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Abstract

Nearest neighbor graphs (NNGs) contain the set of closest neighbors, and their similari-

ties, for each of the objects in a set of objects. They are widely used in many real-world

applications, such as clustering, online advertising, recommender systems, data clean-

ing, and query refinement. A brute-force method for constructing the graph requires

O(n2) similarity comparisons for a set of n objects. One way to reduce the number

of comparisons is to ignore object pairs with low similarity, which are unimportant in

many domains. Current methods for construction of the graph tackle the problem by

either pruning the similarity search space, avoiding comparisons of objects that can be

determined to not meet the similarity bounding conditions, or they solve the problem

approximately, which can miss some of the neighbors.

This thesis addresses the problem of efficiently constructing the exact nearest neigh-

bor graph for a large set of objects, i.e., the graph that would be found by comparing

each object against all other objects in the set. In this context, we address two specific

problems. The ε-nearest neighbor graph (ε-NNG) construction problem, also known as

all-pairs similarity search (APSS), seeks to find, for each object, all other objects with a

similarity of at least some threshold ε. On the other hand, the k-nearest neighbor graph

(k-NNG) construction problem seeks to find the k closest other objects to each object

in the set. For both problems, we propose filtering techniques that are more effective

than previous ones, and efficient serial and parallel algorithms to construct the graph.

Our methods are ideally suited for sparse high dimensional data.

We address the ε-NNG construction problem for two similarity functions widely

used in the data mining and chemoinformatics communities, cosine and Tanimoto. Our

solution uses a number of novel bounds on the similarity of two vectors, based on

their length, to filter those object pairs that will not be similar enough. We prove the

effectiveness of the new filtering bounds, both theoretically and experimentally, and

compare the efficiency of our methods against several state-of-the-art baselines for a

range of ε values. Our methods achieve 2–13x lower runtimes than the best state-of-

the-art alternative, in many cases outperforming even approximate methods required

to obtain at least 95% of the correct result.
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Next, we design a new algorithm that applies filtering techniques in a novel way to

construct the k-NNG for a set of objects. Our method quickly builds an approximate

solution to the problem, identifying many of the most similar neighbors, and then

uses theoretic bounds on the similarity of two vectors, based on the `2-norm of part

of the vectors, to find each object’s exact k-neighborhood. We perform an extensive

evaluation of our algorithms, comparing against both exact and approximate state-

of-the-art baselines, and demonstrate the efficiency of our method across a variety of

real-world datasets and neighborhood sizes. Our approximate method achieves high

recall in less time than competing approximate state-of-the-art baselines, and is an

order of magnitude more efficient when building a graph that is at least 95% correct.

Furthermore, our exact method achieves 2–28x lower runtimes than exact state-of-the-

art baselines.

Finally, we develop filtering based shared memory parallel methods for both the

ε-NNG and the k-NNG construction problems. The pruning process in filtering based

methods results in unpredictable memory access patterns that can reduce search ef-

ficiency. Our parallel graph construction methods use a number of cache-tiling op-

timizations, combined with fine-grained dynamically balanced parallel tasks, to solve

the problem up to two orders of magnitude faster than existing parallel baselines, on

datasets with hundreds of millions of non-zeros. In particular, our parallel ε-NNG

method outperforms baselines using 24 cores by 2–232x. Using 16 cores, our parallel

k-NNG method constructs an approximate graph containing at least 95% of the correct

result 2–22x faster than previous methods, and is able to find all exact nearest neighbors

in 3–13x less time than the best alternative.
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Chapter 1

Introduction

Efficiently identifying nearest neighbors for large sets of objects has long been a chal-

lenging problem. Many data mining tasks must first identify nearest neighbors before

their analysis can be completed. A number of data structures and efficient search algo-

rithms exist for objects embedded in a small dimensional space. Finding neighbors for

objects described by sparse vectors in a high dimensional space is a much harder open

problem, which is often solved by approximation, returning only some of the nearest

neighbors. In this thesis, we design novel data structures and algorithms that efficiently

solve the exact nearest neighbor graph construction problem, which is akin to finding

the nearest neighbors amongst a set of objects for each object in the set. We show that

our solutions can be applied with multiple similarity functions, on data from several

domains, and result in substantial gains in terms of runtime in comparison to previous

state-of-the-art approaches. Furthermore, we provide efficient multi-core algorithms for

solving the problem which scale well with an increasing number of cores and outperform

previous baselines by an order of magnitude.

1.1 Problems & Applications

Computing the nearest neighbor graph, or similarity graph, for a set of objects is a

common task in fields such as clustering [1,2], online advertising [3], recommender sys-

tems [4], data cleaning [5, 6], query refinement [7, 8], and drug discovery [9]. Many

algorithms in these fields use the type of methods described in this thesis to identify

1
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nearest neighbors before performing their task. For example, item-based nearest neigh-

bor collaborative filtering algorithms recommend items (e.g., books or movies) to a

user based on the k most similar items to each of the user’s preferred items [10]. In

the context of data cleaning, near-duplicate objects can be detected by constructing

a threshold-based nearest neighbor graph and merging or removing all but one object

in each neighborhood. In the chemoinformatics domain, fueled by the generally valid

premise that structurally similar molecules exhibit similar binding behavior and have

similar properties [11], many methods use the computation of pairwise similarities as a

kernel within their algorithms. Virtual screening (VS), for example, uses nearest neigh-

bor based search, clustering, classification, and outlier detection to identify structurally

diverse compounds that display similar bioactivity, which form the starting point for

subsequent chemical screening [12,13].

Objects in the real-world are often depicted as points in a high-dimensional feature

space, numerically represented by vectors, where each dimension quantifies a relevant

object feature. When only the presence of features is of interest, binary vectors suffice

to encode the set of features in an object, each vector element indicating the presence

(1) or absence (0) of a feature. However, weighted vectors often better represent objects

for comparison [14,15] and are standard in fields like information retrieval [16] and text

mining [17]. In many domains, only some of all possible features are relevant for a

given object, resulting in vectors with more zero than non-zero values, also called sparse

vectors.

While a true measure of similarity between objects may not be feasible to obtain, a

number of similarity functions have been devised that can be used to compare objects

represented as points in Rm, where m is the number of features or attributes. The choice

of similarity function is often domain and data dependent. In general, it is assumed that

a practitioner (e.g., data analyst) is familiar with what functions work well for the type

of data they are analyzing. In this thesis, we address two popular similarity functions

that have been shown to be very effective at different analysis tasks on various types of

data: cosine and Tanimoto. Cosine similarity measures the cosine of the angle between

the high dimensional vectors representing the objects and is a standard way to measure

proximity of documents in text analysis or user/item profiles in collaborative filtering

methods. Tanimoto similarity, on the other hand, is most often used in domains, such as
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plagiarism detection or chemical compound search, where the amount of feature overlap

in relation to the overall presence of features in the objects is important.

A näıve approach to constructing the nearest neighbor graph executes O(n2) object

comparisons for a set of n objects. One way to reduce the number of comparisons is to

ignore unimportant object pairs, i.e., those with low similarity. The problem is then to

efficiently find, for each object in the set, those other objects with the highest similarity

(smallest distance) values. Given a set of n objects D = {d1, d2, . . . , dn}, a nearest

neighbor graph G = (V,E) consists of a vertex set V , corresponding to the objects in

D, and an edge set E which is a subset of V V . An edge (vi, vj) indicates that the jth

object is similar enough to the ith object, i.e., that the jth object is in the ith object

neighborhood. Based on how the similarity between two objects is bounded, there are

two nearest neighbor graphs often used in practice:

• The ε-nearest neighbor graph (ε-NNG) contains an edge for each pair (vi, vj) with a

similarity value above a predefined threshold ε ∈ R+. When the similarity function

being used is commutative, which is often the case, this results in an undirected graph.

The problem of constructing the ε-NNG is also known as the all-pairs similarity search

(APSS) or the similarity join problems.

• The k-nearest neighbor graph (k-NNG) contains an edge for each pair (vi, vj) when

the similarity value sim(di, dj) between the ith and jth objects is among the k highest

values in the set {sim(di, dl) | l = 1, . . . , i− 1, i+ 1, . . . , n}. The k-NNG is generally

a directed graph.

1.2 Emerging Challenges

While the nearest neighbor graph construction problem is not new, and many solutions

exist for the problem, the scale that the problems is applied to has dramatically increased

over the years. Collaborative filtering systems from major companies such as Walmart,

Amazon, or Netflix store profiles for tens of millions of users and hundreds of millions of

items. Analyzing web traffic to identify potential fraudulent user rings involves sifting

through tens of millions of user click sessions. The number of commercially available

chemical compounds (currently ∼ 2107) is steadily increasing. We have now entered the
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era of Big Data, which promises to deliver game changing effects in retail, science, and

healthcare, among others, through the collection and analysis of huge volumes of data.

Given the ever increasing problem size, analysts must be able to effectively sift

through the myriad of possibilities to find the few nearest neighbors needed to gain

insight from such data. Existing methods do not scale to more than a million objects,

taking hours or even days to provide an answer for problems at that scale. Methods

are needed that can quickly and safely ignore objects that theoretically cannot be one

of the nearest neighbors, providing a fast solution whose quality does not need to be

questioned.

The trend in today’s computer systems is no longer to increase processing speed, but

rather the number of processing cores. While the number of cores is quickly climbing,

the amount of memory that can be shared among the cores is slower to grow. Nearest

neighbor graph construction methods must be able to efficiently execute on all available

cores in a modern processor while making efficient use of often reduced memory available

for each core. Given the large existing gap in speed between memory transfers and

processor computations, this can only be achieved by designing methods that promote

data reuse once it has been copied to the processor cache.

Solving nearest neighbor graph construction problems involving hundreds of millions

of objects generally involves breaking the problem into a number of smaller problems

and using many nodes in a supercomputer or the cloud to solve the sub-problems concur-

rently. The most efficient solutions for these problems usually involve efficient multi-core

graph construction methods such as the ones described in this thesis. Advancements in

designing multi-core graph construction methods will thus provide immediate benefits

to distributed algorithms for solving the problem.

1.3 Contributions

The contributions of this thesis are the development of effective and efficient serial

and shared memory parallel algorithms for constructing nearest neighbor graphs. We

propose new theoretic bounds on the similarity of two vectors and algorithms that effec-

tively use these bounds to efficiently deliver the exact solution to the problem. We show

that both our serial and parallel algorithms achieve substantially better performance
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than previous state-of-the-art methods.

1.3.1 ε-Nearest Neighbor Graph Construction

In the context of filtering based exact methods for ε-NNG construction, we provide a

unifying framework which helps connect and explain previous state-of-the-art methods

for solving the problem [18]. We then introduce new filtering strategies that allow the

exact ε-NNG construction problem to be solved efficiently for cosine similarity and non-

negative real-valued vectors. Our method uses upper bound estimates on the similarity

of two vectors, after comparing only a few of their features, to filter those object pairs

that will not be similar enough. We prove theoretically that the bounds we propose

are tighter than previously proposed bounds, and show experimentally that our method

effectively uses these bounds. We analyze the filtering process and find that our bounds

lead to fewer object comparisons and non-neighbor objects being eliminated from con-

sideration quicker than in previous approaches. As a result, our method is able to solve

the problem 2–13x faster than the best alternative, depending on the input threshold

ε, and up to 1600x times faster than a linear search. While baseline algorithms do not

scale well as the similarity threshold decreases, our new pruning techniques make our

method effective at both high and low similarity thresholds. In many of the experi-

ments, our exact graph construction method is able to outperform even approximate

methods required to obtain at least 95% of the correct result.

In the context of Tanimoto similarity, we show how cosine bounds we defined in [18]

can be combined with new bounds and filtering techniques based on the length of vectors

to solve the problem efficiently [19]. We define a new class of length-based bounds and

show that a previously proposed bound [20] is actually the upper limit of the bounds we

describe. We prove the effectiveness of our filtering bounds and compare the efficiency

of our method against several state-of-the-art baselines for a range of ε values. Our

method is up to 12.5x more efficient than the most efficient baseline and up to two

orders of magnitude faster than a linear search. In particular, it was able to find all

near-duplicate pairs among 5M chemical compounds in minutes, using a single CPU

core.



6

1.3.2 k-Nearest Neighbor Graph Construction

We introduce a novel method for constructing the cosine k-NNG [21]. Our method

uses an initial approximate solution graph as a guide to find the nearest k neighbors,

through a modified similarity search framework. In this framework, we introduce several

new pruning bounds specific to the k-NNG construction problem, which leverage the

Cauchy-Schwarz inequality in partial vector dot-products at each stage in the framework

to prevent full similarity computation for most object pairs. We perform an extensive

evaluation of our algorithm, comparing against both exact and approximate baselines,

and demonstrate the efficiency of our method across a variety of real-world datasets

and neighborhood sizes. Our inexact k-NNG construction method achieves high recall

in less time than competing approximate methods, and is an order of magnitude faster

than our approximate baselines. Furthermore, our exact method computes fewer object

similarities in full and is able to achieve an order of magnitude improvement against

exact baselines.

1.3.3 Parallel Graph Construction Methods

We develop filtering based shared memory parallel methods for both the ε-NNG [22] and

the k-NNG [23] construction problems. The pruning process in filtering based meth-

ods results in unpredictable memory access patterns that can reduce search efficiency.

Our parallel graph construction methods use a number of cache-tiling optimizations,

combined with fine-grained dynamically balanced parallel tasks, to solve the problem

up to two orders of magnitude faster than existing parallel baselines, on datasets with

hundreds of millions of non-zeros. In particular, our parallel ε-NNG method displays

less than 2% load imbalance amongst the threads and has better scaling characteristics

than all baselines. Our algorithm finds the exact solution, using 24 cores, 1.5–232x

faster than the best alternative. Using 16 cores, our parallel k-NNG method constructs

an approximate graph containing at least 95% of the correct result 1.5–21.7x faster that

previous methods, and is able to find all exact nearest neighbors in 3.0–12.9x less time

than the best alternative.
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1.4 Outline

This thesis is organized as follows:

• In Chapter 2 we introduce our notation and formally define the problems addressed

in the thesis, review some mathematics theory relevant to the following discussion,

and present materials relevant to the experimental evaluation of our methods.

• In Chapter 3 we present an overview of prior work done on serial and parallel similarity

search and nearest neighbor graph construction.

• In Chapter 4 we present our work on developing serial algorithms for cosine and

Tanimoto ε-nearest neighbor graph construction.

• In Chapter 5 we present our work on efficient construction of k-nearest neighbor

graphs using the cosine similarity function.

• In Chapter 6 we discuss high-performance shared memory parallel methods for both

the ε and k-nearest neighbor graph construction problems.

• In Chapter 7, we discuss the collective impact of the works presented in this thesis

and future research directions.

1.5 Related Publications

• David C. Anastasiu & George Karypis. L2AP: Fast Cosine Similarity Search With

Prefix L-2 Norm Bounds. In The 30th IEEE International Conference on Data En-

gineering (ICDE 2014), pages 784-795, 2014.

• David C. Anastasiu & George Karypis. L2Knng: Fast Exact K-Nearest Neighbor

Graph Construction with L2-Norm Pruning. In Proceedings of the 24th ACM Inter-

national Conference on Information and Knowledge Management (CIKM ’15), pages

791-800, ACM, 2015.

• David C. Anastasiu & George Karypis. PL2AP: Fast Parallel Cosine Similarity

Search. In Proceedings of the 5th Workshop on Irregular Applications: Architectures

and Algorithms, in conjunction with SC’15 (IA3 2015), pages 1-8, ACM, 2015.
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• David C. Anastasiu & George Karypis. Efficient Identification of Tanimoto Nearest

Neighbors. Under submission: IEEE International Conference on Data Science and

Advanced Analytics (DSAA’2016).

• David C. Anastasiu & George Karypis. Fast Parallel Cosine K-Nearest Neighbor

Graph Construction. To be submitted.



Chapter 2

Background

In this chapter, we introduce our notation and formally define the problems addressed

in the thesis, review some mathematics theory relevant to the following discussion, and

present materials relevant to the experimental evaluation of our methods.

2.1 Definitions & Notation

Let D = {d1, d2, . . . , dn} be a set of objects such that each object di is a (sparse) vector

in an m dimensional feature space. We will use di to indicate the ith object, di to

indicate the feature vector associated with the ith object, and di,j to indicate the value

(or weight) of the jth feature of object di.

Given object di, we denote by Γdi its neighborhood, the set of objects in D \ {di}
with non-zero similarity with di, which are the neighbors of di. The number of objects

in a neighborhood represents its size, which we denote by |Γdi |. We focus on two related

problems in this work. The ε-NNG construction problem seeks, for each object in D, all

neighbors with a similarity value of at least ε, while the k-NNG construction problem

seeks up to k neighbors with highest similarity values.

The similarity graph of D is a graph G = (V,E) where vertices correspond to the

objects and an edge (vi, vj) indicates that the jth object is in the neighborhood of the

ith object and is associated with a weight, namely the similarity value sim(di, dj). We

denote by Gε the similarity graph containing edges for all neighbor pairs with similarity

values of at least ε, and by Gk the similarity graph in which an edge exists between an

9



10

object and all its k-nearest neighbors. An approximate k-NNG G̃k is one in which the

k neighbors of each vertex do not necessarily correspond to the k most similar objects.

An approximate ε-NNG G̃ε is one which does not have an edge for all neighbors of a

vertex with similarity of at least ε, yet all similarities represented in the graph are at

least ε. Note that the similarity values represented in all constructed graphs, either

exact or approximate, are the exact values returned by the chosen similarity function.

For a given neighborhood Γdi , we denote by the minimum (neighborhood) similarity

σdi the minimum similarity between object di and one of its current neighbors. We say

that a k-neighborhood (a neighborhood in a k-NNG) is improved when its minimum

similarity σdi increases in value, and it is complete when adding any other neighbor to

the k-neighborhood cannot increase σdi . Similarly, we say that an ε-neighborhood is

improved when a new neighbor with similarity at least ε is added to the neighborhood,

and is complete when all remaining neighbors have similarities lower than ε.

The majority of feature values in sparse vectors are 0. As a result, a vector di is

generally represented as the set of all pairs (j, di,j) satisfying 1 ≤ j ≤ m and di,j > 0.

For a set of objects represented by sparse vectors, an inverted index representation of

the set is made up of m lists, I = {I1, I2, . . . , Im}, one for each feature. List Ij contains

pairs (di, di,j), also called postings in the information retrieval literature, where di is an

indexed object that has a non-zero value for feature j, and di,j is that value. Postings

may store additional statistics related to the feature within the document it is associated

with.

Given a vector di and a dimension p, we will denote by d≤pi the vector obtained

by keeping the p leading dimensions in di, (di,1, . . . , di,p, 0, . . . , 0), which we call the

(inclusive) prefix (vector) of di. Similarly, we refer to d>pi = (0, . . . , 0, di,p+1, . . . , di,m)

as the (exclusive) suffix of di, obtained by setting the first p dimensions of di to 0. The

exclusive prefix d<pi and inclusive suffix d≥pi are analogously defined.

Table 2.1 provides a summary of notation used in this thesis.
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Table 2.1: Notation used throughout the work.
Description

D set of objects
di the ith object
di vector representing ith object
di,j value for jth feature in di
d≤pi ,d>pi (inclusive) prefix and (exclusive) suffix of di at dimension p

d<pi ,d≥pi exclusive prefix and inclusive suffix of di at dimension p

d≤i ,d
>
i un-indexed/indexed portion of di

d̂i normalized version of di
σdi smallest similarity value in Γdi
I inverted index
fj vector containing jth feature values from all objects
Γdi neighborhood for object di
N set of neighborhoods

N̂ set of initial approximate neighborhoods
ε minimum desired similarity
k size of desired neighborhoods
µ candidate list size
γ number of neighborhood enhancement updates
δ early neighborhood enhancement termination
ν number of completion blocks
ζ number of non-zeros in an inverted index tile
η number of objects in a query tile
nt number of threads

2.2 Theory Background

For any two vectors di and dj inRm, the standard inner product, or dot-product, between

them is 〈
di,dj

〉
= dTi dj =

m∑
l=1

di,ldj,l , (2.1)

where T denotes the vector transpose. In this work, we will prefer the
〈
di,dj

〉
notation

for the dot-product.

The norm of a vector d is a function f : Rm → R+, which measures the length of

the vector. A vector norm satisfies the following properties:

• positive definiteness: f(d) ≥ 0 for all d ∈ Rm and f(d) = 0 iff d = 0 ,

• absolute homogeneity: f(αd) = |α|d for any α ∈ R,
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• triangle inequality: f(di + dj) ≤ f(di) + f(dj), for all di, dj ∈ Rm.

Some popular vector norms referenced throughout this work include the Chebyshev or

`∞-norm, computed as

‖di‖∞ = max{di,1, di,2, . . . , di,m}, (2.2)

and the `p-norm,

‖di‖p = (|di,1|p + |di,2|p + . . .+ |di,m|p)1/p. (2.3)

The distance between two vectors is measured as the norm of their difference, ‖di−
dj‖. The generic `p-norm based distance, ‖di − dj‖p, is called the Minkowski distance.

Two popular versions of the Minkowski distance are the Manhattan or Taxicab distance

(`1-norm) and the Euclidean distance (`2-norm). The `2-norm is also often generically

referred to in literature as the vector magnitude, or length.

‖di‖1 = |di,1|+ |di,2|+ . . .+ |di,m| (`1-norm), (2.4)

‖di‖2 = (d2i,1 + d2i,2 + . . .+ d2i,m)1/2 =
√〈

di,di
〉

(`2-norm). (2.5)

The Hölder inequality provides an upper bound for the dot-product of two vectors

based on their length. Specifically, given scalar values p and q such that 1/p+ 1/q = 1,

it states that

|
〈
di,dj

〉
| ≤ ‖di‖p‖dj‖q. (2.6)

For the norms previously defined, it follows that

|
〈
di,dj

〉
| ≤ ‖di‖1‖dj‖∞, (2.7)

|
〈
di,dj

〉
| ≤ ‖di‖∞‖dj‖1, (2.8)

|
〈
di,dj

〉
| ≤ ‖di‖2‖dj‖2. (2.9)

Proposition 2.9 is also known as the Cauchy-Schwarz inequality, and can be equivalently

written as 〈
di,dj

〉2 ≤ 〈di,di〉〈dj ,dj〉. (2.10)
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The following additional inequalities between different norms can also be proved,

‖d‖∞ ≤ ‖d‖1 ≤ m‖d‖∞ (2.11)

‖d‖∞ ≤ ‖d‖2 ≤
√
m‖d‖∞ (2.12)

‖d‖2 ≤ ‖d‖∞ ≤
√
m‖d‖2. (2.13)

The interested reader may find proofs for many of the properties described in this section

in the excellent matrix computations reference by Golub and Van Loan [24].

The `0-pseudo-norm represents the function that counts the number of non-zero

values in a vector. Denoted as ‖d‖0, the `0-norm of d is not a true vector norm, as it

does not satisfy the absolute homogeneity property. Given the prefix and suffix vector

definitions given in Section 2.1, one can then verify, for a given prefix feature p, that

di = d≤pi + d>pi , (2.14)

‖di‖0 = ‖d≤pi ‖0 + ‖d>pi ‖0, (2.15)

‖di‖1 = ‖d≤pi ‖1 + ‖d>pi ‖1, (2.16)

‖di‖22 = ‖d≤pi ‖
2

2 + ‖d>pi ‖
2

2, (2.17)

‖di‖∞ = max(‖d≤pi ‖∞, ‖d
>p
i ‖∞), and (2.18)〈

di,dj
〉

=
〈
di,d

≤p
j

〉
+
〈
di,d

>p
j

〉
. (2.19)

These properties are evident from the presented definitions and the fact that the set of

non-zero values in the vector is the union of the disjoint sets of non-zero values in the

prefix and suffix vectors.

Given a vector norm ‖ · ‖, a vector can be scaled to have unit norm, an operation

called normalization, by dividing it by its length with respect to that norm. Vector

normalization changes the length of the vector without changing its direction. A number

of methods presented in this work make use of `2-norm normalized vectors, denoted as

d̂ =
d

‖d‖2
. (2.20)

When clear from context, we will drop the hat from the notation and denote the normal-

ized version of the ith object vector representation as di. Specifically, in our description



14

of our cosine similarity based nearest neighbor graph construction methods, we assume

input vectors have been normalized and denote the normalized version of the ith object

vector representation as di.

2.2.1 Similarity Functions

While there have been many proposed similarity functions between weighted vectors,

we focus on a subset of popular similarity measures that take advantage of sparsity

when comparing objects. In other words, the similarity function can be computed by

traversing only the non-zero values in the two vectors.

Cosine similarity : C(di,dj) =

〈
di,dj

〉
‖di‖2‖dj‖2

=
〈
d̂i, d̂j

〉
(2.21)

Tanimoto similarity : T(di,dj) =

〈
di,dj

〉
‖di‖22 + ‖dj‖22 −

〈
di,dj

〉 (2.22)

Tanimoto similarity is also known in the literature as the Tanimoto coefficient or the

(extended) Jaccard coefficient.

Given non-negative real-valued vectors, which represent the type of input our meth-

ods are designed for, the following properties hold for these similarity measures.

• Similarity values range in [0, 1], and sim(di,dj) = 1 only if di = dj , where sim(·, ·)
represents any of the similarity measures above.

• Symmetry: sim(di,dj) = sim(dj ,di).

Another popular proximity measure is the Euclidean distance, computed as the `2-

norm of the difference between the two vectors,

E(di,dj) = ‖di − dj‖2. (2.23)

Dissimilarity measures, such as the Euclidean distance, can be converted into a measure

of similarity via a monotonic decreasing function. For example,

ES(di,dj) = e−‖di−dj‖22 ,
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is a popular transformation that relates the squared loss function to the negative log-

likelihood of group membership in clustering [25]. Euclidean distance is symmetric,

and, since it is a norm, its values are positive definite, absolute homogeneous, and

follow triangle inequality,

E(di,dk) ≤ E(di,dj) + E(dj ,dk). (2.24)

2.3 Datasets

We use a diverse set of datasets from three different domains to evaluate the performance

of our methods, namely text documents, networks (graph), and chemical compounds.

They represent some benchmark text corpora popularly used in text-categorization re-

search and several real-world web/social networks and chemical compound datasets. We

chose these datasets because they represent real-world problems, yet are quite varied

with respect to their number of objects and row and column size. Below, we give addi-

tional details about each dataset. Their characteristics, including number of objects (n),

features (m), millions of non-zeros (nnz), and row/column mean number of non-zeros

are detailed in Table 2.2.

Text datasets:

• RCV1 is a standard benchmark corpus containing over 800,000 newswire stories

provided by Reuters, Ltd. for research purposes, We use version 2 of the dataset, also

known as RCV1-v2, made available by Lewis et al. [26].

• RCV1-400k and RCV1-100k are random subsets of 400,000 and 100,000 docu-

ments, respectively, from RCV1.

• WW-500k was kindly provided to the authors by Satuluri and Parthasarathy [27],

along with the WW-100k and Wiki datasets. It contains documents with at least

200 distinct features, extracted from the September 2010 article dump of the English

Wikipedia.

• WW-100k contains documents from the WW-500k dataset with at least 500 distinct

features.

• WW200 contains documents with at least 200 distinct features, extracted by the
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author from the October 2014 article dump of the English Wikipedia1.

• WW500 contains the subset of documents from WW200 with at least 500 distinct

features.

• WW200-250k is a random subset of 250,000 objects from WW200.

• Patents is a random subset of 100,000 patent documents from all US utility patents2

. Each document contains the patent title, abstract, and body.

Network datasets:

• Twitter, first provided by Kwak et al. [28], contains follow relationships of a subset

of Twitter users that follow at least 1,000 other users. Vectors represent users, and

features are users they follow.

• Wiki represents a directed graph of hyperlinks between Wikipedia articles in the

Wiki dump.

• Orkut contains the friendship network of over 3M users of the Orkut social media

site, made available by Mislove et al. [29]. Vectors represent users, and features are

friends of the users.

Chemical datasets:

• MLSMR [30] (Molecular Libraries Small Molecule Repository) is a collection of

structures of compounds accepted into the repository of PubChem, NCBI’s database

of small organic molecules and their biological activity. We used the December 2008

version of the SDF database3.

• SC contains chemical compounds from the SureChEMBL [31] database, which in-

cludes a large set of compounds automatically extracted from text, images and at-

tachments of patent documents.

• SC-5M, SC-1M, SC-500k and SC-100k are random subsets of 5,000,000, 1,000,000,

500,000 and 100,000 compounds, respectively, from the SC dataset.

1http://download.wikimedia.org
2http://www.uspto.gov/
3https://mlsmr.evotec.com/MLSMR HomePage/pdf/MLSMR Collection 20081201.zip

http://download.wikimedia.org
http://www.uspto.gov/
https://mlsmr.evotec.com/MLSMR_HomePage/pdf/MLSMR_Collection_20081201.zip
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Table 2.2: Dataset statistics.
dataset type n m nnz · 106 µr µc
RCV1 text 804,414 45,669 62 77 1,348

RCV1-400k text 400,000 45,669 31 77 670
RCV1-100k text 100,000 45,669 8 78 187
WW-500k text 494,244 343,622 197 399 574
WW-100k text 100,528 339,944 79 787 233
WW200 text 1,017,531 663,419 437 430 659
WW500 text 243,223 660,600 202 830 306

WW200-250k text 250,000 663,410 108 430 164
Patents text 100,000 759,044 46 464 61
Twitter network 146,170 143,469 200 1370 1395

Wiki (L2AP) network 1,815,914 1,648,879 44 24 27
Wiki (pL2AP) network 3,714,404 3,714,401 111 30 56

Orkut network 3,072,626 3,072,441 223 73 73
MLSMR chemical 325,164 20,021 56 173 2,803

SC chemical 11,519,370 7,415 1,785 155 262,669
SC-5M chemical 5,000,000 7,415 700 155 103,063
SC-1M chemical 1,000,000 6,752 155 155 22,949

SC-500k chemical 500,000 6,717 78 155 11,533
SC-100k chemical 100,000 6,623 16 155 2,336

In the table, n represents the number of objects (rows), m is the number of features in the
vector representation of the objects (columns), nnz is the number of non-zero values (measured in
millions), and µr and µc are the mean number of non-zeros in each row and column, respectively.

2.4 Data Processing

2.4.1 Text Data Processing

We use standard text processing methods to encode documents as sparse vectors. Each

document is first tokenized, removing punctuation, making text lower-cased, and split-

ting the document into a set of words. Each word is stemmed using the Porter stem-

mer [32], reducing different versions of the same word to a common token. Within

the space of all tokens, a document is then represented by the sparse vector containing

the frequency of each token present in the document. When computing cosine near-

est neighbor graphs, as is customary in text analysis tasks, we scaled frequency based

vectors by the inverse document frequency [16], which reduces the importance of terms

frequently used in the corpus when computing similarities.
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2.4.2 Network Data Processing

We represent relationships for a given object in a network as a sparse binary vector

within the space of the number of objects in the network. Each value in the vector

denotes whether a relationship (edge) exists between the object represented by the

vector and another object. In general, the relationships are not symmetric. A vector

representing an object can be thought of as a row or column in the adjacency matrix

representing the network (graph), depending on the type of relationship (in-coming or

outgoing edges). When computing cosine nearest neighbor graphs, we scaled binary

vectors by the inverse document frequency.

2.4.3 Chemical Compound Processing

We encode each chemical compound as a sparse frequency vector of the molecular frag-

ments it contains, represented by GF [33] descriptors extracted using the AFGen v.

2.0 [34] program4. AFGen represents molecules as graphs, with vertices corresponding

to atoms and edges to bonds in the molecule. GF descriptors are the complete set of

unique size-bounded subgraphs present in each compound. Within the space of all GF

descriptors for a compound dataset, a compound is then represented by the sparse vec-

tor containing the frequency of each GF descriptor present in the compound. We used

a minimum length of 3 and a maximum length of 5 and ignored Hydrogen atoms when

generating GF descriptors (AFGen settings fragtype=GF, lmin=3, lmax=5, fmin=1,

noh: yes). Before running AFGen on each chemical dataset, we used the Open Babel

toolbox [35] to remove compounds with incomplete descriptions.

2.5 Performance Measures

When comparing the search performance of different methods, an important charac-

teristic in our experiments is CPU runtime, which is measured in seconds. I/O time

needed to load the dataset into memory or write output to the file system should be the

same for all methods and is, in general, ignored5. Between a method A and a baseline

4http://glaros.dtc.umn.edu/gkhome/afgen/download
5Experiments for our L2AP and L2Knng prototypes (see Sections 4.4 and 5.2) and all related baselines

measured the total execution time, including I/O.

http://glaros.dtc.umn.edu/gkhome/afgen/download
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method B, we report speedup as the ratio of B’s execution time and that of A’s.

We use average recall to measure the accuracy of the returned result when compar-

ing the performance of approximate graph construction methods. We obtain the true

neighborhood graph via brute-force search, then compute the average recall as,

R =
1

|D|
∑
di∈D

# true neighbors in Ndi

|Ndi |
.

We follow others in using the number of full similarity computations as an architec-

ture and programming language independent way to measure nearest neighbor graph

construction cost [36, 37]. However, we use a slightly different normalization constant,

NC = n(n− 1), as some of our baselines may not take advantage of symmetry in simi-

larity computations, and thus may compute up to n−1 similarity values for each vector

in the dataset. We report, for all algorithms, scan rate = # similarity evaluations/NC,

and candidate rate = # candidates/NC.

We report the performance of parallel methods in two ways. We compare the effi-

ciency of all parallel methods against the best existing serial algorithm for solving the

problem and report execution times and/or speedup values. Additionally, we report

strong scaling results, in which multi-threaded execution times for a parallel method

are compared with the 1-threaded execution of the same method.

2.6 Execution Environment

Depending on the resources available at the time of our completing a research prototype,

we used several environments for executing our experimental evaluations. For each

prototype, we executed all experiments for our methods and all related baselines in

the same environment. In this section, we describe the environments we used and

parameters we chose for our methods and baselines, the algorithms for which will be

presented later in this thesis.

Cosine ε-NNG Construction

Our method, L2AP, and all baselines for cosine ε-NNG construction are single-

threaded, serial programs, implemented in C and compiled using gcc 4.4.6 with the
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-O3 optimization setting enabled. The BayesLSH package6 includes implementations for

LSH, AllPairs +BayesLSH-Lite, LSH +BayesLSH-Lite, and AllPairs. An implementa-

tion of MMJoin was not available. We implemented IdxJoin, AllPairs7, MMJoin, L2AP,

and L2AP-a8 in our prototype. Each method was executed on its own node in a cluster

of HP ProLiant BL280c G6 blade servers, each with 2.8 GHz Intel Xeon processors and

24 Gb RAM. Methods that took longer than 48 hours to execute were terminated. For

each method, we varied the similarity threshold between 0.3 and 0.95, in increments of

0.05. To further qualify the utility of our method for near-duplicate object detection,

we also executed each method for similarities between 0.96 and 0.99, in increments of

0.01. As suggested by Satuluri and Parthasarathy, we used r = 0.03 (97% recall) and

checked h = 128 hashes in both BayesLSH-Lite and L2AP-a approximate pruning. For

approximate methods, we executed each test a minimum of three times and report the

average time over all test executions.

Tanimoto ε-NNG construction

Our method, TAPNN, and all baselines for Tanimoto ε-NNG construction are single-

threaded, serial programs, implemented in C and compiled using gcc 5.1.0 with the -O3

optimization setting enabled. Each method was executed on its own node in a cluster

of HP Linux servers. Each server is a dual-socket machine, equipped with 24 Gb RAM

and two four-core 2.6 GHz Intel Xeon 5560 (Nehalem EP) processors with 8 Mb Cache.

We executed each method a minimum of four times for ε ∈ {0.6, 0.7, 0.8, 0.9, 0.99} and

report the best execution time in each case. Due to its size (14 Gb), we executed data

scaling experiments involving the full SC dataset on a different server, equipped with

64 Gb RAM and two 12-core 2.5 GHz Intel Xeon (Haswell E5-2680v3) processors with

30 Mb Cache. As all tested methods are serial, only one core was used on each server

during the execution.

Cosine k-NNG construction

6See http://www.cse.ohio-state.edu/∼satuluri/research.html
7Unlike the AllPairs mplementations by Bayardo et al. and in the BayesLSH package, ours uses a

dense representation of the query vector. We found our implementation, on average, to be 2.5x faster
than the one in the BayesLSH package and use it as baseline in this work. This implementation detail
has since been incorporated into the other packages.

8Source code for all methods is available at http://cs.umn.edu/∼dragos/l2ap

http://www.cse.ohio-state.edu/~satuluri/research.html
http://cs.umn.edu/~dragos/l2ap
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Our method, L2Knng, and all baselines for cosine k-NNG construction are single-

threaded, serial programs. A C++ based library implementing NN-Descent can be

found at http://www.kgraph.org/. We implemented9 kIdxJoin, kL2AP, Greedy Filtering10,

Maxscore, BMM, L2Knng, and L2Knng-a in C and compiled our program using gcc 4.4.7

with -O3 optimization. Each method was executed on its own node in a cluster of HP

ProLiant BL280c G6 blade servers, each with 2.8 GHz Intel Xeon processors and 24 Gb

RAM.

We executed each method for k ∈ {1, 5, 10, 25, 50, 75, 100} and tuned parameters

to achieve balanced high recall and efficient execution. For all L2Knng and L2Knng-a

experiments, we set the parameter δ = 0.0001. We tested kL2AP by decreasing the

threshold t in steps of 0.1, 0.25, and 0.5, and report the best results among the step

choices. For the NN-Descent library11, we set ρ = 1, S = 20, and indexing K = µ (the

candidate list size µ ≥ k). For all stochastic methods, we executed a minimum of 5 runs

for each set of parameter values and we report averages of all recorded times.

Parallel cosine ε-NNG construction

Our method, pL2AP, and all baselines are implemented in C and compiled using gcc

4.4.7 with -O3 optimization. We used the OpenMP framework for implementing shared-

memory parallel methods. Each method was executed on its own node in a cluster of

HP Linux servers. Each server is a dual-socket machine, equiped with 64 Gb RAM and

two twelve-core 2.5 GHz Intel Xeon E5-2680v3 processors with 30 Mb Cache. For each

method, we varied the similarity threshold ε between 0.3 and 0.9, in increments of 0.1.

For pL2AP, we fixed η at 25K objects and varied ζ between 250K and 4M in 250K

increments. We set the masked hash-table size parameter h to 213.

Parallel cosine k-NNG construction

Our method, pL2Knng, and all baselines are implemented in C and compiled using

gcc 5.1.0 with the -O3 optimization setting enabled. We used the OpenMP framework

for implementing shared-memory parallel methods. Each method was executed on its

9Source code available at http://cs.umn.edu/∼dragos/l2knng.
10The authors of Greedy Filtering kindly provided a Java-based implementation of their algorithm for

comparison. On average, our C implementation achieved 1.13x speedup over the Java one.
11We thank Wei Dong for his invaluable assistance with using the KGraph library and finding

NN-Descent evaluation parameters.

http://www.kgraph.org/
http://cs.umn.edu/~dragos/l2knng
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own node in a cluster of HP Linux servers. Each server is a dual-socket machine,

equipped with 64 Gb RAM and two eight-core 2.6 GHz Intel Xeon E5-2670 (Sandy

Bridge) processors with 20 Mb Cache.

We executed each method for

k ∈ {10, 25, 50, 75, 100, 200, 300, 400, 500}

and tuned parameters for each method to achieve balanced high recall and efficient

execution. For all L2Knng based methods, we set the parameter δ = 0.0001. We used

the latest version of the NN-Descent12 library available at the time of our experiments

(v.1.4), and set ρ = 1, and indexing K = µ (the candidate list size µ ≥ k). For all

stochastic methods, we executed a minimum of 3 runs for each set of parameter values

and we report averages of all recorded times.

12http://www.kgraph.org/releases/kgraph-1.4-x86 64.tar.gz

http://www.kgraph.org/releases/kgraph-1.4-x86_64.tar.gz


Chapter 3

Related Work

In this section, we will give an overview of some important works addressing our two

nearest neighbors graph construction problems of interest. We will focus our discus-

sion first on methods for cosine nearest neighbor graph construction, and then discuss

existing extensions for the Tanimoto similarity.

3.1 ε-NNG Construction

The ε-NNG construction problem has its roots in the similarity join problem from the

database community [5,38]. In that context, Chaudhuri et al. first formalized the prefix-

filtering principle [38], showing that only a few elements from the beginning of a query

vector must be checked against other vectors to find all necessary candidates. Bayardo

et al. [8] disconnected the problem from the underlying database system and developed

additional pruning strategies based on a predefined vector order in the dataset. They

also introduced dynamic indexing, leveraging the prefix-filtering principle to index only

a portion of each vector after its candidate list was generated.

The majority of subsequently developed ε-NNG construction methods follow the

same format as in the method described by Bayardo et al. They proceed in three stages.

First, during candidate generation, a list of objects is compiled whose similarity scores

to the query object are believed to exceed the threshold. Potential candidates during

this stage are vetted based on different theoretic upper bounds on the similarity. The

candidate verification stage finalizes the similarity computation for identified candidates

23
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and compares it against the threshold ε. Additional pruning may reduce the number of

full similarities being computed. Finally, the query object is indexed (indexing stage)

before continuing with the next object in the processing order.

A number of extensions have focused on the set-based or binary representation of

objects. While not directly applicable to our domain, they provide insights into types

of pruning that may be beneficial during the graph construction. Xiao et al. [6] first in-

troduced a tighter indexing bound and positional filtering in PPJoin. During candidate

generation, positional filtering provides additional pruning based on the remaining size

of the vectors once a feature is found in common. Motivated by experimental results

showing quadratic growth in the candidate pool size in AllPairs, Xiao et al. pushed

filtering into the candidate verification stage through Hamming distance based suffix

filtering. When considering string similarity search using the edit distance measure,

Xiao et al. [39] showed that the problem can be efficiently solved using q-gram-based

mismatch filtering. Xiao et al. [40] introduced further AllPairs optimizations to answer

top-k queries efficiently. While previous algorithms focused on reducing the generated

candidate pool size, Ribeiro and Härder [41] sought to reduce overall search time by

minimizing the size of the inverted index through dynamic min-prefix indexing. They

coupled a cheap candidate generation step with additional stopping criteria in the ver-

ification stage to improve on AllPairs and PPJoin. Wang et al. [42] sought to reach a

balance between the number of candidates being generated and the number of pruned

candidates, which lead them to develop of a cost-based scheme for choosing variable-

length prefixes.

There has been little focus, in comparison, on solving the ε-NNG construction prob-

lem for weighted vectors and cosine similarity. Bayardo et al. [8] gave the first integrated

solution for the problem, the AllPairs algorithm. In APT, Awekar and Samatova [43]

provided tighter bounds over AllPairs on the candidate vector minimum size and sim-

ilarity score estimate. Lee et al. [15] introduced length filtering and length-based suffix

filtering in MMJoin. As they are pertinent to our problem, we detail these methods in

Section 4.1. We then show, both theoretically and experimentally, that our pruning

strategies outperform those in these methods.

Although emphasis has recently shifted to solving ε-NNG construction exactly, ap-

proximate methods remain popular, especially in domains only interested in objects with
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high similarity thresholds. In the context of near-duplicate object detection, Broder et

al. [1] applied similarity search to sketches built using min-wise independent permuta-

tions of shingled Web documents. A popular alternative, Locality Sensitive Hashing

(LSH) [44, 45], uses families of functions that hash similar objects to the same bucket

with high probability to generate candidate sets. Zhai et al. [46] presented a probabilis-

tic algorithm for similarity search based on random filters. Note that these algorithms

solve a related problem, that of nearest neighbor(s) search, in which the query objects

are not assumed to be a part of the input set. The ε-NNG could be constructed by

executing a nearest neighbors query for each of the objects in the input set, but its

construction does not consider the computation structure inherent in the ε-NNG con-

struction problem. To take advantage of this structure, Satuluri and Parthasarathy [27]

introduced BayesLSH, a principled Bayesian approach for candidate pruning and simi-

larity estimation, which they combine with candidate generation steps from AllPairs

and LSH.

3.1.1 Tanimoto ε-NNG Construction

Within the chemoinformatics community, a great deal of effort has been spent trying to

accelerate pairwise similarity computations using the Tanimoto coefficient. Swamidass

and Baldi [47] described a number of bounds for fast exact threshold based Tanimoto

similarity searches of binary and integer based vector representations of chemical com-

pounds. These bounds allow skipping many object comparisons that will theoretically

not be similar enough to be included in the result. Baldi et al. [48] proposed an algo-

rithm for pruning the similarity search space through exclusive OR (XOR) operations

on compressed bit-vector representations of the molecules. Nasr et al. [49] developed

hashing techniques for pruning the search space by transforming bounds on the intersec-

tion of molecule hash signatures to the Tanimoto similarity of their fingerprint vectors.

Kristensen et al. [50] and Smellie [51] relied instead on tree-based data structures to

speed up similarity search. Tabei and Tsuda [52] described SketchSort, an approximate

method which uses min-wise independent permutation based locality sensitive hashing

to solve the ε-NNG construction problem. Most recent approaches focus on speeding up

chemical searches using inverted index data structures borrowed from information re-

trieval [49,53,54]. Among all existing methods, algorithms taking advantage of inverted
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indexes have been shown to be the most effective means for identifying neighbors when

dealing with objects represented in a high-dimensional space.

The numeric representation of chemical compounds is still an open problem in

chemoinformatics. Due to computation efficiency constraints, initial representations

focused on capturing the presence or absence of features within the compound. Com-

pounds were represented as binary vectors, referred to as a fingerprints. In recent years,

frequency (or counting) vectors, which capture how many times a feature is present, and

real valued vectors, called descriptors, have gained popularity [9,55]. Arif et al. [56], for

example, investigated the use of inverse frequency weighting of features in frequency de-

scriptors for similarity-based Virtual Screening, and found marked increases in screening

effectiveness in some circumstances. The efficient Tanimoto ε-NNG construction meth-

ods described in this thesis may be used to compute bounded pairwise similarities of

descriptor vectors, accelerating chemical compound search and other Virtual Screening

tasks.

Tanimoto similarity has also been widely used in the computer science community.

As noted earlier, a number of data mining methods have been devised for solving the

ε-NNG construction problem. While most of the existing work addresses either binary

vector object representations [6, 40, 57] or cosine similarity [18, 43], Bayardo et al. [8]

and Lee et al. [15] showed how their filtering based ε-NNG construction methods can

be extended to the Tanimoto coefficient for binary and real-valued vectors, respectively.

Focusing on real-valued vectors, Kryszkiewicz [20, 58] proved several theoretic bounds

on the Tanimoto similarity and sketched an inverted index based algorithm for efficient

similarity search.

3.2 k-NNG Construction

Relatively few k-NNG construction algorithms have been designed to address cosine

similarity. Park et al. [37] described Greedy Filtering, an approximate filtering-based

approach which prioritizes computing similarities between objects with high weight

features in common. After first reordering the dimensions of each vector based on their

weight, in decreasing weight order, the algorithm builds a partial inverted index, which

it uses to find candidates for each object. Candidates for an object di are those objects
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in the inverted index lists associated with the leading dimensions in di, i.e., the prefix

of di. Greedy Filtering indexes enough of each vector’s prefix as to lead to at least

µ candidates for each object. After all prefixes are identified and the partial inverted

index is constructed, Greedy Filtering computes pairwise similarities of objects in each

inverted index list, which can lead to much more than µ similarity computations for

each object, and repeated computations for pairs of objects with two or more common

features in their prefixes.

In NN-Descent, Dong et al. [36] followed an iterative neighborhood improvement

strategy based on the intuition that similar objects are likely to be found among the

neighborhoods of objects in a query object’s neighborhood. Starting with a randomly

chosen initial k-NNG, their method iteratively improves the graph by computing, for

each object di, via a local join, pairwise similarities between di, objects in its neighbor-

hood, and those objects that contain di in their neighborhoods. The neighborhoods of

both objects participating in a similarity computation are updated with the result. The

method avoids duplication of effort between iterations by only allowing an object to par-

ticipate in the local join if it has been added to some neighborhood in the last update.

Sampling and early termination parameters provide a way to control the compromise

between algorithm runtime and recall. However, NN-Descent computes O(nk2) object

similarities in its first iteration. Furthermore, the algorithm does not provide a way to

filter out candidates that are unlikely to improve the query object’s neighborhood.

Top-k document retrieval is a related problem from information retrieval, which has

had many proposed solutions over the years. Most methods in this class have been

designed for very large document collections, and have focused on minimizing and/or

parallelizing operations needed to quickly answer fairly short input queries. Result sets

are in most cases inexact. Some recent works use an in-memory inverted index and

pruning, called safe early termination, to return the same result set as an exhaustive

search [59–63]. One could then solve the exact k-NNG problem by executing n top-k

queries with one of these methods, one for each of the input objects. In their Block-Max

WAND (BMW) method [61], Ding and Suel use an augmented index structure, called

a Block-Max index, which stores inverted lists as compressed blocks of postings, along

with the maximum score that could be achieved given the values in the block postings.

By using the block maximum scores for early termination, many blocks can be skipped,
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resulting in improved execution. Dimopoulos et al. [62] extended the work of Ding

and Suel and designed several methods that take advantage of Block-Max type indexes.

Among them, docID-oriented Block-Max Maxscore with variable block sizes (BMM)

has been shown to outperform the others and several baselines (including BMW) for

long queries. The method partitions the postings in each inverted list into blocks of

equally-sized ID ranges, allowing fast look-up for the block a document’s posting may

be found in. Block sizes vary based on the number of postings in each list. For each

block, BMM also keeps track of the maximum document ID and maximum score for

any of the postings in the block. The Maxscore [64] algorithm described by Turtle and

Flood was then adapted to use block maximum scores for early termination.

Locality Sensitive Hashing (LSH) [44,45] uses families of functions that hash signa-

tures of similar objects to the same bucket with high probability. The objects in the

buckets that a query object hashes to can be considered its neighbors. The similarity

with a neighbor can then either be estimated by comparing the object signatures or

computed exactly. Created initially to solve the top-k retrieval problem, LSH has been

shown effective at solving the nearest-neighbor problem (1-NNG), but suffers from low

recall as the required neighborhood size increases [61]. Some recent LSH variations have

tackled the k-NNG problem specifically (e.g., E2LSH [65] and DSH [66]), but focus on

distance functions between objects, such as the Euclidean distance.

While ε-NNG construction algorithms cannot be used directly to construct a k-NNG,

as we do not know the appropriate threshold that will lead to generating the complete

k-NNG, some of the techniques used in ε-NNG construction algorithms can be adapted

to prune the search space when solving the k-NNG construction problem. We provide

an overview of existing ε-NNG construction methods in Section 3.1.

A number of k-NNG construction algorithms have been proposed for metric spaces,

where we seek the k objects with the smallest metric distance from the query. Tree-

based data structures are often used to facilitate partitioning the search space, allowing

neighbor searches to be prioritized within grids close to the one the query object is

in [67]. These types of methods have been shown effective in low dimensional spaces,

but do not scale well as dimensionality increases.



29

3.3 Parallel Algorithms

Existing distributed solutions for nearest neighbor graph construction generally use the

MapReduce [68] framework and can be thought of as belonging to one of two categories.

Most rely on the framework’s built-in features to aggregate (reduce) partial similarities

of object pairs computed in mappers [69–72]. The computation efficiency can be greatly

increased by first generating an inverted index for the set of objects, which can be

done using one MapReduce task. The postings in the inverted index lists can then be

combined with features in the object vectors or with other postings in the same list to

generate partial similarity scores. While some pruning strategies can be used to avoid

generating some partial scores, these methods often suffer from high communication

costs which make then inefficient for large datasets [73].

The second category of MapReduce methods use a mapper-only scheme, with no

reducers [73–75]. They partition the set of objects into subsets (blocks) and use serial ε-

NNG construction methods to find pairwise similarities of objects in block pairs. Certain

block comparisons can be eliminated by relying on block-level filtering techniques, such

as computing the similarity of the objects made up of the maximum values for features

in the two blocks. When comparing two blocks, Alabduljalil et al. proposed locally

building a full inverted index for one of the blocks and scanning through query objects

in the other block to compute their similarity. They found that filtering candidates was

detrimental to execution speed and suggested removing this optimization, rendering

their local search identical to that performed in one tile by our näıve baseline, pIdxJoin.

Within this context, they examined distributed load balancing strategies [75] and cache-

conscious performance optimizations for the local searches [74]. They provided a cost

based analysis aimed at finding sizes for comparison blocks that maximize cache locality.

Their analysis was based on a full inverted index and mean lengths of vectors and

inverted lists, which can vary greatly in real datasets.

Existing multi-core cosine ε-NNG construction solutions are limited to the parallel

APT (pAPT) algorithm by Awekar and Samatova [76]. After first indexing all input

objects, pAPT allows threads to share the data structure during the candidate generation

and verification stages, which use the same pruning strategies Awekar and Samatova

proposed in APT [43]. Some of the pruning leads to reducing the size of the inverted



30

index by advancing pointers for the beginning of inverted lists. Awekar and Samatova

avoided a costly synchronization step in pAPT by having threads keep their own version

of the list pointers. Working on the related problem of string similarity joins with edit

distance constraints, Jiang et al. [77] provided a parallel version of an earlier algorithm

they developed [78], which they named ParaJoin. After sorting input strings in parallel,

their algorithm builds a number of inverted index structures, designed to match strings

of different lengths. Then, all threads share the index structures as each thread processes

a subset of the input strings. While they showed improvement over serial methods, pAPT

and ParaJoin were tested using at most 8 threads, on datasets containing mostly short

vectors.

The NN-Descent algorithm by Dong et al. [36], which we describe in Section 3.2,

provides one of the few existing multi-core cosine k-NNG construction solutions that

can be used with sparse real-valued vectors. Pinar and Heath [79], and Buluç and

coauthors [80,81] proposed general data structures and algorithms for fast computation

of sparse matrix vector products which can scale well with an increasing number of

cores. While these algorithms may scale better than our tested pKIdxJoin baseline,

which performs tiled sparse matrix-vector products to solve the k-NNG construction

problem, neither of the proposed algorithms takes advantage of any pruning and will

thus not be competitive enough against our proposed method.



Chapter 4

Serial ε-NNG Construction

In [18], we addressed the problem of constructing the ε-NNG where object proximity

is measured by cosine similarity. We proposed new filtering strategies that successfully

prune most candidates that are not neighbors in the constructed graph, resulting in

relatively few object pairs having their similarity value computed in full. While previous

algorithms do not scale well as the similarity threshold decreases, our new pruning

techniques make our method effective at both high and low similarity thresholds.

As discussed in Section 3.1, AllPairs is an algorithm for exact all-pairs similarity

search introduced by Bayardo et al. [8] and extended by many other filtering-based

APSS approaches. By iteratively building a partial inverted index and leveraging several

upper bounds on the similarity, AllPairs is able to prune away a large number of false

positive candidates and achieve significant speedups, especially for datasets with high

variance in vector sizes [27]. Our method, L2AP, improves over AllPairs by obtaining

tighter similarity bounds in all stages of the algorithm. We will first detail the filtering

framework in AllPairs and subsequent extensions, and then present our improvements.

4.1 Filtering Framework

One could solve the APSS problem by finding all nearest neighbors in the dataset

for each vector. However, given a sparse dataset, a query object dq may not have

features in common with many candidate objects. AllPairs avoids computing the

similarity of dq with these objects by using an inverted index, a set of lists, one for
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Algorithm 1 The AllPairs algorithm.

1: function AllPairs(D, ε)
2: Process objects in decreasing ‖ · ‖∞ order
3: Process features in decreasing frequency order
4: O ← ∅, Ij ← ∅, for j = 1, . . . ,m
5: for each q = 1, . . . , n do
6: O ← O ∪ FindMatchesAP(dq, I, ε)
7: b1 ← 0
8: for each j = 1, . . . ,m, s.t. dq,j > 0 do
9: b1 ← b1 + dq,j min(‖fj‖∞, ‖dq‖∞)

10: if b1 ≥ ε then
11: Ij ← Ij ∪ {(dq, dq,j)}
12: dq,j ← 0

13: return O

each feature, containing vectors with non-zero values in D for that feature, and their

associated feature values. One can then traverse the inverted lists for only the terms in

dq to find its possible neighbors. Score accumulation (using a map-like data structure

to simultaneously keep track of multiple computed scores) using the values stored in

the index can be used to compute the similarity value, and the original vector can be

discarded [82].

Cosine similarity is invariant to changes in vector lengths. As a result, we can

assume that vectors associated with input objects have been normalized to have unit

length (‖d‖2 = 1, ∀ d in D). The similarity computation then reduces to finding the

dot-product between pairs of vectors. Because cosine similarity is commutative, one

does not need to compute both C(dq,dc) and C(dc,dq). To find all objects in the

neighborhood of dq, the index only needs to contain features for previously processed

objects. This gave rise to Sarawagi and Kirpal’s idea to build the index dynamically [83].

For a given object dq, one first finds neighbors for dq using the current version of the

index, and then indexes dq before moving on to the next object.

AllPairs improves these standard similarity search techniques in several ways. It

exploits the threshold ε and a predefined object processing order to limit the feature

values being indexed, the candidate pairs being generated, and for which candidate pairs

the exact similarity value should be computed. Algorithms 1 and 2 present the pseudo-

code for AllPairs. As we continue, we will also detail pruning strategies employed in

subsequent extensions APT and MMJoin.
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Algorithm 2 AllPairs FindMatches.

1: function FindMatchesAP(dq, I, ε)
2: A← ∅ . accumulator array
3: M ← ∅ . set of matches
4: sz1 ← ε/‖dq‖∞
5: rs1 ←

∑m
j=1 dq,j‖fj‖∞

6: for each j = m, . . . , 1, s.t. dq,j > 0 do
7: Ij ← Ij \ {(dc, dc,j)}, ∀ dc s.t. ‖dc‖0 ≤ sz1
8: for each (dc, dc,j) ∈ Ij do
9: if A[dc] > 0 or rs1 ≥ ε then

10: A[dc]← A[dc] + dq,jdc,j

11: rs1 ← rs1 − dq,j‖fj‖∞
12: for each dc s.t. A[dc] > 0 do
13: if A[dc] + min(‖dq‖0, ‖d≤c ‖0)‖dq‖∞‖d≤c ‖∞ ≥ ε then
14: s← A[dc] +

〈
dq,d

≤
c

〉
15: if s ≥ ε then
16: M ←M ∪ {(dq, dc, s)}
17: return M

4.1.1 Prefix and Suffix Filtering

Chaudhuri et al. introduced the prefix-filtering principle, which has been used to limit

the size of the inverted index. It states informally that, given a global feature processing

order, one can stop indexing features in dq as soon as they can ensure that dq will

have at least one feature in the index in common with all its true neighbors (those

vectors dc s.t. C(dq,dc) ≥ ε). Chaudhuri et al. and Lee et al. order their datasets in

increasing column frequency order and index features at the beginning of dq, i.e. its

prefix. They use the remaining part of the vector, its suffix, to estimate and complete

similarity computations. While they do not expressly state it, Bayardo et al. also

use the prefix-filtering principle in their algorithm, AllPairs. Yet they choose the

opposite order for processing features, index the suffix of each vector, and use the prefix

to complete the similarity computation. To avoid confusion, we will refer to prefix

filtering, henceforward, as index filtering, since its goal is to reduce the index size.

Similarly, we will refer to suffix filtering as residual filtering, since it operates on the

remaining (un-indexed) portion of the vector.
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4.1.2 Index Construction

Lines 3 and 7–12 in Algorithm 1 highlight the index size reduction via index filtering

in AllPairs. The algorithm does not start indexing feature values from dq until the

variable b1 reaches the similarity threshold ε. Once a value is indexed, it is erased

form dq (line 12). Bayardo et. al [8] show that enough features will be indexed using

this method to ensure that any vector dc that has the potential to meet the similarity

threshold ε against dq will be identified during the similarity search. While a certain

feature processing order is not necessary, processing them in decreasing order of the

number of objects a feature is found in (decreasing frequency order, line 3) tends to

lead to fewer indexed values.

The variable b1, which we call the pscore (prefix score), captures an upper bound

on the similarity score attainable by matching the first features in dq against any other

vector in the dataset. It is akin to the similarity of dq with the maximum possible

valued vector in the dataset, which should be computed as
∑m

j=1 ‖fj‖∞dq,j , where fj is

the vector made up of all the object values for the jth feature. AllPairs takes advantage

of an imposed object processing order to improve this bound. By processing objects

in decreasing order of maximum object values (line 2 of Algorithm 1), one obtains

a sharper estimate on a candidate’s feature value. The objects we are interested in,

which are those that follow dq in the processing order, are thus guaranteed to have the

maximum value for feature j of min(‖fj‖∞, ‖dq‖∞).

Awekar and Samatova focus on candidate pruning in APT, and make no changes to

the index reduction proposed in AllPairs. Lee et al., however, achieve better index

reduction in MMJoin by using the non-negativity of the square of a real number property,

(a− b)2 ≥ 0⇒ a2 + b2 ≥ 2ab. Using this inequality, they derive

〈
dq,dc

〉
=
∑

l
dq,ldc,l ≤

∑
l

dq,l
2 + dc,l

2

2

=
1

2
‖dq‖22 +

1

2
‖dc‖22, (4.1)

that also holds for prefixes or suffixes of vectors at a common feature p, i.e.:

〈
d≤pq ,d≤pc

〉
≤ 1

2
‖d≤pq ‖22 +

1

2
‖d≤pc ‖22. (4.2)
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As all vectors are unit length normalized, the dot-product of dq with any other vector

can then be approximated by
〈
dq, ·

〉
≤ 1

2‖dq‖
2
2+ 1

2 , which provides another upper bound

for the pscore. MMJoin combines this new bound with the original one in AllPairs by

using the minimum of the two upper bounds, min(b1, b2) ≥ ε in line 10 of Algorithm 1,

where b2 = 1
2‖d

≤j
q ‖22 + 1

2 . Lee et al. also use Equation 4.2 during candidate generation

and verification, and thus store the value 1
2‖d

<j
q ‖22, in addition to dq,j , for each indexed

term (line 11 of Algorithm 1 becomes Ij ← Ij ∪ {(dq, dq,j , 12‖d
<j
q ‖22)}).

Note that our explanation and notation of Lee et al.’s algorithm has been adjusted to

follow the column ordering in AllPairs. Their original presentation follows the opposite

column ordering. Therefore, they initially pre-compute b1 ←
∑m

j=1 dq,j min(‖fj‖∞, ‖dq‖∞)

in line 7 of Algorithm 1, and then roll back the computation, indexing until b1 falls below

ε.

4.1.3 Candidate Generation

Candidate generation and verification in AllPairs are detailed in Algorithm 2. AllPairs

uses a lower bound (sz1), which we call minsize, to eliminate unpromising indexed ob-

jects that have too few values (lines 4 and 7). Bayardo et al. name this process size

filtering. They show that any candidate vector must have at least ε/‖dq‖∞ non-zero val-

ues to possibly achieve ε similarity with dq. Additionally, since objects are processed in

decreasing order of their maximum value, the minimum candidate size increases mono-

tonically with each iteration. Those objects that fail this check will then fail it for all

future processed objects and can be safely removed from the inverted index (line 7).

APT and MMJoin both provide stronger bounds for the minsize bound. Awekar

and Samatova use an upper bound on the dot-product,
〈
dq,dc

〉
≤ ‖dq‖∞‖dc‖1 (see

Section 2.2), to derive minsize as sz2 ≤ (ε/‖dq‖∞)2. On the other hand, Lee et al. use

the upper bound 〈
dq,dc

〉
≤ min(‖dq‖0, ‖dc‖0)‖dq‖∞‖dc‖∞

to drive it as sz3 ≤ ε/(‖dq‖∞‖dc‖∞).

Residual filtering uses an upper bound on the similarity of the un-indexed portion

of the vectors, along with the already accumulated dot-product, to prune additional

potential candidates. As we accumulate over the features of dq, there comes a point
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when there are not enough features left to allow any new vector without accumulated

weight to reach the similarity threshold. AllPairs finds this point by maintaining an

upper bound remscore value (rs1) on the similarity score that a new vector dc (i.e.,

A[dc] = 0) could achieve with dq (lines 5 and 11). Accumulation only starts as long

as the remscore value is still above the threshold ε (line 9). Once accumulation has

started for a vector, it becomes a candidate.

APT uses the same remscore bound as in AllPairs. MMJoin capitalizes on Equa-

tion 4.2 in two ways to enhance residual filtering. First, it augments the remscore

bound in line 9 by checking min(rs1, rs2) ≥ ε, where rs2 = 1
2‖d

≤j
q ‖22 + 1

2 . Note that

accumulation occurs in reverse feature processing order. If no score has yet been ac-

cumulated for the object dc, and rs2 < ε, the similarity between dq and dc cannot

possibly pass the threshold ε, and the potential candidate is skipped. Second, for those

candidates that have started accumulating, MMJoin pushes a verification step into the

candidate generation stage. It keeps checking, after each accumulation change, whether

A[dc] + 1
2‖d

<j
q ‖22 + 1

2‖d
<j
c ‖22 is below the threshold ε. When this estimate falls below

ε, MMJoin stops accumulating dc (prunes it) and sets A[dc] = 0. Lee et. al. call this

process length filtering.

4.1.4 Candidate Verification

The similarity C(dq,dc) has already been partially computed and stored in the accu-

mulator A[dc]. AllPairs then tries to estimate the similarity of the query object with

the un-indexed prefix of each candidate d≤c (line 13). This bound, which we call the

dpscore (dot-product score), allows skipping the full similarity score computation of

dq with the candidate if the estimate is still below ε. Otherwise, AllPairs computes

the remaining similarity between dq and the prefix d≤c exactly and adds the pair to the

result M as necessary (lines 15-16).

Lee et al. employ the same dpscore bound as in AllPairs. Leveraging the dot-

product upper bound they considered in the minsize estimation, Awekar and Samatova

propose a new dpscore bound, which they prove is a tighter bound than that of Bayardo

et al., and is given by:

〈
dq,dc

〉
≤ A[dc] + min(‖dq‖∞‖d≤c ‖1, ‖d≤c ‖∞‖dq‖1).
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As an alternate means of pruning, based on their length filtering idea, Lee et al.

use the prefix similarity estimates they stored in the index and check whether A[dc] +
1
2‖d

<j
q ‖22 + 1

2‖d
<j
c ‖22 drops below the threshold while computing the rest of the dot-

product, after each accumulation operation. To alleviate excessive checking, they only

test this bound at every other feature that the query and candidate objects have in

common. The candidate dc is pruned if the bound falls below ε.

4.2 Cosine ε-NNG Construction

We now present our algorithm, L2AP, which leverages the Cauchy-Schwarz inequality

to obtain tighter `2-norm similarity estimate bounds for both index reduction and can-

didate generation and verification. In addition, L2AP improves on and introduces new

residual filtering techniques that help eliminate the majority of candidates before fully

computing their similarity value.

4.2.1 `2-norm Bounds

The majority of the improvement in L2AP is due to much tighter bounds obtained by

leveraging the Cauchy-Schwarz inequality in partial dot-product estimations. Recall

that,
〈
dq,dc

〉
=
〈
d≤q ,dc

〉
+
〈
d>q ,dc

〉
, where d≤q is the prefix, or un-indexed portion of

the vector, and d>q is its suffix. By the Cauchy-Schwarz inequality we have that:

〈
d≤q ,dc

〉
≤ ‖d≤q ‖2‖dc‖2. (4.3)

Since all vectors are unit length normalized, the prefix dot-product can then be ap-

proximated by
〈
d≤q ,dc

〉
≤ ‖d≤q ‖2. This new bound has profound consequences during

indexing and candidate generation. Vectors are accumulated in reverse feature process-

ing order. If ‖d≤q ‖2 < ε, no terms in d≤q can lead to new candidates that have not yet

been identified.

The `2-norm bound is tighter than the one proposed by Lee et al.,
〈
d≤q ,dc

〉
≤

1
2‖d

≤
q ‖22 + 1

2 , since

(
‖d≤q ‖2 − 1

)2 ≥ 0 ⇒ 1

2
‖d≤q ‖22 +

1

2
≥ ‖d≤q ‖2.
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Figure 4.1: Comparison of estimated prefix dot-products
〈
d≤jq ,dc

〉
for two random

10,000 dimensional vectors in MMJoin and L2AP.

Their estimate will always exceed 0.5, while ours is closer to the true dot-product. As

an example, Figure 4.1 shows the results of computing the prefix dot-product estimates,

using our formula and that from MMJoin, for two random sparse vectors, at each prefix

index j. For ε = 0.5, L2AP needs 1/3 less features than MMJoin to accurately estimate

that the prefix similarity of the two vectors drops below ε, which is crucial during

indexing and candidate generation.

Similarly, an estimate for the dot-product of the exclusive prefixes of dq and dc at

a common term j is given by,

〈
d<q ,d

<
c

〉
≤ ‖d<jq ‖2‖d<jc ‖2. (4.4)

Candidates can be pruned at a common term j if the sum of their accumulated score

and this prefix dot-product estimate falls below the threshold ε. Again, this bound is

tighter than the similar bound proposed by Lee et al.,
〈
d<q ,d

<
c

〉
≤ 1

2‖d
<
q ‖22 + 1

2‖d
<
c ‖22,

since (
‖d<q ‖2 − ‖d<c ‖2

)2 ≥ 0 ⇒ 1

2
‖d<q ‖22 +

1

2
‖d<c ‖22 ≥ ‖d<q ‖2‖d<c ‖2.

4.2.2 Index Construction

Algorithm 3 delineates our proposed method, L2AP. We will now highlight the improve-

ments we introduce over the AP framework we discussed in Section 4.1.
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Algorithm 3 The L2AP algorithm.

1: function L2AP(D, ε)
2: Process objects in decreasing ‖ · ‖∞ order
3: Process features in decreasing frequency order
4: O ← ∅; Ij ← ∅; ĉw← 0, for j = 1, . . . ,m
5: for each i = 1, . . . , n do
6: O ← O ∪ FindMatchesL2AP(dq, I, ps, ĉw, ε)
7: ĉwj ← max(dq,j , ĉwj), ∀ dq,j > 0
8: b1 ← 0; bt ← 0; b3 ← 0
9: for each j = 1, . . . ,m, s.t. dq,j > 0 do

10: pscore← min(b1, b3)
11: b1 ← b1 + dq,j min(‖fj‖∞, ‖dq‖∞)
12: bt ← bt + d2q,j ; b3 ←

√
bt

13: if min(b1, b3) ≥ ε then
14: ps[dq]← pscore if ps[dq] = 0
15: Ij ← Ij ∪ {(dq, dq,j , ‖d<jq ‖2)}
16: dq,j ← 0

17: return O

We improve the pscore bound in the AllPairs framework using our tighter `2-

norm bound. The variable b3 computes ‖d≤jq ‖2, the `2-norm of the prefix of dq ending

at index j, inclusive. As shown in Section 4.2.1, no new candidates can be identified

during accumulation once the prefix norm ‖d≤jq ‖ falls below ε. To postpone indexing

further, we use the lesser of our new bound, b3, and the bound proposed by Bayardo et

al., to find the minimum number of features we must index. Additionally, we store the

exclusive prefix `2-norm ‖d<jq ‖ in the index (line 15), to be used during the candidate

generation and verification stages of the algorithm.

The pscore bound estimates the similarity of d≤q with any other vector in the

dataset. We store the pscore value for the query object (lines 10 and 14) and use it

during candidate verification as an effective pruning strategy for false positive candi-

dates.

4.2.3 Candidate Generation

Candidate generation and verification in L2AP are detailed in Algorithm 4. L2AP uses

the same minsize upper bound as in MMJoin1, sz3 ≤ ε/(‖dq‖∞‖dc‖∞), which performed

1Note that [18] erroneously states that the MMJoin minsize bound is superior to the one in APT.
While both bounds provide limited benefit for different values of ε, each can outperform the other for



40

Algorithm 4 L2AP FindMatches.

1: function FindMatchesL2AP(dq, I, ps, ĉw, ε)
2: A← ∅; M ← ∅
3: sz ← ε/‖dq‖∞
4: rs3 ← ‖dq‖1ĉw; rst ← 1; rs4 ← 1
5: for each j = m, . . . , 1, s.t. xj > 0 do
6: Ij ← Ij \ {(dc, dc,j , ‖d<jc ‖2)}, ∀ dc s.t. ‖dc‖0‖dc‖∞ ≤ sz
7: for each (dc, dc,j , ‖d<jc ‖2) ∈ Ij do
8: if A[dc] > 0 or min(rs3, rs4) ≥ ε then
9: A[dc]← A[dc] + dq,jdc,j

10: if A[dc] + ‖d<jq ‖2‖d<jc ‖2 < ε then
11: A[dc]← 0

12: rs3 ← rs3 − dq,j ĉwj
13: rst ← rst − d2q,j ; rs4 ←

√
rst

14: for each dc s.t. A[dc] > 0 do
15: next dc if A[dc] + ps[dc] < ε
16: e1← min(‖dq‖∞‖d≤c ‖1, ‖d≤c ‖∞‖dq‖1)
17: next dc if A[dc] + e1 < ε
18: Find greatest p s.t. dc,p in d≤c ∧ dq,p > 0 ∧ dc,p > 0
19: e2← min(‖d≤pq ‖∞‖d≤pc ‖1, ‖d≤c ‖∞‖d≤pq ‖1)
20: next dc if A[dc] + e2 < ε
21: for each j < p s.t. dc,p in d≤c do
22: A[dc]← A[dc] + dq,jdc,j
23: if A[dc] + ‖d<jq ‖2‖d<jc ‖2 < ε then
24: next dc
25: if A[dc] ≥ ε then
26: M ←M ∪ {(dq, dc, A[dc])}
27: return M

better in our experiments than the respective bound in APT, sz2 ≤ ε2/‖dq‖2∞. While

we could check both minsize bounds, we have found this strategy does not provide

additional savings, as the minsize bound is not particularly effective as compared to

the other bounds we check.

The remscore bound enables our algorithm to stop adding new candidates once the

estimated dot-product between the prefix of dq and all possible candidates falls below

ε. We improve this bound in two ways. First, note that the similarity of dq is computed

only against vectors in the inverted index, which come before it in dataset processing

order. We use a tighter feature maximum value, ĉwj , in rs3, an enhanced version of

Bayardo’s proposed remscore bound (line 4 of Algorithm 4), which is computed only

different datasets and ε options.
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over those vectors in the inverted index. Each ĉwj is updated to the new maximum

value after completing the current search (line 7 of Algorithm 3).

Our second improvement involves the `2-norm bound we discussed in Section 4.2.1.

The variable rs4 uses Equation 4.3 to estimate the dot-product of d≤jq , the inclusive

prefix of dq ending at term j, with any other vector. As long as ‖d≤jq ‖ is not below our

threshold ε, we can start accumulating a similarity value for a new candidate (line 8 of

Algorithm 4).

We use the lesser of rs3 and rs4 for our remscore bound. While rs3 can at times

be a tighter bound than rs4, we estimate that most of the time rs4 will provide a

better prefix similarity estimate. At some index p, the two bounds are computed as

rsp3 =
∑p

j=1 dq,j ĉwj and rsp4 =
√∑p

j=1 dq,jdq,j . For most values, ĉwj � dq,j , especially

given the decreasing maximum value ordering of the vectors, which will likely lead to

rsp3 > rsp4.

Similar to MMJoin, we push a verification step into the candidate generation portion

of our algorithm. Based on Equation 4.4, after each accumulation operation, we check

whether adding the estimated exclusive prefix similarity,
〈
d<q ,d

<
c

〉
= ‖d<jq ‖‖d<jc ‖, to

the accumulated score will be enough to meet the threshold (line 10 of Algorithm 4). If

this check fails, we cease accumulating dc and move to the next candidate.

4.2.4 Candidate Verification

We introduce a new type of candidate pruning, based on the pscore bound we computed

during indexing, which we call pscore filtering. At the end of the candidate generation

stage, the accumulator A[dc] contains a partial dot-product,
〈
dq,d

>
c

〉
. Recall that the

pscore bound estimated the dot-product between the prefix of dc and any other vector

in the dataset,
〈
d≤c , ·

〉
. We stored this estimate at the end of indexing dc and use it here

for candidate verification, for an estimate of
〈
d≤c ,dq

〉
. If the sum of the accumulated

score and the estimate falls below ε, the candidate is discarded (line 15).

We adopt the dpscore bound introduced by Awekar and Samatova, and provide

several enhancements, similar in spirit to the positioning filtering idea of Xiao et al [6].

We efficiently compute the dot-product of dq with candidates by pre-hashing the values

in dq (we store them in a map data structure). In addition, we choose to also hash prefix

maximum and prefix sum values of dq at each position j where dq,j > 0, which aid in
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strengthening the dpscore bound. Once the first common feature p is found between

dq and d≤c (line 18), the following possible dpscore variants can be used,

〈
dq,dc

〉
≤ A[dc] + min(‖dq‖∞‖d≤c ‖1, ‖d≤c ‖∞‖dq‖1), (4.5)〈

dq,dc
〉
≤ A[dc] + min(‖d≤pq ‖∞‖d≤pc ‖1, ‖d≤c ‖∞‖dq‖1), (4.6)〈

dq,dc
〉
≤ A[dc] + min(‖dq‖∞‖d≤pc ‖1, ‖d≤c ‖∞‖d≤pq ‖1), (4.7)〈

dq,dc
〉
≤ A[dc] + min(‖d≤pq ‖∞‖d≤pc ‖1, ‖d≤c ‖∞‖d≤pq ‖1). (4.8)

Similar enhancements are possible for Bayardo’s L2AP bound. By hashing prefix

maximum and prefix size values in addition to the values of dq, we can utilize the

following bounds once the first common feature p between dq and d≤c is found,

〈
dq,dc

〉
≤ A[dc] + min(‖dq‖0, ‖d≤c ‖0)‖dq‖∞‖d≤c ‖∞, (4.9)〈

dq,dc
〉
≤ A[dc] + min(‖dq‖0, ‖d≤pc ‖0)‖d≤pq ‖∞‖d≤pc ‖∞, (4.10)〈

dq,dc
〉
≤ A[dc] + min(‖d≤pq ‖0, ‖d≤pc ‖0)‖dq‖∞‖d≤pc ‖∞, (4.11)〈

dq,dc
〉
≤ A[dc] + min(‖d≤pq ‖0, ‖d≤pc ‖0)‖d≤pq ‖∞‖d≤pc ‖∞. (4.12)

Note that Equations 4.5 and 4.9 can be used before finding the first common feature

p. One could also try the cheaper bound in Equation 4.5 or Equation 4.9 (line 17),

followed by one of the position-based bounds in case of failure (line 20). Equations 4.8

and 4.12 provide the tightest bounds among their respective variants, since ‖d≤pq ‖∞ ≤
‖dq‖∞, ‖d≤pq ‖1 ≤ ‖dq‖1, and ‖d≤pq ‖0 ≤ ‖dq‖0. A similar proof as provided by Awekar

and Samatova (Section 4.4 in [43]), showing that Equation 4.5 provides a better bound

than Equation 4.9, can be constructed to show the superiority of Equation 4.8 for

candidate pruning, making it the best of the eight proposed L2AP bounds.

If a candidate passes these initial checks, we compute the full dot-product of its

remaining prefix with the query vector (lines 21-24). After each accumulation, how-

ever, we use our `2-norm based prefix similarity estimate to further prune unpromising

candidates (lines 23-24). Surviving candidates have their final similarity value checked

against the threshold ε and are added to the result M if they meet it.
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4.2.5 Approximate ε-NNG Construction

Using Bayesian inference, BayesLSH finds the probability that the similarity of two

candidates is above the threshold ε, conditional on the observed event of LSH hash

matches. Additionally, it can estimate the similarity value and the probability that the

estimate is within δ of the true similarity. Satuluri and Parthasarathy provide a way

to tractably perform inference for the Jaccard and cosine similarity functions applied

to both binary and weighted vectors. BayesLSH-Lite is a less expensive variant of the

algorithm that, after examining a fixed number of hashes h, uses the first probability

estimate to prune candidates, with a theoretically guaranteed maximum false negative

rate r. It then computes the exact similarity value for un-pruned candidate pairs.

This strategy has been shown effective, outperforming both AllPairs and LSH. The

remaining details of BayesLSH and BayesLSH-Lite are beyond the scope of this thesis

and can be found in [27].

We are interested in exact similarity values in our problem, so we combine our algo-

rithm with BayesLSH-Lite to form an approximate variant, L2AP-a. In Algorithm 4, we

replace `2-norm based candidate verification (lines 21-24) with BayesLSH-Lite filtering

applied to a pair of vectors dq and dc (lines 6-14 in Algorithm 2 of [27]). We then

complete accumulation and similarity threshold checking for un-pruned candidates. Us-

ing BayesLSH-Lite at this point allows us to take advantage of most of our pruning

strategies before resorting to approximate estimation. While L2AP-a may over-prune in

this step, it will provide exact similarity values for the neighbors it finds.

4.3 Choice of Pruning Strategies

Our strategy, so far, has been to improve and provide new similarity bounds that can

lead to better index reduction, candidate generation, and candidate pruning. Many of

the bounds we proposed come with the added cost of more hashing or bound computa-

tions. In some cases, this cost may outweigh the benefit of a somewhat smaller candidate

set or fewer full dot-products being computed. For example, using Equation 4.6 or 4.7

instead of 4.8 for the L2AP bound has the benefit of less hashing, while still being a

tighter bound than the one in Equation 4.5. With these thoughts in mind, we built our

prototypes, L2AP and L2AP-a, with the ability to choose, at compile time, the pruning



44

strategies to employ. This gives us the added benefit of being able to check the effective-

ness of individual pruning bounds. Table 4.1 summarizes some of the choices available

for each bound in our prototype. The symbols bx, szx, and rsx refer to the respective

pscore, minsize, and remscore bounds described in this thesis. We use dp1 − dp8 to

reference the L2AP pruning choices in Equations 4.5 through 4.12. The index construc-

tion stage is noted as i.c. We note `2-norm filtering at the candidate generation (c.g.)

and verification (c.v.) stages of the algorithm as l2cg and l2cv, respectively. We will

use this notation to specify pruning strategies in Section 4.4.

Table 4.1: Pruning strategies in L2AP.
Stage Bound Bound Choices

i.c. pscore b1, min(b1, b2), min(b1, b3)
c.g. minsize sz1, sz3

remscore rs1, rs2, rs3, rs4, min(rs1, rs2),min(rs1, rs4),min(rs3, rs4)
`2-norm l2cg

c.v. pscore ps
dpscore {dp1, dp5}+{dp2, dp3, dp4, dp6, dp7, dp8}, dp1 → dp8
`2-norm l2cv

4.4 Experimental Evaluation for Cosine ε-NNG Construc-

tion

Our cosine ε-NNG construction experiment results are organized along two directions.

First, we test the effectiveness of the pruning bounds we described in Section 4.2 and

compare them against the previously introduced bounds. Then, we test the efficiency

of our methods in comparison to several baselines.

4.4.1 Baseline Approaches

We compare L2AP and L2AP-a against the following baseline approaches.

1. IdxJoin is a straight-forward baseline that first builds a full inverted index. Then,

without performing any pruning, it uses the index to compute exactly the simi-

larity of each vector with all preceding vectors in the dataset.
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2. AllPairs is a state-of-the-art approach for solving the APSS problem proposed

by Bayardo et al. [8], which we detailed in Section 4.1.

3. MMJoin enhances AllPairs by adding length filtering and a tighter minsize bound.

These enhancements are also detailed in Section 4.1.

4. AllPairs +BayesLSH-Lite and LSH +BayesLSH-Lite are state-of-the-art approx-

imate methods proposed by Satuluri and Parthasarathy [27], variants of BayesLSH

that take as input the candidate set generated by AllPairs and LSH, respectively.

They compute the similarity values exactly but may not return all nearest neigh-

bors. They have been shown to significantly outperform LSH, which we do not

include in the comparison.

4.4.2 Pruning Effectiveness

We evaluated the effectiveness of `2-norm filtering in L2AP, comparing against previously

proposed filtering strategies. First, we provide a summary of our findings. Overall, the

newly proposed indexing and pruning bounds were more effective than previous ones.

The pscore bound used during indexing resulted in much smaller indexes, with the

highest reduction in the number of indexed values at ε = 0.5. For some datasets, L2AP

indexed less than 50% of the non-zero values that were indexed by previous methods.

Similarly, the new remscore bounds lead to fewer objects being considered as can-

didates, in some cases L2AP accumulating similarity scores for less than 30% of the

candidate objects considered by other methods. We found that both the reductions

in the number of indexed features and candidates were not as pronounced for network

datasets.

Our pscore candidate filtering strategy as well as the `2-norm based filtering bounds

checked in the candidate generation and verification stages of L2AP proved to be effective

strategies for eliminating false positive candidates, leading to the majority of candidates

being pruned before computing their full dot-product. On the other hand, we found

minsize and dpscore pruning strategies less effective. The minsize bounds had no

effect for the text based datasets we experimented with. While they pruned some can-

didates in network datasets, we found that the same candidates were generally pruned

by `2-norm bounds even when minsize pruning was not used. Similarly, even though
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dpscore bounds were effective at pruning some candidates, we did not observe great

improvements in efficiency as a result of that pruning.

Effectiveness of the new pscore bound for indexing
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Figure 4.2: Index size reduction in L2AP vs. previous methods.

A smaller pscore bound at each threshold ε leads to Algorithms 1 and 3 starting

the indexing process later, thus smaller inverted indexes. We proposed that our `2-norm

based prefix similarity estimate is more effective at lowering this bound than previous

strategies. Figure 4.2 shows the index sizes achieved using the pscore bound in L2AP,

MMJoin, and the original bound in AllPairs. As expected, the pscore bound in L2AP

produces significantly smaller indexes than previous bounds. While the bound in MMJoin

achieves similar index sizes at high values for ε, it degrades to the performance of the

AllPairs bound as ε→ 0.5. Orkut is the only dataset for which our `2-norm bound is

unable to reduce the index size further than the pscore bound in AllPairs, for ε < 0.7.
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Figure 4.3: Candidate pool sizes when using different remscore bounds.

Effectiveness of the new remscore bound for candidate generation

In Section 4.2.3, we estimated that our proposed remscore bound, rs4, is tighter than

our enhanced version of the bound proposed by Bayardo et al., rs3. To verify this

intuition, we counted, during the algorithm execution, how many times rs3 vs. rs4

was the minimum value in min(rs3, rs4) (line 8 of Algorithm 4). For this test we used

parameters that minimized candidate generation (min(b1, b3), sz3), and only counted

when a new candidate was being generated, i.e. when min(rs3, rs4) ≥ ε and A[dc] = 0.

The results, which are detailed in Table 4.2, confirmed our estimation. Our new bound,

rs4, was the minimum, averaged over all similarity values, over 97.6% of the times that

the remscore bound was checked for a new candidate. This suggests that L2AP can

be effective, and possibly more efficient, using only the `2-norm part of the remscore

bound, i.e. rs4 ≥ ε instead of min(rs3, rs4) ≥ ε in line 8 of Algorithm 4.

In another test, we compared the effectiveness of the new remscore bounds, rs3, rs4

and min(rs3, rs4), against previous bounds rs1 (AllPairs) and min(rs1, rs2) (MMJoin),
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Table 4.2: Performance comparison of the rs3 and rs4 bounds.
Dataset % Dataset %

RCV1 99.82 Wiki 99.53
WW-500k 99.47 Twitter 98.75
WW-100k 98.05 Orkut 97.61

by counting the number of candidates being generated when using the same indexing

strategy as in AllPairs (b1). We did not use any additional pruning or index reduction

in this test. Figure 4.3 shows the candidate pool sizes achieved when using the different

remscore bounds. The enhanced version of Bayardo’s bound, rs3 (almost covering the

AllPairs line in the figure), is unable to reduce the number of candidates much more

than the AllPairs bound. On the other hand, rs4 significantly outperforms both rs3

and the bound in MMJoin, resulting in significant reductions in the candidate pool size.

The minimum of the two bounds, min(rs3, rs4), is covered by rs4 in the figure.

Effectiveness of the new `2-norm filtering
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Figure 4.4: Number of dot-products and total time with and w/o `2-norm filtering.

The `2-norm based similarity estimation in L2AP is the most effective of our pruning
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strategies. We have already shown, in Section 4.4.2, that it greatly reduces the size of the

inverted index being constructed. We now evaluate the effectiveness of `2-norm based

pruning in the candidate generation and candidate verification stages of our algorithm.

For this test, we did not use the `2-norm during index construction, leveraging only the

AllPairs bound (b1) for this step. We tested a baseline with no `2-norm filtering, then

add it in the candidate generation stage (l2cg), and in the candidate verification stage

(l2cv) of the algorithm. We record, under each scenario, the number of full dot-products

(number of candidates that were not pruned) and total execution time.

As can be seen in Figure 4.4, `2-norm filtering in L2AP is able to drastically reduce

the number of dot-products being computed, at times by several orders of magnitude.

We find that the majority of the pruning happens in the candidate generation step, and

most of the cost associated with this bound is in the initial computation of the prefix

magnitude, ‖d≤‖, which is stored in the index or hashed. Thus, we find little difference

in execution times when enabling `2-norm filtering in the c.v. stage in addition to the

c.g. stage.

Effectiveness of the new pscore bound for candidate pruning

We compared our algorithm’s execution with and without pscore filtering, measuring

the number of unpruned dot-products and total execution time, under two experimental

scenarios. In the first, we used AllPairs bounds in the index reduction and candidate

generation stages (b1, rs1), allowing pscore filtering to be most productive. The pscore

in this test is based primarily on the dot-product estimate with the maximum possible

vector in the dataset, and does not take advantage of the `2-norm based prefix similarity

estimate. We note this baseline without pscore filtering as base1 in Figure 4.5, and

the results of this experiment with pscore filtering as pscore1. In a second experiment,

we enabled the most pruning possible in the i.c. and c.g. stages of the algorithm

(min(b1, b3), min(rs3, rs4), and l2cg), and no other pruning during the c.v. stage. The

pscore here takes advantage of the `2-norm based prefix similarity estimate computed

during indexing. We note this baseline without pscore filtering as base2, and the result

with pscore filtering as pscore2.

As shown in Figure 4.5, pscore filtering is quite effective at reducing the number

of full dot-products, which results in significantly smaller execution times (up to 38%



50

1e+06

1e+07

1e+08

1e+09

1e+10

WW-100k# 
d

o
t-

p
ro

d
u

ct
s,

 lo
g

-s
ca

le
d

ε

base1
pscore1

base2
pscore2

1e+06

1e+07

1e+08

1e+09

1e+10

Wiki 

0

1000

2000

3000

4000

5000

6000

7000

8000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

WW-100k

to
ta

l t
im

e 
(s

)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

300

400

500

600

700

800

Wiki

Figure 4.5: Number of dot-products and total time with and w/o pscore filtering.

smaller). While its effectiveness is reduced when previous pruning occurs, as expected,

pscore filtering still reduces execution time by considerable amounts for text datasets.

Effectiveness of the new L2AP bounds for positional filtering

Figure 4.6 shows the number of full dot-products and total execution time when pruning

using each of the dp bounds we proposed. For this test, we employed maximal index

reduction and candidate generation pruning (min(b1, b3), min(rs3, rs4), and l2cg), and

only dp pruning during candidate verification. We also included a baseline in which no

dp pruning was used (no dp).

As predicted, dp4 is able to achieve the best reduction in the number of full dot-

products. However, it requires the most hashing and can sometimes lead to longer

execution times than other dp bounds. Overall, the amount of pruning achieved using

the various dp bounds only leads to modest reductions in the execution time.
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Figure 4.6: Number of dot-products and total time when using different L2AP bounds.

We also tested combinations of dp bounds, as noted in Table 4.1. Overall, we have

found the best dp pruning strategy to be dp5 + dp6 for most datasets. While this

strategy is not able to forego as many dot-product computations as dp4, it does not

require computing and storing vector prefix sums, a source of delay in dp1− dp4. When

testing dp pruning in concert with other filtering strategies at the candidate verification

stage, we found that, for high similarity values, dp pruning is overshadowed by `2-norm

and pscore pruning, and becomes ineffective.

A word on the minsize bound

Similar to Bayardo et al., we implement inverted lists as arrays and lazily remove vectors

pruned by the minsize bound, only from the beginning of the lists. Using this strategy,

we found that size filtering provided little additional pruning over the other strategies,

and in most cases slowed down the overall computation.
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4.4.3 Execution Efficiency

In this section, we compare the total execution time of L2AP in relation to exact and

approximate baselines. Figures are best viewed in color.

Comparison with exact baselines

In the previous section, we noted the effectiveness of the individual L2AP pruning strate-

gies proposed in this chapter. Each pruning strategy comes with additional bounds

computation and checking costs, and leads to efficient similarity search only when it is

highly effective at reducing the index size, pruning candidates, or stopping accumulation

early for false positive candidates. Combining strategies is not always straight-forward,

as pruning in one stage of the algorithm can affect the effectiveness of bounds in later

stages. We found the most efficient combination of pruning strategies across datasets

and similarity thresholds to be `2-norm enhanced index construction (min(b1, b3)), `2-

norm based candidate generation (rs4, l2cg), and `2-norm and L2AP filtering in the

candidate verification stage (ps, dp5, dp6, l2cv). We use this pruning strategy across all

datasets and similarity thresholds as representative of our algorithm, L2AP.

Figure 4.7 shows the total execution times for L2AP and the other exact baselines,

IdxJoin, AllPairs, and MMJoin. We also include results for L2AP∗, in which we choose

the best performing pruning strategy for each dataset and similarity threshold combi-

nation. L2AP∗ will then always perform as well as or better than L2AP. However, L2AP

performs almost as well as it could, given optimal pruning choices. For text datasets,

the two schemes have nearly identical timings, the line for L2AP in Figure 4.7 almost

completely hiding the one for L2AP∗, and their differences are rather small for the other

datasets.

L2AP is able to outperform exact baselines in most cases and achieves significant

speedups, up to 1600x against AllPairs, and 2x-13x in general over the best exact

baseline. Its best performance is at high similarity thresholds, showing its usefulness in

tasks such as near-duplicate object detection. In particular, L2AP was able to find pages

with nearly the same link profiles among 1.8M English Wikipedia pages in 10 seconds.

The most drastic performance difference is between L2AP and AllPairs or IdxJoin at

ε = 0.99. L2AP’s much smaller index and effective candidate pruning strategies allow
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Figure 4.7: Total execution times for exact algorithms.

it to finish the similarity search in a few seconds, while AllPairs and IdxJoin spend

hours to accomplish the same task. An interesting observation is that our straight-

forward IdxJoin baseline, which does no pruning and fully computes vector similarities,

outperforms AllPairs in several datasets. This shows that excessive bounds checking

which does not lead to enough pruning can be detrimental in similarity search.

MMJoin uses similar index reduction and pruning strategies as L2AP, and is able to

achieve comparable performance at high similarity thresholds. L2AP’s `2-norm filtering

is shown more effective than MMJoin’s length filtering, however, especially at low simi-

larity thresholds. While MMJoin degrades to the same efficiency as AllPairs at ε = 0.5,

L2AP is able to finish the task an order of magnitude faster for text datasets.

Link datasets present different challenges, often having much smaller vector and

inverted list sizes than text datasets. This limits the effectiveness of the type of prun-

ing that filtering APSS methods utilize. The smaller dimensionality and varied term

usage within documents lead to longer inverted lists and better pruning potential in
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text datasets. While the speedup is not as dramatic as for text datasets, the pruning

strategies in L2AP are effective for link datasets also, achieving up to 4.7x speedup. As

Bayardo et al. have also noted [8], Orkut has an artificial 1000 friend limit that prevents

highly frequent features, leading to the least possibility of improvement for L2AP over

prefix-filtering baselines.

Comparison with approximate baselines
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Figure 4.8 shows the total execution times for L2AP and L2AP-a as compared with

the other approximate baselines. First of all, it is interesting to note that, while their

execution times are often close, L2AP outperforms L2AP-a in most cases. L2AP is able to

prune most candidates before the approximate BayesLSH-Lite candidate pruning step

in L2AP-a. The remaining pruning is not enough to outweigh the cost associated with

LSH hashing or Bayesian inference in BayesLSH-Lite.
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Figure 4.9: L2AP speedup over competing methods.

Figure 4.9 gives a different view into the total time comparison, showing speedups

obtained by L2AP against both exact and approximate baselines. We executed L2AP-a

with the same pruning parameters we used for L2AP, other than l2cv, which is replaced

by BayesLSH-Lite pruning. In addition, we tested a version in which L2AP was used

only for candidate generation, and BayesLSH-Lite was used for candidate verification

and pruning, similar to LSH+BayesLSH-Lite and AllPairs+BayesLSH-Lite. We denote

this version in the Figure as L2AP+BayesLSH-Lite.

L2AP generally outperforms approximate baselines, especially at low similarity thresh-

olds. LSH+BayesLSH-Lite outperforms L2AP only for the WW-100k and Twitter datasets,

and only at similarity values above 0.6. For other datasets, such as Wiki and Orkut,

LSH+BayesLSH-Lite was not able to finish APSS at low similarities in the time allotted

(48 hours). LSH degrades quickly for high dimensional datasets and as ε decreases, pro-

ducing large candidate pools that cannot be pruned fast enough even by BayesLSH-Lite.

In contrast, L2AP performs well for all datasets and for both high and low similarity
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thresholds, and returns all similar enough object pairs after the search.

4.5 Tanimoto ε-NNG Construction

We now describe our algorithm that can be used to exactly compute pairwise Tanimoto

similarities with a minimum value of ε. First, we describe how a bound on the length of

indexed vectors can be efficiently integrated into an inverted index APSS approach. We

then show how bounds on the cosine similarity of non-negative real-valued vectors can

be used to achieve additional pruning. Finally, we introduce new theoretic bounds on

the Tanimoto similarity that rely on partially computed dot-products of vectors, and we

show how our method can efficiently use these bounds to eliminate object comparisons.

4.5.1 A Basic Indexing Approach

One approach to find neighbors for a given query object that has been reported to

work well in the similarity search literature [8, 15, 18, 43, 49, 53, 54] has been to use an

inverted index, which makes it possible to avoid computing similarities between the

query and objects that do not have any non-zero features in common with it. As noted

in Section 4.1, a map-based data structure, called an accumulator [16], can be used

to compute the dot-product of the query with all objects encountered while iterating

through the inverted lists for non-zero features in the query. We call an object that

has a non-zero accumulated dot-product a candidate. Using precomputed lengths for

the object vectors, the dot-products of all candidates can be transformed into Tanimoto

similarities according to Equation 2.22, and those coefficients at or above ε can be stored

in the output.

One inefficiency with this approach is that it does not take advantage of the com-

mutativity property of the Tanimoto similarity, computing sim(dq, dc) both when ac-

cumulating similarities for dq and for dc. To address this issue, Bayardo et. al [8]

have suggested building the index dynamically, adding the query vector to the index

only after finding its neighbors. This ensures that the query is only compared against

previously processed objects in a given processing order. While we followed the same

approach in designing L2AP (see Section 4.2), we now suggest a different approach that



57

is in general equally efficient, due to the configuration of memory hierarchy in proces-

sors today. Given an object processing order, we first re-label each document to match

the processing order, then build the inverted index fully, adding objects to the index in

the processing order. The result will be inverted lists sorted in non-decreasing order of

document labels. Then, when iterating through each inverted list, we can stop as soon

as the encountered document label is greater or equal to that of the query. Since the

document label will have already been read from memory to perform the accumulation

operation and will be resident in the processor cache, the additional check against the

value of the query label will be very fast, and will be hidden by the latency associated

with loading the next cache line from memory.

Kryszkiewicz [20] has shown that some of the candidate vectors whose lengths are

either too small or too large compared to that of the query cannot be its neighbors and

can thus be ignored. A candidate dc cannot be a neighbor of a query object dq if its

length ‖dc‖ falls outside the range [(1/α)‖dq‖, α‖dq‖], where ‖dq‖ is the length of the

query vector and

α =
1

2

(1 +
1

ε

)
+

√(
1 +

1

ε

)2

− 4

 . (4.13)

In Section 4.5.3, we show this bound is actually the limit of a new class of Tanimoto

similarity bounds we introduce in this thesis. Here, we will show how candidate length

pruning can be efficiently integrated into our basic indexing approach.

A candidate object will be encountered as many times in the index as it has non-zero

features in common with the query. To avoid checking its length against that of the

query each time, we could use a data structure such as a map or bit vector to mark

when a candidate has been checked. While checking this data structure may be less

computationally demanding than a multiplication and a comparison, it can actually be

slower if the number of candidates is high and the data structure does not fit in the

processor cache. A better alternative would be to process objects in non-decreasing

vector length order. By re-labeling objects as discussed earlier, objects whose lengths

are too small will be potentially found at the beginning of the inverted lists, while

objects whose lengths are too big will be automatically ignored, as they will come after

the query object in the processing order. Note also that, for an object dc following dq
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in the processing order,
1

α
‖dc‖ ≥

1

α
‖dq‖,

since ‖dc‖ ≥ ‖dq‖ and both vector lengths and α are non-negative real values. As such,

the label of the maximum candidate that can be ignored will be non-decreasing. Our

approach thus uses a list of starting points, one for each inverted list and updates the

starting point of a list each time a new candidate whose length is too small is found in

it.

Algorithm 5 TAPNN inverted index approach.

1: function TAPNN-1(D, ε)
2: A← ∅ . accumulator
3: S ← ∅ . list starts
4: N ← ∅ . set of neighbors
5: Compute and store vector lengths for all objects
6: Permute objects in non-decreasing vector length order
7: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
8: for each j = 1, . . . ,m s.t. dq,j > 0 do . Indexing
9: Ij ← Ij ∪ {(dq, dq,j)}

10: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
11: Find label dmax of last object that can be ignored
12: for each j = 1, . . . ,m s.t. dq,j > 0 do
13: for each k = S[j], . . . , |Ij | do
14: (dc, dc,j)← Ij [k]
15: if dc ≤ dmax then
16: S[j]← S[j] + 1
17: else if dc ≥ dq then
18: break
19: else . Accumulation
20: A[dc]← A[dc] + dq,jdc,j

21: for each dc s.t. A[dc] > 0 do . Verification
22: Scale dot-product in A[dc] according to Equation 2.22
23: if A[dc] ≥ ε then
24: N ← N ∪ (dq, dc, A[dc])

25: return N

Algorithm 5 provides a pseudo-code sketch for our basic inverted index based ap-

proach. The method first permutes objects in non-decreasing vector length order and

indexes them. Then, for each query object in the processing order, the maximum object

dmax satisfying (1/α)‖dmax‖ < ‖dq‖ is identified. When iterating through the jth in-

verted list, TAPNN avoids objects in the list whose lengths have already been determined
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too small by starting the iteration at index S[j], which is incremented as more objects

are found with small lengths. At the end of the accumulation stage, the accumulator

contains full dot-products between the query and all objects that could be its neighbors.

For each such object, the algorithm computes the Tanimoto similarity using the dot-

product stored in the accumulator, and adds the object to the result set if its similarity

meets the threshold.

4.5.2 Incorporating Cosine Similarity Bounds

As we have discussed at length in Section 4.2, a number of recent methods have been

devised that use similarity bounds to efficiently solve the cosine similarity APSS prob-

lem. Moreover, Lee et al. [15] have shown that, for non-negative vectors and the same

threshold ε, the set of Tanimoto neighbors of an object is actually a subset of its set of

cosine neighbors. This can be seen from the formulas of the two similarity functions.

T(di, dj) =

〈
di,dj

〉
‖di‖2 + ‖dj‖2 −

〈
di,dj

〉
C(di, dj) =

〈
di,dj

〉
‖di‖‖dj‖

Given a common numerator, it remains to find a relationship between the denominators

in the two functions. Since, for any real valued vector lengths, (‖di‖ − ‖dj‖)2 ≥ 0, it

follows that,

‖di‖2 + ‖dj‖2 − 2‖di|‖‖dj‖ ≥ 0,

‖di‖2 + ‖dj‖2 −
〈
di,dj

〉
≥ ‖di‖‖dj‖,

where the last equation follows by applying the Cauchy-Schwarz inequality, which states

that
〈
di,dj

〉
≤ ‖di‖‖dj‖. As a result, the following relationships can be observed

between the cosine and Tanimoto similarities of two vectors,

T(di, dj) ≤ C(di, dj),

T(di, dj) ≥ ε⇒ C(di, dj) ≥ ε,

C(di, dj) < ε⇒ T(di, dj) < ε.
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One can then solve the Tanimoto APSS problem by first solving the cosine APSS prob-

lem and then filtering out those cosine neighbors that are not also Tanimoto neighbors.

Given the computed cosine similarity of two vectors and stored vector lengths, the

Tanimoto similarity can be derived as follows.

T(di, dj) =

〈
di,dj

〉
‖di‖‖dj‖

‖di‖2+‖dj‖2−
〈
di,dj

〉
‖di‖‖dj‖

=
C(di, dj)

‖di‖2+‖dj‖2
‖di‖‖dj‖ − C(di, dj)

(4.14)

Note that,

(‖di‖+ ‖dj‖)2 ≥ 0⇒ ‖di‖
2 + ‖dj‖2

‖di‖‖dj‖
≥ 2,

which provides a higher pruning threshold when searching for cosine neighbors given a

Tanimoto similarity threshold ε,

T(di, dj) ≥ ε⇒
C(di, dj)

2− C(di, dj)
≥ ε⇒ C(di, dj) ≥

2ε

1 + ε
= t (4.15)

Recall that, unlike the Tanimoto similarity, cosine similarity is length invariant.

Vectors can thus be normalized as a pre-processing step, which reduces cosine similarity

to the dot-product of the normalized vectors. This step, in fact, reduces the number

of floating point operations needed to solve the problem, and is standard in cosine

APSS methods. Note that the method outlined in Algorithm 5 can also be applied to

normalized vectors, adding only a normalization step before indexing and replacing the

scaling factor in line 22, using Equation 4.14 instead of Equation 2.22.

In Section 4.2, we described a number of cosine similarity bounds based on the `2-

norm of prefix or suffix vectors that have been found to be more effective than previous

known bounds for solving the cosine APSS problem. It may be beneficial to incorporate

this type of filtering in our Tanimoto APSS method. However, some of the bounds

we used in L2AP rely on an object processing order different than the one we proposed

for TAPNN. We therefore use only `2-norm based bounds that are processing order

independent. This allows our method to still take advantage of the vector length based

filtering described in Section 4.5.1. In the remainder of this section, we will describe

the `2-norm based filtering in TAPNN.



61

As shown in Section 4.2.1, the prefix dot-product can be upper-bounded by the

length of the prefix vector, 〈
d̂≤pq , d̂c

〉
≤ ‖d̂≤pq ‖. (4.16)

Another bound on the prefix dot-product can be obtained by considering the maximum

values for each feature among all normalized object vectors. Let fj denote the vector of

all feature values for the jth feature within the normalized vectors, and mx the vector

of maximum such feature values for each dimension, defined as,

fj = (d̂1,j , d̂2,j , . . . , d̂n,j),

mx = (‖f1‖∞, ‖f2‖∞, . . . , ‖fm‖∞).

Then, 〈
d̂≤pq , d̂c

〉
=

m∑
l=1

dq,ldc,l ≤
m∑
l=1

dq,lmxl = 〈d̂≤pq ,mx〉. (4.17)

Combining the bounds in Equation 4.16 and Equation 4.17, we obtain a bound on the

prefix similarity of a vector with any other object in D, which we denote by ps≤pq ,

〈
d̂≤pq , d̂c

〉
≤ ps≤p = min(‖d̂≤pq ‖, 〈d̂≤pq ,mx〉). (4.18)

We define ps<pq analogously.

Algorithm 6 describes how we incorporate cosine similarity bounds within our method.

We use the ps bound to index only a few of the non-zeros in each object. Note that, if

ps<pq < t, with t defined as in Equation 4.15 and pd<pq , and an object dc has no features

in common with the query in lists Ij , p ≤ j ≤ m, then its cosine similarity to the

query will be below t, and its Tanimoto similarity will then be below ε. Conversely, if〈
d̂>pq , d̂c

〉
> 0, the candidate may potentially be a neighbor. By indexing values in each

query vector starting at the index p satisfying ps≤pq ≥ t, and then iterating through the

index and accumulating, the non-zero values in the accumulator will contain only the

suffix dot-products,
〈
d̂q, d̂

>
c

〉
, where d>c represents the indexed suffix for the candidate

dc. This portion of the method can be thought of as candidate generation (CG), and

is similar in scope to the screening phase of many compound search methods in the

chemoinformatics literature. Our method uses the un-indexed portion of the candidate,
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Algorithm 6 TAPNN with cosine bounds.

1: function TAPNN-2(D, ε)
2: A← ∅, S ← ∅, N ← ∅
3: t← 2ε/(1 + ε)
4: Compute and store vector lengths for all objects
5: Permute objects in non-decreasing vector length order
6: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
7: Normalize dq
8: for each j = 1, . . . ,m s.t. d̂q,j > 0 and ps≤pq ≥ t do

9: Ij ← Ij ∪ {(dq, d̂q,j , ‖d̂<jq ‖)} . Indexing

10: Store ps<q

11: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
12: Find label dmax of last object that can be ignored
13: for each j = m, . . . , 1 s.t. d̂q,j > 0 do . CG
14: for each k = S[j], . . . , |Ij | do
15: (dc, dc,j)← Ij [k]
16: if dc ≤ dmax then
17: S[j]← S[j] + 1
18: else if dc ≥ dq then
19: break
20: else if A[dc] > 0 or ps≤jq ≥ t then

21: A[dc]← A[dc] + d̂q,j d̂c,j
22: Prune if A[dc] + ‖d̂<jq ‖‖d̂<jc ‖ < t

23: for each dc s.t. A[dc] > 0 do . CV
24: Prune if A[dc] + ps<c < t

25: for each j = m, . . . , 1 s.t. d̂≤c,j > 0 and dq,j > 0 do

26: A[dc]← A[dc] + d̂q,j d̂c,j
27: Prune if A[dc] + ‖d̂<jq ‖‖d̂<jc ‖ < t

28: Scale dot-product in A[dc] according to Equation 4.14
29: if A[dc] ≥ ε then
30: N ← N ∪ (dq, dc, A[dc])

31: return N

d≤c , to complete the dot-product computation during the verification stage, before the

scaling and threshold checking steps. We call this portion of the method, which is

akin to the verification stage in other chemoinformatics methods, candidate verification

(CV).

As in L2AP, we use a non-increasing inverted list size order for indexing features,

which heuristically leads to shorter lists in the inverted index. The partial indexing

strategy presented here improves the efficiency of our method in two ways. First, objects
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that have non-zero values in common with the query only in the un-indexed set of query

features will be automatically ignored. Our method will not encounter such an object

in the index when generating candidates for the query and will thus not accumulate

a dot-product for it. Second, the verification stage will require reading from memory

only those sparse vectors for un-pruned candidates, iterating through fewer non-zeros

in general than exist in the un-indexed portion of all objects.

We use the ps bound in two additional ways to improve the pruning effectiveness of

our method. First, when encountering a new potential object in the index during the

CG stage (A[dc] = 0), we only accept it as a candidate if ps≤jq ≥ t. This is equivalent

to the remscore bound in L2AP. Note that we process index lists in reverse feature

processing order in the CG and CV stages. Thus, A[dc] contains the exact dot-product〈
d̂q, d̂

>j
c

〉
. Therefore, if A[dc] = 0 and ps≤jq < t, the candidate cannot be a neighbor of

the query object. Second, as a first step in verifying each candidate, we check whether

ps<c , added to the accumulated suffix dot-product, meets the threshold t. The value ps<c

is an upper bound of the dot-product of the un-indexed prefix of the candidate vector

with any other vector in the dataset. Thus, the candidate can be safely pruned if the

check fails.

We check the prefix `2-norm bound (l2cg and l2cv bounds in L2AP) after each ac-

cumulation operation, in both the CG and CV stages of the algorithm. The objects

cannot be neighbors if the accumulated suffix dot-product, added to the upper bound

‖d̂<jq ‖‖d̂<jc ‖ of their prefix dot-product, cannot meet the threshold t. We have tested

a number of additional candidate verification bounds described in the literature based

on vector number of non-zeros, prefix lengths, or prefix sums of the vector feature val-

ues, but have found them to be less efficient to compute and in general less effective

than our described cosine pruning in a variety of datasets. The interested reader may

consult [8, 15,18,43] for details on additional verification bounds for cosine similarity.

4.5.3 New Tanimoto Similarity Bounds

Up to this point, we have used pruning bounds based on the lengths of the un-normalized

vectors and prefix `2-norms of the normalized vectors to either ignore outright or stop

considering (prune) those objects that cannot be neighbors for a given query. We will

now present new Tanimoto-specific bounds which combine the two concepts to effect
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additional pruning. First, we will describe a bound on the prefix length of an un-

normalized candidate vector, which we use during candidate generation. Then, we will

introduce a tighter bound for the un-normalized candidate vector length than previously

described in [58] which takes advantage of cosine similarity estimates in our method.

A bound on the prefix length of an un-normalized candidate vector

Recall that the dot-product of a query with a candidate vector can be de-composed

as the sum of its prefix and suffix dot-products, which can be written as a function of

the respective normalized vector dot-products as,

〈
dq,dc

〉
=
〈
d≤pq ,dc

〉
+
〈
d>pq ,dc

〉
=
〈
d̂≤pq , d̂c

〉
‖d≤pq ‖‖dc‖+

〈
d̂>pq , d̂c

〉
‖d>pq ‖‖dc‖.

For an object that has not yet become a candidate (A[dc] = 0),
〈
d̂>pq , d̂c

〉
= 0, simpli-

fying the expression to,

〈
dq,dc

〉
=
〈
d̂≤pq , d̂c

〉
‖d≤pq ‖‖dc‖.

From the expression T(dc, dq) ≥ ε, substituting the Tanimoto formula in Equation 2.22,

we can derive,

〈
dq,dc

〉
≥ ε

1 + ε

(
‖dq‖2 + ‖dc‖2

)
‖d≤pq ‖ ≥

ε

1 + ε

‖dq‖2 + ‖dc‖2

‖dc‖
〈
d̂≤pq , d̂c

〉
‖d≤pq ‖ ≥

ε

1 + ε

‖dq‖2 + ‖d1‖2

‖dq−1‖ ps≤jq
(4.19)

Equation 4.19 replaces the prefix dot-product
〈
d̂≤pq , d̂c

〉
with the ps upper bound, which

represents the dot-product of the query with any potential candidate. Furthermore,

taking advantage of the pre-defined object processing order in our method, we replace

the numerator candidate length by that of the object with minimum length (the first

processed object, d1) and the denominator candidate length with that of the object with

maximum length (the last processed object, dq−1). Since ‖d1‖2 ≤ ‖dc‖2, ‖dq−1‖ ≥ ‖dc‖,
and ps≤jq ≥

〈
d̂≤pq , d̂c

〉
, the inequality holds.
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We use the bound in Equation 4.19 during the candidate generation stage of our

method as a potentially more restrictive condition for accepting new candidates. It com-

plements the ps bound in line 20 of Algorithm 6, which checks whether new candidates

can still be neighbors based only on the prefix of the normalized query vector. Once the

prefix length of the query un-normalized vector falls below the bound in Equation 4.19,

objects that have not already been encountered in the index can no longer be similar

enough to the query.

A tighter bound for the un-normalized candidate vector length

Let β = ‖dc‖/‖dq‖, and, for notation simplicity, s =
〈
d̂q, d̂c

〉
= C(di, dj). Given

T(dq, dc) ≥ ε, and the pre-imposed object processing order (i.e. ‖dq‖ ≥ ‖dc‖), we derive

β as a function of the cosine similarity of the objects,

T(dq, dc) =
s‖dq‖‖dc‖

‖dq‖2 + ‖dc‖2 − s‖dq‖‖dc‖
≥ ε

ε‖dc‖2 − s(1 + ε)‖dc‖‖dq‖ − ε‖dq‖2 ≤ 0

εβ2 − (1 + ε)sβ − ε ≤ 0

β =
s(1 + ε)

2ε
+

√(
s(1 + ε)

2ε

)2

− 1 =
s

t
+

√(s
t

)2
− 1 (4.20)

Replacing s with any of the upper bounds on the cosine similarity we described

in Section 4.5.2, the bound in Equation 4.20 allows us to prune any candidate whose

length is less than ‖dq‖/β. Note that, for s = 1, which is the upper limit of the

cosine similarity of non-negative vectors, β = α, which is the bound introduced by

Kryszkiewicz [20] for length-based pruning of candidate vectors. Thus, in the presence

of an upper bound estimate of the cosine similarity for two vectors, our bound provides

a more accurate estimate of the minimum length a candidate vector must have to

potentially be a neighbor for the query.

In Algorithm 7, we present pseudo-code for the TAPNN method, which includes all

the pruning strategies we described in Section 4.5. The symbol EQ4.19 in line 12 refers

to checking the query prefix vector length, according to Equation 4.19.

While our bound β for the un-normalized candidate vector length could be checked

each time we have a better estimate of the cosine similarity of two vectors, after each
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Algorithm 7 The TAPNN algorithm.

1: function TAPNN(D, ε)
2: Lines 2 – 10 in Algorithm 6
3: for each q = 1, . . . , |D| s.t. ‖dc‖ ≤ ‖dq‖ ∀c ≤ q do
4: Find label dmax of last object that can be ignored
5: for each j = m, . . . , 1 s.t. d̂q,j > 0 do . CG
6: for each k = S[j], . . . , |Ij | do
7: (dc, dc,j)← Ij [k]
8: if dc ≤ dmax then
9: S[j]← S[j] + 1

10: else if dc ≥ dq then
11: break
12: else if A[dc] > 0 or [ps≤jq ≥ t and EQ4.19] then

13: A[dc]← A[dc] + d̂q,j d̂c,j
14: Prune if A[dc] + ‖d̂<jq ‖‖d̂<jc ‖ < t

15: for each dc s.t. A[dc] > 0 do . CV
16: Prune if A[dc] + ps<c < t
17: Compute β given s = A[dc] + ps<c
18: Prune if ‖dc‖β < ‖dq‖
19: Find first j s.t. d̂≤c,j > 0 and dq,j > 0

20: A[dc]← A[dc] + d̂q,j d̂c,j
21: Prune if A[dc] + ‖d̂<jq ‖‖d̂<jc ‖ < t

22: Compute β given s = A[dc] + ‖d̂<jq ‖‖d̂<jc ‖
23: Prune if ‖dc‖β < ‖dq‖
24: for each j = . . . , 1 s.t. d̂≤c,j > 0 and dq,j > 0 do

25: A[dc]← A[dc] + d̂q,j d̂c,j
26: Prune if A[dc] + ‖d̂<jq ‖‖d̂<jc ‖ < t

27: Scale dot-product in A[dc] according to Equation 4.14
28: if A[dc] ≥ ε then
29: N ← N ∪ (dq, dc, A[dc])

30: return N

accumulation operation, it is more expensive to compute than the simpler prefix `2-

norm cosine bound. We thus check it only twice for each candidate object, first after

computing the cosine estimate based on the candidate ps bound (line 17), and again

after accumulating the first un-indexed feature in the candidate (line 22). We have

found this strategy works well in practice.
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4.6 Experimental Evaluation for Tanimoto ε-NNG Con-

struction

Our Tanimoto ε-NNG construction experiment results are organized along several di-

rections. First, we compare the efficiency of our method against existing baselines,

demonstrating up to an order of magnitude improvement. Then, we analyze the effec-

tiveness of the new Tanimoto pruning bounds in TAPNN, showing that they provide a

significant performance benefit. Finally, we analyze the scaling characteristics of our

method when dealing with increasing amounts of data.

4.6.1 Baseline Approaches

We compare our methods against the following baselines.

• IdxJoin [18] is a straight-forward baseline that does not use any pruning when com-

puting similarities. IdxJoin uses an accumulator data structure to simultaneously

compute the dot-products of a query object with all other objects, iterating through

the inverted lists corresponding to features in the query. While in L2AP experiments

the method was used to compute dot-products of normalized vectors (see Section 4.4),

here we apply the method on the un-normalized vectors. Resulting Tanimoto similar-

ities are computed according to Equation 2.22 using previously stored vector norms.

Then, those similarities below ε are removed.

• L2AP [18] (see Section 4.2) solves the all-pairs problem for the cosine similarity, rather

than the Tanimoto similarity. As shown in Section 4.5.2, the Tanimoto all-pairs result

is a subset of the cosine all-pairs result. After executing the L2AP algorithm, we use

Equation 4.14 and previously stored vector norms to compute the Tanimoto similarity

of all resulting object pairs and filter out those below ε.

• MMJoin [15] is a filtering based approach to solving the all-pairs problem for both the

cosine and Tanimoto similarities. The Tanimoto solution relies on efficiently solving

the cosine similarity all-pairs problem using pruning bounds based on vector lengths

and the number of non-zero features in each vector.

• MK-Join is an algorithm we designed using the Tanimoto similarity pruning bounds

described by Kryszkiewicz in [20] and [58]. MK-Join uses an accumulator to compute
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similarities of each query against all candidates found in the inverted lists associated

with features present in the query. However, MK-Join processes inverted lists in a

different order, in non-increasing order of the query feature values. By following this

order, Kryszkiewicz has shown in [58] that the method can safely stop accepting

new candidates once the squared norm of the partially processed query vector (i.e.

setting values of unprocessed features to 0) falls below t = 1 − ( 2ε
1+ε)

2. A candidate

dc is ignored if its length ‖dc‖ falls outside the range [(1/α)‖dq‖, α‖dq‖], where α is

defined as in Equation 4.13.

4.6.2 Execution Efficiency

The main goal of our method is to efficiently solve the Tanimoto APSS problem. We

compared TAPNN against the baselines described in Section 4.6.1, for ε ranging between

0.6 and 0.99. Figure 4.10 displays our timing results for each method on four datasets.

In each quadrant, smaller times indicate better performance. Note that the y-scale has

been log-scaled.

The results show that TAPNN significantly outperformed all baselines, by up to an

order of magnitude. Speedup of TAPNN versus the next best method ranged between 3.0–

8.0x for text datasets, and 1.2–12.5x for chemical datasets. Speedup against IdxJoin,

which is similar to a linear search and does not employ any pruning ranged between

8.3–3981.4x for text data and 1.5–519x for chemical data, highlighting the pruning

performance of our method, especially for high values of ε.

The best performing baseline in general was L2AP, which employs similar cosine

based pruning but does not take advantage of un-normalized vector lengths in its filter-

ing. We previously showed that L2AP outperformed MMJoin for the cosine APSS task

(see Section 4.4). Our results show that it also outperformed MMJoin for Tanimoto

APSS, in all experiments. MK-Join was not competitive against L2AP and MMJoin for

ε ≥ 0.8 for chemical datasets and in general for text datasets. In fact, it performed

worse than IdxJoin for the Patents dataset, and only slightly better in general. The

Patents dataset has a high average vector size and low average index list size, which

may have contributed to the poor performance of MK-Join. The results show that the

strategy of cosine filtering applied to the Tanimoto APSS problem, which is employed in

different ways by TAPNN, L2AP, and MMJoin, works quite well for both text and chemical
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Figure 4.10: Efficiency comparison of TAPNN vs. baselines.

datasets.

4.6.3 Pruning Effectiveness

As a way to test the pruning effectiveness of the new Tanimoto length bounds introduced

in Section 4.5.3, we compared execution times of TAPNN with two versions of the program

which did not take advantage of these bounds. While both programs implement the

length based pruning described in Section 4.5.1, TAPNN-c filters cosine neighbors using

the threshold ε, while TAPNN-t employs the tighter cosine filtering bound from Equa-

tion 4.15. Figure 4.11 shows the outcome of this experiment, displaying the execution

times of TAPNN and the the two comparison baselines on four datasets. Note that the

execution times are log-scaled. Smaller values indicate better performance.



70

100

101

102

103

Patents RCV1
100

101

102

103

104

0.6 0.7 0.8 0.9 0.99
ε

101

102

103

104

MLSMR
0.6 0.7 0.8 0.9 0.99

ε

SC-1M
102

103

104

105

TAPNN-c

TAPNN-t

TAPNN

ti
m

e
 (

s
),

 l
o
g

-s
c
a
le

d

Figure 4.11: Effect of Tanimoto bounds on search efficiency.

The results of our experiments indicate that the newly introduced bounds are effec-

tive at improving search performance, achieving up to 5.8x speedup against TAPNN-t and

13.3x speedup against TAPNN-c. Chemical datasets exhibit higher relative performance

improvement at high thresholds, but much lower as ε→ 0.6.

4.6.4 Scaling

As a way to understand the scalability of our method and baselines, we executed each

method on three random subsets from the SC dataset, containing 100K, 500K, and 1M

compounds, respectively, and measuring execution time for ε ranging between 0.6 and

0.99. Figure 4.12 (left) shows the results of this experiment. As the problem size was

increased, TAPNN maintained a similar advantage over the next best alternative, L2AP.

On the other hand, the performance gap between L2AP and MMJoin, as well as between
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MK-Join and IdxJoin, increased as the problem size was increased.
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Figure 4.12: Execution time scaling given increasing problem size.

We also tested TAPNN with high similarity thresholds on SC subsets ranging from

500K to 11.5M compounds. Figure 4.12 (right) plots the execution times of TAPNN for

datasets with at least 1M compounds. Additionally, Table 4.3 presents results for all four

datasets, for ε ∈ {0.95, 0.975, 0.99, 0.999}. The columns ∆n, ∆z, and ∆t show relative

increases in number of objects, number of non-zeros, and search time, respectively,

for corresponding ε values, versus the next smaller dataset. For example, the SC-5M

dataset has ∆n = 5.00, ∆z = 4.52, and ∆t = 26.05 at ε = 0.999, which means that

SC-5M has 5x more compounds, 4.52x more non-zeros, and executed 26.05x slower than

SC-1M at ε = 0.999. The results show a strong correlation between the increase in the
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problem size and the search performance in TAPNN. Moreover, the relative performance

gap was very similar for the different ε values, not showing any significant degradation

with decreasing ε values. As a near-duplicate detection tool, given ε = 0.999, TAPNN was

able to search the entire 11.5M compound SC dataset in a little over an hour, and a 5M

subset of the compounds in less than 13 minutes, highlighting its effective pruning and

efficient search capabilities.

Table 4.3: Execution time scaling given increasing problem size.
dataset ε time (s) ∆n ∆z ∆t
SC 0.999 4,188.06 2.30 2.55 6.51
SC 0.99 41,099.14 2.30 2.55 7.11
SC 0.975 139,887.44 2.30 2.55 7.32
SC 0.95 (371,520.00) 2.30 2.55 (7.23)
SC-5M 0.999 642.93 5.00 4.52 26.05
SC-5M 0.99 5,778.79 5.00 4.52 27.41
SC-5M 0.975 19,122.77 5.00 4.52 24.96
SC-5M 0.95 51,396.57 5.00 4.52 24.12
SC-1M 0.999 24.68 2.00 2.00 3.78
SC-1M 0.99 210.83 2.00 2.00 4.51
SC-1M 0.975 766.03 2.00 2.00 4.34
SC-1M 0.95 2,130.45 2.00 2.00 4.47
SC-500k 0.999 6.53
SC-500k 0.99 46.78
SC-500k 0.975 176.55
SC-500k 0.95 476.55

Each section of the table shows ε-NNG construction times for a different size subset of the SC
dataset, given 4 values of ε. The columns ∆n, ∆z, and ∆t show relative increases in number of
objects, number of non-zeros, and search time, respectively, for corresponding ε values, versus
the next smaller dataset in the following section in the table. Note that the time for the SC
experiment at ε = 0.95 is estimated. The experiment was 95% complete when it was
terminated at the end of 4 days (96 hours).



Chapter 5

Serial k-NNG Construction

In this chapter, we introduce L2Knng [21], which addresses the exact cosine similarity

k-NNG construction problem by effectively pruning much of the similarity search space.

5.1 Cosine k-NNG Construction

The L2Knng algorithm consists of two distinct steps. In the first step, it uses a fast

method that identifies, for each object, k similar objects that may not necessarily be

the k nearest neighbors. In the second step, it scans over all the objects and progressively

updates the k most similar objects of each object. Specifically, while processing a query

object dq, L2Knng updates the k nearest neighbors of all previously processed objects by

taking into account their similarity to the query object. At the same time, it updates the

k most similar objects of the query object by considering its similarity to the preceding

objects. Since the second step potentially considers all pairs of objects, the final set of

the k most similar objects for each object are guaranteed to be their k nearest neighbors.

The key to L2Knng’s efficiency stems from the following: (i) It uses an index data

structure that enables it to quickly find potential neighbors, while pruning some that

do not have enough features in common with the object being indexed. (ii) When

searching for neighbors, it uses several vector similarity theoretic bounds to filter out

many of the potential neighbors found by traversing the index. (iii) It uses a block

processing strategy, which leads to efficient traversal of the inverted index lists and

additionally improves the effectiveness of the pruning bounds. (iv) Finally, the initial

73



74

approximate k-NNG built in its first step is instrumental towards effective indexing and

pruning in L2Knng.

5.1.1 Approximate Graph Construction

L2Knng-a is the inexact k-NNG construction method used by L2Knng to build an initial

approximate graph. It consists of two steps. First, it builds a set of initial neighbor-

hoods, relying on the idea that high-weight features count heavily towards the similarity

of two vectors [37, 84]. Then, given that an object’s neighbor’s neighbor is also likely

their neighbor [36,85], it iteratively enhances the k-NNG by looking for new candidates

in each neighbor’s neighborhood.

The first step is achieved as follows. For each object di, L2Knng-a builds a list of up

to µ (µ ≥ k) candidates, choosing among those objects that have features in common

with di until there are no more features to check or µ candidates were found. It then

computes the exact similarities of all candidates with di and adds the objects with the

top k values to di’s initial neighborhood.

The choice of candidate objects is crucial to obtaining an approximate graph that

is close to the exact k-NNG. L2Knng-a pre-processes input vectors to have unit length

and uses an inverted index to identify candidate objects with common features with

di. As a heuristic way to prioritize high-weight common features, it sorts the features

in each vector in decreasing weight order, and sorts each of the lists in the inverted

index in decreasing order of feature weights. L2Knng-a then traverses two index lists

at a time, in decreasing order of their associated weights in di. From the two lists, it

chooses the candidate dc with the higher prefix dot product, which is more likely to be

a true neighbor.

In the second step, L2Knng-a executes up to γ iterative neighborhood enhancement

updates, in which, for each object di, its current neighborhood is updated by taking into

account its similarity to some of the objects that are neighbors of its neighbors. This is

done as follows. L2Knng-a traverses di’s neighborhood in decreasing order of its neighbor

similarities. Given some neighbor dj , it then traverses its neighborhood, in decreasing

order of dj ’s neighbor similarities, to identify potential neighbors for di. Avoiding objects

that are already in di’s neighborhood or have di in their neighborhood, L2Knng-a greedily

chooses as candidates only those neighbor’s neighbors dk with a similarity value greater
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or equal than that between the query vector and its neighbor, sim(dj ,dk) ≥ sim(di,dj),

and limits the size of the candidate list to be µ. L2Knng-a then computes similarities

between di and candidates, updating both relevant neighborhoods with the results. We

use δ as an early termination parameter, stopping iterations early if less than δk|D|
neighborhood changes occurred in an update.

Our strategy for choosing candidates in the first step improves upon the work of

Park et al. [37] by limiting, for each object, the number of computed similarities. High

quality candidates are greedily chosen from few inverted index lists. The neighborhood

enhancement step improves upon the work of Dong et al. [36] in two ways. First, it

ensures an upper bound on the number of similarity computations and prioritizes those

candidates more likely to improve the neighborhood. Second, the enhancement steps

will probably converge faster and to higher recall, as the input neighbors likely have

higher similarity values than the randomly chosen neighbors in their method.

5.1.2 Filtering

L2Knng uses a similar filtering framework as the one described for L2AP in Section 4.2.

However, there is a key difference between the filtering solutions to the two problems.

ε-NNG construction seeks to prune object pairs with a similarity below a threshold ε,

while L2Knng filters those pairs that cannot improve k-neighborhoods. These distinct

goals lead to very different pruning bounds in the two methods. The threshold ε is an

input to the ε-NNG construction problem. In the k-NNG construction problem, ε could

be chosen to be the minimum neighborhood similarity σdi among all objects in the true

k-NNG, which is unknown and would nonetheless be a suboptimal filtering choice while

constructing the k-NNG. Instead, we devise better bounds, detailed in the remainder of

this section, that can be used in each stage of the method to safely prune object pairs

that cannot be a part of the true k-NNG.

Indexing

L2Knng uses information in the approximate k-NNG to prune some object pairs by

indexing only a subset of the features in each object. In each iteration, L2Knng needs

to identify among the previously processed objects those whose neighborhoods can be

updated by including the query object dq. Similar to L2AP, L2Knng builds the index
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incrementally, delaying the indexing of dq until after its processing. Future potential

neighbors can only improve dq’s neighborhood if their similarity with dq is higher than

the minimum similarity in dq’s neighborhood, σdq . Therefore, L2Knng indexes objects

until their suffix `2-norm falls below its minimum neighborhood similarity σdq
1. As

shown in Section 4.2.1, given that all vectors in the dataset have unit length, based

on the Cauchy-Schwarz inequality, the suffix `2-norm of dq is an upper bound of the

similarity of dq’s suffix with any other object, including unprocessed objects in the set,

〈
d>jq , ·

〉
≤ ‖d>jq ‖‖ · ‖ ≤ ‖d>jq ‖.

The object processing order in L2Knng differs from the one in L2AP. Note that, since

indexing occurs after finding neighbors for an object, the query object dq must also be

identified when processing future objects if dq can improve their neighborhoods. L2Knng

thus fixes the object processing order based on the minimum similarities in the initial

approximate k-NNG it builds before processing objects. To see why this is necessary,

consider the following scenario. Let εdi be the minimum neighborhood similarity for

some object di at the time of its indexing (indexing threshold), which later may be

different than σdi . Consider indexing the object di at a threshold εdi and then processing

an object dj with a smaller minimum neighborhood similarity. If σdj ≤ sim(di,dj) < εdi ,

then di is no longer guaranteed to be found when processing dj , and dj ’s neighborhood

may be inexact at the end of the algorithm execution. Therefore, to ensure correctness,

objects must be indexed in a strictly non-decreasing indexing threshold order.

Algorithm 8 Indexing in L2Knng

1: function Index(dq, I, se, εdq )
2: b← 1
3: for each j = 1, . . . ,m, s.t. dq,j > 0 and

√
b ≥ εdq do

4: b← b− dq,jdq,j
5: Ij ← Ij ∪ {(dq, dq,j , ‖d>jq ‖)}
6: se[dq]← ‖d>jq ‖

1A keen observer will note that L2Knng indexes the prefix while L2AP indexes the suffix of each
object. Note also that the feature processing order in the candidate generation and verification stages
of the algorithm, as well as the initial feature sorting are reversed. We noted in Section 4.2 that other
methods, such as MMJoin [15] also follow this feature processing order. This does not affect the pruning
effectiveness of the bounds and is merely an implementation choice.
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Algorithm 8 details the indexing procedure in L2Knng. The prefix of a vector dq is

indexed while its suffix `2-norm, computed in b, is above or equal to our threshold εdq

(lines 3-5). The suffix `2-norm at each indexed feature (line 5) and the suffix `2-norm

of the un-indexed portion of dq (suffix estimate, line 6) are also stored, to be used in

other stages of the algorithm. We denote by d≤q the indexed prefix of object dq and by

d>q its un-indexed suffix.

Pruning the Search Space

A computed similarity can only improve the neighborhood of a query object dq if it

is above σdq . Furthermore, it can only improve neighborhoods of already processed

objects if it is greater than the minimum of all neighborhood similarities of indexed

objects. To keep track of this value, L2Knng could update a heap data structure each

time the neighborhood of an indexed object is improved, but we have found this affects

overall efficiency. Instead, L2Knng approximates this value by the minimum indexing

threshold among all indexed objects, denoted by it, which is strictly smaller than the

current minimum of all indexed objects’ neighborhood similarities. Using a similar idea

as during indexing, L2Knng only starts accumulating for an object dc while the query

suffix `2-norm is above the lower of these two bounds, min(it, σdq). Once the suffix `2-

norm falls below this threshold, only index values for objects with non-zero accumulated

partial dot-products are processed. Additionally, L2Knng uses the initial approximate

k-NNG and the current version of the k-NNG to bypass already computed similarities.

During both the candidate generation and verification stages, there is a further

opportunity for pruning when a common feature j is encountered between the query

and candidate vectors. To be useful, the final similarity value should improve the

neighborhoods of either the query or candidate objects. The accumulator contains the

exact similarity of the two prefix vectors, and the similarity of the suffix vectors can be

estimated, based on the Cauchy-Schwarz inequality, as upper bounded by the product

of their suffix `2-norms [18]. Thus, a candidate can be pruned if

A[dc] + ‖d>jq ‖‖d>jc ‖ < min(σdq , σdc).

L2Knng employs one additional pruning strategy during the candidate verification
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Algorithm 9 Searching for neighbors in L2Knng.

1: function FindNeighbors(dq, I, se, it, N̂ ,N )
2: r ← 1; A← ∅ . accumulator
3: A[dc]← ∅ for neighbors dc in N̂ and N
4: for each j = 1, . . . ,m, s.t. dq,j > 0 do . Candidate Generation
5: for each (dc, dc,j , ‖d>jc ‖) ∈ Ij do
6: if A[dc] > 0 or

[A[dc] 6= ∅ and
√
r ≥ min(it, σdq )] then

7: A[dc]← A[dc] + dq,jdc,j
8: if A[dc] + ‖d>jq ‖‖d>jc ‖ < min(σdq , σdc)

then
9: A[dc]← ∅

10: r ← r − dq,jdq,j
11: for each dc s.t. A[dc] > 0 do . Candidate Verification
12: next dc if A[dc] + se[dc] < min(σdq , σdc)
13: for each j s.t. d>c,j > 0 ∧ dq,j > 0 do
14: A[dc]← A[dc] + dq,jdc,j
15: if A[dc] + ‖d>jq ‖‖d>jc ‖ < min(σdq , σdc) then
16: next dc
17: Ndc ← Ndc ∪ {(dq, A[dc])} if A[dc] > σdc
18: Ndq ← Ndq ∪ {(dc, A[dc])} if A[dc] > σdq

stage. The se[dc] suffix estimate value that was stored when indexing the candidate dc

estimates the dot-product between the un-indexed portion of dc and any other vector in

the dataset, sim(d>c , ·). We use this value here as an estimate for the similarity between

the query and candidate suffix,
〈
dq,d

>
c

〉
. If the sum of the accumulated score and the

estimate falls below min(σdq , σdc), the candidate is discarded.

Having presented the different pruning bounds used in L2Knng, note that their ef-

fectiveness would be greatly reduced without first computing the initial approximate

k-NNG. First, indexing thresholds for unprocessed objects would be unknown, and

L2Knng would have to index all object features, missing an important pruning oppor-

tunity. Similarly, during a search, the algorithm would have to consider all possible

candidates with common features, as the minimum indexing threshold it would be 0.

Finally, the minimum neighborhood similarities of previously processed objects would

likely be smaller, leading to less object pairs being pruned and more neighborhood up-

dates. While L2Knng does not require the initial approximate graph to be computed

by L2Knng-a, an initial graph with high recall will lead to more effective pruning and

higher efficiency in constructing the exact graph.
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Algorithm 9 delineates the procedure used to find neighbors in L2Knng. The variable

r computes the suffix `2-norm of the query vector, which is used to prevent accumulat-

ing similarity for objects that cannot improve neighborhoods (line 6) in the candidate

generation stage. At the end of the verification stage, the accumulator contains the

exact similarity between the query and objects that survive pruning. These objects are

added to the candidate or query neighborhoods if they can improve them.

5.1.3 Block Processing

Algorithm 10 The L2Knng algorithm.

1: function L2Knng(D, k, µ, γ, δ, ν)
2: N̂ ←L2Knng-a (D, k, µ, γ, δ)
3: Reorder dimensions in non-decreasing frequency order
4: N ← N̂ ;
5: for each i = 1, 2, . . . , n do
6: εdq ← σdq , it← min(it, εdq )

7: Ij ← ∅, I ← I ∪ Ij , for j = 1, . . . ,m
8: for each i = 1, . . . , n s.t. εdq ≤ εdj , ∀j > i

do
9: FindNeighbors(dq, I, se, it, N̂ ,N )

10: Index(dq, I, se, εdq )

11: if i% |D|ν = 0 then

12: it← CompleteBlock(i, I, se, N̂ ,N , ν)

13: return N

Algorithm 10 gives an overview of L2Knng. The initial approximate graph k-NNG

(N̂ , line 2) bootstraps the search framework, providing the necessary processing order

for the main loop. As suggested by Bayardo et al. [8], we reorder dimensions in all

vectors in non-decreasing object frequency order as a heuristic way to minimize the

inverted index size.

The index keeps growing as more and more objects are processed. The minimum

indexing threshold it defined by the initial k-NNG is likely very small, causing the

majority of objects in the index to become candidates for each subsequent query. While

many candidates will later be eliminated based on pruning bounds that take advantage of

continuously updated neighborhood similarities, the delayed pruning can lead to slower

execution. L2Knng improves the indexing threshold by periodically “flushing“ the index.

After completing the k-NNG construction for the already indexed objects, the index
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can be discarded, speeding up future candidate generation and providing an improved

minimum indexing threshold it. Neighborhood construction can be finalized for a block

of objects by executing FindNeighbors for all un-processed vectors, without indexing

them. L2Knng then uses the updated minimum neighborhood similarities of unprocessed

objects to define a new processing order. Given a number of blocks parameter ν, L2Knng

finalizes a block of indexed objects after processing every |D|/ν objects.

5.2 Experimental Evaluation for Cosine k-NNG Construc-

tion

Our cosine k-NNG construction experiment results are organized along two directions.

First, we test L2Knng-a against approximate baselines, comparing recall and execu-

tion times given different candidate list sizes, and testing their efficiency returning a

neighborhood graph that is at least 95% accurate. Second, we evaluate the runtime and

memory scalability of L2Knng as the number of input objects increases, and its efficiency

as opposed to exact baselines.

5.2.1 Baseline Approaches

We compare our methods against the following baselines.

• kIdxJoin is a straight-forward baseline similar to IDX in [37] that first builds a full

inverted index. Then, without performing any pruning, it uses the index to compute

exactly, via accumulation, the similarity of each object with all other objects in the

set, returning the top-k matches for each query object.

• kL2AP solves the k-NNG problem by executing similarity searches using L2AP [18]. We

modified L2AP to allow specifying a set of input query vectors. Then, as we iteratively

reduce the search threshold ε, we provide as input only those objects with incomplete

neighborhoods.

• BMM refers to the docID-oriented with variable block sizes version of the Block-Max

Maxscore method by Dimopoulos et al. [62]. The method splits inverted lists into

blocks and uses maximum scores for postings in each block to prune the similarity

search space. We adapted the method for cosine similarity ranking and chose the
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same block sizes as in their paper. Blocks were stored in compressed form, using

PForDelta compression [86].

• Maxscore is an in-memory implementation of the max score information retrieval

algorithm [64], as described by Dimopoulos et al. in [62], adapted to rank based on

cosine similarity.

• Greedy Filtering is a state-of-the-art approach for solving the approximate k-NNG

construction problem applied to sparse weighted vectors, proposed by Park et al. [37].

• NN-Descent was designed by Dong et al. [36] to work with generic similarity measures

and has been shown effective at solving the approximate k-NNG construction problem

in both sparse and dense datasets.

While LSH has been a popular method for top-k search, it does not perform well in the

k-NNG construction setting. Both Greedy Filtering and NN-Descent have been shown

to outperform LSH when applied to this problem, for k typically ≥ 10. Additionally,

L2AP outperformed LSH in the related APSS problem. As we will show in Section 5.2.3,

L2Knng significantly outperforms kL2AP, the k-NNG method based on L2AP, as well as

Greedy Filtering and NN-Descent. As a result, we have chosen not to compare against

LSH in this work.

5.2.2 Evaluation of Approximate Methods

Candidate pool size parameter analysis

The efficiency of all the approximate methods under consideration are dependent on

the number of candidates they are allowed to consider for each object, µ. The larger

the candidate pool is, the more likely the true neighborhood is found among the ob-

jects in the pool. We compare the recall and execution time of L2Knng-a with other

approximate baselines, given the same candidate list and neighborhood size parame-

ters, µ and k. We tested each method, without changing any other parameters, given

µ = k, 2k, . . . , 10k, on the RCV1-400k and WW200-250k datasets. We tested L2Knng-a

with γ = 0 (L2Knng-a0), which does not execute any iterative neighborhood updates,

and with γ = 3 (L2Knng-a3).
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Figure 5.1: Recall and execution time of approximate methods given increasing candi-
date pool sizes.

Figures 5.1 and 5.22 plot recall versus execution time for our experiment results.

Figure 5.1 on the left contains all the results. For a better comparison of the remaining

methods, Figure 5.2 leaves out results for the NN-Descent method. For all methods,

results for µ = k are marked with a “-” label, and those for µ = 10k with a “+” label.

The best results are those points in the lower-right corner of each quadrant in the figure,

achieving high recall in a short amount of time. We display results for k ∈ {50, 100}.
Results for other k values showed similar trends.

Methods generally exhibit higher recall and higher execution time for larger µ values.

NN-Descent took considerably more time than all the other methods to complete the

graph construction. L2Knng-a0 takes much less time to execute than Greedy Filtering

2The experiment results we published in [21] contained results for the NN-Descent baseline that were
accidentally executed in parallel, with 8 threads, instead of serially. Since our methods and all other
baselines are serial programs, we have re-executed the affected experiments, using the same version of
the NN-Descent library (v. 1.2) and on the same computing environment as we used for the experiments
in [21].
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Figure 5.2: Recall and execution time of approximate methods except NN-Descent given
increasing candidate pool sizes.

and, given large enough µ, can achieve similar or higher recall. Both L2Knng-a and

Greedy Filtering require larger µ values than NN-Descent to achieve high recall. Yet,

NN-Descent does not improve much as µ increases. L2Knng-a3 is able to outperform

both competitors, with regards to both time and recall, for large enough µ.

L2Knng-a efficiency

In this work, we focused on building the exact k-NNG. While approximate methods

cannot easily achieve perfect recall, we compared their efficiency when seeking a close

approximation of the true k-NNG. We executed each approximate method under a wide

range of parameters and report the smallest time for which a minimum recall value of

0.95 was achieved. Figure 5.3 presents execution times for the approximate methods,

for four of the datasets. Results for the other datasets were similar. We also include the

times for our exact variant, L2Knng, as comparison. We were not able to achieve high

enough recall for NN-Descent for the WW200 dataset. As such, NN-Descent results are
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Figure 5.3: Approximate k-NNG construction efficiency.

not included in the upper left quadrant of the figure. In each quadrant of the figure,

smaller values represent better results. Note that the total time values (y-axis) are

log-scaled.

L2Knng-a was more efficient than all baselines in all experiments. For problems where

perfect recall is not needed, L2Knng-a can provide a close approximation in much less

time. NN-Descent performed poorly on the WW datasets. This may be explained by the

much higher dimensionality and mean row length of the WW datasets as compared to

the RCV1 datasets, which can lead to repeated inclusion of objects in computationally

expensive NN-Descent local joins. In contrast, L2Knng-a uses several strategies that

limit the number of computed dot-products. It builds a higher quality initial graph than

NN-Descent, prioritizes candidate inclusion, and sets a hard limit on the candidate list

size in each iterative update.
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5.2.3 Evaluation of Exact Methods

Initial graph influence

While the final recall for an L2Knng execution is 1.0, our method uses an initial approxi-

mate graph N̂ as a guide in its k-NN search. A graph N̂ with high recall provides L2Knng

with higher minimum neighborhood similarity values, which translate into tighter prun-

ing bounds and leads to fewer full vector dot-products being computed (smaller scan

rate) and faster runtime. We tested the influence of the initial graph quality in three

scenarios on the RCV1-400k and WW200-250k datasets. In the first scenario (random),

we generated an initial graph by randomly picking k neighbors for each object from the

set of objects with which they shared at least one feature in common. In the second

scenario (fast), we chose parameters that ensure fast execution, without guaranteeing

high recall (µ = k, γ = 1). We executed the search using 10 completion blocks in both

scenarios (ν = 10). Finally, we include for comparison the best results we achieved after

a parameter search (best).
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Figure 5.4: Initial graph influence over L2Knng efficiency.

Figure 5.4 presents our experiment results. The top of the figure shows, for each

k value, the recall of the initial graph for the two tested datasets. The middle and
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bottom of the figure show, for each k value, the candidate rate and execution time after

completing the exact k-NNG construction. The results emphasize the importance of the

initial graph quality in L2Knng. The initial graph N̂ for the random test case had recall

0.018 and 0.009 on average across all k values for the RCV1-400k and WW200-250k

datasets, respectively. The recall was 0.496 and 0.628 in the fast and 0.883 and 0.929

in the best test cases. These better initial graphs translate into both lower candidate

rates and smaller execution times. The fast case performed similarly to the best case,

showing that L2Knng can be used with reasonable parameter values and does not require

extensive parameter tuning.

Parameter sensitivity

The parameters µ, γ, and ν can influence the effectiveness and efficiency of our exact

and approximate algorithms. Larger values for µ increase the number of candidates

considered for building the initial graph and will likely lead to increased recall for this

stage. Similarly, higher γ values translate to more iterations of initial neighborhood

enhancement, at the cost of more similarity computations. Increasing ν values can

lead to improved candidate generation pruning and faster index traversal, at the cost

of reading vectors in unprocessed blocks several times to find similarities with indexed

vectors. There is a trade-off between the benefit of more efficacious pruning bounds and

the time taken to achieve them.

We executed parameter sensitivity experiments on the RCV1-400k and WW200-250k

datasets, for k ∈ {25, 50, 75, 100}. In each experiment, we fixed two of the parameters

and varied the third. In the first experiment, given γ = 0, and ν = 10, we varied

µ between 100 and 1000. In the second experiment, given µ = 300, and ν = 10, we

varied γ between 0 (no initial neighborhood enhancement) and 10. Finally, to verify the

sensitivity of the number of blocks parameter, ν, given µ = 300, and γ = 1, we varied

ν between 1 and 500.

Figures 5.5 and 5.6 show the results of our experiments testing the sensitivity of

L2Knng to different values of µ and γ. As expected, the recall value grows when either µ

or γ are increased. While the rise is sharp at first, it levels off quickly as the parameter

values get larger, showing that the most benefit is gained from checking a relatively

small number of initial candidates and executing few rounds of initial neighborhood
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Figure 5.5: L2Knng µ parameter sensitivity.

enhancement. In general, the best results we obtained after parameter tuning were

executed with 1 ≤ γ ≤ 3 and 300 ≤ µ ≤ 500. The execution time was not greatly

affected as we increased the values of µ or γ, showing that L2Knng is not very sensitive

to these parameter choices.

Figure 5.7 shows the execution times from experiments measuring the sensitivity of

L2Knng to ν. The results show that increasing the number of blocks ν initially leads to

improved performance for all k values. While the improvement is more drastic at first,

ν values greater than 50 do not improve the results much, and can eventually lead to

decreased efficiency.

Pruning effectiveness

L2Knng works by pruning the majority of the candidates that are not true neighbors.

Candidates can be pruned while checking the suffix `2-norm at a common feature during

the candidate generation stage (cg), during the candidate verification stage (cv), or after

checking the suffix estimate score (ses). Since a partial dot-product is accumulated
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Figure 5.6: L2Knng γ parameter sensitivity.

for each candidate before being pruned, it is important that candidates be pruned as

early as possible. In an experiment in which we used fast defaults for all parameters

(µ = k, γ = 1, ν = 10), we counted the number of candidates that were pruned in each

stage of the algorithm. Additionally, we display the number of candidates that survived

all pruning and had full dot-products computed (dps). Figure 5.8 shows the results of

this experiment for the RCV1-400k and WW200-250k datasets, as stacked bar charts

showing the number of candidates for each category.

Results show that the majority of objects are pruned soon after becoming candidates,

in the candidate generation stage (cg). Of the remainder, most are pruned by the

suffix estimate bound (ses), which is checked once, at the beginning of the candidate

verification stage, and by additional pruning in the candidate verification stage (cv).

On average, across all k values, 0.15% and 0.02% of candidates survived all pruning

for the RCV1-400k and WW200-250k datasets, respectively. A large number of objects

never become candidates in L2Knng, as a result of either the `2-norm based candidate

acceptance bound in the candidate generation stage of the algorithm, or due to the
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Figure 5.8: Candidate pruning in L2Knng.

prefix-filtering based index reduction. On average across all k values, only 38.17% and

88.66% of all potential candidates actually became candidates for the RCV1-400k and

WW200-250k datasets.

Scalability testing

As the dataset size increases, the exact k-NNG problem will take longer to solve, as

each object has more potential neighbors that have to be vetted. As a way to verify

scalability, we tested our methods on three subsets of the RCV1 and two subsets of the

WW200 datasets. For each data subset, Table 5.1 reports, for k ∈ {25, 50, 75, 100}, the

mean per-vector search time (top) and the maximum amount of memory used (bottom)
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Table 5.1: Execution time and memory scalability.

Mean search time (ms) L2Knng L2Knng-a
dataset # rows ∆sz k = 25 50 75 100 25 50 75 100
WW200-250k 250000 1.00 12.0 14.0 15.2 16.2 0.7 1.3 1.6 1.9
WW200 1017531 4.07 38.9 46.5 50.9 54.1 1.1 1.7 2.6 2.9
RCV1-100k 100000 1.00 1.0 1.3 1.5 1.7 0.1 0.2 0.2 0.3
RCV1-400k 400000 4.00 2.9 3.8 4.4 4.9 0.3 0.4 0.5 0.6
RCV1 804414 8.04 5.3 6.8 8.0 8.1 0.3 0.4 0.6 0.7

Memory usage (Gb) L2Knng L2Knng-a
dataset # rows ∆sz k = 25 50 75 100 25 50 75 100
WW200-250k 250000 1.00 8.9 9.5 10.0 10.6 7.2 7.8 8.4 9.0
WW200 1017531 4.07 35.9 38.2 40.5 42.8 29.1 31.7 34.0 36.4
RCV1-100k 100000 1.00 0.9 1.1 1.4 1.6 0.7 1.0 1.2 1.4
RCV1-400k 400000 4.00 3.5 4.4 5.3 6.2 2.9 3.8 4.7 5.6
RCV1 804414 8.04 7.0 8.8 10.6 12.4 5.8 7.7 9.5 11.3

for L2Knng and L2Knng-a. The ∆sz column shows the relative dataset size increase.

Parameters were tuned to achieve efficient execution, and, in the case of L2Knng-a, high

recall (95%).

The results show that the performance of both methods scales linearly compared

to the dataset size. As the dataset size increases, our two methods perform better

than they did for the smaller datasets (e.g., it takes much less than 8.04x the time of

searching RCV1-100k to search RCV1 for 100 neighbors), while using memory directly

proportional to the number of objects in the set.

Comparison with other methods

The primary goal of this work is the efficient construction of the exact k-NNG. Figure 5.9

presents execution times for the exact methods, for all six of the tested datasets. Note

that execution times are log-scaled, and lower values are preferred. The Maxscore and

BMM experiments on the WW200 and WW500 datasets were terminated early, after

executing for 5 days, which is more than twice the execution time of kIdxJoin for these

datasets. Additionally, Table 5.2 shows the average speedup, across all k values, of our

algorithms against the best time achieved by competing approximate (left) and exact

(right) methods.

L2Knng performed best among all exact methods, achieving over an order of magni-

tude improvement versus kIdxJoin for small values of k. The gap between our method

and kIdxJoin is more pronounced for larger datasets than for smaller ones. Speedup
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Figure 5.9: Exact k-NNG construction efficiency comparison.

of L2Knng vs. kIdxJoin ranged between 2.24–14.35x for small datasets (RCV1-100k,

RCV1-400k, WW200-250k) and between 3.5–28.15x for the larger datasets. The mini-

mum speedup for WW200, our largest tested dataset, was 7.07x.

While using a similar filtering framework as L2Knng, kL2AP performs poorly, at times

taking longer to execute even than kIdxJoin, which is equivalent to a brute-force search.

This may be due to repeated indexing in kL2AP and the size of its final index. As ε nears

0, even if we are only interested in finalizing a few neighborhoods, the inverted index

lists will contain the majority of values in the dataset, and traversing it will produce

many candidates. In contrast, L2Knng indexes each vector only once and uses block

completion as an effective strategy to improve pruning.

Maxscore and BMM performed worst among all exact methods, which may be ex-

plained by the length of the query vectors used in solving the k-NNG problem. The

methods were designed for short queries. They perform a sorting operation with each
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Table 5.2: Average speedup of L2Knng and L2Knng-a over the best alternative.

versus approx versus exact
dataset / method L2Knng L2Knng-a L2Knng L2Knng-a
WW200 0.32 9.60 5.57 178.01
WW200-250k 0.41 6.01 3.94 69.08
WW500 0.40 8.68 4.58 110.98
RCV1 0.09 0.87 6.18 61.79
RCV1-100k 0.33 2.19 4.11 27.86
RCV1-400k 0.17 1.19 5.41 40.24

Table 5.3: Execution time and scan rate for competing algorithms.

WW500 RCV1
result method / k 10 50 100 10 50 100
time: Greedy Filtering 1474.77 2885.28 4239.30 1527.78 2352.80 3809.80

NN-Descent 60666.94 28840.24 25134.13 1961.50 2099.79 2099.78
L2Knng-a 128.82 389.70 667.30 286.56 356.52 596.31
kIdxJoin 29017.40 29524.21 29243.90 44465.74 45200.67 44914.38
kL2AP 20948.63 19466.71 19588.10 18865.11 28028.41 37705.90
L2Knng 4104.41 6755.50 8340.02 3153.89 5439.14 6550.60

scan Greedy Filtering 0.0032 0.0061 0.0086 0.0031 0.0039 0.0049
rate: NN-Descent 0.7614 0.9813 0.8568 0.6875 0.6890 0.6914

L2Knng-a 0.0008 0.0026 0.0045 0.0022 0.0010 0.0018
kIdxJoin 1.0000 1.0000 1.0000 0.8951 0.8951 0.8951
kL2AP 0.4880 0.4997 0.5003 0.0060 0.0608 0.0017
L2Knng 0.0008 0.0025 0.0036 0.0004 0.0012 0.0013

Best results are emphasized in bold.

query and simultaneously traverse as many inverted lists as the number of features in

the query vector, which can lead to loosing cache locality. In contrast, our method

traverses one inverted list at a time and updates an accumulator in increasing index

order, which is much more cache friendly for long queries.

Table 5.3 presents timing and scan rate results for the three top performing exact

and approximate methods. As in Section 5.2.2, we report the smallest time for which

a minimum recall value of 0.95 was achieved for all approximate methods. We include

results for the WW500 and RCV1 experiments, for k ∈ {10, 50, 100}, and use bold

font to highlight the best result among approximate (top) and exact (bottom) methods,

which are separated in the table by a dashed line. L2Knng and L2Knng-a achieve the

lowest scan rates among the competing methods, highlighting the ability of L2Knng-a to
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find a quality approximate solution using few similarity comparisons and the pruning

ability of the L2Knng filtering framework. This, in turn, results in much lower execution

times, both for our approximate and our exact methods, than all alternatives.



Chapter 6

Parallel Nearest Neighbor Graph

Construction

In this chapter, we address multi-core parallel solutions for the exact ε-NNG and k-NNG

construction problems using cosine similarity as a way to compare objects. The filtering

framework we described in Section 4.1 is not trivial to parallelize. Awekar and Sama-

tova [76] provide the only existing filtering based exact multi-core parallel algorithm to

solve the ε-NNG construction problem, which we call pAPT. Their method is based on

an existing serial algorithm they developed, APT [43], and uses index sharing as a way

to allow threads to execute independent searches. As a way to better understand the

intricacies involved in extracting parallelism from the framework, we will first analyze

memory access patterns inherent in the computations in each stage of the framework.

Then, we will present our solutions for the parallel ε-NNG and k-NNG construction

problems.

6.1 Filtering Framework Memory Access Pattern Analysis

In this section, we analyze memory access patterns inherent in the computations in each

stage of the APSS filtering framework. Additionally, we highlight the pruning choices in

the APT algorithm by Awekar and Samatova [43] and in the L2AP algorithm we presented

in Section 4.2, on which the parallel algorithms described in the next section are based.

Table 6.1 provides a quick reference for these pruning choices.
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Table 6.1: Similarity estimates in APT/pAPT and L2AP/pL2AP.
bound stage estimate APT / pAPT L2AP / pL2AP

idx idx sim(d≤jq ,d>q)
〈
d≤jq ,mx≥q

〉
min(

〈
d≤jq ,mx≥q

〉
, ‖d≤jq ‖2)

sz c.g. min(‖dc‖0) (ε/‖dq‖∞)2 (ε/‖dq‖∞)2

rs sim(d≤jq ,d<q)
〈
d≤jq ,mx

〉
min(

〈
d≤jq ,mx

〉
, ‖d≤jq ‖2)

l2cg sim(d<jq ,d<jc ) – ‖d<jq ‖2‖d<jc ‖2
ps c.v. sim(dq,d

≤
c ) – min(

〈
d≤c ,mx≥c

〉
, ‖d≤c ‖2)

dps1 sim(dq,d
≤
c ) min(‖dq‖∞‖d≤c ‖1, ‖dq‖1‖d≤c ‖∞) min(‖dq‖0, ‖d≤c ‖0)‖dq‖∞‖d≤c ‖∞

dps2 sim(dq,d
≤
c ) – min(‖dq‖0, ‖d≤pc ‖0)‖d≤pq ‖∞‖d≤pc ‖∞

l2cv sim(d<jq ,d<jc ) – ‖d<jq ‖2‖d<jc ‖2
The vectors dq and dc represent the query and candidate objects, respectively. Prefix and suffix vectors are defined in Section 2.1.
The prefix vector ‖d≤c ‖ is the un-indexed portion of the candidate. The vector mx represents the max vector, containing the
maximum value for each feature in the dataset. Features in the max vector mx≥q are also upper-bounded by ‖dq‖∞. The
feature j represents a non-zero feature in the query and/or the candidate. The feature p is the last un-indexed candidate feature
in the feature processing order that the query also has in common.
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6.1.1 Indexing

Since lists in the inverted index are traversed each time a search is performed for a query

object, it is beneficial to index as few values as possible. Indexing is delayed in the APSS

framework until the similarity estimate of the query prefix with any unprocessed object

reaches the threshold ε. Any unprocessed neighbor, i.e., an object with a similarity of at

least ε with the query, is guaranteed in this way to have at least one feature in common

with the query object. Then, when that neighbor is processed, the query object will be

found while traversing the index.

The partial indexing of only suffix values in each query object improves computation

efficiency by limiting the number of non-zeros traversed when identifying neighbors for a

query object. In addition, it is an effective pruning strategy. Note that some objects may

not have any features in common with the query suffix. These objects are automatically

removed from consideration, without even starting to compare them to the query.

APT computes the prefix similarity estimate sim(d≤jq ,d>q), which we call the idx

bound, as the dot product between the query vector and the max vector, the vector

made up of all maximum feature values, denoted as mx. The estimate is improved by

processing objects in decreasing order of their maximum feature weights, and bounding

the max vector by the maximum feature weight in the query,

sim(d≤jq ,d>q)APT =
〈
d≤jq ,mx≥q

〉
, where,

mx≥q = 〈min(mx1, ‖dq‖∞), . . . ,min(mxm, ‖dq‖∞)〉.

In addition, L2AP uses the `2-norm of the query inclusive prefix ending at index j, ‖d≤jq ‖,
as an estimate of the query object similarity with any other object, which includes

unprocessed objects,

sim(d≤jq ,d>q)L2AP = min(
〈
d≤jq ,mx≥q

〉
, ‖d≤jq ‖2).

When indexing each query suffix non-zero value, L2AP also indexes additional meta-

data, such as the `2-norm of the query prefix and its maximum value, which are used in

future pruning. The similarity estimate of the un-indexed query prefix with unprocessed

objects is also stored, to be used during candidate verification as an effective strategy
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for pruning false positive candidates.
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Figure 6.1: Percent execution times for the Orkut and WW500 datasets.

For each dataset, the stacked bars show the percent of search time taken by the indexing (idx ),

candidate generation (cg), and candidate verification (cv) phases in L2AP, for similarity

thresholds ranging from 0.1 to 0.9.

Indexing requires traversing the sparse query vector and accessing values in the max

vector, which are both stored in memory as arrays. A sparse vector is stored in memory

in two arrays, one containing feature IDs and the other their associated values. Since

indexing occurs only once for each object in the set, it takes much less of the overall

search time than the other two stages in the framework. As an example, Figure 6.1

shows the percent of overall search time taken by each of the three stages in L2AP, for

ε ranging from 0.1 to 0.9, for a network (Orkut) and a text-based dataset (WW500).

Furthermore, values in both the query vector and feature maximum values are accessed

sequentially, in sorted feature processing order, and can take advantage of software and

hardware pre-fetching to reduce latency. As a result, we will focus on optimizing the

other two stages in the framework. It is important to note, however, that the size of the

inverted index is highly dependent on the similarity threshold ε. As shown in Figure 4.2,

higher thresholds allow delaying indexing further and lead to a smaller inverted index,

and thus more potential candidates being automatically pruned.
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6.1.2 Candidate Generation

During the candidate generation stage of the framework, the lists in the current version

of the inverted index associated with non-zero feature values in the query object are

scanned, one list at a time. An accumulator is used to keep track of partial dot-

products between the query and encountered objects. Once accumulation has started

for an object, it becomes a candidate.

Accumulation is prevented for a new object in two ways. First, the size of the

candidate vector (number of non-zeros) is checked against a minimum size estimate,

which we call the size (sz) bound, and candidates with too few non-zeros are ignored.

Both APT and L2AP1 use the same bound in this step. Second, no new candidates are

accepted if the query prefix does not have enough weight to achieve at least ε similarity

with an indexed object. Index lists are traversed in inverse feature processing order,

and the similarity of the query prefix with any indexed object, sim(d≤jq ,d<q), which

we call the remaining similarity (rs) bound, is used to decide whether to accept new

candidates. In APT, the approximation is based on computing the similarity of the query

with the max vector, while L2AP additionally bounds it by the prefix `2-norm of the

query,

sim(d≤jq ,d<q)APT =
〈
d≤jq ,mx

〉
,

sim(d≤jq ,d<q)L2AP = min(
〈
d≤jq ,mx

〉
, ‖d≤jq ‖2).

While accumulating partial dot-products with candidates, at each feature that both the

query and candidate have in common, L2AP also checks an additional bound, named

l2cg. The l2cg bound is based on estimating the prefix similarity up to that feature,

leveraging the Cauchy-Schwarz inequality, as

sim(d<jq ,d<jc ) = ‖d<jq ‖2‖d<jc ‖2.

The critical memory access portions of the candidate generation stage are updating

values in the accumulator data structure, which can be reused for each query, and

1Note that [18] uses a different sz bound, ε/(‖dq‖∞‖dc‖∞), and erroneously states it is superior to
(ε/‖dq‖∞)2. We found both bounds provide limited benefit for different values of ε, and chose to use
the same bound as APT here to simplify comparison.
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traversing index lists. If these structures take up more than the available cache memory,

the computation will be delayed while data is loaded from main memory.

Due to the predefined object processing order, objects that do not meet the minimum

size requirement when traversing the index will also not meet the requirement for future

query objects and can be removed from the index. Removing objects from the index

is a costly operation, and APT instead updates inverted list start pointers, effectively

removing objects from the start of the list until an object of adequate size is found. These

objects will not need to be traversed in future iterations and can speed up computation.

Experiments detailed in Section 4.4 showed this technique had limited benefit and L2AP

does not use it.

6.1.3 Candidate Verification

Candidate verification iterates through the list of candidates and computes the par-

tial similarity between the query vector and the un-indexed portion of each candidate,

adding it to the already accumulated similarity. Each candidate is first vetted based

on an upper bound of its un-indexed prefix similarity with any object stored during

indexing. APT uses the Hölder inequality to derive this bound, which we name dps1, as

sim(dq,d
≤
c )APT = min(‖dq‖∞‖d≤c ‖1, ‖dq‖1‖d≤c ‖∞).

L2AP uses several different estimate here. First, since the query follows the candidate

in processing order, the similarity sim(dq,d
≤
c ) can be approximated as the similarity

sim(d≤c ,d>c), which was computed and stored while indexing dc, and is equivalent to

sim(dq,d
≤
c )L2AP = min(

〈
d≤c ,mx≥c

〉
, ‖d≤c ‖2).

We call this bound ps. Second, L2AP uses a different dps1 bound that, while theoretically

inferior to the one in APT with regards to candidate pruning, was slightly more efficient

in experiments on a wide range of datasets (detailed in Section 4.4),

sim(dq,d
≤
c )L2AP = min(‖dq‖0, ‖d≤c ‖0)‖dq‖∞‖d≤c ‖∞.



100

Third, after finding the last un-indexed candidate feature p in the feature processing

order that is also present in the query, L2AP checks a tighter version of the dps1, bound,

which we call dps2,

sim(dq,d
≤
c )L2AP = min(‖dq‖0, ‖d≤pc ‖0)‖d≤pq ‖∞‖d≤pc ‖∞.

Finally, while computing the prefix dot-product, at each common feature, L2AP first

checks the Cauchy-Schwarz inequality based estimate, which here we call l2cv,

sim(d<jq ,d<jc ) = ‖d<jq ‖2‖d<jc ‖2.

The accumulator is not critical in the candidate verification stage, as processing

occurs for one candidate at a time. The partial accumulated similarity of a candidate

can be looked up once and stored in a local variable. On the other hand, feature values

and meta-data associated with those features in the query vector are accessed in a

random fashion, based on the features encountered in the candidate object. To facilitate

computing dot products between the query and candidate vectors, we have found it

beneficial to insert the feature values of the query vector, its prefix `2-norm values, and

its prefix maximum values in a hash table. When iterating through the sparse version of

a candidate object’s un-indexed prefix, the query feature, prefix maximum and `2-norm

values can then be quickly looked up in O(1) time. The cost of using a hash table can be

offset by reusing the structure for verifying many candidates. An alternative to looking

up query values in a hash table would be to traverse the candidate and query vectors

concurrently, assuming a predefined global feature traversal order. We have found that

in most cases (other than datasets with small number of vector non-zeros) this strategy

leads to 2x-3x slower execution times.

6.2 Parallel Cosine ε-NNG Construction

In this section, we present two parallel solutions to the APSS problem. First, we sum-

marize algorithmic choices in the method of Awekar and Samatova, pAPT. We then

introduce pL2AP, which was designed based on the memory access observations we made

in Section 6.1, with the goal of improving cache locality during similarity search.
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6.2.1 pAPT

Awekar and Samatova introduced the first multi-core parallel APSS algorithm [76],

pAPT, based on their serial APT algorithm, which we describe in Algorithm 11. Their

main idea was to pre-compute the partial inverted index (lines 4–5), rather than indexing

each object after its processing, and allow threads to share the index structure. To

prevent synchronization overheads when removing values associated with short vectors

from the inverted index, pAPT duplicates, for each thread, a list of offsets from the

beginning of each inverted list. Then, each thread modifies its own offsets, incrementing

them to remove only items at the start of inverted lists.

Algorithm 11 The pAPT algorithm.

1: function pAPT(D, ε)
2: Set processing order for vectors and/or features
3: O ← ∅, Ij ← ∅, for j = 1, . . . ,m
4: for each q = 1, . . . , n do
5: Index(dq, I, ε)
6: for each q = 1, . . . , n, in parallel do
7: cq ← GenerateCandidates(dq, I, ε)
8: O ← O ∪VerifyCandidates(dq, cq, I, ε)
9: return O

Awekar and Samatova proposed three load balancing strategies in pAPT: block,

round-robin, and dynamic partitioning. The object processing order in the filtering

framework, namely in decreasing maximum value order, after first normalizing object

vectors, means that objects with few non-zeros are processed first, and those with many

non-zeros last. As a result, statically assigning n/nt consecutive objects to each thread,

where nt is the number of threads, leads to load imbalance. Awekar and Samatova

attempted to fix the potential imbalance by assigning subsets of query objects with

equal number of non-zeros to each thread, but found this strategy is still worse than

round-robin or dynamic partitioning. The best performing load balancing strategy in

their experiments was dynamic partitioning, which assigns a small set of objects to a

thread as soon as it has finished processing its previous assigned set.
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6.2.2 pL2AP

Our new method, pL2AP, uses the same indexing, candidate generation and verification

pruning choices as L2AP. Similar to pAPT, it indexes all objects first, and allows threads

to share the index structure during the search. Additionally, pL2AP employs two strate-

gies aimed at improving cache locality during search. First, cache-tiling breaks up the

inverted index into blocks that can fit in the system cache, reducing latency during

candidate generation. Second, for datasets with high dimensionality, mask-based hash

tables can greatly reduce the amount of memory required for storing query object values

and meta-data during search, allowing them to persist in the cache during candidate

verification. Algorithm 12 provides an overview of our method.

Algorithm 12 The pL2AP algorithm.

1: function pL2AP(D, ε, h, ζ, η)
2: Set processing order for vectors and features
3: for each q = 1, . . . , n in parallel do
4: S ← FindIndexSplit(dq, ε)

5: K ← FindIndexAssignments(S, ζ)
6: O ← ∅, Ik,j ← ∅, for j = 1, . . . ,m and k = 1, . . . ,K
7: for each q = 1, . . . , n do
8: Index(dq, I, S, ε)
9: for each k = 1, . . . ,K do

10: for each l = S[k], . . . , n, in increments of η do
11: for each q = l, . . . ,min(l+η −1, n), in parallel do
12: cq ← GenerateCandidates(dq, Ik, ε)
13: O ← O ∪VerifyCandidates(dq, cq, Ik, ε)
14: return O

Cache-tiling

Cache-tiling is designed to increase cache locality during the candidate generation stage

of the similarity search by ensuring the inverted index and accumulator structures fit

in cache. To achieve this, the inverted index is split into several consecutive sections,

called tiles, and each index is used in turn to find neighbors. Choosing the size of each

cache tile is non-trivial in the APSS problem, due to the varying number of feature

values being indexed for each object. For example, choosing to index the same number

of objects in each tile will lead to large indexes for the final tiles to be processed, which
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may not fit in cache. Instead, pL2AP first finds the first feature to be indexed in each

object (line 4), which also provides the number of values to be indexed in each object.

These counts are used to define the consecutive sets of objects to be indexed together in

each tile. The list S, containing tile start and end offsets given the predefined processing

order, is then used to index each object suffix in their assigned inverted index (line 8).

We use an array to track accumulated similarities for candidates. Since the accumu-

lation array is randomly accessed for different candidates encountered while traversing

the inverted index, nt accumulation arrays should also fit in cache along with the index,

one for each thread. The size of the accumulation array is the same as the number of

objects assigned to an index.

The un-indexed portion of each un-pruned candidate vector is sequentially accessed

during candidate verification. To maximize cache locality, we explicitly create a sparse

forward index containing only the prefix values for objects in each tile.

During parallel sections (lines 3 and 11), pL2AP follows a dynamic task partitioning

approach, assigning a small set of objects to a thread to process as soon as it has finished

processing its previous assigned set. Since candidate pruning is unpredictable, a thread

may get assigned objects that finish processing quickly and may jump ahead many

places in the processing order. This may lead to loss of cache locality if some threads

read query objects from different portions of the dataset. To prevent this, we process

queries η at a time, in a block synchronous fashion, where η is an input parameter,

forcing threads to read from the same subset of query vectors, which should be located

in close proximity in memory.

Query vector mask-hashing

During candidate verification, pL2AP traverses the candidate prefix, and checks whether

the query has non-zero values for the encountered features. When a common feature

is found, query object meta-data (prefix `2-norm or maximum value) are used to check

whether the candidate can be pruned. An efficient way to locate query vector values

and meta-data during this process is to store them in arrays, as dense vectors. However,

for datasets with high dimensionality (generally above 106), this technique can lead to

polluting the cache with zero values from the dense arrays, evicting other necessary

data.
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Given that query vectors are sparse, and their features are always processed in a

predefined order, we developed a heuristic hash-table data structure that uses a small

amount of cache space, takes advantage of O(1) access times for most look-ups and leads

to few collisions in practice. A small array of size h+max(‖dq‖0)−1 is used in pL2AP to

store matching offsets in one or more lists containing the query data. Here, h = 2α (α ≥
0) is a predefined parameter, generally much smaller than m, and max(‖dq‖0) is the

maximum number of non-zero features for any object. An efficient hashing function

maps feature IDs to the [0, h − 1] domain, and collisions are entered in the hash-table

array in order, in an overflow section starting with index h. Since partial dot-product

computations with candidates follow the same traversal order, collisions can be quickly

resolved by traversing only a subset of the overflow features. In practice, however, we

have found that less than 1% of hash key look-ups end in collision.
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Figure 6.2: Example query hash table use in pL2AP.

Figure 6.2 provides an example of how a query object might use the hash table in

pL2AP, for h = 22. The hash table array is initialized with negative values. Traversing

the query non-zeros in reverse feature processing order, the 11th query feature is mapped

to the 4th hash table cell, via an efficient truncate operation, 11 & (4−1), where & is the

bitwise AND logical operator. The feature ID is stored in the hash table at the mapped

key index, and one or more value arrays are populated with salient information about

the query at the same key index location. PL2AP tracks the query prefix value, size,
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maximum value, and `2-norm at each index, which are used to check different pruning

bounds. In a similar fashion, the 10th query feature is mapped to the 3rd hash table

cell, and the 4th query feature to the 1st hash table cell. When mapping the 2nd query

feature, the collision is handled by entering the item in the overflow part of the hash

table array, in traversal order. When verifying a candidate dc, its forward index features

are traversed in the same order as the query was traversed. Thus, when collisions occur,

they can be found by partially traversing the overflow section of the hash table, keeping

a pointer to the last cell with a feature ID greater or equal than the sought ID.

To avoid excessive collisions, pL2AP dynamically chooses whether to use the hash-

table or dense arrays for the query object data. Specifically, objects with less than h/23

non-zeros will use the hash-table data structure, while the rest will use dense vector

representations of the query and meta-data vectors.

6.3 Experimental Evaluation for Parallel Cosine ε-NNG

Construction

In this section, we present our experimental results for parallel cosine ε-NNG con-

struction, along two directions. First, we analyze pruning effectiveness, cache locality

improvement, and parameter sensitivity in pL2AP. We compare pruning effectiveness of

pAPT and pL2AP and find pL2AP is a lot more effective at pruning objects than pAPT,

especially for text datasets. Second, we report the execution efficiency of pL2AP, com-

paring it with several serial and parallel baselines, analyze the scaling characteristics of

parallel methods, and measure the amount of load imbalance in the pL2AP execution.

6.3.1 Baseline Approaches

In addition to the pAPT algorithm by Awekar and Samatova, which we described in

Section 6.2, we compare pL2AP against the following algorithms.

1. IdxJoin, APT, and L2AP are baseline serial APSS search methods described in

detail in Sections 4.2–4.4. We report speedup over the fastest execution time of

any of the serial methods.

2. pIdxJoin uses similar cache-tiling as pL2AP, but does not use any pruning when
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computing similarities. For each block of queries, pIdxJoin sequentially retrieves

a block of objects to search against and indexes all their values. Threads then share

the index to compute similarities, via accumulation, of each assigned query object

against all indexed objects, retaining those resulting pairs above the threshold ε.

3. pL2APrr follows the same parallelism strategy as pAPT (see Section 6.2), but takes

advantage of the advanced pruning bounds of L2AP. After first indexing the suf-

fixes of all objects, pL2APrr dynamically assigns small sets of query objects for

processing to available threads. For each query object, pL2APrr indexes the same

values and performs the same pruning in the candidate generation and verification

stages as pL2AP.

6.3.2 Pruning Effectiveness

Pruning effectiveness comparison with pAPT

Both our method, pL2AP, and the shared memory parallel baseline pAPT, follow the

same strategy in solving the APSS problem. They build a partial inverted index that

is used to identify, for each query object, a list of candidates the query should be

compared with. While comparing query objects with candidates, they prune as many

un-promising pairs as possible, and in the end fully compute the dot-product of a small

subset of the candidate list, which is a superset of the nearest neighbors. While their

serial computation strategy is the same, the two methods rely on different theoretic

similarity upper bounds to decide which values in the query object should be indexed,

whether an object should become a candidate, and when a candidate should be pruned.

Indexing fewer values can speed up index traversal and thus lead to performance

improvements. In addition, it will lead to shorter candidate lists being generated.

Considering fewer candidates, as well as more aggressive pruning, can lead to fewer

dot-products being computed in full and to better performance. Figure 6.3 shows the

number of indexed non-zeros, candidates, and dot-products when executing pL2AP, nor-

malized by the respective values when executing pAPT, for ε between 0.3 and 0.9, for

all six datasets. As compared to pAPT, our method generally indexes fewer values, con-

siders fewer candidates, and evaluates fewer complete dot-products, especially at high

similarity values. While the difference in the number of indexed values and candidates



107

0.0

0.1

0.2
0.3

0.4

0.5

0.6
0.7

0.8

0.9
1.0

WW200 WW500 RCV1

0.0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8
0.9

1.0

.3 .4 .5 .6 .7 .8 .9

Twitter

.3 .4 .5 .6 .7 .8 .9

Wiki

.3 .4 .5 .6 .7 .8 .9

Orkut

ε

p
L
2
A

P
 /
 p

A
P

T

#candidates #dot-products index size

Figure 6.3: Index size, number of candidates, and number of dot-products in pL2AP

executions vs. respective values in pAPT.

is smaller at ε = 0.3, pL2AP is able to prune a much higher number of candidates than

pAPT in all datasets except Orkut, highlighting the improved pruning effectiveness in our

method. Orkut is a binary dataset, with short columns that deviate little in length, as

shown in Section 2.3. After our pre-processing, objects in the Orkut set will have fairly

uniform small values, which contribute little to accumulation operations and cannot be

approximated well. While the size of the un-pruned set of candidates in pL2AP was in

most cases between 1–3x the size of the set of true neighbors, it ranged between 13–

137x for the Orkut dataset. The pAPT method had a similar high number of un-pruned

candidates for Orkut, highlighting the inherent similarity estimation difficulty for this

dataset.

Pruning effectiveness in pL2AP

Our method works by pruning the majority of the candidates that are not true neigh-

bors. Once an object becomes a candidate, it can be pruned by the l2cg bound while

accumulating values traversing the inverted index in the candidate generation stage (cg
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Figure 6.4: Candidate pruning in pL2AP.

in figures), when checking the ps, dps1 and dps2 prefix similarity estimate bounds at

the onset of the candidate verification stage (ses in figures), or by the l2cv bound while

accumulating values traversing the forward index in the candidate verification stage

(cv in figures). Earlier pruning of candidates means less time spent accumulating dot-

products in vain and will lead to improved performance. In an experiment in which we

used consistent parameters for all datasets (h = 213, η = 25K, and ζ = 1M), we counted

the number of candidates pruned in each stage of the algorithm. We report these values

in Figure 6.4, for all datasets and ε values, along with the number of candidates that

were not pruned and had their dot-products computed in full (dps in figures).

Results show that pL2AP prunes the majority of objects soon after they become

candidates, in the candidate generation stage (cg). Most of the remaining objects are

pruned by the ses bound, which is checked once, at the beginning of the candidate

verification stage, and by additional pruning in the candidate verification stage (cv).
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Figure 6.5: Mean percent accumulated non-zeros before pruning in pL2AP.

At ε = 0.3, for example, only 0.02%–4.89% of candidates survived all pruning across

our datasets.

A large number of objects never become candidates in pL2AP, as a result of either

the `2-norm based candidate acceptance bound in the candidate generation stage of the

algorithm, or due to the prefix-filtering based index reduction. On average, across all

ε values, only 0.7%–50.4% of all potential candidates actually became candidates for

our datasets. Of those, most are pruned quickly, in the first stage of our method. As a

way to gauge how quickly candidates are pruned, we measured the number of executed

multiply-adds versus the number of possible multiply-adds (percent of accumulated non-

zeros) in the similarity computation of each pruned candidate. In Figure 6.5, we report

the mean percent accumulated non-zeros for our six datasets. In each experiment, we

used consistent parameters for all datasets (1 thread, h = 213, η = 25K, and ζ = 1M).

The results show that, for most of the datasets and ε values, pL2AP accumulates much

less than 10% of the common non-zeros between a query and a non-neighbor candidate

on average. Before pruning unsuitable candidates, pL2AP generally accumulates less

than 4% of the common non-zeros for text datasets, but it traverses between 10%–60%

of the common values for network datasets with short rows, like Wiki and Orkut.

Cache locality improvements in pL2AP

While pL2AP performs the same pruning as L2AP, it scans each query object multiple

times to compare against objects in multiple constructed inverted indexes. The smaller
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Figure 6.7: Percent cache misses of pL2APrr and pL2AP with ζ between 1.5M and 4M
non-zeros for the RCV1 (top) and Orkut (bottom) datasets.

inverted indexes and the mask-based hash table used during the search help avoid cache

thrashing, improving efficiency by reducing time wasted waiting for data transfers from

memory to cache. To measure the serial effect of this improvement, we compared the

1-threaded execution of pL2AP against the serial L2AP algorithm. We used η = 25K

objects and ζ = 1M non-zeros for this test. Figure 6.6 shows speedup results for each of

the six datasets we tested, for ε between 0.3 and 0.9. The results show an improvement

over L2AP for datasets with long inverted lists, whether text or network based. The

short inverted lists in the Orkut and Wiki dataset do not provide enough cache reuse

for 1 thread to hide the additional work of multiple query searches, leading to slower

execution than that of L2AP.
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The small inverted index in pL2AP is shared by all threads in executing concurrent

searches. As another way to quantify cache locality improvements, we compared the

percent of cache misses when executing pL2AP and pL2APrr with 24 threads. Both

algorithms perform the same pruning, but pL2APrr builds a single inverted index and

does not consider cache locality in its execution. We used the perf Linux utility to

count the number of cache references and cache misses. Figure 6.7 shows our results

when executing pL2AP with ζ between 0.5M and 4M non-zeros and pL2APrr, on the

RCV1 (left) and Orkut (right) datasets, for ε = 0.3. We show the size of the inverted

index that pL2APrr builds below its bar in the graph. We observed similar results for

most other datasets and ε values. In general, pL2AP improves cache locality, and the

improvement is more pronounced for text based datasets, which tend to have longer

inverted lists. The percent cache misses for RCV1, for example, was reduced from 35%

to less than 2% at ζ = 0.5M.

Parameter sensitivity

Our method, pL2AP, is controlled by three parameters. The size of the mask-based

hash table, h, is dependent on the dimensionality of the feature space. Choosing a

small h value for a dataset with large dimensionality will likely cause many hash table

collisions and slow down execution. Similarly, the ζ parameter dictates the number of

non-zeros that should be included in each inverted index, which dynamically decides

the size of each cache tile. Choosing a small ζ value will lead to many inverted indexes

being created which may lead to slow-downs due to repeated traversals of the query

objects. On the other hand, choosing an ζ value that is too large will diminish the

cache locality benefits of our tiling strategy. To ascertain the sensitivity of pL2AP to

these parameter choices, we tested different values of each parameter while keeping the

other two unchanged.

In the first experiment, we set ζ to 1M non-zeros and η to 25K and varied h between

25 and 215. Results of these experiments over our six datasets are shown on the left side

of Figure 6.8 (figure is best viewed in color), as execution times relative to the h = 213

parameter choice for each dataset. Our method is not sensitive to this parameter for

text and the Twitter datasets, which have smaller dimensionality, but can incur over

2.5x slowdown when choosing a small hash table size for the Orkut or Wiki datasets,
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Figure 6.8: Relative execution times for different h, η, and ζ parameter choices.

which both have over 3M dimensions.

The middle section of Figure 6.8 shows execution times for each dataset, given

h = 213 and ζ = 1M , for η between 1K and 50K, relative to the execution time for η

= 25K. We found that choosing the size of each bulk synchronous block, η, does not

affect performance in pL2AP, as long as the η value is not too small. We found any

values above 5K to be adequate for all datasets.

Finally, we tested the sensitivity of the ζ parameter, for values between 0.25M and

3.0M , given η = 25K and h = 213, and show times relative to the ζ = 1M execution

in the right section of Figure 6.8. While the ζ choice will be dependent on the cache

configuration of the target system, our experiments showed that pL2AP performed well

for most datasets given ζ set to at least 1M non-zeros.
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Table 6.2: Tested pL2AP pruning strategies.
Strategy Bounds checked Index update

base {idx, rs, ps, l2cg, l2cv, dps1} no
sz base + {sz} no
dp base + {dps2} no

szdp base + {sz, dps2} no
szdpupd base + {sz, dps2} yes

6.3.3 Execution Efficiency

Pruning choices in pL2AP

Pruning is an effective mechanism for reducing the number of similarity computations

that must be executed to solve the APSS problem. However, bounds checking incurs

additional costs which may not outweigh their benefit. Previous experiments presented

in Section 4.4 proved the effectiveness of our `2-norm based bounds in each stage of

the search framework, and showed the sz and dps2 bounds had little effect in general

over the search efficiency. As a way to quantify this effect when executing with multiple

concurrent threads, we tested pL2AP in four configuration scenarios, listed in Table 6.2.

The “base” configuration did not effect any pruning based on the sz or dps2 bounds.

The “sz” and “dp” configurations enabled pruning based on the sz and dps2 bounds,

respectively, and the “szdp” configuration enabled pruning based on both the sz and

dps2 bounds. When checking the sz bound, pAPT removes values associated with short

vectors from the beginning of inverted lists, which can potentially improve efficiency.

We added this capability to pL2AP and tested it in the configuration “szdpupd”, which

enables all pruning strategies and also performs index updates. Using the same input

parameters for all datasets (nt = 24, h = 213, η = 25K and ζ = 1M), we recorded

search execution times under each scenario.

Table 6.3 reports the results of our experiment. For each ε value, times in all

configuration scenarios were normalized by that of the sz scenario, and we report the

mean, standard deviation (std), minimum and maximum of experiment results across

all ε values. The best performing results are highlighted in bold. The sz and dp

configurations showed little improvement over the base one, at times leading to slower

execution times. Checking the sz bound was beneficial in most cases, especially for

network datasets, and had better performance than checking the dps2 bound instead.
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Table 6.3: Performance of different pruning choice configurations in pL2AP.

versus mean stdv min max mean stdv min max

Orkut WW200
nbase 1.0642 0.0237 1.0234 1.0929 0.9933 0.0163 0.9719 1.0240
dp6 1.1017 0.0249 1.0684 1.1377 1.0034 0.0112 0.9948 1.0296
sz 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
szdp 1.0443 0.0082 1.0319 1.0606 1.0152 0.0119 1.0047 1.0369
szdpupd 1.4624 0.0714 1.3222 1.5298 1.0661 0.0481 1.0139 1.1586

Twitter WW500
nbase 1.0191 0.0127 0.9974 1.0345 0.9980 0.0109 0.9894 1.0234
dp6 1.0416 0.0230 0.9869 1.0581 1.0115 0.0178 0.9975 1.0540
sz 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
szdp 1.0416 0.0219 1.0156 1.0736 1.0249 0.0212 1.0097 1.0744
szdpupd 1.0671 0.0273 1.0345 1.1279 1.0442 0.0354 1.0145 1.1241

Wiki RCV1
nbase 1.0373 0.0109 1.0190 1.0540 1.0017 0.0051 0.9909 1.0086
dp6 1.0540 0.0118 1.0305 1.0675 1.0090 0.0061 1.0027 1.0215
sz 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
szdp 1.0128 0.0051 1.0076 1.0243 1.0104 0.0055 1.0029 1.0212
szdpupd 1.2326 0.0489 1.1484 1.3092 1.0240 0.0137 1.0108 1.0515

Execution times for each configuration were normalized by respective execution times of
the sz configuration. We present the mean, standard deviation (stdv), minimum and
maximum of experiment results across all ε values, given h = 213, η = 25K and ζ = 1M
input parameters. The best mean performance is highlighted with bold.

The combined scenario szdp did not perform better than the sz scenario on average.

The results in the remainder of this work assume the sz configuration.

In general, the index update strategy did not improve performance. For network

datasets with many short inverted lists, its execution was 1.22–1.40x slower than that

of the szdp configuration, which effected the same pruning without updating the index.

The worse efficiency is likely due to loss of cache locality having to interrupt traversing

inverted lists to update their start pointer, as well as copying the list of pointers for

each thread, which in pL2AP occurs for each constructed inverted index.

Comparison with serial methods

We compared the execution time of all parallel methods, executed with 24 threads,

with the best serial execution time achieved by any of the serial algorithms. Figure 6.9
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shows the results of this experiment. In all cases, pL2AP had the best execution time of

all parallel methods, achieving speedups of 2–20x for network datasets and 12–34x for

text datasets. Compared to existing parallel baselines, pL2AP executed 1.5–3x faster for

network datasets and 7–238x faster for text datasets. While pL2APrr uses the same type

of pruning as pL2AP, it traverses the entire inverted index during each query and, as

a result, cannot perform as well. Instead, by using tiling and other optimizations that

promote cache locality, pL2AP is able to achieve very good speedup for datasets with

long inverted index lists, such as text datasets. At high similarity thresholds, however,

pL2AP is able to prune candidates quickly and does not need to traverse many candidate

and query vector features, rendering our cache locality optimizations less effective.
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Figure 6.9: Execution times of parallel methods and the best serial alternative.

As expected, the pIdxJoin algorithm, which does not perform any pruning, was

very slow in comparison to the other parallel methods. It performed very poorly on

network datasets, much slower even than L2AP, the fastest serial method, potentially

due to their high dimensionality. The pAPT method of Awekar and Samatova performed

fairly well on network datasets, but was very slow on text datasets. It was not able to

prune as many candidates as pL2AP in general, and ended up performing many more

unnecessary similarity computations.
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Figure 6.10: Strong scaling of parallel methods at ε = 0.3 (top) and ε = 0.9 (bottom).

Strong scaling

Figure 6.10 shows the strong scaling results from our experiments. The amount of work

pL2AP does when processing each query increases as the threshold ε decreases. At high

values of ε, many of the objects never become candidates for a query due to the idx and

rs bounds in our method, and pL2AP is able to quickly dismiss candidates. For example,
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the size of the candidate list when ε = 0.9 is 0.5–4.0% of the candidate list size when

ε = 0.3 for text datasets. As a result, the cache locality improvements in pL2AP are not

as beneficial, resulting in less pronounced scaling at ε = 0.9. On the other hand, pL2AP

shows linear scaling at ε = 0.3 for text datasets. While its scaling is not as dramatic

for network datasets, pL2AP still exhibits very strong scaling, in most cases better than

the other baselines.

It is interesting to note that pAPT and pL2APrr both scale poorly above twelve threads

on text datasets. This may be an indication of thrashing, which is causing threads to

waste time waiting for cache lines to be fetched from main memory.
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Figure 6.11: Load imbalance in pL2AP.

In order to test the effectiveness of the dynamic task partitioning approach in pL2AP,

we measured the amount of time each thread spent searching for neighbors. Figure 6.11

shows the percent load imbalance averaged over all ε values, in experiments with consis-

tent parameters (nt = 24, h = 213, η = 25K, and ζ = 1M), for the six datasets. Load

imbalance is computed as 100(tmax/tmean− 1), where tmax and tmean are the maximum

and mean search times among the threads. Our method shows little imbalance between

the threads, much less than 1% for text datasets and less than 2% for network datasets.
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6.4 Parallel Cosine k-NNG Construction

We will start our discussion with an analysis of L2Knng and present some improvements

to its serial execution, and then introduce pL2Knng, our parallel method for cosine

k-NNG construction.

6.4.1 Serial Improvements in L2Knn

L2Knng execution consists of two phases. First, in the approximate graph construc-

tion phase, L2Knng finds an initial k neighbors for each of the objects in D by calling

L2Knng-a. The minimum neighborhood similarities in each of the neighborhoods of the

approximate graph are then used as pruning thresholds in the filtering phase, which

outputs the exact nearest neighbor graph. L2Knng-a constructs the approximate graph

in two steps. First, in the initial graph construction (IC) step, neighbors that are more

likely to be in the exact k-NNG are chosen based on shared features with high weight.

Then, a number of graph enhancement (GE) steps are executed which attempt to im-

prove the quality of the neighborhoods by finding closer neighbors among the neighbors

of the current neighbors. Algorithm 13 gives an overview of this process.

Algorithm 13 Computation flow in the L2Knng algorithm.

1: function L2Knng(D, k, γ, µ)
. Begin L2Knng-a

2: N̂ ← IC(D, k, µ)
3: for each i = 1, 2, . . . , γ do
4: N̂ ← GE(D, k, µ, N̂ )

. End L2Knng-a
5: N ← Filter(D, k, N̂ )
6: return N

At a very high level, each of the steps in the L2Knng-a execution is composed of

the following tasks, which are shown in Algorithms 14 and 15 and will be detailed later

in the discussion. Input data or the current neighborhoods are sorted and indexed to

facilitate the search for neighbors (sort). Then, for each query object, a candidate list

of potential neighbors is selected (sel) that may improve the current neighborhood.

Data associated with the query object is optionally entered into a data structure that

can facilitate fast dot-product computations or pruning (ins). Then, dot-products are
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computed between the query and each of the chosen candidates (sim), skipping some of

the candidates whose similarity has already been previously computed. Finally, some

of the neighborhoods are updated (upd) with computed similarities that improve them.

Algorithm 14 Initial graph construction in L2Knng-a.

1: function IC(D, k, µ)
2: Create inverted index of D . srt
3: Sort vectors in D and inverted index lists . srt
4: for each i = 1, 2, . . . , |D| do
5: Choose µ candidates for the ith object . sel
6: Hash the ith object . ins
7: Compute similarities of di with all µ candidates . sim
8: Update Γi and candidate neighborhoods . upd

9: N̂ =
⋃
Γi

10: return N̂

Algorithm 15 Graph enhancement in L2Knng-a.

1: function GE(D, k, µ)
2: Create A, sparse matrix version of N̂ . srt
3: Create inverted index of A . srt
4: Sort vectors and inverted lists in A . srt
5: for each i = 1, 2, . . . , |D| do
6: Choose µ candidates for the ith object . sel
7: Hash the ith object . ins
8: Compute similarities of di with all µ candidates . sim
9: Update Γi and candidate neighborhoods . upd

10: N̂ =
⋃
Γi

11: return N̂

In an effort to gauge where the algorithm spends most of its time, we instrumented

the L2Knng code with timers for each of the tasks. Table 6.4 shows the percent of the

overall execution time in each phase taken by each of the tasks in the initial construction

and graph enhancement phases, when searching for 10, 100, and 500 nearest neighbors

in three datasets described in Section 2.3. In each of the experiments, we only executed

one round of neighborhood enhancements (γ = 1) and chose candidate list sizes that

would lead to average recall of at least 95%, i.e., L2Knng-a finds most of the nearest

neighbors for each object. The last column in the table (perc) shows the percent of the

overall L2Knng-a execution taken up by the current phase (IC or GE) of the algorithm.

The results of this experiment show that L2Knng-a spends the majority of its execution
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Table 6.4: Percent of the computation time for different sections of the approximate
graph construction.

initial construction

dataset k sort sel ins sim upd perc

RCV1 10 3.17 5.57 0.16 88.04 3.07 78
RCV1 100 4.44 5.70 0.26 80.30 9.30 39
RCV1 500 1.11 5.27 0.06 83.48 10.07 57

WW200 10 10.23 2.00 0.43 86.45 0.89 83
WW200 100 4.60 1.59 0.19 92.02 1.60 51
WW200 500 1.46 1.46 0.07 94.82 2.19 52

WW500 10 24.07 0.94 1.15 73.06 0.78 69
WW500 100 7.92 0.91 0.31 89.57 1.29 52
WW500 500 2.46 0.82 0.10 94.77 1.84 53

graph enhancement

dataset k sort sel ins sim upd perc

RCV1 10 1.74 20.59 3.05 69.54 5.08 22
RCV1 100 2.65 20.98 0.26 72.29 3.82 61
RCV1 500 3.03 26.84 0.06 66.64 3.42 43

WW200 10 0.41 6.49 4.18 87.19 1.72 17
WW200 100 0.38 4.21 0.20 94.35 0.85 49
WW200 500 0.64 4.20 0.07 94.15 0.94 48

WW500 10 0.27 3.97 5.01 89.52 1.24 31
WW500 100 0.37 2.38 0.33 96.25 0.67 48
WW500 500 0.59 2.44 0.11 96.03 0.84 47

The table shows, for the initial graph construction and neighborhood enhancement phases of

the L2Knng-a method, the percent of execution time of different tasks within each phase

discussed in Section 6.4.1. The perc column shows the percent of the overall L2Knng-a

execution taken up by the current phase of the algorithm. For each experiment, tasks taking

up a significant portion of the execution time are highlighted in bold.

time computing similarities between query and candidate objects. Indexing and sorting

when k is small and candidate selection can also account for a significant portion of the

execution time. While graph enhancement takes up less time for small values of k, it

accounts for almost half of the overall execution for larger k values.

Given these observations, we focused our efforts to improve L2Knng-a on the simi-

larity computation, sorting, and candidate selection tasks. In the following sections we

will detail each of the L2Knng-a tasks and our proposed improvements.
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Index and sort

L2Knng-a chooses candidates in the IC phase by matching objects with common high

weight features. To facilitate this search, it sorts the entries in each object vector and

in each inverted index list in decreasing weight order. Then, it selects candidates for

a query object by iterating through the inverted index lists associated with its highest

weight features.

Since only µ candidates are selected for each query object, it is not necessary to

fully sort all entries of the object vectors and inverted lists. With high probability, each

inverted list will contain more than two entries (one entry will be associated with the

query object). Thus, as an enhancement to L2Knng-a we propose sorting only the top-µ

values in each vector and inverted list. For each vector and inverted list with lengths

greater than µ, we first apply a select procedure [87], which partitions the list such that

the leading µ values are greater or equal to the remaining values, and then sort only

the leading µ values. This improvement reduces the complexity of sorting a list from

O(l log l), where l is the size of the list, to O(l + µ logµ), and can be beneficial when µ

is small or for datasets with very long vectors or inverted lists.

In each GE phase, L2Knng-a chooses candidates by matching neighbors and neigh-

bors’ neighbors with high similarity values. It first creates a sparse matrix version of

the current approximate neighborhood graph, A, such that the ith row of A corre-

sponds to the k-neighborhood of the ith object. It then sorts the entries in each row in

non-increasing value order and creates an inverted index for A. L2Knng-a then selects

candidates for a query object by iterating through rows in A associated with those

objects that are the closest neighbors of the query, i.e., the column IDs of the leading

entries in the sorted version of the row in A associated with the query.

The inverted index of A is used to identify objects whose similarity with the query

has been previously computed. Additionally, for those query objects with less than µ

candidates after the initial selection process, L2Knng further iterates through neighbor-

hoods of objects that have the query object as their neighbor, in decreasing order of

their similarity with the query. We call this process reverse candidate selection. The

inverted list in A associated with the query contains the list of all objects that have the

query in their neighborhood. L2Knng-a sorts the inverted lists in A in decreasing value

order. In our experiments, we have found reverse candidate selection rarely improves
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and can often degrade GE performance. Thus, in pL2Knng, we do not create an inverted

index for A and only sort its row entries.

Candidate selection

In the IC phase, L2Knng-a selects candidates by iterating through two inverted lists at a

time associated with the highest values in the query vector. Algorithm 16 describes this

procedure. The function nextList provides the inverted list associated with the next

smaller value in q. The function nextCand provides the next candidate in the chosen

list, skipping the query object and any other objects that have already been selected.

L2Knng-a uses an accumulation data structure to both track whether an object has

already been selected as a candidate and to compute its partial dot-product with the

query, which is denoted by
〈
q,a≤

〉
in Algorithm 16. Given two potential candidates ca

and cb, L2Knng-a chooses ca only if its partial dot-product with the query considering

features already processed is greater than that of cb.

Algorithm 16 Candidate selection in the IC phase of L2Knng-a.

1: function SelectCandidatesIC(D, q, µ)
2: A← nextList(q), B ← nextList(q), C = ∅
3: while |C| < µ and A 6= ∅ and B 6= ∅ do
4: if A = ∅ or B = ∅ then
5: Choose candidates only from the remaining list

6: a← nextCand(A), b← nextCand(B)
7: if

〈
q,a≤

〉
>
〈
q,b≤

〉
then

8: C ← C ∪ a
9: A← A \ a

10: A← nextList(q) if A = ∅
11: else
12: C ← C ∪ b
13: B ← B \ b
14: B ← nextList(q) if B = ∅
15: end while
16: return C

We have improved candidate selection in the IC phase of L2Knng-a by simplifying

the candidate choice condition (line 7 of Algorithm 16) to dq,f(A)da,f(A) < dq,f(B)db,f(B),

where f(A) is the feature ID of list A, and di,j is the value of the jth feature in the

ith object. This simplification keeps the original intent in the selection and has not

shown decreased quality performance in experiments. Instead, the efficiency of this step



123

is increased by removing the need to compute partial dot-products. We use a bitvector

data structure to track candidates that have already been selected, which uses less cache

memory and may also help increase performance.

Algorithm 17 Candidate selection in the GE phase of L2Knng-a.

1: function SelectCandidatesGE(D, q, µ)
2: a← nextNeighbor(q), A = neighborhood(a), C = ∅
3: while |C| < µ and A 6= ∅ do
4: c← nextCand(A)
5: if sim(a, c) ≥ sim(q, a) then
6: C ← C ∪ c
7: A← A \ c
8: if A = ∅ then
9: a← nextNeighbor(q)

10: A← neighborhood(a)

11: end while
12: return C

In the GE phase of our method, candidates are selected by iterating through neigh-

bors’ neighborhoods, one at a time, as shown in Algorithm 17. The nextNeighbor func-

tion selects the neighbor a with the next smaller similarity value in the query’s neigh-

borhood. The list returned by the neighborhood function is the row in A associated

with the selected neighbor, which contains its neighbors, sorted in decreasing similarity

value order. While iterating through these neighbors, candidates are only accepted if

their similarity value is greater than the similarity between a and the query. We have

not made changes to the selection process in this phase of L2Knng-a.

Query insertion and similarity computation

Since L2Knng-a computes the similarity of a query vector with many different candidate

vectors, it creates a dense version of the query vector, stored in memory in an array,

which can be reused to compute µ dot-products. Each dot-product is computed as a

sparse-dense vector dot-product, by iterating through the non-zero values of the candi-

date vector and looking up values of the query vector in the array. Given an array Q

representing the dense version of dq, the dot-product
〈
dq,dc

〉
can be computed as,
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for each j = 1, . . .m s.t. dc,j > 0 do

s← s+ dc,jQ[j]

We call this dot-product computation strategy, along with all the improvements dis-

cussed thus far, the base L2Knng-a strategy.

As computing dot-products takes up the most time in the L2Knng-a execution, we

tried several other strategies for executing this operation. Sparse vectors are repre-

sented in L2Knng-a as two arrays, one containing feature IDs of non-zero features in the

vector, and the other containing the values for the corresponding features. In one strat-

egy, trying to take advantage of vectorization capabilities of modern hardware, we first

packed the longer of the two vectors into a temporary array corresponding to the non-

zero features in the shorter vector, allowing the dot-product to be executed as a dense

vector dot-product between the temporary array and the values array of the shorter

vector. Dot-products can also be computed in a sparse-sparse fashion, by traversing the

feature ID arrays of both sparse vectors simultaneously and executing a multiply-add

operation when encountering matching feature IDs. Finally, we tried using the query

vector mask-hashing technique described in Section 6.2.2 to speed up dot-products in

L2Knng-a. Mask-hashing uses the same sparse-dense computation strategy as L2Knng-a

but replaces the vector with a hash table designed for fast in-order look-up of features

that may exist in the query vector while reducing the amount of cache memory necessary

to store the query vector values. In our experiments, none on of the new dot-product

computation strategies improved the performance under a wide range of execution pa-

rameters. One disadvantage of these strategies is that they require maintaining a version

of the sparse vectors with entries sorted in feature ID order, which is not necessary in

the base strategy.

As another strategy to improve similarity computation efficiency, we added prefix

`2-norm based pruning to the dot-product computation step, which we have found to

be a very effective tool for eliminating false positive candidates in the L2Knng filtering

framework. Algorithm 18 describes this strategy, which we call prune. The symbol R

represents another dense vector that contains query prefix `2-norms at the associated

non-zero query features, R[j] = ‖d<jq ‖ iff dq,j > 0. In addition to the candidate vectors

value array, we also keep an array with prefix norms associated with those features,
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which can be used each time the candidate is involved in a similarity computation. The

symbol σ represents the minimum similarity of either the query of candidate neighbor-

hoods, σ = min(σdq , σdc). The pruning step can lead to early termination of dot-product

computations, and can also reduce the number of neighborhood update attempts.

Algorithm 18 Similarity computation with pruning in L2Knng-a.

1: function SIM(dc, Q, R, σ)
2: s← 0
3: for j = 1, . . .m s.t. dc,j > 0 do
4: if dc,j > 0 then
5: s← s+ dc,jQ[j]
6: if s+ ‖d<jc ‖R[j] < σ then
7: return null
8: return s

Neighborhood updates

After computing each similarity between a query and a candidate vector, L2Knng-a

updates the query and candidate neighborhoods if the similarity value can improve those

neighborhoods. We improved this step in several ways. First, we separated the similarity

computation from the update steps in the algorithm, allowing L2Knng-a to compute all

µ similarities before inserting any update. This improves cache locality during similarity

computation. Second, we update neighborhoods in two stages, inserting all updates into

the query neighborhood before updating other neighborhoods, which further improves

cache locality. Third, since at most the top-k of the µ computed similarities have any

potential of improving the query neighborhoods, we fist apply a k-select procedure on

the candidate list, and then attempt to update the neighborhood with only the first k

items in the list. We call this strategy select. It has the potential to further improve

cache locality of the query neighborhood update stage, especially for large µ and/or k.

6.4.2 pL2Knn

Algorithm 19 described our parallel k-NNG construction method, pL2Knng. Our method

follows the same computation strategy as L2Knng, incorporating the improvements de-

scribed in Section 6.4.1. In addition, pL2Knng uses a cache-tiling strategy similar to the
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one in pL2AP (see Section 6.2.2). The method splits the inverted index into several con-

secutive sections, called tiles, and each index is used in turn to find neighbors. The size

of each tile is dynamically chosen based on a maximum number of objects parameter

ν and a maximum number of non-zeros ζ. After processing each index tile, pL2Knng

uses the block completion strategy in L2Knng to complete the search for all the objects

in the tile, and then discards the tile. This step improves the minimum neighborhood

similarities of un-processed objects in the neighborhood graph represented by N̂ . As

a results, pL2Knng then updates the object processing order of un-processed objects,

improving the index reduction and pruning potential in filtering the following tile.

Algorithm 19 The pL2Knng algorithm.

1: function pL2KNN(D, k, ζ, ν, η)
2: Set processing order for features
3: N̂ ← pL2KNN -a(D, k)
4: Set object processing order given N̂
5: z ← 0, r ← 0, i← 1, I ← ∅
6: while i ≤ n do
7: k ← i
8: for each i = k, . . . , n do . Identify next tile
9: S ← FindIndexSplit(di, σdi)

10: z ← z + nnz(d>i )
11: r ← r + 1
12: if z ≥ ζ or r = ν then
13: i← i+ 1
14: break
15: for each q = k, . . . , i in parallel do . Create tile index I
16: Index(dq, I, S, σdq )

17: for each l = k, . . . , n, in increments of η do . Filter
18: for each q = l, . . . ,min(l+η −1, n), in parallel do
19: cq ← GenerateCandidates(dq, I, k)

20: VerifyCandidates(dq, cq, I, N̂ , k)

21: I ← ∅
22: Update un-processed object processing order given N̂
23: end while
24: return N̂

Unlike pL2AP, where individual threads can collect output data for objects they

process, which can be easily merged at the end of the execution, similarities in pL2Knng

are used to update the query and candidate neighborhoods. This poses the risk of

resource contention, as multiple threads may try to update the same neighborhood at
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the same time. One solution could be for each thread to lock a mutex associated with

the neighborhood before updating it. However, with the number of neighborhoods in

the n = 105–107 range, and number of potential neighborhood updates being as high as

0.5n(n− 1), this strategy would be very slow. Additionally, threads would have to wait

while a neighborhood they needed to update was being updated by another thread,

which would cause further slowdowns. Instead, we have devised a lock-free strategy

for updating query and candidate neighborhoods in parallel, which we use in both the

pL2Knng-a and pL2Knng algorithms.

Our methods process queries in tiles up to η objects at a time (line 18), which we call

query tiles. We allocate memory for up to η accumulators, which are used by threads to

store their search results for each object they process in the query tile. Within the tile,

each thread is dynamically assigned a few objects at a time to process. The neighbor-

hood of each processed object can be safely updated with the results. Contention occurs

only when updating candidate neighborhoods. We assign each thread a sequential block

of n/nt candidate objects whose neighborhoods they are responsible to update. After

processing each object and updating its neighborhood, threads rearrange the accumu-

lator array such that it stores candidate updates sequentially. They also mark the start

and end offsets in the accumulator for each thread’s set of assigned candidates. Then,

after a query tile has been processed, threads iterate through their assigned sections

of all the accumulators in the tile, updating neighborhoods for candidates they are

responsible for.

6.5 Experimental Evaluation for Parallel Cosine k-NNG

Construction

Our experiment results are organized along two directions. First, we present results from

evaluating our parallel approximate method, pL2Knng-a. We compare our method’s ac-

curacy and efficiency against approximate baselines, and then study the strong scaling

characteristics of the approximate methods under comparison. Second, we present re-

sults from evaluating our exact method, pL2Knng. We measure serial efficiency improve-

ments compared to the original L2Knng algorithm, study our method’s sensitivity to

parameter choices, compare the efficiency and strong scaling characteristics of pL2Knng
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with parallel and approximate baselines, and study load imbalance in our method. For

all experiments, we used three real-world text datasets for evaluation, RCV1, WW200,

and WW500, which are described in Section 2.3.

6.5.1 Baseline Approaches

We compare our methods against the following baselines.

• pKIdxJoin is a straight-forward baseline similar to IDX in [37] and kIdxJoin, de-

scribed in Section 5.2. The method uses similar cache-tiling as pL2Knng, but does not

use any pruning when computing similarities. For each block of queries, pKIdxJoin

sequentially retrieves a block of objects to search against and indexes all their values.

Threads then share the index to compute similarities, via accumulation, of each as-

signed object in a query tile against all indexed objects, retaining the top-k matches

for each object.

• Greedy Filtering is an approximate k-NNG construction method proposed by Park et

al. [37], which we described in Section 5.2. We have created a shared memory parallel

version of Greedy Filtering, which we call pGF, using the same thread cooperation

strategy as in pL2Knng-a. Threads first work together to index enough high-weight

features for each object to ensure µ candidate neighbors have at least one feature

in common with each input object. Then, they dynamically split the work of com-

puting similarities of each object in an inverted list against all other objects in the

list. We adopt the same neighborhood update strategy as in pL2Knng. Each thread

updates the neighborhood of an assigned query object as soon as it has finished com-

puting the similarity with a candidate object. Threads synchronize at the end of each

inverted index list, reading computed similarities by all threads in order to update

neighborhoods for an assigned block of objects.

• NN-Descent is a shared memory parallel approximate k-NNG construction method

designed by Dong et al. [36], which we described in Section 5.2.

Locality sensitive hashing (LSH) has been a popular method for top-k search, but we

have found that it does not in general perform well in the k-NNG construction setting

when one requires high average recall. Both Greedy Filtering and NN-Descent have

been shown to outperform LSH in this setting, for k typically ≥ 10. Moreover, pL2Knng
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Table 6.5: Approximate graph construction similarity computation and pruning strate-
gies.

k nt base select prune ps psi1 psi2
RCV1

10 1 238.22 239.45 282.56 292.95 280.89 314.82
100 1 425.62 435.53 503.57 532.01 502.48 519.58
500 1 1738.29 1750.71 2017.61 2001.87 2216.25 2201.37
10 16 25.78 25.77 30.05 30.37 30.52 31.50
100 16 95.31 47.58 57.99 58.93 54.66 55.40
500 16 663.22 247.25 278.98 283.25 224.44 202.06

WW200
10 1 520.49 545.50 575.09 577.69 545.71 556.06
100 1 2184.82 2589.67 2377.12 2420.05 2411.12 2443.35
500 1 8183.49 8947.30 8607.76 10542.93 9563.67 9283.00
10 16 70.78 61.08 73.57 62.50 71.92 61.09
100 16 296.13 253.60 314.95 315.60 266.58 262.15
500 16 1187.05 934.32 1244.82 1094.21 1030.59 1034.11

WW500
10 1 98.78 99.04 102.44 100.29 100.81 103.70
100 1 536.53 528.34 544.50 569.75 493.04 529.31
500 1 2126.66 2107.47 2232.83 2244.38 2073.01 2192.98
10 16 13.25 13.28 13.72 13.87 13.68 13.40
100 16 73.56 73.51 77.02 77.10 70.35 70.57
500 16 308.14 309.56 319.98 321.38 252.87 258.61

The table shows execution times for our pL2Knng-a approximate graph construction algorithm,
in seconds, under the different similarity computation and pruning strategies described in
Section 6.4.1, for neighborhood sizes k ∈ {10, 100, 500} and number of threads nt ∈ {1, 16}, for
three different datasets. For each configuration, the best execution time is highlighted in bold.

significantly outperforms Greedy Filtering and NN-Descent in both serial and parallel

execution environments. As a result, we have chosen not to compare against LSH in

this work.

6.5.2 Evaluation of Approximate Methods

Strategy comparison

In Section 6.4.1, we have presented several strategies for improving our approximate k-

NNG construction method. We tested each strategy on three test datasets, using both

our serial (L2Knng, nt = 1) and parallel algorithms (pL2Knng, nt = 16), and present

the results in Table 6.5, for k ∈ {10, 100, 500}. In addition to the base, select, and
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prune strategies described in Section 6.4.1, we tested three additional scenarios. The ps

strategy combines the prune and select strategies. Checking pruning bounds can be an

expensive operation, which is only beneficial if it results in pruning. One option would

be to only check the bounds some of the time, e.g., for the first few traversed non-zeros

in the candidate vector. We tested two such scenarios, where psi1 and psi2 use the

same strategy as ps, but check the pruning bounds only during the first 20 and 250

accumulation operations, respectively.

The results show that the select strategy was beneficial in the parallel setting, incur-

ring up to 2.68x less execution time than the base strategy, but did not improve serial

execution. On the other hand, the pruning strategy, which checked the bound after

each accumulation operation, was in general slower than all the other strategies. Par-

tial pruning strategies psi1 and psi2 were the most effective for large k values. Based

on these results, we chose psi1 as the strategy under which we executed all experiments

presented in the remainder of this section.

Serial improvement comparison

Table 6.6: Efficiency improvement in L2Knng.
method versus k=10 25 50 75 100

WW200
L2Knng L2Knng? 1.63 1.68 1.71 1.70 1.70
L2Knng-a L2Knng-a? 1.10 1.26 1.18 1.21 1.15
pL2Knng-a pL2Knng-a? 2.15 1.95 1.45 1.48 1.43

WW500
L2Knng L2Knng? 1.49 1.60 1.62 1.73 1.69
L2Knng-a L2Knng-a? 1.31 1.27 1.35 1.26 1.31
pL2Knng-a pL2Knng-a? 2.74 2.42 1.96 1.66 1.48

RCV1
L2Knng L2Knng? 1.46 1.50 1.49 1.54 1.44
L2Knng-a L2Knng-a? 1.09 1.15 1.18 1.23 1.39
pL2Knng-a pL2Knng-a? 1.47 1.54 1.63 1.58 1.61

The table shows speedup values for each of our new L2Knng, L2Knng-a, and pL2Knng-a
methods, which implement the improvements described in Section 6.4.1, versus the previous
version of the same algorithm, noted with a star. Significant improvements are marked in bold.

We compared the search execution times of our new L2Knng, L2Knng-a, and pL2Knng-a
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methods, which implement the improvements described in Section 6.4.1, versus the pre-

vious version of the same algorithm. We executed experiments for k ∈ {10, 25, 50, 75, 100}
on our three datasets, and we used nt = 16 threads when executing parallel methods.

Table 6.6 shows the result for this set of experiments. Significant improvements (1.5x

or above) of our enhanced methods versus their previous versions are marked in bold.

The results show that the improvements are beneficial, especially for serial execution

in L2Knng and parallel execution in pL2Knng-a, leading to speedups of up to 2.74x.

In the remainder of this section, we will use the new versions of L2Knng and L2Knng-a,

which include the improvements described in Section 6.4.1, in all experiments comparing

execution of our parallel methods against a serial baseline.

Effectiveness comparison

The efficiency of all the approximate methods under consideration are dependent on

the number of candidates they are allowed to consider for each object, µ. The larger

the candidate pool is, the more likely the true neighborhood is found among the ob-

jects in the pool. We compared the recall and execution time of pL2Knng-a with other

approximate baselines, given the same candidate list and neighborhood size parame-

ters, µ and k. We tested each method, without changing any other parameters, given

µ = k, 2k, . . . , 10k, on the RCV1 and WW500 datasets. We tested pL2Knng-a with

γ = 0 (pL2Knng-a0), which does not execute any iterative neighborhood updates, and

with γ = 3 (pL2Knng-a3). All methods were executed with nt = 16 threads.

Figure 6.12 plots recall versus execution time for our experiment results. For all

methods, results for µ = k are marked with a “-” label, and those for µ = 10k with a

“+” label. The best results are those points in the lower-right corner of each quadrant

in the figure, achieving high recall in a short amount of time. We display results for

k ∈ {50, 100}. Results for other k values showed similar trends.

The results are consistent with the same experiment we executed on the serial version

of these methods, detailed in Section 5.2.2. Methods generally exhibit higher recall and

higher execution time for larger µ values. NN-Descent took considerably more time

than most other methods to complete the graph construction. pL2Knng-a0 takes much

less time to execute than pGF and, given large enough µ, can achieve similar or higher

recall. Both pL2Knng-a and pGF require larger µ values than NN-Descent to achieve



132

0

100

200

300
RCV1,
k=50

pL2Knng-a0

- +

pL2Knng-a3

-
+

pGF

-

+

NN-Descent

-
+

0

100

200

300

400

500WW500,
k=50

-
+-

+-

+

-+

0

100

200

300

400

500

600

700

.4 .5 .6 .7 .8 .9 1

RCV1,
k=100

- +-
+

-

+

-
+

.4 .5 .6 .7 .8 .9 1

0

100

200

300

400

500WW500,
k=100

recall

ti
m

e
 (

s
)

-
+

-

+

-

+

-+

Figure 6.12: k-NNG construction effectiveness comparison.

high recall. Yet, NN-Descent does not improve much as µ increases. pL2Knng-a3 is able

to outperform both competitors, with regards to both time and recall, for large enough

µ.

Efficiency comparison

Figure 6.13 displays the results of our parallel approximate k-NNG construction method

efficiency comparison experiments. Execution times are displayed on the left, and

speedup over the best serial approximate method (L2Knng-a) is displayed on the right.

We executed each approximate method under a wide range of parameters and report the

smallest time for which a minimum recall value of 0.95 was achieved. We were not able

to achieve high enough recall for NN-Descent for the WW200 dataset for k ∈ {10, 25}.
Therefore, the graph contains no bars for NN-Descent for those results.

Our method, pL2Knng-a, was more efficient than all baselines in all experiments

and achieved 8–13x speedup using 16 cores over the serial version, showing that our

lock-less neighborhood update strategy is effective. We used the same neighborhood

update strategy in pGF, yet its efficiency degrades quickly with increasing k, likely due

to its candidate selection strategy, which can lead to many similarities being computed



133

0

5000

10000

15000

20000

25000
WW200

0
500

1000
1500
2000
2500
3000
3500

ti
m

e
 (

s
)

WW500

10 25 50 75 100 200 300 400 500
k

0

500

1000

1500

2000

2500

3473
5894

8318
11145

RCV1

pGF

NN-Descent

pL2Knng-a

0
2
4
6
8

10
12 WW200

0
2
4
6
8

10
12

s
p

e
e
d

u
p

WW500

10 25 50 75 100 200 300 400 500
k

0

5

10

15 RCV1

pGF

NN-Descent

pL2Knng-a

Figure 6.13: Approximate k-NNG construction efficiency comparison.

multiple times during the search. NN-Descent performed poorly on the WW datasets,

especially for low values of k, which required setting the candidate list size µ very high

to achieve the minimum required recall. Surprisingly, it performed much better on

the RCV1 dataset, coming within 1.5x of the performance of pL2Knng for k = 500.

NN-Descent computes similarities one at a time, as a sparse-sparse vector dot-products.

Object vectors in RCV1 are fairly short in comparison with those in the WW datasets,

which may explain the difference in performance.

Strong scaling

Figure 6.14 shows the strong scaling results from our approximate methods, for k = 10

(left) and k = 100 (right). Parameters were chosen for each method to achieve a

minimum recall of 0.95. We used query tile size η = 25k for pL2Knng-a. Our method

displays a consistent scaling pattern, achieving slightly more than 8x speedup using

16 threads. In general, pGF scaled worse than pL2Knng-a. While NN-Descent showed
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Figure 6.14: Strong scaling of approximate k-NNG construction methods.

better scaling characteristics for the WW datasets up to 16 threads, its execution time

is orders of magnitude slower. For the RCV1 dataset, NN-Descent did not scale better

than 8x.

6.5.3 Evaluation of Exact Methods

Parameter sensitivity

The tiling parameters, η, ν, and ζ, affect the size of the data structures used when

searching for neighbors, which should fit in the processor cache to achieve good perfor-

mance. As a way to test the sensitivity of our exact k-NNG construction method to these

input parameters, we executed experiments with all combinations of η ∈ {10k, 25k} and

ζ ∈ {0.5M, 1M, 5M, 10M}. For all experiments, we set ν =∞, allowing the ζ parameter
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Table 6.7: Parameter sensitivity analysis in pL2Knng.
k=10 k=100 k=500

η ζ cmp η ζ cmp η ζ cmp

10k 0.5M 0.98 10k 0.5M 0.99 10k 0.5M 1.15
10k 1M 1.03 10k 1M 1.02 10k 1M 1.18
10k 5M 1.60 10k 5M 1.43 10k 5M 1.42
10k 10M 1.80 10k 10M 1.54 10k 10M 1.49
25k 0.5M 0.95 25k 0.5M 0.98 25k 0.5M 1.14
25k 1M 1.00 25k 1M 1.00 25k 1M 1.00
25k 5M 1.57 25k 5M 1.41 25k 5M 1.41
25k 10M 1.77 25k 10M 1.51 25k 10M 1.49

to solely decide the number of objects in each inverted index. Table 6.7 presents the re-

sults of these experiments, for k ∈ {10, 100, 500}, as speedup relative to the experiment

result for η = 25k and ζ = 1M.

Our method displays the best performance for small enough ζ values, when the

inverted indexes can fit in the processor cache. Setting ζ very high can result in more

than 1.5x slowdown as compared to an optimal setting. The choice of query tile size η

does not seem to affect performance as much. For experiments detailed in the remainder

of the section, we set parameters η = 25k and ζ = 1M for pL2Knng.

Load balance

Table 6.8: Load imbalance in pL2Knng.
time (s) imbalance

k IG GE CG CV IG GE CG CV
RCV1

10 33.11 1.01 99.91 32.98 1.83 1.33 0.19 0.78
100 35.98 20.51 217.67 66.11 11.28 2.23 0.07 0.34
500 175.35 84.85 359.22 98.96 12.47 5.42 0.16 0.52

WW200
10 74.60 6.02 1176.66 125.56 0.73 0.30 0.12 0.60
100 158.57 144.79 1955.26 165.52 4.15 0.30 0.11 1.59
500 667.56 536.71 2711.16 194.48 12.71 0.98 0.14 1.67

WW500
10 11.96 2.15 175.49 10.46 0.21 0.09 0.14 1.06
100 39.87 35.81 301.42 12.91 2.71 0.11 0.22 1.70
500 171.55 142.41 422.11 18.82 9.41 0.49 0.15 1.57
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In order to test the effectiveness of the dynamic task partitioning approach in

pL2Knng, we measured the amount of time each thread spent searching for neighbors,

in each of the parallel search regions of our method, initial graph construction (CG),

graph enhancement (GE), filtering candidate generation (CG), and filtering candidate

verification (CV). We executed the experiment for k ∈ {10, 100, 500} on three datasets

and present the result in Table 6.8. The left side of the table shows execution time for

each of the parallel regions, while the right side shows the amount of load imbalance in

the execution. Following DeRose et al. [88], we measure load imbalance percentage as,

% load imbalance =
n

n− 1

(
tmax
tmean

− 1

)
,

where tmax and tmean are the maximum and mean search times among the threads. The

measure corresponds to the percentage of time that other threads, excluding the slowest

one, are not engaged in useful work during the given parallel block. All experiments

were executed with nt = 16 threads.

The results of our experiment show that our method exhibits good load balance in

general, especially in the filtering stages. The IC stage, which takes a relatively small

part of the overall execution (14% on average across our experiments), exhibits the most

load imbalance, which is generally less than 13%. While the imbalance seems to increase

with larger values of k for the IG and GE sections, it does not seem to be affected in

the same way in the filtering stages, CG and CV.

Efficiency comparison & strong scaling analysis

Figure 6.15 displays the results of our parallel exact k-NNG construction method effi-

ciency comparison experiments. Execution times are displayed on the left, and speedup

over the best serial exact method (L2Knng) is displayed on the right. As pKIdxJoin

does not use any pruning, its execution times are similar for all k values, affected in

general only by sorting longer lists during the nearest neighbor identification for each

object. However, even with 16 threads, it only achieves 1.5–4.5x speedup over our serial

baseline. In contrast, pL2Knng significantly outperforms pKIdxJoin in every experiment

and achieves 12.5–15.5x speedup over the serial baseline. This highlights both the ef-

fectiveness of the pruning in pL2Knng, and the ability of threads to cooperatively solve
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the problem without contention or much additional overhead.

Figure 6.16 shows the results of our strong scaling analysis for k ∈ {10, 100} using

all three of our test datasets. In each experiment, we report the scaling of each method

at nt ∈ {1, 4, 8, 12, 16} over its own single threaded execution. The dashed line shows

ideal scaling. Results show that pL2Knng has very good strong scaling characteristics,

achieving up to 14x speedup, while pKIdxJoin is unable to scale better than 9x.
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Figure 6.15: Exact k-NNG construction efficiency comparison.
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Chapter 7

Conclusion

Constructing nearest neighbor graphs for large sets of objects is a difficult problem,

which, due to its high complexity, is often solved approximately, returning only some

of the nearest neighbors for each object. In this thesis, we presented novel solutions for

constructing exact nearest neighbor graphs, which contain all of the nearest neighbors,

both on serial and shared memory parallel architectures.

In Chapter 4, we addressed the ε-NNG construction problem, which constructs a

graph by finding, for each object in the set, all other objects with a similarity of at least

some threshold ε. First, leveraging the Cauchy-Schwarz inequality in partial vector dot-

products, we proposed new theoretic upper bounds on the cosine similarity of two vectors

and proved their superiority to other bounds previously proposed in the literature.

We then described how these bounds can be efficiently tested to allow pruning much

of the search space when constructing the graph, and analyzed the performance of

individual bounds. The newly introduced prefix `2-norm based bounds showed the most

pronounced improvement on pruning performance and execution efficiency, allowing our

method, L2AP, to construct the graph 2–13x faster than the best alternative, depending

on the input threshold ε, on sets of 100k–3M objects representing documents or social

network profiles. In particular, our method was able to find all pairs of pages with

nearly identical links among 1.8M English Wikipedia pages in 10 seconds, using a single

CPU core. L2AP was up to 1600x faster than a linear search for neighbors, which does

not prune the search space. While baseline algorithms do not scale well as the similarity

threshold decreases, L2AP was effective at both high and low similarity thresholds. In

139
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many of the experiments, our exact graph construction method was able to outperform

even approximate methods required to obtain at least 95% of the correct result.

Second, we showed that the filtering techniques we designed for cosine similarity can

also be used to solve the ε-NNG construction problem for some length-variant similarity

functions, such as the Tanimoto similarity. Our solution combined some existing filtering

techniques, the bounds we designed for the cosine function, and a new class of length-

based bounds into a cohesive method for constructing the neighborhood graph using

the Tanimoto similarity function, named TAPNN. We proved the effectiveness of our

new filtering bounds and showed that TAPNN significantly outperforms state-of-the-art

baselines, for a range of ε values. Our method was up to 12.5x more efficient than the

most efficient baseline and up to two orders of magnitude faster than a linear search. In

particular, it was able to find all near-duplicate pairs among 5M chemical compounds

in minutes, using a single CPU core.

In Chapter 5, we addressed the k-NNG construction problem, which constructs a

graph by finding the k closest other objects for each object in the input set. We in-

troduced a novel method for constructing the cosine k-NNG, which combined a fast

algorithm for obtaining an initial approximate solution to the problem with a modi-

fied filtering framework. In this framework, we introduced several new pruning bounds

specific to the k-NNG construction problem and data structures for efficiently con-

structing the graph. We performed an extensive evaluation of our algorithm, comparing

against both exact and approximate baselines, across a variety of real-world datasets and

neighborhood sizes. Our experiments revealed that our approximate k-NNG construc-

tion method, L2Knng-a, achieves high recall in less time than competing approximate

methods, and is an order of magnitude more efficient than approximate baselines when

building a graph that is at least 95% correct. Furthermore, our exact method, L2Knng,

was 2.2–28.2x faster than exact baselines in our experiments.

In Chapter 6, we described shared memory parallel methods for both the ε-NNG [22]

and the k-NNG [23] construction problems. We introduced a number of cache-tiling

optimizations, which, combined with fine-grained dynamically balanced parallel tasks,

allowed our methods to solve the problem up to two orders of magnitude faster than

existing parallel baselines, on datasets with hundreds of millions of non-zeros. In partic-

ular, our parallel ε-NNG method, pL2AP, was able to construct the exact graph, using 24
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cores, 1.5–232x faster than the best alternative. We tested our parallel k-NNG method,

pL2Knng, using 16 cores, and found that it outperformed baselines by 3.0–12.9x. Both

pL2AP and pL2Knng displayed good scaling characteristics, superior to those of their re-

spective baselines. Furthermore, our parallel approximate k-NNG construction method,

pL2Knng-a, was able to construct a graph containing at least 95% of the correct result

1.5–21.7x faster that previous methods.

The methods presented in this thesis can be extended in a number of potential

future directions. First, to allow solving problems with hundreds of million of objects or

more, efficient methods should be designed for distributed computing platforms and for

cloud computing. A key issue in these environments is minimizing the communication

overhead needed to solve the problem. Some of the filtering strategies we applied in

the serial and shared memory parallel environments could be applied to intelligently

partition the input data and work assignments among nodes in a way that can minimize

communication, while simultaneously prune some of the search space.

The methods I presented in this thesis make the assumption that all input objects

are present at the onset of execution and that their vector representations fit in memory.

Moreover, data are assumed not to change. An interesting future direction would be to

design persistent data structures that can enable both fast nearest neighbor graph con-

struction and record updates. It would be interesting to investigate filtering techniques

that can be applied to make neighborhood and inverted index data structure updates

efficient.

Finally, another interesting direction would be to design graph construction methods

that take advantage of hardware accelerators, such as Intel Many Integrated Core (MIC)

coprocessors or graphical processing units (GPUs). MIC and GPU accelerators present

different challenges for designing scalable parallel methods, but can make it feasible to

solve very large problems, which is very desirable given the large volume of Big Data

today.
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[85] Rodrigo Paredes, Edgar Chávez, Karina Figueroa, and Gonzalo Navarro. Practical

construction of k-nearest neighbor graphs in metric spaces. In Proceedings of the

5th International Conference on Experimental Algorithms, WEA’06, pages 85–97,

Berlin, Heidelberg, 2006. Springer-Verlag.

[86] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar ram-

cpu cache compression. In Proceedings of the 22Nd International Conference on

Data Engineering, ICDE ’06, pages 59–, Washington, DC, USA, 2006. IEEE Com-

puter Society.

[87] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961.

[88] Luiz DeRose, Bill Homer, and Dean Johnson. Detecting application load imbalance

on high end massively parallel systems. In Proceedings of the 13th International

Euro-Par Conference on Parallel Processing, Euro-Par’07, pages 150–159, Berlin,

Heidelberg, 2007. Springer-Verlag.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Problems & Applications
	Emerging Challenges
	Contributions
	Epsilon-Nearest Neighbor Graph Construction
	K-Nearest Neighbor Graph Construction
	Parallel Graph Construction Methods

	Outline
	Related Publications

	Background
	Definitions & Notation
	Theory Background
	Similarity Functions

	Datasets
	Data Processing
	Text Data Processing
	Network Data Processing
	Chemical Compound Processing

	Performance Measures
	Execution Environment

	Related Work
	Epsilon-NNG Construction
	Tanimoto Epsilon-NNG Construction

	K-NNG Construction
	Parallel Algorithms

	Serial Epsilon-NNG Construction
	Filtering Framework
	Prefix and Suffix Filtering
	Index Construction
	Candidate Generation
	Candidate Verification

	Cosine Epsilon-NNG Construction
	L2-norm Bounds
	Index Construction
	Candidate Generation
	Candidate Verification
	Approximate Epsilon-NNG Construction

	Choice of Pruning Strategies
	Experimental Evaluation for Cosine Epsilon-NNG Construction
	Baseline Approaches
	Pruning Effectiveness
	Execution Efficiency

	Tanimoto Epsilon-NNG Construction
	A Basic Indexing Approach
	Incorporating Cosine Similarity Bounds
	New Tanimoto Similarity Bounds

	Experimental Evaluation for Tanimoto Epsilon-NNG Construction
	Baseline Approaches
	Execution Efficiency
	Pruning Effectiveness
	Scaling


	Serial K-NNG Construction
	Cosine K-NNG Construction
	Approximate Graph Construction
	Filtering
	Block Processing

	Experimental Evaluation for Cosine K-NNG Construction
	Baseline Approaches
	Evaluation of Approximate Methods
	Evaluation of Exact Methods


	Parallel Nearest Neighbor Graph Construction
	Filtering Framework Memory Access Pattern Analysis
	Indexing
	Candidate Generation
	Candidate Verification

	Parallel Cosine Epsilon-NNG Construction
	pAPT
	pL2AP

	Experimental Evaluation for Parallel Cosine Epsilon-NNG Construction
	Baseline Approaches
	Pruning Effectiveness
	Execution Efficiency

	Parallel Cosine K-NNG Construction
	Serial Improvements in L2Knn
	pL2Knn

	Experimental Evaluation for Parallel Cosine K-NNG Construction
	Baseline Approaches
	Evaluation of Approximate Methods
	Evaluation of Exact Methods


	Conclusion
	References

