
Variable Selection and Prediction in “Messy”
High-Dimensional Data

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Benjamin Timothy Brown

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Julian Wolfson

July, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/211347907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Benjamin Timothy Brown 2017

ALL RIGHTS RESERVED

Acknowledgements

There are many people that have earned my gratitude for their contribution to my time

in graduate school. My advisor Julian Wolfson helped get me here when I thought I

might not make it. Sally Olander had the answer to every question I had along the way.

Brad Carlin kept me on track and provided a great deal of needed support.

i

Dedication

To my wife, Lindsey, for encouraging me for the past three and a half years and sup-

porting me through the many long nights of research.

ii

Abstract

When dealing with high-dimensional data, performing variable selection in a regression

model reduces statistical noise and simplifies interpretation. There are many ways to

perform variable selection when standard regression assumptions are met, but few that

work well when one or more assumptions is violated. In this thesis, we propose three

variable selection methods that outperform existing methods in such “messy data” situ-

ations where standard regression assumptions are violated. First, we introduce Thresh-

olded EEBoost (ThrEEBoost), an iterative algorithm which applies a gradient boosting

type algorithm to estimating equations. Extending its progenitor, EEBoost (Wolfson,

2011), ThrEEBoost allows multiple coefficients to be updated at each iteration. The

number of coefficients updated is controlled by a threshold parameter on the magni-

tude of the estimating equation. By allowing more coefficients to be updated at each

iteration, ThrEEBoost can explore a greater diversity of variable selection “paths” (i.e.,

sequences of coefficient vectors) through the model space, possibly finding models with

smaller prediction error than any of those on the path defined by EEBoost. In a simula-

tion of data with correlated outcomes, ThrEEBoost reduced prediction error compared

to more naive methods and the less flexible EEBoost. We also applied our method to

the Box Lunch Study where we found that we were able to reduce our error in predicting

BMI from longitudinal data. Next, we propose a novel method, MEBoost, for variable

selection and prediction when covariates are measured with error. To do this, we incor-

porate a measurement error corrected score function due to Nakamura (1990) into the

ThrEEBoost framework. In both simulated and real data, MEBoost outperformed the

CoCoLasso (Datta and Zou, 2017), a recently proposed penalization-based approach

to variable selection in the presence of measurement error, and the (non-measurement

iii

error corrected) Lasso. Lastly, we consider the case where multiple regression assump-

tions may be simultaneously violated. Motivated by the idea of stacking, specifically

the SuperLearner technique (Van Der Laan et al., 2007), we propose a novel method,

Super Learner Estimating Equation Boosting (SuperBoost). SuperBoost performs vari-

able selection in the presence of multiple data challenges by combining the results from

variable selection procedures which are each tailored to address a different regression as-

sumption violation. The ThrEEBoost framework is a natural fit for this approach, since

the component “learners” (i.e., violation-specific variable selection techniques) are fairly

straightforward to construct and implement by using various estimating equations. We

illustrate the application of SuperBoost on simulated data with both correlated out-

comes and covariate measurement error, and show that it performs as well or better

than methods which address only one (or neither) of these factors.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures x

1 Introduction 1

2 ThrEEBoost 4

2.1 Introduction . 4

2.2 Boosting, EEBoost, and ThrEEBoost 6

2.2.1 EEBoost . 8

2.2.2 Diversifying variable selection paths 9

2.2.3 ThrEEBoost: Thresholded EEBoost 10

2.2.4 Selecting the best model . 11

2.3 Simulation Study . 13

2.3.1 Sparse regression model with correlated outcomes 13

2.3.2 Less sparse regression model with correlated outcomes 18

2.4 Data application - Box Lunch Study . 22

v

2.5 Discussion . 24

2.6 Supplementary Materials . 26

3 MEBoost 27

3.1 Introduction . 27

3.2 Background . 29

3.2.1 Regression in the Presence of Covariate Measurement Error . . . 29

3.2.2 Variable selection in the Presence of Measurement Error 29

3.2.3 Lasso in the Presence of Measurement Error 30

3.2.4 The Convex Conditioned Lasso (CoCoLasso) 32

3.3 MEBoost: Measurement Error Boosting 33

3.3.1 Corrected Score Function . 34

3.3.2 The MEBoost Algorithm . 35

3.4 Simulation Study . 38

3.4.1 Simulation Set-up . 38

3.4.2 Simulation Results . 41

3.5 Data Application . 43

3.6 Discussion . 45

3.7 Tables and Figures . 48

4 SuperBoost 52

4.1 Introduction . 52

4.2 Literature Review . 54

4.2.1 Variable selection when regression assumptions are violated . . . 54

4.2.2 Stacking . 55

4.2.3 Super Learner . 57

4.3 Methods . 59

vi

4.3.1 Boosting . 59

4.3.2 Combining the methods . 61

4.3.3 SuperBoost . 62

4.4 Simulation . 65

4.4.1 Set-up . 65

4.4.2 Results . 66

4.5 Discussion . 70

5 Conclusion and Discussion 76

References 78

vii

List of Tables

2.1 Mean minimum prediction error (a), median variable selection (b) sensi-

tivity and (c) specificity, (d) mean number of iterations (25th and 75th

percentile) to attain minimum prediction error, (e) minimum mean QIC,

and (f) proportion of simulations where algorithm did not find a unique

minimum MSE for ThrEEBoost in the sparse true model under differ-

ent values of the threshold, τ and correlation between intra-individual

observations, ρ. Results are based on 1000 simulations, each with 500

iterations. 16

2.2 Mean minimum prediction error (a), median variable selection (b) sensi-

tivity and (c) specificity, (d) mean number of iterations (25th and 75th

percentile) to attain minimum prediction error, (e) minimum mean QIC,

and (f) proportion of simulations where algorithm did not find a unique

minimum MSE for ThrEEBoost in the less sparse true model under dif-

ferent values of the threshold, τ , and correlation between intra-individual

observations, ρ. Results are based on 1000 simulations, each with 1500

ThrEEBoost iterations. 19

2.3 Coefficients for the optimal ThrEEBoost (τ = 0.4) and LASSO models

selected by cross-validated MSE. Small coefficients (magnitude < 0.05)

are omitted. “–” indicates that the variable was not selected in the model. 22

viii

2.4 Estimated mean squared prediction error for ThrEEBoost and LASSO

models. (CV MSE) denotes models selected by minimizing cross-validated

MSE. 23

3.1 Performance metrics for the 1,000 simulations in various measurement

error scenarios. The models were selected at the point with minimum

MSE-M. 50

3.2 Coefficients, Deviance, and MSE-M from selected models for MEBoost

with specified value of τ and δ̂2
D and the Lasso. Small coefficients (magni-

tude < 0.05) are omitted. “-” indicates that the variable was not selected

in the model. 51

4.1 List of parameter values for each scenario. n is the number of clusters, σ2

is the residual variance, δ is the standard deviation of the measurement

error, ρ is the pairwise correlation in outcomes within clusters, βm is the

effect size of mismeasured predictors, βg is the effect size of predictors

measured without error. Scenario b in each setting has fewer clusters and

higher residual variance, giving us less information to reach an accurate

estimate. 65

4.2 Performance metrics for scenario 1a. 67

4.3 Performance metrics for scenario 1b. 68

4.4 Performance metrics for scenario 2a. 69

4.5 Performance metrics for scenario 2b. 70

4.6 Performance metrics for scenario 3a. 71

4.7 Performance metrics for scenario 3b. 72

ix

List of Figures

2.1 Average L1 distances from the true β (top row), estimated coefficient val-

ues (middle row) and MSPE (bottow row) across iterations for various

values of τ , when data are generated from a very sparse true regression

model with an intra-individual correlation of ρ = 0.3. The solid, dashed,

and dotted lines in the coefficient plots (middle row) represent coefficients

with true values of 0.5, 0.2, and 0.0 respectively. Results are based on

1000 simulations, each with 500 ThrEEBoost iterations. The solid ver-

tical lines show the iteration where the minimum mean squared error is

achieved in each scenario. 15

2.2 The distribution of selected τ values via cross-validation. For each value

of ρ, the median τCV selected was 0.58. 17

x

2.3 Average L1 distances from the true β (top row), estimated coefficient val-

ues (middle row) and MSPE (bottow row) across iterations for various

values of τ , when data are generated from a less sparse true regression

model with an intra-individual correlation of ρ = 0.3. The solid, dashed,

and dotted lines in the coefficient plots (middle row) represent coefficients

with true values of 0.5, 0.2, and 0.0 respectively. Results are based on

1000 simulations, each with 1500 ThrEEBoost iterations. The solid ver-

tical lines show the iteration where the minimum mean squared error is

achieved in each scenario. 20

2.4 The distribution of selected τ values via cross-validation. For each value

of ρ, the median τCV selected were 0.38, 0.40, and 0.38. 21

2.5 Average QIC when data are generated from a less sparse true regression

model with an intra-individual correlation of ρ = 0.3. Results are based

on 1000 simulations, each with 1500 ThrEEBoost iterations. 21

2.6 Coefficient magnitudes for the optimal models (chosen by cross-validated

MSE) for different values of τ . Each row corresponds to a different vari-

able; darker shades of gray correspond to higher coefficient magnitudes.

The names of the variables are displayed on the right; a data dictionary

giving the variable descriptions is provided in the Supplementary Materials. 25

3.1 Summary statistics for the scenario with varying levels of independent

measurement errors. Plots are of MSE, MSE-M, L1 distance from β̂ to

the true value of β, sensitivity, and specificity across the mean path over

1,000 simulations. 48

xi

3.2 In the scenario, with iid measurement error, 1,000 simulations were con-

ducted comparing the variable selection path of MEBoost to CoCoLasso.

Plots are of the number of nonzero coefficients included in the model,

the portion of coefficients that are ’mismatched’ with only one of the two

models selecting a certain variable, and the element-wise distance in a

coefficient between the two methods. 49

4.1 Model weights and traceplots for mean paths of Super Learner models in

scenario 1b. 74

4.2 Performance metrics over the paths created by MEBoost in scenario 3a. 75

xii

Chapter 1

Introduction

Driven by the ever-increasing amount of high-dimensional data in biomedicine, much

recent research has focused on how to do variable selection and prediction in problems

where the number of predictors, p, is large in comparison to the number of observations,

n. Traditional approaches like forward selection and backward elimination are widely

employed but have limitations, particularly when the number of covariates is very large.

For instance, it has been shown that the first variable selected in forward selection can-

didate models can often be the first removed in backwards elimination (Hocking, 1976).

Methods such as the Lasso (Tibshirani, 1996) and SCAD (Fan and Li, 2001) generally

offer superior variable selection and predictive performance to stepwise techniques, but

have been applied almost exclusively to general linear (Park et al., 2006) and survival

regression models (Fan and Li, 2002).

Some authors have extended penalized approaches to more complex modeling sit-

uations such as correlated outcomes (Johnson et al., 2008), missing covariates (Yang

et al., 2005), and measurement error in covariates (Datta and Zou, 2017). However,

the resulting statistical procedures often involve constrained optimization of nonconvex

functions, and may therefore be too computationally intensive to apply in settings where

p is on the order of hundreds or thousands. Ueki (2009) proposes a smooth thresholding

1

2

approach to penalizing estimating equations, with the selection threshold determined

by an adaptive lasso type estimator. While smooth thresholding avoids convex opti-

mization and therefore offers a computational speedup, the method still requires that

a set of estimating equations be solved numerically for a large number of points on a

two-dimensional grid of tuning parameters. Further, since the thresholding relies on an

initial “full model” estimator, it is unclear how this technique generalizes to problems

where p is large in relation to n.

As an alternative to penalization methods, Wolfson (2011) introduced EEBoost, a

gradient descent-based method that can be used to perform variable selection for any

regression problem where estimation of low-dimensional coefficients can be performed

by solving an estimating equation. EEBoost iteratively constructs a set of models de-

fined by coefficients using a modified steepest descent algorithm wherein the gradient of

the loss function is replaced by the relevant estimating equation. The generic EEBoost

algorithm is easily implemented using existing statistical software and can be applied

to a wide variety of problems. For example, Wolfson (2011) applied EEBoost to gener-

alized estimating equations (GEE) for correlated data, and inverse probability weighted

estimating equations methods for time-to-event data with missing covariates, and Janes

et al. (2012) applied it to doubly robust semiparametric efficient estimating equations

for continuous outcome data.

We propose a novel method, Thresholded EEBoost (ThrEEBoost), an extension to

EEBoost wherein multiple coefficients may be updated at each iteration; the number

of coefficients updated is controlled by a threshold parameter on the magnitude of

the estimating equation. By allowing more coefficients to be updated at each iteration,

ThrEEBoost can explore a greater diversity of variable selection “paths” (i.e., sequences

of coefficient vectors) through the model space, possibly finding models with smaller

prediction error than any of those on the path defined by EEBoost. To evaluate our

3

method, we will conduct a simulation with a GEE model, we will apply the method to

the longitudinal data set of the Box Lunch study.

Next, we will propose an extension of our method to perform variable selection and

prediction when covariates are measured with error. To do this, we utilize ThrEEBoost

along with a correct score function for covariates with measurement error from Naka-

mura (1990). In this section, we will define the new method of Measurement Error

Boost (MEBoost) and conduct a simulation study to compare it to the existing method

of the CoCoLasso (Datta and Zou, 2017) which we will also describe.

Lastly, we consider that a single data set may encounter more than one data chal-

lenge. There has not been much research allocated to dealing with multiple regression

assumptions being violated within one data set in either the low or high-dimensional

case. We provide a general method to perform variable selection in the presence of

multiple data challenges where we combine the machine learning principles of boosting

and stacking, specifically the method Super Learner (Van Der Laan et al., 2007). We

present a novel method, Super Learner Estimating Equation Boosting (SuperBoost)

and examine it’s performance through data simulated with correlated outcomes and

covariate measurement error.

Chapter 2

ThrEEBoost

2.1 Introduction

Driven by the ever-increasing amount of high-dimensional data in biomedicine, much

recent research has focused on how to do variable selection and prediction in problems

where the number of predictors, p, is large in comparison to the number of observations,

n. Traditional approaches like forward selection and backward elimination are widely

employed but have limitations, particularly when the number of covariates is very large.

For instance, it has been shown that the first variable selected in forward selection can-

didate models can often be the first removed in backwards elimination (Hocking, 1976).

Methods such as the LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001) generally

offer superior variable selection and predictive performance to stepwise techniques, but

have been applied almost exclusively to general linear (Park et al., 2006) and survival re-

gression models (Fan and Li, 2002). Some authors have extended penalized approaches

to more complex modeling situations such as correlated outcomes (Johnson et al., 2008)

and missing covariates (Yang et al., 2005). However, the resulting statistical procedures

often involve constrained optimization of nonconvex functions, and may therefore be

too computationally intensive to apply in settings where p is on the order of hundreds

4

5

or thousands. Ueki (2009) proposes a smooth thresholding approach to penalizing esti-

mating equations, with the selection threshold determined by an adaptive LASSO type

estimator. While smooth thresholding avoids convex optimization and therefore offers

a computational speedup, the method still requires that a set of estimating equations

be solved numerically for a large number of points on a two-dimensional grid of tuning

parameters. Further, since the thresholding relies on an initial “full model” estimator,

it is unclear how this technique generalizes to problems where p is large in relation to

n.

As an alternative to penalization methods, Wolfson (2011) introduced EEBoost, a

gradient descent-based method that can be used to perform variable selection for any

regression problem where estimation of low-dimensional coefficients can be performed by

solving an estimating equation. EEBoost iteratively constructs a set of models defined

by coefficients using a modified steepest descent algorithm wherein the gradient of the

loss function is replaced by the relevant estimating equation. The generic EEBoost

algorithm is easily implemented using existing statistical software and can be applied to

a wide variety of problems. Wolfson (2011) applied EEBoost to generalized esimtating

equations (GEE) (Liang and Zeger, 1986) for correlated data, and inverse probability

weighted estimating equations methods for time-to-event data with missing covariates,

and Janes et al. (2012) applied it to doubly robust semiparametric efficient estimating

equations for continuous outcome data.

In this paper, we propose Thresholded EEBoost (ThrEEBoost), an extension to

EEBoost wherein multiple coefficients may be updated at each iteration; the number

of coefficients updated is controlled by a threshold parameter on the magnitude of

the estimating equation. By allowing more coefficients to be updated at each iteration,

ThrEEBoost can explore a greater diversity of variable selection “paths” (i.e., sequences

of coefficient vectors) through the model space, possibly finding models with smaller

6

prediction error than any of those on the path defined by EEBoost.

2.2 Boosting, EEBoost, and ThrEEBoost

Suppose we observe outcome data Yi and covariates Xi, i = 1, . . . , n with Xi =

{Xi1, . . . , Xip}. We wish to predict future observations Yn+1, . . . ,Yn+K that arise

from the same distribution F (X,Y) as the observed data. One common approach

to prediction is to use a regression model in which the relationship between the out-

come and covariates is governed by the linear predictor Xiβ. The goal, then, is to

estimate a set of coefficients, β̂, that minimizes risk for a nonnegative loss function L:

R(β) ≡ EF [L(X,β)], i.e., to obtain β̂ such that R(β̂) ≈ minβ R(β) ≡ β0. When p

is small compared to n, estimation involves directly minimizing L with respect to β

either analytically or numerically. In the case of least squares regression with indepen-

dent scalars Yi, parameter estimates are determined by β̂LS = arg minβ
∑
i

(Yi−Xiβ)2.

More generally, if a complete or partial log-likelihood ` is available, we can compute

parameter estimates β̂MLE = arg minβ[−`(β, X)]. It is well known that when the num-

ber of covariates, p, is large in comparison to the sample size, n, using a subset of the

p covariates to estimate Yi will often lead to better prediction characteristics than esti-

mating nonzero coefficients for the entire β vector (Wasserman, 2004). Hence, for large

p, variable selection is an important step in computing β̂.

The most commonly used variable selection techniques are penalization methods

which restrict the magnitude of β to discourage unimportant predictors from having

non-zero coefficients. Stronger restrictions yield simpler models with fewer selected

covariates, while weaker ones lead to more nonzero coefficient estimates. For example,

the LASSO (Tibshirani, 1996) and ridge regression (Hoerl and Kennard, 1970) restrict

the L1 and L2 norms of β respectively.

7

An alternative to penalized methods is boosting or functional gradient descent (Fre-

und and Schapire, 1997; Friedman et al., 2000; Friedman, 2004), a variable selection

technique that additively builds a model using subsets of the predictors. Given a loss

function L, one sets β ≡ β(0) = 0, and then iteratively “nudges” the entry in β cor-

responding to the element of the gradient which is largest in magnitude by some small

amount ε. A small increment ε is chosen since the direction of steepest descent of L is

only valid in a local neighborhood of β. Algorithm 1 describes the steps in a generic

“ε-boosting” algorithm. For linear regression with squared error loss, Algorithm 1 cor-

responds to the Forward Stagewise algorithm described in Efron et al. (2004), which is

shown to be approximately equivalent (for large n and small ε) to Least Angle Regres-

sion and the LASSO. Prior to implementing the algorithm, all predictors need to be

scaled and centered.

Algorithm 1 ε-boosting

procedure ε-Boost
Set β(0) to the zero p-vector 0p.

for t = 0, . . . , T do
Compute the gradient of L at the current estimate β(t): ∆ =

(∂L(X,β)/∂βj)β=β(t)

Identify the largest element of |∆|: jt = argmaxj |∆j |
Update β(t) in the direction of jt: β

(t+1)
jt

= β
(t)
jt

+ ε sign(∆jt)

Algorithm 1 produces a sequence of coefficient estimates B = {β(0), . . . ,β(T)} which

define a path through the p-dimensional parameter space for the coefficients. Variable

selection is achieved by “early stopping”, i.e., by selecting an element of B for which

some of the coefficients remain at zero (i.e., were never updated by the iterative boosting

procedure). This step can employ holdout data, cross-validation, direct model scoring

(via, e.g., the AIC or BIC), depending on the problem in question. The primary purpose

of boosting techniques (and penalization methods) is to identify a set of candidate

models from among a very large number of potential models; the hope is that at least

8

some of these candidate models will have small mean squared prediction error (MSPE).

We will emphasize this point later in arguing that the loss function used to calculate

the MSPE need not play a central role in identifying a “good” set of candidate models.

2.2.1 EEBoost

Most existing variable selection procedures, whether based on penalization or boosting,

focus on regression models which apply to relatively “clean” data, i.e., where outcomes

are independent, completely observed, not subject to measurement error, etc. However,

there is a vast and ever-expanding toolbox of regression techniques which accommodate

these various types of “dirty” data. Many of these techniques avoid specifying a likeli-

hood as the data characteristics being accommodated (e.g., correlation) may be poorly

understood and not amenable to modeling. For such techniques, estimation typically

involves solving a set of estimating equations.

As an alternative, Wolfson (2011) introduced EEBoost, an extension of the boosting

algorithm applicable to problems where coefficient estimation is carried out by solving

an estimating equation. The key to EEBoost is that estimating equations, while not

exactly corresponding to the gradient of a loss function, often behave much like gradients

and hence can take their place in a boosting algorithm. The predictors are scaled to have

mean 0 and variance 1. In the rare instance of identical gradients, one of the variables

with the tied max gradient could be selected at random to be updated. In the following

iteration, it is then very unlikely that the gradient for that variable would again be

tied with the others. Algorithm 2 presents EEBoost; note that the vector of estimating

equations g(X,β) takes the place of the gradient |∂L(X,β)|/∂β from Algorithm 1.

By making use of estimating equations which account for important features of

the data, EEBoost aims to produce paths containing coefficient estimates which yield

smaller MSPE. Since there is no explicit loss function to minimize, the technique used

9

Algorithm 2 EEBoost

procedure EEBoost
Set β(0) to the zero p-vector 0p.

for t = 0, . . . , T do
Compute the estimating equations at the current estimate β(t): ∆ =

g(X,β)
β=β(t)

Identify the largest element of |∆|: jt = argmaxj |∆j |
Update β(t) in the direction of jt: β

(t+1)
jt

= β
(t)
jt

+ ε sign(∆jt)

to generate the variable selection path may not be directly linked to the procedure

employed to select the point on that path which minimizes MSPE. For example, it

can be shown that when observations are correlated within clusters, accounting for the

correlation in estimation of regression parameters yields a smaller MSPE, even though

the form of the MSPE does not acknowledge the correlated nature of the data. Hence,

in this setting, applying EEBoost with the Generalized Estimating Equations produces

variable selection paths which contain coefficient estimates yielding smaller MSPE than

a standard LASSO approach which ignores correlation.

As an added benefit, EEBoost is also much faster than competing penalized estimat-

ing equation-based techniques, as it does not require solving constrained optimization

problems. Wolfson (2011) reported computational speedups of up to 100-fold over ex-

isting methods.

2.2.2 Diversifying variable selection paths

The primary goal of EEBoost is to identify a set of candidate models (i.e., a sequence

of regression coefficient estimates), B, whose predictive performance can be assessed

using external data, cross-validation, or other model scoring techniques. The hope is

that there exists at least one β(k) ∈ B, say β(k∗), such that |R(β(k∗)) − R(β0)| ≤ δ

for some acceptably small δ. In other words, the path B must pass “close enough” to

the true β0; no amount of cross-validation or model scoring can find a suitable β in B

10

otherwise.

In certain settings, there are theoretical guarantees that B will contain a suitable

β(k∗). For instance, oracle results for several variants of the LASSO (Zou, 2006; Bunea

et al., 2007; Van De Geer, 2008; Huang et al., 2013) guarantee that, if the penalty

parameter λn is suitably chosen as n increases, then the LASSO solution β̂(λn) converges

to β0. Previous work by Efron et al. (2004); Rosset et al. (2004); Rosset and Zhu (2007)

demonstrated the equivalence (as T →∞ and ε→ 0 with T · ε→ 0) between boosting

and L1 penalized paths, suggesting that similar results also hold for boosting. For a

broad class of estimating equations, EEBoost can be viewed as gradient descent on a

projected likelihood (see Wolfson (2011), using results from Small and Wang (2003), for

details), and hence EEBoost closely approximates the variable selection path obtained

by applying the LASSO to the aforementioned projected likelihood.

Unfortunately, these theoretical results provide limited insight into the real-world

performance of boosting methods. Beyond the fact that asymptotic results may not

apply with finite samples, in practice one must choose fixed values of the step length,

ε, and the number of iterations, T . Further, in settings where the loss function is more

complex (e.g., projected likelihoods), existing oracle inequalities may not be applicable.

In such cases, it is not clear that the boosting algorithms will yield good variable se-

lection paths. We therefore propose a generalization of the EEBoost algorithm which

allows it to generate a wide variety of variable selection paths by setting values of a

single threshold parameter.

2.2.3 ThrEEBoost: Thresholded EEBoost

Algorithms 1 and 2 update one coefficient at each iteration, corresponding to the largest

element of the gradient or estimating equation. Hence, if jt = arg maxj∆j is unique

at each step, β(K) can have at most K nonzero entries. Friedman (2004) proposed a

11

generalization of boosting called Thresholded Gradient Descent Regularization (TGDR)

wherein multiple elements of the coefficient vector β(K) can be updated at each iteration.

The elements to be updated correspond to the largest gradient values; how large the

gradient needs to be for the corresponding coefficient to be updated is determined by

a threshold parameter τ ∈ [0, 1]. Specifically, given scaled predictors, coefficients are

updated if |∆j | ≥ τ · maxj |∆j |. τ = 0 corresponds to updating every coefficient at

every iteration, while τ = 1 is equivalent to the original boosting algorithm, assuming

that the entries of ∆ are distinct.

We apply this idea to EEBoost, yielding ThrEEBoost, presented in Algorithm 3.

Each value of τ yields a distinct coefficient path, B(τ). Further, for a fixed value of

τ , the computational burden of ThrEEBoost is no higher than EEBoost. When using

cross-validation to select the optimal value of τ , ThrEEBoost will be a factor of K times

more computationally expensive, where K is the number of thresholding values that are

chosen.

Algorithm 3 ThrEEBoost

procedure ThrEEBoost
Set β(0) = 0

for t = 0, . . . , T do
Compute ∆ = g(X,β)

β=β(t−1)

Identify Jt = {j : |∆j | ≥ τ ·maxj |∆j |}
for all jt ∈ Jt do

Update β
(t)
jt

= β
(t−1)
jt

+ ε sign(∆jt)

2.2.4 Selecting the best model

In standard applications of boosting and EEBoost, the algorithm is run for a pre-

determined number of iterations, producing a variable selection path from which one

chooses the model (i.e., set of coefficient estimates) yielding the smallest MSPE, 1
nm

n∑
i=1

m∑
j=1

[yij−

xijβ
(t)]2. The process is analogous to solving a LASSO problem for a sequence of values

12

of the penalty parameter λ, then choosing the optimal value of λ.

The ThrEEBoost procedure involves repeating this process for different settings of

the threshold parameter τ , yielding a family of variable selection paths indexed by τ .

While applying ThrEEBoost with multiple τ values increases the number of coefficient

sets for which MSPE must be estimated, it poses no conceptual challenges. In practice,

we recommend the following algorithm to choose τ via cross-validation, minimizing the

MSPE.

Algorithm 4 Model Selection for ThrEEBoost

procedure Cross Validation

Divide the observations into K folds where 1
K of the observations are used as a

test set.
for k = 1, . . . ,K do

Apply ThrEEBoost for several values of τ .
Obtain the minimum MSPE of each candidate model on the test set.
Select the τk that minimizes MSPE.

Repeat across the K possible test sets and compute the mean of the selected τk’s.

If cross-validation is computationally infeasible, then a model scoring criterion such

as the QIC (Pan, 2001) can also be used: Assuming Q() is the quasi-likelihood, R is

the working correlation structure, D is the data (X,Y), ΩI is the observed information,

and V̂r is the sandwich variance estimate:

QIC(R) = −2Q(β̂(R); I,D) + 2 ∗ trace(Ω̂I V̂r)

Both approaches are illustrated as part of the simulation study in Section 2.3. Cross

validation is preferred and is utilized in the data application in Section 2.4.

13

2.3 Simulation Study

Simulations were conducted in R version 3.2.0 (R Core Team, 2015) using the threeboost

package provided in the supplementary materials. The code for conducting this simu-

lation study is also available in the supplementary materials.

2.3.1 Sparse regression model with correlated outcomes

We simulated data for n = 30 individuals with four correlated observations from each

individual. A vector of covariates Xij of length 50 was generated for each individual

from a multivariate normal distribution with mean 0 and covariance matrix ΣX where

Var(Xijk) = 0.25 and for each Corr(Xijk, Xijl) = 0.0, 0.3, 0.5, and 0.7 ∀ k 6= l. Each

correlation level yielded similar results for all of our performance metrics, so we will

focus our results on the scenario where Corr(Xijk, Xijl) = 0.3. The outcome variables

for each individual Yij , i = 1, . . ., 30, j = 1, . . ., 4, were generated from a multivariate

normal distribution with mean µi = Xiβ, with an exchangeable correlation matrix such

that Var(Yij) = 1, Corr(Yij , Yik) = ρ, ∀ j 6= k. The true values of the coefficient vector

β = (β0, β1, . . . , β50) were set as:

βm =


0.5, 1 ≤ m ≤ 2

0.2, 3 ≤ m ≤ 5

0.0, 6 ≤ m ≤ 50

Models which accommodate correlated data are generalized linear mixed models

(GLMMs) and marginal models estimated via generalized estimating equations (GEE).

GLMMs may be sensitive to assumptions about the distribution of the outcome and

random effects. Variable selection techniques for GLMMs typically require maximiz-

ing the penalized likelihood and selecting both random and fixed effects (Schelldorfer

et al., 2014), which can be computationally demanding. GEE provides an approach to

14

estimation which is more robust to misspecification of the variance; however, existing

approaches for variable selection with GEE (Johnson et al., 2008) are based on solving

a set of penalized estimating equations, which is also computationally expensive. For

this simulation, ThrEEBoost was performed using GEE,

g(β) =
30∑
i=1

X
′
iV
−1
i (Yi −X

′
iβ)

where V i = A
1/2
i Ri(ρ)A

1/2
i with Ai = diag(Var(Yi)) and Ri(ρ) is the working corre-

lation matrix. For these simulations, we assumed an exchangeable working correlation

matrix such that Ri = (1− ρ)I + ρ11′. ρ was estimated at each iteration via a method

of moments estimator using the current value β(t) at iteration t.

For each combination of ρ = {0.0, 0.3, 0.6} and τ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, τCV },

we generated 1000 datasets as outlined above and ran 500 ThrEEboost iterations, pro-

ducing a variable selection path {β1, . . . ,βk} for k = 1, . . ., 500 for each simulated

dataset. We selected τCV using cross-validation using K = 10 folds. We estimated

MSPE at each point on a path by estimating the average MSE across 100 datasets

generated under the same assumptions used to generate the original data.

Table 2.1 shows the minimum MSPE, minimum QIC, number of iterations to reach

the minimum MSPE, and variable selection sensitivity and specificity across the 1000

simulations for each combination of ρ and τ . Sensitivity and specificity are given by

Sensitivity =

p∑
m=1
|sign(β̂km)|

p∑
m=1
|sign(βtrue

m)|
, Specificity =

p∑
m=1

1− |sign(β̂km)|
p∑

m=1
1− |sign(βtrue

m)|

where sign(β) = 0 if β = 0.

For some simulation runs, the ThrEEBoost algorithm led to a sequence of coefficient

estimates which began to alternate between 2 models before finding a solution that

uniquely minimized the MSE. These are easy to detect and can be remedied in practice

15

1
2

3
4

5

τ=0.0

L 1
 D

is
ta

nc
e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β

0 50 100 150

1.
0

1.
2

1.
4

1.
6

1.
8

Iterations

A
ve

ra
ge

 M
ea

n
S

qu
ar

ed
 P

re
di

ct
io

n
E

rr
or

τ=0.2

0 50 100 150

Iterations

τ=0.4

0 50 100 150

Iterations

τ=0.6

0 50 100 150

Iterations

τ=0.8

0 50 100 150

Iterations

τ=1.0

0 200 400

Iterations

A
ve

ra
ge

 M
ea

n
S

qu
ar

ed
 P

re
di

ct
io

n
E

rr
or

 β

 L

1
D

is
ta

nc
e

 Iterations

Figure 2.1: Average L1 distances from the true β (top row), estimated coefficient values
(middle row) and MSPE (bottow row) across iterations for various values of τ , when
data are generated from a very sparse true regression model with an intra-individual
correlation of ρ = 0.3. The solid, dashed, and dotted lines in the coefficient plots (middle
row) represent coefficients with true values of 0.5, 0.2, and 0.0 respectively. Results are
based on 1000 simulations, each with 500 ThrEEBoost iterations. The solid vertical
lines show the iteration where the minimum mean squared error is achieved in each
scenario.

16

ρ τ = 0.0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 τ = 1.0 τ = τCV

(a) Mean Minimum Prediction Error

0.0 1.17 1.13 1.09 1.08 1.07 1.07 1.09

0.3 1.16 1.12 1.09 1.06 1.06 1.06 1.08

0.6 1.15 1.11 1.07 1.06 1.05 1.06 1.06

(b) Median Sensitivity

0.0 1.00 1.00 1.00 0.80 0.80 0.80 0.80

0.3 1.00 1.00 1.00 0.80 0.80 0.80 1.00

0.6 1.00 1.00 1.00 1.00 0.80 0.80 1.00

(c) Median Specificity

0.0 0.00 0.36 0.64 0.80 0.84 0.87 0.76

0.3 0.00 0.31 0.62 0.78 0.82 0.87 0.76

0.6 0.00 0.29 0.60 0.76 0.82 0.87 0.73

(d) Mean Iterations to Minimum Prediction Error (IQR)

0.0 11 (9, 13) 15 (12, 17) 22 (17, 26) 34 (25, 41) 44 (34, 53) 158 (125, 183) 32 (21, 41)

0.3 12 (10, 14) 16 (13, 17) 23 (18, 27) 34 (26, 40) 45 (36, 52) 159 (129, 180) 32 (22, 42)

0.6 14 (10, 15) 18 (14, 21) 26 (20, 32) 36 (28, 43) 45 (38, 54) 160 (132, 184) 35 (26, 44)

(e) Minimum Mean QIC

0.0 212 199 181 169 162 155 175

0.3 210 199 179 165 160 153 173

0.6 210 197 177 169 160 156 175

(f) Proportion of simulations with numerical instability

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.6 0.01 0.01 0.00 0.01 0.01 0.01 0.01

Table 2.1: Mean minimum prediction error (a), median variable selection (b) sensitivity
and (c) specificity, (d) mean number of iterations (25th and 75th percentile) to attain
minimum prediction error, (e) minimum mean QIC, and (f) proportion of simulations
where algorithm did not find a unique minimum MSE for ThrEEBoost in the sparse true
model under different values of the threshold, τ and correlation between intra-individual
observations, ρ. Results are based on 1000 simulations, each with 500 iterations.

by selecting another thresholding value. The proportion of simulation runs resulting in

numerical instability are reported in part (f) of Tables 2.1 and 2.2.

For each value of ρ, mean minimum MSPE decreased as τ increased from 0.0 to 0.6.

17

Selection of τ where ρ = 0.0

Cross Validated Threshold Value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

Selection of τ where ρ = 0.3

Cross Validated Threshold Value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

50
10

0
15

0
20

0
25

0
30

0

Selection of τ where ρ = 0.6

Cross Validated Threshold Value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

Figure 2.2: The distribution of selected τ values via cross-validation. For each value of
ρ, the median τCV selected was 0.58.

However, values of τ ≥ 0.6 resulted in very similar MSEs. ThrEEBoost had similar

median sensitivity to EEBoost across values of ρ. For each value of ρ, the sensitivity

ranged from 0.80 to 1.00. Specificity increased with τ , ranging from 0 for τ = 0 to

0.87 for τ = 1. ThrEEBoost with τ < 1 reached minimum MSPE with considerably

fewer iterations than with τ = 1 (i.e., EEBoost). On average, ThrEEBoost with τ < 1

located the point on the variable selection path achieving minimum MSPE in 3.5 to 14.4

times fewer iterations than EEBoost. Minimum mean QIC decreased as τ increased.

Figure 2.1 shows the average L1 distance from the true β, coefficient values, and MSE

across the iterations of ThrEEBoost for different τ values in the scenario where ρ=0.3.

Using cross-validation to select an optimal thresholding value τCV , all three cases chose

a median τ of 0.58. The distribution of the chosen τ values are shown in figure 2.2.

The results followed the same patterns for each simulated value of ρ and for each of

Corr(Xijk, Xijl)=0.0, 0.3, 0.5, and 0.7.

18

2.3.2 Less sparse regression model with correlated outcomes

Next, we undertook an additional simulation study using the same setup as described

in the previous section but with a less sparse true regression model for the mean defined

by:

βm =


0.5, 1 ≤ m ≤ 15

0.2, 16 ≤ m ≤ 25

0.0, 26 ≤ m ≤ 50

Note that the number of nonzero regression coefficients (25) was nearly equal to the

number of independent individuals (30). Due to the reduced sparsity of the model, we

increased the number of iterations to 1500 for each of 1000 simulated datasets.

Table 2.2 summarizes the MSPE, QIC, sensitivity, specificity, number of iterations

to find minimum MSPE, and rate of numerical instability of the algorithm. For all three

settings of the correlation parameteter ρ, mean minimum MSPE and QIC both showed a

clear ”U”-shaped pattern across τ . MSPE achieved the lowest value at τ = 0.4, with τ =

0 and τ = 1 yielding MSPE values 6-28% higher than this minimum value. The optimal

τ value to minimize QIC varied from 0.4 to 0.8 depending on ρ. The sensitivity and

specificity results show the trade-off that is at play: sensitivity decreases and specificity

increases as τ goes from 0 to 1. In this case, specificity improves dramatically up to

τ = 0.4 but does not improve substantially with larger τ values; and sensitivity declines

steadily but modestly until τ = 0.6. Figure 2.3 shows the L1 distance from the true β,

the coefficient traceplots, and MSPE across iterations. Figure 2.5 shows the mean QIC

across τ values of 0, 1, and τCV for the various ρ values. The results followed the same

pattern for ρ = 0 and ρ = 0.6. Results were also similar in scenarios where the pairwise

correlation between covariates was set to 0, 0.5, and 0.7 (data not shown).

19

ρ τ = 0.0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 τ = 1.0 τ = τCV

(a) Mean Minimum Prediction Error

0.0 1.95 1.78 1.65 1.77 2.02 2.12 1.65

0.3 1.53 1.45 1.36 1.42 1.53 1.63 1.35

0.6 1.82 1.71 1.73 1.78 1.86 1.88 1.74

(b) Median Sensitivity

0.0 1.00 0.96 0.92 0.88 0.84 0.80 0.92

0.3 1.00 0.96 0.92 0.88 0.88 0.88 0.92

0.6 1.00 1.00 0.92 0.92 0.92 0.88 0.96

(c) Median Specificity

0.0 0.00 0.24 0.56 0.64 0.68 0.72 0.52

0.3 0.00 0.24 0.56 0.60 0.64 0.64 0.52

0.6 0.00 0.24 0.56 0.60 0.60 0.68 0.52

(d) Mean Iterations to Minimum Prediction Error (IQR)

0.0 40 (40, 51) 43 (44, 50) 49 (49, 58) 63 (59, 79) 88 (73, 116) 696 (213, 966) 53 (49, 59)

0.3 47 (46, 52) 46 (46, 51) 52 (51, 58) 68 (63, 79) 102 (93, 120) 845 (871, 980) 55 (50, 61)

0.6 43 (45, 54) 42 (46, 51) 45 (49, 58) 59 (58, 76) 89 (83, 117) 767 (834, 1000) 53 (49, 59)

(e) Minimum Mean QIC

0.0 340 314 295 317 354 378 296

0.3 334 319 287 287 299 391 282

0.6 470 470 460 458 418 536 487

(f) Proportion of simulations with numerical instability

0.0 0.14 0.10 0.04 0.07 0.10 0.12 0.07

0.3 0.02 0.02 0.01 0.01 0.01 0.03 0.01

0.6 0.03 0.02 0.02 0.02 0.04 0.03 0.03

Table 2.2: Mean minimum prediction error (a), median variable selection (b) sensitivity
and (c) specificity, (d) mean number of iterations (25th and 75th percentile) to attain
minimum prediction error, (e) minimum mean QIC, and (f) proportion of simulations
where algorithm did not find a unique minimum MSE for ThrEEBoost in the less
sparse true model under different values of the threshold, τ , and correlation between
intra-individual observations, ρ. Results are based on 1000 simulations, each with 1500
ThrEEBoost iterations.

20

3
4

5
6

7
8

9
10

τ=0.0

L 1
 D

is
ta

nc
e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β

0 100 200

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Iterations

A
ve

ra
ge

 M
ea

n
S

qu
ar

ed
 P

re
di

ct
io

n
E

rr
or

τ=0.2

0 100 200

Iterations

τ=0.4

0 100 200

Iterations

τ=0.6

0 100 200

Iterations

τ=0.8

0 100 200

Iterations

τ=1.0

0 500 1500

Iterations

A
ve

ra
ge

 M
ea

n
S

qu
ar

ed
 P

re
di

ct
io

n
E

rr
or

 β

 L

1
D

is
ta

nc
e

 Iterations

Figure 2.3: Average L1 distances from the true β (top row), estimated coefficient values
(middle row) and MSPE (bottow row) across iterations for various values of τ , when
data are generated from a less sparse true regression model with an intra-individual
correlation of ρ = 0.3. The solid, dashed, and dotted lines in the coefficient plots (middle
row) represent coefficients with true values of 0.5, 0.2, and 0.0 respectively. Results are
based on 1000 simulations, each with 1500 ThrEEBoost iterations. The solid vertical
lines show the iteration where the minimum mean squared error is achieved in each
scenario.

21

Selection of τ where ρ = 0.0

Cross Validated Threshold Value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Selection of τ where ρ = 0.3

Cross Validated Threshold Value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

50
10

0
15

0
20

0
25

0
30

0

Selection of τ where ρ = 0.6

Cross Validated Threshold Value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

Figure 2.4: The distribution of selected τ values via cross-validation. For each value of
ρ, the median τCV selected were 0.38, 0.40, and 0.38.

0 200 400 600 800 1000

30
0

40
0

50
0

60
0

70
0

80
0

ρ=0.0

Iterations

A
ve

ra
ge

 Q
IC

0 200 400 600 800 1000

ρ=0.3

Iterations

0 200 400 600 800 1000

ρ=0.6

Iterations

τ
0.0
1.0
τCV

Figure 2.5: Average QIC when data are generated from a less sparse true regression
model with an intra-individual correlation of ρ = 0.3. Results are based on 1000 simu-
lations, each with 1500 ThrEEBoost iterations.

Using cross-validation to select τ offered an improvement over EEBoost (i.e., ThrEE-

Boost with τ = 1). The MSPE shrunk by about 22%, 18%, and 7% for the cases where

ρ=0.0, 0.3, and 0.6, respectively. The median τ selected was lower than in the sparse

case with values of 0.38, 0.40, and 0.38, respectively. The distributions of τCV are shown

in Figure 2.4.

22

2.4 Data application - Box Lunch Study

We illustrate the application of ThrEEBoost to outcome data from the Box Lunch

Study, a randomized controlled trial to evaluate the effect of portion size availability

on caloric intake and weight gain (French et al., 2014). Two hundred and thirty-three

eligible individuals were randomized to one of four groups: three “free lunch” groups

and a “no free lunch” group which served as a control. The three “free lunch” conditions

differed according to the number of calories provided in the daily box lunch: 400, 800,

and 1600.

Coefficients
Variable ThrEEBoost LASSO

Race (Black) 0.27 0.24
Race (Hispanic) 0.24 0.35
Health (1=exc 5=poor) 0.17 0.08
Age 0.17 0.11
Lost control past 28 days 0.15 –
Education (HS) 0.14 0.14
Have fridge at work 0.12 0.19
TFEQ Disinhibition 0.10 0.32
Lbs gain before you noticed 0.06 0.16
Dissatisfied with weight – 0.20
Light actvty min/day (251-2100) – 0.15
Freq fast food (0=never 5=7+ times/week) – 0.06
Limit food you eat – 0.05

Marital status (Married) -0.088 -0.11
Moderate activity min/day (2101-5900) – -0.05
Frequency self-weigh (0=never 5=every day) – -0.08
Freq restaurant/week – -0.10
TFEQ Hunger – -0.16

Table 2.3: Coefficients for the optimal ThrEEBoost (τ = 0.4) and LASSO models
selected by cross-validated MSE. Small coefficients (magnitude < 0.05) are omitted.
“–” indicates that the variable was not selected in the model.

Here, we explore the factors associated with BMI in the “no free lunch” group con-

sisting of n = 49 individuals on whom BMI measurements were taken at four time

23

ThrEEBoost τ
0 0.2 0.4 0.6 0.8 1.0 LASSO

CV MSE 0.72 0.78 0.60 0.66 0.66 0.75 0.83

Table 2.4: Estimated mean squared prediction error for ThrEEBoost and LASSO mod-
els. (CV MSE) denotes models selected by minimizing cross-validated MSE.

points (baseline, 1, 3, and 6 months). There were 54 covariates of interest, including

demographic (e.g. age, gender, race, height, education), lifestyle (e.g. smoking sta-

tus, physical activity levels), and psychosocial (e.g. frequency of self-weighing, degree

of satisfaction with current weight) covariates recorded at baseline, and a variety of

longitudinally-recorded food-related outcomes such as average daily caloric intake and

average daily servings of fruits and vegetables. The outcome and predictors were scaled

to have zero mean and unit variance prior to analysis.

ThrEEBoost was applied using the Gaussian Generalized Estimating Equations

with an exchangeable working correlation structure. The algorithm was run for τ =

0, 0.2, 0.4, 0.6, 0.8, and 1, and the optimal model for each τ was selected as the one which

minimized the MSPE estimated by five fold cross-validation. The smallest MSPE over-

all (0.60) was achieved by ThrEEBoost with τ = 0.4. To implement the LASSO, least

angle regression (LARS) was utilized over five fold cross-validation to select an optimal

penalty parameter which minimized the MSPE. Fitting the optimal LASSO model on

the full data set, we obtained MSPE of 0.83. The non-zero coefficients for this model

are summarized in Table 2.3, and compared to the coefficients from the LASSO fit

with smallest cross-validated MSPE. The models selected by LASSO and ThrEEBoost

share some covariates in common, but remain quite distinct. Overall, the ThrEEBoost

model is more parsimonious than the LASSO model. Notably, the LASSO estimates

relatively large coefficients for some variables (e.g., Dissatisfied with weight) which are

not selected by ThrEEBoost. This may be due to the fact that the LASSO ignores the

correlated nature of the outcome, and is therefore overly optimistic about the amount of

24

statistical signal present in the data. Figure 2.6 summarizes the coefficients of the opti-

mal ThrEEBoost model for various values of the threshold parameter τ . The estimated

coefficients for τ = 0.4, 0.6, 0.8, and 1 are generally similar, with higher τ values leading

to slightly more parsimonious models. However, as shown in Table 2.4, these subtle

differences can yield very different prediction errors, hence the path diversity offered by

ThrEEBoost is an asset.

2.5 Discussion

We have introduced a thresholded extension of the EEBoost algorithm, ThrEEBoost,

and critically assessed its operating characteristics in variable selection and prediction in

high-dimensional models. We have shown via a detailed simulation study that ThrEE-

Boost provides a predictive advantage over EEBoost. In cases when the true regression

model was relatively sparse, ThrEEBoost required considerably fewer iterations than

EEBoost to locate models with comparable performance. When the regression model

was less sparse, varying the thresholding parameter in ThrEEBoost allowed for the ex-

ploration of a larger set of variable selection paths, leading to the discovery of models

with lower MSPE.

Several limitations of the present study should be acknowledged. This simulation

study focused solely on cases of normally distributed correlated outcome data, using

GEE with an exchangeable working correlation. Further research is needed to clarify the

benefits of thresholded variable selection with other correlation structures, and for other

classes of estimating equations. Second, while the numerical experiments are promising,

we have not provided theoretical results that guarantee, e.g., that ThrEEBoost possesses

an oracle property. In ongoing work, we are exploring these theoretical properties

of ThrEEBoost and clarifying its relationship to “hybrid” penalized variable selection

procedures such as the elastic net.

25

τ = 0 τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8 τ = 1

age
height
hispanic
raceasian
raceblack
genhealth
eversmkr
atelgamt0
lostcontrol0
foodfridge0
female
ed.highschool
ed.somecollege
ed.college
ed.graduate
marital.married
income
month
ripctfat
bfastkcal
lunchkcal
dinnerkcal
snackkcal
srvgfv
srvgssb
kcal24h
minsed
minlgt
minmod
minvig
limitfood.days
longfast.days
binge
judgeweight
judgeshape
dissatisfiedweight
dissatisfiedshape
weighfreq
lbsnotice
lbsdosmthng
freqff
eatconvenfq
eatrstrntfq
foodlocker
foodroom
t1factor
t2factor
t3factor

Figure 2.6: Coefficient magnitudes for the optimal models (chosen by cross-validated
MSE) for different values of τ . Each row corresponds to a different variable; darker
shades of gray correspond to higher coefficient magnitudes. The names of the variables
are displayed on the right; a data dictionary giving the variable descriptions is provided
in the Supplementary Materials.

26

2.6 Supplementary Materials

Simulation R Code: The R code for the simulation study. (sim threeboost.R, R file)

Data Application R code: The R code to analyze data from the Box Lunch Study.

(BLS analysis 06-09-16.R, R file)

ThrEEBoost R Package: The R package which implements ThrEEBoost is available

on the Comprehensive R Archive Network (CRAN). The most up-to-date version

of the threeboost package is available at https://www.github.com/jwolfson/

threeboost. (threeboost-master.zip, zip archive)

https://www.github.com/jwolfson/threeboost
https://www.github.com/jwolfson/threeboost

Chapter 3

MEBoost

3.1 Introduction

Variable selection is a well-studied problem in situations where covariates are measured

without error. However, it is common for covariate measurements to be error-prone

or subject to random variation around some mean value. Consider, for instance, a

study wherein subjects report their daily food intake on the basis of a dietary recall

questionnaire. There is variation from day to day in an individual’s calorie consumption,

but it is also well established in the nutrition literature that there is error associated

with the recall or measurement of the number of calories in a meal (Spiegelman et al.,

1997; Fraser and Stram, 2012). In the usual regression setting, ignoring measurement

error leads to biased coefficient estimation (Rosner et al., 1992), and hence the presence

of measurement error has the potential to affect the performance of variable selection

procedures.

There has been relatively little research done about variable selection in the presence

of measurement error. Sørensen et al. (2012) introduced a variation of the Lasso that

allows for Normal, i.i.d., additive covariate measurement error. Datta and Zou (2017)

proposed the convex conditioned Lasso (CoCoLasso) which corrects for both additive

27

28

and multiplicative measurement error in the normal case. Both of these methods are

applicable to linear models for continuous outcomes, but do not easily extend to regres-

sion models for other outcome types (e.g., binary or count data). Meanwhile, there is a

sizable statistical literature on methods for performing estimation and inference for low-

dimensional regression parameters in the presence of measurement error (Rosner et al.,

1992; Stefanski and Carroll, 1985; Fuller, 1987), but these approaches do not address

the variable selection problem and cannot be applied in large p, small n problems.

We propose a novel method for variable selection in the presence of measurement

error, MEBoost, which leverages estimating equations that have been proposed for low-

dimensional estimation and inference in this setting. MEBoost is a computationally

efficient path-following algorithm that moves iteratively in directions defined by these

estimating equations, only requiring the calculation (not the solution) of an estimat-

ing equation at each step. As a result, it is much faster than alternative approaches

involving, e.g., a matrix projection calculation at each step. MEBoost is also flexible:

the version that we describe is based on estimating equations proposed by Nakamura

(Nakamura, 1990), which apply to some generalized linear models, and the underly-

ing MEBoost algorithm can easily incorporate measurement error-corrected estimating

equations for other regression models. We conducted a simulation study to compare

MEBoost to the Convex Conditioned Lasso (CoCoLasso) proposed by Datta and Zou

(2017) and the “naive” Lasso which ignores measurement error. We also applied ME-

Boost to data from the Box Lunch Study, a clinical trial in nutrition where caloric intake

across a number of food categories was based on self-report and hence measured with

error.

29

3.2 Background

3.2.1 Regression in the Presence of Covariate Measurement Error

Our discussion of measurement error models draws heavily from Fuller (1987). When

modeling error the covariates can be treated as random or fixed values. Structural

models consider the covariates to be random quantities and functional models consider

the covariates to be fixed (Buonaccorsi, 2010). We consider a structural model. Let

Y = Xβ+ ε, where X is a (random) matrix of covariates of dimension n× p, β a vector

of coefficients of length p, ε is a vector of Normally distributed i.i.d. random errors

of length n, and Y is the resultant outcome vector also of length n. In an additive

measurement error model, we assume that what is observed is not X but rather the

“contaminated” or “error-prone” matrix W = X + U where U a random n× p matrix.

When a model is fit that ignores measurement error, i.e. it assumes that the true

model is Y = WβW + ε, the resulting estimates β̂W are said to be naive and satisfy

E[β̂
′
W] = β

′
(ΣXX + ∆)−1ΣXX (3.1)

where β is the true coefficient vector, ΣXX is the covariance matrix of the covariates

and ∆ ≡ ΣUU is the covariance matrix of the measurement error. In the case of linear

regression with a single covariate, (3.1) simplifies to an attenuating factor that biases

the coefficient estimates towards zero. However, with multiple covariates the bias may

increase, decrease, and even change the sign of the estimated coefficients. Notably,

measurement error affecting a single covariate can bias coefficient estimates in all of the

covariates, even those that are not measured with error (Buonaccorsi, 2010).

3.2.2 Variable selection in the Presence of Measurement Error

Ma and Li (2010) presented methods to account for measurement error while performing

30

variable selection in parametric and semi-parametric settings. Focusing on the para-

metric setting, they proposed a wide scoping method that can be used in more than

just generalized linear models. The method relies on deriving the full likelihood of each

observation and it’s corresponding score function, S∗eff (Wi,Yi, β), choosing a penalty

function and finding its derivative, p′(β), then solving the penalized estimating equa-

tions:

n∑
i=1

S∗eff (Wi,Yi, β)− np′(β) = 0 (3.2)

Solving the penalized equations can be very difficult computationally, especially in

the high dimensional setting. Therefore, we will look to compare our method with faster

methods that are variants of the Lasso, which can be solved much more quickly.

3.2.3 Lasso in the Presence of Measurement Error

Sørensen et al. (2012) analyze the Lasso (Tibshirani, 1996) in the presence of measure-

ment error by studying the properties of

β̂Lasso,λn = argmin
α

(
||Y −Wα||22 + λn||α||1

)
. (3.3)

β̂Lasso,λn is asymptotically biased when λn/n → 0 as n → ∞ since E[β̂
′
Lasso,λn

] =

β
′
(ΣXX + ∆)−1ΣXX. Notice this is the same bias that is introduced when naive linear

regression is performed on observed covariates. Sørensen et al. (2012) derive a lower

bound on the magnitude of the non-zero coefficient elements below which the corre-

sponding covariate will not be selected, and an upper bound on the L1 estimation error

||β̂W − β||1. They show that with increasing measurement error the lower bound in-

creases, i.e., increasing measurement error adds non-informative noise to the system and

so for the signal associated with the relevant covariates to be identified the signal must

31

increase. Increased measurement error also leads to an increase in the upper bound of

the estimation error. Sign consistent selection is also impacted by the presence of co-

variate measurement error. Sørensen et al. (2012) set a lower bound on the probability

of sign consistent selection in this setting. The result requires that the Irrepresentabil-

ity Condition with Measurement Error (IC-ME) holds. The IC-ME requires that the

measurements of the relevant and irrelevant covariates have limited correlation, relative

to the size of the relevant measured covariate correlation. Note the sample correlation

of the irrelevant covariates is not considered. By studying the form of the lower bound,

it can be concluded that (at least when using the Lasso) measurement error introduces

a greater distortion on the selection of irrelevant covariates than it does in the selection

of relevant covariates.

Sørensen et al. (2012) introduced an iterative method to obtain the Regularized

Corrected Lasso with constraint on the radius R:

β̂RCL = arg min
||β||1<R

{||y −Wβ||2 − nβ′∆β + λ||β||1}. (3.4)

The main results of their simulation study were consistent with their analytical results,

namely that the corrected Lasso had a slightly lower selection rate for the true covariates

than the naive Lasso, but was also more conservative in including irrelevant covariates.

Further, the prediction error, as measured by both ||β̂ − β||1 and ||β̂ − β||2, was lower

for the corrected Lasso.

The major drawback of the corrected Lasso method is that it is very computationally

intensive, involving an iterative calculation where each step involves a projection of an

updated β̂ onto the L1-ball for a given radius R. The iterative process must be conducted

for each fixed value of the radius R. The selected values of R provide a path of possible

solutions for β̂RCL. Hence, the approach seems impractical for large-scale problems and

for repeated application in a simulation study.

32

3.2.4 The Convex Conditioned Lasso (CoCoLasso)

A recent paper by Datta and Zou (2017) proposes an alternative approach which they

refer to as the Convex Conditioned Lasso (CoCoLasso). Consider the following refor-

mulation of the Lasso problem,

β̂L(λ) = arg min
β

1

2
β
′
Σβ − ρ′β + λ||β||1. (3.5)

The CoCoLasso is based on the Loh and Wainwright (2012) corrections for the predictor-

outcome correlation ρ and variance matrix Σ in the presence of measurement error.

When error-prone covariates W are measured in place of X, we can get corrected

estimates ρ̃ and Σ̂:

ρ̃ =
1

n
W
′
Y Σ̂ = W

′
W −∆ (3.6)

where ∆ is the (assumed known) variance in the measured W. These estimators are

unbiased. A measurement error corrected Lasso estimate could then be derived by

substituting ρ̃ and Σ̂ into (3.5). The problem with this idea is that the corrected matrix

Σ̂ may not be a valid covariance matrix, since it is possible to be non positive semi-

definite. If Σ̂ has a negative eigenvalue, then this Lasso function would be non-convex

and unbounded. To overcome this obstacle, the key to the CoCoLasso (Datta and Zou,

2017) is calculating the projection of Σ̂ onto the space of positive definite matrices:

(Σ̂)+ = arg min
Σ≥0

||Σ̂− Σ||max. (3.7)

The CoCoLasso then solves a standard Lasso problem in which Σ̂ and ρ with the cor-

rected values from (3.6) and (3.7), yielding the CoCoLasso estimator:

β̂C(λ) = arg min
β

1

2
β
′
(Σ̂)+β − ρ̃

′
β + λ||β||1. (3.8)

33

When Σ̂ is not positive definite, the projection from (3.7) can be challenging to compute.

However, the projection only needs to be done once, unlike the Sørensen et al. (2012)

correction which requires a projection at each iteration.

3.3 MEBoost: Measurement Error Boosting

Our proposed variable selection algorithm, MEBoost (Measurement Error Boosting), is

based on an iterative functional gradient descent type algorithm that generates variable

selection paths. The key idea is that, instead of following a path defined by the gradient

of a loss function (e.g., the likelihood), the “descent” follows the direction defined by

an estimating equation g(Y,X, β). The algorithmic structure of MEBoost is shared

with ThrEEBoost (Thresholded Estimating Equation Boost, Brown et al. (2017)), a

general-purpose technique for variable selection based on estimating equations. While

ThrEEBoost described an approach to performing variable selection in the presence of

correlated outcomes by leveraging the Generalized Estimating Equations (Liang and

Zeger, 1986), MEBoost achieves improved variable selection performance in the pres-

ence of measurement error by following a path defined by a measurement error corrected

score function due to Nakamura which is described in Section 3.3.1. Nakamura’s ap-

proach is applicable to linear regression models with normal additive or multiplicative

measurement error. Closed-form corrected score functions are also derived for Poisson,

Gamma, and Wald regression. Nakamura comments that no closed form correction can

be created for logistic regression. By using this family of corrected score functions, the

MEBoost algorithm is more broadly applicable than the corrected Lasso and CoCoLasso,

neither of which is obviously generalizable beyond linear regression.

34

3.3.1 Corrected Score Function

Nakamura (1990) proposed a set of corrected score functions for performing estimation

and inference in the generalized linear regression model where covariates are subject to

additive measurement error with known variance matrix ∆. In general, the corrected

score function S* based on the covariates measured with error (W), has the expectation

equal to the score function, S, based on the true covariates (X). For the normal linear

model, Nakamura proposed the following correction to the negative log-likelihood to

account for measurement error:

l∗(Y,W, β)
′

= −n
2
log(2π)− nlog(σ)− 1

2σ2

∑
[(yi − β′wi)2 − β′∆β] (3.9)

Differentiating (3.9) with respect to β, we obtain the corrected score function:

S∗(Y,W, β)
′

= S(Y,W, β)
′
+ nσ−2β

′
∆. (3.10)

In this case the corrected score function is the ’naive’ score function, S(Y,W, β)
′
,

with a measurement error correction determined by the sample size, model error, mea-

surement errors, and the coefficient value: nσ−2β
′
∆. The naive score function is the

score function from the true model calculated with the measured covariates:

S(Y,W, β, σ) = σ−2
(
W
′
Y −W

′
Wβ

)
(3.11)

The corrected variance estimate will be calculated as ∂l∗/∂σ = 0, which in the normal

case is:

σ̂2 = n−1 (Y −Wβ∗)
′
(Y −Wβ∗)− β∗′∆β∗. (3.12)

Similarly to the corrected score function, the corrected variance estimate is the naive

35

variance estimate, n−1 (Y −Wβ∗)
′
(Y −Wβ∗), with a measurement error correction.

The correction reduces the estimated variance, thus subtracting the noise introduced

by the measurement error. In the variance case the correction factor is determined only

by the true coefficient vector and the measurement error variance.

As another example, the correction for Poisson distributed data is the following:

S(Y,W, β) =
∑

[ykwk − (wk −∆β)exp(β′wk − β′∆β/2)] (3.13)

which we apply in our data application (see Section 3.5). Nakamura (1990) also pro-

vides corrections for multiplicative measurement error in linear regression, as well as

measurement error in Gamma and Wald regression. In what follows, we use the nor-

mal linear additive measurement error corrected score function as part of an iterative

path-following algorithm that performs variable selection in the presence of covariate

measurement error.

3.3.2 The MEBoost Algorithm

Our proposed variable selection algorithm, MEBoost, consists of applying ThrEEBoost

with the corrected score function and corrected variance estimate described in the pre-

vious section. Algorithm 5 summarizes the MEBoost procedure.

Let τ ∈ [0, 1] be the fixed thresholding parameter. Starting with a β estimate of

0 and a σ̂2 = 1, the corrected score function S∗ is calculated at these values, and the

magnitude of each component of ν ≡ S∗ is recorded. The indices of elements to update

are identified by a thresholding rule, Jt = {j : |νj | ≥ τ · maxj |νj |}. The next point

in the variable selection path, β(1), is obtained by adding a small value, γ, to each of

these elements in the direction corresponding to the signs of each νj for j ∈ Jt. This

updated β(1) is used to calculate an updated corrected σ2(1). The algorithm continues

for T iterations, where T is typically chosen to be large (e.g., 1,000).

36

Algorithm 5 MEBoost

procedure MEBoost
Set β(0) = 0
Set σ2,(t=0) = 1

for t = 0, . . . , T do
Compute ν = S∗(Y,W,β)

β=β(t−1)

Identify Jt = {j : |νj | ≥ τ ·maxj |νj |}
for all jt ∈ Jt do

Update β
(t)
jt

= β
(t−1)
jt

+ γ sign(νjt)

Set σ2,(t) = n−1
(
Y −Wβ(t)

)′ (
Y −Wβ(t)

)
− β(t)′∆β(t)

The parameters γ, T and τ interact to determine the specific variable selection path

that results from the algorithm. The smaller the value of γ the smaller the distance

between β estimates on the selection path, while a larger value of γ leads to larger

jumps in the selection path. Ideally, a very small value of γ (e.g., 0.01). would be used,

but if ||β||1 is large, a large number of iterations, T , may be required to generate a

selection path. This of course is the trade-off one is required to make when determining

the step size. A selection path incremented by only a small value is preferable to a

path which takes large steps, but the time required for a large number of iterations

may become prohibitive. With each of the t iterations those elements of the coefficient

vector that are still of size zero have not been selected at this iteration. A conservative

selection approach takes a combination of small γ and T , whereas a more aggressive

approach takes a combination of larger value γ and T . In the case when τ = 1, the

MEBoost algorithm only updates the element(s) with the maximum absolute value. For

any combination of γ and T , this is the most conservative approach that can be taken

and will lead to sparser models than when a threshold is considered. It also requires a

much larger value of T .

The parameter τ determines how many coefficients are updated at each iteration; it

offers a compromise between updating each coefficient at every iteration (τ = 0, similar

37

to standard gradient descent) and updating only the coefficient corresponding to the

element of the estimating equation with largest magnitude (τ = 1). In the context

of Generalized Linear Models without measurement error, Wolfson (2011) showed that

setting τ = 1 yields an update rule that is asymptotically equivalent (as T →∞, γ → 0,

and T ·γ → 0) to following the path of minimizers of an L1-penalized projected artificial

log-likelihood ratio whose tangent is the GLM score function. In the case when τ = 1,

the MEBoost algorithm only updates the element(s) with the maximum absolute value.

For any combination of γ and T , this is the most conservative approach that can be

taken and will lead to sparser models than when a threshold is considered. It also

requires a much larger value of T . By allowing multiple directions to be updated at

each iteration, MEBoost can explore a much wider range of variable selection paths; as

we discuss later, cross-validation can be used to select the parameter τ which leads to

the optimal level of thresholding. In ThrEEBoost (Brown et al., 2017), it was shown

that a threshold in the range of 0.4-0.8 may perform better than thresholds closer to 0

or 1.

Connection to the ME-Lasso

Nakamura’s measurement corrected score functions are derivatives of corrected negative

log likelihoods. In the normal case, the correction is exactly that described in Sorensen

et al. (see Equation (3.3)). Hence, the arguments of Rosset et al. (2004) can be applied

to show that 1) MEBoost applied with S∗ and threshold value τ = 1, and 2) the solutions

to (3.3), have the same local behavior. Specifically, under some regularity conditions

(see Wolfson (2011)), as T → ∞ and ε → 0 with T · ε → 0, MEBoost’s iterative steps

match the sequence of solutions to (3.3).

38

Selecting a final model

For a fixed τ , identifying a final model involves choosing a point on the variable selection

path generated by Algorithm 5; this is akin to choosing the penalty parameter in the

Lasso. Cross-validation using a loss function relevant to the problem at hand (e.g., mean

squared error) can be used to select a β̂ on the path. Cross-validation can similarly be

used to select the best value of τ . The full procedure is described in Algorithm 6.

Algorithm 6 Model Selection for MEBoost

procedure Cross Validation
Divide the observations into K folds where 1

K of the observations are used as a
test set.

for k = 1, . . . ,K do
Apply MEBoost for fixed value τ .
Obtain the mean squared prediction error of each candidate model on the test

set.
Calculate ||β̂||(k)

1 for the β̂(t) that minimizes mean squared prediction error.

Repeat across the K possible test sets and compute the mean of the selected

||β̂||(k)
1 ’s.

3.4 Simulation Study

To examine the impact of measurement error in the covariates on variable selection we

performed a simulation study. We evaluated MEBoost by comparing it to two variable

selection methods: the Convex Conditioned Lasso (CoCoLasso), and the “naive” Lasso

which does not correct for measurement error.

3.4.1 Simulation Set-up

Data were generated from a linear regression model with iid normal errors, Y = Xβ+ε;

where εi ∼ N(0, σ2
ε) and σε = 1.5. The sample size for all studies is 80. The true

covariates are drawn from a multivariate normal distribution, X ∼ MVN(0,ΣXX).

39

ΣXX is a block diagonal matrix with diagonal entries equal to 1, and 10 by 10 blocks

corresponding to a group of 10 covariates with an exchangeable correlation structure

with common pairwise correlation φ = 0.3. In all simulations the true model has 10

non-zero coefficients and 90 zero coefficients, i.e., β = (110,090), so that the relevant

covariates in the first block were correlated.

The measured covariates were generated as W = X + U for U a matrix whose

columns were generated as described below. To explore the impact of different types of

measurement error, we considered 10 different scenarios for generating the columns of

U and varying the assumptions made about it. In the first five scenarios, U is assumed

to be normally distributed with mean zero and covariance matrix Ω, and the scenarios

explore different structures for Ω. In each of Scenarios 1-5, we correctly specify the

distribution of U when applying MEBoost and the CoCoLasso. Scenarios 6-10 explore

cases where the distribution of U is incorrectly specified.

1. Base case: U ∼ N(0, δ2Ω1), where Ω1 = I the identity matrix, and δ2 = 0.75.

2. Varying δ2: δ2
j = 0.3375 + 0.075j for j in 1-10. This pattern repeats across the

blocks of 10 covariates. The relevant covariates have similar spreads of measure-

ment error to the irrelevant covariates.

3. Correlated Measurement Error: Measurement error was assumed normally dis-

tributed with an exchangeable correlation structure Within each block, U ∼

N(0, δ2Ω3) where Ω3 = ρ11′ + (1 − ρ)I, δ2 = 0.75, ρ = 0.3, and 1 is vector

of ones.

4. Varying δ2 with correlation: U is distributed normally and is centered at 0 with

δ2
j = 0.3375 + 0.075j for j in 1-10. This pattern repeats across the blocks of 10

covariates. The relevant covariates have similar spreads of measurement error to

the irrelevant covariates. In blocks of ten, there is correlation in U of 0.3

40

5. Some U’s not measured with error: U ∼ N(0, δ2Ω5), where δ2 = 0.75, diag(Ω5) =

[0, 1, 0, 1, . . .] and Ω5,ij = 0 for i 6= j.

6. Overestimated δ2: U generated as in Scenario 1, but we specify δ2 = 1.5.

7. Underestimated δ2: U generated as in Scenario 1, but we specify δ2 = 0.375.

8. Misspecified correlation: U generated as in Scenario 3, but we ignore the correla-

tion and specify Ω = δ2I in running MEBoost and CoCoLasso.

9. Measurement error is distributed uniformly: Each entry Uij of U is generated

independently from a Uniform distribution, Uij ∼ U(−1.5, 1.5). MEBoost and

CoCoLasso are run assuming U ∼ N(0, δ2I) with δ2 = 0.75 = V ar(Uij).

10. Measurement error is distributed asymmetrically: Each entry Uij of U is gen-

erated independently from a shifted exponential distribution, Uij +
√

0.75 ∼

exp(
√

0.75). MEBoost and CoCoLasso are run assuming U ∼ N(0, δ2I) with

δ2 = 0.75 = V ar(Uij).

MEBoost was performed for each threshold value in the set τ = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),

and cross-validation (using the error-prone covariates) was used to select the optimal

value of τ and number of MEBoost iterations, as well as the value of λ in the CoCo-

Lasso and naive Lasso. We compared MEBoost, CoCoLasso, and naive Lasso on two

metrics of prediction error: mean squared error based on the true covariates (MSE =

1
n(Y−Xβ̂)

′
(Y−Xβ̂)), mean squared error prediction based on the measured covariates

(MSE-M = 1
n(Y −Wβ̂)

′
(Y −Wβ̂)). These metrics were estimated using independent

test sets generated during each individual simulation. We also computed L1 distance

from the true β, and variable selection sensitivity and specificity. For each scenario the

metrics presented are the average over 1,000 simulations, and are calculated at inter-

vals of 0.05 along ||β̂||1 ∈ {0.05, 0.1, 0.15, ..., 15}; the true value, ||β||1 = 10. Because

41

the MEBoost algorithm may change multiple indices at each iteration it may not have

values along each interval in the path. To account for this, a linear approximation of

the relevant statistic was made at each point in the path.

We note that in this simulation study we chose to investigate model performance

based on both the true and error-prone covariates. The motivation for techniques like

ours which account for measurement error is to uncover the underlying relationship

between the error-free covariates X and the outcome Y. Hence, in an ideal world,

values of X would be available on some subset (or an independent set) of observations

so that prediction error could be assessed and the “best” model chosen. However, in

practice we will often only have access to the error-prone covariates W for model fitting.

So, if error-free measurements X are not (and may never be) available, is it worthwhile

to correct for measurement error? Buonaccorsi (1995) argued against correction, using

the logic that the future predictions will be based on (error-prone) W, not on (error-free)

X. Indeed, it can be shown in simple linear regression, that without the correction in a

large sample the expected value of MSE-M is less than or equal to that of an estimate

ignoring measurement error. However, as seen in the results section that follows, we

found that correcting for measurement error decreased prediction error regardless of

whether predictions were computed using error-free or error-prone covariates. Since we

often only have mismeasured data available, it is reassuring to see that we are able

to use the measured covariates to perform cross-validation to select a model that will

provide us with an accurate relationship between the outcome and true covariate. This

finding is discussed in greater detail below.

3.4.2 Simulation Results

Table 3.1 presents the minimum MSE, MSE-M, L1 distance from the true β, sensitivity,

and specificity at the minimum MSE for the three variable selection methods across

42

the 10 scenarios. In all ten scenarios, MEBoost had the lowest MSE, MSE-M, and

L1 distance from the true β. The CoCoLasso has 16.6%-71.7% higher prediction error

from the true covariates than MEBoost and in the case where measurement error is

overestimated, the prediction error from the CoCoLasso is 5.26 times that of MEBoost.

This is likely due to the fact that the Loh and Wainwright correction Σ̂ in (3.6) is

more negative, and hence requires a “longer” (and hence potentially more distorting)

projection onto the space of positive definite matrices.

In terms of variable selection, MEBoost had a greater sensitivity and lower specificity

than CoCoLasso in each case while Lasso had the lowest specificity. The Lasso struggles

most when correlation is present in the measurement error. The MSE is about 2.5 times

that of MEBoost, when we allow MEBoost to account for the correlation. All methods

perform poorly when we misspecify ∆ by ignoring the correlation. The sensitivity and

specificity are at high levels for most simulations with the exception of the misspecified

∆ that ignored correlation. Overestimating δ lead to a more conservative selection

process with a high specificity, while underestimating δ had a higher sensitivity. The L1

distance from the true β can also tell us about performance. Again, the scenario where

we misspecify ∆ by ignoring correlation performs worst.

Figure 3.1 shows how these metrics vary with ||β̂||1 in Scenario 2 (varying δ); similar

plots for the other 9 scenarios appear in the supplementary materials. The MSE, MSE-

M, and L1 distance are U-shaped with a minimum just before ||β̂||1 reaches the true

||β||1 of 10. For each metric, MEBoost achieves the lowest values, meaning it is closest

to the true vector β and has the best prediction given either true covariates or covariates

measured with error. The CoCoLasso performs worst. For sensitivity, MEBoost most

quickly goes towards 1. This comes at the cost of specificity, but specificity does not

begin to decrease drastically until after ||β̂||1 = 6. The sensitivity of the Lasso eventually

surpasses that of MEBoost, but when it does, the specificity decreases very sharply. The

43

CoCoLasso at every point has the lowest value of sensitivity and the highest of specificity.

Figure 3.2 summarizes the differences between the variable selection path defined by

MEBoost and CoCoLasso, in Scenario 1. We see in the left-hand plot that MEBoost

includes nearly all relevant covariates within the first few iterations. The coefficient

values are then increased at each step towards their true values of 1; at some point,

additional irrelevant covariates begin to enter the model. In contrast, The CoCoLasso

tends to increase the magnitude of a single coefficient, β̂i. This is confirmed by the

middle plot, which shows the proportion of variables which are included in only one of

the two models, as ||β̂||1 increases. We see from this plot that the number of covariates

included in one model but not the other decreases as the CoCoLasso identifies more of

the relevant covariates, then increases again as each method identifies different sets of

irrelevant covariates. The rightmost plot shows the element-wise maximum and mean

absolute difference between the estimated coefficient vectors from the two methods. We

see that the CoCoLasso is quickly updating fewer elements as the maximum distance

between estimates of βi between the two methods grows initially, while MEBoost up-

dates each of the relevant covariates gradually. As ||β̂||1 approaches 4, the maximum

distance begins to decrease. This is because MEBoost begins updating the index of

the largest estimate from the CoCoLasso more quickly than the CoCoLasso is, since it

has turned its attention to other variables. Once ||β̂||1 surpasses the true value of 10,

inclusion of irrelevant covariates causes the maximum distance to increase again.

3.5 Data Application

We applied our method to baseline data collected in the Box Lunch Study, a randomized

trial of the effects of portion size availability on weight change. In the study, a total

of 219 subjects were randomized to one of four groups: in three groups, subjects were

provided a free daily lunch with a fixed number of calories (400, 800, and 1600). The

44

control group was not provided a free lunch.

We considered the problem of predicting the number of times subjects reported

binging on food in the last month, using Poisson regression with 99 explanatory vari-

ables. All variables were measured at baseline. 16 of the 99 explanatory variables were

self-reported measures; of these 16, 8 were measures of food consumption and there-

fore possibly subject to substantial measurement error we will notate δ2
D. Another 8

may have also been measured with error, notated δ2
M . Kipnis et al. (2003) examined

a nutritional study with a 24 hour recall, and found that the correlation between the

true and reported consumption of protein and energy was only 0.336. We assume this

relationship exists in each of our variables measured with error. Assuming the measure-

ment error variance V ar(Ui) ≡ δ2
i is independent of the variance of the true covariate

V ar(Xi) ≡ σ2
Xi

, we can obtain:

ρWi,Xi = ρXi+Ui,Xi =
σ2
Xi√

σ2
Xi

(σ2
Xi

+ δ2
i)

=⇒ V ar(Wi) = 1− ρ2
Xi+Ui,Xi

=
δ2
i

σ2
Xi

+ δ2
i

(3.14)

and hence V ar(Wi) = 1 − 0.3362 = 0.887. This is the value we will need to provide

MEBoost for our assumption of the measurement error. We assume this level of mea-

surement error for each 24 hour dietary recall variable. After scaling our predictors to

have zero mean and unit variance, we applied our method with the Nakamura correc-

tion. Since our measured data has its variance (δ2
i +σ2

Xi
) scaled to equal 1, we assumed

that the 8 dietary recall covariates measured with error had δ̂2
D = 0.887. Since dietary

variables may be more prone to measurement error than other variables, we scaled

the assumed error of the other 8 variables to be half that of the nutritional variables:

δ̂2
M = δ̂2

D/2. The remaining variables were assumed to be measured without error. We

conducted a sensitivity analysis to assess the performance of our method by setting

δ̂2
D = 0.5 and 0.25.

45

To select tuning parameters, we employed 8-fold cross validation based on the de-

viance on a training set consisting of 70% of the data. The performance of our model

was evaluated on the remaining test set. We present the models derived from MEBoost

performed with three different thresholds τ : 0.2, 0.6 (the approximate value estimated

using cross-validation), and 0.9.

Table 3.2 shows the selected variables and estimated prediction error (MSE-M, bot-

tom row) for various MEBoost models along with results from the naive Lasso. We did

not compare to the Measurement Error Lasso or the CoCoLasso because implementing

these techniques in a problem of this size was computationally infeasible. The deviance

and MSE-M were lowest for the model selected by MEBoost assuming the highest mea-

surement error (= 0.887) and a threshold value of 0.6. This model (δ̂2
D = 0.887 and

τ = 0.6) selected just 4 variables, which were a subset of the 7 chosen with the naive

Lasso. The other two MEBoost models included up to two additional variables to the

MEBoost model that minimized MSE-M (selected with δ̂2
D = 0.887 and τ = 0.6). Re-

gardless of the assumption about the level of measurement error, using a threshold value

of τ = 0.2 leads to the inclusion of several variables with small coefficients, and a much

higher deviance and prediction error. Of particular note is that the naive Lasso (and

MEBoost with the lower threshold) included the variable corresponding to the num-

ber of daily calories consumed at breakfast, while the best-performing MEBoost models

(with τ = 0.6 and 0.9) did not. Since it is based on a 24-hour dietary recall, this variable

may be particularly susceptible to measurement error induced by recall bias.

3.6 Discussion

We examined the variable selection problem in regression when the number of poten-

tial covariates is large compared to the sample size and when these potential covari-

ates are measured with measurement error. We proposed MEBoost, a computationally

46

simple descent-based approach which follows a path determined by measurement error-

corrected estimating equations. We compared MEBoost, via simulation and in a real

data example, with the recently-proposed Convex Conditioned Lasso (CoCoLasso) as

well as the naive Lasso which assumes that covariates are measured without error. In

almost all simulation scenarios, MEBoost performed best in terms of prediction error

and coefficient bias. The CoCoLasso is more conservative with the highest specificity in

each case, but sensitivity and prediction are better with MEBoost. In the comparison of

selection paths, we saw that MEBoost was more aggressive in identifying variables to be

included in the model more quickly than the CoCoLasso. These differences were most

apparent when the measurement error had a larger variance and a more complex corre-

lation structure. Specifically, when faced with a data set of 1000 observations and 1000

covariates, MEBoost obtained a solution in 1.3 seconds, while the CoCoLasso needed

6:17.

As shown in the simulation study, MEBoost has lower prediction error than the Lasso

on independent test data when predictions are based on the true (i.e., non-error-prone)

covariates. It is interesting to note that MEBoost retains some advantage, albeit a more

modest one, over the Lasso when predictions are based on error-prone covariates. This

finding appears to contradict the intuition that accounting for covariate measurement

error provides no benefit when the goal is prediction and error-free covariates will never

be available. However, the observed benefit in our simulation is likely due to the fact that

MEBoost is somewhat more flexible than the Lasso as it uses an additional parameter,

the threshold τ , which allows it to explore the model space more comprehensively.

Nevertheless, it is reassuring that by using the error-prone covariates to perform cross-

validation and select a model, MEBoost still allows us to select a model that offers

an improvement in prediction in the setting where we will have correctly measured

covariates.

47

MEBoost, while a promising approach, has some limitations. One limitation–which

is shared with many methods that correct for measurement error–is that we assume that

the covariance matrix of the measurement error process is known, an assumption which

in many settings may be unrealistic. In some cases, it may be possible to estimate these

structures using external data sources, but absent such data one could perform a sen-

sitivity analysis with different measurement error variances and correlation structures,

as we demonstrate in the real data application. Another challenging aspect of model

selection with error-prone covariates is that, even if the set of candidate models is gen-

erated via a technique which accounts for measurement error, the process of selecting a

final model (e.g., via cross-validation) still uses covariates that are measured with error.

However, we showed in our simulation study that MEBoost performs well in selecting a

model which recovers the relationship between the true (error-free) covariates and the

outcome, even when using error-prone covariates to select the final model. This finding

suggests that the procedure for generating a “path” of candidate models has a greater

influence on prediction error and variable selection accuracy than the procedure picking

a final model from among those candidates.

To conclude, we note that while we only considered linear and Poisson regression

in this paper, MEBoost can easily be applied to other regression models by, e.g., using

the estimating equations presented by Nakamura (1990) or others which correct for

measurement error. In contrast, the approaches of Sørensen et al. (2012) and Datta

and Zou (2017) exploit the structure of the linear regression model and it is not obvious

how they could be extended to the broader family of generalized linear models. The

robustness and simplicity of MEBoost, along with its strong performance against other

methods in the linear model case suggests that this novel method is a reliable way to

deal with variable selection in the presence of measurement error.

48

0 5 10 15

10
20

30
40

||β||1

M
S

E
 fr

om
 T

ru
e

C
ov

ar
ia

te
s

0 5 10 15

10
15

20
25

30
35

40

||β||1
M

S
E

 fr
om

 M
ea

su
re

d
C

ov
ar

ia
te

s

0 5 10 15

4
5

6
7

8
9

10

||β||1

L 1
 D

is
ta

nc
e

fr
om

 T
ru

e
B

et
a

0 5 10 15

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

||β||1

S
en

si
tiv

ity

0 5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

||β||1

S
pe

ci
fic

ity

Method

MEBoost Lasso Cocolasso

Figure 3.1: Summary statistics for the scenario with varying levels of independent
measurement errors. Plots are of MSE, MSE-M, L1 distance from β̂ to the true value
of β, sensitivity, and specificity across the mean path over 1,000 simulations.

3.7 Tables and Figures

49

0 5 10 15

0
5

10
15

20
25

30

||β||1

N
um

be
r

of
 N

on
ze

ro
 C

oe
ffi

ci
en

ts
 E

st
im

at
ed

Method

Cocolasso
MEBoost

0 5 10 15

0.
05

0.
10

0.
15

||β||1

M
is

m
at

ch
 P

er
ce

nt
ag

e

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

||β||1

E
le

m
en

t−
w

is
e

D
is

ta
nc

e
B

et
w

ee
n

S
el

ec
tio

n
P

at
hs

Method

Maximum difference
Mean difference

Figure 3.2: In the scenario, with iid measurement error, 1,000 simulations were con-
ducted comparing the variable selection path of MEBoost to CoCoLasso. Plots are of
the number of nonzero coefficients included in the model, the portion of coefficients that
are ’mismatched’ with only one of the two models selecting a certain variable, and the
element-wise distance in a coefficient between the two methods.

50

Scenario Method MSE MSE-M L1D SENS SPEC

Measurement error MEBoost 4.86 10.65 5.17 0.95 0.86
iid Lasso 7.13 11.63 6.75 0.98 0.75

CoCoLasso 6.30 12.53 6.04 0.92 0.91

Varying δ MEBoost 4.88 10.52 5.21 0.96 0.85
Lasso 7.08 11.42 6.76 0.98 0.76
CoCoLasso 7.18 14.84 6.50 0.85 0.95

Some δ = 0 MEBoost 3.65 6.70 3.57 0.99 0.87
Lasso 4.88 6.23 5.42 0.99 0.83
CoCoLasso 6.23 11.15 5.60 0.92 0.95

Varying δ MEBoost 6.19 19.12 6.27 0.95 0.87
& correlation Lasso 15.18 21.42 9.63 0.80 0.79

CoCoLasso 8.94 22.47 7.77 0.78 0.94

Correlation in MEBoost 6.16 19.27 6.29 0.95 0.87
measurement error Lasso 15.78 22.24 9.75 0.80 0.79

CoCoLasso 8.67 22.29 7.81 0.78 0.94

Overestimated δ MEBoost 4.00 10.21 3.46 0.94 0.94
Lasso 7.18 11.71 6.75 0.98 0.76
CoCoLasso 21.05 28.22 9.11 0.37 1.00

Underestimated δ MEBoost 5.54 10.81 6.28 0.98 0.76
Lasso 7.18 11.71 6.75 0.98 0.76
CoCoLasso 6.46 12.02 6.20 0.95 0.87

Misspecified ∆, MEBoost 12.79 21.03 9.41 0.86 0.80
ignores correlation Lasso 15.78 22.24 9.75 0.80 0.79

CoCoLasso 15.67 24.17 9.51 0.55 0.93

Measurement error MEBoost 4.89 10.68 5.16 0.95 0.85
from asymmetric Lasso 7.21 11.85 6.81 0.98 0.75
distribution CoCoLasso 7.32 15.20 6.71 0.85 0.95

Measurement error MEBoost 4.81 10.52 5.17 0.96 0.84
from uniform Lasso 7.19 11.75 6.80 0.99 0.75
distribution CoCoLasso 6.61 13.91 6.26 0.87 0.94

Table 3.1: Performance metrics for the 1,000 simulations in various measurement error
scenarios. The models were selected at the point with minimum MSE-M.

51
δ̂2 D

=
0
.8

8
7

δ̂2 D
=

0
.5

δ̂2 D
=

0
.2

5
N

a
iv

e
V

a
ri

a
b
le

τ
=

0
.2

τ
=

0
.6

τ
=

0
.9

τ
=

0
.2

τ
=

0
.6

τ
=

0
.9

τ
=

0
.2

τ
=

0
.6

τ
=

0
.9

L
a
ss

o

A
te

lg
a
m

t
p
a
st

2
8

d
ay

s
0
.0

9
0
.2

3
0
.3

9
0
.0

8
0
.2

3
0
.3

3
0
.0

9
0
.2

2
0
.2

9
0
.2

1
L

o
st

co
n
tr

o
l

p
a
st

2
8

d
ay

s
0
.0

9
0
.2

3
0
.2

1
0
.0

8
0
.2

3
0
.2

2
0
.0

9
0
.2

2
0
.2

3
0
.2

4
T

F
E

Q
D

is
in

h
ib

it
io

n
0
.0

9
0
.2

3
0
.0

9
0
.0

8
0
.2

3
0
.1

8
0
.0

9
0
.2

2
0
.2

1
0
.1

7
B

C
T

:
M

a
x

cl
ic

k
s

fo
r

p
iz

za
sl

ic
e

0
.0

9
0
.2

1
0
.1

0
.0

8
0
.2

3
0
.1

9
0
.0

9
0
.2

2
0
.2

0
.1

6
L

o
n
g

fa
st

(0
=

n
o

d
ay

s
6
=

ev
er

y
d
ay

)
0
.0

9
-

-
0
.0

8
-

-
0
.0

9
-

-
-

J
u
d
g
e

y
o
u
r

sh
a
p

e
(0

=
n
o
t

a
t

a
ll

6
=

m
a
rk

ed
ly

)
0
.0

7
-

-
0
.0

7
0
.0

6
-

0
.0

7
0
.0

6
-

-
J
u
d
g
e

y
o
u
r

w
ei

g
h
t

(0
=

n
o
t

a
t

a
ll

6
=

m
a
rk

ed
ly

)
0
.0

7
-

-
0
.0

7
-

0
.0

6
0
.0

7
0
.0

6
0
.0

6
0
.0

6
D

is
sa

ti
sfi

ed
w

it
h

sh
a
p

e
(0

=
n
o
t

a
t

a
ll

6
=

m
a
rk

ed
ly

)
0
.0

7
-

-
0
.0

7
-

-
0
.0

7
-

-
-

B
C

T
:

R
o
u
n
d
s

o
f

cl
ic

k
in

g
fo

r
p
iz

za
0
.0

6
-

-
0
.0

6
-

-
0
.0

7
-

-
-

B
C

T
:

P
m

a
x
p
iz

za
/
(P

m
a
x
p
iz

za
+

P
m

a
x
re

a
d
)

0
.0

6
-

-
0
.0

6
-

-
0
.0

6
-

-
-

T
F

E
Q

H
u
n
g
er

0
.0

6
-

-
0
.0

6
-

-
0
.0

6
-

-
-

D
is

sa
ti

sfi
ed

w
it

h
w

ei
g
h
t

(0
=

n
o
t

a
t

a
ll

6
=

m
a
rk

ed
ly

)
0
.0

6
-

-
0
.0

6
-

-
0
.0

6
-

-
-

N
D

S
R

b
re

a
k
fa

st
k
ca

ls
a
t

B
L

0
.0

6
-

-
0
.0

5
-

-
-

-
-

0
.0

8
C

D
R

S
b

o
d
y

im
a
g
e

(1
=

th
in

n
es

t
9
=

fa
tt

es
t)

0
.0

5
-

-
0
.0

5
-

-
0
.0

5
-

-
-

D
em

9
H

o
u
se

h
o
ld

in
co

m
e

-
-

-
-

-
-

-
-

-
-0

.0
5

E
a
t

lu
n
ch

in
ca

fe
te

ri
a

-
-

-
-

-
-

-0
.0

5
-

-
-

E
a
t

it
em

s
fr

o
m

h
o
m

e,
d
ay

s/
w

k
-0

.0
6

-
-

-0
.0

6
-

-
-0

.0
6

-
-

-
C

o
h
o
rt

fi
rs

t
lu

n
ch

d
a
te

-0
.0

7
-

-
-0

.0
7

-
-

-0
.0

8
-

-
-

D
ev

ia
n
ce

2
1
0
.4

3
8
9
.0

6
1
0
0
.4

9
2
2
2
.0

7
9
0
.2

2
9
3
.2

3
2
0
8
.0

7
9
0
.6

3
9
0
.3

8
9
7
.1

2
M

S
E

-M
2
2
.3

5
5
.6

1
8
.1

0
2
3
.2

8
5
.6

9
7
.2

9
2
2
.0

4
5
.9

7
6
.2

1
7
.8

9

T
ab

le
3.

2:
C

o
effi

ci
en

ts
,

D
ev

ia
n

ce
,

an
d

M
S
E

-M
fr

om
se

le
ct

ed
m

o
d

el
s

fo
r

M
E

B
o
os

t
w

it
h

sp
ec

ifi
ed

va
lu

e
of
τ

a
n

d
δ̂2 D

a
n

d
th

e
L

as
so

.
S

m
al

l
co

effi
ci

en
ts

(m
ag

n
it

u
d
e
<

0.
05

)
ar

e
om

it
te

d
.

“-
”

in
d

ic
at

es
th

at
th

e
va

ri
ab

le
w

as
n

ot
se

le
ct

ed
in

th
e

m
o
d

el
.

Chapter 4

SuperBoost

4.1 Introduction

Most techniques for variable selection in regression models (e.g., gradient descent (Fried-

man et al., 2000), Lasso (Tibshirani, 1994), Elastic Net (Zou and Hastie, 2005), L1-

regularization (Park and Hastie, 2007), and for a Cox proportional hazard model (Fan

and Li, 2002)) assume that the data satisfy key modeling assumptions. For example, it

is usually assumed that outcomes are independent, that covariates are measured with-

out error, and that no data values are missing. Recent research has focused on the

problem of extending variable selection to settings where one of these assumptions may

be violated. For example, there is the CoCoLasso (Datta and Zou, 2017) and MEBoost

(Brown et al., 2017) for covariates with measurement error, Penalized GEE (Johnson

et al., 2008) and GEEBoost (Brown et al., 2017) and for correlated outcomes, and Yang

et al. (2005) for missing data.

In the low-dimensional setting, some work has been done in estimation in the pres-

ence of multiple data challenges. In the instance of censored data and correlation,

Pike and Weissfeld (2013) used a joint model approach to analyze longitudinal data

on mortality and morbidity. It relies on the conditional longitudinal model, L(T |u),

52

53

and survival model, S(Y |u), being independent given a random effect, u, distributed

according to F (u). This gives us the full likelihood.

L(Y, T, θ) =
n∏
i=1

∫ ∞
−∞

Li(Y |u)Si(T |u)dF (u) (4.1)

Since this can be written in the form of a likelihood, using penalization to perform

variable selection would be straightforward using a coordinate-wise descent algorithm.

Buonaccorsi et al. (2000) proposed a method to account for measurement error in

a mixed model for longitudinal data. This is an extension of his work in regression

calibration for uncorrelated outcomes. This model includes a random effect and the

coefficients can be corrected for additive or multiplicative measurement error. Further,

Li et al. (2005), faced a longitudinal data set with a surrogate in place of the true

outcome. The surrogate was assumed to be measured with error that was not additive

nor multiplicative. Instead, the surrogate was count data, which followed a structure

so that the measurement could not be negative; the likelihood was truncated at 0.

Therefore, they needed to adapt Buonaccorsi’s method to add a latent variable for the

measured variable with a point mass at 0.

As far as we are aware, there is no general technique to perform variable selection

when standard regression assumptions are violated. We propose two novel variable

selection techniques for this situation. We propose SuperBoost, which combines multiple

iterative variable selection algorithms which each address a single data characteristic

post-hoc. We also propose AltBoost which combines addresses each data challenge

alternatively in iterations. We start with a literature review of methods accounting for

multiple data assumption violations as well as ways to combine models together. Next

we introduce our methods, building upon the ideas of boosting and stacking. We present

the algorithm for our method SuperBoost. Then we conduct a simulation to evaluate

our methods. Lastly, we discuss the results limitations of these methods.

54

4.2 Literature Review

4.2.1 Variable selection when regression assumptions are violated

While there has been some work in data with multiple regression assumptions violated

in the low dimensional setting, less research has been conducted in the high-dimensional

setting where variable selection is required. The adaptive Lasso (He et al., 2015) can es-

timate random effects in a mixed model for survival data. These are the same challenges

we discussed with Pike and Weissfeld (2013), however this is focused on variable selec-

tion. This is done in two stages. First, penalization is used to perform variable selection.

Second, the selected covariates are used without penalization to reduce the bias of the

fixed effect estimates. Koch, B.; Vock, V.; Wolfson (2017) developed Group Lasso and

Doubly Robust Estimation (GLiDeR), an expansion of the Group Lasso (Yuan and Lin,

2006). GLiDeR estimates the average causal effect while performing variable selection

for clustered data, which is the same thing Cefalu et al. (2016) did with model averaged

double robust (MA-DR) estimators. The estimators are robust to a misspecification in

either the propensity score or the model for the outcome. It is not meant to correct for

both issues simultaneously.

Ni et al. (2010) proposed a method for variable selection in semi-parametric mixed

models. They utilize a double penalty on the likelihood to penalize the regression

coefficients as well as the roughness of non-parametrics components of the model. This

is done in the iterative procedure where we obtain coefficient estimates using ridge

regression (Hoerl and Kennard, 1970), then estimate the variance of the random effects

and roughness of the nonparametric components using restricted maximum likelihood.

The method performs well as selecting the fixed effects, but doesn’t incorporate selecting

the random effects into the model. It is also limited to normal outcomes and cannot

accomodate other likelihood structures.

55

Each of these methods has its advantages. They perform well when addressing one

or two specific regressions assumption violations. However, none have the flexibility to

address violations of another type quickly. Particularly when the data violate several

key assumptions, it may be challenging to posit a model which simultaneously accounts

for all these violations. In such cases, it may be useful to combine multiple variable

selection procedures, each of which accounts for a different characteristic of the data

generating process. The hope is that an “omnibus” variable selection method based

on combining a number of more “targeted” methods would improve variable selection

performance.

This idea of aggregating results from multiple models or methods is not new, and

goes under many names in the literature, including model averaging (Hoeting et al.,

1999), ensemble learning (MacKay, 1995), stacking (Wolpert, 1992), and super learning

(Van Der Laan et al., 2007). A handful of papers have applied model averaging ideas to

the variable selection problem (e.g. (Viallefont et al., 2001), (Symonds and Moussalli,

2011)), but they generally focus on combining regression models that rely on the same

underlying assumptions. Others (Dı́az et al., 2015) have used super learning to compute

variable importance metrics on the basis of combining a variety of machine learning

models, but these approaches do not actually perform variable selection and cannot be

applied when the number of variables is large compared to the sample size.

4.2.2 Stacking

To combine models with the goal of minimizing the error rate, Wolpert (1992) proposed

the idea of stacking. It is similar to cross validation in that it chooses a model, however

it is not limited to choosing the best existing model. Stacking is the combining of

predictive models, mapping the covariates (X) to an outcome (Y). These models,

or learners, are built on a learning set. This concept is brought into the statistcal

56

setting through stacked regression (Breiman, 1996). The mean squared prediction error

(MSPE) of the combined predictors from the k learners (ŷki) can be minimized through

regression on the coefficients αk.

MSPE =
1

n

n∑
i=1

(
yi −

K∑
k=1

αkŷ
k
i

)2

(4.2)

By combining models built from a learning set, we can use a training set to combine

the models in a way that further minimizes the error rate from that of the best single

model, as in cross validation. This is done by taking the prediction from the learners

and using them as covariates to perform prediction on a test data set. Wolpert (1992)

mentions that if the training set model stated that you simply choose the predictors

most correlated with the output, this would be equivalent to choosing the best model

from the learning set, which would be exactly cross-validation. Rather, if the training

set model was some weighted average of the inputs, this would tell us to combine our

learners with the given weights. This is exactly what is done with stacked regression

described above.

Wolpert (1992) described a set of simulations with numerical data. Data were gen-

erated from polynomial or trigonometric functions. Learners were fit on a learning set.

The best of these learners was compared to a stacked model. The stacking approach

decreased the error by a factor of 2 in the trigonometric and third-order polynomial

case, and decreased error by a factor of 50 in the second-order polynomial case.

Since regression typically overfits the data, leave-one-out cross validation is suggested

to provide better generalization by Breiman (1996). When data sets are large, this

creates a computational burden; 10 fold cross validation is then suggested. However,

since the predicting models are correlated, this can still be a difficult problem. Since

the goal is to improve prediction, each αk from (4.2) is constrained to be non-negative.

Breiman also suggests using Ridge Regression (Hoerl and Kennard, 1970) to constrain

57∑
|αk| to account for the correlation. This then also leads to few learners to be included

in the combined predictor, reducing overfitting.

In simulations of Breiman’s method, he found that using stacked regression never

provides worse results and often produces models with less prediction error than the

“best” of the learners. However, Džeroski and Ženko (2004) claims that many stack-

ing approaches provide similar results to that of the best learner. Specific advances

in stacking have come in the forms of SCANN (Stacking Correspondence Analysis,

Nearest Neighbor) (Merz et al., 1999), meta-decision trees (Todorovski, 2003), stack-

ing with probability distributions and multi-response linear regression (Džeroski and

Ženko, 2004). Džeroski and Ženko (2004) found that in their particular simulations,

their methods performed better than other stacking methods. This may have been due

to types of simulations conducted. They acknowledged their method works better when

the learners considered were from different families rather than adjusted parameters

among the same learning algorithms.

4.2.3 Super Learner

A way to perform stacking utilizing a statistical rule is Super Learner (Van Der Laan

et al., 2007). Super Learner combines many different learners, or algorithms, into a

single model. This is done in exactly the same manner as stacked regression in equation

(4.2). There are times when we aren’t sure which of several model classes is appropriate

for a problem. Super Learner allows us to try many learners and combine them in an

efficient way in order to perform prediction.

We can use Super Learner to minimize the squared error loss function using cross-

validation. This is done by performing least squares regression a training set on the

58

predicted values from several models that have been fit from a learning set.

ŷi =
K∑
k=1

αkŷ
k
i (4.3)

Super Learner has the oracle property; asymptotically, for the best model k, αk will

converge to 1, while for other j 6= k, αj converges to 0. Super Learner will choose

a model that performs no worse than the correct model for the true data generating

mechanism.

In an R package, Super Learner has combined models produced by the learners

Least Angle Regression (Efron et al., 2004), Logic Regression (Ruczinski et al., 2003),

D/S/A (Sinisi and van der Laan, 2004), Regression Trees (Therneau et al., 1997), Ridge

Regression (Hoerl and Kennard, 1970), Random Forests (Liaw and Wiener, 2002), and

Adaptive Regression Splines (Friedman and Roosen, 1995).

By plugging in the predictions of our K models and our α̂k’s into our Super Learner

fit on a test set, we should be able to improve or match the prediction from the best

model that we fit. This is an easy way to use the concept of stacking to combine models

to perform prediction.

The goal of Super Learner is to determine the best approach to obtaining a prediction

model when the data generating mechanism is unknown. It has been applied to data

that is relatively clean, but when it is unclear which modeling approach is optimal. We

plan to leverage this idea of combining models determined through different approaches,

however, we wish to use it on models that differ in the form of how they correct for a

source of potential bias in the data.

59

4.3 Methods

To perform variable selection in the presence of multiple data issues, we utilize principles

from machine learning along with methods to deal with data issues in the low-dimension

setting. We incorporate the corrections into a boosting algorithm which generates a vari-

able selection path, i.e., a sequence of vectors of regression model coefficient estimates,

where many of the coefficients are zero. Further, we utilize stacking to combine these

estimates together to provide even more candidate models to choose from, possibly

improving the prediction accuracy of our model. Lastly, from the candidates, we use

cross validation to select the most accurate model and simultaneously perform variable

selection.

4.3.1 Boosting

Boosting is used to improve the prediction of an existing model (Schapire, 2003). We

can create an iterative procedure that builds on the model from the previous step from

the initial null model. This creates a path of solutions that we can choose from using

cross validation. The most simple example of boosting that we will build upon comes

from gradient descent (Friedman et al., 2000).

This method was generalized by Wolfson (2011) to accommodate a breach in the

standard regression assumptions such as correlated outcomes. Suppose our goal is to

perform variable selection in the regression model defined by

Ŷ = β0 +

J∑
j=1

X ′jβj (4.4)

We replace the gradient of the log likelihood with a set of estimating equations,

60

g(x,β), that behaves in a similar way. Brown et al. (2017) added a thresholding com-

ponent in ThrEEBoost (Thresholded Boosting) to consider a larger set of possible so-

lutions. The general form of this algorithm contains three parameters: T : Number of

iterations to perform, ε, the step-size to increase β̂i, and τ , the threshold that controls

how many coefficients are updated at each step.

Algorithm 7 ThrEEBoost

procedure ThrEEBoost
Set β(0) = 0

for t = 0, . . . , T do
Compute ∆ = g(X,β)

β=β(t−1)

Identify Jt = {j : |∆j | ≥ τ ·maxj |∆j |}
for all jt ∈ Jt do

Update β
(t)
jt

= β
(t−1)
jt

+ ε sign(∆jt)

To accomodate correlated outcomes, we utilize GEE where with link function h()

such that the mean of y, µi = h−1(Xiβ). We then use the following function in

ThrEEBoost:

g(X,β) =
n∑
i=1

∂µi
∂β

V−1
i (Yi − µi). (4.5)

For measurement error, we can utilize the corrected score functions from Nakamura

(1990) as was done in MEBoost (Brown et al., 2017). Here we use the following function

in the algorithm above and simultaneously estimate the variance of the outcome where

S(Y,X, β) is the naive score function assuming X is measured correctly, and ΣUU is

the variance of the additive measurement error term.

g(X,β) = S(Y,X, β)
′
+ nσ−2β

′
ΣUU (4.6)

In each case, the form of the iterative procedure can be altered to deal with one a

single violation of a regression assumption. We wish to be able to account for multiple

61

violations by combining these algorithms together.

4.3.2 Combining the methods

While there are stand-alone methods to address a single violation of our standard as-

sumptions, our options are limited when two or more are violated. We describe below

our proposed method in the setting where outcomes are correlated and covariates are

measured with error, though we emphasize that the framework could be applied to

account for more than two types of violations of standard assumptions. Since both

GEEBoost and MEBoost are iterative procedures with many steps, we can try to com-

bine the approach at each iteration to create a unique coefficient path, directed by the

multiple gk(X,β) functions. Another option is to combine the full coefficient paths, βk

created by each learner afterwards using a stacking approach, such as Super Learner.

At each iteration of the boosting procedure above, we incorporate a rule to update

coefficients based on the functions from the different boosting procedures denoted k the

algorithm, gk(X,β). Some of the possibilities are:

1. g∗(X,β) =
∑
wkgk(X,β)

2. g∗(X,β) =
∏

gk(X,β)

3. Updating βj only if thresholds are met in both estimating equations.

4. Cycle through g∗(X,β) = gk(X,β) so that a different gk(X,β) is used for the

next iteration.

As another option in this paper, we will consider the 4th possibility listed. This will

be referred to as AltBoost (Alternating Estimating Equation Boost). In a preliminary

set of simulations, we found that this method performed the best of the 4 approaches

listed above with varied weights.

62

4.3.3 SuperBoost

Another approach is to combine the paths produced by each boosting procedure used.

The boosting procedures can vary in the parameters used or the function g(X,β).

Utilizing the practice of stacking, we can bring these estimates together to improve the

prediction of our model. One statistical tool we can use to do this is Super Learner

(Van Der Laan et al., 2007). Since our goal is to select a point from a path so that

we can limit the number of variables included, we still wish to combine β of a similar

magnitude.

SuperBoost (Super Learner Estimating Equations Boost), utilizes Super Learner

(Van Der Laan et al., 2007) to combine models to improve prediction. While Super

Learner generally is used to combine different learning approaches (e.g. Least Angle

Regression (Efron et al., 2004) and Random Forests (Liaw and Wiener, 2002)), we can

use learners hat address different violations to the standard regression assumptions.

By combining these together, we may be able to pick up signals that violate certain

assumptions in each learner.

For example, if we have correlated outcomes yij and mismeasured covariates (X ′ij),

we can utilize corrections for each of these two assumption violations that correct for

each individually. Let BG and BM be the variable selection paths obtained by applying

GEEBoost and MEBoost respectively to our data. Further, for some magnitude of the

coefficients l = ||β||1, and the corresponding coefficients βG and βM we use Super

Learner to predict outcomes yij in our test set by combining the learners created by

these two approaches through estimated model weights, wlG and wlM for GEEBoost and

MEBoost, respectively. We can predict ŷij = wlGX
′
ijβ

l
G + wlMX

′
ijβ

l
M . This may allow

us to improve the prediction over each individual learner, βlG and βlM .

Further, each of these learners can be varied through the selection of parameters

needed for each algorithm. For example, we can vary the threshold τ used in each

63

algorithm to create even more candidate coefficients. We may have a unique path

βτG for each threshold used within GEEBoost. We can combine this larger number of

learners to improve our prediction further.

The SuperBoost algorithm incorporates multiple threshold values in multiple boost-

ing algorithms to create K unique learners, or selection paths. From these paths, we

perform Super Learner for a subset of l = ||β||1. For each value of l, we fit a regression

model using the predictions from each learner (ŷlij) as the predictors to obtain pseudo-

weights. The predictions are combined with the adjusted (non-negative and sum to 1)

weights. This creates the SuperBoost path of solutions which we can select from using

cross-validation.

Considering variable selection, at any point on our path, if one of the learners has

selected the variable and that learner has a non-zero weight, it would also be selected into

the model. This could rapidly deflate the specificity of the model when the number of

learners considered (K) becomes large. Therefore, another parameter ζ can be added to

control the specificity of the SuperBoost method. Since predictor p is selected whenever

β̂∗p 6= 0, we propose to set β̂∗p = 0 if |β̂∗p | < ζ. Selecting small value of ζ as a threshold

into the model will help us preserve the specificity by making it more difficult for a

variable to be included by chance.

The parameters for SuperBoost are:

• K = Number of learners to combine

• L = Maximum magnitude of β̂∗ to be considered

• ζ = Threshold of |β̂∗p | to included variable p into the model

64

Algorithm 8 SuperBoost

procedure SuperBoost
for k = 1, . . . ,K do

Perform a boosting algorithm to produce a path of coefficients, B̂k on a learn-
ing set (Yr, Xr)

for l = ||β̂||1 in (0, L): do

1. Let β̂
l

k ∈ B̂k with ||β̂lk||1 = l
2. Use a training set of data (Ys, Xs), use regression to obtain pseudo-weights

(αk) of each learner:

E(Ys) = α0 +
K∑
k=1

αkXsβ̂
l

k

.
3. Obtain the weights (wk) by scaling the pseudo-weights (α̂k) so that they

are positive and sum to 1:

wk = max(0, α̂k)/
K∑
k=1

max(0, α̂k).

4. Obtain l-th SuperBoost estimate:

β̂
l

SB =

K∑
k=1

wkβ̂
l

k

5. If |β̂lSB| < ζ, then set β̂
l

SB=0.

6. Obtain the mean squared error (MSE) of the solution β̂
l

SB from a test set
(Yt, Xt)

From new SuperBoost path BSB, Select l∗ such that β̂
l∗
SB that minimizes MSE

on the test set, (Yt, Xt).

65

4.4 Simulation

4.4.1 Set-up

We generated data under three different scenarios to assess the performance of Super-

Boost. In the first scenario, outcomes were correlated and covariates were measured

with error, and these two factors had a similar degree of influence on the variable se-

lection performance of the models we considered. In the second scenario, correlation

had a larger influence than measurement error, while in the third scenario measurement

error was more influential than correlation. We varied the number of clusters, n, the

variance of the outcome, σ2, the measurement error, δ, the pairwise correlation in out-

comes within a cluster, ρ, and the effect sizes βm and βg for covariates measured with

and without error, respectively. The values of these parameters for each scenario are

listed in table 4.1.

Scenario Description n σ2 δ ρ βm βg
1a Correlation and ME have similar influence 40 1 1.0 0.6 0.4 0.8
1b - less information 30 2 1.0 0.6 0.2 0.3

2a Correlation more influential 40 1 0.2 0.7 0.2 0.3
2b - less information 30 2 0.2 0.7 0.3 0.4

3a Measurement Error more influential 40 1 1.0 0.2 0.6 0.5
3b - less information 30 2 1.0 0.2 0.3 0.2

Table 4.1: List of parameter values for each scenario. n is the number of clusters, σ2

is the residual variance, δ is the standard deviation of the measurement error, ρ is the
pairwise correlation in outcomes within clusters, βm is the effect size of mismeasured
predictors, βg is the effect size of predictors measured without error. Scenario b in each
setting has fewer clusters and higher residual variance, giving us less information to
reach an accurate estimate.

Data were generated with 100 covariates coming from a multivariate normal distribu-

tion. In clusters of 10 covariates within each observation, there was pairwise correlation

of φ = 0.3. Of the 100 predictors, 16 had truly non-zero coefficients. Measurement

66

error occurred in 50 of the covariates with standard deviation δ. Outcomes were gen-

erated for n clusters of 6 observations from a multivariate normal distribution. Within

clusters, outcomes have a pairwise-correlation of ρ. The residual error was normally dis-

tributed with variance σ2. We conducted 500 simulations for each algorithm and each

scenario. We compared the existing methods of GEEBoost, MEBoost, CoCoLasso, and

Lasso, with our proposed methods of AltBoost and SuperBoost. Each of the boosting

methods were performed with threshold values of of τ = 0.4, 0.6, and 0.8.

We used six metrics to assess the performance of our methods. First, mean squared

error (MSE) was used to quantify the prediction error of the final selected model. Next,

the L1 distance from the true parameters, computed as ||β− β̂||1, was used to quantify

the bias. We also computed variable selection sensitivity (the portion of variables cor-

rectly included in the model) and specificity (the portion of variables correctly excluded

from the model). Next, the mean range of candidate ||β̂||1 values that are within 5%

of the minimum MSE for that simulation. This gives us an idea of the range of chosen

l = ||β̂||1 that will perform well. Lastly the standard deviation of the L1 magnitude

of the estimate across the simulations, SD(||β̂||1). This tells us how wide the range of

selected l = ||β̂||1 was, which indicates how important it is to accurately choose ||β̂||1.

4.4.2 Results

In scenario 1a, we found that two of our newly proposed methods each obtained the same

minimum value for MSE, SuperBoost and AltBoost with a threshold of 0.8. Utilizing

SuperBoost improved our MSE by 7.9% over the previous best methods of MEBoost

with a threshold of 0.8 and GEEBoost with a threshold of 0.6. SuperBoost also had a

similar or higher sensitivity (1.00) and specificity (0.84) then those two models. AltBoost

saw a larger gain in specificity (0.86). In the more difficult scenario 1b, SuperBoost

improved prediction by 2.6% over the best standalone learner, MEBoost with τ = 0.6.

67

The best method in terms of MSE was GEEBoost combined with SuperBoost. The

MSE was 3.0% better than MEBoost with τ = 0.6. When we compare these new

methods with the best existing method, we gained in specificity (both 0.88 vs. 0.73)

without sacrificing and sensitivity (0.93 for SuperBoost and MEBoost - 0.6, and 0.94

for GEEBoost - Super).

MSE ||β − β̂||1 Sens. Spec. Range SD(||β̂||1)

AltBoost - 0.4 1.59 4.14 1.00 0.69 1.25 0.51
AltBoost - 0.6 1.43 3.02 1.00 0.80 1.31 0.57
AltBoost - 0.8 1.40 2.66 1.00 0.86 1.22 0.55

MEBoost - 0.4 1.67 4.84 1.00 0.51 1.46 0.51
MEBoost - 0.6 1.54 3.67 1.00 0.65 2.10 0.72
MEBoost - 0.8 1.52 3.28 1.00 0.73 2.16 0.72
MEBoost - Super 1.54 3.12 0.97 0.90 1.57 0.43

GEEBoost - 0.4 1.80 5.05 0.98 0.65 1.71 0.51
GEEBoost - 0.6 1.52 3.37 0.98 0.81 1.80 0.47
GEEBoost - 0.8 1.54 2.97 0.97 0.88 1.55 0.46
GEEBoost - Super 1.47 2.95 1.00 0.83 1.79 0.54

Lasso 1.59 3.39 1.00 0.63 2.92 0.58
CoCoLasso 1.77 3.18 0.95 0.91 3.01 0.39

SuperBoost 1.40 2.88 1.00 0.84 1.54 0.51

Table 4.2: Performance metrics for scenario 1a.

In scenario 2a, where correlation was the more pronounced issue than measurement

error, SuperBoost performed slightly better than model using the optimal threshold

(0.6) from GEEBoost. MSE was 4.3% better and specificity was much better (0.93 vs

0.82) while sensitivity remained at 1. However, by combining the models of different

thresholds using the GEEBoost algorithm, utilizing SuperBoost allowed us to improve

MSE by 6.1% while specificity increased to 0.93 from 0.82. Scenario 2b provided simi-

lar results; MSE was decreased by 5.3% combining GEEBoost algorithms using Super

Learner, while increasing sensitivity (0.97 vs. 0.92) and specificity (0.92 vs 0.81).

In scenario 3a, where measurement error was the primary issue, we saw that using

the SuperBoost algorithm using only the MEBoost models as components, helped us

68

MSE ||β − β̂||1 Sens. Spec. Range SD(||β̂||1)

AltBoost - 0.4 2.35 3.09 0.97 0.60 1.18 0.33
AltBoost - 0.6 2.27 2.34 0.95 0.76 1.57 0.42
AltBoost - 0.8 2.33 2.49 0.91 0.84 1.59 0.49

MEBoost - 0.4 2.38 3.19 0.96 0.63 1.23 0.35
MEBoost - 0.6 2.35 2.67 0.93 0.73 1.68 0.48
MEBoost - 0.8 2.40 2.86 0.90 0.78 1.71 0.53
MEBoost - Super 2.45 2.67 0.86 0.88 1.39 0.41

GEEBoost - 0.4 2.40 3.11 0.93 0.71 1.25 0.32
GEEBoost - 0.6 2.38 2.67 0.85 0.83 1.70 0.50
GEEBoost - 0.8 2.48 2.81 0.79 0.89 1.71 0.50
GEEBoost - Super 2.28 2.04 0.94 0.88 1.10 0.32

Lasso 2.46 3.04 0.92 0.71 2.78 0.61
CoCoLasso 2.64 3.04 0.76 0.90 2.06 0.47

SuperBoost 2.29 2.11 0.93 0.88 1.07 0.32

Table 4.3: Performance metrics for scenario 1b.

improve MSE by 22.1%. The L1 distance from the true solution was reduced by 29.3%

and specificity was increased from 0.64 to 0.87. Scenario 3b also showed an decrease in

prediction error, but not as drastic (1.2%). Though the L1 distance from the true β

was decreased by 12.0%.

The weights and traceplots of the coefficients are shown for scenario 1a in Figure 4.1.

The first row shows the SuperBoost algorithm that combines 3 thresholds of MEBoost

and 3 thresholds of GEEBoost. In the second row, we show how the weights and

coefficients behave if we only consider the 3 MEBoost thresholds. In the last row,

we show how the weights and coefficients behave if we only consider the 3 GEEBoost

thresholds. As the magnitude of the coefficients grows, more weight is placed on the

algorithms that use a larger threshold. Early in the iterative process, many variables

are included into the model. However, as the coefficients get larger,we become more

strict about which values get updated. This is demonstrated for scenario 3a in Figure

4.1.

69

MSE ||β − β̂||1 Sens. Spec. Range SD(||β̂||1)

AltBoost - 0.4 1.18 2.41 1.00 0.62 1.35 0.38
AltBoost - 0.6 1.11 1.61 1.00 0.76 1.39 0.39
AltBoost - 0.8 1.10 1.59 1.00 0.85 1.42 0.40

MEBoost - 0.4 1.22 2.47 1.00 0.68 1.36 0.40
MEBoost - 0.6 1.16 1.76 1.00 0.79 1.52 0.40
MEBoost - 0.8 1.15 1.80 1.00 0.85 1.50 0.43
MEBoost - Super 1.14 1.60 1.00 0.92 1.13 0.31

GEEBoost - 0.4 1.20 2.36 1.00 0.71 1.36 0.40
GEEBoost - 0.6 1.15 1.72 1.00 0.82 1.48 0.39
GEEBoost - 0.8 1.16 1.75 1.00 0.87 1.45 0.40
SuperBoost 1.08 1.21 1.00 0.93 0.85 0.23

Lasso 1.20 1.90 1.00 0.76 2.23 0.39
CoCoLasso 1.20 1.82 1.00 0.84 5.20 0.33

SuperBoost 1.10 1.22 1.00 0.93 0.83 0.24

Table 4.4: Performance metrics for scenario 2a.

The range and standard deviation of the L1 magnitude of the selected point estimate

were not smaller for most cases using SuperBoost vs. a standalone learning procedure.

This is contrary to what we expected. Combining the methods together helped us

minimize the MSE further, however, the minimum was reached rapidly and did not

provide us a wider range for a value of ||β̂||1 that would allow us to perform prediction as

well. For scenario 3a, this is shown in Figure 4.2 for MEBoost with specified thresholds

vs MEBoost where we combined paths using SuperBoost. Since the weights change as

the path progresses with ||β̂||1, we expected the MSE to stay at a low point for longer,

however this was not the case. Since the MSE dropped to a lower point from the same

starting point, the curve had to be steeper to reach the minimum.

70

MSE ||β − β̂||1 Sens. Spec. Range SD(||β̂||1)

AltBoost - 0.4 2.22 2.53 0.99 0.59 1.30 0.30
AltBoost - 0.6 2.15 1.93 0.98 0.76 1.50 0.40
AltBoost - 0.8 2.18 2.01 0.96 0.84 1.59 0.44

MEBoost - 0.4 2.29 2.62 0.97 0.71 1.37 0.39
MEBoost - 0.6 2.25 2.25 0.94 0.80 1.69 0.47
MEBoost - 0.8 2.29 2.44 0.91 0.84 1.67 0.49
MEBoost - Super 2.31 2.22 0.90 0.89 1.33 0.37

GEEBoost - 0.4 2.30 2.62 0.96 0.72 1.38 0.39
GEEBoost - 0.6 2.26 2.21 0.92 0.81 1.67 0.46
GEEBoost - 0.8 2.35 2.50 0.88 0.86 1.72 0.48
GEEBoost - Super 2.14 1.47 0.97 0.92 1.01 0.28

Lasso 2.37 2.69 0.92 0.79 2.65 0.60
CoCoLasso 2.40 2.70 0.87 0.85 3.59 0.55

SuperBoost 2.17 1.57 0.97 0.92 0.98 0.28

Table 4.5: Performance metrics for scenario 2b.

4.5 Discussion

We introduced two methods, AltBoost and SuperBoost, to perform variable selection

in the presence of multiple data issues. These are just a couple possible ways to com-

bine methods to address this unanswered problem. SuperBoost is a general purpose

method that can combine the results from multiple boosting techniques. The existing

ThrEEBoost framework provides a simple approach to implementing a boosting tech-

nique which accounts for one particular data challenge, and SuperBoost gives the recipe

for combining them. SuperBoost can also utilize any learning procedure that produces

a path of coefficients.

As in the general idea of stacking, we can improve our prediction by combining

estimators rather than choosing the best with cross validation. In ThrEEBoost when

we choose the best single threshold, we are able to predict well sometimes, but using

SuperBoost allows us to improve prediction by combining the predictions from the paths

produced by different thresholds. SuperBoost is appealing because it is an “all-in-one”

71

MSE ||β − β̂||1 Sens. Spec. Range SD(||β̂||1)

AltBoost - 0.4 1.93 4.88 1.00 0.59 1.57 0.61
AltBoost - 0.6 1.69 3.68 1.00 0.76 1.25 0.67
AltBoost - 0.8 1.74 3.51 0.99 0.86 1.12 0.64

MEBoost - 0.4 1.99 5.11 1.00 0.52 1.96 0.67
MEBoost - 0.6 1.95 4.40 1.00 0.64 2.25 0.75
MEBoost - 0.8 1.98 4.44 1.00 0.69 2.21 0.77
MEBoost - Super 1.52 3.11 1.00 0.87 1.68 0.50

GEEBoost - 0.4 1.53 3.68 1.00 0.73 1.77 0.56
GEEBoost - 0.6 1.58 3.18 1.00 0.83 1.76 0.53
GEEBoost - 0.8 1.88 3.72 0.98 0.88 1.64 0.55
GEEBoost - Super 1.97 4.19 1.00 0.78 2.06 0.62

Lasso 2.13 4.66 1.00 0.61 3.45 0.71
CoCoLasso 2.09 3.84 0.98 0.91 2.25 0.47

SuperBoost 1.62 3.48 1.00 0.83 1.54 0.60

Table 4.6: Performance metrics for scenario 3a.

approach, not requiring cross-validation at the end to choose a threshold.

Through a simulation study, we saw that using SuperBoost performed as well as

the standalone methods to address one issue, and performed better when the two issues

we explored (correlation and measurement error) had similar effects on the difficulty

of the estimation. In the scenarios where measurement error and correlation affected

prediction in a similar magnitudes, SuperBoost and AltBoost performed better then the

standalone methods in terms of MSE. Using these methods improved prediction error

by 7.9% each in scenario 1a, while SuperBoost and AltBoost improved MSE by 2.6%

and 4.3% over existing methods, respectively.

In the other two scenarios, SuperBoost did nearly as well as the method that cor-

rected for the issue that had a larger impact on the misspecification of the standard

model. We also found that using SuperBoost only considering the correction for a sin-

gle data challenge allowed us to improve prediction by combining the learners rather

than selecting the best with cross-validation. For the second set of scenarios, where

correlation was more pronounced, 2a and 2b, we improved our prediction error by 4.3%

72

MSE ||β − β̂||1 Sens. Spec. Range SD(||β̂||1)

AltBoost - 0.4 2.48 3.26 0.97 0.59 1.29 0.37
AltBoost - 0.6 2.44 3.01 0.93 0.72 1.60 0.44
AltBoost - 0.8 2.53 3.08 0.85 0.83 1.70 0.53

MEBoost - 0.4 2.50 3.29 0.95 0.63 1.47 0.42
MEBoost - 0.6 2.50 3.09 0.92 0.71 1.74 0.52
MEBoost - 0.8 2.52 3.20 0.88 0.77 1.80 0.59
MEBoost - Super 2.47 2.72 0.87 0.88 1.41 0.46

GEEBoost - 0.4 2.42 2.88 0.94 0.75 1.42 0.42
GEEBoost - 0.6 2.46 2.79 0.85 0.84 1.77 0.49
GEEBoost - 0.8 2.64 3.13 0.75 0.90 1.79 0.51
GEEBoost - Super 2.54 3.22 1.00 0.82 2.21 0.62

Lasso 2.62 3.50 0.89 0.69 2.95 0.69
CoCoLasso 2.76 3.37 0.72 0.91 2.22 0.54

SuperBoost 2.49 3.25 1.00 0.82 1.97 0.57

Table 4.7: Performance metrics for scenario 3b.

and 5.3%. When measurement error was the more difficult problem, we reduced predic-

tion error by 22.1% and 1.2% by combining the paths created by different thresholds of

MEBoost.

We also noticed with the SuperBoost method that when ‖β̂‖1 was small, more weight

is placed on the algorithms with lower thresholds, which includes more variables. Later

in the path, high thresholds have higher weights to control specificity. Contrary to our

expectation, we did not see a gain in the width of the ||β̂∗||1 that allowed us to choose

a point on the path that was “close” to minimizing the MSE on the test set. This

was shown through the standard deviation of the selected point and the range of points

within 5% of the minimum MSE value.

This method was shown in the case of correcting data with correlated outcomes and

additive measurement error. Utilizing other EEBoost algorithms, this method could be

used in other cases of assumption violations included multiplicative measurement error,

missing data, and censored data.

Further work could be performed on a wider variety of assumption violations and

73

simulation scenarios. This method is a first step in addressing issues that arise when

accounting for multiple sources of bias in the estimation of a model. We proposed two

methods and showed that they worked well in a simulation, however we hope that we

can show that the method generalizes to a wider variety of data and has applications

in the real world.

74

2 4 6 8 10

0.
05

0.
15

0.
25

β̂1

S
up

er
B

oo
st

 W
ei

gh
t

2 4 6 8 10

0.
0

0.
2

0.
4

β̂1

S
up

er
B

oo
st

 W
ei

gh
t

0 2 4 6 8 10

0.
1

0.
3

0.
5

β̂1

M
E

B
oo

st
 W

ei
gh

t

0 2 4 6 8 10

0.
0

0.
2

0.
4

β̂1

M
E

B
oo

st
 W

ei
gh

t

0 2 4 6 8 10

0.
1

0.
3

0.
5

β̂1

G
E

E
B

oo
st

 W
ei

gh
t

0 2 4 6 8 10

0.
0

0.
2

0.
4

β̂1

G
E

E
B

oo
st

 W
ei

gh
t

Coefficients

ME 0.6 ME 0 0 0.5

Weights

MEBoost − 0.4
GEEBoost − 0.4

MEBoost − 0.6
GEEBoost − 0.6

MEBoost − 0.8
GEEBoost − 0.8

Figure 4.1: Model weights and traceplots for mean paths of Super Learner models in
scenario 1b.

75

2 4 6 8 10

1
2

3
4

5

||β||1

M
S

E
 fr

om
 T

ru
e

C
ov

ar
ia

te
s

2 4 6 8 10
2

3
4

5
6

||β||1

L 1
 D

is
ta

nc
e

fr
om

 T
ru

e
β

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

||β||1

S
en

si
tiv

ity

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

||β||1

S
pe

ci
fic

ity

Method

MEBoost − 0.4 MEBoost − 0.6 MEBoost − 0.8 MEBoost − Super

Figure 4.2: Performance metrics over the paths created by MEBoost in scenario 3a.

Chapter 5

Conclusion and Discussion

The method ThrEEBoost, allows us to update multiple coefficients at each iteration

through a threshold parameter. By allowing more coefficients to be updated at each iter-

ation, ThrEEBoost can explore a greater diversity of variable selection “paths” through

the model space. Through a simulation, we showed that the method performed as well

as EEBoost for very sparse models, and improved prediction error in a less sparse sce-

nario than any of those on the path defined by EEBoost. We also showed in Box Lunch

study that we were able to improve the prediction of BMI using ThrEEBoost rather

than EEBoost or the LASSO.

To perform variable selection and prediction when covariates are measured with

error, we used MEBoost. In our simulation study, we showed that for many sources

of additive measurement error, using MEBoost can improve prediction error over the

CoCoLasso or LASSO. However, the CoCoLasso had higher specificity than MEBoost

in all cases. When we applied our method to the Box Lunch Study, we found that

MEBoost was more accurate at predicting the count data, number of times a subject

binged in the last month.

76

77

To analyze a single data set that encounters more than one data challenge, we pro-

posed SuperBoost. This method can combines models together to improve the predic-

tion over the best one. In creating the SuperBoost path for correlated outcomes whose

covariates are measured with error, we found that our method performed no worse than

the best single learning model that accounted for only one of the two issues. In some

scenarios, using SuperBoost improved prediction. This method is meant to address a

problem in an area where not much research has been conducted and provides a first

step into thinking about how to address very “messy” data.

References

Breiman, L. (1996). Stacked Regressions. Machine Learning 24, 49–64.

Brown, B., Miller, C. J., and Wolfson, J. (2017). ThrEEBoost: Thresholded Boosting

for Variable Selection and Prediction via Estimating Equations. Journal of Compu-

tational and Graphical Statistics pages 1–10.

Brown, B., Weaver, T., and Wolfson, J. (2017). MEBoost: Variable Selection in the

Presence of Measurement Error. ArXiV.org .

Bunea, F., Tsybakov, A., and Wegkamp, M. (2007). Sparsity oracle inequalities for the

Lasso. Electronic Journal of Statistics 1, 169–194.

Buonaccorsi, J. (2010). Measurement Error: Models, Methods and Applications. CRC

Press, Boca Raton.

Buonaccorsi, J., Demidenko, E., and Tosteson, T. (2000). Estimation in Longitudinal

Random Effects Models with Measurement Error. Statistica Sinica 10, 885–903.

Buonaccorsi, J. P. (1995). Prediction in the Presence of Measurement Error: General

Discussion and an Example Prediction in the Presence of Measurement Error: General

Discussion and an Example Predicting Defoliation. Source: Biometrics 51, 1562–

1569.

78

79

Cefalu, M., Dominici, F., Arvold, N. D., and Parmigiani, G. (2016). Model Averaged

Double Robust Estimation. Biometrics .

Datta, A. and Zou, H. (2017). Cocolasso for high-dimensional error-in-variables regres-

sion. Annals of Statistics .

Dı́az, I., Hubbard, A., Decker, A., and Cohen, M. (2015). Variable importance and

prediction methods for longitudinal problems with missing variables. PloS one 10,

e0120031.

Džeroski, S. and Ženko, B. (2004). Is Combining Classifiers with Stacking Better than

Selecting the Best One? Machine Learning 54, 255–273.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least Angle Regression.

The Annals of Statistics 32, 407–451.

Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and

its Oracle Properties. Journal of the American Statistical Association 96, 1348–1360.

Fan, J. and Li, R. (2002). Variable Selection for Cox’s Proportional Hazards Model and

Frailty Model. The Annals of Statistics 30, 74–99.

Fraser, G. E. and Stram, D. O. (2012). Regression calibration when foods (measured

with error) are the variables of interest: markedly non-Gaussian data with many

zeroes. American journal of epidemiology 175, 325–31.

French, S. A., Mitchell, N. R., Wolfson, J., Harnack, L. J., Jeffery, R. W., Gerlach,

A. F., Blundell, J. E., and Pentel, P. R. (2014). Portion size effects on weight gain in

a free living setting. Obesity (Silver Spring, Md.) .

Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line

80

Learning and an Application to Boosting,. Journal of Computer and System Sciences

55, 119–139.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive Logistic Regression: A

Statistical View of Boosting. The Annals of Statistics 28, 337–374.

Friedman, J. H. (2004). Gradient Directed Regularization. Solutions 2004, 1–30.

Friedman, J. H. and Roosen, C. B. (1995). An introduction to multivariate adaptive

regression splines. Statistical Methods in Medical Research 4, 197–217.

Fuller, W. A. (1987). Measurement Error Models. Wiley Series in Probability and

Statistics. John Wiley & Sons, Inc., Hoboken, NJ, USA.

He, Z., Tu, W., Wang, S., Fu, H., and Yu, Z. (2015). Simultaneous variable selection

for joint models of longitudinal and survival outcomes. Biometrics 71, 178–87.

Hocking, R. (1976). The analysis and selection of variables in linear regression. Bio-

metrics 32, 1–49.

Hoerl, A. A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for

nonorthogonal problems. Technometrics 12, 55–67.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian Model

Averaging: A Tutorial. Statistical Science 14, 382–401.

Huang, J., Sun, T., Ying, Z., Yu, Y., and Zhang, C. H. (2013). Oracle inequalities for

the lasso in the cox model. Annals of Statistics 41, 1142–1165.

Janes, H., Frahm, N., DeCamp, A., Rolland, M., Gabriel, E., Wolfson, J., Hertz, T.,

Kallas, E., Goepfert, P., Friedrich, D. P., Corey, L., Mullins, J. I., McElrath, M. J.,

81

and Gilbert, P. (2012). MRKAd5 HIV-1 Gag/Pol/Nef vaccine-induced T-cell re-

sponses inadequately predict distance of breakthrough HIV-1 sequences to the vaccine

or viral load. PloS one 7, e43396.

Johnson, B. A., Lin, D. Y., and Zeng, D. (2008). Penalized Estimating Functions and

Variable Selection in Semiparametric Regression Models. Journal of the American

Statistical Association 103, 672–680.

Kipnis, V., Subar, A. F., Midthune, D., Freedman, L. S., Ballard-Barbash, R., Troiano,

R. P., Bingham, S., Schoeller, D. A., Schatzkin, A., and Carroll, R. J. (2003). Struc-

ture of dietary measurement error: results of the OPEN biomarker study. American

journal of epidemiology 158, 14–21; discussion 22–6.

Koch, B.; Vock, V.; Wolfson, J. (2017). Covariate selection with group lasso and doubly

robust estimation of causal effects. Biometrics .

Li, L., Shao, J., and Palta, M. (2005). A Longitudinal Measurement Error Model with

a Semicontinuous Covariate. Biometrics 61, 824–830.

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear

models. Biometrika 73, 13–22.

Liaw, A. and Wiener, M. (2002). Classification and Regression by randomForest2,

18–22.

Loh, P.-L. and Wainwright, M. J. (2012). High-dimensional regression with noisy and

missing data: Provable guarantees with nonconvexity. The Annals of Statistics 40,

1637–1664.

Ma, Y. and Li, R. (2010). Variable selection in measurement error models. Bernoulli

16, 274–300.

82

MacKay, D. J. C. (1995). Developments in Probabilistic Modelling with Neural Net-

works Ensemble Learning. In Neural Networks: Artificial Intelligence and Industrial

Applications, pages 191–198. Springer London, London.

Merz, C. J., Stolfo, S., Chan, P., and Wolpert, D. (1999). Using Correspondence Analysis

to Combine Classifiers. Machine Learning 36, 33–58.

Nakamura, T. (1990). Corrected score function for errors-in-variables models: Method-

ology and application to generalized linear models. Biometrika 77, 127–137.

Ni, X., Zhang, D., and Zhang, H. H. (2010). Variable Selection for Semiparametric

Mixed Models in Longitudinal Studies. Biometrics 66, 79–88.

Pan, W. (2001). Akaike’s Information Criterion in Generalized Estimating Equations.

Biometrics 57, 120–125.

Park, M. Y. and Hastie, T. (2007). L1-regularization path algorithm for generalized

linear models. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 69, 659–677.

Park, M. Y., Hastie, T., Young, M., and Hastie, P. T. (2006). L1-regularization path

algorithm for generalized linear models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 69, 659–677.

Pike, F. and Weissfeld, L. (2013). Joint modeling of censored longitudinal and event

time data. Journal of Applied Statistics 40, 17–27.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rosner, B., Spiegelman, D., and Willett, W. C. (1992). Correction of logistic regression

83

relative risk estimates and confidence intervals for random within-person measurement

error. American journal of epidemiology 136, 1400–13.

Rosset, S. and Zhu, J. (2007). Piecewise linear regularized solution paths. The Annals

of Statistics 35, 1012–1030.

Rosset, S., Zhu, J., and Hastie, T. (2004). Boosting as a Regularized Path to a Maximum

Margin Classifier. Journal of Machine Learning Research 5, 941–973.

Ruczinski, I., Kooperberg, C., and Leblanc, M. (2003). Logic Regression. Journal of

Computational and Graphical Statistics .

Schapire, R. E. (2003). The Boosting Approach to Machine Learning: An Overview.

pages 149–171. Springer New York.

Schelldorfer, J., Meier, L., and Bühlmann, P. (2014). Glmmlasso: An algorithm for

high-dimensional generalized linear mixed models using l1-penalization. Journal of

Computational and Graphical Statistics 23, 460–477.

Sinisi, S. E. and van der Laan, M. J. (2004). Deletion/Substitution/Addition Algorithm

in Learning with Applications in Genomics. Statistical Applications in Genetics and

Molecular Biology 3, 1–38.

Small, C. G. and Wang, J. (2003). Numerical Methods for Nonlinear Estimating Equa-

tions. Clarendon Press - Oxford.

Sørensen, Ø., Frigessi, A., and Thoresen, M. (2012). Measurement Error in Lasso:

Impact and Correction. arXiv.org .

Spiegelman, D., McDermott, A., and Rosner, B. (1997). Regression calibration method

for correcting measurement-error bias in nutritional epidemiology. The American

journal of clinical nutrition 65, 1179S–1186S.

84

Stefanski, L. A. and Carroll, R. J. (1985). Covariate Measurement Error in Logistic

Regression. The Annals of Statistics 13, 1335–1351.

Symonds, M. R. E. and Moussalli, A. (2011). A brief guide to model selection, multi-

model inference and model averaging in behavioural ecology using Akaike’s informa-

tion criterion. Behavioral Ecology and Sociobiology .

Therneau, T. M., Atkinson, E. J., and Foundation, M. (1997). An Introduction to

Recursive Partitioning Using the RPART Routines.

Tibshirani, R. (1994). Regression Shrinkage and Selection Via the Lasso. Journal of

the Royal Statistical Society, Series B 58, 267–288.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society Series B 58, 267–288.

Todorovski, L.; Deroski, S. (2003). Combining Classifiers with Meta Decision Trees.

Machine Learning 50, 223–249.

Ueki, M. (2009). A note on automatic variable selection using smooth-threshold esti-

mating equations. Biometrika 96, 1005–1011.

Van De Geer, S. A. (2008). High-dimensional generalized linear models and the Lasso.

Annals of Statistics 36, 614–645.

Van Der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super Learner. U.C.

Berkeley Division of Biostatistics Working Paper Series. Working Paper 222 .

Viallefont, V., Raftery, A. E., and Richardson, S. (2001). Variable selection and Bayesian

model averaging in case-control studies. Statistics in Medicine 20, 3215–3230.

Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference.

Springer, New York.

85

Wolfson, J. (2011). EEBoost: A General Method for Prediction and Variable Selection

Based on Estimating Equations. Journal of the American Statistical Association 106,

296–305.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5, 241–259.

Yang, X., Belin, T. R., and Boscardin, W. J. (2005). Imputation and Variable Selection

in Linear Regression Models with Missing Covariates. Biometrics 61, 498–506.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped

variables. J. R. Statist. Soc. B 68, 49–67.

Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. Journal of the American

Statistical Association 101, 1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

J. R. Statist. Soc. B 67, 301–320.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	ThrEEBoost
	Introduction
	Boosting, EEBoost, and ThrEEBoost
	EEBoost
	Diversifying variable selection paths
	ThrEEBoost: Thresholded EEBoost
	Selecting the best model

	Simulation Study
	Sparse regression model with correlated outcomes
	Less sparse regression model with correlated outcomes

	Data application - Box Lunch Study
	Discussion
	Supplementary Materials

	MEBoost
	Introduction
	Background
	Regression in the Presence of Covariate Measurement Error
	Variable selection in the Presence of Measurement Error
	Lasso in the Presence of Measurement Error
	The Convex Conditioned Lasso (CoCoLasso)

	MEBoost: Measurement Error Boosting
	Corrected Score Function
	The MEBoost Algorithm

	Simulation Study
	Simulation Set-up
	Simulation Results

	Data Application
	Discussion
	Tables and Figures

	SuperBoost
	Introduction
	Literature Review
	Variable selection when regression assumptions are violated
	Stacking
	Super Learner

	Methods
	Boosting
	Combining the methods
	SuperBoost

	Simulation
	Set-up
	Results

	Discussion

	Conclusion and Discussion
	References

