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Abstract

There are two fundamental challenges for modern computer system design. The first

one is accommodating the increasing demand for performance in a tight power budget.

The second one is ensuring correct progress despite the increasing possibility of faults

that may occur in the system.

To address the first challenge, it is essential to track where the power goes. The

energy consumption of data orchestration (i.e., storage, movement, communication)

dominates the energy consumption of actual data production, i.e., computation. Of-

tentimes, recomputing data becomes more energy efficient than storing and retrieving

pre-computed data by minimizing the prevalent power and performance overhead of

data storage, retrieval, and communication. At the same time, recomputation can re-

duce the demand for communication bandwidth and shrink the memory footprint. In

the first half of the dissertation, the potential of data recomputation in improving en-

ergy efficiency is quantified and a practical recomputation framework is introduced to

trade computation for communication.

To address the second challenge, it is needed to provide scalable checkpointing and

recovery mechanisms. The traditional method to recover from a fault is to periodically

checkpoint the state of the machine. Periodic checkpointing of the machine state makes

rollback and restart of execution from a safe state possible upon detection of a fault. The

energy overhead of checkpointing, however, as incurred by storage and communication of

the machine state grows with the frequency of checkpointing. Amortizing this overhead

becomes especially challenging, considering the growth of expected error rates as an

artifact of contemporary technology scaling. Recomputation of data (which otherwise

would be read from a checkpoint) can reduce both the frequency of checkpointing, the

size of the checkpoints and thereby mitigate checkpointing overhead. In the second

half, quantitative characterization of recomputation-enabled checkpointing (based on

recomputation framework) is provided.
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Chapter 1

Introduction

Under contemporary scaling, a given chip area can still accommodate more compute

engines (in the form of general-purpose cores or accelerators) each technology generation.

However, cooling and power delivery limitations prevent a proportional expansion of the

power budget. As a result, we can simultaneously utilize only a progressively diminishing

fraction of on-chip resources, and the rest has to stay un-powered, aka dark [1, 2]. To

illuminate dark silicon, we need to carefully track where the power goes among the

components of the chip. The data and control flow throughout the execution of a

program trigger a sequence of machine state transitions. As depicted in Figure 1.1,

each state transition encompasses the following tasks:

• retrieval of input state (i.e., inputting)

• compute output state from inputs (i.e., processing)

• write output state (i.e., outputting)

• hold new machine state (i.e., storing)

These tasks are carried over six basic steps: Upon retrieval of input state (i.e., (1)

& (2)), compute engines derive output state from inputs (i.e., (3)). Next comes storage

of output state (i.e., (4) & (5)) and retention of new machine state (i.e., (6)) until the

next transition.

Power goes to all of these steps, with the actual computation (i.e., (3)) representing

the least energy-hungry [3, 4].
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(6) retain the state

input

output

core memory

(1) read inputs
(2) communicate to core

(4) communicate to memory
(5) write outputs

(3) generate output (new state)

compute hold

Figure 1.1: Microscopic view per machine state transition.

The building blocks of classic computing, transistors, consume dynamic power as

they toggle and static power due to leakage when turned off (because of restrictions

from technology scaling). Typically only a subset of transistors toggle during a state

transition, therefore, dynamic-power-heavy steps such as (3) can also consume static

power. On the other hand, static-power-heavy steps such as (6) also consume dynamic

power due to control logic. The breakdown of total power consumption across steps,

and the ratio of dynamic to static power per step evolve as a function of the operating

regime and technology.

Unfortunately, emerging technology solutions are not mature enough to meet the

growing capacity, bandwidth, and performance demand with-in the stringent power

budget. Imbalances between logic and memory technologies further result in rising time

and power, hence energy (time × power) expenditure in steps (1), (2), (4) and (5)

(along with (6) depending on the memory technology) [3, 4]. As a consequence, repro-

ducing, i.e., recomputing data oftentimes becomes more energy efficient than storing
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and retrieving pre-computed data.

Data recomputation replaces the load of inputs with the reproduction of the input

data. Step (1) incurs the time and power overhead of the memory access to perform the

read; and (2) incurs the time and power overhead of the subsequent communication of

inputs to the compute engines. Recomputation transforms the overhead of (1) & (2) to

the overhead of the recomputation of inputs. The energy savings comes from (1) & (2)

being much more energy-hungry than computation (i.e., (3)).

Replacing loads with recomputation may unlock further opportunities for energy

savings: Each input represents the output of a previous step in execution. In other

words, each consumer load has a matching producer store. For each load replaced

with recomputation, the corresponding store (to the same memory address) can be-

come redundant if no other load (from the same address) depends on it. Therefore,

recomputation can also filter out output stores and cut off the time and power overhead

of (4) & (5). Step (4) incurs the overhead of communication of outputs to memory; and

(5) incurs the overhead of the subsequent memory access to perform the write.

(6) retain the state

input

output

core memory

(1) read inputs
(2) communicate to core

(4) communicate to memory
(5) write outputs

(3) generate output (new state)

compute hold

recompute inputs

Figure 1.2: Execution semantic under recomputation.
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Putting it all together, data recomputation can improve energy efficiency by

• Replacing input loads with recomputation of inputs, hence transforming (1) & (2)

into the less energy-hungry (3).

• Filtering out stores which represent the producers of the loads replaced with re-

computation, hence cutting off the overhead of (4) & (5) (along with (6) depending

on the memory technology).

1.1 Structure of The Dissertation

The rest of the dissertation is organized as follows:

• Chapter 2 presents the motivation behind the data recomputation and its potential

to improve energy efficiency.

• Chapter 3 illustrates a proof-of-concept recomputation framework and provides

quantitative characterization.

• Chapter 4 explores different forms of recomputation and provides a recomputation

taxonomy.

• Chapter 5 introduces recomputation-enabled checkpointing, and provides quanti-

tative characterization.

• Chapter 6 summarizes our contribution and concludes the discussion.



Chapter 2

Motivation

In general, the communication of data can be categorized into two. The first one is

vertical communication where data is communicated to the compute engine through

local memory hierarchy. The data retrievals performed by sequential applications are

examples of this kind of communication. It can also be referred as intra-core com-

munication. The second one is horizontal communication where data generated by a

compute engine is communicated to the other compute engines through memory (in

case of shared-memory system), or through off-chip interconnection network (in case of

distributed memory system). Since data communication takes place across the compute

engine boundaries, this type of communication is called horizontal communication. It

can also be referred as inter-core communication. Regardless of type, communication

energy dominates the energy used for actual data production, i.e. computation. There-

fore, oftentimes, recomputing data becomes more energy efficient than communicating

data in both horizontal (i.e., inter-core) and vertical (i.e., intra-core) directions.

The magnitude and the frequency of inter-core communication depends on how the

problem being solved distributes the data among the cores. Problem size dictates the

total amount of data processed across all cores. As more cores become available, the

problem can scale in two distinct ways to translate the increase in core count into

enhanced performance (as measured by the total amount of data processed over the

overall processing time): strong scaling or weak scaling.

Table 2.1 captures how the total and per core problem size (PS), execution time (t),

and throughput performance (PS/t) evolve for an n-fold increase in core count. Under

5
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(Total) PS per time PS share
Scaling PS core (t) PS/t (per core)

Strong - /n /n ×n /n

Weak ×n - - ×n /n

Table 2.1: Strong vs. weak scaling for an n-fold increase in core count. Best case
scenario, excluding communication overhead. PS: problem size.

strong scaling, the overall problem size, the total amount of data processed, remains

constant. Each core processes progressively smaller chunk of data as the core count

increases (PS per core decreases by n×), and in return finishes earlier. As a result,

PS/t increases by n×. The share of the problem per core reduces proportionally to the

(increase in) core count.

On the other hand, under weak scaling [5], the problem size per core (thus the amount

of data processed per core) remains constant which renders no change in the per core

processing time (which dictates the overall processing time) as the core count increases.

At the same time, the overall problem size (the total amount of data processed across all

cores), grows proportionally to the (increase in) core count (increases by n×). Therefore,

each core processes a progressively smaller fraction of the total amount of data as the

core count increases as tabulated in the last column. The share of the problem per core

still reduces proportionally to the (increase in) core count.

Under both scaling scenarios, higher levels of concurrency imply a lower fraction of

the total amount of data in close physical proximity to each core, which hurts data local-

ity, and increases the likelihood of more frequent communication. As concurrency hurts

data locality, each core must spend both more time and power in communication. Con-

sequently, communication energy, as induced by data movement and the orchestration

thereof, is expected to dominate computation energy [3].

Emerging non-volatile memories can minimize hold energy due to the premise of

(practically) zero static power, but suffer from excessive write energy. Thus memory

energy would still dominate computation energy.

Table 2.2 adapted from [6], shows how communication energy, as characterized by

a 64-bit data transfer across chip, changes as technology scales. Communication en-

ergy increases from 1.55× computation energy at 40nm to approximately 6× at 10nm
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Process Technology 40nm 10nm
Operating Voltage 0.9V 0.75V (HP) 0.65V (LP)

64-bit double precision FLOP 50pJ 8.7pJ 6.5pJ
64-bit transfer on chip (10mm) 77.5pJ (1.55x) 50.02pJ (5.75x) 37.5pJ (5.77x)

Table 2.2: Energy consumption of 64-bit computation and communication adapted from
[6].

(considering processes optimized for high performance, HP, and low power, LP). Since

communication energy tends to grow with distance, a similar trend applies for off-chip

communication. Therefore, communication energy becomes even more prominent with

technology scaling.

3D Stacking, or emerging photonics based interconnects, can render a lower off-chip

(and potentially on-chip) communication energy when compared to state-of-the-art,

but would not alter the communication-centric nature of parallel processing: Engaging

more cores into computation reduces per core work, therefore, the mean time to com-

munication, orthogonal to the technology of the communication medium. Accordingly,

communication would still be the most energy-hungry phase.

As a consequence, recomputing data can become more energy-efficient than storing

and retrieving pre-computed data. In this dissertation, we hence investigate the effec-

tiveness of recomputing data values in minimizing, if not eliminating, the overhead of

expensive off-chip memory accesses.



Chapter 3

Amnesiac: Proof-of-Concept

Framework for Recomputation

3.1 Introduction

In this chapter, we investigate the effectiveness of recomputing data values in minimiz-

ing, if not eliminating, the overhead of expensive off-chip memory accesses. The idea is

replacing a load with a sequence of instructions to recompute the respective data value,

only if it is more energy-efficient. We call the resulting execution model amnesic 1 to

contrast recomputation with conventional, classic execution.

Whether recomputation of a data value v can improve the energy efficiency or not

tightly depends on where in the memory hierarchy the corresponding load would be

serviced under classic execution, i.e., where in the memory hierarchy v resides. This

is because the location of v in the memory hierarchy dictates the energy consumption

of the respective load, Eld,v, which in turn sets the energy budget for recomputation.

Recomputation of v itself incurs an energy cost, Erc,v, due to the (re)execution of the

sequence of instructions to generate v. We will refer to each instruction in such a

sequence as a recomputing instruction. Therefore, unless Eld,v exceeds Erc,v, amnesic

execution cannot improve energy efficiency.

Under amnesic execution, the sequence of recomputing instructions to generate v

1 amnesia [am’nēZH@]: noun, a partial or total loss of memory.
amnesiac [am’nēzē­ak], amnesic [-zik, -sik]: noun & adjective.

8
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form a backward slice, which we will refer to as recomputation slice, RSlice. The first

instruction in the slice is the immediate producer of v, P (v). To be able to (re)execute

P (v), each input operand of P (v) should be readily available at the anticipated time of

recomputation. This may not always be the case, and (re)execution of P (v) may trigger

the re(execution) of producers of P (v)’s input operands, recursively.

The recomputation slice to generate v, RSlice(v), can grow by tracking producer-

consumer dependencies for recomputing instructions, however, not indefinitely. First of

all, the energy cost of recomputation of v, Erc,v, increases with the number of recomput-

ing instructions in RSlice(v), and amnesic execution cannot be energy-efficient if Erc,v

exceeds the energy consumption of the respective load, Eld,v. At the same time, not all

of the input operands of recomputing instructions can be (re)generated by recomputa-

tion. This may be the case if input operands correspond to (i) read-only values to be

loaded from memory, such as program inputs; or (ii) register values which are lost, i.e.,

overwritten at the time of recomputation.

Swapping loads for recomputation slices can reduce the pressure on memory band-

width and unlock further opportunities for energy savings: For each load replaced with

an RSlice, the corresponding store (to the same memory address) can become redundant

if no other load (from the same address) depends on it. Therefore, amnesic execution

can also filter out energy-hungry stores, and reduce the pressure on memory capacity

by shrinking the memory footprint.

Under amnesic execution, the workload becomes more compute-intensive to make a

better use of classic processors optimized for computation, as opposed to communica-

tion. In the following, we quantitatively characterize the energy efficiency potential of

amnesic execution.

3.2 Amnesic Execution Semantics

Under amnesic execution, an energy-hungry load is swapped with a sequence of recom-

puting instructions, which form a recomputation slice, RSlice, iff the energy cost of

recomputation along the RSlice remains below the energy consumption of the respec-

tive load. In other words, the energy consumption of the load sets the energy budget

for recomputation along the RSlice. If the anticipated energy cost of recomputation
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P(v)

Data flowP1 P2

P3 P5P4

level 1 

level 2 

root

Recomputation Slice: RSlice(v)

Figure 3.1: Example Recomputation Slice, RSlice(v).

exceeds this budget, the respective load is performed and amnesic execution becomes

equivalent to classic execution.

3.2.1 Recomputation Slice (RSlice)

For each data value v to be recomputed under amnesic execution, data dependencies

determine the order of the recomputing instructions in RSlice(v). RSlice(v) includes the

immediate producer instruction of v, P (v), and possibly, producer instructions of the

input operands of P (v), in a recursive manner. Producer instructions may come from

different basic blocks or functions.

Recomputation slices are very unlikely to comprise all producer instructions (i.e.,

producers of the producers) along a dependency chain, as the energy cost of recom-

putation along an RSlice increases with the number of recomputing instructions, and

can easily exceed the energy consumption of the respective load. Amnesic execution

prohibits recomputation in this case.

Each recomputation slice, RSlice(v), can be regarded as an upside-down tree with

P (v) residing at the root. Each node represents a producer instruction to be (re)executed.

During recomputation along RSlice(v), data flows from the leaves to the root. Figure 3.1

demonstrates an example. Nodes at level 1 correspond to immediate producers of the

(input operands of the) root, nodes at level l correspond to the producers of nodes at
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level l-1. The number of incoming branches at each node reflects the number of produc-

ers of the node. Hence, RSlice(v) is not necessarily a balanced tree. As (re)executing

only a finite number of nodes can fit into the energy budget set by Eld,v, RSlice(v)

cannot grow indefinitely. At the same time, the energy cost of recomputation along

RSlice(v) includes the cost of retrieving input operands of the leaf nodes (which cannot

rely on producers to recompute their inputs).

In the example from Figure 3.1, P1 and P2 at level 1 correspond to producers of

P (v)’s input operands. (Re)execution of P1 does not require any more (re)execution.

(Re)execution of P2, on the other hand, requires the (re)execution of three of P2’s

producers: P3, P4, and P5, respectively. The leaf producers are all shaded in gray.

The leaves either represent terminal instructions which do not have any producers (e.g.,

instructions with constants as input operands), or instructions for which (re)execution of

their producers is not energy-efficient. Amnesic execution can only function, if the input

operands of leaf instructions are available at their anticipated time of (re)execution.

3.2.2 Non-recomputable Inputs

Not all of the input operands of leaf instructions of an RSlice can be (re)generated by

recomputation. This may be the case if input operands correspond to (i) read-only values

to be loaded from memory, such as program inputs; or (ii) register values which are lost,

i.e., overwritten at the time of recomputation. We will refer to such input operands as

non-recomputable inputs. For amnesic execution to work, non-recomputable inputs of

RSlice leaves should not only be available at the anticipated time of recomputation,

but also be retrievable in an energy-efficient manner. Recomputation cannot eliminate

any memory access to retrieve the non-recomputable inputs of RSlice leaves. If non-

recomputable inputs do not reside in close physical proximity to the processor, the

energy cost of their retrieval may easily exceed Eld,v, rendering recomputation useless. In

Section 3.3.2, we discuss dedicated buffering for non-recomputable inputs. No dedicated

buffering is necessary if the leaf input operands correspond to constants or live register

values.
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3.2.3 Side Effects

For the discussion in this chapter, we focus on single-threaded amnesic execution2 .

Therefore, within the course of execution, recomputation along only one RSlice can

be performed at a time. Amnesic execution should prevent corruption of the architec-

tural state during recomputation, which can be achieved by allocating dedicated buffers

(Section 3.3.2) similar to classic microarchitectural storage for speculative state.

Amnesic execution can orchestrate exception handling similar to exception handling

under speculation, as well: record exceptions as long as recomputation along an RSlice

is taking place, and defer their handling after recomputation finishes. However, we may

need to revisit the definition of (im)precise exceptions in this case, since recomputation

modifies the architectural control flow by executing extra (recomputing) instructions,

as opposed to speculation.

3.3 An Illustrative Proof-Of-Concept Amnesic Implemen-

tation

The critical question under amnesic execution is when to fire recomputation. Poten-

tially, the compiler can extract RSlice(v) for each load (to read v), by tracking data

dependencies. Whether recomputation along RSlice(v) is more energy-efficient than

performing the respective load, however, depends on where in the memory hierarchy v

resides. Being able to only speculate where v can reside during execution, the compiler

can at most probabilistically estimate the energy consumption of the respective load,

Eld,v, which sets the energy budget for recomputation. For each v where recomputation

is estimated to be more energy-efficient, the compiler can modify the binary to swap

the load for RSlice(v). In the following, we will discuss various implementation options

and how microarchitectural support can help.

2 Under parallel execution, communication with memory expands along two dimensions: accesses
to thread-local data and accesses to shared data. In this chapter, we focus on the first, in the context
of single-threaded execution. In principle, loads swapped for recomputation may be triggered by core-
to/from-memory (thread-local) or core-to-core (shared) communication.
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The basic proof-of-concept implementation covered in this section features an am-

nesic compiler (Section 3.3.1), microarchitectural support for amnesic execution (Sec-

tion 3.3.2), and a runtime (instruction) scheduler to orchestrate amnesic execution

(Section 3.3.3). We first let the compiler identify and annotate a set of independent

recomputation slices. Then, at runtime, the amnesic scheduler fires or skips recompu-

tation along each RSlice(v), by tracking where in the memory hierarchy v resides at the

anticipated time of recomputation.

3.3.1 Amnesic Compiler and Instruction Set Extensions

The amnesic compiler first extracts a set of independent RSlices as potential targets for

recomputation, and annotates each, such that the amnesic scheduler (see Section 3.3.3)

can identify them at runtime. The amnesic scheduler triggers recomputation along any

given RSlice(v) only if loading the data value v is more energy-hungry than recompu-

tation.

Slice Formation

The amnesic compiler pass first estimates, probabilistically (as detailed in the following

and Section 3.4), the energy consumption of loading v, Eld,v. Next comes dependency

analysis to identify the producer instructions of v, in order to calculate the anticipated

cost of potential recomputation. This step starts building RSlice(v) (where the imme-

diate producer of v, P (v), resides at the root), and lets RSlice(v) grow level by level, as

long as the cumulative cost of recomputation along RSlice(v) being constructed remains

below Eld,v.

As the compiler traverses the dependency chains in constructing RSlice(v), it may

hit load instructions. In the proof-of-concept implementation, the compiler replaces

each such load with the respective recomputing slice, recursively. Therefore, loads and

stores cannot be present as intermediate nodes in RSlice(v).

To derive the energy cost of recomputation, Erc,v, the compiler pass uses instruction

mix and count within RSlice(v), along with machine specific energy per instruction (EPI)

estimates: Erc,v is the sum of [instruction count per category] × [EPI per category], over

all instruction categories represented in RSlice(v)’s instruction mix. Eld,v calculation,

on the other hand, relies on probabilistic estimates: PrLi, the probability of having a
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load serviced by level Li in the memory hierarchy, is derived from hit and miss statistics

of Li under profiling. Let the EPI estimate for a load serviced in Li be EPILi. Then,

the sum of PrLi× EPILi over all levels i in the memory hierarchy (including off-chip)

gives the probabilistic energy cost per load.

Slice Annotation

As a hint for the amnesic scheduler, the compiler replaces each load, the swap of which

with recomputation is likely to be more energy-efficient (according to the probabilistic

energy cost comparison explained above) with a special control flow instruction, RCMP.

In this case, the compiler also inserts the constructed RSlice in the binary.

Semantically, RCMP corresponds to the fusion of a conditional branch with a load3

. The resolution of the branching condition is left to the amnesic scheduler (see Sec-

tion 3.3.3) at runtime. Depending on the branching condition (which is dictated by

where in the memory hierarchy v resides at runtime), RCMP can act either as a branch to

the entry point (starting from the leaves) of RSlice(v), or as a classic load which reads

v from memory. The latter is the case if the amnesic scheduler determines at runtime

that recomputation is less energy-efficient than performing the load, i.e., Erc,v exceeds

Eld,v. Accordingly, as input operands, RCMP inherits all input operands of the respective

load, in addition to the starting address of RSlice(v).

At the exit of each such RSlice(v) embedded in the binary resides a return instruc-

tion, RTN, which returns the control to the instruction following RCMP in program order

after recomputation along RSlice(v) finishes. RTN semantics closely mimic procedure

return instructions. Before return, the recomputed data value v gets copied into the

destination register of the eliminated load (recall that RCMP inherits all source and des-

tination parameters of the respective load).

Only if the leaves of RSlice(v) have non-recomputable input operands, the compiler

places REC instructions into the binary, which serve buffering of non-recomputable input

operands such as overwritten register values. An REC instruction goes right after each

instruction, a replica of which serves as a leaf in RSlice(v). REC has a single integer

operand: leaf-address which points to the address of the respective leaf instruction

3 Depending on the specifics of the underlying instruction set architecture (ISA), RCMP can also be
synthesized by a pair of branch and load instructions, without loss of generality.
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Figure 3.2: Amnesic Microarchitecture & Scheduler.

in RSlice(v). REC practically checkpoints the input operands to a dedicated buffer (see

Sections 3.3.2 and 3.3.3).

Unless the compiler can prove that all input operands of RSlice(v)’s leaves corre-

spond to constants or live register values at the anticipated time of recomputation, REC

instructions are necessary. Finally, how the compiler orders the leaves in RSlice(v) code

is not critical, as leaf instructions cannot depend on each other.

3.3.2 Amnesic Microarchitecture

Amnesic execution should meet two conditions for safe and effective recomputation:

Condition-I: Prevent corruption of the architectural state during recomputation (see

Section 3.2.3).

Condition-II: Have (non-recomputable) input operand values of RSlice leaves avail-

able at the anticipated time of recomputation (see Section 3.2.2).

Figure 3.2 captures microarchitectural support to meet Condition-I and Condition-

II in orchestrating amnesic execution. Recall that only one RSlice can be active, i.e.,

traversed for recomputation, at a time4 .

Scratch-File (SFile): To satisfy Condition-I, the amnesic microarchitecture deploys

the dedicated buffer SFile. During recomputation, as program control traverses an

4 Offloading recomputation to spare or idle cores, or using helper threads may improve energy
efficiency further by enabling concurrent recomputation. However, the basic proof-of-concept imple-
mentation assumes strictly sequential execution semantics.
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RSlice, the data flows through the SFile, leaving the (physical) registerfile intact. Re-

computing instructions from an RSlice do not perform any memory access, and com-

municate over SFile only.

Renamer: During traversal of each RSlice, a dedicated Renamer maps register refer-

ences per recomputing instruction to SFile entries. Semantically, the amnesic renamer

closely mimics the rename logic of classic out-of-order machines. In this context, SFile

becomes not any different than the physical registerfile and follows similar rules for

space (de)allocation.

History Table (Hist): For each RSlice where the leaf input operands correspond to

constants or live values from the (physical) registerfile, Condition-II is automatically

satisfied. Only for non-recomputable leaf input operands, dedicated storage is required

to satisfy Condition-II. The amnesic microarchitecture can buffer non-recomputable

input operands for each RSlice leaf in the dedicated history table Hist. Each entry of

Hist keeps the address (leaf-address) and non-recomputable input operands of a leaf

instruction.

Instruction Buffer (IBuff) can cache recomputing instructions within each RSlice,

in order to relax amnesic execution’s potential pressure on the instruction cache. Each

entry of IBuff corresponds to a recomputing instruction.

SFile, Hist, and IBuff all feature an invalid field per entry to orchestrate (de)allocation

of space as necessary.

3.3.3 Amnesic Scheduler

Runtime Policies

At runtime, the amnesic scheduler decides whether recomputation along each RSlice(v)

embedded into the binary by the compiler (Section 3.3.1) can improve energy efficiency

or not, depending on where in the memory hierarchy v resides. Specifically, each time a

RCMP instruction is fetched, the scheduler has to decide whether to branch to the entry

point of the respective RSlice(v), or whether to perform the load to read v from memory.

A control flag, recompute, remains set as recomputation – traversal of an RSlice – is in

progress. recompute is reset by default.

To be able to draw a safe decision, the amnesic scheduler needs to track where in the
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memory hierarchy v resides. There are different options to track or predict the location

of v at runtime. In the proof-of-concept implementation, the amnesic scheduler lets the

corresponding load probe on-chip memory (caches), and fires recomputation upon a miss

in the first-level cache (FLC), or alternatively, upon a miss in the last-level cache (LLC)

– by using either a first or a last level cache miss as an indicator for an energy-hungry off-

chip memory access. In this case, RCMP becomes the equivalent to branch on FLC miss

or, alternatively, branch on LLC miss, with the branch target being the entry point

of the respective RSlice. The amnesic scheduler fires recomputation by setting the

recompute flag. Otherwise, execution follows the classic trajectory by performing the

load.

In this case, recomputation cost includes the cost of probing the on-chip memory

hierarchy. FLC and LLC policies are heuristic-based and may result in false-negatives

(lost recomputation opportunity) and false-positives (energy-inefficient recomputation).

Better amnesic policies can be devised by using more accurate (miss) predictors [7, 8,

9], which can also help eliminate the probing overhead. We leave further refinement

and exploration of such policies to future work – the design space is pretty rich. In

Section 3.5, we will also compare FLC and LLC policies to a runtime-oblivious policy,

Compiler, which always triggers recomputation each time a RCMP instruction is fetched.

3.3.4 Putting It All Together

Amnesic activity when recompute is reset: No recomputation takes place as long

as the recompute flag stays reset. During this period, amnesic execution is equivalent

to classic execution, if no RSlice in the binary features non-recomputable leaf inputs.

Otherwise, the amnesic scheduler has to record such non-recomputable input operands

into Hist. To this end, the scheduler tracks REC instructions (Section 3.3.1). REC in-

structs the scheduler to record all non-recomputable input operands in a Hist entry ( 0©
in Figure 3.2), along with leaf-address.

Triggering recomputation: For each RCMP instruction fetch-ed, the amnesic scheduler

first needs to resolve the branching condition: whether recomputation is more energy-

efficient than performing the memory access, i.e., whether Eld,v exceeds Erc,v. This

decision can be drawn following any of the runtime policies from Section 3.3.3, FLC

or LLC. For example, under LLC, the amnesic scheduler probes the caches, and fires
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recomputation by setting the recompute flag upon an LLC miss. Otherwise, the load

is performed following the classic execution trajectory.

Amnesic activity when recompute is set: RCMP branches to the entry point of

RSlice(v), and instruction fetch starts from the first leaf. Each leaf instruction first

has its destination register renamed ( 2© in Figure 3.2). Each leaf instruction with

non-recomputable input operands next probes Hist with leaf-address ( 3©) to read its

input operands, which directly are fed into the corresponding execution units ( 4©). Leaf

instructions with constant or live register input operands do not need to probe Hist.

Upon finishing execution, each leaf writes its result to the SFile ( 5©).

Non-leaf recomputing instructions which represent intermediate nodes in RSlice(v)

read their input operands from SFile ( 6©) after having their source and destination

registers renamed ( 2©). Upon collecting the input operands, recomputing instructions

proceed to the execution units ( 7©), and write their results back to the SFile once

execution completes ( 8©). All (non-leaf) recomputing instructions in RSlice(v) execute

sequentially in this manner until the RTN instruction of the slice is fetched. Before

return, the recomputed data value v gets copied from SFile into the destination register

of the eliminated load (recall that RCMP inherits all source and destination parameters

of the respective load). The amnesic scheduler then resets recompute flag to demarcate

the end of recomputation. Execution continues from the instruction following RCMP in

program order.

IBuff is an optional structure to help reduce the pressure on instruction cache under

recomputation. Very much like the instruction cache, fetch logic can fill IBuff with

recomputing instructions ( 1©). IBuff in turn feeds the Renamer with recomputing in-

structions ( 2©).

3.3.5 Storage Complexity

We next analyze the expected storage complexity for each component of the amnesic

microarchitecture from Figure 3.2. Recall that the amnesic microarchitecture only pro-

cesses instructions with register source operands and register destinations, and excludes

memory or control flow instructions. Without loss of generality, the following analysis

assumes a RISC-style ISA.

SFile: A recomputing instruction typically writes its result to one destination register,
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and reads its input operands from two source registers. Accordingly, the maximum

possible number of renaming requests per recomputing instruction, max#rename becomes

max#rename = max#src + max#dest = 3

where max#src (max#dest) is the maximum number of source (destination) register

operands per recomputing instruction. At any given time, only one RSlice can be

traversed. Therefore, SFile capacity does not depend on the total RSlice count in

the binary, but grows with the instruction count per RSlice, which can exponentially

increase with the tree height h. A tall RSlice, however, is very unlikely to find any

place in the binary, as it can easily result in excessive recomputation overhead to render

recomputation useless. The amnesic compiler captures such diminishing returns and

prevents excessive growth of the RSlice (see Section 3.3.1): practically, the compiler

not only influences RSlice topology, but also caps the tree height h to maximize energy

savings. Accordingly, we can derive a loose upper-bound for SFile capacity as

max#inst per RSlice ×max#rename = max#inst per RSlice × 3

where max#inst per RSlice corresponds to the maximum of instruction count per RSlice

across all RSlices in the binary.

Hist: Hist can keep data for multiple RSlices during execution. For each RSlice, Hist

can contain as many entries as the RSlice’s number of leaves. Thus, a loose upper-bound

for the number of entries in Hist becomes

#RSlice ×max#leaf per RSlice

where #RSlice is the number of RSlices in the binary; and max#leaf per RSlice, the max-

imum of the number of leaves per RSlice (which may grow with tree height h). Each

Hist entry accommodates at most max#src values, to cover all non-recomputable input

operands per leaf.

IBuff: The capacity of IBuff grows with the number of instructions per RSlice. Hence,

a loose upper-bound for IBuff capacity becomes max#inst per RSlice.

3.3.6 Technicalities

The proof-of-concept implementation represents a basic design, which neglects vari-

ous optimization opportunities such as instruction reuse among recomputing slices, or

hardware resource sharing with the underlying microarchitecture.

During traversal of an RSlice, latency per recomputing instruction remains very
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similar to its classic counterpart, as the amnesic microarchitecture follows the pipelining

semantics of the underlying microarchitecture (just with an alternative instruction and

operand supply of similar latency).

The storage complexity of amnesic structures from Figure 3.2 tends to be low (Sec-

tion 3.3.5). Only the unlikely capacity overflow of Hist can impair recomputation, and

only for RSlices with non-recomputable leaf input operands. The amnesic scheduler can

track these cases by failed REC instructions (Section 3.3.1) and enforce the correspond-

ing RCMP to skip recomputation (i.e., to perform the load). To this end, the amnesic

scheduler has to uniquely identify the matching RCMP. This can be achieved by assigning

a unique ID, RSlice-ID, to each RSlice in the binary, and providing it as an operand

to both REC and RCMP.

In processing recomputing instructions, the amnesic microarchitecture has to dif-

ferentiate between leaves and intermediate nodes, since different structures supply the

input source operands to each: The inputs of leaves can come from the registerfile (a live

value) or Hist (an overwritten value). The inputs of intermediate nodes come from SFile.

The compiler annotates leaves and accesses to Hist to distinguish between these cases.

Specifically, the compiler changes source register identifiers of leaf instructions reading

their operands from Hist to an invalid number. Leaf instructions with valid source reg-

ister identifiers directly access the registerfile. Non-leaf recomputing instructions follow

the paths 2© and 6© in Figure 3.2.

Recall that there is another potential class of leaves with non-recomputable input

operands: read-only values to be loaded from memory, such as program inputs. In

principle, replacing the load to read v from memory with RSlice(v) which features

possibly more than one such load at the leaves does not make sense. Hist is designated

to record overwritten register input operands, but Hist can also keep such read-only

values, and may make recomputation along such RSlice(v) energy-efficient.

3.4 Evaluation Setup

Benchmarks: To quantify the energy efficiency potential of amnesic execution, we

experiment with 33 sequential or single-threaded benchmarks from SPEC-2006 [10],

NAS [11], PARSEC [12] and Rodinia [13] suites, which span various application domains
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Suite Benchmarks Inputs

SPEC
mcf, perlbench, gobmk, calculix

testGemsFDTD, libquantum, soplex, lbm
omnetpp, sphinx3 (sx)

NAS
is A
cg W
ft, mg S

PARSEC

canneal (ca), facesim (fs), ferret (fe)

simsmall
raytrace (rt), blackscholes, x264
dedup, freqmine, fluidanimate
streamcluster, swaptions, bodytrack

Rodinia

backpropagation (bp) 65536
bfs graph1MW 6.txt
kmeans kdd cup
nw 2048 10 1
particlefilter -x 128 -y 128 -z 10 -np 10000
srad (sr) 100 0.5 502 458 1
hotspot 512 512 2 1

Table 3.1: Benchmarks deployed to quantify the potential of amnesic execution.

and memory access characteristics, as listed in Table 3.1.

Binary generation: We implement the greedy compiler pass detailed in Section 3.3.1

as a (binary generator) Pin [14] tool. The EPI estimates (see Section 3.3.1) come from

measured data from [15]. Although these estimates are for a parallel processor (Intel’s

Xeon Phi), the simulated microarchitecture is very similar to its per core configuration

(Table 3.2). We also fine-tune these estimates by extracting EPI values for different

instruction categories from McPAT [16] integrated with the Sniper-6.1 [17] microarchi-

tectural simulator. We derive PrLi (see Section 3.3.1), the probability of having a load

serviced by level Li in the memory hierarchy, using hit and miss statistics for Li from

Sniper. We also implement a runtime profiler in Pin, which collects dependency infor-

mation for binary generation. Using the dependency information (from the Pin-based

runtime profiler) and EPI estimates, the (binary generator) Pin tool identifies RSlices

that can improve energy efficiency, and instruments them for inclusion into the binary.
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Technology node: 22nm

Operating frequency: 1.09 GHz

L1-I (LRU): 32KB, 4-way 0.88nJ 3.66ns

L1-D (LRU, WB): 32KB, 8-way 0.88nJ 3.66ns

L2 (LRU, WB): 512KB, 8-way 7.72nJ 24.77ns

Main Memory Read: 52.14nJ Write: 62.14nJ 100ns

Table 3.2: Simulated architecture to quantify the potential of amnesic execution.

Recomputation at runtime: We implement the amnesic microarchitecture from Fig-

ure 3.2 in Sniper, and run the annotated binaries on it. Sniper facilitates seamless in-

tegration with Pin. Runtime energy and performance statistics come from Sniper (+

McPAT) simulations. Table 3.2 gives EPI and (round-trip) access latency for each level

in the simulated memory hierarchy. We conservatively model EPI and access latency

for Hist after L1-D; for SFile, after the physical registerfile; and for IBuff, after L1-I.

Accordingly, we model RCMP’s overhead after a conditional branch; REC’s, after a store

to L1-D; RET’s, after a jump.

3.5 Evaluation

3.5.1 Impact on Energy Efficiency

Figure 3.3 captures the impact of amnesic execution on energy-delay product, EDP [18],

as a proxy for energy efficiency. The y-axis is normalized to the EDP under classic exe-

cution. Out of 33 benchmarks we deployed, only 11 have the potential to provide more

than 10% EDP gain. In the following, we will focus on these benchmarks. The rest of

the benchmarks did not benefit much from recomputation (only 4 provided more than

5% EDP gain) because they did not have many energy-hungry loads and/or recom-

putation degraded temporal locality. Recomputation cannot improve energy efficiency

of compute-bound applications unless they incorporate a few but very energy-hungry

memory references.

In Figure 3.3, we compare representative runtime policies from Section 3.3.3 – FLC,

LLC and Compiler, to two oracular policies: Oracle and C(onservative)-Oracle. FLC,

LLC, Compiler and C-Oracle select from the very same set of RSlices for recomputation



23

m
cf sx cg is ca fs fe rt bp bf
s sr

Oracle
C−Oracle
Compiler
FLC
LLC

0

20

40

60

80

100

E
D

P
 G

ai
n 

(%
)

Figure 3.3: EDP gain under amnesic execution.

at runtime – this set is identified by the compiler pass using the probabilistic energy

model (see Section 3.3.1). At runtime, FLC (LLC) fire recomputation along RSlice(v)

if the respective load of v misses in FLC (LLC). Compiler, on the other hand, always

fires recomputation, for each RCMP encountered.

C-Oracle can predict with 100% accuracy where the load of v will be serviced in

the memory hierarchy as the amnesic scheduler decides whether to perform the load

or whether to fire recomputation along RSlice(v). C-Oracle hence bases the runtime

decision on this 100% accurate prediction. Oracle, too, can predict at runtime with

100% accuracy where a load would be serviced. The key difference of Oracle from C-

Oracle comes from a different (i.e., optimal) set of RSlices baked in the binary, than

the compiler’s probabilistic energy model based set (which applies to the rest of the

policies). The EDP difference between Oracle and C-Oracle therefore illustrates how

accurate compiler’s probabilistic energy model is. The smaller the EDP difference, the

more accurate is the probabilistic energy model in characterizing an application’s loads.

In other words, C-Oracle demonstrates the maximum possible EDP gain with the given

probabilistic energy model of the loads.

We fine-tune the probabilistic energy model of the amnesic compiler pass using

dynamic execution traces (see Section 3.3.1). Notice that the EDP gain under Compiler

evolves with the accuracy of this probabilistic energy model, but such fine-tuning may

not always be possible. The more accurate the energy model, the more accurate becomes
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amnesic compiler’s prediction of where the load reading v will be serviced at runtime.

And the more accurate this prediction, the more energy efficiency can the Compiler

policy harvest, under which each RCMP always triggers recomputation. The EDP gains

under Compiler therefore reflect best-case estimates.

Recall that the set of RSlices recomputed by each policy is different: Compiler

recomputes along each RSlice embedded in the binary, which form the set S. C-Oracle

picks the optimal subset from S (SC−Oracle) for recomputation, i.e., only recomputes

RSlice(v) if recomputation is exactly more energy-efficient than performing the load of

v. FLC (LLC), on the other hand, picks the subset of S, SFLC (SLLC), which only

includes RSlice(v)s where the respective load to read v misses in L1 (L2). Subject to

the accuracy of the probabilistic energy model and such runtime decisions, the set of

RSlices recomputed by Oracle may be very different: Oracle’s decisions are based on

actual (not probabilistic or predicted) energy costs.

Overall, with the exception of sx and cg (and fe, rt to a lower extent), we observe

that C-Oracle closely tracks Oracle, rendering the probabilistic energy model accurate.

Except sr, the best-case Compiler closely tracks C-Oracle. On the other hand, the

difference between the best-case Compiler and FLC is barely visible, with the exception

of sx, bfs and sr. LLC is consistently worse than FLC. The main delimiter for LLC is

the overhead of probing the last-level cache (L2) to detect a miss which is much larger

than the overhead of probing the first-level cache (L1) to detect a miss under FLC.

EDP(Compiler) < EDP(FLC): In principle, as the amnesic compiler can only prob-

abilistically take into account where a load might get serviced at runtime, by firing

recomputation along RSlice(v) for each RCMP encountered, the Compiler policy can eas-

ily trigger unnecessary recomputations, and hence, hurt energy efficiency – particularly

if v resides in L1. FLC, on the other hand, prevents recomputation in this case. This

is clearly visible for sr, where Compiler triggers too many recomputations that do not

provide sizable energy gain (due to recomputed data mostly being in L1), but introduce

performance overhead (since RSlices recomputed usually take longer than accessing L1).

Since the energy gain due to recomputation does not offset the performance degrada-

tion, the EDP of sr degrades 7% under Compiler. Although the difference is small,

Compiler yields lower EDP gain than FLC in sx, cg, fe, rt and bp.

EDP(Compiler) > EDP(FLC): Compiler can provide higher gains than FLC (LLC)
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Figure 3.4: Energy gain under amnesic execution.

when they recompute the very same set of RSlices; i.e., SFLC (SLLC) overlaps with S –

when none of the vs is present in L1 (L2). This is because Compiler does not need to

probe the caches, so there is no probing cost. Although the difference is mostly small,

this is the tendency in mcf, is, ca, fs, and bfs.

EDP(FLC) vs. EDP(LLC): If v resides in L1, both FLC and LLC simply skip recom-

putation. If v resides in L2, only FLC fires recomputation. In this case, depending on

the instruction mix and count in RSlice(v), recomputation may be less expensive than

retrieving v from L2, particularly for short RSlice(v). At the same time, the probing

cost is lower for FLC than LLC. As Section 3.5.4 reveals, the benchmark applications

feature predominantly short RSlice(v)s, with much less than 50 instructions. Overall,

FLC renders the higher EDP gain, since recomputation along RSlice(v) remains usually

cheaper than retrieving v from L2.

Impact on energy & execution time: Due to memory accesses being both energy-

hungry and slow, most of the time, the reduction in EDP comes from a reduction

in both energy and execution time. Figure 3.4 shows the corresponding reduction in

energy consumption; Figure 3.5, in execution time, under amnesic execution, normalized

to classic execution. We observe similar trends to EDP for both.

Putting it all together: An amnesic design which always fires recomputation following

compiler hints (i.e., Compiler, as opposed to following policies like FLC or LLC) can

be very effective as Figure 3.3 reveals, but it is limited by the accuracy of compiler’s
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Figure 3.5: % reduction in execution time.

probabilistic energy model. Overall, Compiler improves the EDP of all benchmarks,

with the exception of sr and mg where EDP is degraded by 7% and 1.37%, respectively.

Eight of the benchmarks obtain more than 10% EDP gain under Compiler, where the

range changes from 12.04% to 87%. FLC and LLC yield slightly lower EDP gains

than Compiler, in general. Since they tend do make more conservative decisions on

recomputation, they do not experience any EDP degradation. For the aforementioned

8 benchmarks, EDP gain under FLC (LLC) range from 14.37% to 85.3% (11.39% to

71.92%).

To shed further light on these findings, we will next look into instruction mix (see

Section 3.5.2), memory access characteristics (see Section 3.5.3) and RSlice character-

istics (see Section 3.5.4) under amnesic execution.

3.5.2 Impact on Instruction Count and Mix

Under amnesic execution, the sequence of recomputing instructions in each RSlice(v)

replaces the respective load to read v from memory. Therefore, we expect an increase in

the number of (dynamic) instructions along with a decrease in the number of (dynamic)

load instructions under amnesic execution. Table 3.3 shows how the dynamic instruc-

tion mix and energy breakdown changes under amnesic execution. For comparison, we

also provide the energy breakdown under classic execution. Without loss of generality,



27

Bench.
% incr.
(dyn.)
instr. count

% decr.
load
count

Energy Breakdown (%)
Classic Amnesic

Load Store Non-mem Load Store Non-mem Hist Read

mcf 4.47 6.19 91.67 2.12 6.20 75.33 2.88 6.77 0.48

sx 4.55 6.68 70.43 2.70 26.86 58.44 3 28.01 2.42

cg 3.97 2.11 82.43 0.45 17.10 80.03 0.51 17.99 0.51

is 17.97 49.99 84.30 11.19 4.49 9.62 13.17 9.75 3.06e-06

ca 7.38 7.95 85.21 5.16 9.61 62.26 5.20 10.42 0.70

fs 1.83 3.08 53.90 14.37 31.71 32.36 14.78 32.61 0.68

fe 3.55 1.75 58.49 15.50 26 47.81 15.57 27.03 0.84

rt 1.97 6.08 67.87 8.58 23.54 60.67 8.73 24.27 1.16

bp 31.89 55.55 87.71 7.22 5.05 52.68 7.22 7.38 2.13

bfs 1.20 60.93 79.18 1.87 18.94 68.35 2.20 21.92 2.42e-07

sr 20.02 23.33 49.89 9.43 40.66 30.35 14.69 47.11 7.36

Table 3.3: Dynamic instruction mix and energy breakdown under amnesic execution.

we report the amnesic execution outcome for the Compiler policy, which incurs the

maximum possible number of recomputations.

The first half of the table captures the % increase in the dynamic instruction count

along with the % decrease in the dynamic load count under amnesic execution with

respect to the classic baseline. In the second half, we report the % energy breakdown

under classic and amnesic execution: we differentiate between stores, loads and all other

instructions (which form the category Non-mem). Under amnesic execution, we also

report the share of Hist table reads, which retrieve non-recomputable input operands

of RSlice leaves.

We observe that amnesic execution reduces the energy consumed by load instructions

for all benchmarks, while the energy consumed by Non-mem instructions increases due

to recomputation along RSlices. is from NAS, among the benchmarks listed in Table 3.3,

is the most responsive to amnesic execution: The energy consumption of its loads drops

from 84.3% to 9.62%, at the expense of executing ≈ 17.97% more instructions due

to recomputation. In return, the number of dynamic loads reduces by 49.99% under

amnesic execution.

3.5.3 Memory Access Characteristics

The effectiveness of amnesic execution is constrained by, for each target data value v, (i)

where in the memory hierarchy v resides; (ii) the cost of recomputation along RSlice(v).
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Bench.
Compiler FLC LLC
(hit %) (hit %) (hit %)

L1-hit L2-hit Mem-hit L1-hit L2-hit Mem-hit L1-hit L2-hit Mem-hit

mcf 12.02 11.01 76.97 10.73 11.16 78.09 10.73 11.16 78.09

sx 85.33 0.85 13.80 85.08 0.86 14.04 85.09 0.85 14.05

cg 87.49 0.17 12.33 87.49 0.17 12.33 87.49 0.17 12.33

is 49.64 19.25 31.10 49.64 19.25 31.10 49.64 19.25 31.10

ca 27.85 7.50 64.63 27.84 7.51 64.64 27.84 7.51 64.64

fs 56.47 1.92 41.59 56.46 1.92 41.60 56.46 1.92 41.61

fe 63.26 10.06 26.67 63.22 10.07 26.70 63.22 10.05 26.71

rt 92.95 0.75 6.28 92.21 0.83 6.94 92.85 0.06 7.07

bp 72.49 4.11e-3 27.49 72.49 4.11e-3 27.49 72.49 4.11e-3 27.49

bfs 98.43 1.15e-3 1.56 98.43 1.15e-3 1.56 98.43 1.15e-3 1.56

sr 93.70 0.03 6.26 93.70 0.03 6.26 93.70 0.03 6.26

Table 3.4: Memory access profile of load instructions under classic execution, which are
swapped for recomputation under Compiler, FLC, and LLC policies, respectively.

(i) sets the budget for recomputation, and recomputation is only effective if (ii) remains

below this budget. The lower the level in the memory hierarchy where v resides, the

higher becomes the budget for recomputation along RSlice(v). Amnesic execution is

more likely to provide higher energy efficiency, if the target v resides in lower levels of

the memory hierarchy.

Table 3.4 shows the memory access profile of load instructions under classic exe-

cution, which are swapped for recomputation under Compiler, FLC, and LLC policies,

respectively. We report the percentage of such load instructions serviced by each level in

the simulated memory hierarchy (Table 3.2). Recall that the set of RSlices recomputed

by each policy is different (see Section 3.5.1), therefore, so is the set of loads swapped

for recomputation.

Memory access characteristics help us reason about why some benchmarks bene-

fit more from recomputation, considering different policies. For example, bfs exhibits

higher EDP gain for the Compiler policy, but relatively lower EDP gain for FLC and

LLC policies (Figure 3.3). As Table 3.4 reveals, bfs’s swapped loads are almost entirely

serviced by L1. Since bfs’s swapped loads barely miss in L1, FLC and LLC policies fire

recomputation less often. Compiler, on the other hand, triggers recomputation regard-

less of where the target data resides in the memory hierarchy. bfs’s energy efficiency
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Figure 3.6: Histograms of instruction count per recomputed RSlice under Compiler
policy.

gain under Compiler comes from the relatively short, hence cheap RSlice(v)s (see Sec-

tion 3.5.4), even though the target v could be found in L1 most of the time. In this

case, Compiler comes very to close Oracle.

Quite the opposite trend applies for sr, the benchmark where Compiler falls notice-

ably behind Oracle and even degrades the EDP. As Table 3.4 reveals, similar to bfs,

most (93.7%) of sr’s swapped loads are serviced by L1. As it was the case for bfs, the
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target v could be found in L1 most of the time, but Compiler always triggers recompu-

tation along RSlice(v) instead. As the respective RSlice(v)s of sr are not as short, hence

cheap, as the ones of bfs (see Section 3.5.4), such excess recomputations cause Compiler

to render a 7% degradation of EDP.

3.5.4 RSlice Characteristics

The number of instructions in an RSlice (i.e., RSlice length) is a fundamental determi-

nant of the cost of recomputation. As RSlice length increases, recomputation incurs a

higher cost due to the (re)execution of a larger number of instructions. Recomputation,

i.e., traversal of an RSlice(v) under amnesic execution, provides higher energy efficiency

benefits if the target data value v resides in lower levels of the memory hierarchy, and,

at the same time, if the respective RSlice(v) is relatively short.

Figure 3.6 shows histograms of instruction count per (recomputed) RSlice under

Compiler policy. Recall that Compiler always triggers recomputation, independent of

where v resides in the memory hierarchy. Therefore, Figure 3.6 covers the profile for the

entire set of RSlices (as identified by the amnesic compiler; Section 3.3.1). Overall, we

observe that 78.32% of the RSlices have a length less than 10 instructions, across the

board. Only 0.09% of the RSlices contain more than 50 instructions. According to the

storage complexity analysis from Section 3.3.5, this implies a small footprint for SFile

and IBuff (Figure 3.2), which grow with RSlice length.

For example, for the is benchmark from NAS, more than 30% of the loads swapped

for recomputation have their data residing in the main memory (Table 3.4). At the

same time, as Figure 3.6d reveals, the application features mostly short RSlices. As a

result, amnesic execution results in very high EDP gain (87% according to Figure 3.3).

Although bfs features much shorter RSlices than is (Figure 3.6j), its EDP gain remains

significantly lower (18.54% according to Figure 3.3), because 98.43% of its loads swapped

for recomputation have their data residing in L1 (Table 3.4).

Hist from Figure 3.2 only serves buffering non-recomputable (nc) leaf input operands

of RSlices. Figure 3.7 shows the percentage share of RSlices featuring non-recomputable

leaf input operands for all applications. With the exception of is and bfs, such RSlices

represent the vast majority, rendering Hist a critical structure. According to our anal-

ysis, across all benchmarks, Hist has to record the non-recomputable inputs of at most
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Figure 3.7: % of RSlices with non-recomputable leaf inputs.

565 of such RSlices at a time (i.e., for fs), where the average number of leaves is 1. A Hist

design of no more than 600 entries can accommodate such demand (see Section 3.3.5).

In the evaluation, we sized the microarchitectural components of Figure 3.2 conser-

vatively for the worst-case, to be able to capture the impact of recomputation without

any bias. However, as Figure 3.6 reveals, less than 50 entries for SFile or IBuff can cover

most of the RSlices. In this case, recomputation along excessively long RSlices will not

be possible, but long RSlices are unlikely to deliver noticeable gains due to the higher

(recomputation) cost incurred. Hence, we expect the gains from Figure 3.3 mostly hold

under practical sizing considerations.

3.5.5 Break-even Point

The basic idea behind amnesic execution is to swap energy-hungry load instructions

with a sequence of non-memory (Non-mem) instructions to generate the respective

data values. Each such sequence forms an RSlice. The non-memory instructions in an

RSlice are mostly arithmetic/logic, as RSlices do not feature memory or control flow

instructions by construction (see Section 3.3.1). The effectiveness of amnesic execution

hence comes from such non-memory instructions being significantly less energy-hungry

than load instructions, in today’s machines at least.

The energy efficiency gain under amnesic execution tightly depends on the relative
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Benchmark Rbreakeven (normalized)

mcf 66.74

sx 53

cg 22.89

is 73.74

ca 30.71

fs 32.35

fe 13.7

rt 45.63

bp 83.25

bfs 3.89

sr 36.74

Table 3.5: Break-even point (for C-Oracle).

energy cost of non-memory instructions with respect to loads, i.e.,

R = EPINon−mem/EPIld

where EPINon−mem captures the average EPI of a non-memory (i.e., arithmetic/logic)

instruction; EPIld, of a load. R is a strong function of the underlying (micro)architecture

and technology. The default value of R we used throughout the evaluation is

Rdefault = EPINon−mem,default/EPIld,default

= 0.45nJ/52.14nJ ≈ 0.0086

which comes from the measured EPI estimates from [15] (see Section 3.4). We next

extract the value of R which would render amnesic execution useless, i.e., which would

result in the same EDP under amnesic and classic execution. In other words, we analyze

by how much the relative energy cost of non-memory instructions should increase (with

respect to loads) to reach the break-even point for amnesic execution.

As the relative energy cost, R, increases, amnesic execution becomes less and less

beneficial, and past the value of R at the break-even point, Rbreakeven, as expensive

as classic execution. Table 3.5 lists Rbreakeven, normalized to Rdefault, for all of the

benchmark applications. Each benchmark application reaches the break-even point

at a different value of R due to the differences in the instruction mix (and hence, in

RSlices). For example, for bfs to reach the breakeven point, R (the relative cost of a non-

memory instruction with respect to a load) should increase by 3.89× over its default,

Rdefault. Rbreakeven/Rdefault takes much higher values for the rest of the benchmarks.



33

0 20 40 60 80 100

0
10

20
30

40
50

60
(%

) 
Lo

ad
s

Load Value Locality (%)
(a) mcf

0 20 40 60 80 100
0

20
40

60
80

10
0

(%
) 

Lo
ad

s

Load Value Locality (%)
(b) sx

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)
(c) cg

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)
(d) is

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)
(e) ca

0 20 40 60 80 100

0
10

20
30

40
50

60
(%

) 
Lo

ad
s

Load Value Locality (%)
(f) fs

0 20 40 60 80 100

0
10

20
30

40
50

60
(%

) 
Lo

ad
s

Load Value Locality (%)
(g) fe

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)
(h) rt

0 20 40 60 80 100

0
20

40
60

80
(%

) 
Lo

ad
s

Load Value Locality (%)
(i) bp

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)
(j) bfs

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)
(k) sr

Figure 3.8: % value locality of loads (under classic execution), which are swapped for
recomputation by the Compiler policy.

In conclusion, unless R increases over Rdefault by the coefficients provided in Table 3.5,

amnesic execution is likely to stay more energy-efficient than its classic counterpart.

Considering current technology projections [4], such increases are unlikely.
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3.5.6 Data Locality Analysis

Figure 3.8 shows the % value locality of load instructions, which are swapped for re-

computation under the Compiler policy. In other words, these are the loads which get

replaced by RSlices. Without loss of generality, we stick to the Compiler policy in or-

der to cover the entire set of swapped loads – recall that FLC and LLC policies only

selectively swap loads for recomputation, while Compiler always enforces the swap.

We observe that, except bfs and sr, all of the benchmarks exhibit relatively low

value locality for the swapped loads – the percentage of the swapped loads that have

higher than 95% value locality remains less than 28% across the board. For bfs and sr,

all of the swapped loads exhibit around 90% (Figure 3.8j) and 99% (Figure 3.8k) value

locality, respectively. For cg, value locality is practically 0% (Figure 3.8c).

This analysis indicates that amnesic execution is mostly orthogonal to alternative

approaches such as load value prediction [19, 20] or memoization which exploit value

locality to mitigate communication overhead. Memoization represents the dual of recom-

putation: the idea is replacing frequent and expensive computation with table look-ups

for pre-computed data. In this manner, memoization can mitigate the communica-

tion overhead, since table look-ups are much cheaper than long-distance data retrieval.

However, memoization is only effective if the data values generated by the respective

computations exhibit significant value locality – in our context, these computations

correspond to recomputation along RSlice(v)s to generate the data values v, and we

capture in Figure 3.8 the locality of such v by the value locality of the respective loads

to read v from memory, without loss of generality.

3.6 Related Work

Algorithmic level optimizations to reduce communication is extensively explored in the

literature, especially in scientific computing domain [21, 22, 23].

Due to the limited number of registers, and the increasing volume of data to process,

the compiler often confronts the NP-complete register allocation problem [24]. A classic

compiler optimization during register allocation, Rematerialization [25] can eliminate

the spilling-induced store and replace spilling-induced (consumer) loads by a sequence

of instructions to recompute the value (that would be spilled otherwise), provided that
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the input values needed for recomputation are ready at the time of recomputation,

and recomputation is more cost-effective where the cost is defined in terms of latency.

This pass inherently ensures that the recomputing instructions do not overwrite register

values in use.

Kandemir et al. proposed recomputation to reduce off-chip memory area in em-

bedded processors [26]. Koc et al. investigated how recomputation of data residing in

memory banks in low-power states can reduce the energy consumption [27], and devised

compiler optimizations for scratchpads [28]. These compiler strategies are limited to ar-

ray variables. Amnesic execution is not necessarily confined to static compiler analysis

or specific data structures. At the same time, as opposed to amnesic execution, these

studies fail short of exploring opportunities for hardware-software codesign.

DataScalar [29] trades computation for communication by replicating the most

frequently accessed pages in each processor’s local memory in a distributed system.

As opposed to DataScalar, amnesic execution leverages recomputation at a much finer

microarchitectural granularity.

Near memory processing (NMP) [30, 31, 32, 33, 34, 35, 36] can bridge the

gap between logic and memory efficiencies by embedding computation capability in

main memory. Similar to amnesic execution, NMP can minimize energy-hungry data

transfers. Amnesic execution and NMP are orthogonal, and NMP can benefit from

amnesic execution to boost energy efficiency, or to reduce the memory footprint.

Memoization [37, 38], the dual of recomputation, replaces (mainly frequent and

expensive) computation with table look-ups for pre-computed data. Similar to NMP

and amnesic execution, memoization can mitigate the communication overhead, since

table look-ups are much cheaper than long-distance data retrieval. Memoization is

only effective if the respective computations exhibit significant value locality. There-

fore, memoization and recomputation can complement each other in boosting energy

efficiency.

Idempotent Processors [39] execute programs as a sequence of compiler-constructed

idempotent (i.e., re-executable without any side effects) code regions. RSlices aren’t re-

quired to be strictly idempotent, but idempotent regions can act as RSlices.

Variants of Speculative Precomputation [40, 41, 42, 43, 44, 45] rely on specula-

tive helper threads which run along main threads of execution to enhance performance
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(by e.g., masking long latency loads from main memory). Prefetching by helper threads

can result in notable performance boost, however, helper threads still perform costly

(main) memory accesses. The redundancy in execution incurs a power overhead on top.



Chapter 4

Recomputation Taxonomy

4.1 Introduction

In its simplest form, recomputation entails brute-force recalculation on demand, to pre-

vent expensive data transfers. Due to the increasing power and latency gap between

computation and data orchestration, recomputation can enhance energy efficiency even

in this simplest form. Expanding recomputation to value prediction [46, 19] or approx-

imation [47, 20] – as long as the underlying potential loss in computation accuracy

remains at acceptable levels – can help reduce the input data retrieval overhead of

RSlice’s leaves under recalculation.

(a)

Classic Execution

Store output data

Compute output data

 Load input data2�

5�4�

1�

3�

&

&

(b)

Recomputation

Store output data

Compute output data

 Recompute input data

5�4�

3�

&

Figure 4.1: Classic execution vs. Recomputation.
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Figure 4.1(a) shows the classic trajectory at each step of a typical execution. Black

arrows point to the direction of data flow. As depicted in Figure 4.1(b), recomputation

swaps load instructions for the reproduction of the respective input operands (which

would otherwise be loaded from memory) for the subsequent computation. ¬ incurs

the time and power overhead of the memory (hierarchy) access to perform the load;

­, of the subsequent communication of inputs to compute resources. Recomputation

transforms the overhead of ¬ & ­ to the overhead of the recomputation of the respective

data values, i.e., of ®. Therefore, recomputation can only improve energy efficiency if

the cost of data reproduction remains less than the cost of ¬ & ­. In other words, the

cost of ¬ & ­ sets the budget for recomputation.

Recomputation can also reduce the pressure on memory capacity and communication

bandwidth. A recomputing processor can accommodate more compute resources (in

the form of general-purpose cores or specialized accelerators) to occupy the area once

allocated to memory (hierarchy). At the same time, under recomputation the workload

becomes more compute-intensive to make a better use of classic processors optimized

for compute performance, as opposed to energy efficiency. In this chapter, we introduce

a taxonomy for recomputation and provide a quantitative comparison.

4.2 Recomputation Taxonomy

The energy cost of the load from Figure 4.1(a) determines the energy budget for re-

computation. Unless the energy cost of reproducing data remains less than the energy

cost of the respective load, recomputation cannot improve energy efficiency. Whether

recomputation can improve energy efficiency or not tightly depends on where the data

reside in the memory hierarchy – it is the location of the data in the memory hierarchy

which determines the energy cost of the load. On the other hand, recomputation also

incurs an energy cost due to the introduction of recomputing instructions that produce

the data which would otherwise be loaded.

The taxonomy of recomputation techniques spans three dimensions. Recomputation

can reproduce the data (which otherwise would be loaded from the memory hierarchy)

by: (I) brute-force recalculation [48]; (II) prediction [46, 19]; or (III) approxima-

tion [47, 20], respectively:
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(I) Under brute-force recalculation, the recomputation effort goes to the reproduction

of data values – which would otherwise be loaded from the memory (hierarchy) – by

re-executing the recomputing instructions.

(II) Under prediction, the recomputation effort goes to the estimation of data values by

exploiting value locality – the likelihood of the recurrence of data values [19] within the

course of execution.

(III) Under approximation, the recomputation effort goes to the actual calculation of data

values – as it is the case for brute-force recalculation, however, at reduced accuracy.

In this case, the compute resources perform recomputation at reduced-accuracy, by

e.g., omitting a subset of recomputing instructions which have negligible impact on the

accuracy of data values.

Prediction or approximation may degrade accuracy of the end results at various

degrees, which is not the case for brute-force recalculation. In this study, we focus

on recalculation and prediction (without accuracy loss), and leave approximation

based recomputation to future work.

4.2.1 Recalculation Based Recomputation

Recalculation can be implemented in various ways. The following analysis relies on

a compiler-assisted proof-of-concept implementation, following Chapter 3. During code

generation, the compiler replaces each energy-hungry load instruction with a sequence of

(arithmetic/logic) recomputing instructions which can (re)produce the respective data

values. To this end, the compiler recursively traces data dependencies.

In the proof-of-concept implementation, the compiler is in charge of making sure

that all input operands of producer instructions within an RSlice are available at the

anticipated time of recalculation. Unless the compiler guarantees this constraint, an

RSlice cannot replace its respective load in the binary. Further, the compiler swaps a

load with its respective RSlice only if recalculation of the corresponding data value

along the RSlice is more energy efficient than performing the load.
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4.2.2 Prediction Based Recomputation

Under prediction, the recomputation effort goes to the estimation of data values,

instead of brute-force recalculation. Accurate estimation is only possible if data values

(which otherwise would be loaded from memory) exhibit high value locality – i.e., a

high likelihood of recurrence [19] within the course of execution. For example, if a data

value exhibits excellent (100%) locality, just storing the value in a dedicated buffer and

retrieving it from there may turn out to be more energy efficient than recalculating it

or loading it from memory. Even if the value locality remains less than 100%, such

buffered history of values can be used for prediction. It has been shown that emerging

applications can oftentimes mask prediction incurred inaccuracy due to potential errors

in estimation, as implied by imperfect value locality [19].

Value retrieval from the history buffer constitutes the main cost of prediction.

Under imperfect value locality, a prediction algorithm can help estimate the respective

value by using the buffered history of previously observed values. In this case, the cost

of executing the prediction algorithm should also be considered. The overall cost of

prediction should fit into the recomputation budget, which in turn is set by the energy

overhead of the respective load. Prediction based recomputation can only be beneficial

if its energy cost remains less than the energy cost of this load.

4.2.3 Recalculation + Prediction Based Recomputation

Prediction based recomputation (see Section 4.2.2) exploits locality of data values

which would otherwise be loaded from memory. With respect to recalculation (see

Section 4.2.1), prediction targets the value to be produced by the (instruction at the)

root node of the RSlice. Input (data operand) values of RSlice nodes may also exhibit

significant value locality. Let us assume that such a node n resides at level l, and

it is not a leaf. In this case, predicting n’s inputs may turn out to be more energy

efficient than re-executing producers (of n’s inputs) residing at level l+1 of the RSlice.

Hence, combining recalculation with prediction (i.e., recalculation + prediction)

can result in pruned RSlice to harvest even more energy efficiency. Prediction can

also serve identifying the inputs of leaves – recall that, if retrieving input data of leaves

requires energy hungry memory accesses, recalculation along the RSlice cannot be of any
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use. Each intermediate node of the RSlice subject to prediction becomes practically

a leaf, as re-execution past such nodes would no longer be necessary.

Recalculation + prediction can prune RSlices, however, even under pure recal-

culation (see Section 4.2.1), RSlices can never grow excessively: the energy cost of the

respective load determines the budget for recomputation. The cost of recalculation

increases with the number of levels, i.e., height of the RSlice, and the number of nodes

residing at each level. The re-execution of each node instruction incurs an energy cost.

At most, as many nodes can be re-executed (i.e., can reside in the RSlice) as can be fit

into the recomputation budget. And recalculation can only improve energy efficiency

if the cost of re-execution along the RSlice remains less than the recomputation budget,

which is set by the energy cost of the respective load. In this manner, the energy cost of

the load prevents excessive growth of the RSlice. Under recalculation + prediction,

the cost of re-execution along the RSlice along with the cost of selective prediction

constitute the cumulative cost of recomputation.

4.3 Evaluation Setup

We experiment with benchmarks from the SPEC2006 [10], PARSEC [12], NAS [11],

and Rodinia [13] suites, which span emerging applications (Table 4.1). In the evalu-

ation, we only analyze the benchmarks which harvest sizable (i.e., greater than 10%)

energy efficiency gain under recomputation. The analyzed mix contains both compute-

and memory-intensive applications. Our analysis is confined to sequential, i.e., single-

threaded execution. We use the Sniper [17] micro-architectural simulator. We use

the same microarchitectural configuration and simulation infrastructure presented in

Section 3.4 for our evaluations. We profile the native binaries (conforming to classic

execution, hence excluding recomputation) of the benchmarks on Sniper: We record (i)

value locality of instructions at runtime (to be exploited by prediction based recompu-

tation); (ii) cache statistics, i.e., hit and miss rates, at runtime (to derive a probabilistic

energy cost model for the compiler pass covered in Section 3.3.1).
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Suite Benchmark Input Application

SPEC
429.mcf (mcf) test Combinatorial Optimization
482.sphinx3 (sx) test Speech Recognition

NAS is A Integer Sorting

PARSEC

canneal (ca) simsmall Simulated Annealing
facesim (fs) simsmall Motion Simulation
ferret (fe) simsmall Content Similarity Search
raytrace (rt) simsmall Real-time Raytracing

Rodinia
backpropagation (bp) 65536 Pattern Recognition
breath-first search (bfs) graph1MW 6.txt Graph Traversal
srad (sr) 100 0.5 502 458 1 Image Processing

Table 4.1: Benchmarks deployed to quantify the potential of different recomputation
techniques.

4.4 Evaluation

We next quantify the energy efficiency under recomputation and analyze the implica-

tions for execution semantics.

4.4.1 Impact on Energy and Performance

Figure 4.2 compares the energy consumption under recalculation, prediction, and

recalculation+prediction based recomputation. This analysis accounts for the over-

head of recomputing producer instructions (along RSlices) under recalculation (Sec-

tion 4.2.1), and history buffer accesses under prediction (Section 4.2.2). However, we

assume that one history buffer access suffices for value prediction at 100% accuracy

(i.e., we omit any potential overhead due to prediction algorithms). For this experi-

ment, we set the value locality threshold to enable prediction to 90%: prediction only

applies to instructions, the input operands of which exhibit at least 90% value locality.

Prediction targets only the values to be re-produced by root instructions of RSlices

(all instructions along which are re-executed under recalculation). Under recalcula-

tion+prediction, on the other hand, prediction can target any RSlice instruction but

the root (Section 4.2.3).

Figure 4.2 reports the energy gain with respect to native execution, which excludes
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Figure 4.2: Energy gain under recomputation.

recomputation. We observe that except bp, bfs and sr, the energy gain under pre-

diction is insignificant. This is because only a small of number of instruction input

operands exhibit a higher value locality than 90%. Due to its wider applicability, recal-

culation unlocks higher energy gains, ranging from 5.15% to 67.43%, except sr. The

recalculation cost for sr remains generally higher than the cost of the respective loads.

An interesting observation is that bfs obtains lower energy gain under prediction and

recalculation+prediction when compared to recalculation alone. The reason is

that the RSlices of bfs are very short, rendering recalculation always cheaper than

prediction. At the same time, our proof-of-concept implementation gives the prior-

ity to prediction, if a value exceeds the locality threshold set for prediction (i.e., 90%)

under recalculation+prediction: in other words, we omit recalculation for all values

that exhibit a higher value locality than the threshold (90% in this case), even though

recalculation turns out to be less energy hungry. Overall, the energy gain due to re-

calculation+prediction remains limited for the majority of the benchmarks. The

reason is twofold: the benchmarks either do not have enough value locality to exploit

prediction (e.g. mcf, sx, is, ca, fs, fe, and rt), or recalculation is too costly (e.g. ca, fs).

Figure 4.3 reports the corresponding improvement in performance (i.e., execution

time) with respect to native execution. Generally, a similar trend to energy gain applies,

except that the performance degrades under recalculation for sr, due to recomputed

data mostly being in L1 and recalculation introduces performance overhead (since re-

execution along RSlices usually takes longer than accessing L1).

Figure 4.4 summarizes the resulting gain in energy efficiency in terms of EDP
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Figure 4.3: Performance gain under recomputation.
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Figure 4.4: EDP gain under recomputation.

(energy delay product [18]), with respect to native execution. Overall, recalcula-

tion+prediction maximizes the EDP gain, and recalculation remains effective as

well, except sr (as explained above). Prediction is beneficial for bp, bfs, and sr only

– recall that even this gain under prediction is optimistic as we neglect any algorith-

mic overhead. Finally, recalculation+prediction results in 8.66% to 87% EDP gain

across all benchmarks.

We next assess the sensitivity of EDP gain to the value locality threshold for pre-

diction. Figure 4.5 reports the EDP gain under prediction; Figure 4.6, under recal-

culation+prediction, as we sweep the threshold between 50% and 100%. Each bar

per benchmark represents a different value locality threshold from this range to enable

prediction.

Generally, as the threshold increases, the number of instructions exhibiting at least
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Figure 4.5: EDP gain under prediction as a function of value locality threshold for
prediction.

that much locality reduces – therefore, a lower number of predictions can be performed,

and both the energy and performance gains drop accordingly. Among the benchmarks,

bp exhibits the highest value locality, hence, it benefits most from prediction. bfs and

sr, as well, benefit from prediction if the threshold remains lower than 100% – as a very

small number of loads swapped for RSlices feature 100% value locality for these bench-

marks. On the other hand, fs and mcf harvest sizable EDP gain under prediction only

if the threshold remains lower than 90% and 80%, respectively. The remaining bench-

marks have a very small number of load instructions that exhibit ≥ 50% value locality,

so only a negligible EDP gain applies under prediction (which already represents an

upper limit for actual gains, as we neglect any algorithmic overhead). Therefore, re-

calculation+prediction can generally provide higher EDP gains when compared to

prediction. As mentioned before, bfs has small RSlices, thus, the associated recal-

culation cost usually remains lower than than the cost of prediction. Accordingly, bfs

shows higher EDP gain for 100% threshold (at which a smaller number of values can be

predicted, by definition, when compared to lower values of the threshold) under recal-

culation+prediction. Overall, we observe that our findings from Figure 4.4 generally

apply over this wider range of threshold values. We can conclude that recalculation has

wider coverage for recomputation than prediction. Next, we investigate why this is the

case.
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Figure 4.6: EDP gain under recalculation+prediction as a function of value locality
threshold for prediction.

4.4.2 Impact on Execution Semantics

As explained in Sections 4.2.2 and 4.2.3, in the context of recomputation, prediction

serves two purposes:

(i) to predict the values which would otherwise be loaded from memory (and which

correspond to the values to be re-produced by RSlice roots under pure recalculation)

under prediction;

(ii) to predict the input values of intermediate (non-root) RSlice nodes under recalcu-

lation+prediction.

Prediction can eliminate re-execution along an entire RSlice if the values to be

re-produced by the RSlice root (i.e., the values which would otherwise be loaded from

memory) exhibit sufficiently high locality. Recalculation+prediction, on the other

hand, can prune any intermediate RSlice node (along with the attached sub-RSlice

except the root) exhibiting sufficient (input) value locality to render a smaller RSlice,

which in turn becomes less energy costly to execute.

For prediction based recomputation to work, the respective instructions should ex-

hibit sufficiently high value locality. Figure 4.7 reports a histogram of % value locality

(x-axis) for all instructions residing in RSlices. The y-axis reports the % share of in-

structions exhibiting a given value of locality on the x-axis. Root captures the output

value locality of RSlice roots; Non-root, the input value locality of intermediate (non-

root) RSlice nodes. Recall that the output value locality of RSlice roots corresponds to
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Figure 4.7: Value locality of RSlice instructions.
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the locality of data values to be retrieved by the respective load instructions which are

replaced by RSlices.

Notice the distinction between static and dynamic instructions (for both root and

non-root, i.e., intermediate instructions). Static instructions are the ones that are em-

bedded in the binary by the compiler. Dynamic instructions are the ones that are ac-

tually executed at runtime. A static instruction may have multiple dynamic instances

executed at runtime, or may not be executed at all. This distinction helps us to explain

why, for instance, we do not obtain much benefit from prediction although a great

fraction of static instructions have high value locality for is (Figure 4.7c): 53.84% of

(static) root instructions of is have 100% value locality, but is does not benefit much

from prediction (Figure 4.5). This is because, at runtime, the root instructions hav-

ing 100% value locality are not executed as many times as other root instructions that

have lower value locality. In fact, less than 1% of dynamic root instructions executed

have 100% value locality for is, as shown in Figure 4.7c. The previous section revealed

that bp benefits from prediction the most (Figure 4.5). Therefore, we expect a larger

fraction of roots to have a very high value locality for this benchmark. Figure 4.7h

reveals that 20% of dynamic root instructions of bp have 100% value locality indeed.

A similar trend holds for non-root instructions under recalculation+prediction. For

recalculation+prediction, prediction of (input operands of) non-root instructions

can provide sizable gains only if the dynamic share of non-root instructions exhibiting

(input operands of) high value locality is large.

Figure 4.8 shows how the node count of RSlices change as the locality threshold

to enable prediction increases from 50% to 100% under recalculation+prediction –

none reflects no prediction, i.e., pure recalculation. The figure reports a histogram

of node count of RSlices (x-axis). The y-axis reports the % share of RSlices having a

given node count on the x-axis. A lower threshold enables more predictions, hence more

producer instructions can get pruned, and the node count shrinks more. We observe

that prediction at a value locality threshold of 50% can reduce the node count of RSlices

up to 56.5%. However, due to the limited value locality, this effect is barely visible for

the majority of applications.
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Figure 4.8: Node count of RSlices before (recalculation) and after pruning (recalcu-
lation+prediction).
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4.5 Summary

Recomputation can minimize, if not eliminate, the prevalent power and performance

(hence, energy) overhead incurred by data storage, retrieval, and communication, thus,

render more energy efficient execution. Recomputation replaces data load(s) from mem-

ory with the reproduction of the respective data. Unless the energy cost of reproducing

data remains less than the energy cost of retrieving the same data from memory, re-

computation cannot improve energy efficiency.

In this chapter, we explored (interactions between) two broad classes of recomputa-

tion techniques: brute-force recalculation and prediction based recomputation. Under

recalculation, the recomputation effort goes to the generation of the data values (which

would otherwise be loaded from memory), by re-executing the producer instruction(s)

of the eliminated load(s). Under prediction, the recomputation effort goes to the esti-

mation of the data values by exploiting value locality – the likelihood of the recurrence

of values (which would otherwise be loaded from memory) within the course of execu-

tion. We find that recalculation has wider coverage for recomputation than prediction,

as prediction cannot be effective under limited value locality.



Chapter 5

Recomputation-enabled

Checkpointing and Recovery

5.1 Introduction

Scalable checkpointing is the key factor to enable emerging applications running on

high-end computing platforms [49]. As we look into the such applications, we note

that they need vast amount of processing capabilities, meaning more cores and associ-

ated components. Having more cores and using smaller feature sizes each technology

generation result in higher probability of observing a fault during the lifetime of an

execution. To ensure successful completion of an execution, a proper fault detection

and recovery mechanisms have to be in place. The traditional method to recover from

a fault is to periodically checkpoint the state of the program during its execution on

reliable storage [50]. When a fault occurs, error-free consistent program state is con-

structed from the most recent checkpoint. The program is resumed after rolling back

the execution to the most recent error-free consistent program state. Typically there

are two main types of checkpointing and recovery mechanisms, namely coordinated [51]

and uncoordinated [52]. The coordinated checkpointing and recovery has widely used

since it is relatively simple, but incurs high overhead due to coordination with all the

processes. Uncoordinated checkpointing and recovery, on the other hand, checkpoints

without any coordination with others, so it provides maximum flexibility for processes

to take checkpoints. However, it may not always be possible to find a consistent global

51
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state to roll-back, making the (local) checkpoints useless; or it may require a chain

of transitive rollbacks (a.k.a. domino effect [53]) which complicates the recovery pro-

cess. In our discussions, we use global coordinated checkpointing and recovery (unless

otherwise stated explicitly).

Checkpointing and recovery incurs a time overhead, tchk, every time the program

checkpoints, and a recovery overhead, trec, when the program restarts from the most

recent checkpointed state after detection of a fault. The checkpoint overhead, tchk

is proportional to the time spent on recording the state, twr,chk, and the number of

checkpoints, fchk. The checkpoint overhead then becomes tchk = fchk × twr,chk. The

recovery overhead, trec includes the time (spent on useful work) lost since the last

checkpoint, twaste and the time spent on restoring the state of the last checkpoint,

trollb. Therefore, under a fault rate of perr, the recovery overhead becomes trec =

perr × (twaste + trollb).

In this chapter, we introduce a recomputation-enabled checkpointing to reduce the

checkpointing overhead. Data recomputation can reduce both the frequency of check-

pointing, and the size of the checkpoints, and thereby mitigate checkpointing overhead.

The basic idea behind data recomputation is to eliminate the necessity of storing data

to a checkpoint by relying on ability to recompute the desired value when it is needed

(i.e. during recovery).

Under recomputation, time spent on recording the state, twr,chk decreases since

certain states (i.e. updated memory values) do not need to be checkpointed. This in

turn decreases tchk, even if fchk remains the same. However, the recovery overhead

trec now includes extra time spent on recomputing the states that are not checkpointed

during the last checkpoint interval, trcmp. Still, the time spent on restoring the state of

the last checkpoint, trollb is expected to decrease, since the size of checkpointed states

is simply smaller. Therefore, the recovery overhead under recomputation becomes:

trec,rcmp = perr × (twaste,rcmp + trollb,rcmp + trcmp)

To have trec,rcmp ≤ trec, (trollb,rcmp + trcmp) ≤ trollb should be the case.

The primary contribution of this study is to analyze the impact of recomputation

on checkpointing and recovery. Under recomputation, the checkpointing overhead can
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be significantly reduced, while keeping the recovery overhead modest. We also devote a

considerable discussion on how such a recomputation enabled microarchitecture can be

designed and incorporated with checkpointing and recovery mechanisms. The proposed

recomputation enabled checkpointing is:

• hybrid (hardware/software): there is a need to generate a binary for recomputation

enabled microarchitecture. Compiler has to extract the backward slices that would

allow recomputation of data sets. At runtime, the microarchitecture has to identify

the values that can be recomputed and should exclude them from consideration

of checkpointing. In case of fault, such values have to be recomputed.

• transparent: Both recomputation enabled binary generation and facilitating re-

computation on checkpoint and recovery are transparent to the application devel-

oper and user.

• low overhead: the main promise of recomputation is to mitigate the checkpoint-

ing overhead, while keeping the incurring costs of recomputation relatively low.

There is a runtime overhead to identify the values that can be recomputed and to

maintain the structures for supporting recomputation. Such costs are much lower

than the benefits of recomputation.

• scalable: fundamentally, the checkpointing becomes challenging as the system or

application scales. Recomputation mitigates the associated overheads of check-

pointing (e.g. reducing the footprint and memory bandwidth requirements), mak-

ing it more scalable.

5.2 Recomputation: Basic Idea

5.2.1 Support for Recomputation

In Chapter 3, we provide the details compiler and (micro)architecture support for op-

portunistic substitution of load instructions with arithmetic/logic instructions to re-

compute the data values which would otherwise be retrieved from the memory hierar-

chy. To facilitate recomputation-enabled checkpointing and recovery, we assume similar

hardware-software support presented in Chapter 3.
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Figure 5.1: Microarchitectural support needed to facilitate recomputation.

Figure 5.1 captures microarchitectural support in orchestrating recomputation.

5.2.2 Recap: Recomputation Framework

The runtime scheduler tracks RMCP and REC instructions. RCMP instructs the scheduler to

record the address of the RSlice(v) and the destination address of the value v into Hist

( 0© in Figure 5.1). Similarly, REC instructs the scheduler to record all non-recomputable

input operands into Hist along with leaf-address ( 0©).

A recomputation is triggered when certain events occur that set the recompute flag

(e.g. detecting a fault and initiating a recovery). When recompute is set, the runtime

scheduler goes over the Hist, fetches the address of RSlice(v), and instruction fetch

starts from there (which is the first leaf). Each leaf instruction first has its destination

register renamed ( 2© in Figure 5.1). Each leaf instruction with non-recomputable input

operands next probes Hist with leaf-address ( 3©) to read its input operands, which

directly are fed into the corresponding execution units ( 4©). Upon finishing execution,

each leaf writes its result to the SFile ( 5©).

Non-leaf recomputing instructions which represent intermediate nodes in RSlice(v)

read their input operands from SFile ( 6©) after having their source and destination

registers renamed ( 2©). Upon collecting the input operands, recomputing instructions
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proceed to the execution units ( 7©), and write their results back to the SFile once

execution completes ( 8©). All (non-leaf) recomputing instructions in RSlice(v) execute

sequentially in this manner until the RTN instruction of the slice is fetched. Before

return, the recomputed data value v gets copied from SFile into the destination address

of v that was recorded by the RCMP. The runtime scheduler then resets recompute flag

to demarcate the end of recomputation.

5.3 Checkpointing and Recovery

5.3.1 Checkpointing

A common approach for ensuring further progress and successful completion of an ex-

ecution is to periodically checkpointing that is to save the state of an application to

a reliable storage [50]. We focus on in-memory global checkpointing without loss of

generality [54, 55, 51]; where all cores periodically cooperate to create a checkpoint, and

we assume a reliable memory (see Section 5.3.2) as a storage for checkpoint. In-memory

checkpointing has performance and power advantages over traditional checkpointing

schemes that keep the checkpoint on disks. As the density and reliability measures of

main memory enhance, we believe in-memory checkpointing will remain an appealing

scheme. We use log-based incremental checkpointing that copies the old value at target

address into a log, while the value is updated at target address [55, 51, 56]. The log is

stored in-memory and contains the data that is needed to roll-back an error-free consis-

tent state. The memory space can be reclaimed when a new checkpoint is established.

Global checkpointing is performed at regular periodic intervals. At the end of each

period, all the cores are blocked and force to established a checkpoint. Establishing a

checkpoint involves writing all dirty cache lines back to memory and copying the content

of cores’ architectural states (e.g. register file, status code register). The memory

controller checks and copies the old value of a line in the memory into a log, before

writing back the content of dirty cache line, if this is the first modification of the line

since the last checkpoint. Similar to [55] a modified cache line is required to be logged

only once between a pair of checkpoints. To facilitate this, the directory controller has

an additional bit for each memory line, and this bit is used to determine whether a

particular line has already been logged for the current checkpoint interval. The bit for
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Figure 5.2: Recovery from a fault.

a line is set when the line is logged, and cleared when a new checkpoint is established.

5.3.2 Error Detection and Recovery

Without loss of generality, we assume a fail-stop error model and error detection. Also,

we assume that data memory and checkpoint logs do not suffer from any faults, similar

to [56]. This can be ensured through various mechanisms, such as ECC [57], non-

volatile memory, or memory raiding [58]. To detect the errors, the system can use

modular redundancy [59], or error detection codes (e.g. CRC). Further specifications

and assumptions on error detection is beyond the scope of this study.

Error detection is not instantaneous, meaning there is a lag between the occurrence

of an error and its detection, referred as error detection latency. As a consequence,

more than one checkpoints have to be stored before one is validated as being error-free.

We assume that the fault detection latency is no longer than a checkpoint period, so

we have to keep the most recent two checkpoints to ensure that we have an error-free

checkpoint in case of fault. Figure 5.2 illustrates the need for keeping the most recent

two checkpoints and how to recovery from a fault. The time passed between the recently

established checkpoint and the error detection is less than error detection latency, so

there is no guarantee for recently established checkpoint (Ckpt2) to be error-free. To

recover from the fault in such a case, we should have the second most recent checkpoint

at hand (Ckpt1). After rebuilding the global consistent recovery line by restoring the

states kept in the Ckpt1, the execution can resume starting from this point onward.
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5.4 Incorporating Recomputation in Checkpointing and

Recovery

In this section, we detail how data recomputation can be exploited to reduce the check-

pointing overhead. Data recomputation can reduce both the frequency of checkpointing,

and the size of the checkpoints by eliminating the necessity of storing data to a check-

point by relying on ability to regenerate the desired value when it is needed (i.e. during

recovery). We focus on in-memory global checkpointing without loss of generality; how-

ever, recomputation can similarly reduce the overhead of other checkpointing schemes.

First, we discuss how data recomputation support can be exploited and orchestrated

with checkpointing mechanism. Then, we explain the necessary actions of recovery

process in recomputation enabled checkpointing when the fault is detected.

5.4.1 Recomputation Enabled Checkpointing

Assuming a compiler introduced in Section 3.3.1 generates a binary that is annotated

and contains all the viable RSlices. The runtime scheduler, then records the address of

the RSlices and the destination addresses for value to be recomputed into Hist when it

encounters RCMP instruction (see Section 3.3.2). Similarly, it records non-recomputable

input operands of RSlices when REC instruction is encountered, making sure all the

necessary inputs for a given RSlice are available. When runtime scheduler records a

particular RSlice into Hist it also request memory controller to set the bit used for

deciding if a given value should be logged (see Section 5.3.1). The semantic of setting

this bit is letting memory controller know that the given value v has corresponding

RSlice(v) and it can be recomputed when it is needed (i.e. in recovery). When memory

controller receives such a request, it sets the bit and excludes the value v from the

consideration of storing it into a checkpoint for that interval. Eventually, the size of

checkpoint reduces as more values have RSlices.

The RSlices and the input operands have to remain in Hist as long as the established

checkpoint for the given interval is stored in memory. In case of a fault, the global state

must be restored in coordination with the established checkpoint and RSlices in Hist.

The RSlices will be used to recompute the values that were not checkpointed. Assuming

fault detection latency being no more than checkpointing period, we should retain the
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most recent two checkpoints (see Section 5.3.2); similarly, Hist should retain the RSlices

and input operands for the most recent two checkpoints.

For each checkpointing interval, we can eliminate as many values from checkpointing

as the maximum number of RSlices that can fit into the Hist. Once the history buffer

runs out of space, all the values have to be checkpointed even if they have a correspond-

ing RSlice. For more detailed discussion on size of Hist, please see Section 5.4.3.

5.4.2 Recomputation Enabled Recovery

When a fault is detected, the most recent error-free consistent global recovery line should

be built by restoring the checkpoint. Under recomputation enabled checkpointing, there

might be values that are not checkpointed and can not be found in the checkpoint. To

build the global recovery line, these omitted values have to be recomputed. Although the

checkpoint does not have these values, the corresponding RSlices are present in the Hist.

These missing values will be recomputed as explained in Section 5.2.2. When a fault is

detected the recompute flag is set and the runtime scheduler goes over the Hist, fetches

the corresponding RSlice(v) and starts to schedule its instructions to execute. Each

RSlice(v) generates the missing value v, and then it is stored back to the destination

address which is recorded in Hist as well. Note that there is no need to maintain a

separate bookkeeping for the values missing from checkpoint, since Hist records the

corresponding RSlices.

After recomputing the missing values and storing them back to their destination

addresses, the rest of the states in checkpoint can be restored. At the end, the whole

states necessary to establish a global recovery line are restored, and execution then

resumes starting from this point onward.

5.4.3 Microarchitecture Support for Recomputation-Enabled Check-

pointing

To exploit the potential of recomputation-enabled checkpointing, the underlying mi-

croarchitecture should provide the necessary support introduced in Section 5.2.1. Simi-

lar to data memory and checkpoints, we assume Hist does not suffer from any fault. Such

a protection can be obtained through ECC (for further discussion, see Section 5.3.2).
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The RSlices cannot grow indefinitely, as the overhead of recomputation increases

with the size (in terms of the number of instructions) of RSlices. The performance and

energy overhead of recomputation can easily outweigh the benefits if RSlices become

excessively large. To prevent this, a threshold can be set for the maximum number of

instructions per RSlice, which the compiler takes into account this threshold to filter in

embedding RSlices into the binary.

The memory controller should be extended, similar to [55], to maintain a bit for

determining if the old value of a given write-back should be logged. For each write-

back request, the memory controller has to determine (i) whether the request would

result in the first update to the respective memory line since the last checkpoint was

taken, and (ii) whether the current data value v of the respective memory line (i.e., the

value before the write-back takes place) can be recomputed. While memory controller

can maintain the bit itself for (i), it should cooperative with the runtime scheduler for

(ii). The runtime scheduler should send a request to memory controller and let it know

the given value v can be recomputed, so it should not be checkpointed. The memory

controller sets the bit when it receives the request from runtime scheduler.

The number of (stores corresponding to the) values that can be excluded from check-

pointing depends on the size of the Hist, i.e., how many RSlices the Hist can keep track

of. Fortunately, we do not need to have an excessively large Hist to this end: Recall

that we only need to checkpoint the old values on the very first write-backs (to unique

addresses) when a new checkpoint is established. Therefore, the number of RSlices is

not a function of how many times an address is updated, but how many unique memory

address is updated within a given checkpoint interval. Naturally, the latter is bounded

by the period of checkpointing. As the period gets longer, the probability of having a

higher number of unique memory addresses updated increases. At the same time, as the

period gets longer, the amount of useful work lost upon detection of a fault increases.

The checkpointing period cannot get too long to reduce this amount of useful work lost.

The checkpointing period hence puts an upper bound on how many unique RSlices can

be encountered at runtime.
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5.4.4 Overheads

There is a performance overhead of establishing a checkpoint. When it is time to

checkpoint, all the cores have to be blocked and all the dirty cache lines have to write-

back to the memory. Before updating the lines in memory, the existing values have

to be logged for checkpoint (if this is the first write-back, see Section 5.3.1 for further

discussion). Recomputation can reduce the amount of values to be logged for checkpoint,

so the performance overhead of checkpointing is likely to reduce. On the other hand,

RSlices to recompute the missing values in checkpoint have to be recorded in Hist that

can be performed in parallel to the other operations. So, Hist update latency can

be hidden. Although, the update latency can be hidden, there is energy overhead of

updating Hist.

The size of checkpoint (i.e. storage overhead) reduces under recomputation enabled

checkpointing since the number of values checkpointed shrinks. Such a reduction in

checkpoint size can be reflected on energy saving as well as performance gain due to less

amount of memory read/write operations (for recovery and checkpoint, respectively).

When an error is detected, all cores have to be blocked and roll-back and recovery

should be initiated. Recovery includes the recomputation of missing values from the

checkpoint and restoring the rest of the states in checkpoint. Recomputation incurs a

performance overhead; however,it is not prohibitive since the number of instructions in

the RSlices are bounded (see Section 5.4.3). Although recomputation introduces extra

overhead for recovery, it reduces the number of values to be restored. The performance

benefit of having smaller set of values to be restored may or may not be comparable to

the overhead of recomputation. However, considering the number of checkpoints and

the number of recoveries, one can argue that recovery is more likely to be less frequent

event compared to checkpoint, so the performance benefits of recomputation overweight

its overhead (due to recovery).

Another overhead associated with the recovery is to re-perform the work that has

been lost. This overhead remains the same for traditional checkpointing and recompu-

tation enhanced checkpointing.
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Technology node: 22nm

Operating frequency: 1.09 GHz

4-issue, in-order, 8 outstanding ld/st

L1-I (LRU): 32KB, 4-way, 3.66ns

L1-D (LRU, WB): 32KB, 8-way, 3.66ns

L2 (LRU, WB): 512KB, 8-way, 24.77ns

Main Memory
120ns, 7.6 GB/s/controller
1 mem. contr. per 4-cores

Network Bandwidth 128 GB/s

Table 5.1: Simulated architecture to evaluate the impact of recomputation on check-
pointing and recovery.

5.5 Evaluation Setup

To evaluate the impact of recomputation on checkpointing and recovery, we experi-

ment with eight benchmarks (excluding ep due to technical difficulties on running it on

simulation environment) from NAS [11] suite. We relied on OpenMP version of NAS

benchmarks for parallel implementation. We run the benchmarks with 8 threads on

simulated 8-core system.

We based our simulations on a similar configuration presented in Section 3.4: (Intel’s

Xeon Phi like) an in-order core, running at 1.09GHz, with a private L1 and shared L2

cache. We extended Sniper-6.1 [17] to facilitate recomputation, as well as checkpointing

and recovery mechanism we propose. The energy measurements are extracted from

McPAT [16] that is integrated with the Snipersim. Table 5.1 summarizes the main

configuration of the core and the system.

We implemented the greedy compiler pass to generate a recomputation-enabled bi-

nary as a Pin [14] tool, similar to presented in 3.4. however, instead of using probabilistic

energy-per-instruction cost of memory accesses to filter out the RSlices, we used a pre-

determined threshold for RSlice length: the RSlices exceeding the given threshold are

not included into binary.

For the evaluation, we used a baseline that we assume fault-free execution without
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any checkpointing (No Ckpt). Then, we modeled two configurations for global check-

pointing: i) periodic checkpointing, fault-free execution (Ckpt NF ); ii) periodic check-

pointing, fault-incurred execution (Ckpt F ). In Ckpt NF configuration, we modeled the

mechanism of coordinated global checkpointing where all cores are halt and checkpoint

their respective architectural and memory states at regular periodic intervals. In this

configuration, we assume there is no fault, so we can clearly see the overhead of global

checkpointing. In Ckpt F configuration, in addition to coordinated global checkpointing,

we also modeled the mechanism of recovery when a fault is detected.

To characterize the impact of recomputation enabled checkpointing and recovery,

we also modeled the following two configurations: i) recomputation enabled periodic

checkpointing, fault-free execution (Rec Ckpt NF ); ii) recomputation enabled periodic

checkpointing, fault-incurred execution (Rec Ckpt F ). In Rec Ckpt NF configuration, we

incorporated recomputation into the global checkpointing where the size of checkpoint

can be reduced due to the eliminated values that can be recomputed in case of a need (i.e.

in recovery). Since we assume fault-free execution for this configuration, we can clearly

see the impact of recomputation on checkpoint size and its governing overheads. In

Rec Ckpt F configuration, we modeled the recomputation enabled recovery, in addition

to checkpointing. We assume certain number of faults occurs during the execution and

all the cores have to recovery when a fault occurs. During the recovery process, first,

the omitted states that are necessary to establish global recovery line are recomputed,

and then the remaining states are restored from the checkpoint. The configurations

that are modeled are summarized in Table 5.2. We set the checkpointing frequency

for benchmarks to checkpoint 100 times for benchmarks where execution takes longer

(i.e. bt, cg, lu, and sp), and 25 times for benchmarks where execution takes relatively

shorter (i.e. dc, ft, is, and mg). The checkpoint intervals are uniformly distributed over

the execution time. We remind that No Ckpt does not involve checkpointing, so it is

overhead-free baseline. We assume a fault occurs during the execution and all the cores

have to recovery when a fault occurs for Ckpt F and Rec Ckpt F configurations under

global coordinated checkpointing.



63

Configuration Explanation

No Ckpt the baseline assuming fault-free execution, no checkpointing

Ckpt NF periodic checkpointing, assuming fault-free execution

Ckpt F periodic checkpointing, assuming fault occurs in execution

Rec Ckpt NF recomputation enabled checkpointing, assuming fault-free execution

Rec Ckpt F recomputation enabled checkpointing, assuming fault occurs in execution

Table 5.2: The summary of configurations evaluated.

5.6 Evaluation

5.6.1 Checkpointing Overhead in Fault-Free Execution

In this section, we want to present the impact of recomputation on performance, energy

and energy-delay product –as a proxy for energy efficiency– (EDP [18]) of a fault-free

execution. We use No Ckpt as baseline where no checkpointing takes places. Figure 5.3

shows the normalized execution time of benchmarks under Ckpt NF and Rec Ckpt NF

configurations. The general trend is that Ckpt NF and Rec Ckpt NF have consistently

worse performance compared to No Ckpt due to the checkpointing overhead. Notice that

Rec Ckpt NF is very effective in reducing the performance overhead of checkpointing

involved in Ckpt NF˙Rec Ckpt NF reduces the performance overhead of Ckpt NF up to

28.81% (for is), and 11.92%, on average. The smallest reduction is 2.12% for cg. This

small reduction is due to the fact that, in cg, the performance overhead of Ckpt NF

is also relatively low. This is because cg has relatively long execution time and the

checkpoint size per checkpoint interval is relatively small; the amount of time spent in

checkpointing accounts ≈ 9% of total execution time.

Figure 5.4 shows the normalized system energy of benchmarks under Ckpt NF and

Rec Ckpt NF configurations. General trend is similar to performance and Rec Ckpt NF

reduces the energy overhead of checkpointing involved in Ckpt NF . Rec Ckpt NFreduces

the energy overhead of Ckpt NF up to 26.93% (for is), and 12.53%, on average. In

Section 3.5.1, we see that is benchmark is very amenable to recomputation. Thus, here

as well, we see that majority of the updates to memory can be recomputed in a cost

effective manner (in case of recovery), so they can be excluded from checkpoint set,

providing higher reduction in overhead associated with checkpointing in Ckpt NF The

smallest energy reduction is 1.75% (for cg) due to the reasoning provided in performance
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Figure 5.3: Normalized execution time of benchmarks (w.r.t. No Ckpt) under Ckpt NF
and Rec Ckpt NF configurations.

Figure 5.4: Normalized energy consumption of benchmarks (w.r.t. No Ckpt) under
Ckpt NF and Rec Ckpt NF configurations.

overhead discussion.

Figure 5.5 shows the normalized energy-delay product (EDP) of benchmarks un-

der Ckpt NF and Rec Ckpt NF configurations. We use EDP as metric for evaluating

the energy efficiency of the recomputation-enabled checkpointing. Generally, EDP pro-

vides a notion of balance between the performance overhead and energy consumption.

Rec Ckpt NF provides EDP gain up to 47.98% (for is), and 22.47%, on average.
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Figure 5.5: EDP reduction of benchmarks under Rec Ckpt NF configuration (w.r.t.
Ckpt NF ).

5.6.2 Recovery Overhead in Fault-Occurring Execution

In Section 5.6.1, we assumed no fault occurs during the course of execution; however, we

regularly checkpoint to quantify the pure overhead of checkpointing. In this section, we

want to quantify the overhead of recovery process, in case of a fault occurs in execution.

Recovery requires to establish a globally consistent state among all threads. For Ckpt F

configuration that means each thread has to rollback and restore the states kept in most

recently established checkpoint. On the other hand, Rec Ckpt F configuration requires

each thread to restore the states kept in most recently established checkpoint, as well

as to recompute the values that have been omitted during the time of establishing of

checkpoint. Such values were omitted during checkpointing since they have correspond-

ing RSlices which can be triggered to recompute them at a later time. Thus, although

Rec Ckpt F configuration reduces the checkpointing overhead, it requires extra effort to

recompute the missing states. To avoid excessive overhead due to recomputation, we

only select the RSlices that have at most certain number of instruction (by doing so, we

put a cap on the recomputation overhead). For the discussion in this section, we select

the RSlices having at most 10 instruction. For the sensitivity analysis on RSlice length,

please refer to Section 5.6.8.



66

Figure 5.6: Normalized execution time of benchmarks (w.r.t. No Ckpt) under Ckpt F
and Rec Ckpt F configurations.

Similar to analysis in Section 5.6.1, we use No Ckpt as baseline where no check-

pointing takes places (and we still assume no fault occurs in No Ckpt). Figure 5.6

shows the normalized execution time of benchmarks under Ckpt F and Rec Ckpt F con-

figurations, where we a fault occurs during the execution. The performance overheads

of benchmarks under Ckpt F and Rec Ckpt F configurations are higher than Ckpt NF

and Rec Ckpt NF respectively. This is because, in addition to checkpointing overhead,

Ckpt F and Rec Ckpt F include the recovery overhead. Rec Ckpt F is very effective in

reducing the performance overhead of Ckpt FȦlthough Rec Ckpt F needs to recompute

the missing values, thus incurs additional overhead, reduction of checkpointing overhead

(due to the reduced checkpoint size) and reduction of the restore overhead (again, due

to the reduced checkpoint size) outweighs the associated overhead of recomputation.

For this reason, Rec Ckpt F provides a low-cost checkpoint and recovery.

Rec Ckpt F reduces the performance overhead of Ckpt F up to 26.68% (for is), and

12.39%, on average. The smallest reduction is 1.9% for cg. Similar to the previous

justification on fault-free execution, this small reduction is due to the fact that, in cg,

the performance overhead of Ckpt F is also relatively low.

Figure 5.7 shows the normalized system energy of benchmarks under Ckpt F and

Rec Ckpt F configurations. The energy reduction follows the very same trend with the

performance overhead reduction. Rec Ckpt F reduces the energy overhead of Ckpt F up
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Figure 5.7: Normalized energy consumption of benchmarks (w.r.t. No Ckpt) under
Ckpt F and Rec Ckpt F configurations.

Figure 5.8: EDP reduction of benchmarks under Rec Ckpt F configuration (w.r.t.
Ckpt F ).

to 30% (for dc), and 13.47%, on average. The smallest energy reduction is 1.86% (for

cg).

Finally, Figure 5.8 shows the normalized energy-delay product (EDP) of benchmarks

under Ckpt F and Rec Ckpt F configurations. Rec Ckpt F provides EDP gain up to

48.07% (for dc), and 23.41%, on average. Notice that although is benchmark benefits

more from Rec Ckpt F in terms of performance, dc benchmark has higher energy gain

due to Rec Ckpt F ; and in turn dc has higher EDP gain.
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Data recomputation effectively reduces the associated costs of checkpointing, as

well as rollback and recovery. The effectiveness of recomputation-enabled checkpointing

highly depends on the low-cost RSlices and how many values can be excluded from

checkpoint. The analysis of the impact of RSlice length on checkpoint size reduction is

presented in Section 5.6.8.

5.6.3 Checkpoint and Footprint Size Reduction

The recomputation-enabled checkpointing demonstrates big potential for mitigating the

checkpointing overhead, due to its promise of reducing the amount of data to be check-

pointing. The reduction of checkpoint size has mainly two implications. The first one

is the amount of data to be moved to designated memory area is reduced; thus saving

energy and reduces time required to perform copy. Second, the size of a particular

checkpoint is shrunk, so the footprint of a checkpoint on memory (i.e. required memory

size) can also be reduced. The largest checkpoint among all checkpoints (i.e. maximum

size) designates the memory footprint of the checkpoint (we assume the memory space

allocated to previous checkpoints can be reclaimed). Since we need to keep two most

recent checkpoints (see Section 5.3.2 for details), the memory space we have to allo-

cate for checkpoints is the 2× size of the largest checkpoint. As recomputation-enabled

checkpointing can shrink the size of checkpoint, the memory footprint (i.e. required

memory space) may also be shrunk. Such shrinkage on memory requirement may lead

to extra energy benefits (e.g. due to less leakage and refresh in case of DRAM).

Figure 5.9 shows the percentage of total checkpoint size reduction under Rec Ckpt NF

(w.r.t. to Ckpt NF ). Among all the benchmarks, is benefits the most from recompu-

tation, and total checkpoint size is reduced by 75.74% under Rec Ckpt NF . On the

other hand, the benefits are limited for cg, having total checkpoint size reduction by

6.99% under Rec Ckpt NF . The average checkpoint size reduction is 38.31% for the

benchmarks under under Rec Ckpt NF . The reductions for Rec Ckpt F are inlined with

the Rec Ckpt NF (since having a fault does not change the set of values that can be

recomputed and set of values to be checkpointed).

On the other hand, Figure 5.10 shows the percentage of footprint size reduction

under Rec Ckpt NF (w.r.t. to Ckpt NF ). Notice that, recomputation-enabled check-

pointing can reduce the memory footprint size, if it reduces the size of the checkpoint
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Figure 5.9: Percentage of checkpoint size reduction under Rec Ckpt NF configuration.

that is the largest among all checkpoints. If there is no value that can be recomputed

within the largest sized checkpoint, then recomputation can not reduce the footprint

size; although it may reduce the total amount of data to be checkpointed. Such a case

can be seen in Figure 5.10. Among the benchmarks is has very limited footprint reduc-

tion (2.04%) under Rec Ckpt NF ; although it has the highest checkpoint size reduction

(see Figure 5.9). For the rest of the benchmarks, dc has the largest footprint size re-

duction that is 58.3%, and ft has the smallest footprint size reduction that is 0.05%.

For ft, this means Rec Ckpt NF can reduce the size of largest checkpoint by only 0.05%,

while it can reduce the total checkpoint size by 23.27% (see Figure 5.9). Similar to

checkpoint size reductions, the footprint size reduction for Rec Ckpt F are inlined with

the Rec Ckpt NF (due to the same argument: a fault does not change the set of values

that can be recomputed and set of values to be checkpointed).

5.6.4 Impact of Thread Count on Checkpointing Overhead

One factor that directly impacts the overhead of checkpointing is the number of threads

involved in execution. As the number of threads increases, the associated costs of

checkpointing also increases. First of all, the coordination burden among threads to

checkpoint and the amount of states to be checkpointing increases. As a consequence

the memory bandwidth requirement also increases as multiple threads need to access
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Figure 5.10: Percentage of footprint size reduction under Rec Ckpt NF configuration.

memory to complete the checkpoint. Recomputation-enabled checkpointing alleviates

the overhead of checkpointing and remain effective as the number of threads scales up.

To evaluate the effectiveness of recomputation-enabled checkpointing, we experimented

with 8-,16-, and 32-threaded executions for the given benchmarks (we increase the core

count as we increase the thread count: each thread maps to a separate core).

Figure 5.11 shows the performance overhead of checkpointing under Ckpt NF config-

uration, as we increase the thread count from 8 to 32. The bars indicate the performance

overhead of Ckpt NF configuration for a given thread count compared to performance

of No Ckpt for that thread count. As an example, the bar shown as 8-thread under bt

indicates the performance overhead of Ckpt NF running with 8 threads w.r.t. No Ckpt

running with 8 threads. Similarly, the bar shown as 16-thread under bt indicates the

performance overhead of Ckpt NF running with 16 threads w.r.t. No Ckpt running with

16 threads. Although there is no specific pattern, checkpointing overhead always re-

mains more than 9% for any thread count. On average, the checkpointing overhead

is ≈ 45%, 55%, and 60% for 8-, 16-, and 32-threaded executions, respectively, under

Ckpt NF configuration.

Figure 5.11 makes it clear that the checkpointing overhead is considerable regardless

of thread count which motivates us further to exploit data recomputation for reducing

checkpointing overhead. Figure 5.12 shows the percentage of performance overhead

reduction when benchmarks running with 8-, 16-, and 32-threads under Rec Ckpt NF .
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Figure 5.11: Performance overhead of checkpointing for 8- 16- and 32-threaded execu-
tions under Ckpt NF configuration.

The performance overhead is reduced up to 28.81% (for is), 17.78% (for is), and 19.12%

(for mg) when running with 8-, 16-, and 32-threads, respectively, under Rec Ckpt NF .

Average performance overhead reduction is ≈12% for 8-threaded executions, and ≈11%

for 16- and 32-threaded executions.

In addition to performance overhead reduction, recomputation-enabled checkpoint-

ing reduces the energy overhead as well, resulting better EDP for the benchmarks.

Under Rec Ckpt NF configuration, the EDP improves up to 47.98% (for is), 31.81%

(for dc), and 33.8% (for mg) when running with 8-, 16-, and 32-threads, respectively.

Average EDP improvement under Rec Ckpt NF configuration is ≈22%, 21% and 20%

for 8-, 16-, and 32-threaded executions.

The performance overhead reduction and EDP improvements under Rec Ckpt F con-

figuration closely follow the Rec Ckpt NF for 8-, 16-, and 32-threaded executions.
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Figure 5.12: Performance overhead reduction of checkpointing for benchmarks running
with 8-, 16-, and 32-threads under Rec Ckpt NF configuration.

5.6.5 Impact of Fault Rate on Recovery Overhead

The fault rate directly dictates the rollback and recovery overhead. As more faults

occur, more overhead incurs in execution. For the analysis we have shown so far for

Ckpt F and Rec Ckpt F we assume a single fault occur during the course of execution.

In this section, we want to extend the analysis for multiple faults and evaluate the

overhead reduction promise of data recomputation.

As a reminder, the overhead of recovery under Rec Ckpt F configuration includes

the cost of recomputing the missing values that were not in the set of values to be

checkpointed (they are omitted since they can be recomputed). When a fault occurs,

the missing values will be recomputed and then restored. Overall, Rec Ckpt F should

reduce the recovery overhead if the restore overhead reduction due to smaller checkpoint

size dominates the cost of recomputing the missing values. This is highly dependent on

the cost of corresponding RSlices of missing values. The cost of RSlices can not grow

indefinitely, since we have an upper limit on the number of instructions that an RSlice

can have. We exclude the RSlices from consideration (at the time of binary generation),

if the length of (i.e. number of instructions) RSlice exceeds the limit. Thus, we make

sure that the recomputation overhead remains reasonably low and does not exceed the

recovery cost of Ckpt F .

If the fault rate increases (i.e. number of faults occur in execution), we expect to
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Figure 5.13: Normalized execution time under Ckpt F (w.r.t. No Ckpt) with different
fault rates.

have accumulated overhead due to multiple recoveries needed. Figure 5.13 shows the

normalized execution time under Ckpt F (w.r.t. No Ckpt) as the fault rate varies. In

our evaluation, we change sweep the fault rate in a way that the total number of faults

occur in execution range between 1 and 5. We uniformly distribute these faults within

execution in our evaluations. In Figure 5.13, the number of faults corresponding to

different fault rates are labeled as fault 1 for a single fault, fault 2 for two faults occur

during the course of execution, and so on. Not surprisingly, the execution time increases

as the fault rate increases. Some benchmarks experience higher performance overhead

as the fault rate increases. This is mainly because the execution time under No Ckpt

is relatively small, and the overhead of rollback and recovery proportionally higher.

Among the benchmarks, ft suffers the most as its per recovery overhead is relatively

high.

Figure 5.14 shows the normalized execution time under Rec Ckpt F (w.r.t. No Ckpt)

as the fault rate changes. While the pattern is very similar to Ckpt F configuration, the

overheads are lower, since overall recovery overhead (including restore the checkpointed

values, and recomputing missing values) is considerably low under Rec Ckpt F config-

uration. The performance overhead is reduced up to 26.68% (for is) for single fault,

25.35% (for dc) for two faults, 26.87% (for dc) for three faults, 21.58% (for dc) for four

faults, and 19.92% (for is) four five faults occur in execution under Rec Ckpt F (w.r.t.
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Figure 5.14: Normalized execution time under Rec Ckpt F (w.r.t. No Ckpt) with dif-
ferent fault rates.

Ckpt F ). On average the performance overhead reduction ranges from ≈9% up to 12%

for different fault rates under Rec Ckpt F .

Similar to performance overhead, the EDP also increases when more fault occurs in

the execution. Figure 5.15 shows the normalized EDP (w.r.t. No Ckpt) of benchmarks

when having varying fault rates under Ckpt F configuration. The general trend is similar

to performance overhead, but more exacerbate for EDP.

Under Rec Ckpt F configuration, the EDP improves up to 48.07% (for is) for single

fault, 47.77% (for dc) for two faults, 50.04% (for dc) for three faults, 42.99% (for dc)

for four faults, 34.99% (for is) four five faults occur in execution. On average EDP

improvement ranges from ≈18% up to 24% for different fault rates under Rec Ckpt F .

5.6.6 Impact of Checkpoint Frequency on Checkpointing Overhead

The associated overhead of checkpointing is a function of how frequent a checkpoint is

established, as well as the amount of states being updated after the most recent check-

point. Performance and energy overhead of checkpointing increase as the checkpointing

frequency increases.

In this section, we aim to analyze the impact of checkpointing frequency on as-

sociated checkpointing overhead, and how data recomputation reacts to varying check-

pointing frequencies. To do so, we vary checkpoint frequency that yields certain number
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Figure 5.15: Normalized EDP under Ckpt F (w.r.t. No Ckpt) with different fault rates.

of checkpointing interval for each benchmark. We set the checkpointing frequency for

benchmarks to have 25, 50, 75 and 100 checkpoint intervals. These checkpoint intervals

are uniformly distributed over the execution of the benchmarks.

Figure 5.16 shows the normalized execution time of the benchmarks under Ckpt NF

configuration when different checkpoint frequencies are used. In Figure 5.16, ckpt 25

represents the checkpoint frequency that yields to have 25 checkpoint intervals for a

given benchmark. Similarly, ckpt 50, ckpt 75, and ckpt 100 represent the checkpointing

frequencies that yield to have 50, 75 and 100 checkpoint intervals, respectively. The

normalization base is No Ckpt .

Naturally, the performance overhead of checkpointing increases as the checkpoint

frequency increases. Among the benchmarks, ft experiences the largest performance

overhead under Ckpt NF configuration.

Figure 5.17 shows the normalized execution time of benchmarks under Rec Ckpt NF

configuration when different checkpoint frequencies are employed. General trend is very

similar to Ckpt NF configuration; however, Rec Ckpt NF considerably reduces the per-

formance overhead of checkpointing. An interesting point in Figure 5.17 is the normal-

ized execution time of ckpt 75 is lower than ckpt 50 for is. Although it seems unintuitive

at the first place, there is catch in this case. Notice that when we chance checkpoint-

ing frequency, the start time of each checkpoint interval becomes different (since we

uniformly distribute the checkpoint intervals). The ability of data recomputation to
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Figure 5.16: Normalized execution time under Ckpt NF (w.r.t. No Ckpt) with different
checkpoint frequencies.

reduce the checkpoint size (and checkpoint overhead) depends on whether there exist

any RSlice for that checkpoint interval. If the checkpoints fall into the intervals of the

execution where the amount of data that can be recomputed (thus can be excluded from

checkpointing) is small, then the benefits of data recomputation can be limited. Such

a corner case occurred in is when we run it with checkpoint frequency that yields 50

checkpoints (i.e. ckpt 50). Compared to ckpt 75, the checkpoint intervals under ckpt 50

has limited RSlice coverage, meaning the amount of data to be recomputed (i.e. can

be excluded from checkpointing) is smaller. So, Rec Ckpt NF with ckpt 50 has higher

performance overhead compared to ckpt 75. The performance overhead of Ckpt NF is

reduced up to 28.81% (for is) for ckpt 25, 25.3% (for dc) for ckpt 50, 50.86% (for is)

for ckpt 75, and 43.52% (for is) for ckpt 100 under Rec Ckpt NF (w.r.t. Ckpt NF ). On

average the performance overhead reduction ranges from ≈10% up to 14% for different

checkpoint frequencies under Rec Ckpt NF .

The similar trend exists for EDP. Figure 5.18 shows the normalized EDP under

Ckpt NF configuration for different checkpoint frequencies. On the other hand, Rec Ckpt NF

improves the EDP up to 47.98% (for is) for ckpt 25, 47.74% (for dc) for ckpt 50, 74.19%

(for is) for ckpt 75, and 63.45% (for is) for ckpt 100 (w.r.t. Ckpt NF ). On average EDP

improvement ranges from ≈20% up to 26% for different checkpoint frequencies under

Rec Ckpt NF .
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Figure 5.17: Normalized execution time under Rec Ckpt NF (w.r.t. No Ckpt) with
different checkpoint frequencies.

Figure 5.18: Normalized EDP under Ckpt NF (w.r.t. No Ckpt) with different checkpoint
frequencies.

5.6.7 Coordinated Local vs. Global Checkpointing

In our discussions and evaluations so far, we focused on global checkpointing since it is

simple to implement and easy to understand. It is widely used in practice as well due

to its simplicity, so it is a representative option. An alternative to global checkpointing

is known as coordinated local checkpointing [60, 51]. Main difference of coordinated

local checkpointing is that it does not forces all threads to participate in checkpointing.

It is necessary to checkpoint and rollback (in case of fault) threads together that have
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Figure 5.19: Normalized execution time of Ckpt NF and Rec Ckpt NF for coordinated
local checkpointing (w.r.t. Ckpt NF and Rec Ckpt NF for global checkpointing, respec-
tively).

been communicating for a given checkpoint interval. The other threads that do not

participate in communicating may not need to checkpoint at the time others check-

point. Coordinated local checkpointing is advocated to be scalable, due to associated

overheads of checkpoint and recovery is a function of the number of threads that com-

municate with each other. To identify the threads that communicated with each other

within a given checkpoint interval, there has to be a mechanism to track inter-thread

data dependencies. Although coordinated checkpointing has an advantage of having

reduced set of threads need to checkpoint together, the disadvantage is that identifying

communicating threads needs continuous and dynamic monitoring and recording that

may not be a challenge for scaling as well.

Without loss of generality, coordinated local checkpointing is, yet another, design

point, and in this section we want to evaluate the effectiveness of recomputation-enabled

checkpointing for coordinated local checkpointing.

To make a comparison between global and coordinated local checkpointing, we use

the Ckpt NF and Ckpt F in global checkpointing as normalization points for Ckpt NF

and Rec Ckpt NF in coordinated local checkpoint, respectively. Similarly, we use the

Ckpt F and Rec Ckpt F in global checkpoint as normalization points for Ckpt F and
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Figure 5.20: Normalized EDP of Ckpt NF and Rec Ckpt NF for coordinated local check-
pointing (w.r.t. Ckpt NF and Rec Ckpt NF for global checkpointing, respectively).

Rec Ckpt F in coordinated local checkpoint, respectively.

Figure 5.19 shows the normalized execution time of benchmarks under Ckpt NF

and Rec Ckpt NF configurations when coordinated local checkpointing is used. As we

can see, coordinated local checkpointing reduces the overhead of Ckpt NF in global

checkpointing for majority of the benchmarks. The reduction of the overhead is due

to the shrinkage of number of threads checkpointing together (i.e. excluding non-

communicating threads from checkpointing for a given checkpoint interval). However,

there are benchmarks, including bt, cg and sp, that have not seen any overhead re-

duction under Ckpt NF in coordinated local checkpointing. This is because mainly all

the threads are communicating within a given checkpointing interval, so the number

of threads involving in checkpointing remains the same in comparison to global check-

pointing. For these benchmarks, we do not observe any sizable reduction in performance

overhead under Ckpt NF in coordinated local checkpointing. For the rest of the bench-

marks the performance overhead of Ckpt NF in coordinated local checkpointing reduces

up to ≈42% for ft, 17% for dc, 36% for is, 32% for mg, and 10% for lu (w.r.t. Ckpt NF

in global checkpointing).
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The recomputation-enabled checkpointing in coordinated local checkpointing re-

mains as effective as it is in global checkpointing. For all the benchmarks, the check-

pointing overhead introduced by Rec Ckpt NF in coordinated local checkpointing re-

mains below (or at most the same) the overhead of Rec Ckpt NF in global checkpointing.

The reductions we observe for Rec Ckpt NF are not pronounced as much as Ckpt NF

in coordinated local checkpointing, mainly because the potential for data recomputa-

tion does not change drastically. On the other hand, generally the number of values

that can not be recomputed (so have to be checkpointed) reduces more than the ones

that can be recomputed. For this reason, Ckpt NF results relatively higher reduction

in performance overhead compared to Rec Ckpt NF in coordinated local checkpointing

with respect to their global checkpointing counterparts (i.e. Ckpt NF and Rec Ckpt NF

in global checkpointing, respectively). Among the benchmarks, bt, cg, lu, and sp do

not observe any sizable reduction (≈≤ 1%) on performance overhead of Rec Ckpt NF

in coordinated local checkpointing. For the rest of the benchmarks the performance

overhead of Rec Ckpt NF in coordinated local checkpointing reduces up to ≈8% for dc,

33% for ft, 15% for is, and 26% for mg (w.r.t. Rec Ckpt NF in global checkpointing).

We observe similar trends for EDP for coordinated local checkpointing. Figure 5.20

shows the normalized EDP of benchmarks under Ckpt NF and Rec Ckpt NF configura-

tions in coordinated local checkpointing. Compared global checkpointing, EDP reduces

under Ckpt NF in coordinated local checkpointing up to 35.68% for dc, 67.15% for

ft, 58.26% for is, 19.99% for lu, and 57.92% for mg (w.r.t. Ckpt NF in global check-

pointing). On the other hand, EDP reduces under Rec Ckpt NF in coordinated local

checkpointing up to 15.85% for dc, 55.68% for ft, 26.24% for is, and 49.75% for mg

(w.r.t. Rec Ckpt NF in global checkpointing).

Figure 5.21 shows the normalized execution time of benchmarks under Ckpt F and

Rec Ckpt F configurations when coordinated local checkpointing is used. In case of a

fault occurs in execution, a rollback and recovery have to be performed. The trends are

similar to Ckpt NF and Rec Ckpt NF configurations in coordinated local checkpointing.

One difference is the gap between the execution time of benchmarks performing global

checkpointing and coordinated checkpointing gets shrunk. We do not observe any siz-

able reduction in performance overhead of benchmarks bt, cg, lu and sp under Ckpt F

in coordinated local checkpointing. For the rest of the benchmarks the performance
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Figure 5.21: Normalized execution time of Ckpt F and Rec Ckpt F for coordinated local
checkpointing (w.r.t. Ckpt F and Rec Ckpt F for global checkpointing, respectively).

overhead of Ckpt F in coordinated local checkpointing reduces up to ≈14% for ft, 6%

for dc, 31% for is, and 2% for mg (w.r.t. Ckpt F in global checkpointing). On the other

hand, the performance overhead of Rec Ckpt F in coordinated local checkpointing re-

duces up to ≈8% for dc, 10% for ft, 9% for is, and 26% for mg (w.r.t. Rec Ckpt F in

global checkpointing).

Figure 5.20 shows the normalized EDP of benchmarks under Ckpt F and Rec Ckpt F

configurations in coordinated local checkpointing. Compared global checkpointing, EDP

reduces under Ckpt F in coordinated local checkpointing up to 18.33% for dc, 33.24%

for ft, 51.46% for is, and 11.29% for mg (w.r.t. Ckpt F in global checkpointing). On

the other hand, EDP reduces under Rec Ckpt F in coordinated local checkpointing up

to 15.80% for dc, 23.81% for ft, 17.99% for is, and 47.32% for mg (w.r.t. Rec Ckpt F in

global checkpointing).

Based on the outcomes of the evaluations in this section, we can conclude that

recomputation-enabled checkpointing and recovery in coordinated local checkpointing

is as effective as in global checkpointing (if not more effective).



82

Figure 5.22: Normalized EDP of Ckpt F and Rec Ckpt F for coordinated local check-
pointing (w.r.t. Ckpt F and Rec Ckpt F for global checkpointing, respectively).

5.6.8 Impact of RSlice Length on Checkpoint Size

RSlice length imposes the cost of recomputation. Longer RSlices means higher recompu-

tation cost. In a fault-free execution, the cost of recomputation may be irrelevant, since

recomputation is necessary only when there is a fault and recovery is needed. However,

in practice, we have to make sure that the execution can resume after detecting a fault

and recovering from it, in a low-cost fashion. So, we can not generate recomputation-

enabled binary without considering the recomputation of RSlices. For our evaluations,

we use a threshold of 10 instructions (except is, where threshold is 5) to identify the

RSlices to be embedded into binary. Notice that if we have a higher threshold, there

may be more RSlices to be included in binary, so the likelihood of having a value that

has a corresponding RSlice increases. This means that the number of values that can

be recomputed (thus can be eliminated from checkpoint) may increases. As a result the

checkpoint size gets reduced. As an example, Figure 5.23 shows the impact of RSlice

length on reduction of total checkpoint size under Rec Ckpt NF configuration for bt.

The data labels on x axis of the Figure 5.23 represents the threshold used in selection

of RSlices. The label length 50 means the threshold is 50 (i.e. RSlice can have at most

50 instructions), length 40 means the threshold is 40, and so on. The total checkpoint

size reduces up to 89.91% when RSlice length is allowed to grow up to 50 instructions,
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Figure 5.23: Total checkpoint size reduction as a function of RSlice length for bt.

and 36.54% when the RSlice length remains less than or equal to 10. One should pay

a special attention while choosing the threshold. It has the impact on recomputation

cost (during recovery in case of fault), and the microarchitectural support needed to

facilitate data recomputation. In our evaluations, we pick conservative threshold to

keep the microarchitectural resources needed reasonable (as RSlices length increases,

we may need bigger Hist table), and not to favor recomputation-enabled checkpointing

unfairly.

We expect the values that have corresponding RSlices and can be recomputed are

not uniformly distributed among the checkpoint intervals. This means for each check-

point interval, we may observe varying levels of benefits from data recomputation. That

variation translates into variation on checkpoint size reduction over checkpointing inter-

vals. Figure 5.24 shows how the effectiveness of recomputation-enabled checkpointing

on reducing checkpoint size changes over time for bt (when using different thresholds

for RSlice length). We see that Rec Ckpt NF reduces checkpoint size more for certain

checkpoint intervals compared to other intervals. Such kind of variation can be exploited

for improving the impact of recomputation-enabled checkpointing. The checkpointing

frequency would be changed dynamically to perform the checkpointing when there exist

high potential for recomputation (i.e. checkpoint intervals where the number of values

that can be recomputed is high). We do not investigate on such kind of dynamic and

intelligent scheme in the scope of this dissertation, rather we just want to motivate for

further research on how recomputation-enabled checkpointing can be extended further.
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Figure 5.24: Impact of RSlice length on checkpoint size over time for bt.

The analysis of the impact of RSlices length for the rest of the benchmarks can be

found in Appendix A.

5.7 Related Work

The fault-tolerant system design and checkpointing are extensively studied over the

decades. The proposed solutions can be categorized into software-based, hardware-

based checkpointing; application or system level checkpointing. Software-based propos-

als use periodic barriers to perform system-level [61], application-level [62], or hybrid

checkpoints [63].

Hardware proposals [56, 55, 51] reduce the checkpoint and restart penalties, but

introduce hardware complexity. In Rebound [56] when a core is checkpointing, the L2

controller writes dirty lines back to main memory while keeping the clean copy in L2.

Memory controller logs the old value of the updated memory address. In addition,

between checkpoint times, when a dirty cache line is written back to memory, memory

controller also logs the old value. This is done for the first writeback and consecutive

writes to the same memory address can be eliminated from being logged. SafetyNet [51]

explicitly checkpoints register file, and incrementally checkpoints the memory state by

logging the previous value.

Compiler-assisted checkpointing [64] improves the performance of automated check-

pointing by presenting a compiler analysis for incremental checkpointing, aiming to re-

duce checkpoint size. In incremental checkpointing, the memory updates are monitored



85

and the updates are omitted from checkpointing if it is detected a particular memory

location has not been modified between two adjacent checkpoint. This mechanism re-

duces the amount of data to be checkpointed and widely used in many checkpointing

schemes. We also employ incremental checkpointing in our analysis. In [64], instead of

using runtime mechanisms (such as exploiting cache coherency protocol to identify the

updates memory locations), they rely on compiler analysis to track the memory updates

that can be excluded from checkpoint. To facilitate the compiler analysis, the source

code should be manually annotated, indicating the starting point of the checkpoint.

However, it has limited applicability in practice, since it may not be always feasible to

obtain the source code.

A relevant work presented in [39], introduces the notion of idempotent execution and

corresponding architecture that does not require to have explicit checkpoints to recover

from misspeculation or fault. In case of misspeculation or fault it is only necessary to

re-execute the idempotent region to recover. Such idempotent regions are constructed

by the compiler. As the name suggests, idempotent regions regenerates the same output

regardless of how many times it is executed with the given program state. In compar-

ison to our recomputation-enabled checkpointing and recovery, idempotent execution

has limited flexibility. Generally, idempotent regions are large, meaning they incur high

overhead during recovery, while we employ fine-grained data recomputation (separate

RSlice for each value), and each RSlice contains only necessary instructions which gener-

ally tends be limited in number. Generating idempotent regions is also daunting task. It

may not be easy to find and generate fine-grained idempotent regions for the large class

of applications which limits the effectiveness of idempotent execution for eliminating

checkpointing overheads and minimizing recovery overheads. RSlices provide more flex-

ibility on values to be checkpointed and be recomputed, so our recomputation-enabled

checkpoint and recovery scheme has wider applicability. The idempotent execution is

also explored in the context of recovering from concurrency bugs [65]. In this work, we

study how recomputation can help mitigate the performance and energy overhead of

checkpointing, as well as rollback and recovery, assuming a microarchitectural support

needed for data recomputation.

Dong et al. [66] proposed two-level hybrid local/global checkpointing to reduce the
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checkpointing overhead. The main idea is to take frequent local checkpoints for recover-

ing transient failures (where recovery can be achieved by relying on local checkpoint) and

less frequent global checkpoint for recovering failures that require global recovery. Since

local checkpoints incur less overhead, reducing the number of global checkpoints leads

to overall reduction on checkpointing overhead. Furthermore, they used non-volatile

memory (PCRAM) as a checkpointing medium to provide no-leakage, high bandwidth

and fast access memory.



Chapter 6

Conclusion

Technology scaling and innovative architecture-level solutions to date have improved

the energy efficiency of data generation, i.e., computation, significantly more than the

energy efficiency of data communication [3, 4]. As a result, both, time and power

spent in communication highly exceed the time and power spent in computation. As

a consequence, recomputing data can become more energy-efficient than storing and

retrieving pre-computed data.

In Chapter 3, we investigate the effectiveness of recomputing data values in min-

imizing, the overhead of expensive off-chip memory accesses. The idea is replacing a

load with a sequence of instructions to recompute the respective data value, only if

it is more energy-efficient. We call the resulting execution model amnesic. We de-

tail an illustrative proof-of-concept design, identify practical limitations, and provide

design guidelines. The proof-of-concept implementation features an amnesic compiler,

microarchitectural support for amnesic execution, and an instruction scheduler to or-

chestrate amnesic execution at runtime. Overall, we find that amnesic execution can

reduce energy-delay-product of sequential execution by up to 87%, 24.92% on average,

for 11 out of 33 benchmarks deployed.

In Chapter 4, we explore (interactions between) two broad classes of recomputation

techniques: brute-force recalculation and prediction based recomputation. Under re-

calculation, the recomputation effort goes to the generation of the data values (which

would otherwise be loaded from memory), by re-executing the producer instruction(s)
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of the eliminated load(s). Under prediction, the recomputation effort goes to the esti-

mation of the data values by exploiting value locality – the likelihood of the recurrence

of values (which would otherwise be loaded from memory) within the course of execu-

tion. We find that recalculation has wider coverage for recomputation than prediction,

as prediction cannot be effective under limited value locality.

In the presence of errors, periodic checkpointing of the machine state makes recovery

of execution from a safe state possible. The performance and energy overhead of both

checkpointing and recovery, however, can get overwhelming with the frequency of check-

pointing and anticipated errors. In Chapter 5 we discuss how recomputation of data

values can help mitigate such overheads and quantitatively characterize recomputation-

enabled checkpointing. We observe that recomputation can reduce the total checkpoint

size by 38.31%, and memory footprint of checkpoints by 23.91%. Similarly, the per-

formance, energy and EDP overhead can be reduced by 11.92%, 12.53%, and 23.41%,

respectively.
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Appendix A

Impact of RSlice Length on

Checkpoint Size

Figure A.1: Total checkpoint size reduction as a function of RSlice length for cg.
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Figure A.2: Total checkpoint size reduction as a function of RSlice length for dc.

Figure A.3: Total checkpoint size reduction as a function of RSlice length for ft.

Figure A.4: Total checkpoint size reduction as a function of RSlice length for is.
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Figure A.5: Total checkpoint size reduction as a function of RSlice length for lu.

Figure A.6: Total checkpoint size reduction as a function of RSlice length for mg.

Figure A.7: Total checkpoint size reduction as a function of RSlice length for sp.
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