level.

7.6 Summary

In summary, in this chapter we elaborated on a method for calculating the free energy

of quantum spin systems using functional integral techniques. We employ powerful

formal technique known as the Hubbard-Stratonovich transformation to map an in-

teracting quantum spin system into a collection of ”single spin”-systems coupled to a

fictitious fluctuating magnetic field. This method is very general and can be applied

to any biquadratic quantum spin model. Indeed, the Hubbard-Stratonovich transfor-

mation applied to isotropic Heisenberg systems in the low temperature limit has been

considered before [115, 116, 117], but has not been applied, as far as we know, to calcu-

late the free energy of anisotropic quantum spin systems. In this work, we presented a

microscopic derivation of the path-integral representation of the quantum-spin-system

partition function for a particular class of quantum spin models with anisotropic bond-

directional spin interactions. We determined the contribution of Gaussian fluctuations

to the free energy at all temperatures in the ordered phase. Our analysis shows explic-

itly that the fluctuation free energy has a complex angular dependence, thus breaking

the rotational degeneracy of the mean-field ground state.

We believe that the proposed method holds good promise to understand directional

ordering in systems with anisotropic bilinear interactions, which are common in SOC

systems. In these systems, the high degeneracy of the mean-field solution is lifted by

the anisotropy of the spin-spin interaction, such that the spontaneous magnetization is

pinned along certain preferred directions. The latter may change with temperature.

For illustration, we applied the above analysis to the quantum Heisenberg-compass

spin model and show that the direction of the order parameter in spin space is selected

by fluctuations and is determined by the competition between Heisenberg and compass

terms. For the range of parameters for which the ferromagnetic state is the ground

state, the Gaussian fluctuations select the cubic axes as directions of the magnetization.



141

7.7 Technical details

Here we calculate the contribution of dynamic fluctuations to the free energy at low

temperature T << Tc. It is known that the leading contribution comes from spin wave

excitations. The purpose of this appendix is to show that the contribution of transverse

fluctuations from the functional integral representation recovers the spin wave theory

result.

As a simple example we calculate the contribution of dynamic fluctuations for the

case κq,ν = 3Jγq, where γq = 1
3

∑
α cos qα and J < 0. The spin wave excitation energy

in our representation is given by

ωq =
t

β2
c |κq=0||κq,ν |

[
|κq=0| − |κq,ν |s2(κqν)

]
. (7.50)

In the limit q � 1, it can also be significantly simplified:

ωq ≈
3

4
|J |[1− γq]. (7.51)

In this limit, the dynamic fluctuation matrix then takes the form

Adyn
q,ωn;ν,ν′ =

β2
c

βt

(
ωq ωn

−ωn ωq

)
. (7.52)

Its determinant is equal to

det{Adyn
q,ωn;ν,ν′} =

(
β2
c

βt

)2 [
ω2
n + ω2

q

]
. (7.53)

Recalling that the transverse fluctuation free energy is given by

δF tr =
1

2β

∑
q,ωn 6=0

ln det{Adyn
q,ωn;νν′},

the contribution to the partition function is found to be

Ztr = exp[−βδF tr] = exp[−1
2

∑
q,ωn 6=0 ln det{Adyn

q,ωn;νν′}]
= exp[−1

2

∑
q,ωn 6=0{ln(β−1β2

c t
−1)2 + ln[ω2

n + ω2
q]}. (7.54)

The first term in the curly brackets give simple constant renormalization. The summa-

tion over Matsubara frequencies in the second term gives

Xq = Re1
2

∑
ωn

ln[ω2
n + ω2

q] = Re1
2

∑
ωn

ln[(iωn)2 − ω2
q] (7.55)

= 1
2βωq + ln [1− exp(−βωq)] , (7.56)
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which leads to the free energy contribution

δF tr =
1

2

∑
q

{ωq + 2β−1 ln[1− exp(−βωq)]}+ const. (7.57)

To get this result we differentiate Xq with respect to ωq

∂

∂ωq
Xq = 1

2

∑
ωn

[ 1
iωn+ωq

− 1
iωn−ωq

] (7.58)

= 1
2β[−nB(−ωq) + nB(ωq)] (7.59)

where nB(ωq) = [exp(βωq)− 1]−1 is the Bose distribution function.

The term
∑

q ωq is the zero point fluctuation contribution of the two transverse

modes to the ground state energy (note that ωq is independent of ν for the isotropic

model considered). There must be an additional constant contribution δω0 to the ground

state energy, which is not completely captured by the Gaussian fluctuation contribution,

such that
∑

q ωq+ δω0 ∝
∑

q γq, which sums to zero. Recall that for the isotropic model

the ground state is identical to the mean field ground state, such that the fluctuation

contribution to the ground state energy vanishes. The fluctuation contribution to the

internal energy is then given

δUdyn = δFdyn + β
∂δFdyn

∂β
=
∑
q

ωq{
1

2
+ nB(ωq)} (7.60)

This is identical with the standard result of spin wave theory, except that ωq differs

from the spin wave result at higher q. At low temperatures δF dyn provides the leading

contribution to the thermodynamic quantities, e.g. δUdyn ∝ T 5/2, whereas the longitu-

dinal fluctuations contribute an exponentially small term. As ωq = 1
2 |J |q2 +O(q4), the

leading low temperature behavior of δUdyn agrees exactly with the conventional spin

wave result.



Chapter 8

Selection of direction of the

ordered moments in Na2IrO3 and

α−RuCl3

8.1 Introduction

In this chapter, we discuss in detail the models and the mechanisms which lead to the

stabilization of magnetic ordering in two compounds: Na2IrO3 and α−RuCl3. Several

experiments have shown that the low-temperature phase of Na2IrO3 has collinear zigzag

long-range magnetic order [8, 47, 48, 49, 59, 119, 120]. In addition, recent diffuse mag-

netic x-ray scattering data have determined the spin orientation in this zigzag state and

showed that it is along the 44.3◦ direction with respect to the a axis, which corresponds

to approximately half way in between the cubic x and y axes [120]. Both of these

findings are in disagreement with the original KH model [46, 14], which predicts the

zigzag phase only for the antiferromagnetic nearest neighbor Kitaev interaction with the

magnetic moments along the cubic axes, while the Kitaev interaction in Na2IrO3 is fer-

romagnetic [61]. The direction also contradicts our order-by-disorder predictions from

the previous two chapters. This shows that one needs to extend the nearest neighbor

model by including some additional interactions in order to explain these experimental

observations.

143
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α−RuCl3 also shows collinear antiferromagnetic zigzag ground state [15, 121, 122,

123]. Recent X-ray and neutron scattering diffraction data [122, 123] indicate that the

best fit to the collinear structure is obtained for the antiferromagnetic nearest neighbor

Kitaev interaction and when the spin direction points 35◦ out of the ab-plane, i.e. along

one of the cubic directions. This suggests that the microscopic origin of the zigzag

ground state in α−RuCl3 might be quite different from the one in Na2IrO3, and that it

can be described by the nearest neighbor KH model [14].

In both cases, the available experimental data provides an important check of the

validity of any model proposed to describe the magnetic properties of Na2IrO3 and

α−RuCl3, as it should correctly predict not only the type of the magnetic order but

also its orientation in space.

In this work we consider two models, the nearest neighbor KH model [1, 46, 14] and

its more complicated counterpart, dubbed J1-K1-J2-K2-J3 model [10], and study how

the preferred directions of the mean field order parameter are selected in these models.

The formal procedure which we will be using here is based on the derivation of the

fluctuational part of the free energy by integrating out the leading thermal fluctuations,

and by determining which orientations of the order parameter correspond to the free

energy minimum. This approach is based on the HS transformation and was outlined

in Refs. [19, 20] to which we refer the reader for technical details. In both models, the

thermal fluctuations select the cubic axes as the preferred directions for spins, which

describes the experimental situation in α−RuCl3 but not in Na2IrO3.

We have also checked that in both models the quantum fluctuations (taken into

account either using the quantum version of HS approach or within the semiclassical

spin-wave approach) lift the accidental degeneracy of the classical solution and also

select the cubic axes as the preferred directions for spins. We did not present these

calculations here as they bring no new results compared with more simple analysis of

thermal fluctuations.

The important point which we stress in this chapter is that the selection of correct

”diagonal” direction of the spins observed in Na2IrO3 might happen already on the

mean-field level by inclusion small off-diagonal positive interaction Γ as soon as it is

larger than the energy gain of order 1/S due to the quantum fluctuations.

This chapter is organized as follows. In Sec. 8.2 we study the order by disorder
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Figure 8.1: Four possible magnetic configurations: (a) FM ordering; (b) AF Néel order;
(c) AF stripy order; (d) AF zigzag order. Red and blue circles correspond to up and

down spins. Here a1 = (
√

3
2 x̂ + 3

2 ŷ) and a2 =
√

3x̂ are two primitive translations. The

bond vectors are dx=(
√

3
2 x̂− 1

2 ŷ), dy=(−
√

3
2 x̂− 1

2 ŷ) and dz= ŷ.

mechanism of the selection of the direction of the order parameter in the nearest neighbor

KH model on the honeycomb lattice. In Sec. 8.3 we extend our consideration to the

J1-K1-J2-K2-J3 model. In Sec. 8.4, we discuss the role of the off-diagonal Γ-term and

study the selection of the direction of the magnetic order in Na2IrO3 and in α−RuCl3.

We summarize our conclusions in Sec. 8.5. At the end of the chapter some technical

details and calculations are shown.
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Figure 8.2: A, B, C and D designate the four sublattices of the Klein transformation.
Solid and dashed bonds shows the change of the sign of the Γ interaction in the four-
sublattice transformation: Γ picks up a negative sign on the solid bonds but keeps the
sign from unrotated reference frame on the dashed bonds.

8.2 Order by disorder in the extended nearest neighbor

KH model

The KH model on the honeycomb lattice reads [14]

H =
∑
〈ij〉α

∑
γ

JαγSγ0,iS
γ
1,j , (8.1)

where Jαγ = J + Kδα,γ is the interaction between γ-component of the pseudospin

Sγν,j = 1/2, on sublattices ν = 0, 1. Hereafter, we call these pseudospins simply spins.

J and K correspond to the Heisenberg and Kitaev interactions, which in the extended

model can be both AF and FM. γ = x, y, z denote the spin components in the global

reference frame.

The classical phase diagram of the model 8.1 contains four magnetic phases [14, 51]:

the ferromagnetic phase (Fig. 8.1 (a)), the Néel antiferromagnet (Fig. 8.1 (b)), the

stripy antiferromagnet (Fig. 8.1 (c)) and the zigzag antiferromagnet (Fig. 8.1 (d)). The

latter two magnetic states have a four sublattice structure.

All these phases have macroscopic classical degeneracy. While the classical degener-

acy of the simple FM state and of the AF Néel state comes straightforwardly from the

infinite number of degenerate collinear states, the macroscopic degeneracy of the AF

stripy and zigzag phases is more complex, and the degenerate ground state manifold

consists of six collinear states and a set of non-collinear multi-Q states. In Appendix A
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we discuss this question in detail and show that using the four-sublattice Klein transfor-

mation for the stripy and the zigzag AF states [46, 124, 76], the nature of the classical

degeneracy of all four magnetically ordered states can be understood in a similar way.

Importantly, in all cases, the classical degeneracy is accidental and is removed by the or-

der by disorder mechanism which selects a set of collinear states, each with a particular

direction of the order parameter.

Following Chaloupka et al [46], we introduce four auxiliary sublattices A, B, C and

D (see Fig. 8.2), fix the direction of the spins on the sublattice A and rotate the spins on

the subllatices B, C, and D such that the component of spin corresponding to the bond

direction (x for B, y for C and z for D) stays the same but two other spin components

change sign. This results in the transformed Hamiltonian with the same form as (8.1)

but with transformed couplings.

Here we consider the KH model in the full parameter space. For the parameters

of the model for which either stripy or zigzag are the ground states, we perform four-

sublattice transformation and treat the model (8.1) in the rotated basis, in which the

stripy order maps to the FM and the zigzag order maps to the simple two-sublattice

AFM Néel state.

Next, using a HS transformation of the partition function [19, 20], we discuss how the

preferred directions of the order parameter in all these phases are selected by thermal

or quantum fluctuations below the ordering temperature. We have checked that for this

model thermal and quantum fluctuations choose the same state and thus, for simplicity

of discussion, here we only consider the case of classical spins.

The partition function of the system of classical spins is given by the integral over

the Boltzmann weights of the configurations as we have seen in Chapter 6

Z =

∫ ∫
[dS0,i][dS1,j ] δ(S

2
0,i − 1)δ(S2

1,j − 1)

exp

−β∑
〈ij〉α

∑
γ

JαγSγ0,iS
γ
1,j

 , (8.2)

where S0,j and S1,j are classical spins on sublattices 0 and 1, and β = 1/(kBT ) is the in-

verse temperature. Similarly in the case of a quantum system the partition function is a

trace of the Boltzman weights over the spin operators, Z = Tr
[
exp

(
−β∑〈ij〉α∑γ J

αγSγ0,iS
γ
1,j

)]
.
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It is more convenient to perform the HS transformation by representing the Hamil-

tonian matrix in the basis of the eigenfunctions of the exchange matrix, which can be

easily obtained in the momentum space. To this end, we first introduce a six-component

vector Sq = (Sx0,q, S
y
0,q, S

z
0,q, S

x
1,q, S

y
1,q, S

z
1,q), with the components given by the Fourier

transforms of the x, y, z components of the spins on 0− and 1−sublattices, correspond-

ingly. This allows us to write the Hamiltonian matrix in the momentum space as

H =
∑
q

S†q · Ĵq · Sq, (8.3)

where the 6× 6 exchange matrix Ĵq is defined as

Ĵq =



0 0 0 Jxq 0 0

0 0 0 0 Jyq 0

0 0 0 0 0 Jzq(
Jxq
)∗

0 0 0 0 0

0 (Jyq )
∗

0 0 0 0

0 0
(
Jzq
)∗

0 0 0


, (8.4)

with matrix elements given by

Jγq =
∑

α=x,y,z

[J +Kδα,γ ] eıq·(dα−dz) = Jq +Kγ
q . (8.5)

Here we drop the overall phase factor eıq·dz = eıq·(0,1) = eıqy and denote Jq = J(1 +

e−ıq·a1 +e−ıq·a2), Kγ
q = Keıq·(dγ−dz), where a1 =(

√
3

2 x̂+ 3
2 ŷ) and a2 =

√
3~x are the lattice

vectors. The matrix Ĵq is then diagonalized by a unitary transformation, κ̂q = U−1
q ĴqUq,

leading to the following form of the Hamiltonian

H =
∑
q,ν

κq,ν S̃
∗
q,ν S̃q,ν , (8.6)

where the normal amplitudes of spin-like variables are defined as

S̃νq = Uq,νηS
η
q . (8.7)

Note that, depending on the form of the interaction matrix, this transformation in

general will mix the spin operators on different sites of the unit cell as well as different
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components of the spin. However, in the case of the KH model, while the two sublattices

of the honeycomb lattice are mixed, the x, y, and z components stay separate. The

partition function (8.2) then looks like:

Z =

∫ ∫
[dS0,j ][dS1,j+dz ] δ(S

2
0,j − 1)δ(S2

1,j+dz − 1)

exp

[
−β
∑
q,ν

κq,ν S̃
∗
q,ν S̃q,ν

]
. (8.8)

Following the steps outlined in Refs. [19, 20], we can separate the mean-field and the

fluctuational contributions to the partition function, Z = ZMFZfluct. In the Gaussian

approximation, the fluctuation part of the partition function,

Zfluct =

∫
[dϕ] exp [−βSfluct] , (8.9)

where Sfluct =
∑

q;ν,ν′ Aq,νν′δϕ
∗
q,νδϕq,ν′ can be obtained by integration over the fluctua-

tion amplitudes δϕq,ν . The explicit expression for the matrix elements of the fluctuation

matrix Âq computed for an orientation of the mean-field order parameter along arbitrary

direction (sin θ cosφ, sin θ sinφ, cos θ) are given in Appendix B.

Now, the fluctuation contribution to the free energy can be written as

Ffluct = − 1

β
lnZfluct =

1

2β

∑
q

ln
∣∣det{Aq,νν′}

∣∣ . (8.10)

While the mean-field part of the free energy has the full rotational symmetry, its fluc-

tuational part, Ffluct, is sensitive to the direction of the mean-field order parameter.

Thus, by finding the minima of the fluctuational part of the free energy, we can pin the

spontaneous magnetization along some preferred direction of the lattice.

Fig. 8.3 (a) shows the angular dependence of fluctuational free energy Ffluct(θ, φ)

computed for representative parameters J = −2.9 meV and K = 8.1 meV, at which

the ground state order is the AF zigzag. The magnitude of Ffluct(θ, φ) is presented as a

color-coded plot on the unit sphere, where the minima and maxima of the free energy

are shown by the deep blue and red colors, correspondingly. We see that the minima of

Ffluct(θ, φ) are achieved when the magnetization is directed along one of the cubic axes.

This finding shows that the contribution of the fluctuations to the free energy re-

moves the degeneracy of the ground state found on the mean field level. The states
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(a) (b)

Figure 8.3: Fluctuational corrections to the free energy in (a) nearest neighbor KH
model computed with J = −2.9 meV and K = 8.1 meV and (b) J1−K1−J2−K2−J3

model computed with J1 = 5 meV, K1 = −17 meV, J2 = −4 meV, K2 = 8 meV, and
J3 = 1 meV.

which are selected by the thermal fluctuations are the collinear states with the order

parameter pointing along one of the cubic axes, thus confirming previous results of the

Monte Carlo simulations [50, 51, 74] and spin wave analysis by Chaloupka et al [46].

We discuss the relevance of our findings for the nearest neighbor KH model for

α−RuCl3 in Sec. 8.4.2. However in the next section, we will first consider the selection

of the direction of the order parameter in the extensions of the KH model relevant for

Na2IrO3.

8.3 Order by disorder in J1-K1-J2-K2-J3 model

Despite extensive efforts, no consensus concerning the minimal model for Na2IrO3 has

been reached yet. The most natural extension of the KH model with ferromagnetic Ki-

taev interaction which captures the zigzag magnetic order can be obtained by inclusion

of farther neighbor couplings. In Na2IrO3, these couplings might not be negligible due

to the extended nature of the 5d-orbitals of the Ir ions. In the early works suggesting

this possible extension [12, 59], second and third neighbor couplings were taken into
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account phenomenologically and only the isotropic part of these interactions was in-

cluded. The importance of additional nearest neighbor C3-symmetric anisotropic terms

(Γ-terms) [71, 76] or of the spatial anisotropy of the nearest neighbor Kitaev interactions

[62], were also discussed in the literature as a possible source for the stabilization of the

zigzag phase.

Here we consider the J1-K1-J2-K2-J3 model [10], which still has the same symmetry

as the original KH model but contains Kitaev interactions between both nearest and

second nearest neighbors. The model reads

H = J1

∑
〈i,j〉γ

SiSj +K1

∑
〈i,j〉γ

Sγj S
γ
j + (8.11)

J2

∑
〈〈i,j〉〉γ̃

SiSj +K2

∑
〈〈i,j〉〉γ̃

Sγ̃i S
γ̃
j + J3

∑
〈〈〈i,j〉〉〉

SiSj ,

where J1 > 0, K1 < 0, J2 < 0, K2 > 0, and J3 > 0; 〈 〉, 〈〈 〉〉 and 〈〈〈 〉〉〉 denote nearest

neighbor, second nearest neighbor and third nearest neighbor, respectively. γ = x, y, z

and γ̃ = x̃, ỹ, z̃ denote the three types of nearest neighbor and second nearest neighbor

bonds of the honeycomb lattice, respectively. It is important to note that the second

neighbor Kitaev interactions do not change the space group symmetries of the original

KH model.

For realistic sets of the parameters describing Na2IrO3, the second neighbor Kitaev

interaction, K2, computed from the microscopic approach based on the ab-initio calcu-

lation by Foevtsova et al [63], appeared to be the largest interaction after the nearest

neighbor Kitaev interaction, K1, and turn out to be antiferromagnetic. The mechanism

behind the large magnitude of K2 in Na2IrO3 is physically very clear: It originates from

the large diffusive Na ions that reside in the middle of the exchange pathways, and the

constructive interference of a large number of pathways. Moreover, the K1-K2 model,

that only includes Kitaev interactions [86], already stabilizes the zigzag phase for the

proper signs of K1 and K2. However, as we have discussed in Ref. [86], the K1-K2

model is still not sufficient to comply with all available experimental data.

The classical degeneracy of the zigzag state obtained within the J1-K1-J2-K2-J3

model with FM K1 is different from the one of the zigzag state realized in the extended

KH model with AFM K1 interaction. To see what difference the sign of K1 makes,

let us consider the zigzag pattern in Fig.8.1 (d). With AFM K1, the pattern, that
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minimizes the classical energy in the zigzag state with ferromagnegnetic y and z bonds,

has the spins pointing along the x−axis to take advantage of the Kitaev interaction on

the AFM x-bonds. On the other hand the same pattern with FM K1 takes advantage of

the Kitaev interaction on the FM y− and z− bonds by putting spins in the yz−plane.

Thus the degenerate ground state manifold for a given zigzag pattern with FM K1 is

one of xy−, yz−, or zx− planes. Furthermore, when the Klein duality 4-sublattice

transformation [46] is applied to the J1-K1-J2-K2-J3 zigzags, these states do not turn

into Néel AFM state, and instead turn into non-collinear states, that are more difficult

to work with than the original zigzag states. Working with the zigzag states directly

increases the magnetic unit cell to 4 sites, labeled in Fig 8.1(d).

The Hamiltonian matrix in the momentum space can be again written in the form

of Eq. (8.3), however this time due to the larger unit cell the exchange matrix Ĵq is

12×12, instead of 6×6. Its matrix elements are given in Appendix C. The fluctuations

matrix Aq,νν′ is calculated as before according to equation (8.15), with the constraint

matrix Cq,µ,µ′ of equation (8.17) now containing 4 identical blocks instead of 2. The

fluctuation matrix again contains the information on the direction of the spins and

transmits this information to the free energy corrections that we plot in Fig. 8.3(b).

Since the spins are confined to a plane for a given zigzag state we have only the angle

of the direction of spins in that plane. The color of the band at a given angle then

gives the size of the fluctuational correction to the free energy, with violet being lowest

and red highest energy states. We see that again the Kitaev anisotropies prefer to align

the magnetization along the cubic axes. Note, however, that unlike the extended KH

model, where there were 6 equivalent states, here there are 4 directions for each of the

three zigzag patterns, giving a total of 12 states.

8.4 The role of off-diagonal symmetric Γ-term.

8.4.1 Directions of the ordered moments in Na2IrO3.

The discussion above has clearly shown, that neither the original Kitaev model nor the

extended J1-K1-J2-K2-J3 model can correctly explain the experimental data in Na2IrO3.

Since the easy axes directions are determined solely by the anisotropy terms, only the

inclusion of other types of the anisotropies can improve the situation. Here we consider
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(a) (b)

(c) (d)

Figure 8.4: The lowest eigenvalue of the J1 −K1 − J2 −K2 − J3 − Γ1 model obtained
with the Luttinger-Tisza method is shown on the first Brillouin zone. We use J1 = 3
meV, K1 = −17 meV, J2 = −3 meV, K2 = 6 meV, J3 = 1 meV, and (a) Γ1 = 1 meV,
(b) Γ1 = 20 meV, (c) Γ1 = 25 meV, and (d) Γ1 = 50 meV.
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the off-diagonal symmetric Γ-terms. The role of these terms in the nearest-neighbor

Kitaev model has been studied in Refs. [71, 76]. These studies have shown that the

small Γ-terms do not immediately destabilize the zigzag phase, but lead to a deviation

of the magnetic moments from the cubic axes.

The origin of Γ-terms can be easily seen from the most general form of the bilinear

exchange coupling matrix, which on the bond (i, j) has the form given by

Ξi,j =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 . (8.12)

While the Kitaev term comes from the anisotropy of the diagonal matrix elements

of Ξi,j , e.g. K1 = Jzz1 − Jxx1 , the symmetric and antisymmetric combinations of off-

diagonal elements represent other types of possible bond-anisotropies. In the absence of

the trigonal distortion, the inversion symmetry prohibits the existence of antisymmetric

interactions but some of the symmetric combinations are allowed, i.e. on a given γ-

bond, the interaction between the other two spin components, Γγ(Sαi S
β
j +Sβi S

α
j ), where

Γγ = 1
2(Jαβ1 + Jβα1 ), is non-zero. Our previous results [10] suggest that in Na2IrO3 the

magnitude of the strength of Γ on the nearest neighbor bonds is about 2-3 meV and

vanishes for the second neighbors.

Here we consider the J1-K1-J2-K2-J3-Γ model with the previous choice of Heisenberg

and Kitaev interactions and treat Γ as a free parameter. A straightforward classical

minimization in momentum space using Luttinger-Tisza approach [125, 126, 127] shows

that up to very large values of Γ ∼ 20 meV the minima of the classical energy are located

at the M points corresponding to the zigzag states. This is clearly seen in Fig. 8.4 (a)

where we plot the lowest eigenvalues obtained for Γ = 1 meV. At larger values of Γ, the

minima shift along the lines connecting M points and the center of the Brillouin zone

(see Fig. 8.4 (b) for Γ = 20 meV), indicating the transition to incommensurate order.

The incommensurability of the Luttinger-Tisza solution increases further with larger

values of Γ, which is shown in Figs. 8.4 (c) and (d). The exact value of Γ at which the

transition occurs is difficult to determine due to the transition being so smooth, Note,

however, that the transition occurs at values of Γ far beyond those predicted from our

microscopic calculations at ambient pressure [10].
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After we have demonstrated that adding small Γ interactions to the J1−K1− J2−
K2−J3 model does not destabilize the zigzag order, let us now show that in the presence

of Γ the mean-field degeneracy is already lifted and the preferred directions of the order

parameter are selected. This is clearly seen in Fig. 8.5 (a) and (b), where the mean field

energy of the zigzag order is computed for Γ = 1 meV and Γ = −1 meV, respectively.

By inspection, we can see that non-zero Γ selects the face diagonals as easy axes for

magnetic ordering, and the sign of Γ determines which of the two face diagonals are

preferred. For concreteness, let us consider the zigzag with AFM z−bonds. As we

discussed above the case for Γ = 0, the easy xy-plane is selected at the mean-field level

of the J1−K1− J2−K2− J3 model. Then, the inclusion of positive Γ interaction on x

and y bonds gives zero contribution to the energy since on these bonds it involves the

spin component perpendicular to the easy plane, but it gives maximal lowering of the

energy on the z-bonds if the spins point along [110] and [1̄1̄0], [1̄10] and [1̄10] directions

correspondingly for positive and negative values of Γ. The estimate for the smallest

Γ, at which the selection of face diagonals takes place, can be done by comparing the

mean-field energy gain due to Γ with the energy gain due to fluctuations at Γ = 0,

which at T = 0 is equal to the zero point energy and is a function of K1 and K2. At

finite temperature, the contribution to the energy from the Gaussian fluctuations at

each T can be computed by our method, and this energy will give the lower bound for

the magnitude of Γ needed to change the orientation of magnetic order from the cubic

to the face diagonal.

8.4.2 Directions of the ordered moments in α−RuCl3.

The microscopic calculations for α−RuCl3 emphasized the importance of the off-diagonal

nearest neighbor Γ interactions [128]. The effect of adding Γ interaction to the nearest

neighbor KH model is easiest to understand in the rotated reference frame of the four-

sublattice Klein transformation [76, 124]. The Kitaev and Heisenberg interactions do

not change their form and only change the value of the coupling constants under this

transformation. On the other hand, Γ-interaction picks up a bond dependent sign as

shown in Fig. 8.2. In fact, Γ changes the sign on half of the bonds, i.e. there are just as

many negative bonds as there are positive bonds for each Kitaev type of bonds. Since

the Klein transformed version of the zigzag state is the AFM Néel state, all the bonds
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(a) (b)

Figure 8.5: Mean field energy of the zigzag orders in J1 −K1 − J2 −K2 − J3 model
with the contribution of (a) Γ = 1 meV and (b) Γ = −1 meV.

are AFM and involve the same pair of spins. Thus the contribution of the Γ interaction

to the mean-field energy cancels out, and the set of states remains degenerate. This

means that as long as we remain in the small window where Γ does not destabilize the

zigzag order found by Rau et al. [71], we can perform our order-by-disorder approach

to see what state is chosen.

Figs. 8.6 (a)-(c) show the fluctuation free energy computed for the J −K−Γ model

for J1 = −2.9 meV and K1 = 8.1 meV, suggested by Banerjee et al. [122], and Γ = 0.7

meV, 0.8 meV and 0.9 meV, respectively. In Fig. 8.6 (a), Γ = 0.7 meV, the minima of

the fluctuational free energy are still along cubic directions. For larger Γ-interaction, the

system prefers the states with at least two nonzero spin components and, therefore, the

transition towards [111] preferred directions of the order parameter takes place. This is

shown in Fig. 8.6 (b) and (c), in which the fluctuational energy is plotted for Γ = 0.8

meV and 0.9 meV. While in Fig. 8.6 (b) only very shallow minima are seen along [111]

directions, in Fig. 8.6 (c) both the pronounced minima along the cubic body diagonals

and maxima along the cubic axes are very clearly seen. Remember that the computation

is done in the rotated reference frame. Therefore, only the states with the orientation of
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the order parameter along the cubic axes will give the collinear states in the unrotated

reference frame. The states with order parameter pointing along [111] directions in the

rotated reference frame correspond to non-collinear states in the unrotated reference

frame. Since recent experiments by Cao et al. [123] have established that spins point

along a cubic axis, by calculating the fluctuational corrections as a function of Γ, we

can find an upper bound on its value, such that the Kitaev fluctuations dominate and

keep the cubic axes as the preferred directions. From our calculations it follows that for

J1 = −2.9 meV and K1 = 8.1 meV the upper bound for Γ is about 0.8 meV. Finally,

for this set of parameters the transition to the 120◦- AFM order occurs around Γ = 1.6

meV. Note that this estimate is far smaller than the Γ values resulting from ab initio

calculations [128].

8.5 Concluding remarks

In this chapter we explored how the direction of the magnetic moments in the zigzag

ground state order is chosen in Na2IrO3 and α−RuCl3. In both compounds, the Ki-

taev interaction plays an important role. For the case of FM nearest neighbor Kitaev

interaction, like in Na2IrO3, farther neighbor interactions are essential for stabilizing

the zigzag ground state. For the AFM nearest neighbor Kitaev interaction, which was

widely suggested to be the dominant interaction in α−RuCl3 [15, 121, 122, 123, 128],

the zigzag order can be stabilized already within the nearest neighbor model.

We proposed that the J1−K1−J2−K2−J3−Γ model can explain all the experimental

finding in Na2IrO3. In this model the selection of the experimentally observed face

diagonal direction of the order parameter happens already on the mean-field level due

to the small bond-dependent anisotropic term Γ.

In α−RuCl3, if the the n.n. Kitaev interaction is AFM, the original KH model [14]

is sufficient to explain both the collinear zigzag ground state and the cubic directions

of the order parameter. We studied the effect of the Γ-term and showed that while on

the mean-field level it doesn’t effect the ground state degeneracy, it favors non-collinear

three-Q states, instead of the experimentally observed zigzag state with spins along

cubic axes, once the Gaussian fluctuations are included. Thus, it appears to be an

upper bound for Γ-term, which can be estimated for a given set of n.n. parameters.
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(a) (b)

(c)

Figure 8.6: Fluctuational corrections to the free energy in the nearest neighbor KH
model with Γ interaction. We used the following parameters: J = −2.9 meV, K = 8.1
meV and (a) Γ = 0.7 meV, (b) Γ = 0.8 meV, and (c) Γ = 0.9 meV. The minima of the
free energy are shown by deep blue color and the maxima by intense red color.
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8.6 Technical details

8.6.1 The classical degeneracy of the extended KH model

In this technical section we provide detailed discussion of the classical degeneracy of

the extended KH model at parameters for which either the stripy or the zigzag AF

phases are realized as the ground state and the manifold of classically degenerate states

is rather complex.

To be specific, let us first consider the stripy phase. It contains six inequivalent

collinear stripy states with FM bonds along either Kitaev x−, y− or z−bonds. It

also contains infinite number of non-collinear (coplanar and non-coplanar) states. The

spin order in the x−, y− or z− stripy states can be described either with a help of

four magnetic sublattices or by a simple spiral characterized by a single-Q wave vector:

Qx = (π/
√

3, π), Qy = (π/
√

3,−π) and Qz = (−2π/
√

3, 0). One of the stripy states

with FM z-bonds is shown in Fig. 8.1 (c). In each of these stripy states the spins are

aligned along one of the cubic directions which is locked to the spatial orientation of

a stripy pattern by the Kitaev interaction, i.e. the direction of the order parameter

is defined by the wave vector Q = Qx,Qy or Qz determining the breaking of the

translation symmetry.

The structure of the manifold of the non-collinear states, which looks rather complex

in the original model, can be easily understood with the help of the four-sublattice

transformation (see Fig. 8.2) based on the Klein duality [46, 76, 124]. In the new

rotated basis, the stripy phase is mapped to the FM order with a unique ordering

vector Q = 0. Classically, all states with arbitrary direction of the FM order have the

same energy. FM states with order parameter along the cubic axes give the six stripy

phases in the unrotated spin basis discussed above. Arbitrary directions of the FM order

parameter lead to a set of non-coplanar states in which each component of spin, Sx, Sy,

and Sz, transforms with its own Qx, Qy and Qz wavevector, which coincide with the Q

vectors describing the spatial orientation of the stripes in the respective collinear states.

Using these three ordering vectors, we can write the non-coplanar phase of the

unrotated spins as

Si,0 = (sθcφ e
ıQx·Ri , sθsφ e

ıQy ·Ri , cθ e
ıQz ·Ri), (8.13)
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where θ and φ are the polar and azimuthal angles of the FM order parameter. Si,0

denote the spins on the sublattice 0 and the spins on the sublattice 1 are obtained from

Si,0 by a constant phase shift coming from the spin rotation on that bond as prescribed

by the four sublattice transformation. As in Fig. 8.1 (c), the sublattices 0 and 1 are

connected by the z bond, the order of the spins on the subllatice 1 is given by

Si,1 = (Sxi,0 e
ıπ, Syi,0 e

ıπ, Szi,0) (8.14)

In the zigzag phase, the structure of the classical states manifold is very similar

to the stripy phase. The four-sublattice transformation maps the zigzag phase onto

the Néel AF phase. The generic state is again described by the three-Q spiral state.

The only difference is that the spins on sublattice 1 have an overall phase factor of π,

Si,1 = (Sxi,0, S
y
i,0, S

z
i,0e

ıπ).

8.6.2 The matrix elements Aq,νν′ computed for the KH model.

The matrix elements Aq,νν′ can be written as

Aq,νν′ =
δν,ν′

κq,ν
+ s(κq,ν)s(κq,ν′)U

−1
q,ν,µCq,µ,µ′Uq,ν,µ, (8.15)

where a repeated index implies a summation over. The first term in (8.15) is the

contribution from the interaction term and the second term is from the constraint

term [19, 20]. For convenience, the constraint matrix Ĉq can be first written in the

original basis, in which the interaction term is not diagonal, and then transformed to

the eigenbasis of the Hamiltonian with a help of the unitary transformation Uq. In the

original basis the constraint matrix Ĉq consists of two blocks, one for each sublattice.

The A-sublattice block has elements Cq,µ,µ′ with µ, µ′ = 1, 2, 3 and the B-sublattice

block has the elements with µ, µ′ = 4, 5, 6. The two blocks are identical, so Ĉq takes

the following form:

Ĉq =



Cq,11 Cq,12 Cq,13 0 0 0

Cq,21 Cq,22 Cq,23 0 0 0

Cq,31 Cq,32 Cq,33 0 0 0

0 0 0 Cq,11 Cq,12 Cq,13

0 0 0 Cq,21 Cq,22 Cq,23

0 0 0 Cq,31 Cq,32 Cq,33


(8.16)
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with matrix elements given by

Cq,11 = −2
3

[
βc(1− s2

θc
2
φ) + 3βrs2

θc
2
φ

]
,

Cq,22 = −2
3

[
βc(1− s2

θs
2
φ) + 3βrs2

θs
2
φ

]
,

Cq,33 = −2
3

[
βcs

2
θ + 3βrc2θ

]
,

Cq,12 = Cq,21 = −2
3(3βr − βc)s2

θcφsφ,

Cq,13 = Cq,31 = −2
3(3βr − βc)sθsθcφ,

Cq,23 = Cq,32 = −2
3(3βr − βc)sθsφcφ,

(8.17)

where, to shorten notations, we denote sin θ(φ) ≡ sθ(φ) and cos θ(φ) ≡ cθ(φ).

8.6.3 Coupling Jµ,ν(q) of the J1 −K1 − J2 −K2 − J3 model.

For shortness we define q1 = q · a1, q2 = q · a2, and qz = q · dz. The diagonal matrix

elements for µ = 1, 4, 7 and 10 are equal to Jµ,µ(q) = (J2 +K2) cos q1, all other diagonal

elements are equal to Jµ,µ(q) = J2 cos q1. The non-zero off-diagonal elements Jµ,ν(q)
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for ν > µ are

J1,4(q) =
1

2
J1(eıqz + eı(−q1+qz))

J2,5(q) =
1

2

(
J1(eıqz + (J1 +K1)eı(−q1+qz))

)
J3,6(q) =

1

2

(
(J1 +K1)(eıqz + J1e

ı(−q1+qz))
)

J1,7(q) = J2(cos(q1 − q2) + cos q2)

J2,8(q) = (J2 +K2) cos(q1 − q2) + J2 cos q2

J3,9(q) = J2 cos(q1 − q2) + (J2 +K2) cos q2

J1,10(q) =
1

2

(
(J1 +K1)eı(q2−q1+qz) +

J3(eı(q2+qz) + eı(q2−2q1+qz) + eı(−q2+qz))
)

J2,11(q) =
1

2

(
J1e

ı(q2−q1+qz) +

J3(eı(q2+qz) + eı(q2−2q1+qz) + eı(−q2+qz))
)

J3,12(q) =
1

2

(
J1e

ı(q2−q1+qz) +

J3(eı(q2+qz) + eı(q2−2q1+qz) + eı(−q2+qz))
)

J4,7(q) =
1

2

(
(J1 +K1)eı(q1−q2−qz)+

J3(eı(2q1−q2−qz) + eı(−q2−qz) + eı(q2−qz))
)

J5,8(q) =
1

2

(
J1e

ı(q1−q2−qz)+

J3(eı(2q1−q2−qz) + eı(−q2−qz) + eı(q2−qz))
)

J6,9(q) =
1

2

(
J1e

ı(q1−q2−qz)+

J3(eı(2q1−q2−qz) + eı(−q2−qz) + eı(q2−qz))
)

J4,10(q) = J2

(
cos q2 + cos(q2 − q1)

)
J5,11(q) = J2 cos q2 + (J2 +K2) cos(q2 − q1)

J6,12(q) = (J2 +K2) cos q2 + J2 cos(q2 − q1)

J7,10(q) =
1

2
J1(eıqz + eı(−q1+qz))

J8,11(q) =
1

2

(
J1e

ıqz + (J1 +K1)eı(−q1+qz)
)

J9,12(q) =
1

2

(
(J1 +K1)eıqz + J1e

ı(−q1+qz)
)



Chapter 9

Conclusion and Discussion

The long-standing quest for a solid state realization of the Kitaev honeycomb model [3]

along with the search for a new family of superconductors [4, 5] has triggered much of the

experimental and theoretical interest in 4d and 5d compounds in which the interplay of

the strong spin-orbit coupling (SOC) and electronic correlations leads to the dominance

of the strongly anisotropic interactions [1]. Some limited success has been recently

achieved on both fronts: observation of a d-wave pseudogap in doped Sr2IrO4 [6] and

observation of a spin liquid phase in α-RuCl3 subjected to an external magnetic field

[129, 130]. However, both the superconductivity and the Kitaev model remain elusive

for now and the search continues.

What is more interesting is that the 4d and 5d transition metal compounds have

developed into a field of their own right, worthy of study outside the scope of the two

goals stated above. For instance the seemingly simple zigzag magnetic state found in

Na2IrO3 turned out to be a complex system of competing and cooperating anisotropies

as I have shown in Chapters 3 and 8. The zigzag pattern of the order is a result of the

cooperation of Kitaev interactions K1 and K2 with the isotropic J3 interaction. At the

same time the direction of the magnetic moments in the zigzag pattern stems from the

competition of the the Kitaev interaction fluctuations with the symmetric off-diagonal

interaction Γ1 mean field contribution. Such complexity of magnetically ordered states

is rarely seen outside the systems with strong SOC.

To summarize, in my dissertation I presented the effect that strong spin-orbit cou-

pling has on the magnetic properties of 4d and 5d transition metal compounds. In the
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first half of the dissertation I have shown that spin-orbit coupling combined with lattice

geometry is a source of many anisotropic magnetic interactions. I have also shown how

these interactions can be measured experimentally. In the second half of the disserta-

tion I have focused on what effect the anisotropies have on the magnetic ground state of

various compounds. I presented a general method for calculating free energy corrections

due to fluctuations in anisotropic Hamiltonians. I have shown how the fluctuations lead

to pinning of the direction of the order parameter via order-by-disorder mechanism.

The possibility of enhancing or suppressing particular anisotropic magnetic interac-

tions using chemical doping, pressure and other experimental methods, sparked a flurry

of research on both the individual anisotropic interactions and on how they compete

and cooperate with each other. For example, it has recently been shown that isolating

the symmetric off-diagonal Γ1 interaction on the honeycomb lattice as well as its 3D

variations leads to a classical spin liquid state [78]. From the experimental side, the

counter-rotating non-coplanar incommesurate spiral ground states found [131, 132] in

(β, γ)-Li2IrO3 remain a mystery. The search for a combination of competing and/or co-

operating anisotropic interactions that would produce such an unusual order has been

entertaining the minds of many in the community for a couple of years now with little

success. The 4d and 5d compounds became a playground of anisotropic spin physics,

and one that is unlikely to leave the field of view of physicists any time soon.
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breaking in a generalized orbital compass model. Phys. Rev. B, 82:104416, Sep

2010.

[100] Joji Nasu, Synge Todo, and Sumio Ishihara. Ordering and excitation in orbital

compass model on a checkerboard lattice. Phys. Rev. B, 85:205141, May 2012.

[101] Wojciech Brzezicki and Andrzej M. Oleś. Symmetry properties and spectra of the
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but

this cannot always be achieved. This appendix defines jargon terms in a glossary, and

contains a table of acronyms and their meaning.

A.1 Glossary

• Pseudospin – A localized magnetic moment that has an orbital component in

addition to spin.

• Jackeli-Khaliullin Kitaev materials (JKK) – Materials in which the Kitaev

anisotropic interaction is realized by interference of 2 hopping paths of the edge

sharing octahedra and with large spin orbit coupling, a scheme originally proposed

by Jackeli and Khaliullin. These include Na2IrO3, (α, β, γ)-Li2IrO3 and α-RuCl3.

A.2 Acronyms

Table A.1: Acronyms

Acronym Meaning

SO/SOC Spin-Orbit coupling

Continued on next page
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Table A.1 – continued from previous page

Acronym Meaning

CF Crystal field

DM Dzyaloshinsky-Moriya interaction

TM Transition metal

KH Kitaev-Heisenberg (model)

n. n. Nearest neighbor

n. n. n. Next nearest neighbor

QSL Quantum spin liquid

JKK Jackeli-Khaliullin Kitaev (materials)

BZ Brillouin zone

CW Curie-Weiss (temperature)

FM Ferromagnetic

AFM Antiferromagnetic
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