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Abstract

This thesis studies systematically non-supersymmetric models that contain dark

matter candidates. The stability of the dark matter is guaranteed by a remnant Z2

symmetry embedded naturally in SO(10). We build models base on various dark mat-

ter production mechanism, including the non-equilibrium thermal dark matter scenario,

the weakly interactive massive particle scenario, and the asymmetric dark matter sce-

nario. Although we start from very general assumptions on the choice of dark matter

representation and the symmetry breaking pattern, the number of viable models is

severely restricted by the requirement of gauge coupling unification. These models are

then checked against several phenomenological constraints, such as the light neutrino

masses, direct detection bounds on dark matter candidates and the proton decay life-

time. Finally, we demonstrate that the vacuum stability problem of the Standard Model

can be evaded by one of our scalar dark matter models.
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Chapter 1

Introduction

The known interactions of the elementary particles are well described by gravity and the

Standard Model(SM) of the particle physics. The latter describes the strong force, weak

force and electromagnetic force in the framework of SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge

interactions with spontaneous symmetry breaking. The last piece of the SM, the Higgs

boson has been discovered with a mass of mh ' 125 GeV [4]. So far, particle colliders

have observed all elementary particles, and verified that the interactions between them

are consistent with the SM with a high precision.

Yet, the SM has its limit and does not describe everything in the universe. To list a

few, the SM cannot explain how the neutrinos obtain their masses and oscillate between

different flavor states; there is more matter than anti-matter in the universe and the

CP violation phase in the SM alone is not enough to explain all of it; dark energy and

dark matter(DM) contributes about 70% and 27% of the total energy of the observable

universe and they are not within the content of the SM. On the theoretical side, the

three gauge groups of the SM are completely independent of each other. In principle,

the U(1) hypercharge can be anything, yet in reality, the hypercharge of quarks and

leptons are integer multiples of 1/6. This quantized structure suggests that U(1)Y is a

subgroup of a larger simple group whose weights are always rational numbers.

The questions listed above motivates various extensions of the SM. In particular,

the gauge coupling unification theories(GUT) are a class of models that try to embed

the SM gauge group GSM = SU(3)C⊗SU(2)L⊗U(1)Y into a larger simple gauge group,

so that the three gauge couplings have a common origin. This unified gauge group is

1
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broken spontaneously at a very high energy scale so that the gauge bosons and Higgs

particles relevant to the broken symmetry are extremely heavy and remain undetectable

in current experiments.

The first attempt for unification is the SU(5) unification theory [2] since SU(5) is

the only rank-four simple group that contains GSM as a subgroup. In minimal SU(5)

GUT the unified SU(5) is broken directly to the SM gauge group GSM at the grand

unification scale MGUT, usually of order 1015 ∼ 1016 GeV. All the new particles that

are not contained in the SM lie at or above the GUT scale. Thus the Renormalisation

Group Equations(RGEs) that govern the running of the gauge couplings to the GUT is

only dependent on the content of the SM. This attempt fails to obtain the correct gauge

couplings at the weak scale obtained by experiments. In Fig. 1.1 the gauge couplings are

run to the GUT scale starting from their initial values at the weak scale. g1 =
√

5/3g′

as defined by the embedding of U(1)Y in SU(5), and αi =
g2
i

4π . In a successful unification

theory, these couplings should converge to a point at a high energy scale, and it is not

the case in the figure. Improving the precision of the running by using two-loop RGEs

does not solve this problem.
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Figure 1.1: Running of the gauge couplings induced by SM particles. g1 =
√

5/3g′ by

the embedding of U(1)Y in SU(5).
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The supersymmetric version of SU(5) unification theory introduces superpartners of

SM particles around the weak scale and surprisingly unifies the running of the coupling

at a scale of ∼ 1016 GeV [3]. Moreover, it also contains a candidate for the dark matter

particle if a discrete symmetry is enforced by hand to render the candidate stable. With

other attractive features, such as being free of quadratic divergence in the theory, the

stability of vacuum and the radiative breaking of electroweak symmetry, the Minimal

Supersymmetric extension of the Standard Model(MSSM) is one of the most studied

extensions of the SM.

On the other hand, the framework of non-supersymmetric SO(10) unification theory

can also achieve gauge coupling unification by introducing an intermediate energy scale

Mint between MGUT and the weak scale MZ . The running of the gauge couplings

is modified above Mint because of the new particles lie around Mint enforced by the

intermediate gauge symmetry. It is thus possible to obtain unification of couplings with

a new degree of freedom in energy scale. Besides unification, SO(10) theories has other

interesting features. For example, it predicts the existence of right-handed neutrinos

that are in the same fundamental representations as other SM fermions of the same

generation; the breaking of intermediate symmetry can induce the seesaw mechanism

that generates small neutrino masses. Moreover, since the rank of SO(10) is larger than

GSM, the discrete symmetry that stabilizes the dark matter candidate can be obtained

as the remnant of the extra U(1) symmetry.

The purpose of this thesis is to study systematically the possibility of adding a

dark matter candidate to non-supersymmetric SO(10) unification theory. In this the-

sis, the dark matter is assumed to be a stable elementary particle that does not par-

ticipate electromagnetic interaction. Minimal non-supersymmetric SO(10) unification

model does not contain a dark matter candidate so we need to introduce a new dark

matter multiplet. Such multiplet influences the running of couplings and changes the

scales significantly in most of the models we consider, and thus the requirement of

gauge coupling unification and proton decay experiments can place strong constraints

on model building. We will consider several different dark matter scenarios, including

the Non-equilibrium Thermal Dark Matter(NETDM), the Weakly Interactive Massive

Particle(WIMP) scenario and the Asymmetric Dark Matter(ADM) scenario. We will

also investigate the stability of the vacuum and the possibility of breaking electroweak
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symmetry radiatively with one of our WIMP DM models.

The outline of the rest of this thesis is the following:

• Chapter 2 gives a brief description of a minimal non-supersymmetric SO(10) uni-

fication model. This model serves as the base of model-building in the rest of the

thesis.

• Chapter 3 provides a list of representations that contain candidates of dark mat-

ter particles. The dark matter candidates in Chapter 4, 5 and 6 are chosen from

this list. We also discuss how to split components into different energy scales by

fine-tuning the couplings between the DM representation and the Higgs represen-

tations.

• Chapter 4, 5 and 6 discuss NETDM, WIMP, and ADM, respectively. In these

chapters, we select DM representations from the list provided in Chapter 3 and

add them to the minimal model described in Chapter 2. We then discuss the

constraints on this model imposed by gauge coupling unification and by various

phenomenological observations, such as neutrino masses, the proton decay lifetime,

DM direct detection experiments, etc.

• Chapter 7 investigates the stability of vacuum and the possibility of radiative

symmetry breaking in the context of a scalar WIMP model obtained in Chapter 5.

And then we give a brief summary and outlook in Conclusion.

This thesis is a combination of several recent works of the author in Ref. [1].



Chapter 2

SO(10) gauge unification theory

without dark matter

In this chapter, we introduce the “minimal” non-supersymmetric SO(10) model without

getting into details of group theory. This model will act as the starting point of the

model building in the later chapters that includes various kinds of dark matter. This

model is minimal in the sense that it only contains the minimal numbers of particles for

the embedding of the standard model and the need of symmetry breaking. In Sec. 2.1

we discuss how SO(10) can be broken spontaneously to GSM; Sec. 2.2 describes the

particle content of SO(10) unification theory and how these particles distribute over

different energy scales; Finally in Sec. 2.3, we calculate the running of couplings and

energy scales by assuming gauge coupling unification at a high scale.

2.1 Breaking train of SO(10)

SO(10) is a rank-five group while the Standard Model gauge group, GSM = SU(3)C ⊗
SU(2)L ⊗ U(1)Y is rank-four. This implies that the breaking of SO(10) to GSM can

take place in multiple steps. As we will see later, this feature is essential for achieving

gauge coupling unification without supersymmetry [5–7]. In this work, we assume a

two-step symmetry breaking train from SO(10) to the SM: the SO(10) gauge group is

first spontaneously broken to an intermediate subgroup Gint at the GUT scale MGUT,

5
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and subsequently broken to the SM gauge group GSM at an intermediate scale Mint:

SO(10)
R1−−→ Gint

R2−−→ GSM ⊗ ZN , (2.1)

with GSM ≡ SU(3)C ⊗ SU(2)L ⊗U(1)Y . The Higgs multiplets which break SO(10) and

Gint are called R1 and R2, respectively. In addition, we require that there is a remnant

discrete symmetry Z2 that is capable of rendering a charge-neutral field to be stable

and hence account for the DM in the Universe [8,9]. Such mechanism will be discussed

in more detail in Sec. 3.1. Overall, there are three energy scales that are important in

this thesis: the GUT scale MGUT, the intermediate scale Mint and the weak scale MZ .

In Table 2.1, we summarize the rank-five subgroups of SO(10) and the Higgs multi-

plets R1 whose Vacuum Expectation Values(VEVs) break SO(10) into the subgroups.1

Here the SO(10) representations are labeled by their dimensions. We only consider the

representations whose dimensions are less than or equal to 210. Here, D denotes the

so-called D-parity or the left-right symmetry [10], that is, the symmetry with respect

to the exchange of SU(2)L ↔ SU(2)R. In cases where the D-parity is not broken by

R1, it is subsequently broken by R2 at the scale of Mint. Note that the VEVs of the R1

Higgs fields will be taken to be even under the Z2 symmetry. Thus, there is no danger

for this Z2 symmetry to be spontaneously broken by the R1 Higgs fields.

In the rest of the thesis we only consider subgroups without an explicit SU(5) factor.

Since the DM is necessarily a color singlet, the running of the strong gauge coupling

is unaltered by the presence of a new DM particle below the intermediate scale. Thus

even though the addition of a DM multiplet yields unification of the gauge couplings,

the unification scale Mint is always less than 1014 GeV as the contribution to the U(1)Y

beta function is always positive. If we now associate Mint with SU(5), this low partial

unification is heavily disfavored on the basis of proton lifetime constraints. Flipped

SU(5) usually has a high intermediate scale and a high GUT scale close to the Planck

scale. In this case higher dimension operators suppressed by Planck scale become im-

portant, and one may also need to rely on a double seesaw for the explanation of

neutrino masses. These bring extra complication into our model and we do not consider

these possibilities here. Other intermediate gauge groups in the table are subgroups of

1 See Ref. [28] for detailed table of branching rules of SO(10) to its various subgroups.
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Table 2.1: Candidates for the intermediate gauge group Gint.

Gint R1

SU(4)C ⊗ SU(2)L ⊗ SU(2)R 210

SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D 54

SU(4)C ⊗ SU(2)L ⊗U(1)R 45

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L 45

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L ⊗D 210

SU(3)C ⊗ SU(2)L ⊗U(1)R ⊗U(1)B−L 45, 210

SU(5)⊗U(1) 45, 210

Flipped SU(5)⊗U(1) 45, 210

SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D, and U(1)B−L is a subgroup of SU(4)C . The relation-

ship among hypercharge Y , the U(1)B−L charge B − L, and the third component of

the SU(2)R generators T 3
R is very useful for determining the quantum numbers of DM

candidates:

Y =
B − L

2
+ T 3

R . (2.2)

The convention we are using for hypercharge is such that electric charge is given by

Q = T 3
L + Y , with T 3

L denoting the third component of the SU(2)L generators.

To break Gint to GSM, a VEV needs to be developed in a component of R2 that is

singlet under GSM but charged under the rest of Gint. If we restrict ourselves to SO(10)

representation with dimension not larger than 210, the only possible choices are 16C

and 126C , where the subscript C stands for complex representations. Among the two

choices, only 126C leaves a remnant Z2 symmetry that is required for stabilizing the

dark matter. Thus for the rest of the thesis, 126C is always responsible for breaking the

intermediate gauge symmetry Gint.

2.2 Particle content and mass hierarchy

In SO(10) GUTs, the SM fermions as well as three right-handed neutrinos are embedded

into three copies of the 16 spinor representations, while the SM Higgs boson is usually

included in a 10 representation. The components of an SO(10) representation generally
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have masses of different energy scales. To determine the mass hierarchy of componets

in an SO(10) representation, we work with the so-called extended survival hypothesis

[11,12]; that is, at each scale, we assume that a minimal set of Higgs multiplets necessary

to realize the symmetry breaking exists in low-energy region. The rest of the SO(10)

representation lies at the highest possible scale that is consistent with the symmetry

groups at each scale. The motivation of this assumption is to minimize the fine-tuning

condition needed for the low energy spectrum.

Within this assumption the whole R1 representation lies at MGUT. For R2, only

the component that developes a VEV and its companions under Gint transformation lie

at Mint for the purpose of intermediate scale symmetry breaking. The rest of R2 stay

at MGUT. The masses of the gauge bosons are determined by the Higgs mechanism:

the mass scale of the gauge boson is the mass scale where the related symmetry is

broken. Above the intermediate scale, the presence of the additional Higgs multiplet

and intermediate gauge bosons change the gauge coupling running from that in the SM.

This makes it possible to realize gauge coupling unification in this scenario.

Since intermediate gauge groups we consider is related to the Pati-Salam gauge group

[13], it is useful to decompose the SO(10) multiplets into multiplets of the SU(4)C ⊗
SU(2)L ⊗ SU(2)R gauge group. The 16 spinor representation in SO(10) is decomposed

into a (4,2,1) and (4,1,2) of SU(4)C ⊗ SU(2)L⊗ SU(2)R. We denote them by ΨL and

Ψc
R, respectively, in which the SM fermions are embedded as follows:

ΨL =

(
u1
L u2

L u3
L νL

d1
L d2

L d3
L eL

)
, Ψc

R =

(
dcR1 dcR2 dcR3 ecR

−ucR1 −ucR2 −ucR3 −νcR

)
, (2.3)

where the indices represent the SU(3)C color and c indicates charge conjugation. The

SM Higgs field is, on the other hand, embedded in the (1,2,2) component of the ten-

dimensional representation. As discussed in Ref. [14], to obtain the viable Yukawa

sector,2 we need to consider a complex scalar 10C for the representation, not a real one.

Thus, (1,2,2) is also a complex scalar multiplet and includes two Higgs doublets. In the

following calculation, we regard one of these doublets as the SM Higgs boson, and the

other has a mass around the intermediate scale. Other components in the 10C can only

lie at the GUT scale because they induce proton decay. The SU(4)C⊗SU(2)L⊗SU(2)R

2 For a general discussion on the Yukawa sector in SO(10) GUTs, see Refs. [14, 15].
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gauge group is broken by the VEV of the (10,1,3) component in the 126C . In the

presence of the left-right symmetry, we also have a (10,3,1) above the intermediate

scale. We assume that the (10,3,1) field does not acquire a VEV, with which the

constraint coming from the ρ-parameter is avoided. 3 From these charge assignments,

one can readily obtain the quantum numbers for the corresponding fields in the other

intermediate gauge groups, since they are subgroups of the SU(4)C ⊗SU(2)L⊗SU(2)R.

2.3 Gauge coupling unification

With this field content, we study whether the gauge coupling unification is actually

achieved or not for the first six intermediate gauge groups listed in Table 2.1. We

perform the analysis by using the two-loop RGEs, which are given in Appendix B. We

will work in the DR scheme [16], as there is no constant term in the intermediate and

GUT scale matching conditions. The input parameters that we use to obtain the the

weak scale couplings in our analysis are listed in Table A.1 in Appendix A. By solving

the RGEs and assuming gauge coupling unification, we determine the intermediate scale

Mint, the GUT scale MGUT, and the unified gauge coupling constant gGUT. If we fail

to find the appropriate values for these quantities, we will conclude that gauge coupling

unification is not realized in this case. To determine their central values as well as the

uncertainty coming from the input parameters, we form a χ2 statistics as

χ2 =

3∑
a=1

(g2
a − g2

a,exp)2

σ2(g2
a,exp)

, (2.4)

where ga are the gauge couplings at the electroweak scale obtained by solving the RGEs

on the above assumption, ga,exp are the experimental values of the corresponding gauge

couplings with σ(g2
a,exp) denoting their uncertainty. The central values of Mint, MGUT,

and gGUT are corresponding to a point at which χ2 is minimized.4

By using the method discussed above, we carry out the analysis and summarize

the results in Table 2.2. Here, we show log10(Mint), log10(MGUT), and gGUT. For

3 The ρ-parameter is defined as the ratio between the strength of the neutral and the charged
current. ρ = 1 at tree level of the SM, and deviates from this value if the Higgs VEV contains any
component that is not part of a doublet.

4 We also use the χ2 statistics to determine the value of the input Yukawa coupling in a similar
manner, though it scarcely affects the uncertainty estimation of Mint, MGUT, and gGUT.
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Table 2.2: log10(Mint), log10(MGUT), and gGUT. For each Gint, the upper shaded (lower)

row shows the 2-loop (1-loop) result. Mint and MGUT are given in GeV. The blank

entries indicate that gauge coupling unification is not achieved.

Gint log10(Mint) log10(MGUT) gGUT

SU(4)C ⊗ SU(2)L ⊗ SU(2)R 11.17(1) 15.929(4) 0.52738(4)

11.740(8) 16.07(2) 0.5241(1)

SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D 13.664(3) 14.95(1) 0.5559(1)

13.708(7) 15.23(3) 0.5520(1)

SU(4)C ⊗ SU(2)L ⊗U(1)R 11.35(2) 14.42(1) 0.5359(1)

11.23(1) 14.638(8) 0.53227(7)

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L 9.46(2) 16.20(2) 0.52612(8)

8.993(3) 16.68(4) 0.52124(3)

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L ⊗D 10.51(1) 15.38(2) 0.53880(3)

10.090(9) 15.77(1) 0.53478(6)

SU(3)C ⊗ SU(2)L ⊗U(1)R ⊗U(1)B−L

each intermediate gauge group, the upper shaded (lower) row shows the 2-loop (1-loop)

result. Mint and MGUT are given in GeV. The blank entries indicate that gauge coupling

unification is not achieved. The uncertainties of the last digits of the numbers resulting

from the input parameters are also shown in the parentheses. Threshold corrections

at Mint and MGUT [17] due to the non-degeneracy of the particles that have masses of

the order of these scales contribute to the uncertainties that are generally larger than

the ones from the input error.5 For a recent discussion of threshold corrections,

see Ref. [18]. In addition, we neglect the contribution of Yukawa couplings above the

intermediate scale, which causes additional error. These are expected to give O(1)%

uncertainty to the resulting scales and coupling.

From Table 2.2, it is found that gauge coupling unification is not achieved in the

5 Note that the intermediate scale in the left-right symmetric theories does not depend on physics
beyond Mint, as discussed in Appendix D.



11

case of Gint = SU(3)C ⊗ SU(2)L ⊗U(1)R ⊗U(1)B−L. Moreover, we find that relatively

low GUT scales are predicted for Gint = SU(4)C ⊗ SU(2)L⊗ SU(2)R⊗D and SU(4)C ⊗
SU(2)L⊗U(1)R, and thus the proton decay constraints may be severe in these cases, as

discussed in Sec. 4.4.2. Furthermore, except for Gint = SU(4)C ⊗SU(2)L⊗SU(2)R⊗D,

we obtain low intermediate scales, with which it may be difficult to account for the

neutrino masses, as explained in Sec. 4.4.1. As we will see in Chapter 4, this situation

can be improved in the NETDM models.



Chapter 3

Dark matter candidates

In this chapter, we will give a list of SO(10) representations that can contain a dark

matter candidate. We only require the dark matter candidate to be stable and neutral

under the strong interaction and the electromagnetic interaction. Further constraints

on the dark matter will be placed in Chapter 4, 5, 6, where we discuss different dark

matter scenarios. Again, we only consider SO(10) representations with dimension not

larger than 210.

3.1 Extra U(1) and dark matter stability

For a wide class of DM models, the dark matter particle candidate is stable or have a

sufficiently long lifetime compared to the age of the Universe. This stability is usually

protected by a discrete symmetry of the model. For example, the R-parity in MSSM [19],

the Kaluza-Klein parity in universal extra dimensional models [20] and T -parity in

the Littlest Higgs model [21] yield stable particles, which can also be promising DM

candidates. The origin of such symmetry is often imposed by hand. Thus it would be

interesting if a theory can generate this discrete symmetry naturally.

In fact, GUTs can provide such a framework. Suppose that the rank of a GUT gauge

group is larger than four. In this case, the GUT symmetry contains extra symmetries

beyond the SM gauge symmetry. These extra symmetries should be spontaneously

broken at a high-energy scale by a vacuum expectation value (VEV) of a Higgs field.

Then, if we choose the proper representation for the Higgs field, there remain discrete

12
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symmetries, which can be used for DM stabilization [8, 9, 22–26]. The discrete charge

of each representation is uniquely determined, and thus we can systematically identify

possible DM candidates for each symmetry.

This mechanism can be summarized briefly as the following: suppose there is an

extra U(1) gauge symmetry in addition to the SM gauge group. We define the normal-

ization of the U(1) coupling such that all of the fields φi in a given model have integer

charges Qi with the minimum non-zero value of |Qi| equal to +1. Now, let us suppose

that a Higgs field φH has a non-zero charge QH . Then, if QH = 0 (mod. N) with N ≥ 2,

the U(1) symmetry is broken to a ZN symmetry after the Higgs field obtains a vacuum

expectation value (VEV). One can easily show this by noting that both the Lagrangian

and the VEV 〈φH〉 are invariant under the following transformations:

φi → exp

(
i2πQi
N

)
φi , 〈φH〉 → exp

(
i2πQH
N

)
〈φH〉 = 〈φH〉 . (3.1)

Thus the stability of DM can be guaranteed by the remnant ZN symmetry originating

from the extra U(1) gauge symmetry if the U(1) charge of the DM is chosen correctly.

SO(10) has one more rank compared to the SM gauge group and the mechanism

described above can be applied directly to the extra U(1) factor in SO(10). For the

intermediate scale gauge groups we consider in Table 2.2, we can focus on the breaking

of

U(1)B−L ×U(1)R → U(1)Y . (3.2)

If this breaking is caused by a Higgs field with even B− L, the low energy theory will be

invariant under the matter parity PM = (−1)3(B−L). For representations of dim(R) ≤
210, only 16 and 126 contain SM singlets that are charged under U(1)B−L×U(1)R. The

|B−L| number of the singlets are one and two respectively. Thus 126 is the only choice

of the Higgs multiplet that breaks Gint to GSM and a discrete symmetry. Finally, it is

worth noting that all the components of a SO(10) representation has the same matter

parity, thus the heavier components of the dark matter representation will decay to the

dark matter particle and SM particles. 1

1 For a group theoretical treatment of general Higgs representation that give rise to a discrete
symmetry in addition to GSM, see [27]
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3.2 Dark matter representations

In the last section, we showed that a Z2 symmetry can be preserved at the low energy

with a suitable choice of representation R2. This symmetry is equivalent to the matter

parity PM = (−1)3(B−L), and we can combine it with rotational symmetry to get the

R-parity usually imposed by hand on supersymmetric dark matter models:

R ≡ (−1)3(B−L)+2s , (3.3)

where s is the spin of the particle. The standard model fermions belong to 16 rep-

resentations and have PM = −1; the SM Higgs doublet belongs to 10, the SM gauge

bosons belong to 45 and thus the SM bosons have PM = +1; Thus the SM particles

has R = +1, and the B − L quantum number of the dark matter particle needs to be

odd(even) for scalar(fermion) candidate.

Following the branching rules given in Ref. [28], in Table 3.1, we list SU(2)L⊗U(1)Y

multiplets in various SO(10) representations that contain an electrically neutral color

singlet. A similar list of candidates can be found in earlier work [9]. The table is classified

by B − L so one can check the matter parity of the candidates easily; B − L = 0, 2

candidates are fermionic while B−L = 1 candidates are scalar, labeled by an “F” or “S”

at the beginning of each row, respectively. A fermionic DM candidate should belong to

a 10, 45, 54, 120, 126, 210 or 210′ representation, while scalar DM is belongs to a 16

or 144 representation [26,27,29]. The subscript of the model names denotes the SU(2)L

representation, while the superscript shows hypercharge. A hat is used for B − L = 2

candidates.

Different type of dark matter models can be constructed according to the SU(2)L⊗
U(1)Y assignment of the DM multiplet and the possible interactions between SM par-

ticles and the DM candidate. For example, the fermionic candidates F01 and F̂01 are SM

singlets and can only interact with SM particles through exchange of intermediate scale

virtual particles. The interaction rate is suppressed by the intermediate scale and thus

these fermionic candidates will never reach equilibrium with the thermal bath of SM par-

ticles. This fits in the frame work of Non-Equilibrium Thermal Dark Matter(NETDM)

Scenario, where the dark matter particles are produced continuously out-of-equilibrium

after the reheating process. We will consider this class of model in detail in Chapter 4.
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Table 3.1: List of SU(2)L⊗U(1)Y multiplets in SO(10) representations that contain an

electric neutral color singlet.

Model B − L SU(2)L Y SO(10) representations

F01

0

1 0 45, 54, 210

F
1/2
2 2 1/2 10, 120, 126, 210′

F03 3 0 45, 54, 210

F13 3 1 54

F
1/2
4 4 1/2 210′

F
3/2
4 4 3/2 210′

S01

1

1 0 16, 144

S
1/2
2 2 1/2 16, 144

S03 3 0 144

S13 3 1 144

F̂01

2

1 0 126

F̂
1/2
2 2 1/2 210

F̂13 3 1 126

Other candidates are either scalar singlet that can interact with the SM Higgs dou-

blet through a quartic coupling, or are charged under the electroweak interaction so that

they can interact with SM particles through exchange of W orZ boson. Such candidates

can interact with SM particles efficiently and fit in the Weakly Interactive Massive Par-

ticle(WIMP) DM scenario, which requires DM to be in thermal equilibrium with the

SM particles before its abundance freezes out. Such possibility will be discussed in

Chapter 5.

Finally, it is also possible that theR-parity odd particles develope a matter-antimatter

asymmetry in its number density in the early universe. This can be relavent to baryoge-

nesis and is usually called the Asymmetric Dark Matter(ADM) scenario. This scenario

is generally relevant to complex representations that can distinguishes matter and anti-

matter, such as 16, 144 and 126. We will show some realistic models in the context of

SO(10) unification theory in Chapter 6.
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3.3 Mass hierarchy of dark matter representation

The mass hierarchy of components of a dark matter representation follows a similar

assumption as the “extended survival hypothesis” of Higgs reporesentation discussed in

Sec. 2.2. That is, at each mass scale, there is a minimal number components necessary

to achieve the observed dark matter abundance ΩCDMh
2 ≈ 0.12. [45]. For example,

consider the doublet WIMP DM candidate S
1/2
2 in a complex scalar 16, in an SO(10)

unification with intermediate symmetry SU(4)C ⊗ SU(2)L ⊗ SU(2)R. The dark matter

particle and its SU(2)L companion should have mass of ∼ 1 TeV to achieve the correct

relic densityc ite, and according to the hypothesis, only these two complex degrees of

freedom among the 16 lie at TeV scale. The branching rule of SO(10)supsetSU(4)C ⊗
SU(2)L ⊗ SU(2)R gives

16→ (4,1,2)⊕ (4,2,1) (3.4)

The DM doublet belongs to (4,2,1), so to complete the Gint representation, the other

6 complex degrees of freedom should lies at the intermediate scale. The rest of the 16

les at the GUT scale, which is the highest scale of the model.

One of the motivation for this mass distribution is to minimize the fine-tuning

condition needed to realized the mass spectrum. Moreover, a charged particle in

the DM reporesentation can have a cosmological lifetime if its mass is nearly de-

generate with the DM particle. For an example, consider a NETDM model with

Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R and a majorana 45 as the DM representation. The

DM candidate can be chosen as the SM singlet of a right-handed triplet (ψ0, ψ±). Now

suppose the triplet have degenerate mass M around the TeV scale at tree level. ψ± are

electrically charged and they will be in thermal equilibrium. The mass difference ∆M

between the charged and neutral components induced by the radiative corrections can

be estimated as

∆M ' α1

4π
M ln

(
Mint

M

)
∼ 0.01×M , (3.5)

where α1 is the U(1) gauge fine-structure constant. The charged components ψ± can

decay into the neutral DM ψ0 only through the exchange of a virtual intermediate-scale

gauge boson WR, which decays into a pair of SM fermions subsequently. We estimate
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the decay width as

Γ(ψ+ → ψ0ff̄ ′) ∼ α2
R

π

(∆M)5

M4
WR

, (3.6)

where αR = g2
R/4π and gR and MWR

are the coupling and the mass of the intermediate

gauge boson WR, respectively. Then, for example, when the DM mass is O(1) TeV and

the intermediate scale is O(1013) GeV, the lifetime of ψ+ is much longer than the age of

the Universe, and thus cosmologically stable. The abundance of such a stable charged

particle is stringently constrained by the null results of the searching for heavy hydrogen

in sea water [30]. The DM multiplets in other cases may also be accompanied by stable

colored particles, whose abundance is severely restricted as well. If the intermediate

scale is relatively low, the charged/colored particle can have a shorter lifetime. Even in

this case, their thermal relic abundance should be extremely small in order not to spoil

the success in the Big-Bang Nucleosynthesis (BBN). Quite generally, a degenerate mass

spectrum leads to disastrous consequences. This is another motivation to split the DM

representation into different mass scales.

The most straight forward way to split the masses of components in a DM repre-

sentation is to make use of the VEVs that drive the spontaneous symmetry breaking

chain, because the couplings of a VEV to different quadratic operators are in general

different by the Clebsch-Gordon coefficients. For a scalar DM representation RDM, the

Lagrangian that is relevant to the mass term can be written as

−Lint = M2|RDM|2 + κ1R
∗
DMRDMR1 + {κ2RDMRDMR

∗
2 + h.c.}

+ λ11 |RDM|2|R1|2 + λ12 |RDM|2|R2|2 +
{
λ12612 (RDMRDM)126 (R1R

∗
2)126 + h.c.

}
+
∑
R′

λR
′

1 (R∗DMRDM)R′ (R
∗
1R1)R′ +

∑
R′′

λR
′′

2 (R∗DMRDM)R′′ (R
∗
2R2)R′′ , (3.7)

where the subscripts after the parentheses denote the SO(10) representation formed by

the product in them. The last line is summed over all possible represenations R′, R′′

that can be obtained from R∗1R1 and R∗2R2 respectively. M , κ1, and κ2 are dimensionful

parameters, which we assume to be O(MGUT). The terms with the coefficients λ11 and

λ12 are irrelevant to the generation of the mass splitting in the DM multiplet, as they only

give a common mass to all of the components in the multiplet. It is also worth noting

that terms including κ2 and λ12612 break the particle number which can be assigned to
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the complex scalar RDM. Hence, these effects can split RDM into two real scalars with

different masses. We use these interactions to avoid the direct detection bound in the

case of the complex hypercharged WIMP DM, which we discuss in Sec. 5.3.3

After R1 gets a VEV, the terms with κ1 and λR
′

1 generate mass terms for the com-

ponents in RDM with different mass values, since the R1 VEV couples to them with

different Clebsch-Gordan coefficients. Thus, by fine tuning the coefficients M , κ1 and

λR
′

1 , one can arrange that the DM multiplet obtains a mass of O(Mint), with other

multiplets remaining around O(MGUT).

The next step is to separate the SU(2)L multiplet SYn from the intermediate gauge

group multiplet. This can be accomplished by appropriately tuning the coefficients of

κ2, λ12612 and λR
′′

2 so that the generated mass terms cancel out the intermediate scale

mass obtained previously, leaving only the electroweak multiplet of DM candidate at

TeV scale. After this step, we obtain a mass spectrum in which only the DM candidate

lies around the TeV scale, while its partner fields with respect to the intermediate gauge

symmetry are at Mint. The rest of the components of RDM have masses of O(MGUT).

For the case of fermionic dark matter candidates, the renormalisable operators that

give rise to the mass term of the dark matter has the form of

−LDM = MRDMRDM −R1RDMRDM −R2RDMRDM

→ (M − c1vGUT − c2vint)χχ . (3.8)

The VEVs of the components of R1 and R2 that break SO(10) and Gint are denoted by

vGUT ∼MGUT and vint ∼Mint, respectively; χ denotes the DM field and M ∼MGUT is

a universal mass. c1 and c2 are the Clebsch-Gordan coefficients that vary for different

RDM components. Thus, by fine-tuning M such that M − c1vGUT − c2vint ∼ 1 TeV, we

can set the DM triplet to be at TeV scale while leaving other contents in RDM either

around Mint or MGUT. Finally, it is worth noting that for fermionic RDM listed in

Table 3.1, it is impossible to form a singlet out of RDMRDM126H or R∗DMRDM126H .

Thus c2 = 0 if R2 = 126, and the whole Gint multiplet have a common mass. To split the

mass of the dark matter candidate from other components, it is necessary to add extra

components to R2 so that R2 = 126⊕R′2. R′2 is chosen from 45, 54 or 210 according

to Table 2.1, and developes a VEV of 〈R′2〉 ∼Mint that breaks Gint partly. If 〈R′2〉 can

couple to the dark matter candidate through a Yukawa-like interaction R∗DMRDMR
′
2,
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the symmetry of the DM multiplet is broken at tree level and thus the mass of the DM

candidate can be seperated from the rest of the multiplet by fine-tuning.



Chapter 4

Non-Thermal Equilirium Dark

Matter

In this chapter, we consider candidates of Non-Equilibrium Thermal Dark Matter(NETDM)

in an SO(10) unification theory. Candidates of NETDM should be a SM singlet so they

can only interact extremely weakly with the SM thermal bath in the early universe.

The production interaction of the NETDM will never be in equilibrium, and unlike the

WIMP scenario, the relic density of NETDM is sensitive to the reheating temperature

at which the production process begins.

4.1 Candidates of NETDM

The NETDM mechanism in an SO(10) unification model was first proposed in [7] where

the DM particle is a SM singlet but charged underGint so it can only be produced in the

early Universe via the exchange of the heavy intermediate-scale particles. Therefore,

the production rate is extremely small and their self-annihilation can be neglected. In

addition, the produced DM cannot be in the thermal bath since they have no renormal-

izable interactions with the SM particles. These two features characterize the NETDM

mechanism; the DM is produced by SM particles in the thermal bath via the interme-

diate boson exchange, while they do not annihilate with each other nor attain thermal

equilibrium.

The out-of-equilibrium requirement disfavors scalar DM candidates since a scalar, φ,

20
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Table 4.1: Candidates for the NETDM.

Gint RDM SO(10)

SU(4)C ⊗ SU(2)L ⊗ SU(2)R (1, 1, 3) 45

(15, 1, 1) 45, 210

(10, 1, 3) 126

(15, 1, 3) 210

SU(4)C ⊗ SU(2)L ⊗U(1)R (15, 1, 0) 45, 210

(10, 1, 1) 126

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L (1, 1, 3, 0) 45, 210

(1, 1, 3, −2) 126

SU(3)C ⊗ SU(2)L ⊗U(1)R ⊗U(1)B−L (1, 1, 1, −2) 126

can always have a quartic coupling with the SM Higgs field H — λφH |φ|2|H|2. Unless

|λφH | is extremely small for some reason, this coupling keeps scalar DM in thermal

equilibrium even when the temperature of the Universe becomes much lower than the

reheating temperature. Therefore, we focus on fermionic DM candidates F01 and F̂01 in

Table 3.1: they should be contained in either a 45, 54, 126, or 210 representation.

We follow the discussion in Section 3.3 to determine the mass scale of compoents

in the dark matter representation. In Table 4.1, we summarize possible candidates for

representation RDM for each intermediate gauge group that contains the DM candidate.

We assume the dark matter particle has a mass of TeV scale, and other components of

RDM lie around Mint. The rest of the SO(10) representation have GUT scale masses.

With this spectrum of DM representation in mind, we are now able to evaluate the

running of the gauge coupling constants and the scales.

4.2 NETDM and gauge coupling unification

In this section we look for the NETDM models in which gauge coupling unification is

realized with an appropriate intermediate unification scale. Here, we require 1015 .

MGUT . 1018 GeV; if MGUT < 1015 GeV, then proton decays are too rapid to be
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consistent with proton decay experiments, while ifMGUT > 1018 GeV, then gravitational

effects cannot be neglected anymore and a calculation based on quantum field theories

may be invalid around the GUT scale. To search for promising candidates, we assume

the following conditions. Firstly, a model should contain a NETDM candidate shown

in Table 4.1, where only a singlet component has a mass much below the intermediate

scale. This component does not affect the running of the gauge couplings. Secondly,

the rest of the components in RDM are assumed to be around Mint due to the mass

splitting mechanism with an additional Higgs multiplet, discussed in Sec. 3.3. At this

point, we only assume that there exists an extra Higgs multiplet from either the 45, 54

or 210 whose mass is around the intermediate scale. Whether the VEV of the extra

Higgs actually gives rise to the mass splitting or not will be discussed in the subsequent

section. Thirdly, we require that only the SM fields, the intermediate gauge bosons,

RDM, and R2 are present below the GUT scale. For example, if we consider the (1,

1, 3) DM of the 45 given in the first column in Table 4.1, then we suppose that all of

the components of the 45 except RDM = (1,1,3) should have masses around the GUT

scale. This condition is corresponding to the requirement of the minimal fine-tunings

in the scalar potential to realize an adequate mass spectrum.

With the conditions, we then search for possible candidates by using the one-loop

analytic formula given in Appendix D. In Table 4.2, we summarize the field contents

that satisfy the above requirements, as well as the values of log10(Mint), log10(MGUT),

and gGUT, with Mint and MGUT in GeV. All of the values are evaluated at one-loop

level. Here the subscript R, C, W , or D of each multiplet indicates that it is a real

scalar, a complex scalar, a Weyl fermion, or a Dirac fermion, respectively. As for the

intermediate Higgs fields, R2, listed in Table 4.2, (10,1,3)C and (1,1,3,−2)C are from

the 126 Higgs field, while all other representations included in R2 are extra Higgs fields

introduced to resolve the degeneracy problem. For the additional Higgs fields, we only

show the real scalar cases for brevity. Indeed, we can also consider complex scalars for

the Higgs fields and find that gauge coupling unification is also realized in these cases,

where both the intermediate and GUT scales are only slightly modified.
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Table 4.2: Models that realize the gauge coupling unification. Mint and MGUT are given

in GeV. All of the values listed here are evaluated at one-loop level.

SU(4)C⊗SU(2)L⊗SU(2)R

RDM R2 log10(Mint) log10(MGUT) gGUT

(1,1,3)W
(10,1,3)C
(1,1,3)R 10.8 15.9 0.53

(1,1,3)D
(10,1,3)C
(1,1,3)R 9.8 15.7 0.53

SU(4)C⊗SU(2)L⊗SU(2)R ⊗D
RDM R2 log10(Mint) log10(MGUT) gGUT

(15,1,1)W

(10,1,3)C
(10,3,1)C
(15,1,1)R

13.7 16.2 0.56

(15,1,1)W

(10,1,3)C
(10,3,1)C
(15,1,3)R
(15,3,1)R

14.2 15.5 0.56

(15,1,1)D

(10,1,3)C
(10,3,1)C
(15,1,3)R
(15,3,1)R

14.4 16.3 0.58

SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L

RDM R2 log10(Mint) log10(MGUT) gGUT

(1,1,3, 0)W
(1,1,3,−2)C
(1,1,3, 0)R 6.1 16.6 0.52

4.3 Models

In the previous section, we have reduced the possible candidates to those presented in

Table 4.2. In this section, we study if any of those models are viable, i.e., we check if

they actually offer appropriate mass spectrum to realize the NETDM scenario, with the

charged/colored components in RDM acquiring masses of O(Mint).

First, let us consider the (1,1,3)W/D DM representation in the SU(4)C ⊗ SU(2)L⊗
SU(2)R gauge theory. To split the masses in the (1,1,3) multiplet ψr, we need to couple
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the DM with the (1,1,3)R Higgs φr, with r denoting the SU(2)R index. Since the fields

transform as triplets under the SU(2)R transformations, to construct an invariant term

from the fields, the indices should be contracted anti-symmetrically, i.e., the coupling

should have a form like

εpqr(ψ)pψqφr . (4.1)

Then, if ψr is a Majorana fermion, the above term always vanishes. Thus, ψr should

be a Dirac fermion, that is, (1,1,3)D is the unique candidate for NETDM in this case.

Next, we study the terms in the SO(10) Lagrangian relevant to the masses of the

fields much lighter than the GUT scale. In SO(10), (1,1,3)D, (1,1,3)R, and (10,1,3)C

are included in the 45D, 45R, and 126C , respectively. The SO(10) gauge group is

spontaneously broken by the 210R Higgs field (R1) into the SU(4)C ⊗SU(2)L⊗SU(2)R

intermediate gauge group. As is usually done in the intermediate scale scenario, we fine-

tune the Higgs potential so that the (1,1,3)R and (10,1,3)C Higgs fields have masses

around the intermediate scale. This can be always performed by using the couplings

of the 45R and 126C fields with the 210R Higgs field, which acquires a VEV of the

order of the GUT scale. Similarly, we give desirable masses to the fields in (1,1,3)D

by carefully choosing the couplings of the 45D fermion with the 45R and 126C Higgs

fields. Here, the relevant interactions are

Lint = −M45D45D45D − iy4545D45D45R − y21045D45D210R . (4.2)

Notice that 45D does not couple to the 126C field, as already mentioned in Sec. 3.3.

After the R1 = 210R Higgs field gets a VEV 〈210R〉 = v210, the interactions in Eq. (4.2)

lead to the following terms:1

Lint → −MDM(ψ)rψr − iy45εrst(ψ)rψsφt , (4.3)

with MDM = M45D + y210v210/
√

6. Here, ψr and φr denote the (1,1,3)D and (1,1,3)R

components in 45D and 45R, respectively. We find that although M45D and v210 are

expected to be O(MGUT), we can let MDM be much lighter than the GUT scale by

carefully choosing the above parameters so that they cancel each other. In addition, it

turns out that the mass term of the (1,3,1)D component in 45D is given by M45D −
1 For the computation of the Clebsch-Gordan coefficients, we have used the results given in Ref. [53].
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y210v210/
√

6. Thus, even if we fine-tune M45D and y210 to realize MDM � MGUT, the

mass of (1,3,1)D is still around the GUT scale. This observation reflects the violation

of the D-parity in this model. At this point, all of the components in ψr have identical

masses (the “degeneracy problem”). Once the neutral component of φr acquires a VEV

〈φ3〉 = v45, which is assumed to be O(Mint), the second term in Eq. (4.3) gives rise to

additional mass terms for ψr. These are

Lint → −MDMψ0ψ0 −M+ψ+ψ+ −M−ψ−ψ− , (4.4)

where M± = MDM ∓ y45v45, and ψ0 and ψ± are the neutral and charged components,

respectively.2 The above expression shows that the VEV of the 45R Higgs field indeed

solves the degeneracy problem; if MDM �Mint and y45v45 = O(Mint), then the charged

components acquire masses of O(Mint), while the neutral component has a mass much

lighter than Mint. Thus, we obtain the mass spectrum we have assumed in the previous

section.

In the next example, we consider the DM representation RDM = (15,1,1)W with

R2 = (10,1,3)C⊕(10,3,1)C⊕(15,1,1)R in the left-right symmetric SU(4)C⊗SU(2)L⊗
SU(2)R gauge theory. In this case, R1 = 54R. We assume that the (15,1,1)W is a part

of the 45W , while both (10,1,3)C and (10,3,1)C are part of the 126C . The couplings

of the DM with the Higgs fields, as well as its mass term, are then given by

Lint = −M45W

2
45W45W −

y54

2
45W45W54R −

y210

2
45W45W210R + h.c. , (4.5)

Here, (15,1,1)R is included in the 210R field; we cannot use a 45R in this case since

the Weyl fermion 45W has no coupling to the 45R.3 As before, below the GUT

scale, the VEV of 54R, v54, gives a common mass M to the (15,1,1)W multiplet with

M = M45W − y54v54/
√

15. We can take M = O(Mint) by fine-tuning M45W and y54v54.

The above Lagrangian then reduces to

Lint → −
M

2
ψAψA +

2y210√
3

Tr(ψφψ) + h.c. , (4.6)

where ψA and φA denote the (15,1,1)W and (15,1,1)R fields, respectively, with ψ ≡
ψATA and φ ≡ φATA; A,B,C = 1, . . . 15 are the SU(4) adjoint indices and TA are the

2 Note that since ψr are Dirac fermions, (ψ0)C 6= ψ0 and (ψ±)C 6= ψ∓
3 It is also possible to embed (15,1,1)W into 210W and (15,1,1)R into 45R. The phenomenology

in this case is the same as that discussed in text.
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SU(4) generators. The mass degeneracy in this case is resolved by the VEV of the 210R

field,

〈φ〉 =
v210

2
√

6
diag(1, 1, 1,−3), (4.7)

with which Eq. (4.6) leads to

Lint → −
MDM

2
ψ0ψ0 − Mg̃

2
g̃Ag̃A −Mξξaξ

a + h.c. , (4.8)

where ψ0, g̃A, ξa, and ξa are the color singlet, octet, triplet, and anti-triplet components

in (15,1,1)W , respectively, with a denoting the color index, and

MDM = M +

√
2

3
y210v210 , (4.9)

Mg̃ = M − 1

3
√

2
y210v210 , (4.10)

Mξ = M +
1

3
√

2
y210v210 . (4.11)

Therefore, by carefully adjusting y210v210, we can make the DM ψ0 much lighter than

Mint while keeping the other components around the intermediate scale.

There are two more possible representations for RDM for the left-right symmet-

ric SU(4)C ⊗ SU(2)L ⊗ SU(2)R intermediate gauge group given in Table 4.2, namely

(15,1,1)W/D. In this case, however, one can readily conclude that the degeneracy

problem cannot be solved by the (15,1,3)R and (15,3,1)R Higgs fields. This is be-

cause the Yukawa couplings between the DM and these Higgs fields are forbidden by

the intermediate gauge symmetry. As a consequence, we can safely neglect these possi-

bilities.

Finally, we discuss the model presented in the last column in Table 4.2. We again find

that the (1,1,3, 0)R Higgs field does not yield a mass difference among the components

in the (1,1,3, 0)W DM multiplet, since the operator in Eq. (4.1) vanishes when the DM

is a Weyl fermion. Thus, we do not consider this model in the following discussion.

As a result, we obtain two distinct models for NETDM within SO(10). We summa-

rize these two models in Table 4.3. We call them Model I and II in what follows. Here,

Mint and MGUT are given in GeV, and all of the values are evaluated with two-loop

RGEs and differ somewhat from the 1-loop values given in Table 4.2. The errors shown

in the parentheses arise from uncertainties in the input parameters. In addition, we
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again expect threshold corrections at Mint and MGUT. Furthermore, we neglect the

contribution of Yukawa couplings to the RGEs above the intermediate scale, and this

also will contribute to the theoretical error. We estimate that these two sources cause

O(1)% uncertainties in the values displayed in Table 4.3. From these results, we find

that the presence of the DM component as well as the extra Higgs bosons can signifi-

cantly alter the intermediate and GUT scales,4 because of their effects on the gauge

coupling running. To illustrate this more clearly, in Fig. 4.1 we show running of gauge

couplings in each theory. The left and right panels of Fig. 4.1 correspond to Model I and

II, respectively. In each figure, solid (dashed) lines show the case with (without) DM

and additional Higgs bosons. The blue, green, and red lines represent the running of

the U(1), SU(2) and SU(3) gauge couplings, respectively, where the U(1) fine structure

constant α1 is defined by
1

α1
≡ 3

5

1

α2R
+

2

5

1

α4
, (4.12)

while the SU(3)C coupling α3 is defined by α3 ≡ α4 above the intermediate scale. These

figures clearly show the effects of the extra particles on the gauge coupling running. In

particular, the GUT scale in Model II is now well above 1015 GeV, which allows this

model to evade the proton decay constraints, as will be seen in the subsequent section.

Table 4.3: NETDM models. Mint and MGUT are given in GeV. All of the values are

evaluated with the two-loop RGEs.

Model I Model II

Gint SU(4)C ⊗ SU(2)L ⊗ SU(2)R SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D
RDM (1,1,3)D in 45D (15,1,1)W in 45W

R1 210R 54R

R2 (10,1,3)C ⊕ (1,1,3)R (10,1,3)C ⊕ (10,3,1)C ⊕ (15,1,1)R

log10(Mint) 8.08(1) 13.664(5)

log10(MGUT) 15.645(7) 15.87(2)

gGUT 0.53055(3) 0.5675(2)

4 However, their existence hardly changes the intermediate scale in Model II, which is clarified in
Appendix D.
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(b) Model II

Figure 4.1: Running of gauge couplings. Solid (dashed) lines show the case with (with-

out) DM and additional Higgs bosons. Blue, green, and red lines represent the running

of the U(1), SU(2) and SU(3) gauge couplings, respectively.

4.4 Phenomenological aspects

Now that we have obtained the NETDM models, we can study their phenomenological

aspects and possible implications in future experiments. In Sec. 4.4.1, we first consider

whether these models can give appropriate masses for light neutrinos. Next, in Sec. 4.4.2,

we evaluate proton lifetimes in each model and discuss the testability in future proton

decay experiments. Finally, we compute the abundance of DM produced by the NETDM

mechanism in Sec. 4.4.3, and predict the reheating temperature after inflation.

4.4.1 Neutrino mass

In SO(10) GUTs, the Majorana mass terms of the right-handed neutrinos are induced

after the B−L symmetry is broken. These mass terms are generated from the Yukawa

couplings of the 16 spinors with the 126C Higgs field. If the Yukawa couplings are O(1),

then the Majorana mass terms are O(Mint). On the other hand, in these models, the

Dirac masses of neutrinos are equal to the up-type quark masses, mu, at the unification
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scale. Therefore, via the seesaw mechanism [54], light neutrino masses are given by

mν '
m2
u

Mint
. (4.13)

In Model II, Mint = O(1013) GeV indeed gives proper values for neutrino masses.5

However, in Model I, a low intermediate scale of O(108) GeV yields neutrino masses

which are too heavy using the standard seesaw expression (4.13). Thus, Model I is

disfavored on the basis of small neutrino masses.

The defect in Model I may be evaded if the (15,2,2) component in 126C has a

sizable mixing with the (1,2,2) Higgs boson and acquires a VEV of the order of the

electroweak scale. In this case, the neutrino Yukawa couplings can differ from those of

the up-quark, and thus the relation (4.13) does not hold any more. For sizable mixing

to occur, the (15,2,2) field should lie around the intermediate scale. One might think

that the presence of additional fields below the GUT scale would modify the running of

the gauge couplings and spoil the above discussion based on gauge coupling unification.

However, it turns out that both the intermediate and GUT scales are hardly affected by

the existence of this field, though the unified gauge coupling constant becomes slightly

larger. This is because its contribution to the one-loop beta function coefficients is

∆b4 = 16/3 and ∆b2L = ∆b2R = 5, and thus their difference is very tiny (see the

discussion given in Appendix D). Therefore, we can take the (15,2,2) to be at the

intermediate scale with little change in the values of Mint and MGUT. The presence of

the (15,2,2) is also desirable to account for the down-type quark and charged lepton

Yukawa couplings [14,50]. In addition, the higher-dimensional operators induced above

the GUT scale may also affect the Yukawa couplings. Constructing a realistic Yukawa

sector in these models is saved for future work.

4.4.2 Proton decay

Proton decay is a smoking gun signature of GUTs, and thus a powerful tool for testing

them. In non-SUSY GUTs, p → e+π0 is the dominant decay mode, which is caused

5 Note that in a left-right symmetric model such as Model II there is in general also a type-II seesaw
contribution to mν from the VEV of the SU(2)L triplet in the 126C . However, we know from constraints
on the ρ-parameter that the VEV must be quite small and definitely much smaller than the VEV of
the SU(2)R triplet. For example, if the mixing between the SU(2)L and SU(2)R triplets with the Higgs
doublets is small, it is safe to assume that the SU(2)L triplet VEV is small and thus the type-II seesaw
contribution is subdominant [55].



30

by the exchange of GUT-scale gauge bosons. This could be compared with the case

of the SUSY GUTs; in SUSY GUTs, the color-triplet Higgs exchange usually yields

the dominant contribution to proton decay, which gives rise to the p → K+ν̄ decay

mode [56].

Since the p → e+π0 decay mode is induced by gauge interactions, we can make a

robust prediction for the partial decay lifetime of this mode. Details of the calculation

are given in Appendix E. By using the results given there, we evaluate the partial decay

lifetime of the p → e+π0 mode in each theory, and plot it as a function of MX/MGUT

(MX denotes the mass of the GUT-scale gauge boson) in Fig. 4.2. Here, the blue and red

solid lines represent Models I and II, while the blue and red dashed lines represent the

models without the DM and extra Higgs multiplets as given in Table 2.2, namely Gint =

SU(4)C ⊗ SU(2)L ⊗ SU(2)R and Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D, respectively.

The shaded area shows the region which is excluded by the current experimental bound,

τ(p → e+π0) > 1.4 × 1034 years [57, 58]. We have varied the heavy gauge boson

mass between MGUT/2 ≤ MX ≤ 2MGUT, which reflects our ignorance of the GUT

scale mass spectrum. From this figure, we see that the existence of DM and Higgs

multiplets produces a large effect on the proton decay lifetime. In particular, in the

case of SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗ D, the predicted lifetime is so small that the

present bound has already excluded the possibility. This conclusion can be evaded,

however, once the DM and R2 Higgs multiplets are included in the theory as they raise

the value of MGUT. Moreover, Model I is now being constrained by the proton decay

experiments. In this case, the inclusion of the DM and Higgs multiplets decreases MGUT.

Future proton decay experiments, such as the Hyper-Kamiokande experiment [59], may

offer much improved sensitivities (by about an order of magnitude), with which we can

probe a wide range of parameter space in both models.

4.4.3 Non-equilibrium thermal dark matter

Finally, we evaluate the relic abundance of DM produced by the NETDM mechanism [7]

in Models I and II. In both of these models, the DM ψ0 is produced in the early Universe

via the exchange of the intermediate-scale particles. Therefore, the production rate is

extremely small and their self-annihilation can be neglected. In addition, the produced

DM cannot be in the thermal bath since they have no renormalizable interactions with
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Figure 4.2: Proton lifetimes as functions of MX/MGUT. Blue solid and red solid lines

represent Model I and Model II, respectively. Blue dashed and red dashed lines represent

the cases for Gint = SU(4)C⊗SU(2)L⊗SU(2)R and Gint = SU(4)C⊗SU(2)L⊗SU(2)R⊗D
when the DM and extra Higgs multiplets are not included. The shaded area shows the

region which is excluded by the current experimental bound, τ(p → e+π0) > 1.4 ×
1034 years [57, 58].

the SM particles. These two features characterize the NETDM mechanism; the DM

is produced by SM particles in the thermal bath via the intermediate boson exchange,

while they do not annihilate with each other nor attain thermal equilibrium. In what

follows, we estimate the density of the DM produced via this mechanism and determine

the reheating temperature which realizes the observed DM density.

The Boltzmann equation for the DM ψ0 is given by

dYDM

dx
=

√
π

45

g∗s√
g∗ρ

MDMMPl
〈σv〉
x2

Y 2
eq , (4.14)

with YDM ≡ nDM/s and Yeq ≡ neq/s where nDM is the DM number density, neq is the

equilibrium number density of each individual initial state SM particle, and s is the

entropy of the Universe; x ≡ MDM/T with T being the temperature of the Universe;
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h

h

φ0

〈φ〉

ψ0

ψ0

Figure 4.3: Diagram responsible for the DM production in Model II.

g∗s and g∗ρ are the effective degrees of freedom for the entropy and energy density in

the thermal bath, respectively; MPl ≡ 1/
√
GN = 1.22 × 1019 GeV is the Planck mass;

〈σv〉 is the thermally averaged total annihilation cross section of the initial SM particles,

f , into the DM pair. When we derive Eq. (4.14), we neglect the DM self-annihilation

contribution as discussed above. From now on, we assume g∗s = g∗ρ ≡ g∗ for brevity.

We evaluate the thermal averaged cross section 〈σv〉 multiplied by the equilibrium

number density squared n2
eq as

〈σv〉n2
eq '

T

512π5

∫ ∞
4M2

DM

dŝ
√
ŝ− 4M2

DMK1(
√
ŝ/T )

∑
|M|2 , (4.15)

where
√
ŝ denotes the center-of-mass energy, and Kn(x) is the modified Bessel function

of the second kind. Here, we have used the approximation mf �
√
ŝ with mf the

masses of the SM particles since the particle production predominantly occurs at high

temperature, and neglected the angular dependence of M for simplicity. In addition,

we have assumed the initial particles follow a Maxwell-Boltzmann distribution, and

ignored statistical mechanical factors which may result from the Fermi-Dirac or Bose-

Einstein distribution.
∑ |M|2 indicates the sum of the squared-amplitude over all

possible incoming SM particles, as well as the spin of the final state.

Next, we evaluate the amplitude M in each model. First, we consider the case of

Model II. In this case, the dominant contribution comes from the tree-level Higgs-boson

annihilation process displayed in Fig. 4.3. Here, ψ0, h, and φ0 denote the DM, the SM

Higgs boson, and the singlet component of the (15,1,1)R, respectively, and the VEV
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〈φ〉 is given in Eq. (4.7). From the dimensional analysis, we estimate the contribution

as ∑
|M|2 ' c ŝ− 4M2

DM

M2
int

, (4.16)

where c is a numerical factor which includes the unknown couplings appearing in the

diagram. By substituting Eqs. (4.15) and (4.16) into Eq. (4.14), we have

dYDM

dx
' c

1024π7

(
45

πg∗

) 3
2 MPlMDM

M2
int

1

x2

∫ ∞
2x

t(t2 − 4x2)
3
2K1(t)dt . (4.17)

When MDM � TRH with TRH being the reheating temperature, the above equation is

easily integrated to give

Y
(0)

DM '
c

64π7

(
45

πg∗

) 3
2 MPlTRH

M2
int

, (4.18)

where the superscript “(0)” implies the present-day value. On the other hand, the

current value of Y
(0)

DM is given by

Y
(0)

DM =
ΩDMρ

(0)
crit

MDMs(0)
, (4.19)

where ΩDM is the DM density parameter and ρ
(0)
crit is the critical density of the Universe.

In the following calculation, we use ΩDMh
2 = 0.12, ρ

(0)
crit = 1.05 × 10−5h2 GeV · cm−3,

and s(0) = 2.89× 103 cm−3, with h the Hubble parameter. As a result, we obtain

TRH ' 2.7× 104 GeV×
(

ΩDMh
2

0.12

)(
g

3
2
∗ c
−1

104

)(
MDM

100 GeV

)−1

, (4.20)

where we have set the value of Mint = 1013.66 GeV from the result in Table 4.3. This

approximate formula is valid when MDM � TRH. Here, g
3
2
∗ c
−1 is an unknown factor and

thus causes an uncertainty in the computation. For instance, if g∗ = O(100) and the

quartic coupling of h and φ is ∼ 0.3, then g
3
2
∗ c
−1 = O(104). Note that the perturbativity

of the quartic coupling ensures that this factor cannot become too small. On the other

hand, it also has an upper bound; if c is extremely small, then the one-loop gauge-

boson exchange contribution dominates over the tree-level. Taking this consideration

into account, we vary the value of g
3
2
∗ c
−1 by a factor of ten to estimate the uncertainty

in the analysis given below.
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h ψ0

ψ+

ψ0

φ+,W+
R

φ0,W 0
R,

h

ψ0

ψ0

ψ+

φ+,W+
R

f

f̄

γ, Z

Figure 4.4: Examples of diagrams responsible for the DM production in Model I.

Next, we evaluate the relic abundance of the DM in Model I. In this case, there is no

tree-level process for the DM production, since the DM does not couple to the singlet

component φ0 in the (1,1,3)R. Therefore, the DM is produced at the loop level. In

Fig. 4.4, we show examples of one-loop diagrams which give the dominant contribution

to the DM production. The amplitude is then estimated as∑
|M|2 ' c′

(16π2)2

ŝ− 4M2
DM

M2
int

, (4.21)

where we have included the one-loop factor. After a similar computation, we obtain

Y
(0)

DM '
c′

64π7(16π2)2

(
45

πg∗

) 3
2 MPlTRH

M2
int

, (4.22)

and

TRH ' 4.6 GeV×
(

ΩDMh
2

0.12

)(
g

3
2
∗ c
′−1

105

)(
MDM

GeV

)−1

, (4.23)

on the assumption of MDM � TRH. Here, we have set Mint = 108.08 GeV.

In Fig. 4.5, we plot the predicted reheating temperature as a function of the DM

mass after numerically integrating Eq. (4.17). The left and right panels show the cases

of Model I and II, respectively. The pink band shows the uncertainty of the calculation,

which we estimate by varying the unknown factor by a factor of ten. It turns out that

when MDM � TRH, in the case of Model I, only a small DM mass is allowed and the

reheating temperature must be quite low. In Model II, on the other hand, DM with

a mass of around the electroweak scale accounts for the observed DM density with an
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(b) Model II

Figure 4.5: Reheating temperature as a function of DM mass. Pink band shows the

theoretical uncertainty.

acceptably high reheating temperature. For a larger MDM, in both models, the DM

relic abundance can only be explained in the narrow strip region where MDM ' TRH.



Chapter 5

Weakly Interactive Massive

Particles

In this chapter, we consider weakly interactive massive particles(WIMP) as dark matter

candidates. Unlike NETDM, WIMP DM candidates interact with the thermal bath of

the SM particles efficiently so that they are in thermal equilibrium in the early universe.

The annihilation rate of the DM particle decreases as the universe expands until the

plasma of the DM becomes so diluted that the annihilation no longer proceeds. After

that, the total number of DM particle is freezed and the density only decreases as a

result of the expansion of the universe. This mechanism is usually called the “freeze-

out” mechanim in the literatures. In the following text, we will list models in which

gauge coupling unification is achieved with appropriate GUT and intermediate scales.

Then, we study the phenomenology of these models, such as the relic abundance of

DM, the DM direct detection rate, the proton decay lifetime, and neutrino masses. It

is found that the condition of gauge coupling unification, as well as the proton decay

bounds, severely restricts the WIMP DM models in SO(10) GUTs. Still, we obtain

some promising candidates, which can be probed in future DM searches and proton

decay experiments.

36
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5.1 WIMP DM candidates

We begin this chapter by identifying all possible WIMP DM candidates in Tabel 3.1.

The WIMP scenario generally requires DM to be in thermal equilibrium with the SM

particles before its abundance freezes out. This requires DM particles to interact with

SM particles efficiently in the early universe. As a consequence, the fermionic singlets

F01 and F̂01 are not good WIMP candidates since they are SM singlets and can only

interact with SM particles through exchange of intermediate scale virtual particles. On

the otherhand, the scalar singlet S01 and triplet S03 can interact with the SM Higgs

boson efficiently through the quartic coupling and are potential good DM candidates to

be discussed below. These can be taken to be either real or complex. For S01, there is

no difference in any of our results whether S01 is real or complex. We have taken S03 to

be real, but there would be no qualitative difference in our results for complex S03. In

addition, S03 couples to the SM particles via the weak interaction. Similarly, the fermion

triplet F03 is a wino-like DM candidate and will also be considered below. In general,

the neutral component of a SU(2)L ⊗ U(1)Y multiplet can interact with SM particles

through exchange of W or Z boson, and thus can be a good DM candidate. Such DM

candidates have been widely studied in the literature [31–34,36,37,39–42,75].

There are also DM candidates which have non-zero hypercharge. These are: F
1/2
2 ,

F13, F
1/2
4 , F

3/2
4 , S

1/2
2 , S13, F̂

1/2
2 , and F̂13. These DM candidates are charged under the elec-

troweak gauge group so they can be produced thermally in the early universe. However

they are severely constrained by DM direct detection experiments since their scatter-

ing cross sections with a nucleon induced by Z-boson exchange are generally too large.

Possible ways to evade this constraint are discussed in the following section.

5.2 Hypercharged DM

A DM candidate with Y 6= 0 needs to be a Dirac spinor or a complex scalar, depending

on its matter parity. These hypercharged candidates are severely restricted by the direct

detection experiments, since they elastically scatter nucleons via the vector interactions

mediated by Z-boson exchange, whose scattering cross section turns out to be too large

by many orders of magnitude. One possible way to evade the constraint is to generate

mass splitting, ∆m, between the neutral components of such a DM multiplet ψ and
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to split it into two Majorana fermions or real scalars χ1, χ2. Then, the DM no longer

suffers from large scattering cross sections since it does not have vector interactions.

Such splitting occurs if the DM mixes with extra SU(2)L ⊗ U(1)Y multiplets after

electroweak symmetry breaking. As we have assumed that only a single DM multiplet

lies in the low-energy region, a natural mass scale for the extra SU(2)L⊗U(1)Y multiplets

is the intermediate scale Mint. The effects of these heavy particles on the low-energy

theory are expressed in terms of effective operators induced after integrating them out.

Among them, the following operator is relevant for the generation of mass splitting

of the DM:
c

Mn
int

OψH∗p , (5.1)

where H is the SM Higgs field, p = 4Yψ with Yψ > 0 being the hypercharge of the DM

ψ, Oψ = ψCψ or ψψ, and n = p − 1 or p − 2 for Dirac fermion DM or complex scalar

DM respectively. After the Higgs field acquires a VEV, the above operator generates

a mass splitting between two Weyl fermions(real scalars) inside the neutral component

of the DM multiplet. The splitting is given by ∆m ∼ vp/Mn
int for fermionic DM and

vp/(Mn
intmψ) for scalar DM, with v ' 174 GeV being the Higgs VEV. mψ corresponds

to the scalar mass term m2
ψψψ

∗.

The operator (5.1) is suppressed if the intermediate scale is large [37]. When the

mass splitting is sufficiently small, the DM can scatter off a nucleon N inelastically:

χ1+N → χ2+N . Since this process is induced by the vector interactions, the scattering

cross section again becomes too large if the mass splitting ∆m is smaller than the recoil

energy sensitive to the direct detection experiments. This sets the bound ∆m & 100 keV.

For this condition to be satisfied, Mint . 109, 3× 104, and 4× 103 GeV are required for

fermionic dark DM with Yψ = 1/2, 1 and 3/2, respectively [37]. In the case of scalar

DM, the upper bound depends on the DM mass. For a 1 TeV DM mass, Mint . 105 GeV

for Yψ = 1. For a Yψ = 1/2 scalar DM candidate, on the other hand, the mass splitting

can be generated with a renormalizable interaction and its effect on the mass splitting

depends only on its dimensionless coefficient c. We will see later that this coefficient can

still be very small, whose size is determined by the symmetry breaking pattern and its

scale. This is because the operators relevant for the generation of the mass splitting are

forbidden by the SO(10) symmetry. Thus, the constraint from inelastic scattering can

again give a bound on the intermediate scale even for Yψ = 1/2 scalar DM candidates.
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5.3 Scalar dark matter

In this section, we discuss scalar WIMP DM in SO(10) models with different inter-

mediate subgroups. In this case, the DM candidates belong to either a 16 or a 144

representation. The masses of components in a DM multiplet in general need to be

fine-tuned; if a charged component is nearly degenerate with the DM particle and de-

cays to it only through an intermediate-scale gauge boson or Higgs field, this charged

particle would be very long lived, as discuseed in Section 3.3. Thus, to be safe, we

take the masses of these extra components to be O(MGUT) or O(Mint), while the DM

mass to be around TeV scale so that the thermal relic abundance of the DM agrees

with the observed DM density. Here, we assume that the fine-tuning of DM masses be

realized with a minimal choice of Higgs fields, that is, we exploit only R1 and R2 = 126

to generate desired mass spectrum with R1 being an irreducible representation chosen

from Table 2.1. This is possible because a 16 or 144 can couple to the 126 Higgs field.

Then, we study whether each set of matter content and its mass spectrum offers gauge

coupling unification with appropriate GUT and intermediate scales.

5.3.1 DM mass

To determine the renormalization group (RG) running of gauge couplings, we need to

know the mass of DM candidates, since they affect the running above its mass scale. An

exception is S01 as it is a SM singlet and does not contribute to the gauge coupling beta

functions below Mint at the one-loop level. Scalar singlet DM is discussed in Ref. [44].

To roughly estimate favored mass region for such a singlet DM particle, consider the

quartic interaction between the singlet DM φ and the SM Higgs field: −λHφφ2|H|2/2.

Through this coupling, the singlet DM particles annihilate into a pair of the SM Higgs

bosons. The annihilation cross section σann times the relative velocity between the

initial state particles vrel is evaluated as

σannvrel '
λ2
Hφ

16πm2
DM

, (5.2)

assuming that the DM mass mDM is much larger than the SM Higgs mass mh and we

neglect terms proportional to v2. The DM relic abundance is, on the other hand, related
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to the annihilation cross section by

ΩDMh
2 ' 3× 10−27 cm3 s−1

〈σannvrel〉
. (5.3)

To account for the observed DM density ΩDMh
2 = 0.12 [45], the DM mass should be

mDM . 10 TeV for λHφ . 1. This gives us a rough upper bound for the DM mass.

The other scalar DM candidates are SU(2)L ⊗U(1)Y multiplets, which can interact

with SM particles through gauge interactions besides the quartic coupling mentioned

above. In particular, S
1/2
2 is known as the Inert Higgs Doublet Model and has been

widely studied in the literature. To evaluate the effects of gauge interactions, let us

first consider the limit of zero quartic couplings, where the dark matter particles mainly

annihilates into gauge bosons. For SYn, the effective (averaged) annihilation cross section

is given by [31]

σannvrel '
g4(3− 4n2 + n4) + 16Y 4g′4 + 8g2g′2Y 2(n2 − 1)

64πcnm2
DM

, (5.4)

where g (g′) are the SU(2)L (U(1)Y ) gauge couplings and cn = n (2n) for a real (complex)

scalar. Here, we assume the DM mass to be much larger than the weak gauge boson

masses. Again Eq. (5.3) tells us that the masses of the DM candidates should fall into a

region from ∼ 500 GeV to ∼ 2 TeV. On the other hand, if the quartic coupling is larger

than the gauge couplings, the annihilation into a pair of Higgs bosons becomes dominant

and thus the DM abundance would be similar to that of the singlet DM candidate. In

general, the DM mass should lie between 0.5 TeV to 10 TeV for S
1/2
2 , S03 and S13.

More accurate estimations for the DM mass can be found in the literature [31,33,46]

with various additional contributions taken into account. For SU(2)L⊗U(1)Y DM mul-

tiplets, the non-perturbative Sommerfeld enhancement is of great importance [47]. In

the limit of zero quartic coupling, the DM masses with which the relic abundance agrees

with the observed DM density are evaluated as mDM = 0.5 and 2.5 TeV for S
1/2
2 and

S03, respectively [46]. For S13, as far as we know, there has been no calculation which in-

cludes the Sommerfeld enhancement; thus its mass would be larger than 1.6 TeV, which

is obtained with only the perturbative contribution considered [31]. For the cases where

the scalar DM multiplets have non-zero quartic coupling with the SM Higgs doublet, it

was shown in Ref. [33] that the allowed DM mass can be extended to ∼ 58 and 28 TeV

for S
1/2
2 and S03, respectively, when the quartic coupling λ ∼ 4π. Such a large quartic
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coupling is, however, in general inconsistent with GUTs since it immediately blows up

at a scale much below the GUT and intermediate scales. Thus, we implicitly assume

the quartic coupling should be rather small, e.g., . 1, to avoid divergent couplings. In

this case, the DM mass usually lies around O(1) TeV.

5.3.2 Candidates for scalar DM

We list all possible scalar DM candidates in Table 5.1. All of the candidates belong

to either a 16 or a 144. Here, the first column shows the model names with subscript

representing the intermediate gauge group Gint. The second column lists the Gint rep-

resentations that contain the DM candidate multiplet SYn. All of the components in

the representation except the DM multiplet SYn shown in the third column will have

masses tuned to O(Mint). The rest of the components in the SO(10) multiplet have

masses of O(MGUT). The case of Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗ D (SU(3)C ⊗
SU(2)L⊗SU(2)R⊗U(1)B−L⊗D) is identical to that of Gint = SU(4)C⊗SU(2)L⊗SU(2)R

(SU(3)C ⊗SU(2)L⊗SU(2)R⊗U(1)B−L) with additional multiplets required by the left-

right symmetry introduced above the intermediate scale. Notice that S
1/2
2 is contained

in both the model SB’s and SC’s. The difference between the models is the SU(2)R

(or additional U(1)) charge assignment; for instance, SB422 (SC422) includes the SU(2)R

singlet (triplet) DM. From Table 5.1, we find that a 16 contains only SA’s and SB’s,

while a 144 has all of the candidates listed in the table.

Next, we perform the RGE analysis in the models presented in Table 5.1 to see if

these models achieve gauge coupling unification with appropriate GUT and intermediate

scales. The one-loop results for MGUT, Mint, the unified gauge coupling αGUT, and the

proton lifetimes in the p → e+π0 channel are shown in Table 5.2.1 Here, MGUT

and Mint are given in GeV units, while the unit for proton lifetimes τp(p → e+π0)

is years. The DM mass is set to be mDM = 1 TeV. We have checked that altering

the DM mass by an order of magnitude results in only a O(0.2)% variation in the

logarithmic masses of Mint and MGUT. The uncertainty of the lifetime reflects our

innocence of the GUT-scale gauge boson mass MX , which we take it to be within a

range of 0.5MGUT . MX . 2MGUT. It turns out that most models have already been

1 We restrict our attention to one-loop running as two loop effects become very model dependent
on our choice of the scalar potential.
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Table 5.1: Summary of scalar DM multiplets. The second column shows the Gint rep-

resentation with quantum numbers listed in the same order as the groups shown in the

direct product. The case of Gint = SU(4)C ⊗SU(2)L⊗SU(2)R⊗D (SU(3)C ⊗SU(2)L⊗
SU(2)R ⊗ U(1)B−L ⊗ D) is identical to that of Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R

(SU(3)C ⊗SU(2)L⊗SU(2)R⊗U(1)B−L) with additional multiplets required by left-right

symmetry introduced above the intermediate scale.

Model RDM SYn SO(10) representation

Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R(⊗D)

SA422(D) 4,1,2 S01 16, 144

SB422(D) 4,2,1 S
1/2
2 16, 144

SC422(D) 4,2,3 S
1/2
2 144

SD422(D) 4,3,2 S13 144

SE422(D) 4,3,2 S03 144

Gint = SU(4)C ⊗ SU(2)L ⊗U(1)R

SA421 4,1,−1/2 S01 16, 144

SB421 4,2, 0 S
1/2
2 16, 144

SC421 4,2, 1 S
1/2
2 144

SD421 4,3, 1/2 S13 144

SE421 4,3,−1/2 S03 144

Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L(⊗D)

SA3221(D) 1,1,2, 1 S01 16, 144

SB3221(D) 1,2,1,−1 S
1/2
2 16, 144

SC3221(D) 1,2,3,−1 S
1/2
2 144

SD3221(D) 1,3,2, 1 S13 144

SE3221(D) 1,3,2, 1 S03 144

ruled out by the current experimental constraint τ(p→ e+π0) > 1.4× 1034 yrs [57,58].

The models that possibly survive this constraint are SA422, SB422, SA3221, SB3221, SC3221,

SA3221D, and SB3221D, which are highlighted in blue shading in the table. In terms of

SU(2)L⊗U(1)Y assignments, only S01 and S
1/2
2 are found to be viable candidates. Among

them, models SB422, SC3221, SA3221D, and SB3221D predict proton lifetimes close to the



43

Table 5.2: One-loop result for scales, unified couplings, and proton lifetimes for models

in table. 5.1. The DM mass is set to be mDM = 1 TeV. The mass scales are given in

GeV and the proton lifetimes are in units of years. Blue shaded models evade the proton

decay bound, τ(p→ e+π0) > 1.4× 1034 yrs [57, 58].

Model log10MGUT log10Mint αGUT log10 τp(p→ e+π0)

Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R

SA422 16.33 11.08 0.0218 36.8± 1.2

SB422 15.62 12.38 0.0228 34.0± 1.2

SC422 14.89 11.18 0.0243 31.0± 1.2

SD422 14.11 13.29 0.0253 28.0± 1.2

SE422 14.73 13.72 0.0243 30.4± 1.2

Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D
SA422D 15.23 13.71 0.0245 32.4± 1.2

SB422D 15.01 13.71 0.0247 31.6± 1.2

SC422D 14.50 13.71 0.0254 29.5± 1.2

SD422D 13.95 13.47 0.0260 27.3± 1.2

SE422D 14.55 13.96 0.0251 29.7± 1.2

Gint = SU(4)C ⊗ SU(2)L ⊗U(1)R

SA421 14.62 10.96 0.0226 30.1± 1.2

SB421 14.55 11.90 0.0233 29.8± 1.2

SC421 14.15 10.92 0.0236 28.2± 1.2

SD421 13.91 12.80 0.0250 27.2± 1.2

SE421 14.45 13.12 0.0241 29.4± 1.2

Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

SA3221 16.66 8.54 0.0217 38.1± 1.2

SB3221 16.17 9.80 0.0223 36.2± 1.2

SC3221 15.62 9.14 0.0230 34.0± 1.2

SD3221 14.49 12.07 0.0246 29.5± 1.2

SE3221 15.09 12.22 0.0237 31.9± 1.2

Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L ⊗D
SA3221D 15.58 10.08 0.0231 33.8± 1.2

SB3221D 15.40 10.44 0.0233 33.1± 1.2

SC3221D 14.58 11.62 0.0245 29.8± 1.2

SD3221D 14.07 12.13 0.0253 27.8± 1.2

SE3221D 14.60 12.29 0.0245 29.9± 1.2



44

present limit, and thus can be tested in future proton decay experiments.

The desired mass spectum of the models can be obtained by fine-tuning the couplings

of the potential as described in Section 3.3. For the above models, the representations

in Eq. (3.7) are chosen as R2 = 126 and R1 = 210, 45, or 210 for Gint = SU(4)C ⊗
SU(2)L ⊗ SU(2)R, SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L, and SU(3)C ⊗ SU(2)L ⊗
SU(2)R ⊗ U(1)B−L ⊗D respectively. Then, R′ and R′′ only needs to be summed over

45 and 210 for these choices of representations. For a concrete example, we show

an explicit procedure for the fine-tuning in Appendix F, by taking RDM = 16 and

Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L.

5.3.3 Mass splitting of hypercharged scalar dark matter

As discussed in Sec. 5.2, we need a mass splitting of ∆m & 100keV [37] between the

neutral and charged components of the hypercharged DM candidates (models SB and

SC) to avoid the direct detection bound. Since both of these models yield S
1/2
2 DM, the

mass splitting can be induced by dimension-four operators like φ2H∗2, where φ denotes

the hypercharged scalar DM S
1/2
2 . Such operators are, however, forbidden by the SO(10)

GUT symmetry; in fact, as the S
1/2
2 DM and the SM Higgs field have B −L = 1 and 0,

respectively, the operators contributing the mass splitting violate the B −L symmetry.

Thus, they can be induced only below the intermediate scale where the B−L symmetry

is spontaneously broken.

Such an operator is induced by the interactions with the coefficients κ2 and λ12612

in Eq. (3.7), since it requires violation of the particle number associated with the DM

field φ. The required B − L breaking is realized by the R2 VEV. We find that the

tree-level diagrams in Fig. 5.1 are relevant to the generation of mass splitting. Here,

RH = 10 contains the SM Higgs field. Since the κ2 and λ12612 interactions are symmetric

with respect to the interchange of RDM, the component in R2 which propagates in the

upper two diagrams should be an SU(2)L triplet. On the other hand, the component

appearing in the inner lines in the lower two diagrams can be either an SU(2)L singlet

or triplet. The masses of these fields are dependent on the intermediate gauge groups;

if Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R or SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L, then

these masses are O(MGUT), while for Gint = SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L⊗D,

they are O(Mint) because of the left-right parity D.
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Figure 5.1: Diagrams that generate the mass splitting between real components of hy-

percharged scalar DM.

Let us first consider the former cases. In these cases, the coefficient of the dimension-

four operator φ2H∗2 is O(Mint/MGUT), as the dimensionful couplings in the Lagrangian

are expected to be O(MGUT). We note here that there is no requirement for the can-

cellation between κ2 and λ12612 〈R1〉 to realize the desired mass spectrum since these

couplings do not contribute to the mass splitting. Thus, this operator induces a mass

splitting of

∆m ∼ Mintv
2

mDMMGUT
. (5.5)

The condition ∆m & 100 keV then becomes

Mint

MGUT
& 3× 10−6 ×

( mDM

1 TeV

)
. (5.6)

From Table 5.2, we find that the model SB422 clearly satisfies this bound, while the

intermediate scales in SB3221 and SC3221 lie slightly below this constraint. However, since

this bound is just a rough estimation and the intermediate scales given in Table 5.2 are

obtained with the one-loop RGEs, it is possible that the DM candidates in these models

are just not yet reached by the current direct detection experiments. If so, these models

can be probed in the near future.
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For SB3221D, on the other hand, the mass spectrum is altered because of the pres-

ence of the left-right parity. In this case, the charge of the DM candidate under Gint

is (1,2,1,−1), and the left-right symmetry requires the (1,1,2,+1) to be also light.

To that end, the fine-tuning between the κ2 and λ12612 terms in Eq. 3.7 is required such

that κ2 + λ12612 〈R1〉 ' Mint; otherwise, these terms give a mass of O(
√
MintMGUT) to

the (1,1,2,+1) component, which is much higher than the intermediate scale. This

fine-tuning also guarantees the absence of non-perturbative couplings at low energies;

without this fine-tuning, the exchange of intermediate-scale particles with the κ2 and

λ12612 〈R1〉 vertices induces extremely large effective couplings, which destroy the pertur-

bativity of the low-energy theory.

In the presence of the fine-tuning, the diagrams in Fig. 5.1 with the virtual states

having a mass of Mint induce the effective operator φ2H∗2 with a coefficient of O(1).

Thus, the resultant mass splitting is well above 100 keV and the model SB3221D easily

evades the constraints from the direct detection experiments.

To summarize, SB422 and SB3221D are safe from the direct detection bound. SB3221

and SC3221 lie just around the margin of the bound, and they might be detected or

completely excluded in future direct detection experiments.

5.4 Fermionic dark matter

Next, we consider the fermionic DM candidates. Again, we begin with showing the

favored mass region for these DM candidates in Sec. 5.4.1. As already mentioned above,

the singlet fermion candidates, F01 and F̂01, are not good candidates for WIMP DM

since their annihilation cross sections are extremely suppressed (though they are good

NETDM candidates). On the other hand, electroweakly charged DM can yield the

desired relic abundance via gauge interactions. In this section, we will discuss the

Y = 0 and Y 6= 0 cases respectively, and give some concrete examples for each case and

perform RGE analysis to determine the intermediate/GUT scales of the models.

5.4.1 DM mass

Contrary to the case of the scalar DM, the thermal relic abundance of the fermionic DM

candidates is completely determined by gauge interactions. Therefore, it is possible to
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make a robust prediction for the DM mass favored by the present DM density. In the

case of fermion DM, not only the gauge boson channels but also the SM fermions and

the Higgs boson final states can contribute to s-wave annihilation. We obtain a similar

expression to Eq. (5.4) for the effective annihilation cross section of FYn as [31]

σannvrel '
g4(2n4 + 17n2 − 19) + 4Y 2g′4(41 + 8Y 2) + 16g2g′2Y 2(n2 − 1)

128πcnm2
DM

, (5.7)

with cn = 2n (4n) for a Majorana (Dirac) fermion. In addition, the Sommerfeld en-

hancement again affects the annihilation cross section significantly. With this effect

taken into account, the thermal relic abundance of F03 is computed in Ref. [35] and

found to be consistent with the observed DM density if mDM ' 2.7 TeV as in the case

of supersymmetric winos. As for F
1/2
2 and F̂

1/2
2 , the favored mass value is ' 1.1 TeV [31]

as in the case of supersymmetric Higgsinos. As far as we know, there is no calcula-

tion for the other fermionic DM candidates that includes the Sommerfeld enhancement;

without the effect, the thermal relic of F13, F̂13, F
1/2
4 , and F

3/2
4 is consistent with the

observed value if mDM ' 1.9 TeV, 1.9 TeV, 2.4 TeV, and 2.6 TeV, respectively [46].

5.4.2 Real triplet DM

We begin our discussion of fermionic DM models with the Y = 0 case. As discussed

earlier, these are less constrained by direct detection experiments. According to Ta-

ble 3.1, such candidates belong to SU(2)L triplets in a 45, 54 or 210 of SO(10). A

summary of SU(4)C ⊗ SU(2)L ⊗ SU(2)R quantum numbers of these DM multiplets are

listed in Table. 5.3. Note that the B−L and T 3
R charges for all of these DM candidates

vanish, and therefore they are regarded as real Majorana fermions. As in the scalar

DM scenario, the DM multiplet in the 54 or 210 is degenerate with other components

with respect to Gint, and we are required to break this degeneracy to avoid unwanted

long-lived colored/charged particles. In the fermionic case, however, a renormalizable

Yukawa term like RDMRDM126H is forbidden by SO(10) symmetry and the choice of

DM representation [29], and thus we are unable to use the 126 Higgs to break the

degeneracy. Therefore, we need to introduce additional Higgs fields at the intermediate

scale in these cases.

For simplicity, we restrict ourselves to the cases where the intermediate scale VEVs

develop in the SM singlet direction of R1 and/or R2 = 126. One of the SM singlet
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Table 5.3: Real triplet DM candidates in various SO(10) representations.

SO(10) representation SU(4)C ⊗ SU(2)L ⊗ SU(2)R

45 (1,3,1)

54 (1,3,3)

210 (15,3,1)

components of R1 should have a VEV of O(MGUT) to break SO(10) into Gint. The

R2 Higgs field acquires an O(Mint) VEV to break Gint, but it is not able to give mass

differences among the components in RDM, as mentioned above. Thus, we need to

exploit an extra SM singlet component in R1 which remains light compared to the GUT

scale, to induce intermediate-scale mass terms for RDM, which are to be used to generate

the required mass splitting, as we described in Section 3.3.

We summarize in Table 5.4 the multiplets in R1 that may develop a VEV of O(Mint)

for different Gint. The multiplets are labeled by the quantum numbers of Gint. It

turns out that there is no extra SM singlet component in 54, which is indicated by a

hyphen in the table. As a consequence, there is no way to fine-tune the mass of the

(1, 3, 3) DM candidate originating from the 54 and we drop it from further discussion.

Here, we note that the cases of Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L and

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗D are disfavored before further analysis: the

addition of a real triplet DM lowers the unification scale to unacceptable values and in

these cases there is neither any new-physics contribution to the SU(3)C gauge coupling

beta function nor any new positive contribution to the SU(2)L beta function above

Mint. Therefore, the resultant MGUT is always smaller than the unification scale of the

SU(3)C and SU(2)L gauge couplings in the SM plus a real triplet DM, which is below

1015 GeV and thus too low to evade the proton decay constraint.2 For this reason,

we do not consider these cases in Table 5.4.

We now perform the RG analysis to look for promising models with additional

intermediate Higgs multiplets given in Table 5.4. The one-loop results for MGUT, Mint,

2 Note that scalar doublet DM is allowed under these intermediate symmetries as shown in Table 5.2,
since its contribution to the beta functions is much smaller than that from a fermionic real triplet, thus
allowing for a higher unification scale.
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Table 5.4: Possible components in R1 that can develop a VEV of O(Mint).

Gint R1 Intermediate scale multiplets

SU(4)C ⊗ SU(2)L ⊗ SU(2)R 210 (15,1,1)

(15,1,3)

SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D 54 –

SU(4)C ⊗ SU(2)L ⊗U(1)R 45 (15,1, 0)

Table 5.5: The one-loop results for MGUT, Mint, αGUT, and proton lifetimes for real

triplet fermionic DM models. Here we set the DM mass to be 1 TeV. The mass scales

and proton decay lifetime are in unit of GeV and years, respectively. In the blue shaded

model, gauge coupling unification is achieved with a sufficiently high GUT scale.

RDM Additional Higgs log10Mint log10MGUT αGUT log10 τp(p→ e+π0)

in R1

Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R

(1,3,1) – 15.50 13.69 0.0263 –

(1,3,1) (15,1,3) – – – –

(1,3,1) (15,1,1) 15.65 13.47 0.0263 –

(1,3,1) (15,1,1) 6.54 17.17 0.0252 39.8± 1.2

(15,1,3)

(15,3,1) (15,1,1) 14.44 14.10 0.0246 –

(15,3,1) (15,1,1) 14.52 14.11 0.0243 –

(15,1,3)

Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D
(1,3,1) – 14.78 14.04 0.0250 –

Gint = SU(4)C ⊗ SU(2)L ⊗U(1)R

(15,3, 0) (15,1,0) 14.55 14.21 0.0246 –

αGUT, and proton lifetimes for different combination of RDM and the Higgs fields are
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listed in Table 5.5.3 Here, we set the DM mass to be 1 TeV. The second column lists

the extra Higgs fields in R1 at Mint in addition to R2. We suppressed combinations of

Higgs multiplets that cannot split the degeneracy of DM multiplet as in Eq. (3.8). The

mass scales and proton decay lifetime are in units of GeV and years, respectively. We

find that there is only one promising model with Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R,

which is highlighted by blue shading in Table. 5.5. In this case, since the DM multiplet is

a singlet under both SU(4)C and SU(2)R, the additional Higgs fields are not necessary

from the viewpoint of the mass splitting for the DM multiplet; namely, there is no

degeneracy problem for this model. Rather, they are required so that the model achieves

a good unification scale beyond proton decay constraint. The model has, however, a

quite low intermediate scale that results in large neutrino masses through the type-I

seesaw mechanism since the Dirac mass terms for neutrinos are related to the up-type

Yukawa couplings in this setup. A simple way to evade this problem is to introduce a

complex (15,2,2)C Higgs field in a 126 to modify the relation as what we have done in

the case of NETDM. 4 If a (15,2,2)C Higgs is also present at the intermediate scale,

it turns out that gauge coupling unification is still realized, with log10Mint = 9.28,

log10MGUT = 16.38, αGUT = 0.038, and log10 τp(p → e+π0) = 35.9. Here again,

the mass scales and proton decay lifetime are expressed in units of GeV and years,

respectively. Finally, we note that the addition of (15,2,2)C will not resurrect the

failed models in Table 5.5.

5.4.3 Hypercharged DM

Hypercharged DM is a natural step forward after considering real triplet DM. In this

section, we still restrict the Higgs content as in the previous section. As we discussed

in Sec. 5.2, hypercharged DM is strongly constrained by direct detection experiments.

To evade this constraint, we need to split the mass of the Weyl components of the

hypercharged Dirac DM by ∼ 100 keV. There are two possible ways to generate an

effective operator in Eq. (5.1) through exchange of a field at the intermediate scale

at tree level, depending on whether it is a scalar or a fermion. In the former case,

3 We again restrict our attention to one-loop RGEs to avoid any model dependence due to the
Yukawa coupling with the additional Higgs in R1.

4 For the effects of a (15,2,2)C Higgs field on the Yukawa couplings, see Refs. [14, 50].
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the effective operator is induced by the exchange of intermediate-scale Higgs fields, as

illustrated in Fig. 5.2(a). This requires the hypercharge of the virtual Higgs field to be

at least one and Mint . 109 GeV. According to Table 5.4, the only candidate for such

a Higgs field belongs to (15,1,3) in the 210 when Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R.

The DM candidate should then be in a (15,2,2) or (10,2,2)⊕ (10,2,2) representation

of SU(4)C ⊗ SU(2)L ⊗ SU(2)R. We performed a scan for models that contain above

content, and found that none of them gives appropriate Mint and MGUT. The latter

possibility is to introduce another fermionic real multiplet at the intermediate scale, so

that the DM candidate is a mixture of a hypercharged field and a Majorana field. This

mechanism is demonstrated in Fig. 5.2(b), where RDM is the main component of the

DM candidate which is hypercharged and has a mass term of TeV scale; R′DM is the

Majorana field at the intermediate scale. The cross mark in Fig. 5.2(b) represents the

chiral flipping in the propagator of the Majorana field R′DM. RDM and R′DM couple to

the SM Higgs field through terms like

Lmix ∝ RDMR
′
DMRH + h.c. (5.8)

Since R′DM is a Majorana field, it can only belong to either a singlet or a real triplet

among the possible candidates in Table 3.1. As a result, DM can only belong to a doublet

(F
1/2
2 or F̂

1/2
2 ) or a quartet (F

1/2
4 ), with hypercharge 1/2. This requires Mint . 109 GeV

according to the discussion in Sec. 5.2. Note that the Y ≥ 1 DM candidates, F13, F̂13,

and F
3/2
4 , require at least 2Y additional fermions at the intermediate scale to generate

the effective operator in Eq. (5.1). To minimize our model content, we do not consider

these possibilities in the following discussion.

Taking the above discussion into account, we list the possible SO(10) representations

forRDM in the upper part of Table 5.6; the singlet and real triplet candidates forR′DM are

listed in the lower part of Table 5.6 and Table 5.3, respectively. The quantum numbers

of the DM candidates with respect to the intermediate gauge groups we consider can

be inferred from the SU(4)C ⊗ SU(2)L ⊗ SU(2)R and B −L quantum numbers listed in

the table.

Now, we perform a one-loop calculation of Mint, MGUT and the proton decay lifetime

for various combination of RDM, R′DM and intermediate scale Higgs fields. Then, we

pick up the models that are not yet ruled out by proton decay experiments, and at the
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210

RDM

RDM

RH

〈210〉

RH

(a) Scalar exchange

R′
DM R′

DM

RDM

RH

RDM

RH

(b) Fermion exchange

Figure 5.2: Diagrams that generate the mass splitting between the Weyl components of

hypercharged Dirac DM through the exchange of an intermediate-scale (a) scalar (b)

fermion.

Table 5.6: The upper half of the table shows the fermionic Y = 1/2 candidates for RDM

in various SO(10) representations; the lower half of the table shows the fermionic singlet

candidates for R′DM.

SO(10) representation SU(4)C ⊗ SU(2)L ⊗ SU(2)R B − L
10, 120, 210′ (1,2,2) 0

120, 126 (15,2,2) 0

210 (10,2,2)⊕ (10,2,2) ±2

210′ (1,4,4) 0

54, 210 (1,1,1) 0

45 (1,1,3) 0

45, 210 (15,1,1) 0

210 (15,1,3) 0

126 (10,1,3) 2

same time have a relatively low intermediate scale Mint . 109. We also require that the

models have appropriate particle and Higgs content, so that the DM acquires the right

mass through Eq. (3.8) and Eq. (5.8). It turns out that the viable models are limited to

Gint = SU(4)C⊗SU(2)L⊗SU(2)R or SU(4)C⊗SU(2)L⊗U(1)R. These models are listed
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in Table 5.7 and no quartic models (F
1/2
4 ) were found. The model FA422 is incompatible

with small neutrino masses, since the Yukawa coupling for the 16 of this model is unified

at MGUT. For models FA421 and FB422 , on the other hand, we can avoid the neutrino

mass problem by fine-tuning the Yukawa couplings with additional Higgs fields at the

intermediate scale, as discussed in Sec. 5.4.2. Among them, the model FA421 has a

phenomenologically interesting consequence. Since Mint ' 3 TeV, this model predicts a

new massive neutral gauge boson, Z ′, and vector leptoquarks whose masses are around

a few TeV.

Table 5.7: Possible hypercharged fermionic DM models that is not yet excluded by

current proton decay experiments. The quantum numbers are labeled in the same order

as Gint. The subscripts D and W refer to Dirac and Weyl respectively. The numerical

results are calculated for DM mass of 1 TeV. The mass scales and proton decay lifetime

are in unit of GeV and years, respectively.

Model RDM R′DM Higgs log10Mint log10MGUT αGUT log10 τp

Gint = SU(4)C ⊗ SU(2)L ⊗U(1)R

FA421 (1,2, 1/2)D (15,1, 0)W (15,1, 0)R 3.48 17.54 0.0320 40.9± 1.2

(15,2, 1/2)C

Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R

FA422 (1,2,2)W (1,3,1)W (15,1,1)R 9.00 15.68 0.0258 34.0± 1.2

(15,1,3)R

FB422 (1,2,2)W (1,3,1)W (15,1,1)R 5.84 17.01 0.0587 38.0± 1.2

(15,2,2)C

(15,1,3)R



Chapter 6

Asymmetric Dark Matter

Among the components of the current universe, the density of baryons, ΩBh
2 = 0.022,

and the density of cold dark matter, Ωch
2 = 0.12 are found to be comparable to each

other. This leads to the idea that the cold dark matter and the baryon asymmetry have

the same origin in the early universe. In an SO(10) model with an intermediate scale,

the generation of baryon-antibaryon asymmetry can be explained by the well studied

framework of leptogenesis: the lepton-antilepton asymmetry is first generated by the

out-of-equilibrium of right-handed neutrinos, this asymmetry is then transfered to the

baryon density by the sphaleron process that violates the baryon and the lepton number

conservation.

In this chapter, we consider the possibility that the SO(10) dark matter candidate

possesses an asymmetry in its number density. Unlike NETDM and WIMP models

where the DM candidate has equal matter and anti-matter densities, the asymmetric

dark matter which accounts for the observed relic density is much more abundant than

the anti-dark matter. The asymmetry in the dark matter states can be obtained by

transferring a part of the asymmetry in the SM sector, which is generated by leptogenesis

[60], to the dark matter sector. Preservation of this asymmetry in the background of

sphaleron interactions, and possible dark matter-anti matter oscillations will impose

stringent constraints on the possible models.

54
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6.1 Asymmetric dark matter in SO(10)

6.1.1 Generation of asymmetries

As we have seen in the previous chapters of this thesis, the SO(10) unification models

we considered generally particles with masses of Mint, such as the right-handed neutri-

nos, the components of R2 that breaks Gint and some componnets of the dark matter

multiplet.

The decay of such intermediate-scale particles can generate a B−L asymmetry. The

B−L charge in the decay process may not be conserved if the relevant diagrams contain

the 126 VEV. C and CP invariance can also be violated if the vertices in the diagrams

include CP phases. Thus, if this decay occurs out-of-equilibrium, a B − L asymmetry

can be generated. A well-known example is the generation of a lepton-number (and

thus B − L) asymmetry via the out-of-equilibrium decay of right-handed neutrinos—

leptogenesis [60,61]. If there are no other B − L violating processes in equilibrium, the

generated B − L asymmetry remains non-zero, which results in non-zero baryon and

lepton asymmetries with the help of electroweak sphaleron processes [62,63].

Such heavy particles may also decay into dark matter particles and generate an

asymmetry in its density. This possibility is often called “cogenesis” in the literature

and has been widely studied. The asymmetry production in this type of ADM models

relies on the CP violating phase in the interaction between the decaying intermediate

scale particle and the DM and is therefore highly model dependent.

Our focus of this section is on the so called “transfer” scenario, where the DM does

not obtain an asymmetry when it is initially produced. Rather, B − L asymmetry

in the SM sector can be transferred to the dark matter sector. For this to occur,

some interactions that communicate the asymmetries between these sectors should be

in thermal equilibrium after the leptogenesis. As we shall see below, in this case the

thermalization conditions give strong constraints on dark matter models that must be

shared by all of our SO(10) dark matter candidates.
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6.1.2 Thermal conditions for transfer and the dark matter mass

The B − L asymmetry generated by leptogenesis is transferred to the dark sector via

effective operators of the form

Leff =
cd

Λd−4
ODMOSM + h.c. , (6.1)

if they are in thermal equilibrium, where ODM is an operator which contains only the

dark matter fields and has a non-zero dark-matter number while OSM consists of SM

fields only; d ≥ 4 is the mass dimension of the operator; Λ denotes the scale at which the

effective operator is generated (in particular, Λ = Mint in the models discussed below);

cd is a dimension-less constant, which may involve additional suppression factors such

as small Yukawa couplings. The necessary condition for the interaction induced by the

operator to be in thermal equilibrium is then given byT < Teq for d = 4

T > Teq for d ≥ 5
, (6.2)

where the decoupling temperature Teq is determined by the condition

ΓLeff

∣∣
Teq
' 1

8π3

c2
d

Λ2(d−4)
T 2(d−4)+1

eq =
CT 2

eq

MP
' H

∣∣
Teq

, (6.3)

which gives

Teq ≡ Λ

[
8π3CΛ
c2
dMP

] 1
2(d−4)−1

. (6.4)

Hence, for non-renormalizable operators, if Teq < TBL, there is a period during which

they are in equilibrium. If the operator is renormalizable, then even though it is out-

of-equilibrium at T = TBL, it will come into thermal equilibrium when the temperature

becomes lower than Teq.

The presence of such interactions in thermal equilibrium gives rise to a condition

between the chemical potentials of SM fields and that of the dark matter field, which

relates the B−L asymmetry to the asymmetry in the dark-matter number. We focus on

the dominant operator in Eq. (6.1), and assume that ODM contains NDM dark matter

fields (or, strictly speaking, the number of dark matter fields minus the number of

anti-dark-matter fields) and OSM consists of NQ, NuR , NdR , NL, NeR , NH numbers of
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the left-handed quarks, right-handed up quarks, right-handed down quarks, left-handed

leptons, right-handed charged leptons, and Higgs fields, respectively. The dark matter

field is a nDM-dimensional representation of SU(2)L and has the hypercharge YDM and

B −L charge QDM
B−L. By assigning each particle species a chemical potential, and using

gauge and Higgs interactions as conditions on these potentials one can write down a

simple set of equations for various charge densities [67, 68]. Above the electroweak

phase transition temperature, the conservation of the electroweak symmetry makes the

chemical potential of the W boson vanish: µW = 0. In equilibrium, the sphaleron

process then yields the additional condition,1

3µuL + µνL = 0 , (6.5)

where µuL and µνL are the chemical potentials for the left-handed up quark and left-

handed neutrino, respectively. The chemical equilibrium condition with respect to the

interaction Leff reads

NDMµDM + (NQ+NuR +NdR)µuL + (NL+NeR)µνL + (NH +NuR −NdR −NeR)µ0 = 0 ,

(6.6)

where µDM and µ0 are the chemical potentials for the dark matter and the Higgs field.

In this paper, we focus on the case where the low-energy effective theory contains one

SU(2)L doublet Higgs boson; however, for one’s convenience, in this section we keep the

number of the Higgs doublets to be arbitrary and denote it by nH , with the assumption

that all of the Higgs fields have the same chemical potential µ0. In addition, since Leff

should be neutral under U(1)Y , we have

YDMNDM +
1

6
NQ +

2

3
NuR −

1

3
NdR −

1

2
NL −NeR +

1

2
NH = 0 . (6.7)

On the other hand, it is not necessary for the interaction Leff to conserve B − L as we

will see below. Let us denote the entire B − L charge of Leff by ∆B−L.

QDM
B−LNDM +

1

3
NQ +

1

3
NuR +

1

3
NdR −NL −NeR = ∆B−L . (6.8)

By using Eqs. (6.5), (6.6), (6.7), and (6.8), we then obtain

µDM = 3XDMµuL + (2YDM −XDM)µ0 , (6.9)

1 Here, we assume that the dark matter field is either a complex scalar or a Dirac fermion. In this
case, the dark matter does not contribute to the condition (6.5).
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with

XDM ≡ QDM
B−L −

∆B−L
NDM

. (6.10)

The electric charge density Q in units of T 2/6 is given by

Q = 6µuL − 6µνL + (12 + 2nH)µ0 + 2µDMk(z)

JDM∑
j=−JDM

(j + YDM)

= 24µuL + (12 + 2nH)µ0 + 2µDMnDMYDMk(z) , (6.11)

where JDM ≡ (nDM − 1)/2, z ≡ mDM/T with mDM the dark matter mass, and

k(z) =


3

4π2

∫∞
0

x2dx

sinh2

(√
x2+z2

2

) for complex scalar

3
2π2

∫∞
0

x2dx

cosh2

(√
x2+z2

2

) for Dirac fermion
. (6.12)

Note that k(z) → 1 for z → 0, while k(z) ∝ e−z for z � 1. On the other hand, the

dark matter multiplet does not give a contribution to the SU(2)L charge T3 due to

Tr(T3) = 0. By using Eqs. (6.9) and (6.11) with the condition Q = 0, we can express

µDM in terms of µuL :

µDM =
3 [(10 + nH)XDM − 8YDM]

6 + nH + (2YDM −XDM)nDMYDMk(z)
µuL . (6.13)

We can also express the B−L charge density in terms of µuL . For later convenience,

let us denote the contributions of the SM and dark matter particles to the B−L charge

density by (B − L)SM and (B − L)DM, respectively, and obtain a relation between

(B −L)SM and the asymmetry in the dark matter sector. To that end, first we express

(B − L)SM in units of T 2/6 in terms of µuL . By using Eq. (6.5), the condition Q = 0,

and Eq. (6.13), we have

(B − L)SM = 3 (4µuL − 3µνL + µ0)

=
3 [13nH + 66 + 2nDMYDMk(z) (13YDM − 8XDM)]

6 + nH + (2YDM −XDM)nDMYDMk(z)
µuL . (6.14)

Thus, the asymmetry in the dark matter sector in units of T 2/6, ∆DM(z) ≡ 2nDMk(z)µDM,2

is related to (B − L)SM as

∆DM(z) =
2nDMk(z) [(10 + nH)XDM − 8YDM]

13nH + 66 + 2nDMYDMk(z)(13YDM − 8XDM)
(B − L)SM . (6.15)

2 We include a factor of nDM in the definition of ∆(DM) since all of the charged states in the dark
matter multiplet decay into the neutral component in the end.
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This expression shows that the interaction Leff should decouple at some point; otherwise,

∆DM(z) is suppressed due to the factor k(z). In the calculation above, we assume that

the interaction Leff decouples before the electroweak phase transition. After decoupling,

the dark matter asymmetry freezes with a value of ∆DM ≡ ∆DM(zdec) where zeq ≡
mDM/Tdec.

(B −L)SM in Eq. (6.15) is related to the baryon and lepton asymmetries in the SM

sector, BSM and LSM, respectively, through the ordinary procedure [67, 68]. By using

Eq. (6.5) and Q = 0 with the dark matter contribution removed from Eq. (6.11), we

can express BSM and LSM in terms of µuL (in units of T 2/6) as

BSM = 12µuL ,

LSM = 9µνL − 3µ0 = −3(42 + 9nH)

6 + nH
µuL . (6.16)

The sphaleron processes decouple after the electroweak transition [69] so that µ0 = 0

as the Higgs boson now develops a VEV, while now µW is non-vanishing. In this case,

the electric charge is given by

Q = 6µuL − 6µνL − 2(8 + nH)µW . (6.17)

while the sphaleron condition reads

3µuL + 2µW + µνL = 0 . (6.18)

Again, by imposing the electric neutrality Q = 0, we can find the relation

BSM =
4(8 + nH)

98 + 13nH
(B − L)SM . (6.19)

Provided that the symmetric part of the dark matter sector is removed via annihila-

tion, the present dark matter abundance is simply given by ∆DM. Since it is related to

(B−L)SM, which is conserved after decoupling of the transfer interaction, we can relate

it to the baryon number density today via (6.19). Therefore, to explain the observed

dark matter energy density, the dark matter mass should be

mDM = mN

(
Ωch

2

ΩBh2

) ∣∣∣∣13nH + 66 + 2nDMYDMk(zdec)(13YDM − 8XDM)

2nDMk(zdec) [(10 + nH)XDM − 8YDM]

∣∣∣∣ [ BSM

(B − L)SM

]
,

(6.20)

where mN is the nucleon mass.
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6.1.3 Hypercharged asymmetric dark matter

In Section 5.2 we discussed the constraint of direct detenction experiments on hyper-

charged. This constraint applies to all kinds of hypercharged dark matter candidates

since it is independent of the production mechanism. To evade the constraint, the

masses of the two real(majorana) components of the complex scalar(Dirac fermionic)

hypercharged dark matter should be splitted from each other by the operator (5.1).

For a Dirac fermion ψ with hypercharge Y , the operator takes the form:

L∆m =
c∆m

2Λ(4Y−1)
(H∗)4Y ψcψ + h.c. , (6.21)

where all the Clebsch-Gorden coefficients have been absorbed in c∆m. This operator

has the form (6.1), and thus can communicate asymmetry in the SM sector to the dark

matter sector [73, 74]. Hence, hypercharged dark matter can be a good candidate for

asymmetric dark matter. As it turns out, however, there are two challenges in this sce-

nario, besides the direct detection bound mentioned above. First, if the operator (6.21)

remains in thermal equilibrium below the electroweak phase transition temperature,

then it washes out the dark matter asymmetry. The chemical equilibrium condition

for this interaction gives an additional relation between the dark matter and Higgs

chemical potentials: 4Y µ0 + 2µDM = 0. After electroweak symmetry breaking, µ0 = 0,

and thus this condition implies µDM = 0. To avoid this, the interaction (6.21) should

decouple before electroweak symmetry breaking. Second, the operator (6.21) causes

particle-antiparticle oscillations after electroweak symmetry breaking, which may wash

out the asymmetry in the dark sector. To prevent this, we need to make the oscillation

rate sufficiently small or assure the decoupling of dark matter from thermal bath before

the electroweak phase transition. In the latter case, there is no asymmetry in the dark

matter sector at present, but still the dark matter abundance is (mainly) determined

by the asymmetry of dark matter before the electroweak symmetry breaking.

Let us give a rough estimation for the above conditions. First, according to Eq. (6.4),

Teq for the operator (6.21) is given by

Teq =

[
8π3CΛ2(4Y−1)

c2
∆mMP

] 1
2(4Y−1)−1

=

[
8π3Cv8Y

4(2Y−1)MP∆m2

] 1
2(4Y−1)−1

. (6.22)
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For Y = 1/2, for instance, this reads

Teq ' 100 GeV ×
(

100 keV

∆m

)2

. (6.23)

This result shows that the requirement ∆m & 100 keV to evade the direct detection

bound may cause the operator (6.21) to remain in equilibrium down to the electroweak

phase transition. We however note that the formula (6.4) is based on the assumption

that all of the relevant particles are relativistic. Thus, if the dark matter mass is much

larger than the electroweak scale, the above consequence may be modified significantly.

The second condition follows from Γosc < H|TEW
where Γosc = ∆m/2 is the rate of

particle-antiparticle oscillations and TEW is the temperature at the electroweak phase

transition. This leads to

∆m <
2CT 2

EW

MP
' 3× 10−14 GeV ×

(
TEW

100 GeV

)2

. (6.24)

Obviously, this conflicts with the direct detection bound. Thus, to avoid particle-

antiparticle oscillations from erasing the dark matter asymmetry, the dark matter should

decouple from thermal bath above TEW. Since the freeze-out temperature of dark matter

is given by ' mDM/25, this condition requires mDM & 25TEW.

As we have just seen, the above conditions may be evaded if mDM � TEW. On the

other hand, there is an upper bound on the dark matter mass which follows from the

requirement that the symmetric part of dark matter be annihilated away so that the

asymmetric part accounts for the (dominant part of the) dark matter abundance. For

example, for the SU(2)L doublet Y = 1/2 Dirac dark matter, the annihilation is effective

if mDM < 1 TeV. On the other hand, the second condition discussed above requires

mDM & 25TEW > 1 TeV, and thus the doublet Dirac fermion is unable to be asymmetric

dark matter [73]. For the SU(2)L doublet scalar dark matter, the upper bound on the

dark matter mass is relaxed if the dark matter-Higgs quartic coupling is large. Even

in this case, however, the dark matter asymmetry is found to be much smaller than

the observed dark matter density once the perturbativity condition is imposed on the

quartic coupling [76]. Other cases for hypercharged dark matter candidates are discussed

in Ref. [75], and found that the Y > 1 cases are excluded. As a consequence, only the

Y = 1 cases can be promising candidates for hypercharged asymmetric dark matter.
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6.1.4 Candidate models for SO(10) asymmetric dark matter

Let us summarize the discussion in this section, and list up promising candidates for

asymmetric dark matter in SO(10) GUTs. First, we consider the “minimal models”,

namely, we require that besides the SM particles only the dark matter multiplet has

a mass much lighter than the intermediate scale. In this case, the low-energy effec-

tive theory only contains the SM particles and the dark matter, and the relevant non-

renormalizable operators are generated at the intermediate or GUT scale.

As discussed in the previous subsection, the Y = 1/2 and 3/2 candidates in Table 3.1

have already been excluded. In addition, the analysis in Chapter 5 shows that S03, S13,

F13, F̂01, F̂13 are not good candidates for SO(10) dark matter models. This is because none

of these models are consistent with gauge coupling unification with reasonable values of

Mint and/or MGUT with minimal field content. As a result, only S01 can be a promising

candidate for SO(10) asymmetric dark matter. We will discuss this candidate in the

subsequent section. Then, we discuss some next-to-minimal extensions in Sec. 6.3.

6.2 Scalar Singlet Asymmetric Dark Matter

As we discussed in the previous section, singlet scalar dark matter is the only candidate

for asymmetric dark matter in SO(10) if we require the minimality. We discuss this

possibility in this section. In Sec. 5.3.2, we have calculated Mint, MGUT, unified coupling

and the proton decay lifetime for various Gint for the WIMP scenario. The ADM model

under consideration in this section has different DM particle mass since it is sensitive

to the production mechanism. However, the rest of the spectrum is the same as those

considered in Sec. 5.3.2. Thus the result obtained for the WIMP scenario is also valid

for the ADM model considered here, because a singlet does not affect the RGE-running.

Only three models accommodate a sufficiently high GUT scale that is required to evade

the proton decay bound. These models are called SA422, SA3221, and SA3221D. To be

specific, we focus on the SA3221 case in the following analysis, but similar discussions

can also be applied to the other cases. For convenience, the DM field is noted as S in

the rest of this section.
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6.2.1 Particle-antiparticle oscillations

Since S is a singlet under the SM gauge group, in addition to the particle-number-

conserving mass term |S|2, it can also have the particle-number-violating mass terms

S2 and S∗2. These mass terms induce particle-antiparticle oscillations S ↔ S∗, which

are problematic as they erase the asymmetry in the dark matter sector. To avoid this

problem, the oscillation rate has to be small, namely,

Γosc =
∆m

2
.
C
MP

(
mDM

25

)2

, (6.25)

where ∆m denotes the mass splitting between the dark matter particle and its antiparti-

cle induced by the particle-number-violating mass terms, and the right-hand side is the

Hubble parameter when the dark matter decouples from the thermal bath. In the pres-

ence of the mass terms µ2(S2 + S∗2)/2, the mass splitting is given by ∆m = µ2/mDM,

and thus Eq. (6.25) leads to

µ .
mDM

25

(
2CmDM

MP

) 1
2

' 2× 10−6 ×
(
mDM

1 TeV

) 3
2

GeV . (6.26)

In SO(10), both 162 and 1442 are forbidden by the gauge symmetry, and thus the

particle-number-violating mass terms are absent. The intermediate gauge symmetries

also forbid such mass terms. Below the intermediate gauge scale, however, the VEV

of the 126 Higgs field can generate the particle-number-violating mass terms via the

interactions

Lint = −κ2RDMRDMR
∗
2 − λ12612 (RDMRDM)(R1R

∗
2)126 + h.c. , (6.27)

where RDM = 16 or 144 denotes the dark matter multiplet, R1 is the GUT Higgs field,

R2 = 126 is the intermediate-scale Higgs field, and the subscripts after the parentheses

denote the SO(10) representation formed by the product in them. To satisfy the bound

(6.26), we need to suppress the couplings κ2 and λ12612 . Once they are taken to be small,

they remain small under the renormalization flow. By making these couplings small, we

can also suppress the particle-number-violating couplings with the Higgs boson, such as

S2|H|2, which are induced by the exchange of the 126 Higgs and lead to the particle-

number-violating mass terms after electroweak symmetry breaking.
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6.2.2 Thermal transfer

If the asymmetry in the dark sector is transferred from the B−L asymmetry in the SM

sector through effective interactions (6.1), the dark matter mass is uniquely determined

by the thermal relation (6.20). The lowest-dimension effective operator which has the

form of (6.1) is

L(7)
eff =

c7

Λ3
S2H2LcL+ h.c. , (6.28)

which can be induced by the exchange of the intermediate-scale particles. We thus take

Λ = Mint with other possible suppression factors included in the coefficient c7. Teq for

this operator is then given by Eq. (6.4):

Teq = Mint

[
8π3CMint

c2
7MP

] 1
5

. (6.29)

If Teq � mDM, this interaction decouples from the thermal bath much before the

decoupling of the dark matter, and in particular we can set k(zdec) = 1 in Eq. (6.20).

By setting nDM = 1, nH = 1, YDM = 0, and XDM = QDM
B−L = 1, we then obtain

mDM = mN
79

22

(
Ωch

2

ΩBh2

)[
BSM

(B − L)SM

]
' 6.0 GeV , (6.30)

where we have used Eq. (6.19). However, such a small dark matter mass has already

been excluded by the constraint on the Higgs invisible decay width. The symmetric

part of the dark matter density is annihilated through the quartic interaction

Lint = −λSH |S|2|H|2 , (6.31)

If the mass of the dark matter singlet is smaller than mh/2, the SM Higgs boson can

decay into a pair of the dark matter particles through the interaction (6.31). This decay

mode is invisible at the LHC, and reduces the branching fractions of the other decay

channels, which is severely restricted by the Higgs measurements at the LHC [77]. As a

result, the singlet dark matter candidate with such an interaction with the Higgs boson

has been ruled out for mS < mh/2. [102]

If Teq . mDM, on the other hand, the dark matter mass given by Eq. (6.20) can be

increased due to the Boltzmann factor k(zdec). In terms of the intermediate scale Mint,

the inequality Teq . mDM reads

Mint . m
5
6
DM

[
c2

7MP

8π3C

] 1
6

' c
1
3
7 ×

(
mDM

1 TeV

) 5
6

× 105 GeV . (6.32)
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As discussed in Sec. 5.3.2, however, there is no candidate in a model with minimal field

content which predicts such a low intermediate scale.3 We therefore conclude that the

thermal transfer scenario does not work for the scalar singlet asymmetric dark matter

candidate in SO(10).

6.3 Next-to-minimal models

In the model we considered in the previous section, the dark matter particle develops

an asymmetric part in its density through transfer from an asymmetry of the SM par-

ticles and preserves it as (a part of) the dark matter relic observed today. As we have

seen, these models are severely constrained leaving only the scalar singlet dark matter

model which is in conflict with collider search if we assume a minimal particle content.

However, we may find additional models if we relax the notion of the asymmetric dark

matter—namely, the constraints discussed above can be relieved if the dark matter

relic abundance is only required to have an asymmetric origin while it can be totally

symmetric today. We discuss this possibility in this section.

More specifically, we consider dark matter models that achieve the relic density in

two steps, similar to models considered in Refs. [74, 76]. In these models, two Z2-odd

particles (or multiplets) X1 and X2 are introduced near the TeV scale. X1 is the lighter

one whose relic density eventually originates from the B − L asymmetry in two steps:

i) X2 obtains asymmetric density by asymmetry transfer from SM particles, and then

ii) the asymmetric density in X2 is converted to the relic density of X1 through X2

decay. In order to annihilate the symmetric part of the thermal abundance efficiently,

X1 needs to have sizable couplings with the SM sector. To that end, we assume that

X1 has a charge under the SU(2)L⊗U(1)Y gauge interactions. In the model we present

below, X1 is a Majorana fermion. X2 needs to have a long enough lifetime to decay

after depletion of X1 symmetric density; otherwise the determination of X1 relic density

is similar to that in the usual thermal relic scenario.

In the rest of this section we will consider the scenario where the asymmetry in

X2 is obtained from a Yukawa coupling of the form X2X1f with f representing the

3 One can construct a non-minimal model with a low intermediate scale. This can be done for
example, if the intermediate gauge group is broken in two steps to the SM. While one of the intermediate
scales remains relatively large, the second may be as low as ∼ 1 TeV.
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SM fermions. X1 and X2 are taken to be a Majorana fermion and a complex scalar

multiplet, respectively. The chemical potentials of X1 and X2 are determined by the

neutrality of the Majorana particle X1 and by this Yukawa interaction, respectively:

µX1 = 0, µX2 = −µf . (6.33)

As stated above, X2 is supposed to decay into X1 after the X1–X1 and X2–X∗2

annihilation processes decouple. If these annihilation processes deplete X1 and the

symmetric part of X2 density efficiently, the relic abundance will be determined by the

asymmetric part of the X2 density before its decay. As we will see, the slow decay

X2 → X1 + f̄ requires a small mass gap between X2 and X1. At low temperature

T < mX1 , the asymmetry is transferred through the scattering f + X1,2 → A + X2,1

with SM fermions propagating in the t-channel and A is any light gauge boson which

couples to f . The decoupling temperature of the asymmetric transfer Tdec is thus

determined by the decoupling of this t-channel scattering process.

For a concrete model, we choose X2 as a right-handed stop-like particle t̃R, which is

a color triplet, weak isospin singlet and has hypercharge 2/3. X1 is chosen as a mixture

of a singlet Majorana fermion ψS and the neutral component of a doublet ψ0
D. The

lighter component of the mixture is the dark matter candidate and we will write it as χ

for convenience. Furthermore, we assume t̃R only couples to the right-handed top quark

tR through the Yukawa coupling

L = λttRψS t̃R + h.c. , (6.34)

which resembles the bino-stop-top coupling in the minimal supersymmetric Standard

Model.

The SO(10) completion of this model on top of the three generations of the SM 16

is summarized in Table 6.1. The SO(10) symmetry is broken by a 210R to Gint =

SU(4)C ⊗ SU(2)L ⊗ SU(2)R, which is broken subsequently to GSM by the VEV of

(10,1,3)C in a 126C . ψS , ψD and t̃R belong to Weyl 45, Weyl 10, and complex

scalar 16 representations, respectively.4 The Yukawa interaction (6.34) comes from

the coupling 16∗16f45W where 16f is the multiplet composed of the third generation

4 We are required here to consider a higher representation for ψS to achieve gauge coupling unification
with a sufficiently high GUT scale.
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Table 6.1: Particle content of the stop mediated asymmetry transfer model. The first

column shows the particle content around the electroweak or TeV scale. The second

column and the third column show the quantum number under Gint and the SO(10)

representation respectively.

EW SU(4)C ⊗ SU(2)L ⊗ SU(2)R SO(10)

t̃R (4,1,2)C 16C

ψD (1,2,2)W 10W

ψS (1,1,3)W 45W

H (15,2,2)C 126C

H (10,2,2)C 210R

H (1,2,2)C 10C

(10,1,3)C 126C

SM fermions and right-handed neutrino. GSM is broken by the VEV of the following

doublets: (1,2,2)R of 10R, (15,2,2)C of 126C , and (10,2,2)C of 210R. The SM Higgs

doublet is a mixture of the above doublets. The latter two multiplets at the interme-

diate scale are necessary for achieving a sufficiently high unification scale. With this

particle content, the one-loop result for the scales and unification coupling are

Mint = 1011.3 GeV, MGUT = 1015.7 GeV, αGUT = 0.035 . (6.35)

Now we consider the constraint placed on the coupling strength λt and the particle

masses. An upper bound on the mass of χ can be set by requiring its symmetric density

to be small before the decay of X2. The relic abundance of an SU(2)L doublet Dirac

dark matter candidate is saturated by the symmetric part if its mass is about 1 TeV.

Thus, if we require that the density of asymmetric origin makes up over 90% of the total

relic density, we can set a bound on the dark matter particle mass mχ . 1 TeV/
√

10 ∼
350GeV.5 The DM-nucleon scattering cross section for almost pure SU(2)L doublet

5 As we see below, the coupling λt is required to be very small, and thus the contribution of the
interaction (6.34) to the annihilation of the dark matter particles is negligible. Moreover, since the
conversion process tχ ↔ gt̃R decouples before the decoupling of the dark matter (see the discussion
below), coannihilation with t̃R is ineffective.
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Figure 6.1: zdec = mt̃R
/Tdec as a function of mχ, determined by dark matter relic

density.

dark matter is found to be very small (σSI . 10−49 cm2) [103] and thus this candidate

can evade the direct detection limits.6

The relationship between the relic density and the dark matter mass is given by

Eq. (6.20), with the relevant quantities for dark matter in Eq. (6.20) replaced with

the corresponding quantities for t̃R; namely, we set nH = 1, nDM = 1, YDM = 2/3,

XDM = 1/3, and replace k(zdec) with 3k(zdec) to take the color factor for t̃R into

account.7 We then have

mχ ' mN

(
Ωc

ΩB

)
474 + 144k(zdec)

185k(zdec)
, (6.36)

where zdec = mt̃R
/Tdec with Tdec the decoupling temperature of the Yukawa interaction,

6 If χ is a well-mixed state of singlet and doublet components, the dark matter-nucleon scattering
is induced by the Higgs boson exchange process, which is severely constrained by the direct detection
experiments. However, there is a specific parameter region, so-called blind spot [78–80], where the
direct detection bound is evaded even though the singlet-doublet mixing is sizable. In this region, the
symmetric part of dark matter relic agrees with the observed dark matter density even if the dark matter
mass is as large as ∼ 1.5 TeV [81]; therefore, for the symmetric origin of the dark matter abundance to
be less than 10%, mDM . 1.5 TeV/

√
10 ∼ 500 GeV is required in the case of the blind spot.

7 Strictly speaking, we may not directly apply Eq. (6.20) to the present case as t̃R can be in
thermal bath until the time of the sphaleron decoupling, though this effect does not affect our discussion
significantly.
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and we have used Eq. (6.19). The required value for zdec is then obtained from the

observed dark matter density using this relation, as shown in Fig. 6.1. We find that it

is in the range of 4–6.5 for mχ of 200 GeV–1 TeV.

According to Fig. 6.1, around the decoupling temperature of the Yukawa interaction

(6.34), the temperature is as low as ∼ 100 GeV and thus even the dominant t-channel

scattering process t + χ ↔ g + t̃R, with g a gluon, is exponentially suppressed. The

reaction rate is estimated by the target density nt times the cross section for the process

〈σv〉tχ, which is approximated by

Γ(tχ↔ gt̃R) ' g2
3λ

2
t

πmχmt
· T
mt
·
(
mtT

2π

)3/2

e−mt/T , (6.37)

where we neglect the ψS–ψD mixing for simplicity. This does not change the following

discussion qualitatively. Through this process, any asymmetry in tops (baryon asym-

metry) is transferred to an asymmetry in the t̃R which subsequently decay to χ. The

decoupling temperature is estimated from Γ(tχ ↔ gt̃R) ' H and using the result in

Fig. 6.1, we then obtain λt ' 2.5 (1.2)× 10−6 for mχ = 200 (1000) GeV.

Now let us consider the condition that t̃R has a lifetime long enough to decay after

the annihilation of the symmetric part of χ is over. To ensure such slow decay, we need to

set ∆m ≡ mt̃R
−mχ < mt so that the two-body decay channel t̃R → tχ is kinematically

forbidden.8 The dominant decay channel is then the three-body decay t̃R → bWχi ,

i = 1, 2, 3 represents three mass eigenstates of ψ0
D − ψS mixing, and for simplicity we

assume t̃R can decay to all of them, so that the decay rate is not suppressed by the

mixing angle. The decay occurs after χ–χ annihilation if Γt̃R < H|Tf , where mχ/Tf ∼ 20

is the decoupling temperature of the annihilation. Numerical calculation of the decay

rate gives a bound of ∆m . 100 (160) GeV for mX1 = 200 (1000) GeV, assuming the

three χi are degenerate in mass.

Finally we remark that the framework of transferring the asymmetry through Yukawa

interactions can also be applied straightforwardly to other choices of Z2-odd particles.

For example, we can also choose X1 as a single Majorana triplet (thus avoiding the need

for mixing among two multiplets) and X2 as a slepton-like doublet. The asymmetry is

transferred to X2 from the lepton doublet. The decoupling temperature of asymmetry

8 Such a small mass difference also allows t̃R to evade the strong limits from stop searches at the
LHC [83,84].
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transfer in this case is however exponentially sensitive to the Yukawa coupling, since

the asymmetry transfer scattering X1 + `− ↔ γ + X2 is mediated by a lepton and the

reaction rate is dependent on log(T/m`)/T when m` � T � X1. We will not discuss

this model in more detail here.



Chapter 7

Improvement of Vacuum Stability

In this chapter we consider the stability of the Higgs VEV. The scalar potential of the

SM Higgs doublet is

VSM = µ2|H|2 +
λ

2
|H|4. (7.1)

where the parameter λ and µ are determined by the value of the Higgs VEV and the

mass of the Higgs particle mh = 125.09± 0.24 GeV. If the SM is valid up to an arbitary

high scale, we can ran the quartic coupling with the SM RGE as shown by the green

dotted curve in Fig. 7.1. λ becomes negative around the scale of 1010 GeV. Thus the

scalar potential of the SM is unbounded from below for large value of H and the vacuum

of the electroweak theory is unstable. This is an implication for new physics beyond

the SM at a scale lower than 1010 GeV. In an SO(10) unification model, the dark

matter candidate and an intermediate scale below 1010 GeV introduce new particles

beyond the SM that may modify the running of λ so that it stays positive all the way

up to the PLANCK scale. For simplicity, we consider here a SM singlet dark matter

candidate originating from a 16 of SO(10) as in model SA3221 in Chapter 5 based on

the intermediate gauge group SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. In this model,

the intermediate scale is found to be Mint ' 109 GeV and is small enough to allow

the couplings of the 126 Higgs field to the SM Higgs to lift the Higgs quartic coupling

through the threshold corrections before it turns negative.

Moreover, we also consider the running of the quadratic coupling µ2 in this model. In

this SM this parameter is taken to be negative at the electroweak scale for the purpose of

spontaneous symmetry breaking. In a supersymmetric SM, the electroweak symmetry

71
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is broken radiatively, where the quartic couplings are initial positive at a high energy

scale, but is driven negative at a low energy scale. We will also reproduce this feature

in our non-supersymmetric SO(10) model by requiring µ2 runs positive at a high energy

scale.

7.1 Renormalization group evolution of the Higgs cou-

plings

The renormalization group evolution between the weak scale and intermediate scale is

almost identical to the SM. The only difference comes from the inclusion of the SM

singlet dark matter candidate, s ≡ Re[ν̃R]. Below the intermediate scale, the scalar

potential is relatively simple,

Vblw = µ2|H|2 +
1

2
µ2
ss

2 +
λ

2
|H|4 +

λsH
2
|H|2s2 +

λs
4!
s4 . (7.2)

In many ways, this resembles the minimal dark matter model often referred to as the

Higgs portal. The mass of our dark matter candidate is given by m2
DM = λsHv

2/2 +µ2
s.

Furthermore, fixing the dark matter mass will also fix λsH at the weak scale (taken here

to be mt) through the relic density (assuming standard thermal freeze-out): mDM '
3.3λsH TeV. The evolution of the Higgs quartic coupling in the SM with and without

the inclusion of the scalar s is shown in Fig. 7.1 by the green solid and dotted curves,

respectively. The renormalization group equations (RGE) are run at the two-loop level1

and one sees that the SM quartic coupling runs negative just above 1010 GeV [85]

without the scalar contribution. With the scalar contribution, the running of λ would

remain positive out to the GUT scale. Note that at the intermediate scale (determined

by the conditions for gauge coupling unification; the running of the gauge couplings in

SA3221 is shown by thin black lines in Fig. 7.1), Mint ' 109 GeV, λ > 0. Gauge coupling

unification also determines the GUT scale to be MGUT ' 1.5 × 1016 GeV, which is

high enough to evade the proton decay limit. Also shown is the running of λs (blue

dash-dotted) and λsH (brown dashed).

1 We use the three-loop RGEs for the top Yukawa and Higgs quartic couplings. We also include
the two-loop electroweak threshold corrections according to Ref. [85]. We use the MS scheme up to the
intermediate scale, and switch to the DR scheme at Mint.



73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

104 106 108 1010 1012 1014 1016

g1

g2

g3

λ

λs

λsH

cχ

cχΦ

cΦ

λ(SM)

C
ou

pl
in

gs

Scale [GeV]

Figure 7.1: Running of the quartic couplings of Higgs field, for selected inputs. The

green solid, brown dashed, and blue dash-dotted lines show the running of λ, λsH , and

λs, respectively, while the green dotted curve shows the running of λ in the SM. The

gauge coupling running is also shown in thin black lines. Above the intermediate scale,

the running of cΦ, cχ, and cχΦ is shown using the matching conditions in (7.5). The

free parameters are chosen as follows: At Q = mt, λs = 0 and λsH = 0.46 (which

corresponds to mDM ' 1.5 TeV); At Mint, c̃Φ = c′∆ = cΦ∆ = cχ∆ = c′χ∆ = c′χΦ = 0

and c∆ = −c′Φ∆ = −mχ∆/vR = 0.05. The non-zero couplings are taken so that the

low-energy mass spectrum we consider here is realized.

Above the intermediate scale, it is necessary to include in addition to s, the right-

handed doublet χ(1,1,2, 1) which contains s, the Higgs triplet ∆(1,1,3, 2) residing

in the 126, two heavy complex fields in addition to the SM Higgs doublet which all

sit in a complex Φ(1,2,2, 0), and finally the three right handed neutrinos sitting in

the fermionic 16 matter representations. Above the intermediate scale, we write Φ =

(φ1, φ̃2), Φ̃ ≡ σ2Φ∗σ2 (σa are the Pauli matrices), χ = (χ+, χ0)T , and

∆ =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
, (7.3)

where φi = (φ0
i , φ
−
i )T is an SU(2)L doublet; φ̃ ≡ iσ2φ

∗. Then a quartic potential can be
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written as

V
(4)

abv =
c∆

2

(
tr(∆†∆)

)2
+
c′∆
4

tr (∆∆) tr
(

∆†∆†
)

+
cΦ

2

(
tr(Φ†Φ)

)2
+
c̃Φ

4
tr(Φ̃†Φ)tr(Φ†Φ̃)

+ cΦ∆tr(∆†∆)tr(Φ†Φ) +
cχ
2
|χ|4 + cχΦ|χ|2tr(Φ†Φ)

+ cχ∆|χ|2tr(∆†∆) + c′χ∆χ
†[∆†,∆]χ

+ c′Φ∆tr
(

Φ†Φ[∆†,∆]
)

+ c′χΦχ
†Φ†Φχ+ . . . . (7.4)

Note that we have only included those quartic couplings which can be generated through

RGE evolution, with the exception of the last two; c′Φ∆ is needed to split the masses of

the two-Higgs doublet, Φ, while c′χΦ is induced by the c′Φ∆ term via RGE effects.

The quartic terms that contain two powers of ∆, as well as the cubic coupling (see

Eq. (7.6)) produce non-trivial tree-level threshold corrections at Mint, after ∆ acquires

a vev and the heavy fields are integrated out:

λ = cΦ −
(cΦ∆ + c′Φ∆)2

c∆
,

λsH = cχΦ −
(cΦ∆ + c′Φ∆)[mχ∆ + (cχ∆ − c′χ∆)vR]

c∆vR
,

λs = 3cχ − 3
[mχ∆ + vR(cχ∆ − c′χ∆)]2

c∆v2
R

, (7.5)

where 〈∆〉 = vRT− with T− ≡ (σ1 − iσ2)/2. As is well known, these threshold effects

always go in the direction of benefiting vacuum stability [86]. The evolution of the

quartic couplings, cΦ, cχ, and cχΦ above the intermediate scale are also shown in Fig. 7.1

using the matching conditions in (7.5). We use the one-loop RGEs for these quartic

couplings. Although we do not explicitly display the running of all quartic terms above

the intermediate scale, we have checked that although some run negative (notably c′∆),

we have verified that the couplings satisfy sufficient conditions which guarantee stability

of the vacuum up to the GUT scale.

The quadratic and cubic parts (which can lead to mass terms) of the potential can

be written as

V
(2,3)

abv = m2
χ|χ|2 +m2

Φtr(Φ†Φ) +m2
∆tr(∆†∆)

+mχ∆

(
χ̃†∆†χ

)
+ h.c. , (7.6)
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where we take mχ∆ to be real for simplicity. The relevant matching conditions with the

weak scale mass parameters are

µ2
s = m2

χ +
(
cχ∆ − c′χ∆

)
v2
R + 2mχ∆vR ,

µ2 = m2
Φ +

(
cΦ∆ + c′Φ∆

)
v2
R , (7.7)

where the low energy fields are related to the high energy fields as φ1 = H and χ0 =

(s+ ia)/
√

2.

The running of λs receives a large contribution from λsH , dλs/d lnQ = 12λ2
sH/(4π)2+

· · · and thus by demanding perturbativity of the couplings (λi . 1/βi, where βi is a rele-

vant beta-function coefficient) up to the intermediate scale 2 , we can set an upper bound

on λsH . 1.3. However, requiring perturbativity of the ci’s above the intermediate scale

places a stronger bound on λs(Mint) . 2.4 which requires λsH(mt) . 0.9. Non-zero

values for other couplings further push the upper limit to λsH(mt) . 0.6 in order to

avoid Landau poles up to the GUT scale. This is illustrated in Fig. 7.2, where we use

βi/ci as an indicator of the relative size between one-loop and tree level contributions.

Other choices of indicator such as ci do not severely affect the result because ci(GUT)

rises drastically when λsH(mt) ∼ 0.6. Since λsH controls the annihilation cross section

for s: σannvrel ' λ2
sH/16πm2

DM, and the relic density is proportional to 1/〈σannvrel〉,
the upper limit on λsH corresponds to an upper limit to the DM mass mDM . 2 TeV,

similar to that in the minimal dark matter model [44] without an intermediate scale.

7.2 Renormalization group evolution of mass parameters

The Higgs mass parameter, µ2, must be negative in order to break the electroweak sym-

metry, and in the SM, µ2 remains negative as it is run up to high energies. The presence

of the dark matter scalar however affects the running as dµ2/d lnQ = λsHµ
2
s/(4π)2 + · · ·

and causes µ2 to run positive at higher renormalization scales [8]. In other words, the

dark matter candidate can induce radiative electroweak symmetry similar to the mecha-

nism in supersymmetric models. As the running of µ depends on the combination λsHµ
2
s

we can obtain a minimum value for µs (and hence mDM) which is independent of the relic

2 we can also require that the Landau pole does not appear below Mint, this only result in 6%
difference from the bound obtained above.
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Figure 7.2: βi/ci at the GUT scale as a funtion of λsH(mt), for the parameters corre-

spond to Fig. 7.1.

density constraint by maximizing λsH . In Fig. 7.3, we display the log of the mass scale

M at which µs = 0 as a function of µs(mt), for λsH = 0.6. The red(yellow) horizontal

line marks the intermediate scale and 1 TeV. We find that µ2 > 0 at the intermediate

scale (at 1 TeV) when µs & 360 GeV (1150 GeV), corresponding to mDM & 380 GeV

(1160 GeV). Here, we set λs(mt) = 0. Taking the limits on λsH from the perturbativity

of λs and the limit on µs from the requirement of radiative electroweak symmetry break-

ing, we find that the dark matter mass must lie in a restricted range (when demanding

symmetry breaking at 1 TeV) mDM = 1.2–2 TeV.

When one imposes the constraint from the relic density, we obtain somewhat stronger

bounds on λsH . In Fig. 7.4, we show the value of sgn(µ2)|µ| for Q = Mint and 1 TeV

as a function of λsH(mt). Here again, we set λs(mt) = 0. As one can see that when

Q = Mint, we have λsH(mt) > 0.2 corresponding to mDM > 670 TeV and when Q = 1

TeV, we have λsH(mt) > 0.41 corresponding to mDM > 1.35 TeV.
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ms at the weak scale is determined from the requirement for the thermal relic abundance.



Chapter 8

Conclusion

Besides gauge coupling unification, SO(10) models contain several interesting features

beyond the SM: The right-handed neutrinos are contained in the same fundamental

representation as the Standard Model fermions; The seesaw mechanism that explains the

smallness of the light neutrino mass can be induced by the breaking of the intermediate

symmetry at a high scale; The generation of baryon-anti-baryon asymmetry in the

universe can be realized by leptogenesis; Neutron oscillations and proton decay are

generally predicted so that the models can be tested by corresponding experiments. The

minimal SO(10) models does not contain a candidate of dark matter, and in this thesis

we have combined the framework of non-supersymmetric SO(10) unification theories

with several dark matter models, including NETDM, WIMP and ADM.

We have shown that the Z2 symmetry required for dark matter stability appears

naturally as long as the Higgs that breaks SO(10) into the Standard Model gauge group

is chosen appropriately. With this Z2 symmetry, scalar DM must have odd B − L,

and may belong to a 16 or a 144 representation; the fermionic DM is B − L even

and is constained in a 10, 45, 54, 120, 126, 210 or 210′ representation. Both the

dark matter multiplet and the heavy Higgs multiplets affect the beta function of gauge

coupling constants and are therefore the content of the model is strongly constrained

by the requirement of gauge coupling unification and the proton decay lifetime. The

number of models that survive such constrained is quite limited even if our start from a

very long list of candidates, which combines different DM representations and different

intermediate scale symmetry. In Chapter 4 there are only two viable models in the

78
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NETDM scenario: one each based on Mint = SU(4)C ⊗SU(2)L⊗SU(2)R and SU(4)C ⊗
SU(2)L⊗ SU(2)R⊗D with DM contained in a (1,1,3)D ∈ 45D and (15,1,1)W ∈ 45W

respectively.

There are more surviving models in the WIMP DM scenario considered in Chapter 5.

Among the scalar WIMP candidates, the Y = 0 singlet and Y = 1/2 doublet are possible

candidates for SU(4)C ⊗ SU(2)L ⊗ SU(2)R and SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

(with or without a left-right symmetry) intermediate gauge groups. These originate from

either the 16 or 144 of SO(10). The latter group (without the left-right symmetry) is

also consistent with a state originating from the 144 being a triplet under SU(2)R. The

fermion candidates were even more restrictive. Models with Y = 0 must come from

a SU(2)L triplet (singlets are not WIMPs). In this case only one model was found

using the SU(4)C⊗SU(2)L⊗SU(2)R intermediate gauge group and requiring additional

Higgses (already present in R1) at the intermediate scale. Models with Y = 1/2 doublets

were found for SU(4)C⊗SU(2)L⊗U(1)R with a singlet fermion required for mixing, and

SU(4)C ⊗ SU(2)L ⊗ SU(2)R with a triplet fermion for mixing. In both cases, additional

Higgses from R1 are required at the intermediate scale. More possibilities can be found

if the additional Higgs are taken outside R1.

For ADM scenario in Chapter 6, the models are even more restricted, and the

minimal models are all ruled out becuase the mass splitting required by direct detection

bound usually lead to oscillation between dark matter and its anti-matter and wash out

the asymmetry of the dark matter density generated in the early universe. This lead

us to considering non-minimal models by introducing additional states that develope

asymmetry by transfer from the top quark asymmetry. The mass of the DM in this

model is severely constrained by depletion of symmetric density.

Finally in Chapter 7, we study the stability of the Higgs doublet scalar potentail

in the SA3221 WIMP DM model. We showed that the vacuum can be made stable up

to the GUT scale. Moreover, requiring radiative electroweak symmetry breaking and

perturbativity up to the GUT scale constrained the DM mass in a narrow range of

1.35-2 TeV.

As discussed listed above, introducing dark matter representation to a minimal

SO(10) model with intermediate scale solves several questions that are not addressed

in the SM. This framework is strongly constrained by observations, especially from
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proton decay detection and dark matter direct detection experiments. There are still

many open questions in this framework. For example, our dark matter candidate is

put in by hand and the only constraint on the choice of representation is its stability;

Moreover, we rely on fine tuned parameters to split the multiplets into fields with very

different energy scales. Is there any assumption that we can make to elegantly reduce

such ambiguity and to set the scales for the fields? On the unification aspect, it is also

interesting to see how Yukawa coupling unification can restrict the models. Some of our

SO(10) models have particle content that is similar to those of a supersymmetric model,

so it is tempting to see if we can construct a viable supersymmetric SO(10) model with

an intermediate scale. More work needs to be done in order to understand the relation

between the unification of fundamental forces and the origin of the dark matter.
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Appendix A

Input parameters

The values for the input parameters we have used in this paper are summarized in

Table A.1. They are taken from Ref. [87] except for the top-quark pole mass and the

Higgs mass, for which we use the values given in Refs. [88] and [89], respectively. In this

table, the gauge coupling constants are defined in the MS scheme, and thus we convert

them to the DR scheme at the electroweak scale using the one-loop relation [90]:

ga(mZ)DR = ga(mZ)MS

(
1 +

C(Ga)αa(mZ)MS

24π

)
, (A.1)

where C(Ga) the quadratic Casimir invariant. For the mass of top quark, we convert

the pole mass to its MS mass by using [87]

mMS
t (mMS

t ) = mt

(
1− 4αs(m

MS
t )

3π

)
, (A.2)

from which we obtain the MS top Yukawa coupling. The DR Yukawa coupling is then

given by

yDR
t = yMS

t

[
1 +

α1

480π
+

3α2

32π
− α3

3π

]
. (A.3)
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Table A.1: Input parameters [87–89].

Strong coupling constant αs(mZ) 0.1185(6)

QED coupling constant α(mZ) 1/127.944(14)

Fermi coupling constant GF 1.1663787(6)× 10−5 GeV−2

Weak-mixing angle sin2 θW (mZ) 0.23126(5)

Z-boson mass mZ 91.1876(21) GeV

top pole mass mt 173.34(82) GeV

Higgs mass mh 125.15(24) GeV



Appendix B

Renormalization group equations

In this section, we summarize the RGEs and the matching conditions used in text. The

two-loop RGEs [91] of the gauge coupling constants ga are written as

µ
dga
dµ

=
b
(1)
a

16π2
g3
a +

g3
a

(16π2)2

[ 3∑
b=1

b
(2)
ab g

2
b − cay2

t

]
. (B.1)

Below, we will give the coefficients in each theory discussed in this paper. For the

contribution of Yukawa couplings, we include them only in the SM running, as unknown

Yukawa couplings appear above the intermediate scale. Their effects should be taken

into account as theoretical uncertainties. All of the 1-loop RGEs have been checked with

the code PyR@TE [92] and more importantly the 2-loop RGEs have been computed

with this code.
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Appendix C

Standard Model

In the SM, we have

b(1)
a =


41/10

−19/6

−7

 , b
(2)
ab =


199/50 27/10 44/5

9/10 35/6 12

11/10 9/2 −26

 , ca =


17/10

3/2

2

 . (C.1)

Here, a = 1, 2, 3 correspond to U(1), SU(2)L, and SU(3)C , respectively, with the U(1)

gauge coupling constant normalized as g1 ≡
√

5/3g′. Since the top Yukawa coupling

contributes to the running of the gauge couplings at two-loop level, it is sufficient to

consider the one-loop RGE for the top Yukawa coupling. Furthermore, we can safely

neglect the contribution of the other Yukawa couplings. Thus, the relevant RGE is

µ
d

dµ
yt =

1

16π2
yt

[
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
. (C.2)

C.1 SU(4)C ⊗ SU(2)L ⊗ SU(2)R

As discussed in Sec. 2.2, above the intermediate mass scale, the theory contains the SM

fermions, the gauge bosons, the (10,1,3)C field, and the (1,2,2)C Higgs field. The

beta-function coefficients in this case are given by

b(1)
a =


−3

11/3

−23/3

 , b
(2)
ab =


8 3 45/2

3 584/3 765/2

9/2 153/2 643/6

 , (C.3)
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where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively. The

matching conditions at the intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
2R(Mint)

+
2

5

1

g2
4(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g4(Mint) . (C.4)

C.2 SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D

In this case, the (10,3,1)C field is added to the previous theory. The beta-function

coefficients then become

b(1)
a =


11/3

11/3

−14/3

 , b
(2)
ab =


584/3 3 765/2

3 584/3 765/2

153/2 153/2 1759/6

 , (C.5)

where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively.

C.3 SU(4)C ⊗ SU(2)L ⊗U(1)R

This theory contains the SM fermions, the gauge bosons, the (10,1, 1)C field, and the

(1,2, 1
2) Higgs field. The beta-function coefficients in this case are given by

b(1)
a =


−19/6

15/2

−29/3

 , b
(2)
ab =


35/6 1/2 45/2

3/2 87/2 405/2

9/2 27/2 −101/6

 , (C.6)

where a = 2L, 1R, 4 correspond to SU(2)L, U(1)R, and SU(4)C , respectively. The

matching conditions at the intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
1R(Mint)

+
2

5

1

g2
4(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g4(Mint) . (C.7)
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C.4 SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

This theory contains the SM fermions, the gauge bosons, the (1,1,3,−2)C field, and

the (1,2,2, 0) Higgs field. The beta-function coefficients in this case are given by

b(1)
a =


−3

−7/3

11/2

−7

 , b
(2)
ab =


8 3 3/2 12

3 80/3 27/2 12

9/2 81/2 61/2 4

9/2 9/2 1/2 −26

 , (C.8)

where a = 2L, 2R,BL, 3 correspond to SU(2)L, SU(2)R, U(1)B−L and SU(3)C , re-

spectively. The U(1)B−L charge is normalized such that it satisfies the normalization

condition of the SO(10) generators: TB−L =
√

3/8(B − L). The matching conditions

at the intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
2R(Mint)

+
2

5

1

g2
BL(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g3(Mint) . (C.9)

C.5 SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L ⊗D

For this left-right symmetric theory, the (1,3,1, 2)C field is added to the previous case.

The beta-function coefficients are then modified to

b(1)
a =


−7/3

−7/3

7

−7

 , b
(2)
ab =


80/3 3 27/2 12

3 80/3 27/2 12

81/2 81/2 115/2 4

9/2 9/2 1/2 −26

 , (C.10)

where a = 2L, 2R,BL, 3 correspond to SU(2)L, SU(2)R, U(1)B−L and SU(3)C , respec-

tively.
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C.6 SU(3)C ⊗ SU(2)L ⊗U(1)R ⊗U(1)B−L

This theory contains the SM fermions, the gauge bosons, the (1,1,1,−2)C field, and

the (1,2, 1/2, 0) Higgs field. The beta-function coefficients in this case are given by

b(1)
a =


−19/6

9/2

9/2

−7

 , b
(2)
ab =


35/6 1/2 3/2 12

3/2 15/2 15/2 12

9/2 15/2 25/2 4

9/2 3/2 1/2 −26

 , (C.11)

where a = 2L, 1R,BL, 3 correspond to SU(2)L, U(1)R, U(1)B−L and SU(3)C , respec-

tively. The matching conditions at the intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
1R(Mint)

+
2

5

1

g2
BL(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g3(Mint) . (C.12)

C.7 Model I

For DM model I, a (1,1,3)D Dirac fermion and a (1,1,3)R real scalar field are added to

the theory described in Appendix C.1. The beta-function coefficients are then computed

as

b(1)
a =


−3

20/3

−23/3

 , b
(2)
ab =


8 3 45/2

3 740/3 765/2

9/2 153/2 643/6

 , (C.13)

where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively.

C.8 Model II

For DM model II, a (15,1,1)W Weyl fermion and a (15,1,1)R real scalar field are

added to the theory described in Appendix C.2. The beta-function coefficients are then
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computed as

b(1)
a =


11/3

11/3

−4/3

 , b
(2)
ab =


584/3 3 765/2

3 584/3 765/2

153/2 153/2 2495/6

 , (C.14)

where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively.



Appendix D

One-loop formulae for gauge

coupling unification

At the one-loop level, the gauge coupling RGEs are easily solved analytically. By using

the solutions, we can obtain analytic expressions for Mint, MGUT, and αGUT as follows:

Mint = mZ exp

[
2π(b̃× n) ·α−1

(b̃× n) · b

]
, (D.1)

MGUT = mZ exp

[
2π(∆b× n) ·α−1

(b̃× n) · b

]
, (D.2)

α−1
GUT =

(b̃×α−1) · b
(b̃× n) · b

, (D.3)

with

α−1 ≡


α−1

1 (mZ)

α−1
2 (mZ)

α−1
3 (mZ)

 , b ≡


b1

b2

b3

 , b̃ ≡


b̃1

b̃2

b̃3

 , n ≡


1

1

1

 , (D.4)

where ∆b ≡ b̃− b, and ba and b̃a denote the beta-function coefficients below and above

the intermediate scale, respectively. The U(1) beta function above the intermediate

scale is given by a linear combination of the beta functions of the intermediate gauge

group. For instance, in the case of SU(4)C ⊗ SU(2)L ⊗ SU(2)R, we have

b̃1 =
2

5
b4 +

3

5
b2R . (D.5)
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Similar expressions are obtained for other intermediate groups. Notice that the compo-

nents of the beta-function coefficients which are proportional to n do not affect MGUT

and Mint, as one can see from the formulae. Therefore, if one adds a multiplet to, e.g.,

the SU(4)C ⊗ SU(2)L ⊗ SU(2)R theory whose contribution to the beta-function coef-

ficients is ∆b4 = ∆b2L = ∆b2R, then the multiplet does not alter MGUT and Mint at

one-loop level.

We also note that physics above the intermediate scale gives negligible effects on

the determination of Mint in the presence of the left-right symmetry. We can see this

feature by using Eq. (D.1). Let us consider the case of SU(4)C ⊗SU(2)L⊗SU(2)R⊗D.

In the left-right symmetric theories, the beta functions of the SU(2)L and SU(2)R gauge

couplings should be the same. Therefore, we have b2L = b2R, and

b̃× n = (b2L − b4)c , (D.6)

with

c =


1

−3
5

−2
5

 . (D.7)

Therefore, Eq. (D.1) reads

Mint = mZ exp

[
2πc ·α−1

c · b

]
, (D.8)

and thus, the intermediate scale does not depend on the beta function above Mint.

One can also see this feature by noting that above the intermediate scale g2L = g2R

holds at any scale. Hence, the intermediate scale corresponds to a point at which g2L

becomes equivalent to g2R, which is determined only by the running below Mint. A

similar argument holds in the case of SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L ⊗D.



Appendix E

Proton decay calculation

In this section, we describe how we calculate proton decay lifetimes in the intermediate-

scale scenarios. In these scenarios, proton decay is induced by the exchange of the

GUT-scale gauge bosons [93]. The relevant part of the SO(10) gauge interaction is

given by

Lint =
gGUT√

2

[
(Q)ar /XairPR(LC)i + (Q)ai /XairPL(LC)r + εijεrsεabc(QC)

ar /XbisPLQ
cj + h.c.

]
,

(E.1)

where

Q =

(
u

d

)
, L =

(
ν

e−

)
, (E.2)

X represents the GUT gauge bosons which induce proton decay, gGUT is the unified

gauge coupling constant, a, b, c are SU(3)C indices, i, j are SU(2)L indices, r, s are

SU(2)R indices, and PR/L ≡ (1 ± γ5)/2 are the chirality projection operators. The ex-

change of the X fields generates dimension-six proton decay operators. These operators

are expressed in a form that respects the intermediate gauge symmetries. Between the

GUT and intermediate scales, the renormalization factors for the effective operators are

in general different among the choices of Gint. Below the intermediate scale, the low-

energy effective theory is described by the SU(3)C ⊗ SU(2)L⊗U(1)Y gauge theory, and

thus after matching the theories above and below the intermediate scale, the prescrip-

tion for the calculation is common to all of the cases. For this reason, we first describe

the calculation below the intermediate scale. After that, we discuss each intermediate

100
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gauge theory showing the matching conditions at the GUT and intermediate scales as

well as the RGEs between them.

In the SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge theory, the effective Lagrangian for proton

decay is generically written as

Leff =
4∑
I=1

CIOI + h.c. , (E.3)

with the effective operators given by [94–96]

O1 = εabcεij(u
a
Rd

b
R)(QciLL

j
L) ,

O2 = εabcεij(Q
ai
LQ

bj
L )(ucReR) ,

O3 = εabcεijεkl(Q
ai
LQ

bk
L )(QclLL

j
L) ,

O4 = εabc(u
a
Rd

b
R)(ucReR) , (E.4)

up to dimension six. We then run down the coefficients to the electroweak scale. We

will see below that the coefficients C3 and C4 vanish in all of the cases we consider in

this paper, and thus we focus on C1 and C2. Their renormalization factors are [96]

C1(µ) =

[
α3(µ)

α3(Mint)

]− 2
b3

[
α2(µ)

α2(Mint)

]− 9
4b2

[
α1(µ)

α1(Mint)

]− 11
20b1

C1(Mint) , (E.5)

C2(µ) =

[
α3(µ)

α3(Mint)

]− 2
b3

[
α2(µ)

α2(Mint)

]− 9
4b2

[
α1(µ)

α1(Mint)

]− 23
20b1

C2(Mint) , (E.6)

where ba denote the one-loop beta-function coefficients for the gauge couplings ga and

µ is an arbitrary scale. We need to change the beta-function coefficients appropriately

when we across the DM mass threshold. Below the electroweak scale, the QCD correc-

tions are the dominant contribution. By using the two-loop RGE given in Ref. [100],

we compute the Wilson coefficients at the hadronic scale µhad as

Ci(µhad) =

[
αs(µhad)

αs(mb)

] 6
25
[
αs(mb)

αs(mZ)

] 6
23
[
αs(µhad) + 50π

77

αs(mb) + 50π
77

]− 173
825
[
αs(mb) + 23π

29

αs(mZ) + 23π
29

]− 430
2001

Ci(mZ) ,

(E.7)

with i = 1, 2.

In non-SUSY GUTs, the dominant decay mode of proton is p→ π0e+. The partial

decay width of the mode is computed as

Γ(p→ π0e+) =
mp

32π

(
1− m2

π

m2
p

)2[
|AL|2 + |AR|2

]
, (E.8)
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where mp and mπ are the masses of the proton and the neutral pion, respectively, and

AL = C1(µhad)〈π0|(ud)RuL|p〉 ,
AR = 2C2(µhad)〈π0|(ud)LuR|p〉 . (E.9)

The hadron matrix elements are evaluated with the lattice QCD simulations in Ref. [101].

We have

〈π0|(ud)RuL|p〉 = 〈π0|(ud)LuR|p〉 = −0.103(23)(34) GeV2 , (E.10)

with µhad = 2 GeV. Here, the first and second parentheses indicate statistical and

systematic errors, respectively.

E.1 Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R(⊗D)

For Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R(⊗D), the dimension-six effective operator is

given by1

Leff = C422 · εijεrsεαβγδ(ΨC)αiPLΨβj(ΨC)γrPRΨδs + h.c. , (E.12)

where α, β, . . . denote the SU(4) indices, and the Dirac field Ψ = (ΨL,ΨR) is defined

by

ΨL =

(
u1
L u2

L u3
L νL

d1
L d2

L d3
L eL

)
, ΨCR =

(
dCR1 dCR2 dCR3 eCR

−uCR1 −uCR2 −uCR3 −νCR

)
. (E.13)

Here, the indices represent the SU(3)C color and C indicates charge conjugation. At

tree level, the coefficient of the effective operator is evaluated as2

C422(MGUT) = −g
2
GUT

2M2
X

, (E.14)

with MX the mass of the heavy gauge field X. In this paper, we neglect fermion flavor

mixings for simplicity.

1 Note that

εijεklεαβγδ(ΨC)
αiPLΨβj(ΨC)γkPLΨδl = εrsεtuεαβγδ(ΨC)

αrPRΨβs(ΨC)γtPRΨδu = 0 , (E.11)

and thus the operator in Eq. (E.12) is the unique choice.
2 We have found that the sign of this equation is opposite to that given in Ref. [29].
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The Wilson coefficient is evolved down to the intermediate scale using the RGE.

The renormalization factor is computed to be [97]

C422(Mint) =

[
α4(Mint)

αGUT

]− 15
4b4

[
α2L(Mint)

αGUT

]− 9
4b2L

[
α2R(Mint)

αGUT

]− 9
4b2R

C422(MGUT) .

(E.15)

Then, the effective operator is matched onto the operators in Eq. (E.4). The Wilson

coefficients CI are given by3

C1(Mint) = 4C422(Mint) ,

C2(Mint) = 2C422(Mint) ,

C3(Mint) = C4(Mint) = 0 . (E.16)

E.2 Gint = SU(4)C ⊗ SU(2)L ⊗U(1)R

In the case of Gint = SU(4)C ⊗ SU(2)L ⊗U(1)R, the effective Lagrangian is written as

Leff = C421 · 2εijεαβγδ(ΨC)αiPLΨβj(UC)γPRDδ + h.c. , (E.17)

with

U ≡ (u1, u2, u3, ν) , D ≡ (d1, d2, d3, e) . (E.18)

The GUT-scale matching condition for the operator is

C421(MGUT) = −g
2
GUT

2M2
X

, (E.19)

and the renormalization factor is given by [97]

C421(Mint) =

[
α4(Mint)

αGUT

]− 15
4b4

[
α2L(Mint)

αGUT

]− 9
4b2L

[
αR(Mint)

αGUT

]− 3
4bR

C421(MGUT) . (E.20)

For the intermediate-scale matching conditions, we have

C1(Mint) = 4C421(Mint) ,

C2(Mint) = 2C421(Mint) ,

C3(Mint) = C4(Mint) = 0 . (E.21)
3 We have fixed an error in the matching conditions given in Ref. [29].
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E.3 Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L(⊗D)

When Gint = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L(⊗D), there are four independent

effective operators [98],

Q1 = 2εijεrsεabc(QC)
aiPLQ

bj(QC)crPRL
s ,

Q2 = 2εijεrsεabc(QC)
aiPLL

j(QC)brPRQ
cs ,

Q3 = 2εilεjkεabc(QC)
aiPLQ

bj(QC)ckPLL
l ,

Q4 = 2εpsεqrεabc(QC)
apPRQ

bq(QC)crPRL
s , (E.22)

and thus the effective Lagrangian is expressed as

Leff =
4∑
I=1

C
(I)
3221QI + h.c. (E.23)

For the GUT-scale matching condition, we have

C
(1)
3221(MGUT) = C

(2)
3221(MGUT) = −g

2
GUT

2M2
X

,

C
(3)
3221(MGUT) = C

(4)
3221(MGUT) = 0 . (E.24)

The renormalization factors for the coefficients C
(1)
3221 and C

(2)
3221 are given in Refs. [97,98]:

C(Mint)

C(MGUT)
=

[
α3(Mint)

αGUT

]− 2
b3

[
α2L(Mint)

αGUT

]− 9
4b2L

[
α2R(Mint)

αGUT

]− 9
4b2R

[
αB−L(Mint)

αGUT

]− 1
4bB−L

,

(E.25)

for C = C
(1)
3221 and C

(2)
3221. Then the Wilson coefficients at the electroweak scale are

matched onto those of the operators (E.4) as

C1(Mint) = 4C
(2)
3221(Mint) ,

C2(Mint) = 2C
(1)
3221(Mint) ,

C3(Mint) = C4(Mint) = 0 . (E.26)



Appendix F

Example of fine-tuning for a

scalar WIMP model

To show the process of mass fine-tuning explicitly, in this section, we consider the case

of RDM = 16 with Gint = SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L as an example. We take

R1 = 45, which contains two independent SM singlet components that might develop

VEVs; one is in a (1,1,3) while the other is in a (15,1,1) under SU(4)C ⊗ SU(2)L ⊗
SU(2)R. We refer to these VEVs as A1 and A2, respectively, and other notation is taken

from Eq. (3.7). Since the components of a scalar 16 have the same quantum numbers

as those of a generation of the SM fermions, we denote them by the same symbol as

for the corresponding SM fermions with a tilde, just like the notation for sfermions in

supersymmetric models.

Let us first study the R∗DMRDMR1 coupling. Since R1 is the adjoint representation

of SO(10), the decomposition of this coupling in terms of the component fields has a

similar form to the gauge interaction for a 16 spinor representation. We have

κ1R
∗
DMRDM〈R1〉 = κ1

[(
−
√

2A1 −
√

3A2

)
ν̃∗Rν̃R +

(√
2A1 −

√
3A2

)
ẽ∗RẽR +

√
3A2L̃

∗
LL̃L

+

(√
2A1 +

1√
3
A2

)
d̃∗Rd̃R +

(
−
√

2A1 +
1√
3
A2

)
ũ∗RũR −

1√
3
A2Q̃

∗
LQ̃L

]
,

(F.1)

where the contraction of the SU(3)C and SU(2)L indices is implicit. When A1 6= 0 and

A2 = 0, the mass spectrum preserves the SU(4)C ⊗ SU(2)L ⊗ U(1)R symmetry, while
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when A2 6= 0 and A1 = 0, then it is SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L symmetric. If

both of the VEVs have non-zero values, then the low-energy theory is invariant under the

SU(3)C⊗SU(2)L⊗U(1)R⊗U(1)B−L symmetry. The coefficients of A2 for left and right

doublets have different signs, which indicates the breaking of left-right symmetry. Here,

we choose A1 = 0 and A2 = v45 to obtain Gint = SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L.

Next we consider the mass terms generated by λ452 (R∗DMRDM)45(R∗2R2)45. The SM

singlet in R2 = 126 transforms as (10,1,3) under SU(4)C ⊗ SU(2)L ⊗ SU(2)R, which

acquires a VEV v126 to break Gint into the SM gauge group. According to the result

in Ref. [53, 99], the resultant mass terms are1

λ452 (R∗DMRDM)45 〈(R∗2R2)45〉 = λ452 v2
126

[
−ν̃∗Rν̃R +

3

5

(
L̃∗LL̃L + d̃∗Rd̃R

)
− 1

5

(
ẽ∗RẽR + ũ∗RũR + Q̃∗LQ̃L

)]
. (F.2)

Notice that the right-hand side of the expression can be grouped in terms of SU(5)

multiplets. This is expected since v126 is invariant under the SU(5) transformation.

From the above equations, it is found that we can ensure that only the DM component

has a mass around TeV scale by fine-tuning the parameters M2, κ1 and λ452 . For

example, to obtain the model SA3221, we can take

M2 −
√

3κ1v45 ∼ O(M2
int) ,

M2 −
√

3κ1v45 − λ452 v2
126 ∼ O(TeV2) . (F.3)

Then, ν̃R acquires a TeV-scale mass, while the mass of ẽR is O(Mint). The rest of the

components lie around the GUT scale. On the other hand, if we take

M2 +
√

3κ1v45 ∼ O(M2
int) ,

M2 +
√

3κ1v45 +
3

5
λ452 v2

126 ∼ O(TeV2) , (F.4)

then we can make only the L̃L component have a TeV-scale mass and the other com-

ponents have GUT-scale masses. Thus we obtain the SB3221 model.

1 Note that since (R∗2R2)45 contains a 45, there is a contribution to the mass corresponding to
Eq. (F.1) at the intermediate scale proportional to λ45

2 with independent coefficients Ã1 and Ã2. The

result shown is obtained from Eq. (F.1) by taking Ã1 =
√

2
5
v2
126 and Ã2 =

√
3

5
v2
126, up to an overall

factor.
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To simplify our argument, in the above discussion, we have taken into account only

the contribution of the M2, κ1, and λ452 terms, and neglected that of the other terms

in Eq. (3.7). Even in the presence of the other contributions, we can always perform a

similar fine-tuning among the parameters to realize desired mass spectrum for our DM

models.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	SO(10) gauge unification theory without dark matter
	Breaking train of SO(10)
	Particle content and mass hierarchy
	Gauge coupling unification

	Dark matter candidates
	Extra U(1) and dark matter stability
	Dark matter representations
	Mass hierarchy of dark matter representation

	Non-Thermal Equilirium Dark Matter
	Candidates of NETDM
	NETDM and gauge coupling unification
	Models
	Phenomenological aspects
	Neutrino mass
	Proton decay
	Non-equilibrium thermal dark matter


	Weakly Interactive Massive Particles
	WIMP DM candidates
	Hypercharged DM
	Scalar dark matter
	DM mass
	Candidates for scalar DM
	Mass splitting of hypercharged scalar dark matter

	Fermionic dark matter
	DM mass
	Real triplet DM
	Hypercharged DM


	Asymmetric Dark Matter
	Asymmetric dark matter in SO(10)
	Generation of asymmetries
	Thermal conditions for transfer and the dark matter mass
	Hypercharged asymmetric dark matter
	Candidate models for SO(10) asymmetric dark matter

	Scalar Singlet Asymmetric Dark Matter
	Particle-antiparticle oscillations
	Thermal transfer

	Next-to-minimal models

	Improvement of Vacuum Stability
	Renormalization group evolution of the Higgs couplings
	Renormalization group evolution of mass parameters

	Conclusion
	References
	 Appendix A.  Input parameters
	 Appendix B.  Renormalization group equations
	 Appendix C.  Standard Model
	SU(4)CSU(2)L SU(2)R
	SU(4)CSU(2)L SU(2)RD
	SU(4)CSU(2)L U(1)R
	SU(3)CSU(2)L SU(2)R U(1)B-L
	SU(3)CSU(2)L SU(2)R U(1)B-LD
	SU(3)CSU(2)L U(1)R U(1)B-L
	Model I
	Model II

	 Appendix D.  One-loop formulae for gauge coupling unification
	 Appendix E.  Proton decay calculation
	Gint = SU(4)CSU(2)L SU(2)R(D)
	Gint = SU(4)CSU(2)L U(1)R
	Gint = SU(3)CSU(2)L SU(2)R U(1)B-L(D)

	 Appendix F.  Example of fine-tuning for a scalar WIMP model

