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Abstract 

Linkage among quantitative trait loci prevents the release of hidden genetic variation, but 

also preserves desirable gene combinations. This dissertation, which includes three studies, 

shows the continuing enigma of linkage in maize (Zea mays L.) breeding. The first study 

aimed to determine if the additional recombinations in doubled haploids induced from F2 

instead of F1 plants leads to a larger genetic variance and a superior mean of the best lines. 

In two maize populations, inducing doubled haploids from F2 plants did not improve the 

mean, and it increased the genetic variance for moisture, but not for yield and plant height. 

The second study aimed to determine if multi-allelic markers or haplotypes improve the 

prediction accuracy of genomewide selection in three-way breeding populations, which 

could have three alleles per locus. In both simulated and empirical maize populations, 

accounting for multiple alleles did not improve the prediction accuracy over a biallelic 

model. The third study aimed to determine if genomewide markers can be used to partition 

trait effects into independent and correlated portions, and if selection on the independent 

portion was more effective than selection on the entire trait. Results from four cycles of 

selection showed that selection only for the independent portion did not lead to higher 

responses for yield, moisture, and plant height. Overall, genetic linkage both assists and 

confounds molecular breeding efforts in maize.  

 

  



  

iii 
 

Table of Contents 

List of Tables …………………………………………………………………………..... v 

List of Figures ………………………………………………………………………..... vii 

Chapter 1:  Recombination and genetic variance among maize doubled haploids 

induced from F1 and F2 plants ……………………..……………………………….......  1 

 Introduction ……………………………………………………………………… 2 

 Materials and Methods ………………………………………………………….... 4 

  Germplasm and Field Experiments ……………………….……………… 4 

  Single Nucleotide Polymorphism Analysis …………………………….... 5 

  Data Analysis …………………………………………………………...... 6 

  Simulations ………………………………………………………………. 7 

 Results ………………………………………………………………………........ 8 

 Discussion …………………………………………………………………….... 10 

Expected recombination frequencies, means, and genetic variances with 

DHF1 and DHF2 lines ………………………………………………….. 10 

Observed versus expected recombination frequencies, means, and genetic 

variances …………………………………………...…………………... 12 

Mean of best 10% of lines ………………………………………………. 14 

Chapter 2: Genomewide Selection with Biallelic versus Triallelic Models in Three-

way Maize Populations ……………………….……………………………………….. 21 

 Introduction …………………………………………………………………….. 22 

 Materials and Methods ………………………………………….……………..... 24 

  Biallelic Model …………………………………………………………. 24 



  

iv 
 

  Marker Interval Model …………………………………………………. 25 

  Allele Phasing Model …………………………………….……………... 25 

  Simulation Experiments ………………………………………………... 27 

  Maize Empirical Data ……………………………………….………….. 29 

 Results and Discussion ………………………………………….……………… 31 

  Simulated Populations …………………………………….……………. 31 

  Empirical Populations ….………………………………….……………. 31 

  Equivalency between the Models in Practice …………………………… 32 

  Application ……………………………………………………………... 34 

Chapter 3:  Genomewide selection for unfavorably correlated traits in maize …..... 41 

 

 Introduction …………………………………………………………………….. 42 

  

 Materials and Methods …………………………………….……………………. 44 

 

  Training Data ……………………………………………….…………... 44 

  

  Genomewide Selection Models ……………………….………………... 46 

   

  Recurrent Selection ……………………………………………….…….. 47 

 

  Response to Selection ………………………………………….……….. 49 

   

 Results and Discussion ……………………………………………….………… 51 

 

  Training Data ………………………………………………….………... 51 

 

  Response to Genomewide Selection and Level of Inbreeding …….…… 53 

  Conclusions …………………………………………………………….. 55 

 

Bibliography ……………………………………..…………………………………….. 61 

 

  



  

v 
 

List of Tables 

Table 1: Trait means, genetic variance (VG), residual variance (VR), heritability (h2), and 

mean of best 10% of testcrosses (U0.10) in DHF1 and DHF2 maize populations. . 16 

Table 2: Mean and variance of the number of recombinations per chromosome and the 

frequency of inheriting an entire parental chromosome among maize DHF1 and 

DHF2 lines. ……………………………………………………………………... 17 

Table 3: Repulsion:coupling ratios (95% confidence intervals in parenthesis) among DHF1 

and DHF2 maize lines. ……………………..………………………………….... 18 

Table 4: Estimated repulsion:coupling (R:C) ratios and correlation between underlying and 

estimated R:C ratios among simulated DHF1 and DHF2 lines. ………………… 19 

Table 5: Estimated prediction accuracy in simulated three-way populations. ..……….... 36 

Table 6: Summary statistics for assessing the predictive ability of genomewide selection in 

each of four three-way maize test populations. …………………………………. 37 

Table 7: Predictive ability in maize three-way test populations for yield, moisture, and 

test weight. ……………….…………………...………………………………... 38 

Table 8: Estimated prediction accuracy in simulated three-way population after six 

generations of random mating, under three genetic models that differed in 

heritability (h2) and number of quantitative trait loci (QTL). ………...…………. 39 

Table 9: Summary statistics for training populations used for genomewide selection in 

maize. …………………………………………………………………………... 57 

Table 10: Pairwise phenotypic correlations between the full trait (y), the independent 

portion of the trait (yn), and the correlated portion of the trait (yR). Genotypic 

correlations calculated using analysis of covariance (rG) and using molecular 



  

vi 
 

markers for the full trait (g), the independent portion of the trait (gn), and the 

correlated portion of the trait (gR). ………………………………………………. 58 

Table 11: Testcross performance of different cycles of genomewide selection for maize   

Population 1. ..………………………………………………………………...… 59 

Table 12: Inbreeding level and mean heterozygosity between the Control Model and the 

Independent Model for both maize populations. ……………………………..…. 60 

 

 

  



  

vii 
 

List of Figures 

Figure 1: Two-locus models for the expected mean and genetic variance among DHF1 

lines (solid line) and DHF2 lines (dashed line). The genotypic values were 2 for the 

A-B- genotype and 0 for all other genotypes with complementary epistasis; and 0 

for the aabb genotype and 2 for all other genotypes with dominant epistasis. ..... 20  

Figure 2:  Allele Phasing in a three-way population: (A) inbred parents are genotyped with 

biallelic SNP markers; (B) inbred progeny of the three-way population are 

genotyped with biallelic SNP markers; (C) genotypes for a three-allele model are 

inferred in the three-way progeny according to allelic descent; and (D) final 

genotypes are projected based on flanking marker information, assuming no double 

recombination. ………………………………………………………….………. 40 

 

 

 



  

1 
 

Chapter 1: Recombination and genetic variance among maize doubled haploids 

induced from F1 and F2 plants 

Maize (Zea mays L.) breeders rely on doubled haploid (DH) technology for fast 

and efficient production of inbred lines. Breeders can induce DH lines most quickly from 

F1 plants (DHF1), or induce DH lines from F2 plants (DHF2) to allow selection prior to 

DH induction and have more recombinations. Our objective was to determine if the 

additional recombinations in maize DHF2 lines leads to a larger genetic variance and a 

superior mean of the best lines. A total of 311 DHF1 and 241 DHF2 lines, derived from 

the same biparental cross, were crossed to two testers and evaluated in multilocation trials 

in Europe and the U.S. The mean number of recombinations per genome was 14.48 

among the DHF1 lines and 21.38 among the DHF1 lines. The means of the DHF1 and 

DHF2 lines did not differ for yield, moisture, and plant height. The genetic variance was 

higher among DHF2 lines than among DHF1 lines for moisture, but not for yield and 

plant height. Additionally, the repulsion:coupling ratio (a new statistic derived from 

genomewide marker effects) was higher among DHF1 lines than among DHF2 lines for 

moisture, but not for yield and plant height. However, the higher genetic variance for 

moisture among DHF2 lines did not lead to a lower moisture of the best 10% of the lines. 

Our results indicated that the decision of whether to induce DH lines from F1 or F2 plants 

needs to be made from considerations other than the performance of the resulting DHF1 

or DHF2 lines. 
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Introduction 

Doubled haploid (DH) technology has decreased the time needed to create a maize 

(Zea mays L.) inbred from 6-7 selfing generations to two generations. As a result, 

commercial maize breeding has become more efficient in terms of genetic gain per year 

(Longin, 2008). In a typical maize breeding program, F1 or F2 plants from a biparental cross 

are crossed to a haploid inducer. Haploid progeny are identified using a morphological 

marker and their chromosomes are doubled by treating seeds, embryos, or seedlings with 

colchicine (Rober et al., 2005). The resulting DH lines are then testcrossed and evaluated 

for their hybrid performance within three years from the time that the initial F1 is made.  

Maize breeders need to decide whether to induce and create DH lines from F1 plants 

or from F2 plants (Bernardo, 2009). Haploid induction in either generation has both 

advantages and disadvantages that pertain to three factors: time needed to create DH lines; 

amount of recombination; and ability to select plants prior to haploid induction. First, 

inbred development is quickest with F1-induced DH lines (DHF1), which are created in 

two life cycles (F1 and induction generations). On the other hand, F2-induced DH lines 

(DHF2) are created in three life cycles, with the additional generation (F1 to F2) causing a 

slight delay in inbred development. Second, because a DHF1 line is created after a single 

generation of meiosis, the line is characterized by only about 10 crossover events across 

the genome (Smith et al., 2008). Empirical results have shown that DHF1 lines inherit one 

or more fully intact parental chromosomes more than 95% of the time (Smith et al., 2008). 

But as we show later in this article, about 50% more crossovers are expected in DHF2 lines 

than in DHF1 lines. The disruption of unfavorable linkages is therefore greater in DHF2 

lines than in DHF1 lines, but the preservation of favorable linkages is less in DHF2 lines 
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than in DHF1 lines. Third, selection prior to haploid induction can be done among F2 plants 

but not among F1 plants, which are genetically identical. Maize breeders must weigh these 

advantages and disadvantages in choosing the generation for inducing DH lines.  

The fewer recombinations in DHF1 lines than in recombinant inbreds could create 

a genetic bottleneck that would reduce long-term genetic gains (Jannink and Abadie, 1999). 

Simulation results have shown larger long-term (fifteen cycles of selection) genetic gains 

with DHF2 lines than with DHF1 lines (Bernardo, 2009). The simulation suggested using 

DHF2 lines as a potential compromise between the speed of creating DHF1 lines and the 

additional recombinations found in recombinant lines. In lieu of these findings, empirical 

data is needed to compare DHF1 and DHF2 lines in regards to the level of genetic variance 

(VG) and the amount of repulsive linkage blocks. In the short term, the additional 

recombinations among DHF2 lines could increase the VG by releasing variation that is 

hidden by repulsion linkages (Weir et al., 1980). To illustrate, suppose loci A and B are 

linked in repulsion phase. The genotypic values are of 2 for AABB, 1 for AAbb and aaBB, 

and 0 for aabb. An AAbb × aaBB cross is made and DH lines are developed. If 

recombination does not occur, the DH lines will be 50% AAbb and 50% aaBB. These DH 

lines all have a genotypic value of 1, and no VG is expressed across the two loci. But if, 

due to an additional meiosis, recombination occurs between the A and B loci, DH lines with 

the AABB and aabb genotypes can be recovered. The DHF2 lines have unequal genotypic 

values, thereby leading to a positive VG across the two loci.   

To date, there have been no published empirical studies comparing the VG and 

recombination frequencies between DHF1 and DHF2 lines. An increase in VG due to an 

extra generation of random mating within a population would give a breeder more incentive 
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to develop DHF2 lines. Our objective was to determine if the additional recombinations in 

maize DHF2 lines leads to a larger genetic variance and a superior mean of the best lines.  

 

Materials and methods 

Germplasm and field experiments 

We studied a maize biparental population from Syngenta Seeds, LLC. The 

population was derived from two Lancaster SureCrop fully inbred parents and initially 

included 360 DHF1 lines and 253 DHF2 lines. Haploids were induced by crossing 150 F1 

plants and 150 random F2 plants to a Syngenta haploid inducer, and the chromosomes were 

doubled using a colchicine treatment. To avoid any selection, each of the 150 random F2 

plants was crossed to the haploid inducer. Some DHF2 lines were derived from the same 

F2 plant, but records were not kept of the exact numbers of DHF2 lines derived from each 

of the 150 F2 plants. Simulation experiments we conducted indicated only a 3% difference 

in VG (results not shown) when two DHF2 lines were derived from an F2 plant versus when 

one DHF2 line was derived from an F2 plant. 

The population was crossed to two different B73-type testers. The days to relative 

maturity were 112 for Parent 1, 116 for the Parent 2, 114 for Tester A, and 115 for Tester 

B. Simple matching coefficients based on a proprietary set of Syngenta single nucleotide 

polymorphism (SNP) markers were as follows: 0.75 between Parent 1 and Parent 2; 0.60 

between Parent 1 and Tester A; 0.54 between Parent 1 and Tester B; 0.60 between Parent 

2 and Tester A; 0.53 between Parent 2 and Tester B; and 0.73 between Tester A and Tester 

B. 
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Population A, which referred to the testcrosses to Tester A, was evaluated at six 

locations in Italy (Moscazzano, Torre di Mosto, and Casale Monferrato) and Spain (Palma 

del Río, Posadas, and Arroyo de San Serván) in 2013. Population B, which referred to the 

testcrosses to Tester B, was evaluated at seven U.S. Midwest locations (Washington, 

Indiana; Gold, Illinois; Dayton, Cass, Palestine, and Eagle Grove, Iowa; and Foster, 

Nebraska) in 2014. The testcrosses were grown along with four check hybrids in a single 

replication at each location. The entries were grown in two-row plots, each row 6.1 m long 

and spaced 76 cm apart, at a plant population density of 89,000 plants per hectare. Plant 

height (cm) was measured as the distance from the soil surface to the node of the flag leaf 

of one representative plant per plot. Yield (Mg ha-1 at 155 g H2O kg -1) and moisture (g kg-

1) were obtained. Yield and moisture were measured at each location while plant height 

was measured at six locations for Population A and three locations for Population B. 

Single nucleotide polymorphism analysis 

Seedling DNA was extracted from leaf punches of one plant per DH line. Each DH 

line was genotyped with 3072 SNP markers (proprietary to Syngenta) on the Illumina 

GoldenGate platform. A total of 907 markers were polymorphic between Parent 1 and 

Parent 2. A SNP marker was excluded if it had more than 10% missing data, 10% 

heterozygosity, or a minor allele frequency less than 5%. A DH line was excluded if it had 

more than 20% missing data or more than 10% SNPs segregating at markers monomorphic 

between the two parents. These criteria led to 311 DHF1 lines, 241 DHF2 lines, and 725 

segregating SNP markers being used in the final analysis. A linkage map was constructed 

via JoinMap v. 3.0 (Ooijen and Voorrips, 2002) with the DHF1 and DHF2 lines and 725 
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SNP markers. The linkage map was 1782 centiMorgans and had a mean marker spacing of 

2.45 centiMorgans between adjacent markers. 

Data analysis 

Population A and Population B were analyzed separately because they were 

evaluated in different environments. The linear model included the grand mean, location 

effect, line effect, and residual effect with each effect assumed as random. Testcross VG 

and nongenetic variance (VR) were calculated from across-locations analysis using the 

“lmer” function in the “lme4” package (Bates et al., 2013). Genotype-by-environment 

interaction variance and within-location error variance were confounded in VR. Entry-mean 

heritability was estimated separately for the DHF1 and DHF2 testcrosses as h2 = VG/(VG + 

VR/l), where l  was the number of locations for the trait. A t-test was used to test for 

significance (P = 0.05) of the difference between the means of the DHF1 and DHF2 lines. 

For each trait, the observed mean of the best 10% of the lines (i.e., observed U0.10) was 

calculated among the DHF1 and DHF2 lines. The difference in the observed U0.10 among 

DHF1 and DHF2 lines was tested for significance via a t-test. The predicted mean of the 

best 10% of the lines (i.e., predicted U0.10) was also calculated from the estimates of the 

mean, VG, and h2 (Melchinger et al., 1988). A 95% bootstrap confidence interval was 

constructed for the difference in VG between the DHF1 and DHF2 lines. Bootstrapping 

was conducted by resampling the DHF1 and DHF2 lines.  

The incidence of unintended selection among F2 plants was analyzed by testing the 

difference in SNP allele frequencies between the DHF1 and DHF2 lines. Two-sided z-tests 

were conducted using the “prop.test” function in R. A Bonferroni correction was applied 

(P = 0.05/725) to account for multiple testing with 725 SNP loci. 
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Recombination events were counted for each DH line by identifying the crossover 

locations on each chromosome. Within each chromosome, the difference between the mean 

number of crossovers between DHF1 and DHF2 lines was tested for significance (P = 0.05) 

via the “poisson.test” function in R. 

The relative proportion of repulsion versus coupling linkages (denoted by R:C) was 

estimated. Genomewide marker effects were first calculated by ridge regression-best linear 

unbiased prediction with the rrBLUP package (Endelman, 2011). Given that the 

genomewide marker effects referred to those for the marker alleles from Parent 1, coupling 

linkage was declared when the effects of two adjacent markers were both positive or were 

both negative. Repulsion linkage was declared when the effects of adjacent markers had 

opposite signs. The number of coupling and repulsion linkages within each chromosome 

was calculated, and R:C was obtained as the ratio between the total number (across 

chromosomes) of coupling linkages and total number of repulsion linkages. The R:C values 

were obtained separately for the DHF1 and DHF2 lines in each population. The 

significance of each R:C value was tested via 95% bootstrap confidence intervals. 

Simulations 

We conducted simulation experiments to determine the correspondence between 

the R:C ratios estimated from genomewide marker effects and the known R:C ratios that 

arise from the underlying QTL. We considered a 200 cM chromosome with 200 evenly 

spaced markers that were polymorphic between the two parents. The trait was controlled 

by 10, 19, and 28 QTL that were randomly distributed across the chromosome. The number 

of possible linkages was 9 with 10 QTL, 18 with 19 QTL, and 27 with 28 QTL. The QTL 

effects followed a geometric series (Lande and Thompson, 1990) and the QTL did not 
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exhibit dominance or epistasis. Different known R:C ratios were simulated: 0:9 or 0%; 2:7 

or 0.28; 4:5 or 0.80, 6:3 or 2.0; and 8:1 or 8.0. These known R:C values were simulated by 

assigning different genotypes (out of several possible combinations) to the two parents. For 

example, with 10 QTL and an R:C ratio of 4:5, a possible pair of parental genotypes was 

AAbbCCDDEEffGGHHIIJJ for the first parent and aaBBccddeeFFgghhiijj for the second 

parent. 

A total of 250 DHF1 lines and 250 DHF2 lines were simulated. Nongenetic values 

were added to the genetic values to obtain phenotypic values. These nongenetic values had 

a mean of zero and a variance that was scaled to achieve h2 values of 0.30, 0.50, or 0.80. 

Each combination of the number of QTL, R:C level, and h2 was simulated 100 times, with 

the QTL locations and parental genotypes (for the same R:C ratio) differing in each repeat. 

The mean R:C ratio was calculated across repeats. 

Results 

For both Population A and Population B, none of the differences between trait 

means of the DHF1 and DHF2 lines was significant (P = 0.05). For yield, moisture, and 

plant height, the differences between the DHF1 and DHF2 means were less than 1% for 

both populations (Table 1). Additionally, the difference between the observed means of the 

best 10% of the DHF1 lines and best 10% of the DHF2 lines was not significant (P = 0.05) 

for any of the traits. 

All estimates of VG were significant (P = 0.05; Table 1). In both Population A and 

Population B, VG for moisture was significantly (P = 0.05) higher among DHF2 lines than 

among DHF1 lines (Table 1). In particular, the VG estimate for moisture was 58% higher 

among DHF2 lines than among DHF1 lines in Population A, and 34% higher among DHF2 
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lines than among DHF1 lines in Population B. In contrast, VG for yield and for plant height 

did not differ significantly between the DHF1 and DHF2 lines in both populations. The h2 

for yield (0.40 to 0.54) was lower than the h2 for moisture and plant height. Within each 

trait and population, the DHF1 lines and DHF2 lines had similar estimates of VR. The larger 

h2 for moisture among DHF2 lines than among DHF1 lines was due to differences in VG 

rather than in VR. 

Only 11 out of the 725 SNP markers had a significant difference in allele frequency 

between the DHF1 and DHF2 lines. These significant differences in SNP allele frequencies 

ranged from 0.16 to 0.23. The 11 SNPs were distributed as follows (cM positions in 

parentheses):  one on chromosome 1 and 9, two on chromosome 3 (158 and 162 cM), three 

on chromosome 5 (19, 187 and 194 cM), and four on chromosome 6 (1, 34, 36, and 50 

cM). The mean number of recombinations across the genome was 14.48 per DHF1 line 

and 21.38 per DHF2 line (Table 2). The difference in the mean number of recombinations 

between the DHF2 and DHF1 lines was significant for each of the 10 chromosomes. The 

mean number of recombinations differed among the chromosomes and ranged from 0.64 

in DHF1 lines and 0.89 in DHF2 lines for chromosome 2, to 2.56 in DHF1 lines and 3.53 

in DHF2 lines on chromosome 5. The range in the number of recombinations per 

chromosome was larger in the DHF2 lines than in the DHF1 lines. Furthermore, the mean 

frequency of an entire chromosome being inherited was 0.23 in DHF1 lines and 0.14 in 

DHF2 lines (Table 2). The frequencies of an entire chromosome being inherited were 

lowest for chromosomes 1 and 5 (0.04 to 0.08) and highest for chromosome 2 (0.38 to 

0.48).   
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In both Population A and Population B, the ratio of the frequencies of repulsion and 

coupling linkages (R:C) for moisture was significantly larger (P = 0.05) among DHF1 lines 

than among DHF2 lines (Table 3). In contrast, R:C for yield and for plant height did not 

differ significantly between the DHF1 and DHF2 lines in both populations. 

Simulations showed that the underlying R:C values were highly correlated with the 

R:C ratios estimated from genomewide marker effects, with the correlations ranging from 

0.61 to 0.98 across different genetic models (Table 4). Compared with the underlying R:C 

values, which ranged from 0 to 8, the estimated R:C ratios were greatly shrunken towards 

zero and ranged from about 0.10 to about 0.25. The estimated R:C ratios generally 

increased as the number of QTL decreased and the h2 increased. For each genetic model, 

the estimated R:C ratios were higher (by 4 to 29%) among DHF2 lines than among DHF1 

lines. 

 

Discussion 

Expected recombination frequencies, means, and genetic variances with DHF1 and 

DHF2 lines 

 The fundamental difference between DHF1 and DHF2 lines is that an additional 

meiotic event among F2 individuals results in additional recombinations. Because the 

frequency of recombinant gametes produced by F1 individuals of a dihybrid cross is r, the 

expected frequency of recombinants among DHF1 lines is also r. Among recombinant 

inbreds, the expected frequency of recombinants was previously shown to be 2r/(1 + 2r) 

(Haldane and Waddington, 1931). By considering the frequencies and gametic outputs of 

the different genotypes in the F2, we found that the frequency of recombinants among 
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DHF2 lines is r(1.5 – r). As such, the ratio between the number of recombinations in DHF2 

lines versus DHF1 lines is 1.5 – r, whereas the ratio between the number of recombinations 

in recombinant inbreds versus DHF1 lines is 2/(1 + 2r). As r approaches zero, we expect 

recombinant inbreds to have 100% more recombinations than DHF1 lines and DHF2 lines 

to have 50% more recombinations than DHF1 lines. The difference in the frequency of 

recombinants between DHF1 lines and recombinant inbreds has been previously 

demonstrated by Riggs and Snape (1997) to affect the means and variances of the lines. 

Overall, we expected the differences between DHF1 lines and recombinant inbreds shown 

by Riggs and Snape (1977) to hold between DHF1 and DHF2 lines, but to a lesser degree 

due to the smaller difference in the number of meiotic events.  

When both linkage and epistasis are present, differences in the frequencies of 

recombinants lead to differences in the expected means of the DHF1 and DHF2 lines (Fig. 

1). Linkage alone or epistasis alone does not lead to a difference in the expected means of 

the DHF1 and DHF2 lines. The combinations of linkage phase, type of epistasis, and 

generation of DH induction that lead to a higher mean are as follows (Fig. 1): (1) coupling 

linkage, complementary gene action, DHF1; (2) repulsion linkage, duplicate dominant 

epistasis, DHF1; (3) repulsion linkage, complementary gene action, DHF2; and (4) 

coupling linkage, duplicate dominant epistasis, DHF2. The difference between the 

expected means of the DHF1 and DHF2 lines was largest with r = 0.25 (Fig. 1). 

Whereas both linkage and epistasis are required for the DHF1 and DHF2 lines to 

differ in their expected means, linkage alone causes the expected VG to differ between the 

DHF1 and DHF2 lines. Coupling linkage leads to a larger VG among DHF1 lines than 

among DHF2 lines for both additive and epistatic genetic models (Fig. 1). Repulsion 
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linkage leads to a larger VG among DHF2 lines than among DHF1 lines regardless of the 

type of gene action. This higher VG among DHF2 than among DHF1 lines corresponds to 

the hidden genetic variance that is released upon the disruption of repulsion linkages (Weir 

et al., 1980). The type of epistasis (complementary gene action or duplicate dominant 

epistasis) does not affect whether VG is greater in DHF1 lines or in DHF2 lines. However, 

differences in the expected VG were largest when the recombination frequency is r = 0.25. 

Lastly, when the two loci are unlinked, we expect equal VG between DHF1 and DHF2 lines 

regardless of the genetic model. 

Observed versus expected recombination frequencies, means, and genetic variances 

The observed frequencies of recombinants and population means of the DHF1 

versus DHF2 lines agreed with the expectations. The observed ratio of recombinations in 

the DHF2 versus DHF1 was 21.38/14.48 = 1.477 (Table 2). The mean distance between 

adjacent markers was 2.45 cM, which corresponded to r = 0.0244 with the Kosambi 

mapping function. The observed ratio of recombinations of 1.477 was therefore very close 

to the expected ratio of (1.5 – r) = 1.475 for DHF2 versus DHF1 lines. This result was 

unsurprising because the same data set was used to create the linkage map and to count the 

frequency of recombinants. 

The lack of a significant difference between the means of DHF1 and DHF2 lines 

indicated that epistasis, as well as selection, was negligible. The overall lack of selection 

was further shown by the lack of a significant difference in allele frequencies between 

DHF1 and DHF2 plants at 714 out of the 725 SNP markers. The 11 SNP markers that 

showed significant differences in allele frequencies between the DHF1 and DHF2 lines 

could imply segregation distortion. Chromosomes 3, 5, and 6 each possessed at least two 
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significant markers, but these few regions did not seem to correspond with previously 

identified areas of segregation distortion (Lu et al., 2002). The overall lack of evidence for 

selection indicated that any observed differences in both the mean and VG was not due to 

altered allele frequencies.  

The observed differences in VG among DHF1 and DHF2 lines were inconsistent 

across the three traits we studied. Moisture had a significantly higher VG among DHF2 

lines than among DHF1 lines; in contrast, VG did not differ significantly between DH 

generations for both yield and plant height. This trend held across both testers and testing 

environments. Our expected results showed that DHF2 lines are expected to have a higher 

VG if the quantitative trait loci (QTL) are linked in repulsion phase (Fig. 1). The observed 

results for VG therefore suggested that QTL for moisture are predominantly linked in 

repulsion phase in the cross we studied. On the other hand, we surmise that neither linkage 

phase was predominant for yield and plant height in the cross that we studied. We speculate 

that these QTL for moisture are largely non-epistatic, as supported by the equal means of 

the DHF1 and DHF2 lines (Table 1) and negligible epistasis reported in maize for 

quantitative traits (Stuber and Moll, 1971; Silva and Hallauer, 1975; Melchinger et al., 

1986).  

 The disruption of repulsion linkages, and the subsequent release of hidden VG, was 

consistent with the R:C ratio for moisture being significantly lower for DHF2 lines than 

for DHF1 lines. For yield and plant height, the lack of a significant difference in VG among 

DHF1 versus DHF2 lines was consistent with the lack of a significant difference in R:C 

ratios for these two traits. The simulation results confirmed that genomewide marker 

effects can be used to assess the relative frequencies between populations, but not the 
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absolute frequencies in each population, of repulsion and coupling linkages. The simulation 

also demonstrated that the number of recombinations needed to break repulsion linkages is 

a function of the genome size and the number of QTL affecting the trait(s) of interest 

(Bernardo, 2009). As the number of QTL increased with a fixed chromosome length, R:C 

decreased demonstrating a lower resolution in detecting repulsive elements at a high QTL 

density. Interpretation of an R:C ratio by itself should not be done because two SNP 

markers may seem to be in coupling linkage when, in fact, their effects are due to their 

linkage to the same QTL. For instance, suppose four markers and one QTL are in coupling 

phase in the following map order: M1-M2-QTL-M3-M4. If all four markers are closely 

linked, the alleles inherited from the same parent will have positive effects. In calculating 

the R:C ratio, a total of three coupling linkages will be counted even though there is only 

a single QTL. 

Mean of best 10% of lines  

The mean of the best 10% of the lines (U0.10, Table 1) combines information on the 

population mean, VG, and h2 in a way that is most meaningful to a breeder. For yield and 

plant height, the equal means and equal VG estimates between the DHF1 and DHF2 lines 

indicated that no differences in U0.10 should be expected. As expected, the observed U0.10 

did not differ between the DHF1 and DHF2 lines for yield and plant height in either 

population. Despite the higher VG for moisture among the DHF2 lines, the observed U0.10 

for moisture did not differ significantly between the DHF1 and DHF2 lines. The difference 

in the observed U0.10 for moisture between the DHF1 and DHF2 lines was 222.4 – 223.1 = 

– 0.7 g kg–1 in Population A, and 195.4 – 197.8 = – 2.4 g kg–1 in Population B (Table 1). 

For comparison, the difference in the predicted U0.10 for moisture between the DHF1 and 
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DHF2 lines was – 3.0 g kg–1 in Population A and –4.4 g kg–1 in Population B (Table 1). 

The differences for moisture in both observed U0.10 and predicted U0.10 were therefore very 

small (i.e., less than one half a percentage point of moisture at harvest). 

In this study, any significant differences in VG between the DHF1 and DHF2 lines 

therefore did not translate to a significant difference in U0.10. This result was consistent 

with previous findings in maize in which additional recombination via random mating in 

four populations produced no substantial increases in genetic gain (Covarrubias-Prieto, 

1987), and random mating in a BC1 generation did not lead to a higher VG or U0.10 

(Arbelbide and Bernardo, 2004). 

In conclusion, the results from this study indicated that the decision of whether to 

induce doubled haploids from F1 or F2 plants in maize needs to be made from 

considerations other than the mean, VG, or U0.10 in the resulting lines. These considerations 

would include potentially larger genetic gains in the long term with DHF2 lines than with 

DHF1 lines (Bernardo, 2009), the ability to select among individual F2 plants prior to 

inducing DHF2 lines, or the shorter time needed to produce DHF1 lines.  
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Table 1: Trait means, genetic variance (VG), residual variance (VR), heritability (h2), and mean of best 10% of testcrosses (U0.10) in 

DHF1 and DHF2 maize populations  

Trait Generation Population A 

Mean VG VR h2
 U0.10 

Yield DHF1 12.72 0.42 (0.31, 0.56)b 2.12 0.54a 13.50 

Yield DHF2 12.78 0.37 (0.25, 0.51) 2.25 0.49 13.57 

Moisture DHF1 232.9 51.5 (36.7, 68.0) 226.1 0.58 223.1 

Moisture DHF2 233.1 81.4 (60.5, 103.6) 195.5 0.71 222.4 

Plant height DHF1 238.3 103.1 (82.3, 124.6) 151.3 0.80 252.9 

Plant height DHF2 237.8 91.9 (72.7, 114.6) 131.4 0.81 252.6   
Population B 

Mean Mean Mean Mean Mean 

Yield DHF1 13.83 13.83 13.83 13.83 13.83 

Yield DHF2 13.96 13.96 13.96 13.96 13.96 

Moisture DHF1 214.4 214.4 214.4 214.4 214.4 

Moisture DHF2 213.1 213.1 213.1 213.1 213.1 

Plant height DHF1 264.0 264.0 264.0 264.0 264.0 

Plant height DHF2 263.4 263.4 263.4 263.4 263.4 

 

a  All estimates of h2 were significant (P = 0.05) 

b  Lower and upper limits of 95% confidence intervals in parenthesis 
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Table 2: Mean and variance of the number of recombinations per chromosome and the frequency of inheriting an entire parental 

chromosome among maize DHF1 and DHF2 lines  

Generation Statistic Chromosome 
 

1 2 3 4 5 6 7 8 9 10 Total 

DHF1 Mean 2.20 0.64 1.59 1.29 2.56 1.16 1.56 1.09 1.38 1.02 14.48 

DHF2 Mean 3.28 0.89 2.40 2.17 3.53 1.76 2.21 1.75 2.04 1.35 21.38 

DHF1 Variance 1.96 0.52 1.17 0.88 2.65 0.84 1.53 0.84 1.45 0.75 14.02 

DHF2 Variance 3.34 0.75 2.26 1.82 3.72 1.53 2.51 1.50 2.51 0.98 29.06 

DHF1 Frequency of no 

recombinations 

0.08 0.49 0.16 0.21 0.09 0.25 0.19 0.28 0.23 0.31 0.23 

DHF2 Frequency of no 

recombinations 

0.05 0.38 0.08 0.09 0.04 0.18 0.10 0.16 0.12 0.17 0.14 
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Table 3: Repulsion:coupling ratios (95% confidence intervals in parenthesis) among DHF1 and DHF2 maize lines 

Trait Generation Repulsion:coupling (R:C) ratio 

Population A Population B 

Yield DHF1 0.70 (0.56, 0.82) 0.52 (0.42, 0.63) 

Yield DHF2 0.60 (0.49, 0.71) 0.52 (0.43, 0.65) 

Moisture DHF1 0.44a (0.33, 0.59) 0.59a (0.50, 0.69) 

Moisture DHF2 0.31 (0.26, 0.36) 0.35 (0.29, 0.42) 

Plant height DHF1 0.54 (0.42, 0.67) 0.35 (0.28, 0.44) 

Plant height DHF2 0.49 (0.40, 0.58) 0.29 (0.22, 0.37) 

 

a: Differences between the means of the DHF1 and DHF2 lines were significant (P = 0.05) only for moisture in each population 



  

19 
 

Table 4: Estimated repulsion:coupling (R:C) ratios and correlation between underlying and estimated R:C ratios among simulated 

DHF1 and DHF2 lines 

Underlying 

R:C ratio 

DHF1 lines DHF2 lines 

h2 = 0.3 a h2 = 0.8 h2 = 0.3 h2 = 0.8 

10 QTL 19 QTL 28 QTL 10 QTL 19 QTL 28 QTL 10 QTL 19 QTL 28 QTL 10 QTL 19 QTL 28 QTL 

0:9 0.095 0.093 0.093 0.173 0.158 0.144 0.114 0.112 0.113 0.197 0.168 0.171 

2:7 0.105 0.091 0.087 0.186 0.160 0.150 0.125 0.102 0.107 0.215 0.175 0.172 

4:5 0.102 0.092 0.104 0.197 0.165 0.157 0.120 0.118 0.108 0.242 0.198 0.193 

6:3 0.098 0.092 0.100 0.227 0.180 0.170 0.126 0.118 0.119 0.248 0.215 0.209 

8:1 0.111 0.109 0.101 0.254 0.207 0.200 0.129 0.125 0.123 0.283 0.248 0.236 

Correlation 0.61 0.68 0.67 0.98 0.92 0.94 0.83 0.79 0.72 0.98 0.98 0.97 

 

a: Results (not shown) for a heritability of h2 = 0.50 were intermediate to the results for h2 = 0.30 and 0.80 
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Figure 1: Two-locus models for the expected mean and genetic variance among DHF1 

lines (solid line) and DHF2 lines (dashed line). The genotypic values were 2 for the A-B- 

genotype and 0 for all other genotypes with complementary epistasis; and 0 for the aabb 

genotype and 2 for all other genotypes with dominant epistasis 

Mean 
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Chapter 2:  Genomewide Selection with Biallelic versus Triallelic Models in Three-

way Maize Populations 

While single nucleotide polymorphism (SNP) markers are typically biallelic, quantitative 

trait loci (QTL) may have three alleles per locus in three-way populations. Our objective 

in this study was to determine if multi-allelic markers or haplotypes improve the prediction 

accuracy of genomewide selection in three-way breeding populations. Simulated and 

empirical maize (Zea mays L.) double haploid populations were used to compare a Biallelic 

model, Marker Interval model (which used adjacent markers to create haplotypes), and 

Allele Phasing model (which inferred triallelic markers from parental SNP data). The 

simulation experiments differed in the number of QTL (10, 40, or 100), heritability (0.30, 

0.50, or 0.80), and sizes of allelic effects. Four empirical three-way populations were 

phenotyped at 4–7 locations between 2012 and 2015 and were genotyped with 356–960 

polymorphic SNP markers. Genomewide marker effects were obtained by ridge 

regression-best linear unbiased prediction. In the simulation experiments, differences in 

prediction accuracy were less than 0.01 among the Biallelic, Marker Interval, and Allele 

Phasing models. For grain yield, moisture, and test weight in the four maize populations, 

the differences in predictive ability among the three models were nonsignificant (P = 0.05). 

Further simulations showed that the small or nonsignificant differences in prediction 

accuracy were caused by large linkage blocks found among inbreds, particularly double 

haploids. Overall, we recommend the Marker Interval model in three-way populations 

because of its simplicity, similar prediction accuracy, and theoretical advantage over the 

two other models.  
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Introduction 

 Maize (Zea mays L.) breeders usually create breeding populations by crossing two 

inbreds (A and B). Within an A/B biparental cross, genomewide selection (or genomic 

selection) can be routinely performed via the general combining ability (GCA) model 

(Jacobson et al., 2014). The GCA model involves pooling A/* and B/* half-sib populations, 

where * is an inbred from the same heterotic group as A and B, into a training population 

to predict the performance of progeny within the A/B population. Separate prediction 

equations are therefore developed for each A/B population. Results for 969 maize 

biparental populations showed that, on average, genomewide selection via the GCA model 

led to about 85% of the gains achieved by phenotypic selection at about 25% of the cost 

(Jacobson et al., 2014).  

Additionally, maize breeders occasionally create breeding populations from three 

or more inbreds. A compilation of maize Plant Variety Protection certificates between 1980 

and 2004 reported that elite inbreds were derived from three-way populations 5% of the 

time (Mikel and Dudley, 2006). A maize three-way population is developed by crossing an 

A/B F1 with a third inbred (C) to create an (A/B)//C population. Inbreds are then developed 

either through self-pollination or through induction of doubled haploids (DH). A maize 

three-way population is typically created with two breeding goals in mind: to improve a 

debilitating trait of one parent, or to introduce new genetic variation while maintaining 

local adaptation. For the first goal, if A is high-yielding but is extremely susceptible to a 

disease, a maize breeder may cross A to an inbred (B) that is closely related to A and is 

resistant to the disease. The A/B F1 can be crossed to a third inbred (C) that is elite and not 

closely related to either A or B, and progeny can then be developed from the (A/B)//C 
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cross. For the second goal, a maize breeder may wish to widen the genetic base by 

incorporating a late-maturing, less-adapted inbred (D) into the breeding germplasm. 

Crossing inbreds C and D would most likely result in progeny with too late a maturity. The 

breeder could then decide to use the earliest maturing line in the current germplasm as the 

third parent (E) to create the (D/E)//C cross. 

 A three-way population introduces complexities in genomewide selection. Single 

nucleotide polymorphism (SNP) markers used in genomewide selection are typically 

biallelic. In a biparental population with inbred parents, the biallelic SNP markers are 

biologically reflective because there can only be two alleles at each of the underlying 

quantitative trait loci (QTL). But in a three-way population, the biallelic SNP markers may 

fail to capture the variation across the three possible alleles at each QTL. While most 

genomewide selection models have assumed biallelic marker effects, multi-allelic models 

have been proposed by Calus et al. (2008), Cuyabano et al. (2014), and Da (2015). These 

three studies sought to incorporate haplotypes in models to predict performance in animal 

populations. Compared with a biallelic model, haplotype-based models led to a 3.1% 

improvement in prediction accuracy for milk protein in dairy cattle (Bos taurus) (Cuyabano 

et al., 2014). 

To our knowledge, there have been no published studies exploring multi-allelic or 

haplotype genomewide selection systems in plants. Therefore, our objective in this study 

was to determine if multi-allelic markers improve the prediction accuracy of genomewide 

selection in simulated as well as empirical three-way maize populations.  
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Materials & Methods 

Biallelic Model 

In the Biallelic model, the GCA model was expanded to accommodate three-way 

populations while still having biallelic SNP loci. In the GCA model, effect of the SNP 

allele from inbred A (in the A/B population) is calculated as the mean effect of that same 

allele across different A/* populations (Jacobson et al., 2014). The effect of the SNP allele 

from inbred B is calculated as the mean effect of that same allele across different B/* 

populations. In the Biallelic model for a three-way population, the effects of the alleles 

from parents A, B, and C were likewise calculated as the mean effects of those alleles in 

the A/*, B/*, and C/* populations, respectively. Marker effects were calculated for the NM 

SNP markers that were polymorphic in the (A/B)//C test population, and the mean marker 

effects across the A/*, B/*, or C/* populations were used to predict the performance of the 

(A/B)//C test population. To illustrate, suppose the marker genotypes at a given SNP locus 

were MM in A, mm in B, and MM in C. Further suppose there were 10 A/* populations and 

5 C/* populations. In this situation, the effect of the M allele was calculated within each of 

the 10 A/* crosses and 5 C/* crosses, and the effect of M was calculated as the mean of the 

15 within-cross effects. This mean effect was used in subsequently predicting the 

performance of progeny in the (A/B)//C cross. 

Specifically, the performance of each of the N individuals in the (A/B)//C test 

population was predicted as y = μ + Mg, where y was an N × 1 vector of the predicted 

performance for the trait; μ was the population mean; M was an N × NM incidence matrix 

with 1 and –1 for the contrasting homozygous SNP genotypes and 0 for the heterozygous 
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genotype or missing data; and g was an NM vector of the mean marker effects across the 

A/*, B/*, and C/* crosses. 

Marker Interval Model 

The Marker Interval model, which was the “SNP2” model of Calus et al. (2008), 

used the interval between two adjacent markers as a unique haplotype. For any two adjacent 

SNPs, there were four potential genotypes in an inbred: M1M1M2M2, M1M1m2m2, 

m1m1M2M2, and m1m1m2m2. These four haplotypes were then defined as four unique alleles. 

Using the progeny in Fig. 2b as an example, the first and second SNP markers were used 

to create four alleles, the second and third SNP markers were used to create four alleles, 

and so on for the other SNP markers. The coding of alleles was consistent between the test 

and training populations. While the model can accommodate four alleles per locus, only 

three alleles per locus were present in each three-way test population.  

In the Marker Interval model, each allele was interpreted as a presence/absence 

variable (where 1 indicted the presence of a given allele and 0 indicated the absence of the 

allele). In contrast, the Biallelic model involved a linear contrast among the three genotypes 

(coded as 1, 0, and –1) at a marker locus. The Marker Interval model therefore required 

four effects to be estimated (one of the effects being null) per SNP locus whereas the 

Biallelic model required only one effect to be estimated. Allele effects were estimated in 

each A/*, B/*, and C/* population and were averaged in the same way as in the Biallelic 

model. The performance of each individual in the A/B test population was predicted as y 

= μ + MIgI, where MI was an N × 4NM incidence matrix and gI was a 4NM × 1 vector of 

marker allele effects.   

Allele Phasing Model 
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 The Allele Phasing model inferred multiple alleles at the SNP loci themselves. The 

three alleles in a three-way DH population were inferred from segregating markers and the 

parental genotypes. Consider the hypothetical genotypes on a single chromosome in 

parents A, B, and C (Fig. 2a). The orange-colored SNP alleles in Fig. 2a are those that can 

be uniquely traced from one of the three parents. For a biallelic marker, there will always 

be a 1:2 ratio of parental genotypes if a marker locus is polymorphic among the three 

parents. Suppose parents A and B have the MM genotype (coded as 1) at a given SNP while 

parent C has the mm genotype (coded as –1) (Fig. 2a). The descent of the m allele can be 

traced to parent C for all DH progeny that have the mm genotype at this locus. But at this 

juncture (i.e., prior to allele phasing), the descent of the M allele cannot be traced to either 

A or B. The same logic applies to genotypes unique to parents A and parents B.  

To phase the alleles onto the progeny, markers polymorphic among the three inbred 

parents were used and alleles that could be traced uniquely to a parent were first identified 

among the progeny (Fig. 2b). These alleles were tagged as A, B, and C (Fig. 2c). The 

missing alleles in the third pane of Fig. 2c were then projected (Fig. 2d) assuming no 

recombination. This assumption was supported by the minimal recombination in DH lines 

(Smith et al., 2008; Sleper and Bernardo, 2016) and the dense linkage map (mean marker 

spacings of 1.69 cM in the simulation experiments and 2.2 cM in the empirical experiments 

described later). However, marker alleles were left as missing when a recombination was 

identified but the parental alleles could not be identified. For example, DH line 4 of Fig. 

2d has missing data for one SNP locus. 

Once projected, each marker in the progeny then had the three alleles A, B, or C. 

The A/* populations were used to estimate the effect of allele A, the B/* populations were 
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used to estimate the effect of allele B, and the C/* populations were used to estimate the 

effect of allele C. The performance of the progeny in the test population was predicted as 

y = μ + MPgP, where MP was an N × 3NM incidence matrix, and gP was a 3NM × 1 vector 

of allelic effects.   

Simulation Experiments 

Simulations were conducted to assess the efficacy of the Biallelic, Marker Interval, 

and Allele Phasing models when three different alleles were known to segregate at each 

QTL. Given this objective, A/*, B/*, and C/* crosses were not simulated for the sake of 

simplicity. Instead, an (A/B)//C population of size N was simulated. As described below, 

the performance of each DH line was then predicted from information on the remaining N 

– 1 lines. 

Each simulation experiment constituted a different combination of the number of 

QTL, intensity of allele effects, and heritability (h2). The QTL locations differed in each 

simulated experiment, and each experiment was repeated 100 times. In each repeat, three 

unique inbred parents were created resulting in a unique (A/B)//C population. 

 Parents A, B, and C were polymorphic at 1000 SNP markers. The markers were 

evenly spaced, and the chromosome sizes corresponded to those in a maize linkage map 

(Senior et al., 1996). The QTL were randomly placed across the genome according to a 

uniform distribution. The QTL effects were additive and they varied according to a 

geometric series (Lande and Thompson, 1990). Furthermore, two allelic series and two 

allele intensities (a = 1 and a = 4) were considered. In the first allelic series, the effects of 

the three homozygotes were –a, 0, and a. In the second allelic series, the effects of the three 
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homozygotes were –a, 0.5a and a. Dominance was inconsequential because only 

homozygous lines were simulated.  

The different alleles were alternately assigned to each of the inbred parents. For the 

first QTL, parent A had the favorable allele, parent B had the unfavorable allele, and parent 

C had the middle allele (effect of 0 or 0.5a). For the next QTL, parent B had the favorable 

allele, parent C had the unfavorable allele, and parent A had the middle allele. For the 

following QTL, parent C had the favorable allele, parent A had the unfavorable allele, and 

parent B had the middle allele. This pattern continued for the remaining QTL. Three 

different numbers of QTL were simulated (10, 40 and 100).  

 A total of 100 plants were simulated from the (A/B)//C cross, and a single DH line 

was simulated from each plant. Genotypic values were calculated for each DH line, and 

phenotypic values were calculated by adding random nongenetic effects to the known 

genotypic values. The nongenetic effects had a normal distribution with a mean of zero and 

a variance scaled according to h2 (0.30, 0.50, 0.80).  

Genomewide marker effects were estimated by ridge regression-best linear 

unbiased prediction (RR-BLUP) with the R package rrBLUP (Endelman, 2011). The 

performance of the DH lines in the (A/B)//C population was predicted using the Biallelic, 

Marker Interval, and Allele Phasing models. The correlation between the predicted values 

and the true genotypic values (rMG) was calculated through delete-one cross validation. A 

95% confidence interval was constructed for the pairwise difference in rMG for the three 

models by resampling on the simulation repeats. Resampling with replacement was done 

1000 times and, for each sample, the mean pairwise difference in rMG between models was 

calculated. The 1000 values of the difference in rMG were sorted in ascending order. The 
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25th sorted value corresponded to the lower limit and the 975th sorted value corresponded 

to the upper limit of a 95% confidence interval. The accuracy of the Allele Phasing method 

was tested by calculating total percentage of alleles correctly projected from the parents to 

the progeny. Linkage disequilibrium was calculated as the mean r2 value between adjacent 

SNP markers. 

Maize Empirical Data 

Phenotypic and genotypic data were obtained for 109 DH maize populations 

proprietary to Syngenta Seeds, LLC. Of these populations, four three-way populations 

were chosen as test populations. One of the populations was derived from inbreds from the 

Iowa Stiff Stalk Synthetic (BSSS) heterotic group and the other three populations were 

derived from inbreds from the non-BSSS heterotic group. The 105 remaining populations 

had one parent in common with the four three-way populations and were used as the A/*, 

B/*, or C/* populations. Each population was testcrossed to an inbred from the other 

heterotic group, with the same tester being used for a test population and corresponding 

training populations. All phenotypic data used in this study were testcross data.   

Testcrosses of the populations were grown in 4–7 locations in the U.S. and southern 

Europe between 2012 and 2015. Data were collected for grain yield (Mg ha-1 at 155 g H2O 

kg-1), grain moisture (g kg-1), and test weight (kg hL-1). All trials had one replication per 

location, and each phenotypic data point was the performance of an individual within each 

location. No adjustments were made for field spatial variability within each location.  

Across-location least squares means were estimated for each individual in each 

population using the model yij = μ + gi + lj + eij, where yij was the phenotypic value of the 

ith individual at the jth location; μ was the grand mean; gi was the effect of the ith 

individual; lj was the effect of the jth location; and eij was the residual effect. Testcross 
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genetic variance (VG) and nongenetic variance (VR) were calculated from an across-

locations mixed-model analysis using the lmer function in the lme4 package in R (Bates et 

al., 2013). The genotype-by-environment interaction variance and within-location error 

variance could not be estimated separately and were confounded in VR. A likelihood ratio 

test was used to determine the significance (P = 0.05) of the VG in each population. The 

entry-mean h2 was estimated for each population as VG/(VG + VR/e), where e  was the 

number of environments. 

Each DH line was genotyped with 3,072 SNP markers (proprietary to Syngenta 

Seeds, LLC) using the Illumina GoldenGate platform. The parental inbreds and testers 

were also genotyped using the same 3,072 SNP markers. The numbers of polymorphic 

SNP loci were 356 in (P1/P2)//P3, 857 in (P4/P5)//P6, 902 in (P4/P7)//P6, and 960 in 

 (P8/P9)//(P8/P10). 

Genetic similarity was calculated between parent A and parent B (SA|B). The genetic 

similarity between parent C and A/B (SAC|BC) was calculated by taking the mean value of 

the genetic similarity between parent A and parent C and the genetic similarity of parent B 

and parent C. The genetic similarity was calculated as the simple matching coefficient 

(Sokal and Michener, 1958) across the 3,072 SNP markers. 

Marker effects were calculated using the same methodology used in the simulation 

experiments. The predictive ability (rMP) was calculated as a correlation between marker-

predicted values and phenotypic values. The test statistic T = [rMP(N – 1)1/2]/(1 – rMP
2) was 

calculated for rMP (Bobko, 2001). Significance tests (P = 0.05) for the test statistic T were 

done using a t-test. Significance tests for the differences in rMP between models were done 

via a standard Fisher z-transformation for correlation coefficients. 
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Results and Discussion 

Simulated Populations 

The simulation results showed very small differences in rMG values among the 

Biallelic, Marker Interval, and Allele Phasing models (Table 5). For each of the 18 genetic 

models, the mean difference in rMG among the Biallelic, Marker Interval, and Allele 

Phasing models was less than 0.01. These differences in rMG were often statistically 

significant (P = 0.05), with the Marker Interval model consistently ranking better (by less 

than 0.01) than the Biallelic model and the Allele Phasing model in terms of rMG. These 

differences in rMG were too small to be meaningful in a plant breeding program. Among 

the simulation parameters, h2 had the largest effect on rMG values and, as expected 

(Daetwyler et al., 2008; Lian et al., 2014), rMG values increased as h2 increased (Table 5). 

There was no clear difference in rMG values due to allelic series, the allele-effect intensities, 

or number of QTL.   

Across all simulated populations, the Allele Phasing algorithm correctly identified 

96% of the underlying marker alleles across the 1000 loci in each three-way DH 

population. The remaining 4% of alleles were considered as missing and were located 

between recombination sites. In particular, 90% of missing data points were within 5 cM 

of a recombination site. These results indicated a high accuracy of the algorithm for 

inferring SNP alleles from parental haplotypes in DH populations.  

Empirical Populations 

The number of A/*, B/*, and C/* populations that comprised the training population 

for each (A/B)//C population ranged from 2 to 56 (Table 6). The size of the training 
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population ranged from 644 to 5,757 inbreds. Heritability in each three-way test population 

was significant (P = 0.05) for each trait. The mean h2 across the four test populations was 

0.51 for grain yield, 0.65 for grain moisture, and 0.61 for test weight. The mean linkage 

disequilibrium between adjacent markers was r2 = 0.73 across all four populations.  

 For each trait, the Biallelic, Marker Interval, and Allele Phasing models did not 

differ significantly (P = 0.05) in rMP (Table 7). The observed differences in rMP were less 

than 0.05 in most of the population-trait combinations. For the first three populations, all 

rMP values were significantly different from zero (P = 0.05); however, rMP was significant 

only for moisture in the fourth population [(P8/P9)//(P8/P10)] for the Marker Interval and 

Allele Phasing models (Table 7). Overall, the results from the four empirical maize 

populations were consistent with the results from the simulation experiments. 

Equivalency between the Models in Practice 

In a previous simulation study, the prediction accuracy was higher with the Marker 

Interval model than with the Biallelic model especially under dense genotyping (0.5–1.0 

cM marker spacing) (Calus et al., 2008). In theory, the Allele Phasing model and the 

Marker Interval model are expected to outperform the Biallelic model in a three-way 

population with multiple alleles. To illustrate, assume that a QTL with multiple alleles is 

completely linked to a biallelic SNP marker. Parent A has the SNP genotype coded as 1 

and an effect of 1; Parent B has the SNP genotype coded as –1 and an effect of 0; and 

Parent C has the SNP genotype coded as 1 and an effect of –1. If the biallelic SNP locus is 

used to estimate the effect at the underlying QTL, the estimates will be confounded with 

the linkage phases because Parent A and Parent C share the same SNP marker, but have 

contrasting alleles. In this example, the rMG with the Biallelic model is only 0.17.  



  

33 
 

In contrast to these expectations, the simulation experiments and empirical maize 

populations showed no differences in prediction accuracy among the Biallelic, Marker 

Interval, and Allele Phasing models (Table 7). While the example in the previous paragraph 

demonstrated a low rMG with the Biallelic model, a different linkage phase can lead to a 

high rMG with the Biallelic model. To expand on the example in the previous paragraph, 

suppose Parent A has the SNP genotype coded as 1 and an effect (due to a perfectly linked 

QTL) of 1; Parent B has the SNP genotype coded as 1 and an effect of 0; and Parent C has 

the SNP genotype coded as –1 and an effect of –1. In this example, the rMG with the Biallelic 

model is 0.90. 

The two examples shown above might not reflect how the effects of multiple linked 

QTL are captured by multiple linked SNP loci. We therefore further examined the effect 

of linkage disequilibrium on prediction accuracy in three-way populations. In particular, 

we simulated 100 three-way populations for three of the genetic models (100 QTL, h2 = 

0.30, first allelic series, a = 1; 40 QTL, h2 = 0.50, first allelic series, a = 1; 10 QTL, h2 = 

0.80, first allelic series, a = 1). Instead of immediately developing DH lines from the F2 

generation, the simulated F2 plants were random mated for six generations before 

developing DH lines. In all three genetic models, random mating drastically reduced the 

effectiveness of the Biallelic model but not of the Marker Interval and Allele Phasing 

models (Table 8). To illustrate, for the second genetic model (which involved an 

intermediate number of QTL and intermediate h2), random mating decreased the mean rMG 

from 0.48 (Table 5) to –0.11 for the Biallelic model; from 0.49 to 0.35 for the Marker 

Interval model; and from 0.48 to 0.32 for the Allele Phasing model. The results suggested 

that high linkage disequilibrium caused the biallelic and triallelic models to be equivalent 
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in both the simulation studies and empirical populations, but a low linkage disequilibrium 

is expected to drastically reduce the effectiveness of the Biallelic model in populations with 

more than two alleles per QTL.   

 The small differences in rMG between the Allele Phasing and Marker Interval 

models were most likely explained by the imperfect accuracy of the projection algorithm 

in the Marker Interval model. On average, the algorithm left 4% of the markers as having 

missing data. This observed level of inaccuracy was low, but it would likely be higher in 

populations with lower linkage disequilibrium than in DH populations. The Marker 

Interval model should therefore be preferred over the Allele Phasing model in three-way 

populations. Additionally, the Allele Phasing model requires genotypic data of the parents 

used in the population, but parental data might not always be available.     

Application 

The results indicated that maize breeders should not be deterred from genomewide 

selection in three-way populations. We recommend the Marker Interval model in three-

way populations because of its simplicity, practical equivalency (in terms of rMG or rMP) 

with the two other models, and theoretical advantage over the two other models. However, 

the number of marker effects to be calculated is larger with the Marker Interval model than 

with the Biallelic model. This difference may be a hindrance to the Marker Interval model 

when the number of SNP markers is large.  

 Studies will be needed to determine the efficacy of multiple-allele models in more 

complex populations such as a four-parent population or a synthetic population. In a rice 

(Oryza sativa L.) synthetic population, prediction accuracies with the Biallelic model 

ranged from 0.30 for flowering date to 0.54 for plant height (Grenier et al., 2015), and it 
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remains to be seen whether the Marker Interval model would increase the prediction 

accuracy in a synthetic. Multiple-allele models may also be needed for genomewide 

selection in broadbase maize populations, such as those undergoing long-term recurrent 

selection (Hallauer and Carena, 2012). 

 



  

36 
 

Table 5: Estimated prediction accuracy in simulated three-way populations.  
Allelic 

series 

Model Heritability = 0.30 

10 QTL 40 QTL 100 QTL 

a = 1 a = 4 a = 1 a = 4 a = 1 a = 4 

–a, 0, a†  Biallelic 0.34‡ 0.32 0.36 0.32 0.32 0.35 

–a, 0, a  Marker Interval 0.33 0.32 0.36 0.33 0.32 0.36 

–a, 0, a  Allele Phasing 0.33 0.32 0.36 0.33 0.32 0.35 

–a, 0.5a, a  Biallelic 0.33 0.33 0.31 0.31 0.31 0.31 

–a, 0.5a, a  Marker Interval 0.34 0.34 0.33 0.31 0.31 0.31 

–a, 0.5a, a Allele Phasing 0.33 0.33 0.32 0.31 0.31 0.31   
Heritability = 0.50 

10 QTL 10 QTL 10 QTL 

a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 

–a, 0, a†  Biallelic 0.45 0.45 0.45 0.45 0.45 0.45 

–a, 0, a  Marker Interval 0.45 0.45 0.45 0.45 0.45 0.45 

–a, 0, a  Allele Phasing 0.45 0.45 0.45 0.45 0.45 0.45 

–a, 0.5a, a  Biallelic 0.46 0.46 0.46 0.46 0.46 0.46 

–a, 0.5a, a  Marker Interval 0.47 0.47 0.47 0.47 0.47 0.47 

–a, 0.5a, a Allele Phasing 0.47 0.47 0.47 0.47 0.47 0.47   
Heritability = 0.80 

10 QTL 10 QTL 10 QTL 

a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 

–a, 0, a†  Biallelic 0.62 0.62 0.62 0.62 0.62 0.62 

–a, 0, a  Marker Interval 0.63 0.63 0.63 0.63 0.63 0.63 

–a, 0, a  Allele Phasing 0.62 0.62 0.62 0.62 0.62 0.62 

–a, 0.5a, a  Biallelic 0.61 0.61 0.61 0.61 0.61 0.61 

–a, 0.5a, a  Marker Interval 0.61 0.61 0.61 0.61 0.61 0.61 

–a, 0.5a, a Allele Phasing 0.60 0.60 0.60 0.60 0.60 0.60 

 
† Coded genotypic value of the favorable homozygote 
‡ The least significant difference (P = 0.05) across all simulation experiments was 

less than 0.01.  
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Table 6: Summary statistics for assessing the predictive ability of genomewide selection in each of four three-way maize test 

populations.  

Three-way test population Training population 

Cross Tester 
SA/B

† 
SAC|BC

‡ N§ Locations 

Heritability 

A/*¶ B/*  C/* NTrain
# 

Heritability†† 

Yield Moisture 
Test 

weight 
Yield Moisture 

Test 

weight 

(P1/P2)//P3 T1 0.81 0.88 45 5 0.596 0.79 0.779 2 7 56 5757 

0.40 

(0.13, 

0.78) ‡‡ 

0.67 

(0.37, 

0.93) 

0.73 

(0.17, 

0.91) 

(P4/P5)//P6 T2 0.73 0.75 98 5 0.491 0.689 0.598 5 7 3 962 

0.49 

(0.23, 

0.68) 

0.71 

(0.29, 

0.86) 

0.67 

(0.45, 

0.90) 

(P4/P7)//P6 T2 0.69 0.74 98 7 0.347 0.61 0.463 5 2 3 644 

0.48 

(0.23, 

0.68) 

0.71 

(0.29, 

0.86) 

0.63 

(0.45, 

0.90) 

(P8/P9)// 

(P8/P10) 
T3 0.78 0.63 34 4 0.587 0.496 0.211 3 10 2 1694 

0.48 

(0.30, 

0.65) 

0.55 

(0.24, 

0.8) 

0.60 

(0.36, 

0.81) 

 
†  SA|B, genetic similarity between parent A and parent B of the three-way cross 
‡  SAC|BC, mean of the genetic similarity between parent A and parent C and the genetic similarity between parent B and parent C 
§  N, number of doubled haploid lines in the three-way test population 
¶  A/*, B/*, C/*, the number of populations where A, B, and C were the inbred parents of the (A/ B)// C cross and * was an inbred 

from the same heterotic group as A, B, or C 
#  NTrain, total number of doubled haploid lines in the training population 
††  All heritability estimates in the test population were significantly different from zero (P = 0.05) 
‡‡  Median and range (in parentheses) of heritability in the A/*, B/*, and C/* crosses. All heritability estimates were significantly 

different from zero (P = 0.05)
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Table 7: Predictive ability in maize three-way test populations for yield, moisture, and 

test weight.  

Trait Model 

Three-way test population 

(P1/P2)//P

3 

(P4/P5)//P

6 

(P4/P7)//P

6 

(P8/P9)//(P8/P10

) 

Yield 

Biallelic 0.51 0.35 0.47 0.22NS 

Marker 

Interval 
0.50 0.38 0.47 0.18 NS 

Allele 

Phasing 
0.46 0.32 0.47 0.19 NS 

Moisture 

Biallelic 0.24 0.22 0.45 0.23 NS 

Marker 

Interval 
0.32 0.21 0.46 0.30 

Allele 

Phasing 
0.38 0.22 0.46 0.28 

Test 

weight 

Biallelic 0.23 0.60 0.26 0.23 NS 

Marker 

Interval 
0.26 0.61 0.26 0.23 NS 

Allele 

Phasing 
0.26 0.60 0.23 0.16 NS 

 
NS  Not significantly different from zero (P = 0.05). All other estimates of rMP were 

significant. No models were significantly (P = 0.05) different from each other within each 

trait-population combination.  
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Table 8: Estimated prediction accuracy in simulated three-way population after six 

generations of random mating, under three genetic models that differed in heritability (h2) 

and number of quantitative trait loci (QTL). 

 

Model 100 QTL, h2 = 0.30 40 QTL, h2 = 0.50 10 QTL, h2 = 0.80 

Biallelic 0.01 –0.11 0.00 

Marker Interval 0.24 0.35 0.44 

Allele Phasing 0.23 0.32 0.42 

 
† The least significant difference (P = 0.05) across all simulation experiments was less 

than 0.01 
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Figure 2:  Allele Phasing in a three-way population: (A) inbred parents are genotyped 

with biallelic SNP markers; (B) inbred progeny of the three-way population are 

genotyped with biallelic SNP markers; (C) genotypes for a three-allele model are inferred 

in the three-way progeny according to allelic descent; and (D) final genotypes are 

projected based on flanking marker information, assuming no double recombination.    
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Chapter 3: Genomewide selection for unfavorably correlated traits in maize 

 

Correlated traits with unfavorable relationships have often hindered plant breeding 

efforts. Genomewide markers may help untangle unfavorable trait correlations. Our 

objectives were to determine (i) if genomewide markers can be used to partition trait effects 

into independent and correlated portions, (ii) and if selection on the independent portion 

will be more effective than selection on the entire trait. We used two biparental maize (Zea 

mays L.) populations to compare a standard genomewide selection model (Control Model) 

with a genomewide selection model that selects on the independent portion of a trait 

(Independent Model). We conducted genomewide selection for four cycles on these two 

maize populations using these two different models. In Population 1, responses to selection 

with the Independent Model (versus the Control Model, in parentheses) were 1.03 Mg ha–

1 (versus 1.40 Mg ha–1) for grain yield, 0.38 g kg–1 (versus –7.98 g kg–1) for moisture, and 

6.50 cm (versus 18.75 cm) for plant height. Overall, the responses were not significantly 

different (P = 0.05) between the Independent Model and the Control model at each cycle 

of genomewide selection. The nonsignificant differences in selection responses were 

consistent with the low proportions (R2 = 1 to 14%) of the trait variation that was accounted 

for by the independent portion of the trait. We conclude that separating quantitative traits 

into correlated and independent portions is infeasible, mostly likely because of the 

complicating factors of linkage and pleiotropy.



  

42 
 

Introduction 

Plant breeders typically select for several quantitative traits at a time. These traits 

are often correlated, both beneficially and adversely, amongst each other. For example, 

maize (Zea mays) biparental populations tend to have positive, unfavorable relationships 

between grain yield and plant height and between grain yield and moisture (Chi et al., 1969; 

Ross, 2002; Combs and Bernardo, 2013; Ziyomo and Bernardo, 2013). Achieving selection 

gains for adversely correlated traits can be difficult. One method to select for unfavorably 

correlated traits is to apply a selection index that accounts for both positive and negative 

covariances among the traits (Hazel, 1943; Smith, 1936; Baker, 1986).  

 Genomewide selection is a breeding strategy that leverages the use of phenotypic 

data along with marker data to predict the performance of non-phenotyped individuals 

(Meuwissen, et al., 2001). Genomewide selection studies have largely treated traits 

individually and have ignored their correlations (Beyene et al., 2012; Massman et al., 

2013). In animal breeding, studies have focused on utilizing correlated traits in multivariate 

models to improve the accuracy of predictions (Aguilar et al., 2011; Calus and Veerkamp, 

2011; Guo et al., 2014; Hayashi and Iwata, 2014). In plant breeding, studies have focused 

on using correlated, highly heritable traits to be used in indirect selection for disease 

resistance (Jia and Jannick, 2012; Rutkoski et al., 2012; Bao et al., 2015) or drought 

tolerance (Ziyomo and Bernardo, 2013). Additionally, genomewide selection for several 

traits in plants has involved predicting the performance for each trait individually, then 

combining the individual-trait predictions in a selection index (Massman et al., 2013; 

Combs and Bernardo, 2013; Beyene et al., 2015). In hybrid rye (Secale cereale L.), the 

accuracy was higher when a multiple-trait selection index was predicted rather than when 
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individual traits were first predicted and later combined into a selection index (Schulthess 

et al., 2015). Overall, studies in both plants and animals suggest that multiple-trait 

genomewide selection models will be more effective than predicting the performance of 

one trait at a time. 

 In this study, our hypothesis was that correlated traits can be modeled as having 

two separate components: a portion independent of another trait and a portion correlated 

with another trait. For example, there will be loci that affect grain yield and are 

physiologically independent of plant height so that they do not increase plant stature. In 

contrast, there will be loci that affect grain yield and that also increase plant height. These 

loci could exhibit by either linkage or pleiotropy. For example, the teosinte branched1 (tb1) 

gene in maize has pleiotropic effects on tillering, plant architecture (internode length, 

branch length, and the number of nodes) in the upper most branch, and the number of 

kernels per row (Clark et al., 2006). On the other hand, quantitative trait loci (QTL) 

associated with domestication on chromosome 5 most likely comprised multiple linked 

genetic factors (Lemmon and Doebley, 2014). Using nearly isogenic recombinant inbred 

lines, the authors were able to separate a chromosomal region associated with 

domestication into a QTL controlling kernel row number and a QTL controlling plant 

height.  

In genomewide selection, the effects of genomewide molecular markers are 

estimated by regressing phenotypic values on molecular marker data. Molecular markers 

are in linkage disequilibrium with the QTL involved in the independent and correlated 

portions of a trait. Because of this association we should in theory be able to estimate the 

effects of the independent loci separate of the correlated loci. For example, in estimating 
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the marker effects for yield, we could separate the loci that affect yield and are independent 

of plant height from the loci that are associated with both yield and plant height. By using 

the independent portion of a trait to estimate genomewide marker effects, we might be able 

to maximize the selection efficiency of genomewide selection across several traits.  

Such an approach therefore differs from the multivariate approaches previously 

described (Bao et al., 2015; Jia and Jannick, 2012; Rutkoski et al., 2012; Ziyomo and 

Bernardo, 2013), which involved the use of correlated traits to increase the prediction 

accuracy of a single trait. Our objectives in this study were to determine (i) if quantitative 

traits can be divided into independent and correlated portions using genomewide marker 

effects, (ii) and if selection using genomewide marker effects from the independent portion 

of quantitative traits is more effective than selection using genomewide marker effects 

calculated for the entire trait.  

 

Materials and Methods 

 

Training Data 

Two populations from Syngenta Seeds, LLC were studied. The two populations 

were derived from three Lancaster SureCrop inbred parents (Population 1 was derived from 

the cross A x B and Population 2 was derived from the cross A x C). Each population was 

crossed to a different B73-type tester. Population 1 initially included 613 F1 and F2 induced 

double haploid lines, and was previously described in detail (Sleper and Bernardo, 2016). 

All phenotypic and genotypic analyses and results for Population 1 were reported by Sleper 

and Bernardo (2016). Population 1 was evaluated at six locations in Italy (Moscazzano, 

Torre di Mosto, and Casale Monferrato) and Spain (Palma del Río, Posadas, and Arroyo 



  

45 
 

de San Serván) in 2013. Population 2 initially included 236 F5 lines and was evaluated at 

seven locations in the United States (Brook, Indiana; New Bedford, Illinois; Atlantic, Eagle 

Grove, Slater, and Stanwood, Iowa; Foster, Nebraska) in 2011. For both populations, the 

entries were grown in two-row plots, each row 6.1 m long and spaced 76 cm apart, at a 

plant population density of 89,000 plants per hectare. Data were collected for plant height 

(cm), yield (Mg ha-1 at 155 g H2O kg -1) and moisture (g kg-1). 

Each doubled haploid (DH) line from Population 1 and each F5 line from Population 

2 was genotyped with 3072 SNP markers (proprietary to Syngenta Seeds, LLC) on the 

Illumina GoldenGate platform. After removal of low quality data using the criteria given 

by Sleper and Bernardo (2016), 552 double haploid lines and 725 segregating SNP markers 

were used in the final analysis in Population 1, while 192 F5 lines and 679 segregating SNP 

markers were used in Population 2.  

For both populations, phenotypic data were analyzed within each population using 

a linear model including the grand mean, location effect, line effect, and residual effect 

with each effect assumed as random. The variance components for testcross genetic 

variance (VG) and nongenetic variance (VR) were calculated from across-locations analysis 

using the “lmer” function in the “lme4” package (Bates et al. 2013). Because the 

experiments used a single replication, the genotype-by-environment interaction variance 

and within-location error variance could not be estimated separately and were confounded 

in VR. A likelihood ratio test was used to determine the significance (P = 0.05) of the VG 

in each population. The entry-mean heritability was estimated for each population as h2 = 

VG/(VG + VR/e), where e  was the number of environments. Within each population, 
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phenotypic correlations were estimated from the across-locations mean performance of the 

lines for each trait. 

Genomewide marker effects for genomewide selection were estimated by ridge 

regression-best linear unbiased prediction with the R package rrBLUP (Endelman, 2011). 

Genotypic correlations were estimated using two methods: analysis of covariance as 

described in Falconer and Mackay (1996) and as the correlation between the marker effects 

for a pair of traits as described by Ziyomo and Bernardo (2013). Phenotypic covariances 

between two traits were calculated as σP1,P2 = ρP1,P2σP1σP2, where ρP1,P2 was the phenotypic 

correlation between two traits; σP1 was the standard deviation of the phenotypic least-

square means of the first trait; and σP2 was the standard deviation of the phenotypic least-

square means of the second trait. Genotypic covariances between two traits were calculated 

as σG1,G2 = ρG1,G2σG1σG2, where ρG1,G2 was the genotypic correlation between two traits; σG1 

was the square root of the genetic variance (VG) for the first trait; and σG2 was the square 

root of the VG of the second trait. Significance tests (P = 0.05) for all correlations reported 

in this study and were done via a standard Fisher z-transformation for correlation 

coefficients. 

Genomewide Selection Models 

 Two genomewide selection models were used in this study: a standard genomewide 

selection model (Control Model), and a model that accounted for trait correlations 

(Independent Model). In the Control Model, marker effects were estimated using the model 

y = 1μ + Mg, where y was a N x 1 vector of the phenotypic values of a trait; N was the 

number of individuals in the training population; 1 was an N x 1 vector with elements equal 

to 1; μ was the population mean; M was a N x NM genotypic incidence matrix; NM was the 



  

47 
 

number of polymorphic markers; and g was a NM x 1 vector of marker effects. Marker 

effects were estimated for each trait separately.  

The purpose of the Independent Trait model was to use estimated genotypic 

correlations to partition phenotypic values into uncorrelated and independent portions. The 

independent proportion of the trait was estimated as yn = y – yR, where yn was an N x 1 

vector of the independent portion of the trait; y was an N x 1 vector of phenotypic values 

for the trait; and yR was an N x 1 vector of the correlated effects of the trait. The correlated 

portion of the trait was estimated as yR = TP-1g, where T was a N x (NT – 1) matrix of the 

phenotypic values of the other traits; NT was the number of traits; P was a (NT – 1) x (NT 

– 1) phenotypic covariance matrix; and g was a (NT – 1) x 1 vector of genotypic covariances 

between the trait of interest and the other traits used in the model (Baker, 1986). 

Genomewide marker effects were estimated for the independent portion of each trait using 

the model yn = μ + Mg, where g was the vector of marker effects for the Independent 

Model. In this study, yield was adjusted for both moisture and plant height; moisture was 

adjusted for both yield and plant height; and plant height was adjusted for both yield and 

moisture. For each trait, selection was based on the adjusted (independent) portion. The 

variance of each trait component was calculated using σ2
y = σ2

yn
 + σ2

yR
 + 2σ2

yn,yR
 where 

σ2
y, σ2

yn
, and σ2

yR
 were calculated as the variance of each of the trait components 

individually. The proportion of the total variance explained by the independent and the 

correlated components was calculated as R2
Independent = σ2

yn
/σ2

y and R2
Correlated = σ2

yR
/σ2

y. 

In both models, the calculated marker effects were used to predict the genotypic 

value of each candidate. A selection index that combined information on the three traits (i 

= 1 to 3) was calculated as I = Σbigi where bi was the weight for the ith trait and gi was the 
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estimated genotypic value of a candidate for each trait according to the model used (Control 

Model or Independent Model). Each bi value was calculated as wi/σy(i) , where wi was the 

weight for the trait (0.60 for yield, -0.15 for moisture, and -0.25 for plant height) and σy 

was the trait standard deviation. 

Recurrent Selection 

 For Population 1, the first cycle of selection (Cycle 0) consisted of 540 F2 plants. 

For Population 2, 12 top-performing (based upon the selection index described above) F5 

plants were selected and random mated using a diallel scheme. The progeny from each 

diallel cross were equally sampled to create a balanced bulk of 540 seeds for Cycle 0. For 

both populations, Cycle 0 was randomly split into two halves, each with 270 plants each. 

The Control Model was used for selection in the first half of the population while the 

Independent Model was used for selection in the second half. 

Seedling DNA was extracted from leaf punches. Population 1 was genotyped with 

519 of the 725 training polymorphic SNP markers and Population 2 was genotyped with 

418 of the 679 training polymorphic SNP markers using TaqMan® Genotyping Assays. 

The SNP markers that were excluded were not adaptable to the TaqMan® Genotyping 

platform. For each model and population, marker effects were calculated using these sets 

of TaqMan® SNP markers and the original phenotypic data. Using the selection index, 

plants were ranked within each population and the top 12 plants were randomized and then 

mated by chain crossing (the first plant pollinated the second plant, the second plant 

pollinated the third plant, and so on). The harvested seed from these 12 plants was bulked 

and planted to make up Cycle 1.   
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 The experiment was carried out for three more rounds of selection resulting in four 

total cycles (Cycle 0 to Cycle 4). The population size (270 plants), number of selected 

plants (12), SNP markers used; and SNP effects remained constant across cycles.  

Response to Selection 

 For both Population 1 and Population 2, seed bulks were created from 100 kernels 

of each cycle resulting in nine seed bulks (Cycle 0, Control Model Cycles 1-4, and 

Independent Model Cycles 1-4). For Cycle 0, 100 F2 kernels were bulked for Population 1 

while 100 random mated F5 kernels were bulked for Population 2. For Population 1, the 

bulks were grown in Grenaros, Chile during the winter season between 2015 and 2016, and 

were crossed to the tester used for the training population. For Population 2, Cycle 1 and 

Cycle 2 bulks were grown during the summer season of 2015 in Slater, Iowa, whereas 

Cycle 0, Cycle 3, and Cycle 4 were grown during the summer season of 2016 in Slater, 

Iowa. The Population 2 entries were testcrossed to the tester used for the training 

population.  

 During the summer of 2016, the nine entries from Population 1 were planted in 

yield trials at the same six locations used for the 2013 training population. At each location, 

five replications of each testcrossed seed bulk (except Cycle 0 which averaged 1.6 

replications and Correlated Model Cycle 2 which average 3.6 replications due to low seed 

quantity) were grown with four repeated check hybrids in a randomized complete block 

design. Plot sizes and plant population densities were the same as those used for the training 

population. Plant height was measured at four locations, while yield and moisture were 

measured at all six locations. 
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For Population 2, the nine entries will be planted in yield trials in 2017 at the same 

locations used for the 2011 training population (as described in the Materials and Methods). 

The yield trials were delayed by a year because testcrosses made during the winter season 

of 2015-2016 were unsuccessful. The results for response to selection are still unavailable 

for Population 2, but will be available in the fall of 2017.  

 For each entry, least-square means were calculated using the R package “lsmeans” 

(Lenth and Hervé, 2015). The selection index was applied to the least-square means. To 

compare the rate of response between the Control Model and Independent Model, a linear 

regression model was fitted to the least-square means and the cycles. For each trait and for 

the selection index, regression coefficients were obtained for each model and tested for 

significance using a t-test (P = 0.05). Additionally, a t-test (P = 0.05) was used to compare 

the cycle means for each model. With the locations being assumed as random, the error 

term used in the t-test was the entry x location mean squares from analysis of variance.   

 To calculate changes between the cycles at the marker level, SNP markers from 

Cycle 1, Cycle 2, and Cycle 3 were used. The mean marker heterozygosity was calculated 

and used to calculate the inbreeding coefficient as 1 – HCn/HC0; where HCn is the mean 

marker heterozygosity of the Cycle n and HC0 is the mean marker heterozygosity of Cycle 

0. To test the difference in inbreeding between both models, bootstrapping (P = 0.05) was 

conducted by sampling the chromosomes of each plant with replacement. For each cycle 

and population, the mean heterozygosity was calculated and the difference between the 

Control and the Independent models was reported.  
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Results and Discussion 

Training Population 

 As previously reported (Sleper and Bernardo, 2016), estimates for VG within 

Population 1 were significant for grain yield, grain moisture, and plant height. 

Additionally, estimates for VG within Population 2 were significant for grain yield, grain 

moisture, and plant height (Table 9). Heritability was moderate to high (h2 = 0.55–0.81) 

for these three traits in both populations.  

The genotypic correlations calculated from phenotypic data and from genomewide 

marker effects were not significantly different (P = 0.05) from each other. The results from 

this study therefore support previous findings that the correlation between genomewide 

marker effects for separate traits can be used as an alternative way to calculate the 

genotypic correlation (Ziyomo and Bernardo, 2013). 

For both populations, the primary trait relationship of concern was that between 

plant height and grain yield. The phenotypic and genotypic correlations between grain yield 

and plant height were strong and unfavorable in Population 1 and were moderate and 

unfavorable in Population 2. Additionally, the correlations between grain yield and 

moisture were moderate and favorable in Population 1 and were negligible in Population 

2. Lastly, the correlations between plant height and grain moisture were negligible for both 

populations (Table 10). Overall, the correlations observed for both of these populations 

were consistent with previous estimates. The genetic correlation between grain yield and 

plant height was 0.40 in Reid Yellow Dent (Chi et al., 1969), ranged from 0.10 to 0.40 in 

an F2:3 biparental population using divergent parents derived from the Iowa Long-Ear 

Synthetic population (Ross, 2002), was 0.23 in the intermated B73 × Mo17 population 
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(Ziyomo and Bernardoi, 2013), and was 0.74-0.75 in two dwarf × nondwarf biparental 

populations (Combs and Bernardo, 2013). In the intermated B73 × Mo17 population, 

genotypic correlations were 0.23 between grain yield and moisture and was nonsignificant 

(P = 0.05) moisture and plant height. The correlations observed here and in the literature 

indicate that selection on grain yield without regard to plant height could hinder a maize 

breeding program.   

The independent portion of a trait (yn) was highly correlated with the phenotypic 

values (y) for each trait, but was not highly correlated with the other independent portions 

of other traits. After adjustment for trait correlations using the Independent Model, the 

correlation between the phenotypic value (y) and the independent portion (yn) ranged from 

0.93 to 1.00 for different pairs of traits in the two populations Additionally, genomewide 

marker effects estimated for the Independent Model were highly correlated (0.90 to 0.99; 

Table 10) with marker effects estimated with the Control Model. Despite this high 

similarity between the models, the Independent Model genetic correlation (correlation 

between the marker effects of the three traits for the Independent model) was altered 

compared to the Control Model genetic correlation. For example, in Population 1, the 

Independent Model genotypic correlation between grain yield and moisture was 0.02 

compared to -0.19 for the Control Model, while the genotypic correlation between grain 

yield and plant changed from 0.54 (Control Model) to -0.11 (Independent Model), and 

remained the same between plant height and grain moisture (-0.04 to -0.05) (Table 10). In 

Population 2, the genotypic correlations were not significant (P = 0.05) for the Control 

Model (0.05) or the Independent Model (0.00) for grain yield and moisture; while the 

genotypic correlation changed from 0.23 (Control Model) to -0.08 (Independent Model) 
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for grain yield and plant height; and were not significant -0.06 (Control Model) to 0.05 

(Independent Model) for plant height and grain moisture (Table 10). 

The independent portions of each trait did not account for much of the overall trait 

variation. In Population 1, R2
Independent (the proportion of the total phenotypic variance 

accounted for by the independent portion) was 14% for grain yield, 2% for grain moisture, 

and 14% for plant height; while, the R2
Correlated was 69% for grain yield, 97% for grain 

moisture, and 71% for plant height. In Population 2, R2
Independent was 4% of for grain yield, 

1% for grain moisture, and 2% for plant height; while, R2
Correlated was 96% for grain yield, 

98% for grain moisture, and 95% for plant height. For both populations, R2
Independent + 

R2
Correlated did not equal 100% (except for grain yield in Population 2) because of the 

covariance between yn and yR. For Population 1, R2
Independent + R2

Correlated for grain yield and 

plant height were 83% and 85% indicating a substantial correlation between yn and yR and 

an underlying difficulty in separating out the two components. Overall, the high correlation 

between y and yn coupled with the significant change in the genotypic correlations 

(particularly for yield and plant height) seem to be in conflict with each other. For instance, 

if the correlation between y and yn is high and the R2
Correlated is also large, one would expect 

g and gn to be similar since these statistics are calculated with marker effects estimated 

using either y or yn. However, g and gn were different for trait combinations with significant 

correlations indicating a potential underlying difference in the genomewide marker effects.  

Response to Genomewide Selection and Level of Inbreeding 

Across both models, substantial gains were seen in Population 1 from genomewide 

selection. Compared to Cycle 0, Cycle 3 from the Control Model demonstrated a 27% gain 

in the selection index while Cycle 4 in the Independent Model demonstrated an 18% gain 
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in the selection index (Table 11). For Population 1, grain yield was improved for both 

models across all cycles; however, the improvement for grain moisture was inconsistent 

and plant height was increased (lower values desired). The differences in means of the 

same cycle were not significant (P = 0.05) between the two models. Additionally, the slopes 

obtained from fitting the least-square means and the cycles for each model were not 

significantly different. These results indicated that in Population 1, the Independent Model 

was not superior to the Control Model. Despite the lack of a statistically significant 

difference, the cycle means for plant height were always numerically lower with the 

Independent Model than with the Control Model. As mentioned in the Materials and 

Methods, results on responses to selection in Population 2 will be available in fall 2017. 

 Inbreeding was observed across the cycles of selection in both populations. For 

Cycle 0, a different frequency of heterozygosity was observed in Population 2 than 

Population 1 because the former was created from a diallel of 12 F5 lines. For Population 

2, the Cycle 0 had a mean heterozygosity of 0.40 while Population 1 had a mean 

heterozygosity of 0.50 (Table 12). After three cycles of genomewide selection, both 

populations were nearing F3 status in terms of their inbreeding level (0.41-0.47 for 

Population 1 and 0.38-0.39 for Population 2). For both populations and across both models, 

the coefficient of inbreeding decreased in each successive cycle except for Cycle 2 for 

Population 2 using the Independent Model. In Cycle 1 of Population 2, the Independent 

Model led to a significantly lower (P = 0.05) mean heterozygosity than the Control model. 

All other cycles of both populations did not have significantly different inbreeding levels. 

The Independent Model and the Control Model therefore did not alter the level of 

inbreeding at different rates. 
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Conclusions 

 Overall, the yield trial results for Population 1 indicated a lack of a difference 

between the Independent Model and the Control Model. Additionally, the line estimates 

for each trait in the Independent Model and the Control model were highly correlated (0.93-

0.99 for Population 1 and 0.97-0.99 for Population 2) and the marker effects estimated 

using these phenotypic values were also highly correlated between models. On the other 

hand, there is some evidence that the two models did not apply the same selection pressure. 

For example, the genotypic correlations calculated from marker effects differed between 

the models, particularly for the grain yield-plant height combination. As previously stated, 

in Population 1 the genotypic correlation between grain yield and plant height was 0.54 

with the Control Model versus -0.11 with the Independent Model. Lastly, the Independent 

Model led to germplasm that was consistently (but not significantly) shorter at each cycle.  

 These results suggest that the phenotypic value of a quantitative trait may not be 

easily partitioned into correlated and independent portions. We speculate that the large 

linkage blocks that are found in biparental populations (Smith et al., 2008; Sleper and 

Bernardo, 2016) confound our ability to separate the genetic effects. In particular, QTL can 

be partitioned into three categories: independent of QTL controlling other traits (no linkage 

or pleiotropy); linked to other QTL that control other traits; or pleiotropic. The independent 

portion of a trait results only from the QTL in the first category (no linkage and no 

pleiotropy). However, linkage disequilibrium is likely to persist in maize breeding crosses 

because (i) the presence of many QTL in a genome of finite size naturally leads to linkage, 

and (ii) linkage disequilibrium is maximized in a cross (such as Populations 1 and 2) 

between two homozygous lines (Dudley, 1992). For quantitative traits in double haploid 
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populations derived from a biparental cross, the proportion of the genetic variance 

explained by independent loci is therefore likely small. As previously reported for 

Population 1 (Sleper and Bernardo, 2016), additional recombination may be need to truly 

separate linked loci. Sleper and Bernardo (2016) demonstrated the effect of an additional 

meiotic event potentially contributed to disrupting the underlying repulsion and coupling 

blocks in a population. Unfortunately, the need for additional recombination might be a 

double-edged sword. Disrupting linkage blocks to estimate independent loci will also 

disrupt advantageous coupling blocks. Additionally, more recombination decreases the 

linkage disequilibrium between markers and QTL, thus reducing genomewide selection 

accuracies (Lian, et al., 2014).   

Overall, selecting for independent portions of a trait using genomewide selection 

was not more effective than selecting on the entire trait in a biparental population. Once 

again, it appears that plant breeders are playing a game of “tug of war” between conserving 

valuable linkage blocks and additional recombination to induce genetic variance 

(Rasmussen and Phillips, 1997). Because of this phenomenon, there may not be a current, 

effective way to control unfavorable correlations among traits. Future explorations into 

targeted recombination could provide a very powerful tool to help unlock unfavorable 

correlations among traits (Bernardo, 2017). In the time being, utilizing a selection index to 

account for correlated traits in genomewide selection is recommended.  



  

57 
 

 

Table 9:  Summary statistics for training populations used for genomewide selection in maize. 

Trait Population 1 Population 2 

Mean  VG VR h2 Mean VG VR h2 

Yield 

(Mg ha-1) 

12.72 0.49 2.25 0.57 11.05 0.78 4.53 0.55 

Moisture 

(g kg-1) 

233.0 67.3 213.2 0.66 188.8 80.9 142.8 0.80 

Plant height 

(cm) 

237.7 102.0 145.1 0.81 246.3 53.2 127.7 0.74 

 
†All VG estimates were significant (P = 0.05).  
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Table 10: Pairwise phenotypic correlations between the full trait (y), the independent portion of the trait (yn), and the correlated 

portion of the trait (yR). Genotypic correlations calculated using analysis of covariance (rG) and using molecular markers for the full 

trait (g), the independent portion of the trait (gn), and the correlated portion of the trait (gR).  

 

 

 

 

 

 

 

 

 

†Correlation was significant (P = 0.05). 

Trait 1 Trait 2 Population 1 

Phenotypic Genotypic Marker 

y yn yR g g gn gR 

Yield Moisture -0.21† 0.02 -0.25† -0.18† -0.19† 0.02 -0.26† 

Yield Plant Height 0.59† -0.10† 0.57† 0.32† 0.54† -0.11† 0.54† 

Moisture Plant Height -0.10† -0.11† -0.90† 0.02 -0.04 -0.05 -0.92† 

Trait 1 Trait 2 Population 2 

Phenotypic Genotypic Marker 

y yn yR g g gn gR 

Yield Moisture 0.03 0.00 -0.99† 0.06 0.05 0.00 -0.99† 

Yield Plant Height 0.19† -0.14† 0.22† 0.31† 0.23† -0.08 0.25† 

Moisture Plant Height -0.15† -0.03 -0.17† 0.05 -0.06 0.05 -0.22† 
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Table 11: Testcross performance of different cycles of genomewide selection for maize Population 1.  

Cycle Yield (Mg/ha) Moisture (g/kg) Plant height (cm) Selection index 

Control Independent Control Independent Control Independent Control Independent 

0 12.70 200.6 224.3 5.05 

1 13.27 13.37 201.8 206.8 236.8 229.8 5.34 5.52 

2 13.00 13.12 202.1 201.9 236.0 224.5 5.07 5.46 

3 14.16 13.05 194.0 196.0 236.0 229.8 6.39 5.36 

4 14.09 13.72 192.6 201.0 243.0 230.8 6.18 5.95 

 
†For each cycle, the testcross least-square mean of the Control Model was not significantly (P = 0.05) different than the testcross least-

square mean of the Independent Model for all three traits and the selection index 
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Table 12: Inbreeding level and mean heterozygosity between the Control Model and the 

Independent Model for both maize populations. 

 

Cycle Inbreeding coefficient Mean heterozygosity 

Control Independent Control Independent 

Population 1 

0  -  - 0.50 0.50 

1 0.10 0.17 0.45 0.42 

2 0.31 0.33 0.35 0.34 

3 0.41 0.47 0.29 0.27 

Population 2 

0 - - 0.40 0.40 

1† 0.05 0.28 0.38 0.29 

2 0.33 0.27 0.27 0.29 

3 0.38 0.39 0.25 0.24 

 
†Indicates a significant difference (P = 0.05) in the inbreeding coefficient and mean 

heterozygosity between the Control Model and Independent Model.  
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