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Abstract

Precise and reliable inferences are among one of the main tenets of the statistical practice.

The ability to make such inferences in modeling can only be made when collected data

satisfies the assumptions of the model chosen for inference. The topics covered in this dis-

sertation are varied, but precise and reliable inference for multiple variables under realistic

modeling assumptions is a unifying theme. When data come from a discrete exponential

family, an inferential framework is developed for when the maximum likelihood estimator

does not exist in the usual sense. Envelope methodology is incorporated with aster mod-

els so that expected Darwinian fitnesses can be estimated precisely. A residual bootstrap

routine for a weighted envelope estimator which accounts for model selection volatility is

developed. A residual bootstrap routine is developed in the context of the multivariate lin-

ear regression model. These routines show that the variability of the respective estimators

is estimated consistently by bootstrapping. Engineering dimension analysis is extended to

the multivariate design of experiments context. Outside of the main theme, a central limit

theorem under additive deformations is provided in the last chapter.
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Chapter 1

Introduction

Statistical inference is the process of drawing conclusions about a population on the basis of

measurements or observations made on a sample of units from the population (Everitt and

Skrondal, 2010). The primary focus of this dissertation is the study of statistical inference

when multiple variables are of interest. In particular, we focus on estimation of an unknown

parameter vector of a data generating model and estimation of the estimator’s variability.

The topics studied in this dissertation are varied but this is a main unifying theme. It

is of specific interest to place realistic assumptions on the data generating model so that

statistical inferences are reliable when made by practitioners in applications.

Outside of the common theme of multivariate statistical inference under realistic as-

sumptions of the data generating model, the topics studied in this dissertation have little

in common. The work in Chapters 2 through 4 put inferential interest in the canonical

and mean-value parameter vectors of an exponential family. In Chapter 2, the exponential

family is required to be discrete. In Chapters 3 and 4, the exponential family can be a

mixture of discrete and continuous parts. The theory in Chapter 2 provides an inferential

framework when observed data from a discrete exponential family is on the boundary of the

support of the exponential family. Our theorems allow for practitioners to make relatively

fast statistical inferences in this setting. Chapter 3 provides the backdrop of aster models,

their usefulness in life history analysis, and contains a thorough real data example of them.

The methods in Chapter 4 allow practitioners of life history analyses to estimate parameters

of interest consistently and with less variability than existing methods can.

1



Chapter 1. Introduction 2

In Chapters 4 and 5, inferential interest is placed on consistent estimation and variance

reduction through envelope methodology. In both chapters, model selection variability and

post-selection inference are taken into account. The focus in these chapters is not to develop

a framework for consistent model selection. Rather, models are averaged where the weight

corresponding to a particular model reflects our belief that that particular model is the data

generating model.

Bootstrapping techniques for inference in multivariate models are studied in Chapters 4

through 6. In Chapter 4, Efron (2014)’s parametric double bootstrap was used for inferences.

In Chapter 5, a residual bootstrap of our construction was used for inferences. In Chapter

6, we extend the work of Freedman (1981) to show that the variability of the ordinary least

squares regression coefficient matrix in the multivariate linear regression model is estimated

consistently by the same residual bootstrap procedure as Freedman (1981).

In Chapter 7, we extend the work of Albrecht, Nachtsheim, Albrecht, and Cook (2013) to

the multivariate design of experiments context. This provides a framework for practitioners

to design efficient experiments when inference is desired for multiple responses that are

measured in units that are otherwise not comparable. This work provides needed design

of experiments methodology for a class of problems where appropriate and efficient designs

were previously not well understood.

The work in Chapter 8 does not fit the multivariate theme or the same statistical

inference theme as the work in the previous six chapters. However, it is work that I found

interesting and completed during my tenure at the University of Minnesota. In this chapter,

central limit theorems are developed when random variables are combined via a general

binary operator instead of addition. Such central limit theorems are appropriate in physical

applications.

All of the proofs in this dissertation are original to the author of this dissertation, except

for the proof of Theorem 8. Theoretical derivations not made by this author are referenced.



Chapter 2

Maximum Likelihood Estimation
in Exponential Families

2.1 Introduction

We develop an inferential framework for discrete exponential family problems when observed

data lies on the boundary of the support of the exponential family. In such settings, it may

be the case that the maximum likelihood estimator (MLE) need not exist in the traditional

sense but may exist in a completion of the exponential family. Completions for families

with finite and countable support were considered by Barndorff-Nielsen (1978, 154-156)

and Brown (1986, 191-201) respectively. Csiszár and Matúš (2005) generalized the notion

of completion of exponential families and provided weak convergence results within their

construction. Geyer (2009) developed an inferential framework for when MLEs exist in the

completion of the exponential family. Geyer (2009) assumed the conditions mentioned in

Brown (1986) and referred to the completion of the exponential family as the Barndorff-

Nielsen completion of the exponential family. We will make the same reference. When

it is the case that the MLE exists in the Barndorff-Nielsen completion of the exponential

family, the traditional theory of MLEs and computational methods will lead their users

astray (Geyer, 2009). Further complicating the issue is the fact that statistical software

provides users with no reliable detection methods and solutions when the MLE exists in

the Barndorff-Nielsen completion.

3
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Geyer (1990, 2009) provided a theoretical solution to this problem. Geyer (1990, Chap-

ter 2) gave an algorithm that uses linear programming to calculate the MLE in a closed

convex exponential family by recursively calculating limiting conditional models (LCMs)

determined by directions of recession calculated by linear programming. A direction of

recession is a direction that increases the likelihood of an exponential family as one goes

further in that direction. An LCM is a model that is conditional on the subset of domain

that is orthogonal to the direction of recession. Geyer (2009) gives an algorithm that uses

linear programming to calculate the MLE in full regular exponential families satisfying a

number of assumptions (Geyer, 2009, Section 3.7), by non-recursively calculating one LCM

determined by a generic direction of recession calculated by linear programming. The al-

gorithm in Geyer (1990, Chapter 2) is more general; the algorithm in Geyer (2009) is more

efficient for the special cases to which it applies. Neither is very fast, and neither scales to

very large problems. According to the documentation for the cddlib computational geom-

etry library, to which the R package rcdd provides an R interface, it can handle problems

having number of variables in the low hundreds and number of constraints in the thou-

sands. Put in the context of exponential family problems discussed by Geyer (2009) this

corresponds to generalized linear models with a few hundred regression coefficients and less

than ten thousand cases. But for problems even that large, the computational geometry

calculations will be very slow. Computational geometry calculations using rcdd do have

the virtue that they are exact, using infinite-precision rational arithmetic. They find exact

directions of recession.

A much faster alternative is to just let maximum likelihood estimation find directions of

recession. If we have a sequence θn that maximizes the likelihood, we will have convergence

to the unique MLE distribution, provided it exists in the Barndorff-Nielsen completion.

We justify this approach to maximum likelihood estimation by showing that cumulant

generating functions (CGFs) evaluated at such a sequence of iterates converges to the CGF

of the MLE distribution.

It is then shown that moments of all orders converge along the maximizing likelihood

sequence θn. Inference about the canonical parameter vector of an exponential family
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can therefore be made when the MLE does not exist in the traditional sense. The CGF

convergence that we develop is reliant on a measure-theoretic formulation of exponential

families and on properties of sequences of affine functions. Both topics are thoroughly

discussed before our convergence results are stated and examples are given.

Theorem 5 of Geyer (2009) in Section 2.4.5 and the following discussion state how taking

limits in the generic direction of recession maximizes the likelihood. The LCM resulting

from taking limits supports values of the canonical statistic that are orthogonal to the

generic direction of recession. Therefore the direction of recession is a null eigenvector of

the Fisher Information matrix of the LCM. Convergence of moments of all orders along

maximizing likelihood sequences implies that we can estimate Fisher Information in the

LCM without using directions of recession.

2.2 Motivating Example

Consider the case of perfect separation in the logistic regression model as an example of

a discrete exponential family with data on the boundary of its support. In this example,

suppose that we have a univariate response variable y and a single predictor x and suppose

that xj = 10j and yj = I{x>45}(xj) for j = 1, ..., 8. Let β ∈ R be the unknown regression

coefficient. The logistic regression model for this data has log likelihood given by

l(β) =
8∑

j=1

yj log

(
eβxj

1 + eβxj

)
+ (1− yj) log

(
1

1 + eβxj

)

=

8∑

j=1

yj

{
log

(
eβxj

1 + eβxj

)
− log

(
1

1 + eβxj

)}
+

8∑

j=1

log

(
1

1 + eβxj

)

= 〈Y,Mβ〉 − c(β)

= 〈MTY, β〉 − c(β)

(2.1)

where Y is the vector of observed responses, M = (10, ..., 80)T is the model matrix, and

c(β) = −∑8
j=1 log

(
1

1+eβxj

)
is the cumulant function of the exponential family. In the final

parameterization of the model (2.1), we say that MTY is the canonical statistic and β is
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Figure 2.1: All possible values of the canonical statistic MTY for the logistic regression
example in the Motivating Example section. The solid dot is the observed value of MTY .

the canonical parameter of the exponential family. Because of perfect separation of the

observed data, the MLE of β does not exist in the traditional sense. Consult Figure 2.1

to see that the canonical statistic exists on the boundary of its support in this example.

Our theory provides an inferential context in this specific “perfect separation” in logistic

regression setting as well as a more general setting where the MLE does not exist in the

traditional sense.

2.3 Laplace transforms and standard exponential families

We motivate exponential families through their measure-theoretical formulation starting

with the log Laplace transform of the generating measure for the family. In this context,

the log Laplace transform is called the cumulant function of the exponential family. The

reason for this level of generality is that the CGF convergence we develop requires that the

log density of the exponential family be an affine function of the data.
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Let λ be a nonzero positive Borel measure on a finite-dimensional vector space E (pos-

itive means λ(B) ≥ 0 for all Borel sets B and nonzero means λ(B) 6= 0 for some Borel set

B). The log Laplace transform of λ is the function c : E∗ → R defined by

c(θ) = log

∫
e〈x,θ〉 λ(dx), θ ∈ E∗ (2.2)

(Geyer, 1990, Section 2.1), where E∗ is the dual space of E (Geyer, 1990, Appendix A.1),

〈 · , · 〉 is the canonical bilinear form placing E and E∗ in duality (same appendix), and R is

the extended real number system (Geyer, 1990, Appendix A.6), which adds the values −∞
and +∞ to the real numbers.

If one prefers, one can take E = E∗ = R
p for some p, and define

〈x, θ〉 =
p∑

i=1

xiθi, x ∈ R
p and θ ∈ R

p,

(and Geyer, 2009, does this), but here, like everywhere else linear algebra is used, the

coordinate-free view of vector spaces offers more generality, is cleaner, and is more elegant.

Also, as we are about to see, if E is the sample space of a standard exponential family, then

a subset of E∗ is the canonical parameter space, and the distinction between E and E∗

helps remind us that we should not consider these two spaces to be the same space.

A log Laplace transform is a lower semicontinuous convex function that nowhere takes

the value −∞ (the value +∞ is allowed and occurs where the integral in (2.2) does not

exist) (Geyer, 1990, Theorem 2.1). The effective domain of an extended-real-valued convex

function c on E∗ is

dom c = { θ ∈ E∗ : c(θ) < +∞}.

For every θ ∈ dom c, the function fθ : E → R defined by

fθ(x) = e〈x,θ〉−c(θ), x ∈ E, (2.3)
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is a probability density with respect to λ. Densities (2.3) have log likelihood

l(θ) = 〈x, θ〉 − c(θ). (2.4)

The set F = { fθ : θ ∈ Θ }, where Θ is any nonempty subset of dom c, is called a standard

exponential family of densities with respect to λ. This family is full if Θ = dom c.

It is useful to have terminology relating the family F to the measure λ. We say F is

the standard exponential family generated by λ having canonical parameter space Θ, and

we say λ is the generating measure of F .

A general exponential family (Geyer, 1990, Chapter 1) is a family of probability dis-

tributions having a sufficient statistic X taking values in a finite-dimensional vector space

E that induces a family of distributions on E that have a standard exponential family of

densities with respect to some generating measure. Reduction by sufficiency loses no statis-

tical information, so the theory of standard exponential families tells us everything about

general exponential families (Geyer, 1990, Section 1.2).

In the context of general exponential families X is called the canonical statistic and θ

the canonical parameter (the terms natural statistic and natural parameter are also used).

In the context of standard exponential families, we only use the canonical parameter and

statistic. The set Θ is the canonical parameter space of the family, the set dom c is the

canonical parameter space of the full family having the same generating measure. A full

exponential family is said to be regular if its canonical parameter space dom c is an open

subset of E∗.
The distributions Fθ corresponding to the densities (2.3) are given by

Fθ(B) =

∫

B
e〈x,θ〉−c(θ) λ(dx), B ∈ B, (2.5)

where B is the Borel sigma-algebra of E. The CGF kθ of the distribution Fθ, provided this
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distribution has a CGF, is given by

kθ(t) = log

∫
e〈x,t〉fθ(x)λ(dx)

= c(θ + t)− c(θ)

(2.6)

and this is a CGF provided it is finite on a neighborhood of zero, that is if θ ∈ int(dom c).

We see that every distribution in a full family has a CGF if and only if the family is

regular. Derivatives of kθ evaluated at zero are the cumulants of Fθ. These are the same as

derivatives of c evaluated at θ.

2.4 Generalized affine functions

2.4.1 Characterization on affine spaces

Exponential families defined on affine spaces are of particular interest for the convergence

we develop. In the previous section, we motivated the development of the exponential

family through its generating measure λ. The log likelihood of the exponential family

corresponding to this measure-theoretic formulation is an affine function of the data as

seen in (2.4). What we will call the Barndorff-Nielsen completion of the exponential family,

following Geyer (2009), is the set of all limits of distributions in the family. We take limits in

the sense of pointwise convergence of densities, following Geyer (1990, Chapters 2 and 4) and

Geyer (2009). Other authors, including Barndorff-Nielsen (1978) and Brown (1986), have

taken limits in the sense of convergence in distribution, but discussed no examples where

convergence in distribution gave different results from pointwise convergence of densities.

Of course, if ehn → eh pointwise, then hn → h pointwise, and vice versa. Hence the idea

of completing an exponential family naturally leads to the the study of limits of sequences

of affine functions. Here we assume that the limiting function may be extended-real-valued

(the extended real number system, denoted R, is the two-point compactification of the real

number system, which adds −∞ at one end and +∞ at the other). A real-valued function

is affine if and only if it is both convex and concave. Since limits preserve convexity and
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concavity, we are led to the study of extended-real-valued functions that are both convex

and concave. These functions are called generalized affine functions.

Geyer (1990, Chapter 3) studies generalized affine functions on both finite-dimensional

and infinite-dimensional affine spaces, but here we only study generalized affine functions

on finite-dimensional affine spaces. That is all that is needed for exponential family theory.

Definition 1

An extended-real-valued function h on a finite-dimensional affine space E is generalized

affine if it is both convex and concave. �

This means that (Rockafellar, 1970, Section 4; Rockafellar and Wets, 1998, Section 2.A)

h
(
x+ t(y − x)

)
≤ (1− t)h(x) + th(y),

whenever 0 < t < 1 and h(x) <∞ and h(y) <∞,

and

h
(
x+ t(y − x)

)
≥ (1− t)h(x) + th(y),

whenever 0 < t < 1 and h(x) > −∞ and h(y) > −∞.

The former says h is convex. The latter says h is concave. The following two theorems

provide a characterization of generalized affine functions on affine spaces. In preparation,

we use the notation

h−1(R) = {x ∈ E : h(x) ∈ R }

h−1(∞) = {x ∈ E : h(x) = ∞}

h−1(−∞) = {x ∈ E : h(x) = −∞}

Theorem 1

An extended-real-valued function h on a finite-dimensional affine space E is generalized



2.4. Generalized affine functions 11

affine if and only if one of the following cases holds

(a) h−1(∞) = E,

(b) h−1(−∞) = E,

(c) h−1(R) = E and h is an affine function,

(d) There is a hyperplane H such that h(x) = ∞ for all points on one side of H, h(x) =

−∞ for all points on the other side of H, and h restricted to H is a generalized affine

function. �

The proof of Theorem 1 is in Geyer (1990). The intention is that this theorem is applied

recursively. If we are in case (d), then the restriction of h to H is another generalized affine

function to which the theorem applies. More on this later.

2.4.2 Topology

Now we need to understand the topology of the space of generalized affine functions on

a finite-dimensional affine space E with the topology of pointwise convergence. Call that

G(E).

Theorem 2

The space of generalized affine functions on a finite-dimensional affine space with the topol-

ogy of pointwise convergence is a compact Hausdorff space. �

The proof of Theorem 2 is in Geyer (1990).

Theorem 3

G(E) is a first countable topological space. �

The proof of Theorem 3 is in Geyer (1990). The space G(E) is not metrizable, unless E

is zero-dimensional (Geyer, 1990, penultimate paragraph of Section 3.3). So we cannot use

δ-ε arguments, but we can use arguments involving sequences, in particular, a compact and
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first countable topological space is sequentially compact (every sequence has a convergent

subsequence) (Kelley, 1955, Chapter 5, Problem E, Part (d)). This is instrumental for our

treatment of maximum likelihood estimation.

2.4.3 Characterization on vector spaces

The convergence results that we discover are aimed for application in generalized linear

regression model problems with data that is assumed to be realized from a full discrete

exponential family. In these applications, data and parameters are assumed to be elements

of a finite-dimensional vector space. The conclusions of Theorem 3 hold when G(E) is the

space of generalized affine functions on a finite-dimensional vector space E with the topology

of pointwise convergence. The next Theorem provides a characterization of generalized

affine functions defined on finite-dimensional vector spaces.

Theorem 4

An extended-real-valued function h on a finite-dimensional vector space E is generalized

affine if and only if there exist finite sequences (perhaps of length zero) of vectors η1, . . . ,

ηj being a linearly independent subset of E∗, the dual space of E, and scalars δ1, . . . , δj

such that h has the following form. Define H0 = E and, inductively, for integers i such that

0 < i ≤ j

Hi = {x ∈ Hi−1 : 〈x, ηi〉 = δi }

C+
i = {x ∈ Hi−1 : 〈x, ηi〉 > δi }

C−
i = {x ∈ Hi−1 : 〈x, ηi〉 < δi }

all of these sets (if any) being nonempty. Then h(x) = +∞ whenever x ∈ C+
i for any i,

h(x) = −∞ whenever x ∈ C−
i for any i, and h is either affine or constant on Hj , where +∞

and −∞ are allowed for constant values. �

Proof: First, assume h satisfies the conditions of Theorem 1 on E. We then show that h

satisfies the conditions of Theorem 4 by induction on the dimension of E. The induction
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hypothesis, H(p), is that the conclusions of Theorem 1 imply that the conclusions of The-

orem 4 hold when dim(E) = p. We now show that H(0) holds. In this setting, E = {0}.
Thus Theorem 4 holds with j = 0 and h is constant on E. The basis of the induction holds.

Let dim(E) = p + 1. We now show that H(p) implies that H(p + 1) holds. In the

event that h is characterized by case (a) or (b) of Theorem 1 then Theorem 4 holds with

j = 0. If case (c) of Theorem 1 characterizes h then there is an affine function f1 defined by

f1(x) = 〈x, η1〉− δ1, x ∈ E, such that h(x) = +∞ for x such that f1(x) > 0, h(x) = −∞ for

x such that f1(x) < 0, and h is generalized affine on the hyperplane H1 = {x : f1(x) = 0}.
The hyperplane H1 is p-dimensional affine subspace of E. Now, for some arbitrary ζ1 ∈ H1,

define

V1 = {x− ζ1 : x ∈ H1}

= {y ∈ E : 〈y, η1〉 = δ1 − 〈ζ1, η1〉}

= {y ∈ E : 〈y, η1〉 = 0}

where the last equality follows from ζ1 ∈ H1. The space V1 is a p-dimensional vector

subspace of E since every affine space containing the origin is a vector subspace (Rockafellar,

1970, Theorem 1.1) and because every translate of an affine space is another affine space

(Rockafellar, 1970, pp. 4). Let

h1(y) = h(y + ζ1), y ∈ V1. (2.7)

The function h1 is convex since the composition of a convex function with an affine function

is convex. To see this, let 0 < λ < 1, pick y1, y2 ∈ V1 and observe that

h1(λy1 + (1− λ)y2) = h(λy1 + (1− λ)y2 + ζ1)

≤ λh(y1 + ζ1) + (1− λ)h(y2 + ζ1)

= λh1(y1) + (1− λ)h1(y2).
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A similar argument shows that h1 is concave. Therefore h1 is generalized affine. From our

induction hypothesis, the conclusions of Theorem 1 imply that the conclusions of Theorem 4

hold for the generalized affine function h1. These conditions are that there exist finite

sequences of vectors η̃2, . . ., η̃j being a linearly independent subset of V ∗
1 , the dual space

of V1, and scalars δ̃2, . . ., δ̃j such that h1 has the following form. Define H̃1 = V1 and,

inductively, for integers i such that 2 < i ≤ j

H̃i = {x ∈ H̃i−1 : 〈x, η̃i〉 = δ̃i }

C̃+
i = {x ∈ H̃i−1 : 〈x, η̃i〉 > δ̃i }

C̃−
i = {x ∈ H̃i−1 : 〈x, η̃i〉 < δ̃i }

(2.8)

all of these sets (if any) being nonempty. Then h1(x) = +∞ whenever x ∈ C̃+
i for any i,

h1(x) = −∞ whenever x ∈ C̃−
i for any i, and h1 is either affine or constant on H̃j , where

+∞ and −∞ are allowed for constant values.

It remains to show that the conditions of Theorem 4 hold with respect to h. The vectors

η̃i, i = 2, ..., j can be extended to form a set of vectors ηi, i = 2, ..., j in E∗ by the Hahn-

Banach Theorem (Rudin, 1973, Theorem 3.6). The vectors ηi, i = 2, ..., j, form a linearly

independent subset of E∗. To see this, let
∑j

k=2 akηk = 0 on E for scalars ak, k = 2, ..., j.

Then
∑j

k=2 akηk = 0 on V1 which implies that ak = 0 for k = 2, ..., j by the definition of

linearly independent. Let H0 = E, and, for i = 2, ..., j, define

Hi = {x ∈ Hi−1 : 〈x, ηi〉 = δi }

C+
i = {x ∈ Hi−1 : 〈x, ηi〉 > δi }

C−
i = {x ∈ Hi−1 : 〈x, ηi〉 < δi }

(2.9)

where δi = δ̃i − 〈ζ1, ηi〉 for i = 2, ..., j and H̃i = Hi + ζ1 as a result. We see that h(x) =

h1(x− ζ1) = +∞ whenever 〈x+ ζ1, ηi〉 > δ̃i. Therefore h(x) = +∞ for all x ∈ C+
i for any i.

The same derivation shows that h(x) = −∞ whenever x ∈ C−
i for any i. The generalized

affine function h is either affine or constant on Hj , where +∞ and −∞ are allowed for

constant values since the composition of an affine function with an affine function is affine.



2.4. Generalized affine functions 15

We now show that the vectors η1, ..., ηj are linearly independent. Assume that
∑j

k=1 akηk =

0 on E for scalars ak, k = 1, ..., j. This assumption implies that
∑j

k=1 akη̃ = 0 on V ∗
1 where

η̃1 is the restriction of η1 to V1. Thus η̃1 is an element of V ∗
1 and η̃1 = 0 on V1 since

〈y, η̃1〉 = 〈y, η1〉 = 0 on V1. Therefore
∑j

k=2 akη̃k = 0 where ak = 0 for k = 2, ..., j from

what has already been shown. In the event that a1 = 0, we can conclude that η1, ..., ηj

are linearly independent. Now consider a1 6= 0. In this case,
∑j

k=1 akηk = 0 implies that

η1 =
∑j

k=2 bkηk where bk = −ak/a1. This states that
∑j

k=2 bkη̃k = 0 on V1. Therefore,

bk = 0 for all k = 2, ..., j which implies that η1 is the zero vector, which is a contradiction.

Thus a1 = 0 and we can conclude that η1, ..., ηj are linearly independent. This completes

one direction of the proof.

Now assume that h satisfies the conclusions of Theorem 4 and show that these con-

clusions imply that Theorem 1 holds by induction on j. The induction hypothesis, H(j),

is that the conclusions of Theorem 4 imply that the conclusions of Theorem 1 hold for

sequences of length j. For the basis of the induction let j = 0. We now show that H(0)

holds. The generalized affine function h is either affine or constant on E where +∞ and

−∞ are allowed for constant values. This characterization of h is the same as cases (a) of

(b) of Theorem 1. The basis of the induction holds.

We now show that H(j) implies that H(j + 1) holds. When the length of sequences is

j + 1, there exist vectors η1, ..., ηj+1 and scalars δ1, ..., δj+1 such that h has the following

form. Define H0 = E and, inductively, for integers i, 0 < i ≤ j + 1, such that the sets

in (2.9) are all nonempty. Then h(x) = +∞ whenever x ∈ C+
i for any i, h(x) = −∞

whenever x ∈ C−
i for any i, and h is either affine or constant on Hj+1, where +∞ and −∞

are allowed for constant values. From the definition of the sets H1, C
+
1 , and C−

1 , there is an

affine function f1 defined by f1(x) = 〈x, η1〉− δ1, x ∈ E, such that h(x) = +∞ for all x ∈ E

such that f1(x) > 0 and h(x) = −∞ for all x ∈ E such that f1(x) < 0. This is equivalent

to the case (c) characterization of h in Theorem 1, provided we show that the restriction of

h to H1 is a generalized affine function.

Define V1 = H1 − ζ1 for some arbitrary ζ1 ∈ H1. Let dim(E) = p. The space V1 is a

(p − 1)-dimensional vector subspace of E. Define h1 as in (2.7). Let η̃i be the restriction
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of ηi to V1 so that η̃i is an element of V ∗
1 for 1 < i ≤ j + 1. Now let H̃1 = V1 and, for

1 < i ≤ j + 1, we can define the sets as in (2.8) where δ̃i = δi − 〈ζ1, η̃i〉. We see that

h1(x) = h(x+ ζ1) = +∞ whenever 〈x+ ζ1, ηi〉 > δ̃i. Therefore h1(x) = +∞ for all x ∈ C̃+
i

for any i. The same derivation shows that h1(x) = −∞ whenever x ∈ C̃−
i for any i. The

generalized affine function h1 is either affine or constant on Hj+1, where +∞ and −∞ are

allowed for constant values. Therefore h1 meets the conditions of Theorem 4 with sequences

of length j. From H(j), we know that the conclusions of Theorem 1 hold with respect to

h1. This completes the proof. �

2.4.4 Affine functions and exponential families

A family of probability distributions having densities with respect to a positive Borel mea-

sure λ on a finite-dimensional affine (vector) space is a standard generalized exponential

family if the densities of these distributions with respect to λ have the form eg where g is a

generalized affine function. This definition is the same as Section 2 except for the replace-

ment of exponential family by generalized exponential family and the replacement of affine

function by generalized affine function.

Let x ∈ E be observed data realized from a closed convex standard exponential family

with log likelihood (2.4). Let the parameter space Θ ⊆ E∗ and define m(x) = supθ∈Θ l(θ).

Then, for any x such that m(x) <∞, there is a sequence θn ∈ Θ such that

l(θn) → m(x), as n→ ∞. (2.10)

From sequential compactness of G(E), which arises as a consequence of Theorem 3, there

is a subsequence θnk
such that the sequence of affine functions defined by

hθnk
(x) = 〈x, θnk

〉 − c(θnk
), y ∈ E,

converges pointwise to a generalized affine function h ∈ G(E). Since

hθnk
(x) = 〈x, θnk

〉 − c(θnk
) = l(θnk

) → m(x),
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we have h(x) = m(x) where eh is a density corresponding to a generalized exponential family.

This treatment of maximum likelihood estimation is different from the usual situation in

which we find the parameter value which maximizes the likelihood. Instead, a sequence of

log densities, interpreted as affine functions, converges to the maximum likelihood estimator

m(x). In this case, the MLE is a generalized affine function h ∈ G(E).

If we take a pointwise limit of a sequence of densities ehi in the family, the limit will

have the form eg, where g is a generalized affine function. From Fatou’s lemma, we know

that
∫
eg dλ ≤ 1. Thus we say such limits are subprobability densities. In general, one

does get subprobability densities that are not probability densities as limits of sequences

in exponential families (Geyer, 1990, Examples 4.1, 4.2, 4.3, 4.4, and 4.5). But one does

not get subprobability densities that are not probability densities as limits of sequences

in discrete closed convex exponential families, including discrete full exponential families

(Geyer, 1990, Theorem 2.7).

To establish CGF convergence in the next section, we represent the likelihood maxi-

mizing sequence in the coordinates of the linearly independent η vectors that characterize

the generalized affine function h according to its Theorem 4 representation. Let h be rep-

resented as in Theorem 4 with j ≤ p. From Theorem 4, we have a linearly independent

set of vectors η1, ..., ηj ∈ E∗. We can extend this linearly independent set of vectors to

form a basis for E∗ by finding vectors ηj+1, ..., ηp (Friedberg, et al., 2003, Corollary 2 to

Theorem 1.10). Since η1, ..., ηp is a basis for E∗, we can express the sequence of iterates

which maximizes the likelihood as

θn = b1,nη1 + b2,nη2 + · · ·+ bp,nηp. (2.11)

Define ψn =
∑p

i=j+1 bi,nηi and let ci denote the log Laplace transform of the measure λ

restricted to the hyperplane Hi for i = 1, ..., j. Lemma 1 provides properties about the

numbers bi,n, i = 1, ..., p needed to prove CGF convergence.

Lemma 1

Suppose that a generalized affine function h on a finite dimensional vector space E is finite
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at at least one point. Represent h as in Theorem 4, and extend η1, . . . , ηj to be a basis η1,

. . . , ηp for E∗. Then there are sequences of scalars an and bi,n such that

hn(y) = an +

j∑

i=1

bi,n (〈y, ηi〉 − δi) +

p∑

i=j+1

bi,n〈y, ηi〉, y ∈ E, (2.12)

where the rightmost sum in (2.12) is empty when j = p and, as n→ ∞, we have

(a) bi,n → ∞, for 1 ≤ i ≤ j,

(b) bi,n/bi−1,n → 0, for 2 ≤ i ≤ j + 1,

(c) bi,n converges, for i > j, and

(d) an converges

if and only if hn converges to h on E. �

Proof: First suppose that hn converges to h. The assumption that h is finite at at least

one point guarantees that h is affine on Hj from Theorem 4. For all y ∈ Hj we can write

h(y) = 〈y, θ∗〉+ a where 〈y, θ∗〉 =∑p
i=j+1 di〈y, ηi〉 and s, di ∈ R. The convergence hn → h

implies that bi,n → di, i = j + 1, ..., p where the set of bi,ns is empty when j = p and that

an → a as n→ ∞. Thus conclusions (c) and (d) hold. To show that conclusions (a) and (b)

hold we will suppose that j > 0, because these conclusions are vacuous when j = 0. Both

cases (a) and (b) will be shown by induction with the hypothesis H(m) that b(j−m),n → +∞
and b(j−m+1),n/b(j−m),n → 0 as n → ∞ for 0 ≤ m ≤ j − 1. We now show that the basis of

this induction holds. Pick y ∈ C+
j and observe that

hn(y) = an + bj,n (〈y, ηj〉 − δj) +

p∑

k=j+1

bk,n〈y, ηk〉 → +∞.

since h(y) = +∞ and hn → h pointwise. From this, we see that bj,n → +∞ as n → ∞
and bj+1,n/bj,n → 0 as n → ∞ from part (c). Therefore H(0) holds. It is now shown

that H(m) implies that H(m + 1) holds. There exists a basis y1, ..., yp in E∗∗, the dual
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space of E∗, such that 〈yi, ηk〉 = 0 when i 6= k and 〈yi, ηk〉 = 1 when i = k. The set of

vectors y1, ..., yp is a basis of E since E = E∗∗. Arbitrarily choose a y ∈ Hj−m−1 such that

y =
∑j−m−1

i=1 δiyi + c1yj−m where c1 > δj−m. At this choice of y we see that h(y) = +∞
and

hn(y) = an +

j−m+1∑

i=1

bi,n (〈y, ηi〉 − δi)

= an + b(j−m),n (〈y, ηj−m〉 − δj−m)

→ +∞

as n→ ∞. Therefore b(j−m),n → +∞ as n→ ∞. Now arbitrarily choose y =
∑j−m−1

i=1 δiyi+

c1yj−m + c2yj−m+1 where c1 is defined as before and c2 < δj−m+1. At this choice of y we

see that h(y) = +∞ and

hn(y) = an +

j−m+1∑

i=1

bi,n (〈y, ηi〉 − δi)

= an + b(j−m),n (〈y, ηj−m〉 − δj−m

+
b(j−m+1),n

b(j−m),n
(〈y, ηj−m+1〉 − δj−m+1)

)

= an + b(j−m),n

(
c1 − δj−m −

b(j−m+1),n

b(j−m),n
(c2 − δj−m+1)

)

→ +∞

(2.13)

as n→ ∞. It follows from (2.13) that

(
c1 − δj−m −

b(j−m+1),n

b(j−m),n
(c2 − δj−m+1)

)
≥ 0

for sufficiently large n. This implies that

b(j−m+1),n

b(j−m),n
≤ c1 − δj−m

δj−m−1 − c2
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for sufficiently large n. From the arbitrariness of the constants c1 and c2 and (2.13), we

can conclude that b(j−m+1),n/b(j−m),n → 0 as n → ∞. Therefore H(m + 1) holds and this

completes one direction of the proof.

We now assume that conditions (a) through (d) and the hn takes the form in (2.12).

Let limn→∞
∑p

i=j+1 bi,nηi = θ∗ and limn→∞ an = a. Cases (a) through (d) then imply that

hn(y) →





−∞, y ∈ C−
i

〈y, θ∗〉+ a, y ∈ Hj

+∞, y ∈ C+
i

(2.14)

for all i = 1, ..., j where the right hand side of (2.14) is a generalized affine function in its

Theorem 4 representation. This completes the proof. �

The results given in Lemma 1 are applicable to generalized affine functions in full gener-

ality. However, specifics of interest arise when eh is a density corresponding to a generalized

exponential family and hn = hθn corresponds to a likelihood maximizing sequence satisfying

(2.10). Suppose that there are j hyperplanes characterizing h as in Theorem 4 and let θ∗ be

the maximum likelihood estimator corresponding to the model restricted to the hyperplane

Hj . We now provide a brief extension of Lemma 1 that is consistent with this setup.

Corollary 1

For data x from a regular full exponential family defined on a vector space E, suppose

θn is a likelihood maximizing sequence satisfying (2.10) with log densities hn converging

pointwise to a generalized affine function h. Characterize h as in Theorem 4 and represent

the sequence θn in coordinate form as in (2.11). Define ψn =
∑p

i=j+1 bi,n〈x, ηi〉. Then

conclusions (a) and (b) of Lemma 1 hold in this setting and

ψn → θ∗, as n→ ∞,

where θ∗ is the MLE of the exponential family restricted to Hj . �

Proof: The conditions of Lemma 1 are satisfied by our assumptions so all conclusions of
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Lemma 1 are satisfied. As a consequence, ψn → θ∗ as n→ ∞. The fact that θ∗ is the MLE

of the LCM restricted to Hj follows from our assumption that θn is a likelihood maximizing

sequence. �

Taken together, Theorem 4, Lemma 1, and Corollary 1 provide a theory of maximum

likelihood estimation in exponential families motivated by properties of sequences of affine

functions on finite-dimensional vector spaces. One key difference of this theory and the

traditional theory is that the MLE is not a parameter value, θ ∈ Θ, but rather a log density

h ∈ G(E). These different formulations are the same when the data from a regular full

exponential family are in the interior of their support set. In this case, we can write

h(x) = 〈x, θ̂〉 − c(θ̂)

where θ̂ ∈ Θ is the MLE that satisfies h(x) = m(x) and the generalized affine function h is

affine. When we represent h as in Theorem 4 in this case, we have that j = 0. However,

when the observed data are on the boundary of their support, the MLE does not exist in

the traditional sense and may exist in the Barndorff-Nielsen completion. Our theory can

find the MLE in the Barndorff-Nielsen completion of the exponential family in this setting

when m(x) <∞.

2.4.5 Comparisons with Geyer (2009)

We are not the only ones to investigate the existence of the MLE in the Barndorff-Nielsen

completion of an exponential family when data are on the boundary of their support. Geyer

(2009) investigated this issue and found the MLE in what is called a limiting conditional

model (LCM). In practical settings, the support set for an LCM is determined by an es-

timated generic direction of recession (GDOR). The GDOR and LCM approach to this

problem is similar to our approach, as evidenced by Theorem 5. Let K denote the convex

support of the measure λ. The convex support of λ is the smallest closed convex set whose

complement has λ measure zero (Barndorff-Nielsen, 1978, p. 90).
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Theorem 5

For a full exponential family having log likelihood (2.4), densities (2.3), natural statistic X,

observed value of the natural statistic x such that x ∈ K, and natural parameter space Θ,

if η is a direction of recession,

Hη = {w ∈ R
p : 〈w − x, η〉 = 0},

and pr(X ∈ Hη) > 0 for some distribution in the family, and hence for all, then for all θ ∈ Θ

lim
s→∞

fθ+sη =





0, 〈X(w)− x, η〉 < 0

fθ(w)/prθ(X ∈ Hη), 〈X(w)− x, η〉 = 0

+∞, 〈X(w)− x, η〉 > 0

(2.15)

If η is not a direction of constancy, then s 7→ prθ+sη(X ∈ Hη) is continuous and strictly

increasing, and prθ+sη(X ∈ Hη) → 1 as s→ ∞. �

Proof: A proof is given in Geyer (2009). �

As stated in Geyer (2009, Section 3.4) there are three things to note about the right-

hand side of (2.15). First, it is a probability density function with respect to the distribution

having parameter value ψ. From Geyer (2009, Theorem 3 (d)), the set where it is +∞
has probability zero. Second, it is the density with parameter value θ of the conditional

distribution given that X ∈ Hη. Third, by Scheffe’s lemma (Lehmann, 1959, pp. 351)

pointwise convergence of densities implies convergence in total variation, which implies

convergence in distribution. Denote the right-hand side of ((2.15)) by fθ(w|X ∈ Hη). It is

clear that the family

{fθ(·|X ∈ Hη) : θ ∈ Θ} (2.16)

is an exponential family with the same natural statistic and natural parameter as the original

family. It need not be full. The natural parameter space of the full family containing it is
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at least as large as

Θ + Γlim = {θ + γ : θ ∈ Θ and γ ∈ Γlim}, (2.17)

where θ is the natural parameter space of the original family and Γlim is the constancy space

of the family (2.16). We will assume that (2.17) is the natural parameter space of the full

family containing (2.16), and we will call this full family the LCM. It is clear that the log

likelihood for (2.16)

lHη(θ) = 〈x, θ〉 − c(θ)− log prθ(X ∈ Hη)

satisfies

l(θ) < lHη(θ), θ ∈ Θ.

Thus, if an MLE exists for the LCM, then it maximizes the likelihood in the family that is

the union of the LCM and the original family, and it maximizes the likelihood in the family

that is the set of all limits of sequences of distributions in the original family. When this

happens, we say we have found an MLE in the Barndorff-Nielsen completion of the original

family.

Refer back to the perfect separation case in logistic regression mentioned in Section

2.2. The GDOR for this examples is η̂gdor = (−5, 0.1)T and the LCM is degenerate at the

observed data. The set Hη is the one point set containing only the observed value of the

canonical statistic.

In Geyer (2009), the solution to finding an MLE in the Barndorff-Nielsen completion of

the original family is dependent upon estimation of a direction of recession and then taking

limits in that direction, as seen in Theorem 5. In our approach, we allow the iterates of a

likelihood maximizing sequence (2.10) to find the MLE in the LCM. We compare methods

from a practical standpoint in Section 5. In the next section, we provide convergence

results necessary for inference when maximum likelihood estimation is obtained through an

arbitrary likelihood maximizing sequence (2.10).
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2.5 Convergence theorems

We now show CGF convergence along a likelihood maximizing sequence (2.10). First define

cA(θ) = log
∫
A e

〈y,θ〉λ(dy) for all θ ∈ dom cA = {θ : cA(θ) < +∞}. Define the CGF with

respect to the generalized affine function h by

κ(t) = log

∫
e〈y,t〉eh(y)λ(dy)

for all t ∈ R
p such that κ(t) is finite. Define the CGF along the likelihood maximizing

sequence (2.10) with respect to the log densities hn by

κn(t) = log

∫
e〈y,t〉ehn(y)λ(dy)

for all t ∈ R
p such that κ(t) is finite where hn converges to a generalized affine function h.

In the next theorem, we state the conditions for which κn(t) → κ(t).

Theorem 6

Let E be a finite-dimensional vector space of dimension p. For data x ∈ E from a regu-

lar full exponential family with natural parameter space Θ ⊆ E∗ and generating measure

λ. Assume that all LCMs are regular exponential families. Suppose that θn is a likeli-

hood maximizing sequence satisfying (2.10) with log densities hn converging pointwise to

a generalized affine function h. Characterize h as in Theorem 4. When j ≥ 2, and for

i = 1, ..., j − 1, define

Di = {y ∈ C−
i : 〈y, ηk〉 > δk, some k > i},

F = E \ ∪j−1
i=1Di = {y : 〈y, ηi〉 ≤ δi, 1 ≤ i ≤ j},

(2.18)

and assume that

sup
θ∈Θ

sup
y∈∪j−1

i=1Di

e
〈y,θ〉−c

∪
j−1
i=1

Di
(θ)

<∞ or λ
(
∪j−1
i=1Di

)
= 0. (2.19)
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Then κn(t) converges to κ(t) pointwise for all t in a neighborhood of 0. �

Proof: First consider the case when j = 0, the sequences of η vectors and scalars δ

are both of length zero. There are no sets C+ and C− in this setting and h is affine

on E. From Lemma 1 we have ψn = θn. From Corollary 1, θn → θ∗ as n → ∞. We

observe that c(θn) → c(θ∗) from continuity of the cumulant function. The existence of

the MLE in this setting implies that there is a neighborhood about 0 denoted by W such

that θ∗ +W ⊂ int(dom c). Pick t ∈ W and observe that c(θn + t) → c(θ∗ + t). Therefore

κn(t) → κ(t) when j = 0.

Now consider the case when j = 1. Define c1(θ) = log
∫
H1
e〈y,θ〉λ(dy) for all θ ∈

int(dom c1). In this scenario we have

κn(t) = c (ψn + t+ b1,nη1)− c (ψn + b1,nη1)

= c (ψn + t+ b1,nηj)− c (ψn + b1,nη1)± b1,nδ1

= [c (ψn + t+ b1,nη1)− b1,nδ1]− [c (ψn + b1,nη1)− b1,nδ1] .

From Geyer (1990, Theorem 2.2), we know that

c
(
θ∗ + t+ sη1

)
− sδ1 → c1

(
θ∗ + t

)
,

c
(
θ∗ + sη1

)
− sδ1 → c1

(
θ∗
)
,

(2.20)

as s → ∞ since δ1 ≥ 〈y, η1〉 for all y ∈ H1. The left hand side of (2.20) is a convex func-

tion of θ and the right hand side is a proper convex function. If int(dom c1) is nonempty,

which holds whenever int(dom c) is nonempty, then the convergence in (2.20) is uniform on

compact subsets of int(dom c1) (Rockafellar and Wets, 1998, Theorem 7.17). Also (Rock-

afellar and Wets, 1998, Theorem 7.14), uniform convergence on compact sets is the same

as continuous convergence. Using continuous convergence, we have that both

c (ψn + t+ b1,nη1)− b1,nδ1 → c1
(
θ∗ + t

)
,

c (ψn + b1,nη1)− b1,nδ1 → c1
(
θ∗
)
,
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where b1,n → ∞ as n→ ∞ by Lemma 1. Thus

κn(t) = c(θn + t)− c(θn) → c1
(
θ∗ + t

)
− c1

(
θ∗
)

= log

∫

H1

e〈y+t,θ∗〉−c(θ∗)λ(dy) = log

∫

H1

e〈y,t〉+h(y)λ(dy)

= log

∫
e〈y,t〉+h(y)λ(dy) = κ(t).

This concludes the proof when j = 1.

For the rest of the proof we will assume that 1 < j ≤ p where dim(E) = p. Represent the

sequence θn in coordinate form as in (2.11) with scalars bi,n, i = 1, ..., p. For 0 < j < p, we

know that ψn → θ∗ as n → ∞ from Corollary 1. The existence of the MLE in this setting

implies that there is a neighborhood about 0, denoted byW , such that θ∗+W ⊂ int(dom c).

Pick t ∈W , fix ε > 0, and construct ε-boxes about θ∗ and θ∗+ t, denoted by N0,ε(θ
∗) and

Nt,ε(θ
∗) respectively, such that both N0,ε(θ

∗),Nt,ε(θ
∗) ⊂ int (dom c). Let Vt,ε be the set of

vertices of Nt,ε(θ
∗). For all y ∈ E define

Mt,ε(y) = max
v∈Vt,ε

{〈v, y〉}, M̃t,ε(y) = min
v∈Vt,ε

{〈v, y〉}. (2.21)

From the conclusions of Lemma 1 and Corollary 1, we can pick an integer N such that

〈y, ψn + t〉 ≤ Mt,ε(y) and b(i+1),n/bi,n < 1 for all n > N and i = 1, ..., j − 1. For all y ∈ F ,

we have

〈y, θn + t〉 −
j∑

i=1

bi,nδi = 〈y, ψn + t〉+
j∑

i=1

bi,n (〈y, ηi〉 − δi)

≤Mt,ε(y)

(2.22)

for all n > N . The integrability of eMt,ε(y) and eM̃t,ε(y) follows from

∫
eM̃t,ε(y)λ(dy) ≤

∫
eMt,ε(y)λ(dy)

=
∑

v∈Vt,ε

∫

{y: 〈y,v〉=Mt,ε(y)}

e〈y,v〉λ(dy)
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≤
∑

v∈Vt,ε

∫
e〈y,v〉λ(dy) <∞.

Therefore,

〈y, ψn + t〉+
j∑

i=1

bi,n (〈y, ηi〉 − δi) →





〈y, θ∗ + t〉, y ∈ Hj ,

−∞, y ∈ F \Hj .

which implies that

cF (θn + t)− cF (θn) → cHj
(θ∗ + t)− cHj

(θ∗) (2.23)

by dominated convergence. To complete the proof, we need to verify that

c(θn + t)− c(θn) = cF (θn + t)− cF (θn)

+ c
∪j−1
i=1Di

(θn + t)− c
∪j−1
i=1Di

(θn)

→ cHj
(θ∗ + t)− cHj

(θ∗).

(2.24)

We know that (2.24) holds when λ(∪j−1
i=1Di) = 0 in (2.19) because of (2.23). Now suppose

that λ(∪j−1
i=1Di) > 0. We have,

〈y, ψn + t〉+
j∑

i=1

bi,n (〈y, ηi〉 − δi) → −∞, y ∈ ∪j−1
i=1Di, (2.25)
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and

exp
(
c
∪j−1
i=1Di

(θn + t)− c
∪j−1
i=1Di

(θn)
)

=

∫

∪j−1
i=1Di

e
〈y,θn+t〉−c

∪
j−1
i=1

Di
(θn)

λ(dy)

≤
∫

∪j−1
i=1Di

e
Mt,ε(y)−M̃0,ε(y)+〈y,θn〉−c

∪
j−1
i=1

Di
(θn)

λ(dy)

≤ sup
y∈∪j−1

i=1Di

(
e
〈y,θn〉−c

∪
j−1
i=1

Di
(θn)
)
λ
(
∪j−1
i=1Di

)

×
∫

∪j−1
i=1Di

eMt,ε(y)−M̃0,ε(y)λ(dy)

≤ sup
θ∈Θ

sup
y∈∪j−1

i=1Di

(
e
〈y,θ〉−c

∪
j−1
i=1

Di
(θ)
)
λ
(
∪j−1
i=1Di

)

×
∫

∪j−1
i=1Di

eMt,ε(y)−M̃0,ε(y)λ(dy) < ∞

(2.26)

for all n > N by the assumption given by (2.19). The assumption that the exponential

family is discrete and full implies that
∫
eh(y)λ(dy) = 1 (Geyer, 1990, Theorem 2.7). This

in turn implies that λ(C+
i ) = 0 for all i = 1, ..., j which then implies that c(θ) = cF (θ) +

c
∪j−1
i=1Di

(θ). Putting (2.22), (2.25), and (2.26) together we can conclude that (2.24) holds as

n→ ∞ by dominated convergence and

cHj
(θ∗ + t)− cHj

(θ∗)

= log

∫

Hj

e〈y,θ
∗+t〉λ(dy)− log

∫

Hj

e〈y,θ
∗〉λ(dy)

= log

∫
e〈y,t〉+h(y)λ(dy) = κ(t).

(2.27)

for all t ∈ W . This verifies CGF convergence on neighborhoods of 0 which completes the

proof. �

Discrete exponential families automatically satisfy (2.19) when

inf
y∈∪j−1

i=1Di

λ({y}) > 0.
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In this setting, e
〈y,θ〉−c

∪
j−1
i=1

Di
(θ)

corresponds to the probability mass function for the random

variable conditional on the occurrence of ∪j−1
i=1Di. Thus,

sup
θ∈Θ

sup
y∈∪j−1

i=1Di

(
e
〈y,θ〉−c

∪
j−1
i=1

Di
(θ)
)

= sup
θ∈Θ

sup
y∈∪j−1

i=1Di

(
e〈y,θ〉λ({y})

λ({y})∑
x∈∪j−1

i=1Di
e〈x,θ〉λ({x})

)

≤ sup
y∈∪j−1

i=1Di

(1/λ({y})) <∞.

Therefore, Theorem 6 is applicable for the non-existence of the maximum likelihood esti-

mator that may arise in logistic and multinomial regression.

We show in the next Theorem that discrete families with convex polyhedron support

also satisfy (2.19) under additional regularity conditions that hold in practical applications.

When K is convex polyhedron, we can write K as,

K = {y : 〈y, αi〉 ≤ ai, for i = 1, ...,m}

as in Rockafellar and Wets (1998, Theorem 6.46). In the setting when the MLE does not

exist, the data x ∈ K is on the boundary ofK. Denote the active set of indices corresponding

to the boundary K containing x by I(x) = {i : 〈x, αi〉 = ai}. In preparation for Theorem 7,

we define the normal cone NK(x) and tangent cone TK(x) as in Geyer (2009), and state

the assumptions required on K for our theory to hold.

Definition 2

The normal cone of a convex set K in the finite dimensional vector space E at a point

x ∈ K is

NK(x) = {η ∈ E∗ : 〈y − x, η〉 ≤ 0 for all y ∈ K}.

Definition 3

The tangent cone of a convex set K in the finite dimensional vector space E at a point
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x ∈ K is

TK(x) = cl{s(y − x) : y ∈ K and s ≥ 0}

where cl(·) denotes the set closure operation. �

When K is a convex polyhedron, NK(x) and TK(x) are both convex polyhedra with

formulas given in Rockafellar and Wets (1998, Theorem 6.46). These formulas are

TK(x) = {y : 〈y, αi〉 ≤ 0 for all i ∈ I(x)},

NK(x) = {c1α1 + · · ·+ cmαm : ci ≥ 0 for i ∈ I(x), ci = 0 for i /∈ I(x)}.

The assumptions required on K for our theory to hold are from Brown (1986, p. 193-

197). We first define faces and exposed faces of convex sets.

Definition 4

A face of a convex set K is a convex subset F of K such that every (closed) line segment

in K with a relative interior point in F has both endpoints in F . An exposed face of K is

a face where a certain linear function achieves its maximum over K (Rockafellar, 1970, p.

162). �

The conditions of Brown required for our theory are:

(i) The support of the exponential family is a countable set X.

(ii) The exponential family is regular.

(iii) Every x ∈ X is contained in the relative interior of an exposed face F of the convex

support K.

(iv) The support of the measure λ|F equals F , where λ is the generating measure for the

exponential family.

Conditions (i) and (ii) are already assumed in Theorem 6. It is now shown that discrete

exponential families satisfy (2.19) under the above conditions.



2.5. Convergence theorems 31

Theorem 7

Assume the conditions of Theorem 6 with the omission of (2.19) when j ≥ 2. Let K denote

the convex support of the exponential family. Assume that the support of the exponential

family satisfies the conditions of Brown. Then (2.19) holds. �

Proof: Represent h as in Theorem 4. Denote the normal cone of the convex polyhedron

support K at the data x by NK(x). We show that a sequence of scalars δ∗i and a linearly

independent set of vectors η∗i ∈ E∗ can be chosen so that η∗i ∈ NK(x), and

Hi = {y ∈ Hi−1 : 〈y, η∗i 〉 = δ∗i },

C+
i = {y ∈ Hi−1 : 〈y, η∗i 〉 > δ∗i },

C−
i = {y ∈ Hi−1 : 〈y, η∗i 〉 < δ∗i },

(2.28)

for i = 1, ..., j where H0 = E so that (2.19) holds. We will prove this by induction with the

hypothesis H(m), m = 1, ..., j, that (2.28) holds for i ≤ m where the vectors η∗i ∈ NK(x)

i = 1, ...,m.

We first verify the basis of the induction. The assumption that the exponential family

is discrete and full implies that
∫
eh(y)λ(dy) = 1 (Geyer, 1990, Theorem 2.7). This in turn

implies that λ(C+
k ) = 0 for all k = 1, ..., j. This then implies that K ⊆ {y ∈ E : 〈y, η1〉 ≤

δ1} = H1 ∪ C−
1 . Thus η1 ∈ NK(x) and the base of the induction holds with η1 = η∗1 and

δ1 = δ∗1 .
We now show that H(m+ 1) follows from H(m) for m = 1, ..., j − 1. We first establish

that K ∩ Hm is an exposed face of K. This is needed to show that (2.28) holds for i =

1, ...,m+1. Let LK be the collection of closed line segments with endpoints inK. Arbitrarily

choose l ∈ LK such that an interior point y ∈ l is such that y ∈ K ∩ Hm. We can write

y = γa + (1 − γ)b, 0 < γ < 1, where a and b are the endpoints of l. Since a, b ∈ K by

construction, we have that 〈a − x, η∗m〉 ≤ 0 and 〈b − x, η∗m〉 ≤ 0 because η∗m ∈ NK(x) by

H(m). Now,

0 ≥ 〈a− x, η∗m〉 = 〈a− y + y − x, η∗m〉
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= 〈a− y, η∗m〉 = 〈a− (γa+ (1− γ)b), η∗m〉

= (1− γ)〈a− b, η∗m〉

and

0 ≥ 〈b− x, η∗m〉 = 〈b− y + y − x, η∗m〉

= 〈b− y, η∗m〉 = 〈b− (γa+ (1− γ)b), η∗m〉

= −γ〈a− b, η∗m〉.

Therefore a, b ∈ K ∩ Hm and this verifies that K ∩ Hm is a face of K since l was chosen

arbitrarily. The function y 7→ 〈y − x, η∗m〉 − δ∗m, defined on K, is maximized over K ∩Hm.

Therefore K ∩ Hm is an exposed face of K by definition. The exposed face K ∩ Hm =

K ∩ (Hm+1∪C−
m+1) since λ(C

+
m+1) = 0 and the convex support of the measure λ|Hm is Hm

by assumption. Thus, ηm+1 ∈ NK∩Hm(x).

The setsK andHm are both convex and are therefore regular at every point (Rockafellar

and Wets, 1998, Theorem 6.20). We can write NK∩Hm(x) = NK(x) +NHm(x) since K and

Hm are convex sets that cannot be separated where + denotes Minkowski addition in this

case (Rockafellar and Wets, 1998, Theorem 6.42). The normal cone NHm(x) has the form

NHm(x) = {η ∈ E∗ : 〈y − x, η〉 ≤ 0 for all y ∈ Hm}

= {η ∈ E∗ : 〈y − x, η〉 ≤ 0 for all y ∈ E

such that 〈y − x, ηi〉 = 0, i = 1, ...,m}

=

{
m∑

i=1

aiηi : ai ∈ R, i = 1, ...,m

}
.

Therefore, we can write

ηm+1 = η∗m+1 +
m∑

i=1

am,iη
∗
i (2.29)
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where η∗m+1 ∈ NK(x) and am,i ∈ R, i = 1, ...,m. For y ∈ Hm+1, we have that

〈y, η∗m+1〉 = 〈y, ηm+1〉 −
m∑

i=1

am,i〈y, ηi〉

= δm+1 −
m∑

i=1

am,iδi.

Let δ∗m+1 = δm+1 −
∑m

i=1 am,iδi. We can therefore write

Hm+1 =
{
y ∈ Hm : 〈y, η∗m+1〉 = δ∗m+1

}

and

C+
m+1 = {y ∈ Hm : 〈y, ηm+1〉 > δm+1}

=

{
y ∈ Hm : 〈y, η∗m+1〉+

m∑

i=1

am,iδi > δm+1

}

=

{
y ∈ Hm : 〈y, η∗m+1〉 > δm+1 −

m∑

i=1

am,iδi

}

=
{
y ∈ Hm : 〈y, η∗m+1〉 > δ∗m+1

}
.

(2.30)

A similar argument to that of (2.30) verifies that

C−
i =

{
y ∈ Hm : 〈y, η∗m+1〉 < δ∗m+1

}
.

This confirms that (2.28) holds for i = 1, ...m+1 and this establishes that H(m+1) follows

from H(m).

Define the sets Di in (2.18) with starred quantities replacing the unstarred quantities.

Since the vectors η∗1 , ..., η∗j ∈ NK(x), the sets K ∩Di are all empty for all i = 1, ..., j − 1.

Therefore (2.19) holds with λ
(
∪j−1
i=1Di

)
= 0. This completes the proof. �

Theorems 6 and 7 both verify CGF convergence along likelihood maximizing sequences

(2.10) on neighborhoods of 0. The next Theorems show that CGF convergence on neigh-

borhoods of 0 is enough to imply convergence in distribution and of moments of all orders.
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Therefore moments of distributions with log densities that are affine functions converge

along likelihood maximizing sequences (2.10) to those of a limiting distribution whose log

density is a generalized affine function. We establish some preliminaries before we state our

theorems.

Suppose that X is a random vector in a finite-dimensional vector space E having a

moment generating function (MGF) ϕX , then

ϕX(t) = ϕ〈X,t〉(1), t ∈ E∗,

regardless of whether the MGF exist or not. It follows that the MGF of 〈X, t〉 for all t

determine the MGF of X and vice versa, when these MGF exist. More generally,

ϕ〈X,t〉(s) = ϕX(st), t ∈ E∗ and s ∈ . (2.31)

This observation applied to characteristic functions rather than MGF is called the Cramér-

Wold theorem. In that context it is more trivial because characteristic functions always

exist.

If v1, . . . , vd is a basis for a vector space E, then there exists a unique dual basis w1,

. . . , wd for E∗ that satisfies

〈vi, wj〉 =




1, i = j

0, i 6= j

(2.32)

(Halmos, 1958, Theorem 2 of Section 15).

Theorem 8

If X is a random vector in E having an MGF, then the random scalar 〈X, t〉 has an MGF

for all t ∈ E∗. Conversely, if 〈X, t〉 has an MGF for all t ∈ E∗, then X has an MGF. �

Proof: Suppose ϕX is an MGF, hence finite on a neighborhood W of zero. Fix t ∈ E∗.
Then by (2.31) ϕ〈X,t〉(s) is finite whenever st ∈ W . Continuity of scalar multiplication
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means there exists an ε > 0 such that st ∈W whenever |s| < ε. That proves one direction.

Conversely, suppose ϕ〈X,t〉 is an MGF for each t ∈ E∗. Suppose v1, . . . , vd is a basis

for E and w1, . . . , wd is the dual basis for E∗ that satisfies (2.32). Then there exists ε > 0

such that ϕ〈X,wi〉 is finite on [−ε, ε] for each i.
We can write each t ∈ E∗ as a linear combination of basis vectors

t =

d∑

i=1

aiwi,

where the ai are scalars that are unique (Halmos, 1958, Theorem 1 of Section 15). Applying

(2.32) we get

〈vj , t〉 = aj ,

so

t =
d∑

i=1

〈vi, t〉wi,

and

〈X, t〉 =
d∑

i=1

〈vi, t〉〈X,wi〉.

Suppose

|〈vi, t〉| ≤ ε, i = 1, . . . , d

(the set of all such t is a neighborhood of 0 in E∗). Let sign denote the sign function, which

takes values −1, 0, and +1 as its argument is negative, zero, or positive, and write

si = sign(〈vi, t〉), i = 1, . . . , d.

Then we can write 〈X, t〉 as a convex combination

〈X, t〉 =
d∑

i=1

〈vi, t〉
siε

· siε〈X,wi〉+
(
1−

d∑

i=1

〈vi, t〉
siε

)
· 〈X, 0〉.
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So, by convexity of the exponential function,

ϕX(t) ≤
d∑

i=1

〈vi, t〉
siε

ϕ〈X,wi〉(siε) +

(
1−

d∑

i=1

〈vi, t〉
siε

)
<∞.

That proves the other direction. �

Theorem 9

Suppose Xn, n = 1, 2, . . . is a sequence of random vectors, and suppose their moment

generating functions converge pointwise on a neighborhood W of zero. Then

Xn
d−→ X, (2.33)

�

and X has an MGF ϕX , and

ϕXn(t) → ϕX(t), t ∈ E∗.

Proof: The one-dimensional case of this theorem is proved in Billingsley (2012). We only

need to show the general case follows by Cramér-Wold. It follows from the assumption that

ϕ〈Xn,t〉 converges on a neighborhood W of zero for each t ∈ E∗. Then (2.33) follows from

the one-dimensional case of this theorem and the Cramér-Wold theorem. And this implies

〈Xn, t〉 d−→ 〈X, t〉, t ∈ E∗.

By the one-dimensional case of this theorem, this implies 〈X, t〉 has an MGF for each t, and

then Theorem 8 implies X has an MGF ϕX . By the one-dimensional case of this theorem,

ϕ〈Xn,t〉 converges pointwise to ϕ〈X,t〉. So by (2.31) ϕXn converges pointwise to ϕX . �

Theorem 10

Under the assumptions of Theorem 9, suppose t1, t2, . . . , tk are vectors defined on E∗, the
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dual space of E. Then
∏k

i=1〈Xn, ti〉 is uniformly integrable so

E

{
k∏

i=1

〈Xn, ti〉
}

→ E

{
k∏

i=1

〈X, ti〉
}
.

Proof: From Theorem 9, we have that 〈Xn, ti〉 d−→ 〈X, , ti〉. Continuity of the exponential

function implies that e〈Xn,ti〉 d−→ e〈X,ti〉. Now, pick an ε > 0 such that both ε
∑k

i=1 ti ∈ W

and ε
∑k

i=1 ui ∈W where u1 = −t1 and ui = ti for all i > 1. This construction gives

e〈Xn,ε
∑k

i=1 ti〉
d−→ e〈X,ε

∑k
i=1 ti〉 (2.34)

and

E
(
e〈Xn,ε

∑k
i=1 ti〉

)
d−→ E

(
e〈X,ε

∑k
i=1 ti〉

)
. (2.35)

Equations (2.34) and (2.35) imply that e〈Xn,ε
∑k

i=1 ti〉 is uniformly integrable by Billingsley

(1999, Theorem 3.6). A similar argument shows that e〈Xn,ε
∑k

i=1 ui〉 is uniformly integrable.

We now bound |εk∏k
i=1〈Xn, ti〉| to show uniform integrability of

∏k
i=1〈Xn, ti〉. Define

An = {Xn :
k∏

i=1

〈Xn, ti〉 ≥ 0}.

and let IA be the indicator function. We have,

εk
k∏

i=1

〈Xn, ti〉 ≤
k∏

i=1

〈Xn, εti〉IAn ≤ e〈Xn,ε
∑k

i=1 ti〉IAn ≤ e〈Xn,ε
∑k

i=1 ti〉

and

−εk
k∏

i=1

〈Xn, ti〉 =
k∏

i=1

〈Xn, εui〉 ≤
k∏

i=1

〈Xn, εui〉IAc
n
≤ e〈Xn,ε

∑k
i=1 ui〉IAc

n
≤ e〈Xn,ε

∑k
i=1 ui〉.
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Therefore

|εk
k∏

i=1

〈Xn, ti〉| ≤ e〈Xn,ε
∑k

i=1 ti〉 + e〈Xn,ε
∑k

i=1 ui〉

The sum of uniformly integrable is uniformly integrable. This implies that |εk∏k
i=1〈Xn, ti〉|

is uniformly integrable. Scalings of uniformly integrable are also uniformly integrable, which

states that
∏k

i=1〈Xn, ti〉 is uniformly integrable. Our result follows from Billingsley (1999,

Theorem 3.5) and this completes the proof. �

The combination of Theorems 6 through Theorem 10 provide a methodology for statis-

tical inference along likelihood maximizing sequences when the MLE is in the Barndorff-

Nielsen completion. In particular, we have convergence of moments of all orders along

likelihood maximizing sequence. Thus, the estimated variability of the estimated canonical

parameter vector converges to the variability of the estimated canonical parameter vector

of the MLE distribution. When the MLE is in the Barndorff-Nielsen completion of the

exponential family, the MLE is given as a generalized affine function h. When this is so, the

η vectors corresponding to the hyperplanes that characterize h in its Theorem 4 representa-

tion, are directions of no variability. This is to say that the observed data is concentrated on

the hyperplanes characterizing h in its Theorem 4 representation. Therefore, null eigenvec-

tors of the estimated Fisher information matrix evaluated along the likelihood maximizing

sequence are estimators of the η vectors corresponding to the hyperplanes that characterize

h in its Theorem 4 representation.

2.6 Implementation and examples

The glm function in R statistical software (R Development Core Team, 2017) maximizes

the likelihood of a generalized linear regression model via a Newton-Raphson (iteratively

reweighted least squares) algorithm. When the observed data for a discrete generalized

regression model are on the boundary of its support, the Newton-Raphson (iteratively

reweighted least squares) algorithm in glm outputs a likelihood maximizing sequence of

iterates. This sequence of iterates will never converge in finite time. However, the likelihood
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asymptopes in this setting so that a reasonable approximate maximum likelihood estimator

can be reported in finite time.

The Newton-Raphson (iteratively reweighted least squares) algorithm in glm can not

find the MLE when it exists in the Barndorff-Nielsen completion of the exponential family.

In this setting, the algorithm will either return the warning message “fitted probabilities

numerically 0 or 1 occurred” in the case of logistic regression or “fitted rates numerically 0

occurred” in the case of Poisson regression, or glm will return nothing in the way of warnings.

In this latter case, glm has not found the MLE and did not alert users of its failure to do

so. This leaves users completely in the dark when using glm without a sophisticated means

to check if the MLE is in the Barndorff-Nielsen completion of the exponential family.

We provide an idea for an implementation that checks whether or not the MLE exists

in the Barndorff-Nielsen completion of the exponential family. If the MLE exists in the

usual sense, then the implementation calls glm and the user continues with their analysis

as originally intended. If the MLE exists in the Barndorff-Nielsen completion of the expo-

nential family, then the implementation will return estimates of the null eigenvectors of the

estimated Fisher information matrix η̂1,...,η̂j , where j is the number of null eigenvectors

of the estimated Fisher information matrix. These null eigenvectors are estimates of the η

vectors in the Theorem 4 representation of a generalized affine function h which is the log

density of the exponential family when data is on the boundary of its support. The next

Theorem, in combination with Theorems 5-10, justifies this approach.

Definition 5

Painlevé-Kuratowski set convergence (Rockafellar and Wets, 1998, Section 4.A) can be

defined as follows (Rockafellar and Wets (1998) give many equivalent characterizations). If

Cn is a sequence of sets in R
p and C is another set in R

p, then we say Cn → C if

(i) For every x ∈ C there exists a subsequence nk of the natural numbers and there exists

xnk
∈ Cnk

such that xnk
→ x.

(ii) For every sequence xn → x in R
p such that there exists a natural number N such that

xn ∈ Cn whenever n ≥ N , we have x ∈ C. �
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Theorem 11

Suppose that An ∈ R
p×p is a sequence of positive semidefinite matrices and An → A

componentwise. Fix ε > 0 less than half of the least nonzero eigenvalue of A unless A is

the zero matrix in which case ε > 0 may be chosen arbitrarily. Let Vn denote the subspace

spanned by the eigenvectors of An corresponding to eigenvalues that are less than ε. Let V

denote the null space of A. Then Vn → V . �

Proof: We first consider the case that A is positive definite and V = {0}. We can write

An = A+(An−A) where (An−A) is a perturbation of A for large n. From Weyl’s inequality

(Weyl, 1912), we have that all eigenvalues of An are bounded above zero for large n and

Vn = {0} as a result. Therefore, Vn → V as n→ ∞ when A is positive definite.

Now consider the case that A is not strictly positive definite. Without loss of generality,

let x ∈ V be a unit vector. For all 0 < γ ≤ ε, let Vn(γ) denote the subspace spanned by

the eigenvectors of An corresponding to eigenvalues that are less than γ. By construction,

Vn(γ) ⊆ Vn.

From Rockafellar and Wets (1998, Example 10.28), if A has k zero eigenvalues, then

for sufficiently large N1 there are exactly k eigenvalues of An that are less than ε for all

n > N1. The same is true with respect to γ for all n greater than N2. Thus jn(γ) = jn(ε)

which implies that Vn(γ) = Vn for all n > max{N1, N2}.
We now verify part (i) of Painlevé-Kuratowski set convergence with respect to Vn(γ).

Let N3 be such that xTAnx < γ2 for all n ≥ N3. Let λk,n and ek,n be the eigenvalues

and eigenvectors of An, with the eigenvalues listed in decreasing orders. Without loss of

generality, we assume that the eigenvectors are orthonormal. Then,

x =

p∑

k=1

(xT ek,n)ek,n, 1 = ‖x‖2 =
p∑

k=1

(xT ek,n)
2,

xTAnx =

p∑

k=1

λk,n(x
T ek,n)

2.

There have to be eigenvectors ek,n such that xT ek,n ≥ 1/
√
p with corresponding eigenvalues

λk,n that are very small since λk,n(x
T ek,n)

2 < γ. But conversely, any eigenvalues λk,n such
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that λk,n ≥ γ must have

λk,n(x
T ek,n)

2 < γ2 =⇒ (xT ek,n)
2 < γ2/λk,n ≤ γ.

Define jn(γ) = |{λk,n : λk,n ≤ γ}| and xn =
∑p

k=p−jn(γ)+1(x
T ek,n)ek,n where xn ∈ Vn(γ) by

construction. Now,

‖x− xn‖ = ‖
p∑

k=1

(xT ek,n)ek,n −
p∑

k=p−jn(γ)+1

(xT ek,n)ek,n‖

= ‖
p−jn(γ)∑

k=1

(xT ek,n)ek,n‖

≤
p−jn(γ)∑

k=1

|xT ek,n|

≤ (p− jn)
√
γ

≤ p
√
γ

for all n ≥ N3. Therefore, for every x ∈ V , there exists a sequence xn ∈ Vn(γ) ⊆ Vn

such that xn → x since this argument holds for all 0 < γ ≤ ε. This establishes part (i) of

Painlevé-Kuratowski set convergence.

We now show part (ii) of Painlevé-Kuratowski set convergence. Suppose that xn → x ∈
R
p and there exists a natural number N4 such that xn ∈ Vn(γ) whenever n ≥ N4, and

we will establish that x ∈ V . From hypothesis, we have that xTnAnxn → xTAx. Without

loss of generality, we assume that x is a unit vector and that |xTnAnxn − xTAx| ≤ γ for all

n ≥ N5. From the assumption that xn ∈ Vn(γ) we have

xTnAnxn =

p∑

k=1

λk,n(x
T
nek,n)

2 =

p∑

k=p−jn(γ)+1

λk,n(x
T
nek,n)

2 ≤ γ (2.36)

for all n ≥ N4. The reverse triangle inequality gives

||xTnAnxn| − |xTAx|| ≤ |xTnAnxn − xTAx| ≤ γ
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Table 2.1: The estimated null eigenvector of inverse Fisher information matrix (column 2)
and the gdor computed by Geyer (2009) (column 3). Only nonzero components are shown.

coefficient η̂ η̂gdor
intercept -1 -1
v1 1 1
v2 1 1
v3 1 1
v5 1 1
v1 : v2 -1 -1
v1 : v3 -1 -1
v1 : v5 -1 -1
v2 : v3 -1 -1
v2 : v5 -1 -1
v3 : v5 -1 -1
v1 : v2 : v3 1 1
v1 : v3 : v5 1 1
v2 : v3 : v5 1 1

and (2.36) implies |xTAx| ≤ 2γ for all n ≥ max{N4, N5}. Since this argument holds for all

0 < γ < ε, we can conclude that x ∈ V . This establishes part (ii) of Painlevé-Kuratowski

set convergence with respect to Vn(γ). Therefore Vn → V and this completes the proof. �

Theorem 11 states that the span of estimated null eigenvectors will converge to its

population counterpart. In our case, the population counterpart is the span of the vectors

that construct Hj in the Theorem 4 characterization of a generalized affine function h.

Geyer (2009) developed a different implementation to compute directions of recession.

This implementation requires computationally expensive repeated linear programming al-

gorithms, stated in Sections 3.10-3.13 and implemented in the rcdd package (Geyer and

Meeden, 2008), that are slow in moderately sized problems and will not scale to larger

problems. An advantage of our proposed implementation to that of Geyer (2009) is its

relative speed, which is shown in our examples. A thorough development of a robust im-

plementation is a research topic that falls outside of this dissertation.
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2.6.1 Example 1: Example 2 from Geyer (2009)

As stated in Geyer (2009), this example consists of a 2× 2× · · · × 2 contingency table with

seven dimensions hence 27 = 128 cells. The file http://www.stat.umn.edu/geyer/gdor/

catrec.txt presents the data as eight vectors, seven categorical predictors v1, ..., v7 that

specify the cells of the contingency table and one response y that gives the cell counts.

Table 2.1 displays the estimated null eigenvector of the inverse Fisher information matrix

using our implementation, denoted η̂, and the estimated gdor in Geyer (2009), denoted η̂gdor.

The η̂ vector is identical to η̂gdor up to six decimal places. Therefore, the inferences resulting

from these two distinct approaches is identical up to rounding. The only material difference

between our implementation and the linear programming in Geyer (2009) is computational

time. Our implementation estimates η in 0.059 seconds of user time, while the call to

linearity in the rcdd package estimates η̂gdor in 7.259 seconds of user time.

2.6.2 Example 2

We simulate a big data example and show that our methods are much faster than the linear

programming of Geyer (2009) for recovering directions of recession. This dataset consists of

five categorical variables with four levels each and a response variable Y ∼ Poisson(λ = 1).

A model with all four way interaction terms is fit to this data. It may seem that the four way

interaction model is too large (1024 data points vs 781 parameters) but χ2 tests select this

model over simpler models, see Table 2.2. In Table 2.2, all considered models are nested.

Our implementation discovers and estimates a direction of recession, η in the four way

interaction model. We estimate η in 15.639 seconds of user time, while the call to linearity

in the rcdd package estimates no η̂gdor in 2797.189 seconds of user time. The direction η̂

estimated using our approach satisfies conditions (15a) and (15b) of Geyer (2009) which

implies that it is a generic direction of recession.



2.6. Implementation and examples 44

Table 2.2: Model comparisons for Example 2. The model m1 is the main-effects only
model, m2 is the model with all two way interactions, m3 is the model with all three way
interactions, and m4 is the model with all four way interactions.

null model alternative model df Deviance Pr(> χ2)

m1 m4 765 904.8 0.00034
m2 m4 675 799.2 0.00066
m3 m4 405 534.4 0.00002



Chapter 3

Aster Models

3.1 Introduction

The estimation of expected Darwinian fitness, the expected lifetime number of offspring an

organism has, is a very important quantity in both biology and genetics. The importance

of this quantity is not just limited to scientific disciplines, it is important for public policy.

With genetic theory and simulation studies, Bürger and Lynch (1995) shows that, under

certain conditions, a changing environment leads to extinction of species. Based on a field

experiment on an annual plant, Etterson and Shaw (2001) inferred that predicted rates

of evolutionary responses may be too slow to maintain adaptation in the face of climate

change. In these papers, and all life history analyses of their kind, expected Darwinian

fitness is the response variable. The interesting scientific conclusions are drawn from it.

When Darwinian fitness is unable to be measured, a useful surrogate is measured in its

place.

In many life history analyses, values of expected Darwinian fitness are plotted as a fitness

landscape. A fitness landscape is the conditional expectation of Darwinian fitness plotted

across phenotypic trait values. As such, the fitness landscape is a regression function. Lande

and Arnold (1983) proposed an approach to estimation of the fitness landscape. Their mod-

eling of an expected surrogate Darwinian fitness (survival probability) was conducted via

ordinary least squares (OLS) regression with the assumption that the distribution of Dar-

winian fitness is normally distributed. This assumption is unlikely to be met in practice

45
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(Mitchell-Olds and Shaw, 1987; Shaw, Geyer, Wagenius, Hangelbroek, and Etterson, 2008).

The distribution of Darwinian fitness often has a large atom at 0 (corresponding to individ-

uals that have died before reproducing), is multimodal (corresponding to breeding season),

right-skewed, and integer-valued. These problems sternly call into question the appropri-

ateness of OLS as a tool for inference on Darwinian fitness. The aster model was designed

to fix all of these problems present with the Lande and Arnold (1983) approach. The aster

model is the state-of-the-art model for all life history analyses in which the estimation of

expected Darwinian fitness is the primary goal.

Researchers using an aster model in their analysis are estimating expected Darwinian

fitness through maximum likelihood estimation. The aster model itself is a regular full

exponential family. Properties of parameter estimation in this setting are well understood.

Specifically, the maximum likelihood estimator for the aster model mean-value parameter

vector τ̂ is asymptotically normal with asymptotic covariance matrix given by Fisher in-

formation Σ. Estimates of both τ and Σ are provided in the R contributed aster package

(Geyer, 2014).

This chapter is divided into two sections. In the first section, the aster model is explained

in detail and an interesting connection of aster models and Fisher (1930) is established. In

the second section, a complete aster analysis of the Manduca sexta data is given (Eck, et

al., 2015a). In this analysis, aster models are used to estimate both expected Darwinian

fitness and the population growth rate for hypothetical individuals.

3.2 The aster model

The aster model is a graphical model obeying the following five assumptions:

A1. The graph is acyclic.

A2. A node has at most one predecessor node.

A3. The joint distribution is the product of conditional distributions, one conditional

distribution for each arrow in the aster graph.
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A4. Predecessor is sample size.

A5. Conditional distributions for arrows are one-parameter exponential family (pos-

sibly a different family for each arrow).

Assumptions A4 and A5 mean for an arrow yk −→ yj that yj is the sum of independent

and identically distributed random variables from the exponential family for the arrow and

there are yk terms in the sum (the sum of zero terms is zero). These assumptions imply

that the joint distribution of the aster model is an exponential family (Geyer, Wagenius,

and Shaw, 2007, Section 2.3).

As an example of an analysis using aster models, consider a population of Echinacea

angustifolia, plants where total flower head count is taken to be Darwinian fitness as in

Geyer, et al. (2007). The graph for one individual is shown in panel A of Figure 3.1.

There are nine response variables per individual. The first three indicate survival in each

of three years. The next three indicate flowering (zero is no flowers, one is some flowers).

The last three are flower head counts. The conditional distributions are Bernoulli for the

indicator variables (first six) and zero-truncated Poisson for the rest (last three). These are

all exponential families (property A5). Property A4 and sum of zero terms is zero imply

that predecessor equals zero implies successor equals zero. Hence the aster model has dead

individuals remaining dead, has dead individuals having no flowers, and has individuals

with no flowers having zero flower head count. Thus the aster model contains the major

dependencies in life histories. The combination of a Bernoulli arrow followed by a zero-

truncated Poisson arrow gives a zero-inflated Poisson distribution (e. g., the conditional

distribution of Y7 given Y1). This factorization of zero-inflated Poisson into product of

zero-truncated Poisson and Bernoulli is required by A5 (one parameter per arrow).

The likelihood for the aster model corresponds to the graphical structure of the lifecy-

cle. Variables in the aster model are denoted by Yj where j ranges over the nodes of the

graph. These variables correspond to components of fitness and Darwinian fitness. The
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1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

Figure 3.1: Graphical structure of the aster model for the E. angustifolia data.

joint distribution of all the random variables in an aster model follows the factorization

pr(YJ |YF ) =
∏

G∈G

pr(YG|Yp(G)). (3.1)

The index set J refers to the indices corresponding to the non-initial nodes of the graph, F

corresponds to the set of initial nodes. The function p(G) is defined to be the map p : G→
J ∪ F for all G ∈ G where G is the partition of J that determines the graphical structure.

The interpretation of p(G) is that the node p(G) is the predecessor node for node G ∈ G.
The factorization of the joint distribution into conditional distributions pr(YG|Yp(G)) for all

G ∈ G then takes on special meaning when each conditional distribution is an exponential

family. All the conditional distributions in (1) are now taken to be exponential families

with canonical statistic YG and canonical parameter θG. There are Yp(G) independent and

identically distributed copies of random variable YG where we require P (YG = 0|Yp(G) =

0) = 1. This is the mathematical representation of the fourth aster model assumption. It

has the interpretation that individuals that have died remain dead. With these assumptions

met the log likelihood of the whole family has the form

∑

G∈G


∑

j∈G

Yjθj − Yp(G)cG(θG)


 =

∑

j∈J

Yjθj −
∑

G∈G

Yp(G)cG(θG) (3.2)
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where θG is the canonical parameter vector for the Gth conditional family, which has com-

ponents θj , j ∈ G, and cG is the cumulant function for the Gth canonical family. Geyer,

Wagenius, and Shaw (2007) demonstrate that this log likelihood can be reparameterized to

capture the dependence structure of the graphical model by collecting terms with the same

Yj . This “collecting of terms” gives

∑

j∈J

Yj


θj −

∑

G∈p−1(j)

cG(θG)


−

∑

G∈p−1(F )

Yp(G)cG(θG)

in place of (3.2). We arrive at a new aster model parameterization with

ϕj = θj −
∑

G∈p−1(j)

cG(θG) j ∈ J,

as the canonical parameters, Yj as the canonical statistics, and

∑

G∈p−1(F )

Yp(G)cG(θG)

as the cumulant function. The log likelihood for the joint distribution simply becomes

l(ϕ) = 〈Y, ϕ〉 − c(ϕ).

The method of collecting the same Yj ’s and then switching from θ’s to ϕ’s to reparam-

eterize the model is what is referred to as the aster transform. The resulting distribution

is an exponential family with canonical statistic Y and canonical parameter ϕ. This cur-

rent parameterization of the aster model has too many parameters and is of little scientific

interest. We consider affine submodels of the form

ϕ = a+Mβ

whereM is a known model matrix, a is a known offset vector, and β is a canonical parameter

vector with dimension smaller than ϕ. This parameterization specifies an exponential family

distribution with canonical statistic MTY . The dimension of this new model will be the

dimension of β if M has full rank. In this case the offset vector a and the model matrix
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M are assumed to not be stochastic. The analyses that we consider do not have an offset

present. The log likelihood for the unconditional canonical submodel is

l(β) = 〈MTY, β〉 − csub(β) (3.3)

where β is the unconditional aster submodel canonical parameter vector. In this likelihood

formulation it is understood that csub(β) = c(a+Mβ). The exponential family form allows

us to conveniently obtain the maximum likelihood estimator for our canonical parameter

vector β using conventional software. First denote τ as our mean-value parameter vector.

The map h : β 7→ τ is a 1-1 invertible mapping where h(β) = ∇csub(β). We see that

∇l(β̂) = 0 occurs when

∇csub(β̂) =MTY which is equivalent to

τ̂ =MTY.

We now have a MLE for our mean-value parameter τ . From invariance of maximum likeli-

hood estimation we get β̂ by solving h−1(τ̂) using optimization software. The inverse map

cannot be expressed in closed form. From the usual asymptotics of MLE and exponential

families we have,

√
n
(
β̂ − β

)
d−→ N

(
0, Σ−1

)
(3.4)

√
n (τ̂ − τ)

d−→ N (0, Σ) , (3.5)

where Σ is the Fisher information matrix for the canonical parameter vector β. The aster

software in R will give us β̂, τ̂ , and Σ̂−1. Our procedures focus on the canonical parameter-

ization of the unconditional aster submodel. However there are useful asymptotic results

for either the canonical parameter β or the mean-value parameter τ . Expected Darwinian

fitness is most closely associated with the µ parameterization. The relation between ϕ and

µ is analogous to that of β and τ , see Figure 3.2. µ is the mean-value parameter for the
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Figure 3.2: A depiction of the transformations necessary to change parameterizations.

full aster model. The MLE for µ is the canonical statistic for the full model. The canonical

statistic for the full model is the response vector Y .

From (3.4) and the delta method we can obtain the asymptotic distribution for any

function of β̂ satisfying the conditions of the delta method. In particular, the asymptotic

distribution for the MLE of expected Darwinian fitness is of interest. The asymptotic

distribution for a differentiable mapping of β is

√
n
(
g(β̂)− g(β)

)
d−→ N

(
0, ∇g(β)Σ−1∇g(β)T

)
(3.6)

The asymptotic distribution for the maximum likelihood estimator of the mean-value pa-

rameter µ is

√
n (µ̂− µ)

d−→ N
(
0, ∇2c(Mβ)MΣ−1MT∇2c(Mβ)T

)
(3.7)

where g(β) = ∇c(Mβ).

3.2.1 Fisher’s table of reproduction

When the aster model graphical structure takes the form of survival, adulthood, offspring,

as is the case in the E. angustifolia example, an interesting connection to Fisher can be

made. In Fisher (1930, pg. 24), the table of reproduction is defined. Fisher defines bx

as the rate of reproduction at age x. The quantity lx is defined to be the number of
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individuals in the population living to age x constituting unique phenotypic composition.

This quantity is defined in Fisher (1930, pg. 23). For our purposes, lx is interpreted as

an individual’s probability of living to age x. Fisher defines the table of reproduction

to comprise lxbx values. Define µx to be expected Darwinian fitness for age x where µx

is also an unconditional aster model mean-value parameter for age x. We propose that

µx = lxbx for organisms whose lifecycle follows a survival to reproduction pattern. The

proof is obtained by the examination of the definitions and aster model reparameterizations.

The unconditional expectation of fitness at age x is the expected value of the probability of

surviving to age x multiplied by the conditional expectation of fecundity at age x for one

individual, denoted ξx. These relationships are further explained in Geyer (2010).

Proposition 1

If the lifecycle follows a survival to reproduction pattern, then µx = lxbx. �

Proof: Let yx be observed offspring at age x so that µx = E(yx). We then have

µx = E(yx) = E(E(yx|yp(x))).

From the predecessor is sample size property of the aster model we have that E(E(yx|yp(x))) =
E(yp(x) E(yx|yp(x) = 1)) where ξx = E(yx|yp(x) = 1). Putting it all together we see that,

µx = E(yx) = ξxµp(x) = ξxξp(x)ξp(p(x))...E(yinitial).

Here, ξx is the expected fitness for an individual surviving to age x, ξp(x) is the probability

of survival to age x conditioned on reaching the previous age, ξp(p(x)) is the probability of

survival to age x − 1 conditioned on reaching the previous age, and so on. By definition,

ξx = bx. This pattern continues all the way to the initial node where all individuals are

alive so that E(yinitial) = 1 for one individual. The product of the other ξ terms is equal

to the probability of living to age x which is denoted by lx. Therefore, µx = bxlx. The

proof for case two follows a similar outline with the exception that ξx is expected fitness
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conditioned on individuals reaching a reproduction stage in their lifecycle. There are living

individuals in this model that are not reproducing. In this case ξxξp(x) = bx where ξp(x) is

probability that the individual reaches its reproductive state at age x. The product of the

other ξ terms is equivalent to lx as in the previous case. Therefore, we can conclude that

µx = lxbx, completing the proof. �

With this equivalence, aster models can be thought of as “generalized Fisher table of

reproduction models” since the aster model can appropriately model lifecycles outside of

the survival to adulthood to offspring context. We now proceed with a detailed example of

an aster analysis of the M. Sexta data.

3.3 Manduca sexta example

3.3.1 Introduction

There is abundant evidence for phenotypic and genotypic selection on quantitative traits in

natural populations (Kingsolver, et al., 2001; Siepielski, et al., 2009). Most estimates of the

strength and pattern of phenotypic selection — more than 90% — are based on individual

components of fitness, rather than metrics of lifetime fitness (Kingsolver and Diamond,

2011). The resulting inferences may reflect the nature of phenotypic selection only weakly

or not at all, to the extent that components of fitness differ in their relationships to traits.

For studies that do evaluate lifetime fitness of individuals or genotypes, the distribution of

fitness is generally not normal: it is typically highly skewed and often multimodal, with a

large mode at zero, corresponding to individuals that die without reproducing. Thus, the

assumption of normally distributed residuals required for the standard statistical analyses

does not hold, making inference and hypothesis testing about selection problematic. Aster

models were developed to address this challenge. This approach produces statistically valid

models for fitness by taking into account the dependence of later expressed fitness com-

ponents on those expressed earlier and also by employing appropriate probability models

for each component (Geyer, et al., 2007; Shaw, et al., 2008). Aster models for inferring

phenotypic selection have been validated by Shaw and Geyer (2010).
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In many species, including most insects, variation in age at first reproduction is a major

component of fitness that can have a large effect on the population growth rate and similar

metrics of fitness (Roff, 2002). This information is typically difficult both to obtain and to

incorporate into analyses of fitness. As a result, integrated analyses of phenotypic selection

that consider variation in time to reproduction are currently limited to relatively few cases

of long-term studies of birds, mammals and plants (Ozgul et al., 2009; Clutton-Brock and

Sheldon, 2010; Ozgul et al., 2010; Charmantier and Gienapp, 2014; Childs, et al., 2004).

We extend previous Aster models to incorporate age at reproduction in the model for

fitness. These new models (R package aster2, Geyer, 2010) allow us to specify “dependence

groups” that represent different life history stages, as well as variation in the age at which

individuals reach these stages, and include these in the model for fitness.

Holometabolous insects have distinct larval, pupal and adult (reproductive) life stages,

and rates of growth and development within and across life stages have important effects

on fitness. For example, Kingsolver, et al. (2012) used common garden field studies with

Manduca sexta to estimate phenotypic selection on body size and age at different devel-

opmental stages. However, that study estimated selection via survival, reproduction, and

generation time separately, and therefore could not quantify how selection operates over

the entire life cycle, nor identify the interplay of fitness components in their contributions

to lifetime fitness. Here we describe and apply aster2 models to these data to gain an

integrated view of phenotypic selection on size and age across development, along with in-

sight into the interplay of fitness components, in this study system. We discuss the utility

of these methods in clarifying selection in other systems. Our statistical results are fully

reproducible (Eck, et al., 2015b)

3.3.2 Methods

Study System and Field Studies

The Tobacco Hornworm, M. sexta, is found in Central America and the southern US, with

eastern populations extending north into New York and Massachusetts. In the southeastern
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US, including North Carolina, cultivated tobacco and tomato are dominant host plants for

M. sexta, which can be an important agricultural pest in these systems. Our field studies

used tobacco cultivars (see below).

After hatching, M. sexta larvae grow and develop rapidly through five (occasionally

more) larval instars, growing from ∼ 1 mg to ∼ 8–12 g in body mass in a few weeks un-

der optimal conditions. Rates of larval growth and development are strongly influenced by

environmental temperatures and host plant quality. Towards the end of the final instar,

larvae stop feeding and wander off the host plant to pupate nearby in the soil. A faculta-

tive pupal diapause is determined by larval photoperiod, such that M. sexta populations

have multiple generations per year in most areas (2–3 generations/year in North Carolina).

Because pupae do not feed, maximum larval mass at wandering strongly determines pupal

and adult size and the number of eggs (oocytes) produced by females.

For M. sexta, both host plant quality and larval susceptibility to natural enemies are

important determinants of survival to adult reproduction. For example, in the southeast-

ern US including North Carolina, the larval parasitoid Cotesia congregata (Hymenoptera:

Braconidae) is often a major source of larval mortality. Thus, rapid rates of early larval

growth and development may strongly influence survival to reproduction in this system.

Here we consider a field selection study of M. sexta conducted in a cultivated tobacco

garden in the Mason Farm Biological Reserve, Chapel Hill NC, in July 2010. Details are

fully described by Kingsolver, et al. (2012); we briefly summarize here. Prior to the study,

the garden plot (12 m by 20 m in size) was tilled and fertilized. Tobacco plants (Nicotiana

tabacum, var. LA Burley 21) were grown from seeds in pots in the greenhouse at UNC, and

then they were transplanted to the field garden. A total of 60 plants in 6 rows were used

in the study plot, with a single buffer row of tobacco plants around the perimeter of the

study plot. The plants were allowed to establish for ∼ 4 weeks prior to the start of a study;

plants that did not thrive after transplanting were replaced. The garden was watered daily,

and insect herbivores were removed weekly by hand from each plant. To minimize larval

predation by birds and social wasps, plants were covered with bridal veil netting just prior

to the study. The netting excludes large predators but allows access to the caterpillars by
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parasitoids, including C. congregata.

To initiate the study, M. sexta eggs were collected from pesticide-free tobacco plants

at the NC State Agricultural Extension Farm, Clayton NC, approximately 100 km from

Chapel Hill. Eggs were allowed to hatch in the lab and were maintained individually on

tobacco leaves in an environmental chamber at 25 ◦C. with a 16L:8D light cycle during the

1st and 2nd larval instars. Body mass and age at the start of the 2nd and 3rd instars were

measured. Following molt into the 3rd instar, each larva was randomly assigned to a plant

(4 larvae per plant, to avoid larval competition for food) in the study plot. Each larva was

marked using water-based nail polish on the tip of the dorsal horn (and re-applied after each

molt). This allowed us to track individuals in the field throughout the study Kingsolver, et

al. (2012).

During daily field censuses, we recorded the presence or absence of each larva. Recapture

probabilities (given alive) for larvae consistently exceeded 90%. At the start of the 4th and

5th instar, the mass and age of each larva were recorded, and the larva was returned to its

plant.

When larval mass late in the 5th instar exceeded 5 g (about 14–16 days), larvae were

removed from the field and reared individually on tobacco leaves in petri dishes in an

environmental chamber at 26.7 ◦C (16L:8D light cycle) until wandering. Mass and age at

wandering were recorded, then each larva was placed in a wooden block (Yamamoto, 1969)

at 25 ◦C to pupate. Pupal mass was measured at 7 days after wandering to ensure the pupal

cuticle hardened prior to handling. Pupae were placed in Solo cups with moistened soil, kept

at 20 ◦C, and checked daily each morning until eclosion (considered as age of reproduction).

Estimates of potential fecundity for adult females (48 h after eclosion) were obtained by

dissecting out and counting the number of ovarioles at stage 6 or later (Yamauchi and

Yoshitake, 1984; Diamond and Kingsolver, 2010a).

Statistical Analyses

Our analyses evaluate the relationship between fitness and three traits, age (since hatching)

at the second instar stage, mass at that age, and mass at eclosion. Individuals reproduce
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Figure 3.3: Aster Graph for FemaleM. sexta. Arrows go from predecessor nodes to successor
nodes. Lines (that are not arrows) link dependence groups. Nodes are labeled by their
associated variables. P node is pupation, T nodes are survival and eclosion indicators, B
nodes are ovariole counts. Subscripts indicate age (in days), subsubscripts indicate variables
in the same dependence group (0 = death, 1 = surviving but pre-eclosion, 2 = eclosion at
this time). For simplicity, all deaths after pupation but before reproduction were modeled
as occurring on day 33. No individuals survived past day 40.

only if they survive to eclosion and they eclose only if they survive to pupation. Thus there

is inherent dependence of each component of fitness on survival to that life history stage.

We here use an individual’s ovariole count as the best proxy for its lifetime fitness. No

measure of fitness is perfect, and this one has the limitation that the data do not span the

complete life cycle, but they do span the great majority of it. Ovariole count will henceforth

be referred to simply as observed fitness. The unconditional expectation of ovariole count

for an individual at the beginning of the experiment will be referred to as expected fitness.

To address the problem that lifetime fitness generally does not conform to any standard

statistical distribution, in part because many individuals die without reproducing, Aster

directly models this distribution by explicitly modeling the distributions of its underlying

components, as well as their dependence structure.

The underlying dependence structure of development for females in this dataset can

be represented by an Aster graph (Figure 3.3). The first arrow indicates an individual’s

survival to pupation, where survival is modeled as a Bernoulli random variable, shown as

P in the graph. For an individual that survived to pupation, we account for the timing of

metamorphosis by using dependence groups in the graphical model. For example, the next

three nodes in this graph (T330 , T331 , and T332) together represent a three-way switch where
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a particular M. sexta can only transition into one of these three nodes. The T330 node is

1 if the individual died before reaching eclosion. For simplicity, all individuals that died

following pupation and before eclosion are treated as dying at age 33 days, the day when

the first individual in our study eclosed. The T331 node is 1 if the individual remained as

a pupa on day 33, and the T332 node is 1 if the individual eclosed at age 33. In general, if

the predecessor is 0, then every component in the dependence group is 0. However, if the

predecessor is 1 then exactly one component of the response in the dependence group is 1

and the rest are 0. The dependence groups at each successive age follow a similar pattern,

albeit with only two nodes because all mortality after pupation but before reproduction

is treated as occurring on day 33. No individual survived past day 40. The dependence

groups are modeled as multinomial with the number of categories equal to the number of

nodes in the dependence group. For any age i when an individual has eclosed, Ti2 = 1, the

ovariole counts, labeled Bi, are modeled with a zero-truncated Poisson distribution, given

that females reaching eclosion are expected to have more than zero ovarioles.

To estimate fitness, we modeled both females and males, recognizing that the graph

corresponding to males does not have ovariole count nodes, otherwise the graphs are the

same. In order to model the probability of an individual female’s survival to pupation we

included the information for the males in our statistical model, because an individual can

be sexed only once it reaches the pupal stage.

We use an unconditional aster model (Shaw, et al., 2008) to obtain comprehensive

estimates of lifetime fitness by modeling these distinct fitness components jointly according

to this graphical structure. Once the distributions of all the nodes in the aster model

and their dependence structure are specified, phenotypic selection analysis proceeds by

regressing the nodes considered to correspond to lifetime fitness, here female ovariole counts,

on the phenotypic predictors of interest. This regression, conducted as an unconditional

aster model, takes into account all life history stages. In the unconditional aster model

unconditional expected fitness is a monotone function of fitness on the canonical parameter

scale, which is modeled as a linear or quadratic function of the traits (Shaw and Geyer,

2010, Appendix, which is generalized our Appendix). To assess directional selection, as well
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as the curvature of the fitness function, we consider two aster models having as predictors

both of the mass traits as well as the individual’s age when it reached the second instar

larval stage. The first model is a general linear function of the traits (mass at second instar,

mass at eclosion, and age at second instar) on the canonical parameter scale. The second

model is a general quadratic function of the traits on the canonical parameter scale; as

such, it includes squares of each trait and pairwise interactions between the traits (Blows

and Brooks, 2003; Shaw and Geyer, 2010).

In order to compare models of interest, a Rao test is used where the reference distribution

is χ2 with degrees of freedom equal to the difference of free parameters between the two

models. Fitness landscapes (Lande and Arnold, 1983; Shaw and Geyer, 2010) are then

generated from the model selected by the Rao test. This is done by evaluating expected

fitness for hypothetical individuals having various values of the phenotypic traits (mass at

second instar, mass at eclosion, and age at second instar) ranging over a grid and then

making a contour plot of these values (Figure 3.4).

The analyses described above account for variation in survival and ovariole counts but

do not take into account that, in a growing population, earlier produced offspring contribute

more to fitness than those produced later. To address this aspect of fitness, we extended the

aster models described by Shaw and Geyer (2010). The population growth rate parameter

(λ) for the observed population of M. sexta is estimated from the stable age equation

(Fisher, 1930), which is equation (3.11) in the Appendix, as the basis of accounting for

individuals’ age at reproduction in their lifetime fitness.

We examine the effects of λ on fitness by refitting the data using the model determined by

equations (3.8) and (3.10) in the Appendix with q(z) indicating a function of the same form

as was used in the fit that did not account for λ but with different regression coefficients.

This makes expected fitness adjusted for population growth rate a monotone function of

q(z) as explained in the Appendix.

We then also adjust the fitness landscape to plot fitness adjusted for λ as given by

equation (3.12) in the Appendix. Because the adjustment for λ involves dimensionless

factors e−λt, this fitness landscape must be a relative fitness landscape (adjusted fitness
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Table 3.1: Rao tests for smaller models. P -values and degrees of freedom for Rao tests of
three smaller models against the larger model that includes linear, quadratic, and interaction
term for the two mass traits and a linear term for age at second larval instar stage.

null model df P -value

removes quadratic terms for mass at second instar 2 3.37× 10−10

removes quadratic terms for mass at eclosion 2 < 10−10

removes linear term for age at second instar 1 7.88× 10−5

divided by mean adjusted fitness).

3.3.3 Results

Larval mortality prior to pupation was 23%, including 2% mortality due to parasitism by

C. congregata. Field studies suggest that rates of larval mortality vary seasonally in this

region (Diamond and Kingsolver, 2010b; Kingsolver, et al., 2012).

The phenotypic selection analysis detected relationships between lifetime fitness and all

three traits considered as predictors. The aster model that includes the linear and quadratic

terms for the two mass traits and their interaction, as well as the linear term for age at

second larval instar stage, was chosen based on the Rao test. This model is chosen over

the model that is full quadratic (including interactions) in all three traits (P = 0.105, Rao

test, 3 degrees of freedom). All Rao tests that considered immediately smaller models were

rejected, see 1.

The fitness landscape generated from this model shows that absolute fitness not ad-

justed for population growth rate (unconditional expected ovariole count, left column of

Figure 3.4) is predominantly explained by an individual’s mass at eclosion. As mass at

eclosion increases, unconditional expected ovariole count increases with a maximum found

for female M. sexta weighing roughly 2 grams at eclosion, beyond which fitness declines.

Considering mass at the second instar stage, the estimated contours viewed in relation to

the observed data suggest that selection is largely directional with fitness inversely related

to this trait, despite significant curvature of the fitness function in relation to this trait. In

addition, unconditional expected ovariole counts decline with increasing age to 2nd instar



3.3. Manduca sexta example 61

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

m
as

s 
at

 e
cl

os
io

n

mass at 2nd instar stage

 50 

 100 

 150 
 200 

 250 

 250 

 300 

 350 

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

 0.2 

 0.4 

 0.6 

 0.8 

 1 

 1.2 

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

m
as

s 
at

 e
cl

os
io

n  50 

 100 

 150 

 200 

 250 

 300 
●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

 0.2 

 0.4 

 0.6 

 0.8 

 1 

 1.2 

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

m
as

s 
at

 e
cl

os
io

n

 50 

 100 

 150 

 200 

 200 

 250 

 300 
●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

 0.2 

 0.4 

 0.6 

 0.8 

 0.8  0.8  1 

 1.2 

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

0.000 0.005 0.010 0.015

0.
0

0.
5

1.
0

1.
5

2.
0

 50 

 100 

 150 

 200 

 200 

 250 

 300 

●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

0.000 0.005 0.010 0.015

 0.2 

 0.4 

 0.6 

 0.8 

 0.8  0.8 
 1 

Figure 3.4: Fitness landscapes without (left column) and with (right column) adjustment
for population growth rate λ. Rows top to bottom are 2nd instar stage reached at age 2, 3,
4, and 5. Numbers on contours are absolute fitness (unconditional expected ovariole counts)
in the left column and are relative fitness (absolute fitness divided by its average over the
population) in the right column. All plots display fitness as contours vs. mass at eclosion
and mass at 2nd instar stage. Boxes denote locations of maxima. The maximum values for
unconditional expected ovariole counts for each age are 363.6 (age 2), 342.4 (age 3), 322.4
(age 4), and 303.6 (age 5).
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(left column of Figure 3.4). For example, the maximum unconditional expected ovariole

counts declines by 16% as age to 2nd instar increases from 2 to 5 days. This effect is largely

due to the effects of age at 2nd instar on survival to eclosion: slower development (later age

at 2nd instar) is associated with lower survival.

Absolute fitness (unconditional expected ovariole count) predicted from the model for

predictor values of individuals that survive to eclosion range from 102.7 to 301.37. But

observed ovariole counts for these individuals are larger ranging from 173.8 to 350.3. The

reason for the discrepancy is that the former take survival into account and the latter do

not (they ignore individuals that did not survive to eclosion).

The preceding analysis accounts for survival and ovariole count as components of fitness,

but does not account for the role of variation in timing of reproduction in fitness variation.

To incorporate this effect we consider population growth rate.

From the estimates of unconditional expected ovariole count at each age produced by

the aster model we obtain via the stable age equation (3.11) the estimate λ̂ = 0.122. The

large positive value of λ indicates a growing population. Such overestimates of population

growth rate are typical of experiments that do not have all sources of natural mortality and

all sources of failure to reproduce, (cf., Shaw, et al., 2008, Example 1 reanalyzing data of

Lenski and Service, 1982).

The relative fitness landscape taking into account population growth and timing of

reproduction (right column of Figure 3.4) is qualitatively different from the landscape not

so adjusted (left column of Figure 3.4). When population growth rate is taken into account,

maximum fitness occurs at a lower mass at eclosion and at a higher mass at the second instar

larval stage. In Figure 3.4 we can see that the strength of directional selection on mass at

the second instar stage is decreased when the population growth rate is taken into account.

This suggests that, in this study, variation in generation time does contribute importantly

to patterns of phenotypic selection on the two mass traits.
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3.3.4 Discussion

Variation in timing of reproduction is an important component of fitness variation in many

organisms, and traits that influence it may undergo strong phenotypic selection. As a result,

rates of development and other traits that affect age of first reproduction or reproductive

schedules can importantly influence overall fitness. Our Aster models provide an integrated

statistical framework for estimating selection on traits via their effects on survival, ovariole

counts and timing of reproduction.

The selection analyses of M. sexta in our study population identify two key traits: mass

at eclosion, and age at 2nd instar. We detected stabilizing selection on mass at eclosion with

the optimum near to the top of the observed range of values for this trait, but still within the

range, such that fitness declines at still greater values. Reaching 2nd instar at earlier ages is

associated with greater fitness (Figure 3.4). However, these three traits contribute to fitness

via different components: mass at eclosion via fecundity, earlier age at 2nd instar through

survival and timing of reproduction. More rapid development rates (reaching second instar

at earlier ages) may allow larvae to escape key parasitoids and other natural enemies and

increase survival, as noted in Diamond and Kingsolver (2010b); Kingsolver, et al. (2012).

For these data, variation in survival and ovariole counts appears to be more important than

variation in timing of reproduction in determining selection on these traits (Figure 3.4).

Fitness was more subtly (though significantly) related to mass at 2nd instar: though rate of

early larval development is under substantial directional selection, mass at this early stage

is selected more weakly, largely in the direction of lower values.

Life history tradeoffs among survival, fecundity and generation time are common in

many organisms (Roff, 2002). Similarly, phenotypic and genetic correlations between traits

can lead to opposing selection on the traits via different fitness components. The anal-

yses presented here allow us to estimate phenotypic selection and fitness landscapes that

integrate all three of these fitness components. A key result of these analyses is that incorpo-

rating generation time into fitness alters the pattern and strength of selection on larval and

adult mass in M. sexta. In particular when population growth rate is taken into account,
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the strength of directional selection on mass at the 2nd instar decreases, and maximum fit-

ness occurs at a higher mass at the 2nd instar but at a lower mass at eclosion (Figure 3.4).

These changes occur in part because age at 2nd instar is strongly positively correlated with

age at eclosion and first reproduction, but is negatively correlated with mass at 2nd instar

(Kingsolver, et al., 2012). These effects could not be detected in previous analyses that

considered selection on each fitness component separately (Kingsolver, et al., 2012).

The Aster analyses presented here account for development rate by using the multino-

mial distribution to model transitions through stages; they thus illustrate a new capability

of Aster modeling. This capability enables statistical modeling of selection via variation in

the timing of life history events through the discounting of later produced offspring in a

growing population, in addition to any direct association of development rate with absolute

reproductive output. As theory shows (Fisher, 1930) and our analyses suggest, this dis-

counting can play an important role in modulating individual fitness. Phenotypic variation

in generation time and age of first reproduction occurs in many populations (Roff, 2002).

In many temperate and tropical regions, variation in the number of generations per year is

widespread in many insect populations. It will be of interest to learn from future empiri-

cal studies of phenotypic selection how discounting of age-specific reproduction influences

fitness surfaces more generally.

Appendix: Adjusting Fitness for Population Growth Rate

The Appendix of Shaw and Geyer (2010) explains the multivariate monotone relationship

between unconditional canonical parameters ϕj and unconditional mean value parameters

µj in an aster model. The latter are the quantities of scientific interest, unconditional

expectations of components of the response vector. The former are the ones specified by

model formulas for many statistical reasons (Geyer, et al., 2007). Now we must extend

equations (A2) and (A3) of Shaw and Geyer (2010) to allow for population growth rate.

We replace (A2) by

ϕj(x, z) = aj(x) + wjq(z), j ∈ J. (3.8)
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Here J is the set of nodes of the full aster graph; j runs over individuals and over nodes

within individuals. The full aster graph has one subgraph for each individual in the data.

In our data, each subgraph looks like Fig. 1 for a female or like Fig. 1 with the ovariole

count nodes omitted for a male. In (3.8) z is the vector of phenotypic trait variables for an

actual or hypothetical individual, x is a vector of other covariate variables, ϕj(x, z) is the

canonical parameter value for node j. We have no other such variables x in our data, but

the equations being rewritten from Shaw and Geyer (2010) allowed for them, so we keep

them. This equation says that ϕj(x, z) is modeled as an arbitrary function of x, which may

vary from node to node, plus an arbitrary function of z, which varies from node to node in

only a very restricted way, the same function q(z) being multiplied by node-specific weights

wj that do not depend on z.

It then follows by the same argument that goes from (A2) to (A3) in Shaw and Geyer

(2010) that (3.8) implies

q(z1) > q(z2) if and only if
∑

j∈J

wjµj(x, z1) >
∑

j∈J

wjµj(x, z2). (3.9)

This argument holds for arbitrary real number weights wj and arbitrary functions q(z).

We can think of q(z) as the fitness landscape on the canonical parameter scale and of
∑

j∈J wjµj(x, z), considered as a function of z holding x fixed, as the fitness landscape on

the mean value parameter scale.

In all previously published aster analyses, the weights wj were zero or one so fitness on

the mean value parameter scale is just the sum of terms with wj = 1. This allows fitness

to be the sum over only those nodes of the graph that contribute directly to fitness. In our

data, this is the ovariole count nodes. (Other nodes contribute only indirectly through their

effect on unconditional mean ovariole count.) For our data our first aster analyses were also

of this form. But after population growth rate λ had been determined we refit the data

using weights

wj = fje
−λtj (3.10)
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where fj are the zero or one weights indicating nodes that contribute directly to fitness and

tj is the age of the individual at node j. This weighting accounts for population growth

rate (Charlesworth, 1980, p. 134).

In our data, there are no “other” (non-phenotypic) covariates x, so aj(x) in (3.8) be-

comes aj and ϕj(x, z) and µj(x, z) in (3.8) and (3.9) become ϕj(z) and µj(z).

To estimate λ we use the stable age equation (Fisher, 1930, p. 26) In our context, this

is

1 =
1

n

∑

j∈J

µj(zj)fje
−λtj (3.11)

where n is the number of individuals in the data, µj(zj) is the mean value for node j with

the phenotypic data for that individual plugged in, and the rest is as above.

Most applications of the stable age equation, starting with Fisher, the term µj(zj) in

(3.11) is written as the product of probability of survival to age tj and the conditional

expectation of number of offspring at age tj given survival to age tj . We use the notation in

(3.11) because µj(zj) is calculated directly by the aster software. Most applications of the

stable age equation, starting with Fisher, do not average over all individuals in the data, as

we do here. That is because those treatments do not allow for variation among individuals.

Consequently, they use the same model for all individuals and apply the stable age equation

to one individual (and hence to all because all are the same according to the model).

Having estimated λ and refit the aster model so fitness is adjusted for λ, we then take

the fitness landscape adjusted for λ to be

w(z) =
∑

j∈K

µj(z)fje
−λtj , (3.12)

where on the right-hand side everything is as in (3.11) except that now the summation runs

over the set K of nodes for a single hypothetical female individual having phenotypic trait

vector z (Charlesworth, 1980, p. 134).

Comparison of (3.11) and (3.12) shows that if we replace z for this hypothetical individ-
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ual by the covariate vector values zj for actual individuals and average over all individuals

in the data, we get 1. Thus (3.12) is relative fitness (fitness divided by mean fitness). Call

(3.12) expected relative fitness adjusted for population growth rate.



Chapter 4

Aster Models and Envelope
Methodology

4.1 Introduction

We further improve on the aster model through the incorporation of general envelope

methodology. Envelope models were developed as a variance reduction tool for the multi-

variate linear regression model. These models are especially useful when some characteristics

of the response vector are unaffected by changes in the predictors. The MLE from the enve-

lope model can be substantially less variable than OLS estimator, especially when the mean

function varies in directions that are orthogonal to the directions of maximum variation for

the response vector (Cook, et al., 2010). These efficiency gains can be massive. There

are examples where the OLS estimator would require 10,000 times as many data points to

replicate the standard errors obtained through envelope estimation. Su and Cook (2011)

developed partial envelope models for analyses that have a distinction between parameters

of interest and nuisance parameters. Cook and Zhang (2015a) developed the most general

envelope framework to date, which assumes only a
√
n consistent and asymptotically normal

estimator of an unknown parameter vector and a
√
n consistent estimator of its asymptotic

covariance matrix.

From both the data analysis standpoint and the theoretical standpoint, we show that the

assumptions and quantities needed for general envelope methodology are inherent in aster

modeling and are easily obtained. Our envelope methodology, which seeks variance reduc-

68
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tion of expected Darwinian fitness, is implemented with respect to mean value parameters

instead of canonical parameters. We also construct envelope estimators by searching over

reducing subspaces of the estimated covariance matrix. Variance reduction is assessed using

parametric bootstrap algorithms developed in this exposition. These bootstrap algorithms

are robust against model selection volatility by incorporating techniques in Efron (2014,

Section 4). Our methodology provides the most precise estimation of expected Darwinian

fitness to date when using aster models. Researchers using our methods can therefore draw

stronger conclusions about the driving forces of Darwinian fitness from their life history

analyses. The analyses we consider in this Chapter estimate expected Darwinian fitness

for categorical variables and fitness landscapes (Shaw, Geyer, Wagenius, Hangelbroek, and

Etterson, 2008; Shaw and Geyer, 2010). Fitness landscapes are the conditional expectation

of Darwinian fitness given a wide range of predictor values. This tool is used to see which

combination of predictor values yield the highest estimated expected Darwinian fitness. In a

real data example and a simulated example, we show that our methodology leads to variance

reduction in estimation of expected Darwinian fitness when compared with analyses that

use aster models alone. These examples use our new envelope estimator constructed from

reducing subspaces. Our examples are fully reproducible and the calculations necessary for

its reproduction are included in Eck, et al. (2016a).

4.2 The aster model

The aster models to which we apply general envelope methodology are unconditional aster

models and unconditional aster submodels (Geyer, Wagenius, and Shaw, 2007; Geyer, 2010).

Parameters associated with unconditional aster models are displayed in the middle and

right columns of Figure 3.2. The parameters in the left column of Figure 3.2 correspond to

conditional aster models. Almost all uses of aster models are unconditional aster models

and our methods are developed for these models exclusively. The response vector of an

unconditional aster model has the same dimension as the canonical parameter vector ϕ

that we are interested in estimating when using this model. These models are saturated
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(one parameter per component of the response vector) and hence not useful. Therefore,

the unconditional aster submodel is used where we write ϕ = a + Mβ, see Figure 3.2.

We will refer to the unconditional aster submodel as an aster model. Here ϕ ∈ R
m is

the unconditional aster model canonical parameter and β is the aster model canonical

parameter vector wherem is the dimension of the response vector. The number of responses

is the number of nodes that appear in the graphical structure multiplied by the number of

individuals sampled. M ∈ R
m×p is a known model matrix assumed to be of full column

rank where p is the dimension of the aster model, and a ∈ R
m is a known offset vector.

There are five parameters of interest that are present in the aster analyses we consider,

four parameterizations and one function of one of these. These parameterizations are:

1) The aster model canonical parameter vector β ∈ R
p.

2) The aster model mean-value parameter vector τ ∈ R
p.

3) The saturated aster model canonical parameter vector ϕ ∈ R
m.

4) The saturated aster model mean-value parameter vector µ ∈ R
m.

5) The best surrogate of expected Darwinian fitness, which is a function of µ.

Relations among the parameterizations are shown in Figure 3.2. In the E. angustifolia

example, see the previous Chapter, Darwinian fitness has one component per individual,

which gives the total (over the three years) flower head count for that individual, so in this

case it is a linear function.

The log likelihood for the aster model in canonical form is (3.3) with canonical statistic

MTY and Y ∈ R
m is the vector of responses depicted in the corresponding graphical

structure. The response vector has one component for every node in the graph for every

individual in the study. Our model, being a regular full exponential family, allows us to

conveniently obtain the maximum likelihood estimator for our canonical parameter vector

β. We obtain the model mean-value parameter τ by differentiation. We see that

τ = ∇βc(a+Mβ) =MT∇c(ϕ) = E(MTY ) =MTµ
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and the MLE of τ , denoted τ̂ , is MTY . The MLE of β is obtained from invariance of

maximum likelihood estimation where β̂ = f−1(τ̂) and f : β 7→ MT∇c(a +Mβ), seen in

Figure 3.2, is an invertible mapping (assuming the model is identifiable). From the usual

asymptotics of MLE and exponential families we have,

√
n (τ̂ − τ)

d−→ N (0, Σ) , (4.1)

where Σ = Var(MTY ) is the Fisher information matrix associated with the canonical

parameter vector β, which is the inverse Fisher information matrix for τ . The maximum

likelihood estimator of β is asymptotically normal with variance given by Σ−1. The aster

software in R provides β̂ and Σ̂ where Σ̂ is the maximum likelihood estimator of Σ. From

(4.1) and the delta method we can obtain the asymptotic distribution for any differentiable

function of τ̂ . The asymptotic distribution for a differentiable function g of τ̂ is

√
n (g(τ̂)− g(τ))

d−→ N
(
0, ∇g(τ)Σ∇g(τ)T

)
. (4.2)

In particular, the asymptotic distribution of estimated expected Darwinian fitness is of

interest, call it h(µ). Since β = f−1(τ) and µ = ∇c(a+Mβ),

g(τ) = h
(
∇c
(
a+Mf−1(τ)

))

gives expected Darwinian fitness as a function of τ and is differentiable if h is differentiable.

So now our estimator g(τ̂) has asymptotic distribution given by (4.2).

4.3 Envelope methodology

Envelope methodology was developed originally in the context of the multivariate linear

regression model (Cook, et al., 2010),

Y = α+ βX + ε, (4.3)
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where α ∈ R
r, the random response vector is Y ∈ R

r, the fixed predictor vector X ∈ R
p is

centered to have mean zero, and the error vector ε ∼ N(0,Σ). It was shown by Cook, et al.

(2010) that the envelope estimator of the unknown coefficient matrix β ∈ R
r×p in (4.3) has

the potential to yield massive efficiency gains relative to the standard estimator of β. These

efficiency gains can arise when the dimension u of the envelope, defined in the next section,

is less than r. The main idea of envelope methodology is that the full spectral structure of

the error covariance matrix Σ is not needed to estimate β. The spectral structure of Σ has

two parts. One part is material to the estimation of β. The other part is immaterial and

can be discarded since it serves no purpose towards estimation of β. This situation occurs

when some characteristics of the response vector are unaffected by changes in the predictors

(Cook, et al., 2010).

More carefully, suppose that we can find a subspace S ⊆ R
r so that

QSY PSY | X, and QSY | X = x1 ∼ QSY | X = x2, for all x1, x2, (4.4)

where ∼ means identically distributed, P(·) projects onto the subspace indicated by its

argument and Q = Ir − P . For any S with the properties (4.4), PSY carries all of the

material information and perhaps some of the immaterial information, while QS contains

just immaterial information. Let B = span(β) and d = dim(B) so that 0 < d ≤ min(p, r).

Then (4.4) holds if and only if B ⊆ S and Σ = ΣS + ΣS⊥ , where ΣS = Var(PSY ) and

ΣS⊥ = Var(QSY ). The envelope is defined as the intersection of all subspaces S that satisfy

(4.4) and is denoted by EΣ(B) with dimension u = dim{EΣ(B)} satisfying 0 < d ≤ u ≤ r.

The envelope model can be represented in terms of coordinates by parameterizing model

(5.1) to incorporate conditions (4.4). Define Γ ∈ R
r×u to be a semi-orthogonal basis matrix

for EΣ(B) and let (Γ,Γo) ∈ R
r×r be an orthogonal matrix. Then the envelope model with

respect to model (5.1) is parameterized as

Y = α+ ΓηX + ε, ε ∼ N(0,Σ), (4.5)

where Σ = ΓΩΓT + ΓoΩoΓ
T
o , Ω ∈ R

u×u and Ωo ∈ R
(r−u)×(r−u) are positive definite, and



4.3. Envelope methodology 73

Figure 4.1: Visualization of the envelope model and the efficiency gains it is capable of
producing.Graphic is taken from Su and Cook (2011).

η ∈ R
u×p is β = Γη in the coordinates of Γ. We see from (4.5), that EΣ(B) links the mean and

covariance structures of the regression problem and it is this link that provides the efficiency

gains. The gains can be massive when the immaterial information is large relative to the

material information; for instance, when ‖Ω‖ ≪ ‖Ωo‖, where ‖ · ‖ is a matrix norm (Cook,

et al., 2010). Cook and Zhang (2015a) provided a more general framework for envelope

methodology, which requires only a
√
n-consistent estimator θ̂ of an unknown parameter θ

and a
√
n-consistent estimator of its asymptotic variability. Cook, et al. (2013) showed that

partial least squares gives a moment-based envelope estimator that is
√
n-consistent. As

partial least squares is widely used in chemometrics and elsewhere, the Cook, et al. (2013)

finding indicates that envelope methodology is also widely applicable.

An illuminating depiction and explanation of how an envelope increases efficiency in

multivariate linear regression problems was given by Su and Cook (2011, pgs. 134–135).

We summarize some of that depiction here. To motivate intuition, consider Figure 4.1

taken from Su and Cook (2011). The data corresponding to Figure 4.1 comes from a

population with two response variables and a single binary valued predictor. The predictor
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variable indicates which subpopulation the responses are realized from. The two ellipses

correspond to the contours of Σ for both predictor values. The standard analysis for the

estimation of β2, the second component of β, involves projecting the data clouds onto the

horizontal axis. The left panel of Figure 4.1 shows that the two subpopulations can not be

distinguished when this projection is made. The standard analysis will conclude that the

two subpopulations are similar statistically. A greater sample size, possibly impractically

large, is needed to determine statistical differences between these two subpopulations.

The right panel of Figure 4.1 shows the working mechanisms of the envelope structure.

In this example Σ ∈ R
2×2 and the parameter of interest resides within the smallest part

of the spectral structure of Σ. Smallest means the eigenvector of Σ associated with the

smallest eigenvalue. The span of this eigenvector is the envelope space, denoted EΣ(B),
whereB = span(β). In the envelope analysis, response values are projected into the envelope

space and then projected onto the horizontal axis. We can now see a clear separation of

the two subpopulations when this approach is employed.

Figure 4.1 provides a depiction of a scenario when envelope models provide efficiency

gains for the estimation of β. The scope of envelope methodology was then expanded

with the discovery of partial envelopes with the goal of variance reduction in the presence

of nuisance parameters. Partial envelopes estimate “relevant” parameters using envelope

methodology. The nuisance parameters are estimated using another conventional estimation

approach. Partial envelopes are useful when the envelope estimator of the full coefficient

matrix offers slight to no gains. These models can still discover massive efficiency gains

when envelope methodology is restricted to the relevant parameters (Su and Cook, 2011).

All of these envelope modeling approaches extend from the general envelope framework

outlined in Cook and Zhang (2015a). This general envelope framework, and its partial

envelope analogue, is applicable to aster models. Once the intuition for general envelope

model methodology is developed, its applications to aster models will be analyzed in detail.

In order to use general envelope methodology one needs a
√
n consistent estimator, ϕ̂ ∈

R
p, p > 1, and knowledge of its asymptotic covariance matrix Vϕ. In this setting we assume

that for some u ≤ p there exists a subspace, call it S, of Vϕ of dimension u such that
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a) span(ϕ) ⊂ S

b) Vϕ = PSVϕPS +QSVϕQS ,

where PS is the projection into the subspace S and QS is the projection into its orthog-

onal complement. Taken together, these conditions say that all the relevant information

necessary for the estimation of ϕ is contained in PSVϕPS . The above two conditions can

be written in coordinate form. In coordinate form the two envelope model conditions are

equivalent to,

a) span(ϕ) ⊂ span(Γ)

b) Vϕ = ΓΩΓT + ΓoΩoΓ
T
o .

where Γ ∈ R
p×u is a semi-orthogonal basis matrix for E satisfying PS = ΓΓT , Γo is the

completion of Γ, Ω = ΓTVϕΓ, Ωo = ΓT
o VϕΓo, and u is the dimension of the envelope. With

u and PS known we have two central limit theorem results,

√
n(PS ϕ̂− ϕ)

d−→ N (0, PSVϕPS) ,

√
nQS ϕ̂

d−→ N (0, QSVϕQS) ,

which say that PS ϕ̂ is asymptotically independent of QS ϕ̂. The Vϕ envelope of ϕ, written

as EVϕ(span(ϕ)) or E when convenient, is defined as the smallest space satisfying the two

conditions above. It is the smallest reducing subspace of Vϕ that contains span(ϕ).

The cornerstone result from the framework of general envelope models as it applies to

aster models is the sequential 1-dimension (1D for short) algorithm developed by Cook and

Zhang (2015a,b). The sequential 1D algorithm, algorithm 2 in Cook and Zhang (2015a),

provides an estimator of the semi-orthogonal basis matrix Γ that spans E . It estimates

Γ one dimension at a time, hence the name, by exploiting a powerful Lemma in envelope

methodology. The algorithm requires Vϕ > 0 (positive definite). The algorithm goes as

follows. Let gk ∈ R
p, k = 0, ..., u − 1 be the stepwise directions obtained. Let Gk =
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(g1, ..., gk), (Gk, Gok) be an orthogonal basis matrix for Rp, and set go = Go = 0, then find

wk+1 = arg minw∈Rp−kJk(w), subject to w
Tw = 1,

gk+1 = Gokwk+1,

where Jk(w) = log(wTGT
okVϕGokw) + log(wT (GT

ok(Vϕ + U)Gok)
−1w) and U = ϕϕT for

w ∈ R
p−k. It is a proposition that this algorithm returns a true basis matrix for the

envelope when true parameter inputs are used (Cook, 2013, Proposition 6.3). The internal

mechanism that makes the 1-d algorithm feasible is a key proposition in general envelope

methodology (Cook, 2013, Proposition 5.7). This proposition says that

BoEBT
o MBo

(BT
o S) ⊂ EM (S)

where (B,Bo) is an orthogonal matrix and span(B) ⊂ EM (S). So for every v ∈ EBT
o MBo

(BT
o S)

it is true that Bov ∈ EM (S). The sequential algorithm finds orthonormal vectors in EM (B)
one iteration at a time. At the first pass through the algorithm Go = Ip and the minimizer

subject to the unit constraint, ŵ1, of log(w
TVϕw) + log(wT (Vϕ +U)−1w) is found. For this

iteration G1 = g1 = ŵ1 where g1 ∈ EM (S). For the second iteration, we construct Go1 or-

thogonal to g1 and find the vector ŵ2 that minimizes J1(w). Then we construct g2 = Go1ŵ

and G2 = (g1, g2). The vector g2 ∈ EM (S) and is orthogonal to g1. The process is repeated

until k = u − 1 and when finished, the algorithm returns Γ = Gu = (g1, g2, ..., gu). Γ

consists of u orthonormal vectors all belonging to E . Therefore, the 1-d algorithm returns

a semi orthogonal basis matrix for E since E has dimension u. Once Γ is obtained, we can

construct the projection into the envelope as PE = ΓΓT . The real utility of this algorithm

comes from another proposition (Cook, 2013, Proposition 6.4). This proposition states that

the 1-d algorithm returns a
√
n consistent estimator of Γ when

√
n consistent estimators

M̂ and Û are used in place of M and U respectively.
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A

1 Y1 Y2 Y3✲ ✲ ✲

Y4 Y5 Y6
❄ ❄ ❄

Y7 Y8 Y9
❄ ❄ ❄

B

1 Y1 Y2✲ ✲

C

1 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

Figure 4.2: (A) Graphical structure of the aster model for one individual in the E. angus-

tifolia data. The top layer corresponds to survival; these random variables are Bernoulli.
The middle layer corresponds to flowering; these random variables are also Bernoulli. The
bottom layer corresponds to flower head counts; these random variables are zero-truncated
Poisson. (B) Graphical structure of the aster model for the data in Example 2. The first
arrow corresponds to survival which is a Bernoulli random variable. The second arrow cor-
responds to reproduction count conditional on survival which is a zero-truncated Poisson
random variable. (C) Graphical structure of the aster model for the simulated data in
Example 1. The top layer corresponds to survival; these random variables are Bernoulli.
The middle layer corresponds to whether or not an individual reproduced; these random
variables are also Bernoulli. The bottom layer corresponds to offspring count; these random
variables are zero-truncated Poisson.
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4.4 Incorporation of general envelope methodology

The theory of general envelope methodology requires a
√
n consistent and asymptotically

normal estimator of an unknown parameter vector and a
√
n consistent estimator of its

asymptotic covariance matrix (Cook and Zhang, 2015a). Aster models, being an expo-

nential family, satisfy these conditions. Our methods distinguish parameters of interest

from nuisance parameters. The parameters of interest are those components of τ which

correspond directly to the estimation of Darwinian fitness. We partition τ into (γT , υT )T

where γ ∈ R
p−k and υ ∈ R

k are the vectors of nuisance parameters and parameters of

interest respectively. Envelope models that involve this form of partitioning are referred to

partial envelope models (Su and Cook, 2011). The maximum likelihood estimator of the

parameters of interest, υ̂, has asymptotic covariance matrix Συ,υ which is the submatrix of

Σ corresponding to the parameters of interest. The estimator of Συ,υ obtained from aster

software is denoted by Σ̂υ,υ.

Let T = span(υ). The envelope subspace EΣυ,υ(T ) is defined as the intersection of all

reducing subspaces of Συ,υ that contain T (a reducing subspace is a sum of eigenspaces).

We will denote the envelope subspace as E when using it as a subscript. The envelope space

satisfies both

1. T ⊂ EΣυ,υ(T )

2. Συ,υ = PEΣυ,υPE +QEΣυ,υQE

where PE is the projection into the envelope subspace and QE is the projection into the

orthogonal complement. In coordinate form, the two envelope conditions are equivalent to

a) T ⊂ span(Γ)

b) Συ,υ = ΓΩΓT + ΓoΩoΓ
T
o ,

where (Γ,Γo) is a partitioned orthogonal matrix, the columns of Γ are a basis for EΣυ,υ(T ),

and the dimensions of Ω and Ωo are such that the matrix multiplications are defined.

The goal in envelope methodology is to estimate the basis matrix Γ of the envelope space

EΣυ,υ(T ). The envelope space EΣυ,υ(T ) contains the parameter of interest and is a reducing
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subspace of Συ,υ. Intuitively, the envelope estimator reduces variability in estimation at no

cost to consistency by making use of the defining properties of EΣυ,υ(T ). With the basis

matrix Γ estimated, we can construct envelope estimators of υ and then map the resulting

envelope estimators to the scale of Darwinian fitness. The variance reduction of estimated

expected Darwinian fitness with respect to envelope estimation of υ is then assessed.

To gain intuition on the working mechanics of envelope methodology, consider the case

when Γ is known beforehand. When Γ is known, the envelope estimator of υ is PE υ̂ with

PE = ΓΓT , and
√
n (PE υ̂ − υ)

d−→ N (0, PEΣυ,υPE) .

Knowledge of u = dim
(
EΣυ,υ(T )

)
and PE are both lacking in practice. Thus u and PE

are in need of estimation. The sequential 1D algorithm proposed in (Cook and Zhang,

2015a, Algorithm 2) estimates the basis matrix Γ for EΣυ,υ(T ) at u. The estimate of

Γ is obtained by providing Σ̂υ,υ and υ̂υ̂T as inputs into the 1D algorithm. The resulting

estimator of Γ obtained from the 1D algorithm, Γ̂, is
√
n consistent and gives a

√
n consistent

estimator PÊ of the projection onto the envelope subspace PE (Cook and Zhang, 2015a).

The 1D algorithm finds the estimated basis Γ̂ by performing u optimizations. Each of these

optimizations separately finds an estimated basis vector for the envelope subspace that is

orthonormal to the basis vectors that preceded it.

We can compare envelope dimensions u by transforming envelope estimators υ̂env = PÊ υ̂

to the canonical parameterization where PÊ is obtained from the 1D algorithm at candidate

values of u. The envelope estimator of τ is given as

τ̂env =


 Γ̂

υ̂env


 =


 I 0

0 PÊ


MTY =MT

envY

where

Menv =M


 I 0

0 PÊ




is the model matrix corresponding to the aster model that incorporates the partial envelope

structure. The envelope estimator of τ is therefore a maximum likelihood estimate of the
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mean-value parameter corresponding to the aster model with model matrix Menv. The fact

that the envelope estimator of τ is also a maximum likelihood estimator is of importance.

It justifies the use of the transformations seen in Figure 3.2 used to switch between MLEs

of aster model parameterizations. However, the model matrix Menv is not of full column

rank. This means that the transformations in Figure 3.2 are not 1-1. In particular, many

distinct estimates of β map to τ̂env. Each of these distinct estimated values of β maps to

the same estimate of ϕ = Menvβ, which in turn maps to a common estimate of expected

Darwinian fitness.

The mapping f : τ → β cannot be expressed in closed form and we must use the aster2

package (Geyer, 2010) to carry out the transformation finding β̂env = f(τ̂env). From here,

likelihood based methods for comparing models such as AIC, BIC, or the likelihood ratio

test (LRT) are used to select which envelope model dimension is appropriate. The LRT has

the hypotheses:

Ho : u = uo

Ha : u = k

where uo ≤ k is some proposed dimension of EΣυ,υ(T ). (The alternative is use the aster

model.) At the envelope dimension u or a larger dimension, we have

√
n (υ̂env − υ)

d−→ N (0, ∆1) ,

where ∆1 is unknown. The asymptotic covariance matrix ∆1 can be thought of as ∆1 =

PEΣυ,υPE + C where C > 0 is the cost incurred from estimation.

However, inference with respect to υ is not normally sought in life history analysis.

What is sought, in this analysis, is the estimated expected Darwinian fitness considered

as a function of phenotypic trait values for a hypothetical individual. This function is

referred to as the fitness landscape when traits are continuous. In the setting of continuous

traits, the fitness landscape is plotted. This plot is the primary graphical inferential tool for

our analyses. The envelope estimator of expected Darwinian fitness for these hypothetical
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individuals has asymptotic distributions given by

√
n (g(τ̂env)− g(τ))

d−→ N
(
0, ∇g(τ)∆2∇g(τ)T

)
, (4.6)

where ∆2 is the unknown asymptotic covariance matrix of τ̂env. The asymptotic covariance

matrix of estimated expected Darwinian fitness is estimated using a parametric bootstrap

adjusting for model selection. The dimension of the envelope space is selected using model

selection criteria and is not known in advance. Efron (2014, Section 4) provides a double

bootstrap procedure which accounts for the randomness associated with model selection

procedures. This double bootstrap procedure is used to estimate the variance of estimated

expected Darwinian fitness using envelope methodology. At first, datasets are generated as

a realization from the aster model distribution evaluated at the envelope estimator. The

envelope dimension is determined for each of these generated datasets. The estimator of

expected Darwinian fitness is then taken to be the average of all of the envelope estimators

obtained from these datasets. To estimate the variability of this envelope estimator, we gen-

erate further datasets from the aster model distribution evaluated at each separate envelope

estimator of expected Darwinian fitness used to calculate the aforementioned average. The

steps of this procedure are presented in Algorithm 1 in Figure 4.3. More particulars on the

application of the double bootstrap procedure outlined in Efron (2014) are included in the

Discussion.

This algorithm requires that our aster model is fitted using a large enough sample size

to provide a reliable maximum likelihood estimate of τ . This assumption is implicitly made

when performing an aster analysis whether or not one incorporates an envelope model

structure. When our bootstrap procedure has run for a total of B iterations we obtain the

envelope estimator

1

B

B∑

b=1

g(τ̂ (b)env) (4.7)

as suggested by Efron (2014, Section 4). The individual summands in (4.7) are estimates of
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1. Fit the aster model to the data and obtain υ̂ and Σ̂υ,υ from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = PÊ υ̂ where

PÊ is computed by the 1D algorithm. The 1D algorithm takes M = Σ̂υ,υ, U = υ̂υ̂T ,
and dimension u as inputs. The dimension is selected using a model selection criterion
of choice.

3. Perform a parametric bootstrap by generating resamples from the distribution of the
aster model evaluated at τ̂env = (γ̂T , υ̂Tenv)

T . For iteration b = 1, ..., B of the procedure:

(3a) Compute τ̂ (b) and Σ̂
(b)
υ,υ from the aster model fit to the resampled data.

(3b) Obtain P
(b)

Ê
from the 1D algorithm as done in Step 2 using M = Σ̂

(b)
υ,υ and

U = υ̂(b)υ̂(b)
T
as inputs where the dimension of the envelope is selected using the

same model selection criterion as Step 2.

(3c) Compute υ̂
(b)
env = P

(b)

Ê
υ̂(b) and τ̂

(b)
env =

(
γ̂(b)

T
, υ̂

(b)T

env

)T

(3d) Store τ̂env(b) and g
(
τ̂
(b)
env

)
where g maps τ to the parameterization of Darwinian

fitness.

4. After B steps, the bootstrap estimator of expected Darwinian fitness is the average
of the envelope estimators stored in Step 3d. This completes the first part of the
bootstrap procedure.

5. We now proceed with the second level of bootstrapping at the b-th stored envelope

estimator τ̂
(b)
env. For iteration k = 1, ...,K of the procedure:

(5a) Generate data from the distribution of the aster model evaluated at τ̂
(b)
env.

(5b) Perform Steps 3a through 3c with respect to the dataset obtained in Step 5a.

(5c) Store τ̂
(b)(k)

env and g
(
τ̂
(b)(k)

env

)
.

Figure 4.3: Algorithm 1. Parametric bootstrap envelope estimation of υ using the 1D
algorithm.
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expected Darwinian fitness obtained after model selection. The averaging in (4.7) smooths

out erratic jumpiness that may occur from model selection (Efron, 2014). The envelope

estimator (4.7), obtained from the parametric bootstrap in Algorithm 1, has variability

analogous to that in Efron (2014, equation (4.15)). As in Efron (2014), we define the

matrix B(b) ∈ R
K×p which has rows τ̂

(b)(k)

env −∑K
k=1 τ̂

(b)(k)

env /K and the matrix C(b) ∈ R
K×d

which has columns g
(
τ̂
(b)(k)

env

)
− g

(
τ̂
(b)
env

)
. We now estimate ∆2 with

∆̂2 =
1

B

B∑

b=1

(
ĉov(b)

)T
V̂ (b)−1

ĉov(b) (4.8)

where

ĉov(b) =
(
B(b)

)T
C(b)/K (4.9)

and

V̂ (b) =
(
B(b)

)T
B(b)/K. (4.10)

The estimator (4.8) of ∆2 takes into account the volatility of model selection when esti-

mating the variability of estimated expected Darwinian fitness using envelope methodology.

The method of maximum likelihood estimation does not have the added model selection

step that envelope estimation has. The bootstrap procedure outlined in Figure 4.3 effi-

ciently estimates expected Darwinian fitness and accounts for variability associated with

model selection volatility.

4.5 A novel alternative to general envelope estimation using

reducing subspaces

We propose a new way of constructing envelope estimators provided that the eigenvalues of

Συ,υ are unique. Envelope estimators are constructed directly from the reducing subspaces
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of Σ̂υ,υ. This new envelope estimator of υ is υ̂env = P
Ĝ
υ̂ where G is the smallest reducing

subspace of Συ,υ such that PGυ = υ. The reducing subspaces of Σ̂υ,υ are
√
n consistent

estimators of the reducing subspaces of Συ,υ. Therefore PĜ
, and the corresponding estimator

P
Ĝ
υ̂ are

√
n estimators of PG and PGυ respectively. Our envelope estimator of τ becomes

τ̂env =
(
γ̂T , υ̂Tenv

)T
where γ̂ is the MLE of the nuisance parameters obtained from the original

aster model fit.

There is a close connection between envelope estimation using reducing subspaces and

envelope estimation using the 1D algorithm. In the population, the envelope estimator of

υ using reducing subspaces is the same as the envelope estimator obtained from the 1D

algorithm. The connection between both estimation methods exists in applications as well.

Suppose that the envelope space is the reducing subspace G with dimension u and let Γ̂u

and Γ
Ĝ

be the estimated basis matrices for the envelope space using the 1D algorithm

and reducing subspaces respectively. Let Ô = Γ̂uΓ
T
Ĝ

be the matrix that changes from the

coordinates of Γ
Ĝ

to the coordinates of Γ̂u. The matrix Ô is a
√
n-consistent estimator

of the identity matrix of dimension k. Let M̂ = ÔT Σ̂υ,υÔ and Û = ÔT υ̂υ̂T Ô. Then the

1D algorithm returns Γ
Ĝ

as an estimated basis matrix for the envelope space when using

M̂ and Û as inputs. Asymptotic normality of P̂
Ĝ

follows from (Cook and Zhang, 2015b,

Propositions 5 and 6) since M̂ and Û are both
√
n-consistent estimators of Συ,υ and U

respectively.

In applications, envelope estimators obtained from reducing subspaces of Σ̂υ,υ are com-

pared using AIC, BIC, or the LRT. Our procedure for envelope estimation of expected

Darwinian fitness using reducing subspaces of Σ̂υ,υ is as follows:

1. Start with u = 1 and compute υ̂env = P
Ĝ
υ̂ for all u dimensional reducing subspaces

Ĝ.

2. Compare all envelope estimators constructed in step 1 to υ̂ using a selection criterion

like AIC, BIC, or the LRT. If the envelope estimator is preferred, then stop and

proceed with the analysis using the envelope estimator. If υ̂ is preferred, then return

to Step 1 and iterate u when u < k. If υ̂ is preferred and u = k then stop and proceed
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with the analysis using the MLE.

3. Perform the parametric bootstrap procedure outlined in Algorithm 2.

If the dimension of the problem is small enough, one can simply bypass the above procedure

and compute all reducing subspaces at once. We bypass this procedure in both of our

examples since the dimension of the problem is small enough to do so. The envelope

estimators with respect to all of the reducing subspaces can then be compared using AIC,

BIC, and LRT in one step. In either scenario, the reducing subspace approach considers

2k − k more candidate envelope estimators than the 1D algorithm does. For this reason the

researcher must use the 1D algorithm when k is large.

Once a decision is made on which reducing subspace Ĝ to use, we need to estimate the

variability of the envelope estimator υ̂env = P
Ĝ
υ̂ using a parametric bootstrap. The steps for

the parametric bootstrap employed are presented in Algorithm 2. Note that the reducing

subspace Ĝ is not used to build envelope estimators at each iteration of the parametric

bootstrap procedure. The indices of the eigenvectors of Σ̂υ,υ that comprise the reducing

subspace Ĝ are used instead. At each iteration of the parametric bootstrap the estimate

of Συ,υ changes which implies that the estimate of the reducing subspace G changes. The

parametric bootstrap procedure outlined in Algorithm 2, seen in Figure 4.4, takes into

account model selection volatility by implementing a double bootstrap procedure analogous

to that in Efron (2014).

When our bootstrap procedure has run for a total of B iterations, we obtain the envelope

estimator of expected Darwinian fitness given by (4.7) with covariance matrix ∆2 estimated

by (4.8).

Envelope estimators constructed using reducing subspaces are different than those con-

structed using the 1D algorithm. At any iteration of the 1D algorithm, minimizers of the

objective function stated in (Cook and Zhang, 2015a, Algorithm 2) are pulled towards re-

ducing subspaces of Σ̂υ,υ. This objective function is non-convex and contains potentially

many local minima. The optimizations conducted within the 1D algorithm are sensitive

to starting values and can get stuck at these local minima. This undermines the 1D al-
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1. Fit the aster model to the data and obtain υ̂ and Σ̂υ,υ from the aster model fit.

2. Compute the envelope estimator of υ in the original sample, given as υ̂env = P
Ĝ
υ̂

where P
Ĝ

is computed using reducing subspaces and selected via a model selection
criterion of choice.

3. Perform a parametric bootstrap by generating resamples from the distribution of the
aster model evaluated at τ̂env = (γ̂T , υ̂Tenv)

T . For iteration b = 1, ..., B of the procedure:

(3a) Compute τ̂ (b) and Σ̂
(b)
υ,υ from the aster model fit to the resampled data.

(3b) Build P
(b)

Ĝ
using the indices of Σ̂

(b)
υ,υ that are selected using the same model

selection criterion as Step 2 to build Ĝ.

(3c) Compute υ̂
(b)
env = P

(b)

Ê
υ̂(b) and τ̂

(b)
env =

(
γ̂(b)

T
, υ̂

(b)T

env

)T
.

(3d) Store τ̂env(b) and g
(
τ̂
(b)
env

)
where g maps τ to the parameterization of Darwinian

fitness.

4. After B steps, the bootstrap estimator of expected Darwinian fitness is the average
of the envelope estimators stored in Step 3d. This completes the first part of the
bootstrap procedure.

5. We now proceed with the second level of bootstrapping at the b-th stored envelope

estimator τ̂
(b)
env. For iteration k = 1, ...,K of the procedure:

(5a) Generate data from the distribution of the aster model evaluated at τ̂
(b)
env.

(5b) Perform Steps 3a through 3d with respect to the dataset obtained in Step 5a.

(5c) Store τ̂
(b)(k)

env and g
(
τ̂
(b)(k)

env

)
.

Figure 4.4: Algorithm 2. Parametric bootstrap envelope estimation of υ using reducing
subspaces.
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gorithm since it is required that users find global minima for its justification. Unlike the

1D algorithm, the reducing subspace approach does not involve any optimization routines

necessary to the construction of envelope estimators and is preferred in settings when k is

small.

4.6 Examples

We now provide two examples of our methods. In Example 1, there is a true envelope model

incorporated in the simulation of the dataset. In Example 2, we show that our methods

yield efficiency gains in a real data example.

4.6.1 Example 1

A population of 3000 organisms was simulated to form the dataset used in this aster analysis.

We generated data according to a known reducing subspace and show that our methods

recover the true indices of the reducing subspace that generated the data. These data are

generated according to the graphical structure appearing in panel C of Figure 4.2. There

are two covariates (z1, z2) associated with Darwinian fitness and the aster model selected

by the LRT is a full quadratic model with respect to these covariates. A full aster analysis

of data of the same kind and its construction can be seen in Geyer and Shaw (2009).

In our example we consider the partial envelope approach. We partition τ into (γT , υT )T

where γ ∈ R
4 are nuisance parameters and υ ∈ R

5 are relevant to the estimation of expected

Darwinian fitness. Here, υ ∈ R
5 because our model is full quadratic in z1 and z2. The

true reducing subspace is the space spanned by the first and fourth eigenvectors of the

covariance matrix of the parameters of interest estimated from the original data. We begin

by considering envelope estimators constructed using the 1D algorithm. AIC, BIC, and the

LRT at α = 0.05 all select u = 5. This selection is equivalent to supposing that no non-

trivial envelope structure would be present and one should proceed with the aster analysis

using maximum likelihood estimation and conventional aster software. The parametric

bootstrap procedure discussed in Figure 4.3 is not interesting in this case. We now consider
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g(τ̂env) ŝe (g(τ̂env)) g(τ̂MLE) ŝe (g(τ̂MLE)) ratio
8.556 0.174 8.701 0.260 1.491
9.014 0.111 8.939 0.135 1.222
7.817 0.414 8.054 0.442 1.069
9.174 0.163 9.193 0.170 1.045
9.018 0.113 9.120 0.128 1.133
8.612 0.162 8.518 0.278 1.709
7.761 0.215 8.096 0.331 1.534

Table 4.1: Comparison of the MLE and the partial envelope estimator for components of
interest in Example 1. We can see that the envelope estimator is providing useful variance
reduction.

envelope estimators constructed from reducing subspaces.

AIC, BIC, and the LRT at α = 0.05 all select a reducing subspace that is the sum

of more eigenspaces than the true reducing subspace but fewer eigenspaces than the full

space. There is also some disagreement between the model selection criteria. BIC and the

LRT at α = 0.05 select the reducing subspace that is the sum of the first, fourth, and

fifth eigenspaces of Σ̂υ,υ, denoted Ĝ1. AIC selects the reducing subspace that is the sum

of every eigenspace of Σ̂υ,υ except for the third eigenspace, denoted Ĝ2. The parametric

bootstrap algorithm discussed in Figure 4.4 is used to estimate the asymptotic variability

of g(τ̂env) using the reducing subspace Ĝ1. The results are seen in Table 4.1 for selected

output. Table 4.1 shows points that yield high values of estimated expected Darwinian

fitness. The first two columns display the sample envelope estimator of expected Darwinian

fitness and its bootstrapped standard error. The MLE of expected Darwinian fitness and

its bootstrapped standard error are displayed in the third and fourth columns respectively.

The ratios of bootstrapped standard errors for g(τ̂MLE) to g(τ̂env) are displayed in the

final column. We can see that all of the ratios are greater than 1 which indicates that

the envelope estimator of expected Darwinian fitness is less variable than the maximum

likelihood estimator.

Contour plots of the ratios of estimated standard errors are displayed in Figure 4.5.

These contour plots show that the envelope estimator of expected Darwinian fitness is less



4.6. Examples 89

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

−4 −2 0 2 4 6

−
4

−
2

0
2

4

z1

z2

●●

 1 

 1.5 

 1.5 

 2 

 2 

0

1

2

3

4

5

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 4.5: Contour plots for the ratios of se (h(τ̂)) to se (h(τ̂env)) in Example 1. Ratios
greater than 1 indicate efficiency gains using envelope methodology.

variable than the maximum likelihood estimator for the majority of the observed data. The

region where the envelope estimator is less variable includes the values of z1 and z2 that

maximize estimated expected Darwinian fitness. Variance reduction is also obtained when

we use the reducing subspace suggested by AIC. This is shown in Eck, et al. (2016a).

4.6.2 Example 2

In this example we apply our envelope methods to a real aster dataset. The data comes from

Lowry and Willis (2010) and the study in which the data is obtained investigates the role of

chromosomal inversions in adaptation and speciation. Phenotypic traits and covariates are

recorded for 2313 yellow monkeyflowers, Mimulus guttatus. The lifecycle of the individual

M. guttatus flowers is depicted in panel B of Figure 4.2. The covariates of interest include

genetic background, field site, inversion orientation, and ecotype of the flower. All of the

considered covariates are categorical. We fit the model with main effects only and find

substantial gains with our methods. There are eight predictors in total and we partition

τ into (γT , υT )T where γ ∈ R
2 are nuisance parameters and υ ∈ R

6 are relevant to the

estimation of expected Darwinian fitness. AIC, BIC, and the LRT at α = 0.05 all select a
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g(τ̂env) ŝe (g(τ̂env)) g(τ̂MLE) ŝe (g(τ̂MLE)) ratio
9.646 0.326 9.171 0.642 1.973
8.640 0.300 8.887 0.369 1.230
7.659 0.315 7.603 0.361 1.144
7.517 0.539 7.010 0.649 1.205
10.943 0.607 10.475 0.896 1.476
7.329 0.707 6.618 1.038 1.469
7.498 0.521 7.522 0.658 1.263

Table 4.2: Comparison of the MLE and the partial envelope estimator for components of
interest in Example 2. We can see that the envelope estimator is providing useful variance
reduction.

reducing subspace that is the sum of all eigenspaces of Σ̂υ,υ with the exception of the fourth

and fifth eigenspaces. The bootstrap procedure given in Figure 4.4 is used to estimate the

variability of the envelope estimator of υ̂ accounting for uncertainty in model selection.

Table 4.2 shows points that yield high values of estimated expected Darwinian fitness. We

can see that all of the ratios are greater than 1 which indicates that the envelope estimator of

expected Darwinian fitness is less variable than the maximum likelihood estimator. Contour

plots are given in Figure 4.6.
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Figure 4.6: Contour plots for the ratios of se (h(τ̂)) to se (h(τ̂env)) in Example 2. Ratios
greater than 1 indicate efficiency gains using envelope methodology.

4.7 Envelope methods with respect to β

As already discussed, the aster model mean-value parameter τ is closely associated with

mean-value parameter µ, see Figure 3.2 and consult Geyer (2010) for more details about

the six aster model parameterizations. One could also perform envelope methodology to

estimate model canonical parameter vector β, which possesses the same dimension as τ . In

our experience, envelope methodology with respect to β is computationally faster.

The computational benefit of using envelope methodology with respect to β is countered

by an important drawback. Aster model theory is developed to handle the relation between

β and relevant predictors in the form of an affine model. Therefore, the canonical parameter

vector β is not well-defined, one can shift β with an arbitrarily chosen offset vector without

changing the value of the mean-value parameters τ and µ. Envelope methodology is not

invariant to this form of arbitrary shifting. It is true that aster and aster2 software have

a default way of picking offsets. However, the conventions of aster and aster2 differ and

experienced users of this software can also change offsets as they see fit. It should be noted

that τ can also be shifted via an arbitrarily chosen offset vector. However, when one changes
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τ in this manner, one changes the definition of Darwinian fitness. Darwinian fitness, and

surrogates to Darwinian fitness that are used in its place, are well-defined quantities.

4.8 Software

This chapter is accompanied by an R package envlpaster (Eck, 2015) and a technical

report (Eck, et al., 2016a). This technical report reproduces the examples in this chapter

and shows how functions in the envlpaster package are used.

4.9 Discussion

There are two types of errors that can be made when constructing envelope estimators

and these two errors have very different consequences. The first error we could make is

picking an envelope dimension smaller than the truth. Conditional on this dimension, the

resulting envelope estimator is no longer consistent, and the first defining condition of the

envelope space is violated. Alternatively, an envelope dimension larger than the truth can

be chosen. Conditional on this type of dimension, the envelope estimator is consistent but it

will have higher variability than the envelope estimator constructed from the true envelope

dimension. Efficiency gains are still possible in this setting as seen in the first example.

The consequences of potential model selection errors served as the motivation for the

implementation of the bootstrap procedure in Efron (2014). However, this particular choice

of a bootstrap procedure is not without flaws. Hjort (2014) mentions that Efron does not

derive the distribution of the final estimator, given by (4.7) in our context. The literature

has not reached a consensus on the appropriate bootstrap procedure to be implemented

when bootstrapping depends on data-driven model selection. Berk, et al. (2013) provides

an estimation framework that is valid under all model selection criteria, but the degree

of conservatism guaranteed in Berk, et al. (2013) is not required in our setting. Other

applications of envelope methodology may require this degree of conservatism. As the

literature currently stands, Efron (2014) provides a reasonable solution to the problem of

potential model selection errors in the application of envelope methodology to aster models.
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Our software also provides functions implementing bootstrap procedures not accounting for

model selection.

The new envelope estimator constructed from reducing subspaces is seen to perform

better than the envelope estimator constructed from the 1D algorithm in our first exam-

ple. This new envelope estimator does not involve any non-convex optimization routines

that are both sensitive to starting values and have potential problems with local minima.

The underlying theory of the 1D algorithm justifies the consistency of our new envelope

estimator. In envelope modeling problems with a small number of parameters of interest,

possibly outside of our aster modeling context, the envelope estimator constructed from

reducing subspaces has the potential to yield efficiency gains without the present worries of

the current envelope estimation techniques.

In many life history analyses, specific trait values which are estimated to produce the

highest expected Darwinian fitness are of interest. It is common practice to only report

such trait values (Shaw and Geyer, 2010; Eck, et al., 2015a). Such reporting ignores the

variability associated with the estimation of expected Darwinian fitness. There are likely

many trait values having estimated expected Darwinian fitness that is statistically indistin-

guishable from the reported values. Our methodology addresses this concern directly. The

potential set of candidate traits maximizing expected Darwinian fitness is smaller when the

combination of envelope methodology into the aster modeling framework is utilized as seen

in the accompanying technical report.

The aster model has been solely applied to problems in life history analysis. However,

the aster model is a general statistical model which can analyze datasets outside of the life

history context. The aster model itself is a generalization of the generalized linear model

(Shaw, Geyer, Wagenius, Hangelbroek, and Etterson, 2008) and survival models (Geyer,

Wagenius, and Shaw, 2007). The aster model is appropriate for any graphical modeling

problem meeting the assumptions A1-A5 or the more general assumptions of Geyer, et al.

(2007).

Our main emphasis is to show that expected Darwinian fitness can be estimated with

lower variability through the incorporation of general envelope methodology with respect
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to aster model parameters. A combination of the theories of aster and envelope models

show that lower variability in estimation is obtainable. Our examples offer further support

to our claims. The envelope estimator of expected Darwinian fitness is seen to be usefully

less variable than the MLE. The variance reduction of estimated expected Darwinian fitness

obtained through our methodology has the potential to be massive. Researchers using our

methods will be able to draw strong inferences about expected Darwinian fitness through

our variance reduction techniques.

Supplementary Materials

The accompanying technical report is available at the UMN Digital Conservancy (Eck, et

al., 2016a). The calculations in the accompanying technical report are facilitated by the R

package envlpaster (Eck, 2015).



Chapter 5

Weighted Envelope Methodology

5.1 Introduction

Envelope methodology was developed originally in the context of the multivariate linear

regression model (Cook, et al., 2010),

Y = α+ βX + ε, (5.1)

where α ∈ R
r, β ∈ R

r×p, the random response vector Y ∈ R
r, the fixed predictor vector

X ∈ R
p is centered to have mean zero, and the error vector ε ∼ N(0,Σ). Estimation is

assumed to be based on n independent samples from model (5.1) where n > p. It was shown

by Cook, et al. (2010) that the envelope estimator of the unknown coefficient matrix β in

(5.1) has the potential to yield massive efficiency gains relative to the maximum likelihood

estimator of β. These efficiency gains can arise when the dimension u of the envelope space,

defined in the next section, is less than r. In most practical applications, u is unknown

and has to be estimated. This estimation can be problematic since the estimated variance

of the envelope estimator is typically calculated conditional on the estimated dimension û.

Variation associated with model selection is therefore not considered in the current envelope

paradigm.

We propose a weighted envelope estimator of β that smooths out model selection volatil-

ity. The weighting is across all possible envelope models under (5.1). The weights corre-

95
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sponding to each envelope estimator are functions of the Bayesian Information Criterion

(bic) value corresponding to that particular envelope model. Weighting in this manner is

similar to the model averaging techniques discussed by Buckland, et al. (1997) and Burn-

ham and Anderson (2004) who provided a philosophical justification for the use of such

weighted estimators without giving any theoretical properties. Hjort and Claeskens (2003)

and Liang, et al. (2011) built on the philosophical justification for weighted estimators by

deriving their asymptotic properties. Claeskens and Hjort (2008) summarized extensions

and applications of the theory of weighted estimators. However, these extensions do not

include bootstrap techniques and do not encompass the framework of envelope models.

Envelope models fit at dimensions greater than or equal to u are all true non-nested data

generating models and are ordered in preference from dimension u to r. This context seems

novel and is outside of the framework of Claeskens and Hjort (2008).

Candidate envelope estimators of β at dimension j, denoted β̂j , are found via maximum

likelihood estimation of model (4.5) with β̂j = Γ̂η̂. An estimator of u is found by using

a model selection criterion such as bic, Akaike Information Criterion (aic), likelihood ra-

tio tests, or cross-validation. The estimated dimension û obtained from any one of these

selection criteria is a variable quantity dependent on the observed data. Current envelope

methodology does not address this extra variability. In the next two sections, we develop

properties of a weighted estimator that takes this extra variability into account.

5.2 bic Weighted Estimators

The weighted estimator that we consider is of the form

β̂w =
r∑

j=1

wj β̂j , (5.2)

where
∑r

j=1wj = 1 and wj ≥ 0, for j = 1, ..., r. The weights wj depend on the bic values

for all of the candidate envelope models under consideration. Let the bic value for the

envelope model with dimension j be denoted by bj = −2l(β̂j) + k(j) log(n), where l(β̂j) is
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the log likelihood evaluated at the envelope estimator β̂j and k(j) = r + pj + r(r + 1)/2 is

the number of parameters of the envelope model of dimension j. The weight for envelope

model j is constructed as

wj =
exp(−bj)∑r
k=1 exp(−bk)

. (5.3)

It follows from arguments in the Supplement that β̂w is a
√
n-consistent estimator of β,

but assessing the variance of β̂w is not so straightforward. In the next section, we show

that the residual bootstrap provides a consistent estimator of Var(β̂u). We use bic in (5.3)

because, in ours and others’ experiences, bic performs well when selecting the dimension

of an envelope model. aic tends to overselect the true dimension of an envelope model,

likelihood ratio testing is inconsistent, and cross-validation is primarily used in prediction

problems. We do not claim that bic is optimal in this application.

5.3 Bootstrap for β̂w

The envelope estimator β̂u at the true dimension u is
√
n-consistent and asymptotically

normal (Cook, et al., 2010; Cook and Zhang, 2015a). The residual bootstrap used to

estimate the variability of β̂u uses the starred responses,

Y ∗ = Xβ̂Tu + ε∗, (5.4)

to obtain β̂∗u , where X ∈ R
n×p is the fixed design matrix with rows XT

i and the rows of

ε∗ ∈ R
n×r are the realizations of n resamples of the residuals from the ordinary least squares

fit of (5.1). This process is performed a total of B times with a new β̂∗u computed from

(5.4) at each iteration. The setup in Andrews (2002, Section 2, pgs. 122-124 and Theorem

2) confirms that the sample variance of the β̂∗u s provides a
√
n-consistent estimator of the

asymptotic variability of β̂u. The problem with this approach, as it currently stands, is that

u is unknown. The current implementation of the residual bootstrap implicitly assumes

that û = u. Therefore, variability introduced by model selection uncertainty is ignored.
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This issue is resolved by using β̂w in place of β̂u in (5.4). The next theorem formalizes

our asymptotic justification for the use of the weighted envelope estimator β̂w in practical

problems. Its proof is given in the Supplement.

Theorem 12

Assume regression model (5.1) and suppose that an envelope subspace of dimension u =

1, ..., r exists. Assume that Σ̂X = n−1
X
T
X → ΣX > 0. Let β̂w be the weighted envelope

estimator of β defined in (5.2) and let β̂∗w be the weighted envelope estimator of β obtained

from resampled data. Then, as n tends to ∞,

√
n
{
vec(β̂∗w)− vec(β̂w)

}
=

√
n
{
vec(β̂∗u )− vec(β̂u)

}

+Op

{
n(1/2−p)

}
+ 2(u− 1)Op(1)

√
ne−n|Op(1)|.

(5.5)

�

Proof: We go through the steps showing that (5.5) holds. Recall that u = dim(E). Define

l(β̂j) to be the log likelihood of the envelope model evaluated at the envelope estimator β̂j ,

fitting with dim(E) = j, and define k(j) to be the number of parameters of the envelope

model of dimension j. From the construction of bj and the above calculations we see that

ebu−bj = e−2{l(β̂u)−l(β̂j)}n−{k(j)−k(u)}.

Let b∗j be the bic value of the envelope model of dimension j fit to the starred data and

define

w∗j =
e−b∗j

∑r
k=1 e

−b∗
k

.

Let ‖ ·‖ be the Euclidean norm. We show that
√
n
{
w∗j vec(β̂∗j )− wjvec(β̂j)

}
→ 0 for j 6= u

by showing that

√
n‖w∗j vec(β̂∗j )− wjvec(β̂j)‖ ≤ √

n‖w∗j vec(β̂∗j )‖+
√
n‖wjvec(β̂j)‖ → 0
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as n→ ∞ for all j 6= u. Now,

√
nwj‖vec(β̂j)‖ ≤ √

n | Op(1) | ebu−bj

=| Op(1) | n{k(u)−k(j)+1/2}e−2{l(β̂u)−l(β̂j)}

=| Op(1) | n{k(u)−k(j)+1/2}e2{l(β̂r)−l(β̂u)}−2{l(β̂r)−l(β̂j)}.

(5.6)

The first inequality in (5.6) follows from the fact that ‖vec(β̂j)‖ ≤ ‖vec(β̂r)‖ and ‖vec(β̂r)‖ =

Op(1). We first consider the case where j = u+1, ..., r. In this setting, models with envelope

dimensions u and j are both true and nested within the full model with envelope dimension

r. Consequently, −2{l(β̂u)− l(β̂r)} and −2{l(β̂j)− l(β̂r)} are asymptotically distributed as

χ2
p(r−u) and χ2

p(r−j) by Wilks’ Theorem. Therefore e−2{l(β̂u)−l(β̂j)} = Op(1) since it is the

exponentiation of the difference between two χ2 random variables. We see that

√
nwj‖vec(β̂j)‖ ≤| Op(1) | n{k(u)−k(j)+1/2} = Op

[
n{k(u)−k(j)+1/2}

]
.

Since j > u, we have that k(u)− k(j) = p(u− j) ≤ −p. Thus,

√
nwj‖vec(β̂j)‖ ≤ Op

{
n(1/2−p)

}

for j = u+ 1, ..., r. Following the same steps as (5.6), applied to the starred data, yields

√
nw∗j ‖vec(β̂∗j )‖ ≤| Op(1) | n{k(u)−k(j)+1/2}e−2{l∗(β̂∗u )−l∗(β̂∗r )}+2{l∗(β̂∗j )−l∗(β̂∗r )} (5.7)

where l∗(·) is the log likelihood function corresponding to the starred data.

Both −2
{
l∗(β̂∗u )− l∗(β̂∗r )

}
and 2

{
l∗(β̂∗j )− l∗(β̂∗r )

}
in (5.7) are Op(1). Thus,

√
nwj‖vec(β̂∗j )‖ ≤ | Op(1) | n{k(u)−k(j)+1/2} = Op

[
n{k(u)−k(j)+1/2}

]
,

and,
√
nwj‖vec(β̂∗j )‖ ≤ Op

{
n(1/2−p)

}
for all j = u+ 1, ..., r. This establishes that

√
n‖w∗j vec(β̂∗j )− wjvec(β̂j)‖ ≤ Op

{
n(1/2−p)

}
,
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for j = u+ 1, ..., r.

Turning to the case when j = 1, ..., u − 1, consider the exponent e−λj , with λj =

2
{
l(β̂r)− l(β̂j)

}
. This is a log likelihood ratio although, unlike the case when j = u+1, ..., r,

it does not follow a χ2 distribution asymptotically. Let Ĝ and Ĝo be the estimated bases for

the envelope space and its orthogonal complement fitting with dimension j = 1, ..., u − 1,

so Ĝ ∈ R
r×j and Ĝo ∈ R

r×(r−j). We write

λj = 2
{
l(β̂r)− l(β̂j)

}

= n log | ĜT Σ̂resĜ | +n log | ĜT
o Σ̂Y Ĝo | −n log | Σ̂res |

= n log | ĜT Σ̂resĜ | +n log | ĜT
o Σ̂resĜo | −n log | Σ̂res |

+ n log | Ip + Σ̂
1/2
X β̂Tr Ĝo

(
ĜT

o Σ̂resĜo

)−1
ĜT

o β̂rΣ̂
1/2
X | (5.8)

where Σ̂Y = n−1
Y
T
Y. The second equation in (5.8) follows by applying the usual expansion

of the determinant of a sum of the form A+BBT . To see this,

| ĜT
o Σ̂Y Ĝo | =| ĜT

o Σ̂resĜo + ĜT
o Y

T
X(XT

X)−1
X
T
YĜo |

=| ĜT
o Σ̂resĜo + ĜT

o β̂rΣ̂X β̂
T
r Ĝo |

=| ĜT
o Σ̂resĜo | × | Ip + Σ̂

1/2
X β̂Tr Ĝo

(
ĜT

o Σ̂resĜo

)−1
ĜT

o β̂rΣ̂
1/2
X |,

where

ĜT
o β̂rΣ̂X β̂

T
r Ĝo = ĜT

o Y
T
X(XT

X)−1
X
T
YĜo

because of the definition of β̂r = Y
T
X(XT

X)−1.

We bound λj from below by further minimizing the first three addends in (5.8) over

(Ĝ, Ĝo). These are minimized globally when the columns of Ĝ span any reducing subspace
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of Σ̂res and is 0 at the minimum. Thus

λj ≥ n log | Ip + Σ̂
1/2
X β̂Tr Ĝo

(
ĜT

o Σ̂resĜo

)−1
ĜT

o β̂rΣ̂
1/2
X |

= n log | Ip + Σ̂
1/2
X β̂Tr Σ̂

−1/2
res

{
Σ̂1/2
res Ĝo

(
ĜT

o Σ̂resĜo

)−1
ĜT

o Σ̂
1/2
res

}
Σ̂−1/2
res β̂rΣ̂

1/2
X |

= n log(Âj,n),

(5.9)

where Âj,n is defined implicitly. The quantity Σ̂
1/2
res Ĝo

(
ĜT

o Σ̂resĜo

)−1
ĜT

o Σ̂
1/2
res in (5.9) is the

projection into the column space of Σ̂
1/2
res Ĝo. The quantity ĜT

o β̂r 6= 0 almost surely since

j = 1, ..., u − 1. As a result, the column space of Σ̂
−1/2
res β̂rΣ̂

1/2
X in (5.9) has a nontrivial

intersection with the column space of Σ̂
1/2
res Ĝo almost surely. Therefore Âj,n > 1 almost

surely. We can write n log(Âj,n) = n | Op(1) | and we have the bound

e−λj = e−2{l(β̂j)−l(β̂r)} ≤ e−n log(Âj,n) = e−n|Op(1)|.

Therefore,

log(wj) ≤ bu − bj

= −2{l(β̂u)− l(β̂r)}+ 2{l(β̂j)− l(β̂r)}+ {k(u)− k(j)} log(n)

= |Op(1)| − λj + {k(u)− k(j)} log(n)

≤ |Op(1)| − n | Op(1) | +{k(u)− k(j)} log(n) = −n | Op(1) |

(5.10)

and we see that
√
nwj ≤

√
ne−n|Op(1)| for j = 1, ..., u− 1.

Define Ĝ∗o to be the estimate of Go obtained from the starred data and let

A∗j,n =| Ip + Σ̂
1/2
X β̂∗

T

r Ĝ∗o
(
Ĝ∗

T

o Σ̂∗resĜ∗o
)−1

Ĝ∗
T

o β̂∗r Σ̂1/2
X |

=| Ip + Σ̂
1/2
X β̂∗

T

r Σ̂∗
−1/2

{
Σ̂∗

1/2
Ĝ∗o
(
Ĝ∗

T

o Σ̂∗resĜ∗o
)−1

Ĝ∗
T

o Σ̂∗
1/2

}
×

Σ̂∗
−1/2

β̂∗r Σ̂1/2
X |

(5.11)
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The same logic that applied to Âj,n applies to A∗j,n. The quantity

Σ̂∗
1/2
Ĝ∗o
(
Ĝ∗

T

o Σ̂∗resĜ∗o
)−1

Ĝ∗
T

o Σ̂∗
1/2

in (5.11) is the projection onto the column space of Σ̂∗1/2Ĝ∗o . The quantity Ĝ∗To β̂∗r 6= 0

almost surely since j = 1, ..., u−1. As a result, the column space of Σ̂∗−1/2
β̂∗r Σ̂1/2

X in (5.11)

has a nontrivial intersection with the column space of Σ̂∗1/2Ĝ∗o almost surely. Therefore

A∗j,n > 1 almost surely. The steps in (5.10), applied to the starred data, yields

√
nw∗j ≤ √

ne−n|Op(1)|. (5.12)

Thus,

√
n‖w∗j vec(β̂∗j )− wjvec(β̂j)‖ ≤ √

n‖w∗j vec(β̂∗j )‖+
√
n‖wjvec(β̂j)‖

≤ √
ne−n|Op(1)|‖vec(β̂∗j )‖+

√
ne−n|Op(1)|‖vec(β̂j)‖

= 2Op(1)
√
ne−n|Op(1)|

for j = 1, ..., u−1 where ‖vec(β̂j)‖ and ‖vec(β̂∗j )‖ are both Op(1) just as in the j = u+1, ..., r

case. Combining all of these term yields the 2(u− 1)Op(1)
√
ne−n|Op(1)| order in (5.5). This

completes the proof when j = 1, ..., u− 1.

The final case is when j = u. Let En =
∑r

i 6=u e
bu−bi . We can write wu = 1

1+En
=

1− En

1+En
. The term En = Op (n

−p) since e−n|Op(1)| = Op (n
−p). Therefore

√
nw∗uvec(β̂∗u ) =

√
n

(
1− En

1 + En

)
vec(β̂∗u )

=
√
nvec(β̂∗u ) +Op

{
n(1/2−p)

}
,

√
nwuvec(β̂u) =

√
n

(
1− En

1 + En

)
vec(β̂u)

=
√
nvec(β̂u) +Op

{
n(1/2−p)

}
.
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Adding the previous results over j to form
√
n
{
vec(β̂∗w)− vec(β̂w)

}
yields the result given

in (5.5) This completes the proof. �

Theorem 12 shows the utility of the weighted envelope estimator β̂w. In (5.5), we see that

the asymptotic distribution of the residual bootstrap at β̂w is the same as the asymptotic

distribution of the residual bootstrap at β̂u. The difference between the two bootstrap

procedures is that the bootstrap given in Theorem 12 does not require the conditioning on

û as a prerequisite for its implementation.

The orders in (5.5) result from model selection variability that arises from four sources.

The Op

{
n(1/2−p)

}
term corresponds to the rate at which

√
nwj and

√
nw∗j vanish for

j = u+1, ...r. This rate is a cost of overestimation of the envelope space. It decreases quite

fast, particularly when p is not small, because models with j > u are true and thus have no

systematic bias due to choosing the wrong dimension.

The 2(u−1)
√
ne−n|Op(1)| term corresponds to the rate at which

√
nwj and

√
nw∗j vanish

for j = 1, ..., u − 1. This rate arises from under estimating the envelope space and it is

affected by systematic bias arising from choosing the wrong dimension. To gain intuition

about this rate, let Bj =
(
GT

o ΣGo

)−1/2
GT

o βΣ
1/2
X , where Go ∈ R

r×(r−j) is the population

basis matrix for the complement of the envelope space of dimension j. This quantity is a

standardized version of GT
o β that reflects bias, since GT

o β 6= 0 when j < u, but GT
o β = 0

when j ≥ u. Let B̂j,n denote the
√
n-consistent estimator of Bj obtained by plugging in

the sample version of ΣX and the estimators of Go, Σ and β that arise by maximizing the

likelihood with dimension j < u. Then the −n | Op(1) | term appearing in the exponent

of 2(u − 1)
√
ne−n|Op(1)| is the rate at which −n log(| Ip + B̂T

j,nB̂j,n |) approaches −∞.

Additionally, this term is 0 when u = 1. That arises because we consider only regressions

in which β 6= 0 and thus u ≥ 1. When u = 1 underestimation is not possible in our context

and thus 2(u− 1)
√
ne−n|Op(1)| vanishes.

The weights in (5.3) differ from those mentioned in Burnham and Anderson (2004)

which were also advocated by Kass and Raftery (1995) and Tsague (2014). These weights
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are of the form

w̃j =
exp(−bj/2)∑r
k=1 exp(−bk/2)

(5.13)

and they correspond to an approximation of the posterior probability for model j given the

observed data under the prior that places equal weight for all candidate models. Weights

of the form (5.13) do not have the same asymptotic properties as the weights given by

(5.3). When p = 1, the term
√
nw̃j=u+1 defined by (5.13) does not vanish as n → ∞.

We therefore would not have the same asymptotic result given by (5.5) in Theorem 12.

Instead, there would be non-zero weight placed on the envelope model with dimension

j = u+ 1 asymptotically. This weighting scheme would therefore lead to higher estimated

variability than is necessary in practice. However, this issue is no longer problematic when

p > 1. When p > 1 and weights (5.13) are used, the Op

{
n(1/2−p)

}
term in (5.5) becomes

Op

{
n(1−p)/2

}
, resulting in a slower rate of convergence.

Constructing β̂w with respect to bic may not be the only weighting scheme that satisfies

√
n
{
vec(β̂∗w)− vec(β̂w)

}
=

√
n
{
vec(β̂∗u )− vec(β̂u)

}
+Op {f(p, n)} (5.14)

where f(p, n) is a function that depends on how the weights are constructed. Any weighting

scheme such that, for all j 6= u,

√
n
{
vec(β̂∗j )− vec(β̂j)

}
→ 0 (5.15)

as n → ∞ satisfies (5.14). Weighting schemes that violate (5.15) will not result in a

bootstrap that is consistent.

Similar weights with aic in place of bic do not satisfy (5.15). Interchanging bic with

aic in the proof of Theorem 12 produces weights of the form wj =| Op(1) | e2{k(u)−k(j)} for

all j = u+ 1, ..., r which do not vanish as n→ ∞.
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5.4 Examples

We now provide three examples which show the utility of Theorem 12. The first two are

simulated examples in which we know β, Σ, u, and PEΣ(B). The third is based on real data.

5.4.1 Simulated examples

Example 1: For this example we create a setting in which Y ∈ R
3 is generated according

to the model

Yi = βXi + εi, εi
ind∼ N(0,Σ), (5.16)

(i = 1, ..., n), where Xi ∈ R
2 is a continuous predictor with entries generated independently

from a normal distribution with mean 4 and variance 1. The covariance matrix Σ was

generated using three orthonormal vectors and has eigenvalues of 50, 10, and 0.01. The

matrix β ∈ R
3×2 is an element in the space spanned by the second and third eigenvectors

of Σ. We know that the dimension of EΣ(B) is u = 2.

n = 50 n = 100 n = 500 n = 2000

‖vec(β̂w)− vec(β̂u=2)‖2 2.3 0.016 ≈ 0 ≈ 0

‖V̂ar(β̂∗w − β̂u=2)‖ 0.18 0.12 0.021 0.0051

Table 5.1: Comparison of β̂w and β̂u=2. The first row is the Euclidean difference between
vec(β̂w) and vec(β̂u=2) from the original dataset. The second row is the spectral norm of
the estimated variance of the difference of all bootstrap realizations of β̂∗w and β̂u=2 with
bootstrap sample size B = n.

Four datasets were simulated under model (5.16) at different sample sizes. The multi-

variate residual bootstrap was used to compare the weighted envelope estimator β̂w with

the oracle envelope estimator β̂u=2 across the simulated datasets. In Table 5.1, we see that

the Euclidean difference of vec(β̂u=2) and vec(β̂w) shrinks as n increases, and that the spec-

tral norm of the variance of differences also shrinks as n increases. Taken together, these

findings support the conclusions of Theorem 12.

Example 2: For this example we illustrate the effect that p has on the performance of the
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weighted envelope estimator. We generated data according to model (5.16) with Y ∈ R
5.

In this example u = 1 and Σ is compound symmetric with diagonal entries set to 1 and

off-diagonal entries set to 0.5, β = 1rc
T
p , where 1r is the r × 1 vector of ones, and cp is a

p×1 vector where every entry is 10. We generate the predictors according to X ∼ N(0, Ip),

where Ip is the p-dimensional identity matrix. We set n = 250.

We then perform a residual bootstrap with sample size B = 250 and, for each p con-

sidered, we report the number of times each dimension was selected by bic, denoted by

n(û). From Table 5.2, we see that the distribution of û, across the B resamples, approaches

a point mass at the truth as p increases with u fixed. This implies that our bootstrap

procedure improves as p increases with u fixed, as indicated by Theorem 12.

n(û = 1) n(û = 2) n(û = 3)
p = 2 128 111 11
p = 5 214 34 2
p = 10 249 1 0
p = 25 250 0 0

Table 5.2: The bootstrap distribution of û as p increases, where û is selected by bic and
n(û = j) is the number of times bic selected envelope dimension j.

5.4.2 Cattle data

The data in this example, analyzed in Kenward (1987) and Cook and Zhang (2015a), came

from an experiment that compared two treatments for the control of a parasite in cattle. The

experimenters were interested in finding if the treatments had differential effects on weight

and, if so, about when they first occurred. There were sixty animals in this experiment and

thirty animals were randomly assigned to the two treatments. Their weights (in kilograms)

were then recorded at weeks 2, 4,..., 18 and 19 after treatment (Kenward, 1987). In our

analysis, we considered the multivariate linear model (5.1), where Yi ∈ R
10 is the vector of

cattle weights from week 2 to week 19, and predictor Xi is either 0 or 1 indicating which

of the two treatments was assigned. In this model, α is the mean profile for one treatment

and β is the mean difference between the two treatments.
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Since the two treatments were not expected to have an immediate measurable effect

on weight, some linear combinations of the response vector are not expected to depend

on the treatment. Therefore the envelope model (4.5) is expected to perform well in this

application because of our belief that (4.4) holds with E⊥
Σ (B) at least as large as the span

of the linear combinations that isolate the first few elements of the response vector.

Envelope models were fitted at each dimension from 1 to 10. The likelihood ratio test

selected û = 1 and bic selected û = 3 as the dimension of the envelope model. Further

complicating matters, when bic is used to determine u at every resample of the multivariate

residual bootstrap with sample size B = 60, we see high variability in the models selected.

Specifically, n(û = 1) = 10, n(û = 2) = 10, n(û = 3) = 24, n(û = 4) = 12, and n(û =

5) = 4. Model selection variability of this variety is precisely the reason why the weighted

envelope estimator is advocated.

In Table 5.3, we see the ratios of bootstrapped estimated standard errors for envelope

estimators to those of the maximum likelihood estimator of the β from the full model (5.1),

se∗(β̂r)/se∗(β̂w), averaged across 25 replications. Standard errors of the averaged ratios

across replications are all less than 7% of the reported ratios and the average standard error

is 2.6% of the reported ratio. A complete table that includes standard errors for all of the

averaged ratios is included in the Supplementary Materials. Ratios greater than 1 indicate

that the envelope estimator is more efficient than the standard estimator. We see that β̂w

is comparable to β̂u=3. Similar conclusions are drawn from the other elements of estimates

of β. The findings displayed in Table 5.3 illustrate that the weighted envelope estimator

can provide useful efficiency gains while properly accounting for model selection variability.

B β̂w β̂u=1 β̂u=2 β̂u=3 β̂u=4 β̂u=5

60 1.98 5.54 3.05 1.69 1.31 1.23
100 1.97 5.54 2.55 1.54 1.32 1.21
500 1.82 5.47 2.78 1.57 1.31 1.16
2000 1.81 5.37 2.60 1.53 1.29 1.16

Table 5.3: Averaged ratios of estimated standard errors across 25 replications of the mul-
tivariate residual bootstrap at different numbers of resamples B for the fifth element of
estimates of β.
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We next report results of a simulation study using the cattle data to show further

support for Theorem 12. We generate data according to the model

Yi = α+ βXi + εi, εi
ind∼ N(0,Σ),

(i = 1, ..., n) where α, β, and Σ were set to the estimates obtained from the envelope model

fit to the cattle data at dimension u = 3, and Xi is the binary indicator that specified

treatment. Cows are split evenly between the two treatment groups and the assignment

was random.

In Table 5.4, we see that the Euclidean differences between vec(β̂u=3) and vec(β̂w) shrink

as n increases. The same is true for the differences between vec(β̂u=4) and vec(β̂w). This was

expected since the envelope model fit with u = 4 is a true data generating model. However,

we see that the Euclidean distance between vec(β̂u=2) and vec(β̂w) does not shrink as n

increases. Again, this was expected since the envelope model fit with u = 2 is not a true

data generating model. These simulation results are in alignment with the conclusions of

Theorem 12.

n = 60 n = 100 n = 500 n = 2000

‖vec(β̂w)− vec(β̂u=2)‖2 9.36 0.83 0.91 4.2

‖vec(β̂w)− vec(β̂u=3)‖2 9.37 0.54 0.070 0.00028

‖vec(β̂w)− vec(β̂u=4)‖2 9.37 0.69 0.34 0.090

Table 5.4: Comparison of β̂w and β̂u=2, β̂u=3, and β̂u=4. The rows are the Euclidean
difference between vec(β̂w) and the indicated envelope estimator from the original dataset.

5.5 Discussion

Efron (2014) proposed an estimator motivated by bagging (Breimen, 1996) that aims to

reduce variability and smooth out discontinuities resulting from model selection volatility.

Variability of the model averaged estimator of Efron (2014) is assessed via a double boot-

strap. These techniques have been applied to envelope methodology in Eck, et al. (2017)
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and useful variance reduction was found empirically. The problem of interest in Eck, et

al. (2017) falls outside the scope of the multivariate linear regression model, and general

envelope methodology (Cook and Zhang, 2015a) was required to obtain efficiency gains. n

the context of the multivariate linear regression model, we showed that only a single level

of bootstrapping is necessary.

The idea of weighting envelope estimators across all candidate dimensions extends to

partial least squares (Cook, et al., 2013), predictor envelopes (Cook and Su, 2016), and

sparse response envelopes (Su, et al., 2016).



Chapter 6

Bootstraping for Multivariate
Linear Regression Models

6.1 Introduction

The linear regression model is an important and useful tool in many statistical analyses

for studying the relationship among variables. Regression analysis is primarily used for

predicting values of the response variable at interesting values of the predictor variables,

discovering the predictors that are associated with the response variable, and estimating

how changes in the predictor variables affects the response variable (Weisberg, 2005). The

standard linear regression methodology assumes that the response variable is a scalar. How-

ever, it may be the case that one is interested in investigating multiple response variables

simultaneously. One could perform a regression analysis on each response separately in this

setting. Such an analysis would fail to detect associations between responses. Regression

settings where associations of multiple responses is of interest require a multivariate linear

regression model for analysis.

Bootstrapping techniques are well understood for the linear regression model with a uni-

variate response (Bickel and Freedman, 1981; Freedman, 1981). In particular, theoretical

justification for the residual bootstrap as a way to estimate the variability of the ordinary

least squares (OLS) estimator of the regression coefficient vector in this model has been

developed (Freedman, 1981). Theoretical extensions of residual bootstrap techniques ap-

propriate for the multivariate linear regression model have not been formally introduced.

110
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The existence of such an extension is stated without proof and rather implicitly in sub-

sequent works (Freedman and Peters, 1984; Diaconis and Efron, 1983). In this article we

show that the bootstrap procedures in Freedman (1981) provide consistent estimates of

the variability of the OLS estimator of the regression coefficient matrix in the multivariate

linear regression model. Our proof technique follows similar logic as Freedman (1981). The

generality of the bootstrap theory developed in Bickel and Freedman (1981) provide the

tools required for our extension to the multivariate linear regression model.

6.2 Bootstrap for the multivariate linear regression model

The multivariate linear regression is

Yi = βXi + εi, (i = 1, ..., n), (6.1)

where Yi ∈ R
r and r > 1 in order to have an interesting problem, β ∈ R

r×p, Xi ∈ R
p,

and the εi’s are errors having mean zero and variance Σ where Σ > 0. It is assumed that

separate realizations from the model (6.1) are independent. We further define X ∈ R
n×p

as the design matrix with rows XT
i , Y ∈ R

n×r is the matrix of responses with rows Y T
i ,

and ε ∈ R
n×r is the matrix of all errors with rows εTi . The OLS estimator of β in model

(6.1) is β̂ = Y
T
X(XT

X)−1. We let ε̂ ∈ R
n×r denote the matrix of residuals consisting of

rows ε̂Ti = (Yi − β̂Xi)
T . The multivariate linear regression model assumed here is slightly

different than the traditional multivariate linear regression model. The traditional model

makes the additional assumptions that the errors are normally distributed and the design

matrix X is fixed.

We consider two bootstrap procedures that consistently estimate the asymptotic vari-

ability of vec(β̂) under different assumptions placed upon the model (6.1). The first boot-

strap procedure is appropriate when the design matrix X is assumed to be fixed and the

errors are homoscedastic. In this setup, residuals are resampled. The second bootstrap

procedure is appropriate when (XT
i , ε

T
i )

T are realizations from a joint distribution. In this

setup, cases (XT
i , Y

T
i )T are resampled. It is known that bootstrapping under these setups
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provides a consistent estimator of the variability of Var(β̂) in model (6.1) when r = 1

(Freedman, 1981). We now provide the needed extensions.

6.2.1 Fixed design

We first establish the residual bootstrap of Freedman (1981) when X is assumed to be a

fixed design matrix. Resampled, starred, data is generated by the model

Y
∗ = Xβ̂T + ε∗, (6.2)

where ε∗ ∈ R
n×r is the matrix of errors with rows being independent with common dis-

tribution F̂n, the empirical distribution of the residuals, centered at their mean, from the

original dataset. Now β̂∗ = Y
∗T

X(XT
X)−1 is the OLS estimator of β from the starred data.

This process is performed a total of B times with a new estimator β̂∗ computed from (6.2)

at each iteration. We then estimate the variability of vec(β̂) with

Var∗
{
vec(β̂)

}
= (B − 1)−1

B∑

b=1

{
vec(β̂∗b )− vec(β̄∗)

}{
vec(β̂∗b )− vec(β̄∗)

}T

where β̂∗b is the residual bootstrap estimator of β at iteration b and β̄∗ = B−1
∑B

b=1 β̂
∗
b .

Before the theoretical justification of the residual bootstrap is formally given, some

important quantities are stated. The residuals from the regression (6.2) are ε∗ = Y
∗−Xβ̂∗T .

The variance-covariance matrix Σ in model (6.1) is then estimated by

Σ̂ = n−1
n∑

i=1

ε̂iε̂
T
i − µ̂2, µ̂2 =

(
n−1

n∑

i=1

ε̂i

)(
n−1

n∑

i=1

ε̂i

)T

.

Likewise, the variance-covariance estimate from the starred data is

Σ̂∗ = n−1
n∑

i=1

ε̂∗i ε̂∗
T

i − µ̂∗
2
, µ̂∗

2
=

(
n−1

n∑

i=1

ε̂∗i

)(
n−1

n∑

i=1

ε̂∗i

)T

.

Theorem 1 provides bootstrap asymptotics for the regression model (6.1). It extends The-
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orem 2.2 of Freedman (1981) to the multivariate setting.

Theorem 13

Assume the regression model (6.1) where the errors have finite fourth moments. Suppose

that n−1
X
T
X → ΣX > 0. Along almost all sample paths Y1, ..., Yn, as n tends to ∞,

a) the distribution of
√
n
{
vec(β̂∗)− vec(β̂)

}
converges weakly to a normal distribution

with mean 0 and variance-covariance matrix given by Σ−1
X ⊗ Σ.

b) the sequence Σ̂∗ converges to Σ in probability.

c) the distribution of

{
(XT

X)1/2 ⊗ Σ̂∗−1/2
}{

vec(β̂∗)− vec(β̂)
}
converges to a standard

normal distribution in R
rp. �

The proof of Theorem 13, along with the details of several necessary lemmas and the-

orems, are included in the theoretical details section. Theorem 13 establishes the mul-

tivariate analogue for the residual bootstrap. This theorem shows that standard error

estimation of the estimated β matrix obtained through bootstrapping, is
√
n-consistent.

Now let f : Rrp → R
k be a differentiable function. Then the conclusions of Theorem 13

can be applied to establish a multivariate delta method based on estimates obtained via the

residual bootstrap. This immediately follows from a first order Taylor expansion and some

algebra arriving at

√
n
[
f
{
vec(β̂∗)

}
− f

{
vec(β̂)

}]

= ∇f
{
vec(β̂)

}√
n
{
vec(β̂∗)− vec(β̂)

}
+Op(n

−1/2)
(6.3)

Therefore (6.3) converges to a normal distribution with mean zero and variance given by

∇f {vec (β)}
(
Σ−1
X ⊗ Σ

)
∇T f {vec (β)}

as n→ ∞.
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6.2.2 Random design and heteroskedasticity

In this section we assume that the Xis in model (6.1) are realizations of a random variable

X. The regression coefficient matrix β now takes the form β = E(Y XT )Σ−1
X where ΣX =

E(XXT ) and it is assumed that ΣX is positive definite. Now that X is stochastic, there

may be some association between X and the errors ε. The possibility of heteroskedasticity

means that we need to alter the bootstrap procedure outlined in the previous section in

order to consistently estimate the variability of vec(β̂).

It is assumed that the data vectors (XT
i , Y

T
i )T ∈ R

p+r are independent, with a common

distribution µ and E(‖(XT
i , Y

T
i )T ‖4) <∞ where ‖·‖ is the Euclidean norm. Unlike the fixed

design setting, data pairs (XT
i , Y

T
i )T are resampled with replacement to form the starred

data (X∗T
i , Y ∗T

i )T , for i = 1, ..., n. Given the original sample, (XT
i , Y

T
i )T , i = 1, ..., n, the

resampled vectors are independent, with distribution µn. Denote X∗ ∈ R
n×p and Y

∗ ∈ R
n×r

as the matrix with rows X∗T
i and Y ∗T

i respectively. The starred estimator of β obtained

from resampling is then β̂∗ = Y
∗T

X
∗ (

X
∗T

X
∗)−1

. For every n there is positive probability,

albeit low, that X∗TX∗ is singular, and the probability of singularity decreases exponentially

in n. We assume that displayed equation (1.17) in Chatterjee and Bose (2000) holds in order

to circumvent singularity in our bootstrap procedure.

The bootstrap is performed a total of B times with a new estimator β̂∗ computed at

each iteration. We then estimate the variability of vec(β̂) with

Var∗
{
vec(β̂)

}
= (B − 1)−1

B∑

b=1

{
vec(β̂∗b )− vec(β̄∗)

}{
vec(β̂∗b )− vec(β̄∗)

}T

where β̂∗b is the bootstrap estimator of β at iteration b and β̄∗ = B−1
∑B

b=1 β̂
∗
b .

We now show that the variability of vec(β̂) is estimated consistently by our multivari-

ate bootstrap procedure which resamples cases. Let M be a non-negative definite ma-

trix with entries Mjk = E
{
vec(Xiε

T
i )jvec(Xiε

T
i )k
}

for j, k = 1, ..., rp and define ∆ =
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(
Σ−1
X ⊗ Ir

)
M
(
Σ−1
X ⊗ Ir

)
. where n−1

X
T
X → ΣX a.e. as n→ ∞. Then

√
nvec

(
β̂ − β

)
= vec

{
n−1/2εTX(n−1

X
T
X)−1

}

=
{
(n−1

X
T
X)−1 ⊗ Ir

}
vec
(
n−1/2εTX

)
→ N(0,∆).

(6.4)

The next theorem states that
√
nvec

(
β̂∗ − β̂

)
is the same as (6.4). This is an extension of

Theorems 3.1 and 3.2 of Freedman (1981) to the multivariate linear regression setting.

Theorem 14

Assume that (XT
i , Y

T
i )T ∈ R

p+r are independent, with a common distribution µ, E(‖(XT
i , Y

T
i )T ‖4) <

∞, and ΣX = E(XXT ) is positive definite. Along almost all sample sequences, given

(XT
i , Y

T
i )T , for i = 1, ..., n, as n→ ∞,

a) n−1
(
X
∗T

X
∗) converges to ΣX in conditional probability,

b) the conditional law of
√
n
{
vec(β̂∗)− vec(β̂)

}
converges weakly to a Normal random

variable that is mean 0 and has variance-covariance matrix ∆,

c) the sequence Σ̂∗ converges to Σ in probability. �

The proof of Theorem 14, along with necessary lemmas, are included in the theoretical

details section.

6.3 Examples

In this section we provide two simulated examples which show support for our multivariate

bootstrap procedures.

6.3.1 Example 1: fixed design

This example illustrates Theorem 13. We generated data according to the multivariate

linear regression model (6.1) where Yi ∈ R
3, Xi ∈ R

2, and both β and Σ are prespecified.

Our goal is to make inference about vec(β) using the residual bootstrap. Bootstrapped
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standard errors are compared to the true standard deviations, which are the square root

of the diagonal elements of n−1(XT
X)−1 ⊗ Σ. Three data sets were generated at different

sample sizes and the performance of the multivariate residual bootstrap is assessed. The

bootstrap sample size is taken to be B = 4n in each dataset. The results are displayed in

Table 6.1. We see that the standard errors of vec(β̂) obtained from the residual bootstrap

are close to the true standard errors and that the distance between the two shrinks as n

increases.

n = 100 n = 500 n = 1000

se∗{vec(β̂)} setrue{vec(β̂)} se∗{vec(β̂)} setrue{vec(β̂)} se∗{vec(β̂)} setrue{vec(β̂)}
0.249 0.281 0.144 0.140 0.091 0.097
0.317 0.336 0.146 0.141 0.093 0.100
0.237 0.251 0.129 0.125 0.080 0.087
0.270 0.301 0.133 0.126 0.082 0.089
0.140 0.154 0.077 0.077 0.050 0.053
0.168 0.184 0.079 0.077 0.054 0.055

Table 6.1: Comparison of bootstrapped standard errors to the true standard errors across
three sample sizes in the fixed design case. The bootstrap sample size is set at B = 4n for
each dataset.

6.3.2 Example 2: random design and heteroskedasticity

This example aims to show support for Theorem 14. We generated data according to the

multivariate linear regression model (6.1) where Yi ∈ R
3, Xi ∈ R

2, and both β and Σ are

prespecified. The predictors and errors are generated according to


 Xi

εi


 ∼ N






 0

0


 ,


 ΣX ΣXε

ΣεX Σ





 ,

for i = 1, ..., n. Our goal is to make inference about vec(β) using the multivariate boot-

strap procedure in the random design case. Bootstrapped standard errors are compared

to the true standard deviations, which are the square root of the diagonal elements of

(n − 1)−1Σ−1
X ⊗

(
Σ− ΣεXΣ−1

X ΣXε

)
. Three data sets were generated at different sample
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sizes and the performance of the multivariate bootstrap is assessed. The bootstrap sample

size is taken to be B = 4n in each dataset. The results are displayed in Table 6.2. We

see that the standard errors of vec(β̂) obtained from the bootstrap are close to the true

standard errors.

n = 100 n = 500 n = 1000

se∗{vec(β̂)} setrue{vec(β̂)} se∗{vec(β̂)} setrue{vec(β̂)} se∗{vec(β̂)} setrue{vec(β̂)}
0.340 0.310 0.131 0.138 0.101 0.098
0.257 0.275 0.106 0.123 0.082 0.087
0.146 0.159 0.068 0.071 0.046 0.050
0.333 0.310 0.138 0.138 0.104 0.098
0.225 0.275 0.124 0.123 0.086 0.087
0.135 0.159 0.071 0.071 0.051 0.050

Table 6.2: Comparison of bootstrapped standard errors to the true standard errors across
three sample sizes in the random design case with heteroskedasticity. The bootstrap sample
size is set at B = 4n for each dataset.

6.4 Theoretical details

Before we present our proof of Theorems 13 and 14, we motivate the Mallows metric as a

central tool for our proof technique. The Mallows metric for probabilities in R
p, relative

to the Euclidean norm was the driving force needed to establish the validity of the residual

bootstrap approximation in the context of univariate regression (Bickel and Freedman, 1981;

Freedman, 1981). The Mallows metric, relative to the Euclidean norm, for two probability

measures µ, ν in R
p, denoted dpl (µ, ν), is the infimum of E1/l

(
‖U − V ‖l

)
over all joint

distributions of random vectors U and V , where U has law µ and V has law ν. Properties

of the Mallows metric are developed for random variables on separable Banach spaces of

finite dimension (Bickel and Freedman, 1981). Therefore the machinery is already in place

for our multivariate extension of the residual bootstrap. We use the Mallows metric when

r > 1 to prove that the residual bootstrap can be used to estimate the variability of vec(β̂)

consistently.
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6.4.1 Fixed design

Let Ψn(F ) be the distribution function of
√
n
{
vec(β̂)− vec(β)

}
where F is the law of the

errors ε so that Ψn(F ) is a probability measure on R
rp. Let G be an alternate law of the

errors, where it is assumed that G is mean-zero with finite variance ΣG > 0. In applications,

G will be the centered empirical distribution of the residuals.

Theorem 15

[drp2 {Ψn(F ),Ψn(G)}]2 ≤ nr tr
{
(XT

X)−1
}
{dr2(F,G)}2. �

Proof: Let B = X(XT
X)−1. Then Ψn(F ) is the law of

√
nεTn (F )B where εn(F ) is the

matrix with n rows of independent random variables ε, having common law F . Ψn(G) can

be thought of similarly. Observe that BTB = (XT
X)−1. Then, from Lemma 8.9 in Bickel

and Freedman (1981), we see that

[drp2 {Ψn(F ),Ψn(G)}]2 =
(
drp2
[
vec{εTn (F )B}, vec{εTn (G)B}

])2

=
(
drp2
[
(BT ⊗ Ir)vec{εTn (F )}, (BT ⊗ Ir)vec{εTn (G)}

])2

≤ n tr
{
(BT ⊗ Ir)(B

T ⊗ Ir)
T
}
{dr2(F,G)}2 = n tr

{
(BT ⊗ Ir)(B ⊗ Ir)

}
{dr2(F,G)}2

= n tr
(
BTB ⊗ Ir

)
{dr2(F,G)}2 = n tr

{
(XT

X)−1 ⊗ Ir
}
{dr2(F,G)}2

= nr tr
{
(XT

X)−1
}
{dr2(F,G)}2 ,

which is our desired conclusion. �

With Theorem 15 we can bound the distance between the sample dependent distribution

functions Ψn(F ) and Ψn(G) by the distance between their underlying laws. As in Freedman

(1981), we proceed with Fn as the empirical distribution function of ε1, ..., εn. Let F̃n be

the empirical distribution of the residuals ε̂1, ..., ε̂n from the original regression, and let F̂n

be F̃n centered at its mean µ̂ = n−1
∑n

i=1 ε̂i. Since ε̂ = Y − Xβ̂T , we have ε̂ − ε = −Pε
where P is the projection into the column space of X.
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Lemma 2

E2
{
dr2(F̃n, Fn)

}
≤ p tr(Σ)/n. �

Proof: From the definition of the Mallows metric we have

{
dr2(F̃n, Fn)

}2
≤ n−1

n∑

i=1

‖ε̂i − εi‖2 = n−1 tr
{
(ε̂− ε)T (ε̂− ε)

}

= n−1 tr
(
εTPε

)
.

From linearity of the expectation with respect to the trace operator,

E
{
tr
(
εTPε

)}
= tr

{
E
(
εTPε

)}
= tr

{
P E

(
εεT
)}

≤ tr (P) tr (Σ) = p tr (Σ)

and this completes the proof. �

Lemma 3

E2
{
dr2(F̂n, Fn)

}
≤ (p+ 1) tr(Σ)/n. �

Proof: From Lemma 8.8 in Bickel and Freedman (1981) we have

dr2(F̂n, Fn)
2 = dr2{F̃n − E(F̃n), Fn − E(Fn)}2 + ‖E(Fn)‖2

= dr2(F̃n, Fn)
2 − ‖E(F̃n)− E(Fn)‖2 + ‖E(Fn)‖2

≤ dr2(F̃n, Fn)
2 + ‖n−1

n∑

i=1

εi‖2

with the empirical distribution functions Fn,F̃n, and F̂n used as random variables in the

application of Lemma 8.8 in Bickel and Freedman (1981). We see that

E

(
‖n−1

n∑

i=1

εi‖2
)

= n−2



E




n∑

i=1

εTi εi +
∑

i 6=j

εTi εj





 = n−1

{
E(εT1 ε1)

}
= n−1 tr (Σ) .

Our conclusion follows from Lemma 2. �
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These results imply the validity of the bootstrap approximation, in probability, for the

model (6.1) if we assume that n−1
X
T
X → ΣX > 0. From Theorem 15,

E
[
drp2 {Ψn(F̂n),Ψn(F )}

]
≤ nr tr

{
(XT

X)−1
}
dr2(F̂n, F )

and because of the metric properties of dr2(·, ·)

1

2
dr2(F̂n, F )

2 ≤ dr2(F̂n, Fn)
2 + dr2(Fn, F )

2

where Lemma 3 shows that the first term on the right hand side converges in probability

to 0; the second term on the right hand side converges to 0 in probability by Lemma 8.4

of (Bickel and Freedman, 1981) where the separable Banach space is taken to be R
r. The

next results are special cases of Lai et. al. (1979) which are adapted from Freedman (1981)

to the multivariate setting. We let εj , j = 1, ..., r, be the column of ε corresponding to the

errors of response Yj .

Lemma 4

n−1
X
T ε→ 0 almost everywhere and β̂ → β almost everywhere. �

Proof: Let Bj be the jth column of ε. Then n−1
X
T ε ∈ R

p×r with columns n−1
X
T ε.

Lemma 2.3 of Freedman (1981) state that n−1
X
TBj → 0 almost everywhere for any par-

ticular j = 1, ..., r. Therefore n−1
X
T ε → 0 almost everywhere. A similar argument verifies

our second result. �

Lemma 5

n−1 tr
{
(ε̂− ε)T (ε̂− ε)

}
→ 0 almost everywhere. �

Proof: A similar argument to that of Lemma 2.4 in Freedman (1981) gives

n−1 tr
{
(ε̂− ε)T (ε̂− ε)

}
= n−1 tr

{
εTX(XT

X)−1
X
T ε
}

= tr
{(
n−1εTX

) (
n−1

X
T
X
)−1 (

n−1
X
T ε
)}
.
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The center term converges to ΣX > 0 and the left and right terms converge to 0 almost

everywhere by Lemma 4. Our result follows. �

Lemma 6

dr2(F̂n, Fn) → 0 almost everywhere and dr2(F̂n, F ) → 0 almost everywhere. �

Proof: From the arguments in the proofs of Lemmas 2 and 3 we have that

dr2(F̂n, Fn) = dr2(F̃n, Fn)
2 − ‖E(F̃n)− E(Fn)‖2 + ‖E(Fn)‖2

= ‖n−1
n∑

i=1

εi‖2 − ‖n−1
n∑

i=1

(ε̂i − εi) ‖2 + dr2(F̃n, Fn)

≤ ‖n−1
n∑

i=1

εi‖2 + n−1 tr
{
(ε̂− ε)T (ε̂− ε)

}

which converges to 0 almost everywhere by Lemma 5. Therefore the first convergence result

holds. From the metric properties of the Mallows metric we have that

1

2
dr2(F̂n, F )

2 ≤ dr2(F̂n, Fn)
2 + dr2(Fn, F )

2.

Our second convergence result follows from the first convergence result and Lemma 8.4 of

Bickel and Freedman (1981). �

Lemma 7

Let ui and vi, i = 1, ..., n, be r × 1 vectors. Let

ū = n−1
n∑

i=1

ui, and s2u = n−1
n∑

i=1

(ui − ū)(ui − ū)T

and similarly for v. Then

‖s2u − s2v‖2F ≤ ‖n−1
n∑

i=1

(ui − vi)(ui − vi)
T ‖2F

where ‖ · ‖F is the Frobenius norm. �
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Proof: We have

‖s2u − s2v‖2F =

n∑

j=1

n∑

k=1

|n−1
n∑

i=1

(ui − ū)j(ui − ū)Tk − n−1
n∑

i=1

(vi − v̄)j(vi − v̄)Tk |2

≤
n∑

j=1

n∑

k=1

|n−1
n∑

i=1

(ui − vi)j(ui − vi)k|2

= ‖n−1
n∑

i=1

(ui − vi)(ui − vi)
T ‖2F ,

where the inequality follows from (Freedman, 1981, Lemma 2.7). �

The proof of Theorem 13 is now given.

Proof: Exchange F̂n for G in Theorem 15 and observe that

drp2

{
Ψn(F ),Ψn(F̂n)

}
≤ nr tr

{
(XT

X)−1
}
dr2(F, F̂n)

2.

From Lemma 6 we know that dr2(F, F̂n)
2 → 0 almost everywhere. Our result for part a)

follows since F is mean-zero normal with variance Σ−1
X ⊗ Σ. We now show that part b)

holds. First, we need to establish that Σ̂ → Σ almost everywhere. To see this, introduce

Σn = n−1
n∑

i=1

εiε
T
i −

(
n−1

n∑

i=1

εi

)(
n−1

n∑

i=1

εi

)T

.

Clearly, Σn → Σ almost everywhere. Let Cn = n−1
∑n

i=1 (ε̂i − εi) (ε̂i − εi)
T . We have,

‖Σ̂− Σn‖2F ≤ ‖Cn‖2F = tr(CnCn) ≤ tr2(Cn)

= tr2

{
n−1

n∑

i=1

(ε̂i − εi)
T (ε̂i − εi)

}

= tr2
{
n−1(ε̂− ε)T (ε̂− ε)

}
→ 0

almost everywhere where the first inequality follows from Lemma 7 with Σ̂n and Σn taking

the place of s2u and s2v respectively, the second inequality follows from the fact that Cn is
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positive definite almost everywhere, and the convergence follows from Lemma 5.

Let Dn = E
(
‖Σ̂∗n − Σ∗n‖F | Y1, ..., Yn

)
. From Lemma 7 and the proof of Lemma 2 we

see that,

Dn ≤ E

{
‖n−1

n∑

i=1

(
ε̂∗i − ε∗i

) (
ε̂∗i − ε∗i

)T ‖F | Y1, ..., Yn
}

≤ E
[
tr
{
n−1(ε̂∗ − ε∗)T (ε̂∗ − ε∗)

}
| Y1, ..., Yn

]

≤ p tr
(
Σ̂
)
/n

where the last inequality follows from the argument that proves Lemma 2 applied to the

starred data, and p tr
(
Σ̂
)
/n→ 0 almost everywhere. It remains to show that Σ̂∗n converges

to Σ. Conditional on Y1, ..., Yn,

d
r(r+1)/2
2

{
n−1

n∑

i=1

vech(ε∗i ε∗
T

i ), n−1
n∑

i=1

vech(εiε
T
i )

}

≤ d
r(r+1)/2
2

{
vech(ε∗1 ε∗

T

1 ), vech(ε1ε
T
1 )

} (6.5)

by Lemma 8.6 in Bickel and Freedman (1981). Now ε∗ has conditional distribution F̂n

and ε has law F and Lemma 6 gives dr2

(
F̂n, F

)
→ 0 almost everywhere. We now show

that d1

{
vech(ε∗1 ε∗

T

1 ), vech(ε1ε
T
1 )
}

→ 0 almost everywhere by Lemma 8.5 of Bickel and

Freedman (1981) with φ(x) = vech
(
xxT

)
where x ∈ R

r. To do this, we show that K can

be chosen so that ‖φ(x)‖1 ≤ K(1 + ‖x‖22) where ‖ · ‖1 and ‖ · ‖2 are the L1 and L2 norms

respectively. From the definition of the Euclidean norm, we have ‖x‖22 =
∑r

i=1 x
2
i . It is

clear that x2i + x2j ≥ 2|xixj | for all i, j = 1, ..., r. Now, pick K =
(
r
2

)
+ 1. We see that

K(1 + ‖x‖22) ≥
∣∣∣

r∑

i=1

x2i +

(
r

2

) r∑

i=1

x2i

∣∣∣ ≥
∣∣∣

r∑

i=1

x2i +
r∑

i 6=j

|xixj |
∣∣∣

≥
∣∣∣

r∑

i≥j

|xixj |
∣∣∣ ≥ ‖vech

(
xxT

)
‖1 = ‖φ(x)‖1
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A similar argument shows that 1/n
∑n

i=1 ε
∗
i converges to 0. Part c) follows from both a)

and b). �

6.4.2 Random design and heteroskedasticity

In this section we provide the proof of Theorem 14. Several quantities and lemmas are

introduced in order to prove Theorem 14. The logic follows that of (Freedman, 1981,

Section 3). Define,

Σ(µ) =

∫
xxTµ(dx),

β(µ) =

∫
yxTµ(dx, dy)Σ(µ)−1,

ε(µ, x, y) = y − β(µ)xT .

The next two lemmas are needed to prove Theorem 14.

Lemma 8

If dp+r
4 (µn, µ) → 0 as n→ ∞, then

a) Σ(µn) → Σ(µ) and β(µn) → β(µ),

b) the µn-law of vec{ε(µn, x, y)xT } converges to the µ-law of vec{ε(µ, x, y)xT } in drp2 ,

c) the µn-law of ‖ε(µn, x, y)‖2 converges to the µ-law of ‖ε(µ, x, y)‖2 in d1. �

Proof: Part a) immediately follows from (Bickel and Freedman, 1981, Lemma 8.3c).

We use (Bickel and Freedman, 1981, Lemma 8.3a) to verify part b). The weak conver-

gence step is trivial. Now,

‖vec{ε(µn, x, y)xT }‖2 = ‖vec{yxT − β(µn)xx
T }‖2

= ‖vec(yxT )‖2 + ‖vec(β(µn)xxT )‖2 − 2vec(yxT )Tvec{β(µn)xxT }.
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Let z = (xT , yT )T . Part b) follows from, integration with respect to µn, part a), and (Bickel

and Freedman, 1981, Lemma 8.5) with φ(z) = vech(zzT ). The steps involving (Bickel and

Freedman, 1981, Lemma 8.5) are similar to those in the proof of Theorem 13.

Part c) follows from the same argument used to prove part b). �

Lemma 9

dp+r
4 (µn, µ) → 0 a.e. as n→ ∞. �

Proof: The steps are the same as those in (Freedman, 1981, Lemma 3.2). �

The proof of Theorem 14 is now given.

Proof: We can write

vec
{√

n
(
β̂∗ − β̂

)}
= vec

[√
n

{
Y
∗T

X
∗(X∗

T
X
∗)−1 − β̂

}]

= vec

[√
n

{
(ε∗ + X

∗β̂T )TX∗(X∗
T
X
∗)−1 − β̂

}]

= vec

{
n−1/2ε∗

T
X
∗(n−1

X
∗T

X
∗)−1

}

= vec
(
Z∗W∗−1)

=
(
W∗−1

⊗ Ir

)
vec(Z∗)

where Z∗ = n−1/2ε∗TX∗ and W∗ = n−1
X
∗T

X
∗. (Freedman, 1981, Theorem 3.1) shows

that the conditional law of W∗ converges to ΣX in probability. This verifies part a).

We now verify part b). From (Bickel and Freedman, 1981, Lemma 8.7), we have

drp2
{
vec(Z∗), vec(Z)

}2 ≤ drp2

{
vec(X∗

i ε
∗T
i ), vec(Xiε

T
i )

}2

where the right side goes to 0 a.e. as n → ∞. Lemma 9 states that µn → µ a.e. in dr+p
4

as n → ∞ and part b) of Lemma 8 implies that the distribution of vec(Z∗), conditional
on (Xi, Yi), i = 1, ..., n, converges to vec(Z). The random variable vec(Z) is normally

distributed with mean 0 and variance matrix M . Combining this with part a) verifies

that the conditional distribution of
(
W∗−1 ⊗ Ir

)
vec(Z∗) converges to

(
Σ−1
X ⊗ Ir

)
vec(Z)
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as n→ ∞. This completes the proof of part b).

Part c) follows from the same argument in the proof of Theorem 13 where Lemmas 9

and 8c combine to show that (6.5) converges to 0 as n→ ∞. Note that ε∗1 = Y ∗
1 − β̂X∗

1 in

this argument. This completes the proof. �



Chapter 7

Dimensional Analysis in
Multivariate Experimental Design

7.1 Introduction

Dimensional analysis (DA) is a methodology developed in physics for reducing the number

and complexity of experimental factors so that the relationship between the factors and

the response can be determined efficiently and effectively. If a response appears to depend

on m physical predictors or factors, dimensional analysis can reduce the number of factors

required to k dimensionless factors, where the reduction m−k is typically between one and

four, and is given by the number of fundamental dimensions in the problem.

White (2009) gives a compelling example in which the experimenter wished to determine

the force (F ) exerted on a body submerged in water, as a function of the body length L,

stream velocity V , fluid density ρ, and fluid viscosity, µ. Ignoring experimental error, we

have:

F = g(L, V, ρ, µ) (7.1)

where g is an unknown vector-valued function that we wish to characterize at least ap-

proximately. White suggests that a full factorial experiment involving 104 = 10,000 runs

would be required to fully characterize g, assuming that “it takes about 10 points to define

a curve” (White, 2009, p.294). He then notes that the technique of dimensional analysis

127
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can be used to reduce the number of experimental factors to 4 - 3 = 1, because there are

three fundamental dimensions—mass, length, and time–involved in the relationship. The

solution to the DA problem is:

F

ρV 2L2
= h

(
ρV L

µ

)

The result is that the dimensionless force coefficient, F/(ρV 2L2), is a function of only

one factor, the dimensionless Reynolds number, ρV L/µ. Thus, the required experimental

design has been reduced from 10,000 runs to 10 runs (maintaining White’s 10-points per

variable assumption). In addition, because the variables are dimensionless, the experimental

results will be completely scalable. That is, if we run our experiment in a lab with a small

submerged body, e.g., a model, the results will be valid when applied to a much larger body

of interest. The DA model is frequently written:

π0 = h(π1, π2, ..., πm−k) (7.2)

and the dimensionless variables {πi} are referred to as the “pi-groups.” The validity of

the DA process is established by the well-known Buckingham Π-Theorem (Buckingham

(1914)).

Of course, most statisticians might question both the need for a full factorial design and

the 10-runs-per-factor assumption. Surprisingly, although DA has been a well-established

technique in the sciences since the early part of the 20th century, the design of experiments

for engineering dimensional analysis (DA) has received scant attention in the statistics lit-

erature. Perhaps the first paper to treat this topic in the statistical literature was Albrecht,

et. al., (2013). They give a description of the DA method, tailored for statisticians, and

then make recommendations for designing DA experiments. An example using classical

designs in the hydrodynamics literature is given by Islam and Lye (2009).

The benefits of the DA process do not come without some attendant complications.

First, the DA model can be highly non-linear. For this reason, an experimental design must

be capable of estimating models models of higher order than those typically assumed in
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screening or response surface studies. Second, omission of a key explanatory variable can

be fatal to the DA process. In an effort to alleviate this concern, Albrecht, et al. (2013),

proposed “robust-DA” designs that permit simultaneous estimation of the DA model and a

standard empirical model in the originalm factors. The robust-DA approach maximizes the

efficiency of the DA design in the dimensionless factors, subject to lower-bound constraint

on the efficiency of the design for the original factors.

Although multiple responses are frequently present in DA experiments, design for multi-

variate responses in DA experiments has not been considered. In this paper, we extend the

Buckingham Π-Theorem to the multivariate response case, give strategies for design of DA

experiments for multiple responses, and illustrate results through a standard example. A

brief outline of the paper is as follows. In Section 2, we provide a brief overview of the DA

process. The extension of the Buckingham Π-Theorem to multivariate responses is given

in Section 3, and the design of experiments for multivariate DA problems is considered in

Section 4. An illustration is provided in Section 4 that involves the design of water pump,

and we conclude with a discussion in Section 5.

7.2 Overview of DA

In this section, we provide a brief overview of the DA process. For more detail, see, for

example, Sonin (2001) and/or Albrecht, et al. (2013).

When implementing DA, physical quantities are classified as either base quantities or

derived quantities. Base quantities are composed of a single fundamental dimension. In

physics, the system international (SI) states that length, mass, time, electrical current,

temperature, amount, and luminous intensity are all base quantities. In economics or

operations research the base quantity of cost is also of importance. A base quantity can be

measured using different measurement systems. For example, one can use meters, feet, or

inches to measure length. A derived quantity of the first kind is a physical quantity that is

comprised of a power-law combination of base quantities.

It has been shown that not all formulas can be used to represent physical quantities.
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Because base quantities all have a physical origin, the ratio of the measurements of any two

base quantities does not change if the base unit changes. This is known as the principle of

absolute significance (Bridgman, 1931). The principle of absolute significance will hold for

a physical quantity π having a monomial formula only if it assumes the power-law form:

x = γ

k∏

i=1

Zbi
i ,

where Zi is the numerical value of the ith base quantity and the coefficients γ, b1, ..., bk

are real numbers. Thus, all physical quantities have power-law form and no other form

represents a physical quantity. A generalized form recognizes that any given base quantity

may appear more than once in the expression. For example, length may be used to represent

both a radius and a height of a cylinder. Letting ni denote the number of times that the

ith base quantity appears in the formula, letting Zij denote the jth instance of the ith base

quantity Zi and, letting bij denote the power to which the jth instance of that base quantity

is raised, the generalized form is

x = γ

k∏

i=1

ni∏

j=1

Z
bij
ij .

Denote by Lij the fundamental dimension of Zij . That is, [Zij ] = Lij = Li. It follows that

the dimension of x is

[x] =

k∏

i=1

L
∑ni

j=1 bij
i =

k∏

i=1

Lbi.
i ,

where bi. =
∑ni

j=1 bij . If the units chosen for the ith dimension are changed by a factor

ci, for i = 1, ..., k, it follows that the value of x becomes x′ = c−1x, where c =
∏k

i=1 c
bi.
i .

Finally, we say that a derived quantity is dimensionless if its value does not change when

the units of the base quantities change.

Albrecht, et al. (2013) describe the DA process using four steps.

1. Identify the dependent and independent variables. In the example of the Introduction,

(7.1) gives the dependent variable, F , and the dependent variables, L, V , ρ, and µ.
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2. Identify a complete, dimensionally independent subset of the dependent variables. A

subset is dimensionally independent if none of the dimensions of any of the variables

not in the subset can be written as dimensions of products of powers of omitted

variables. The subset is complete if the dimensions of each of the variables in the

omitted set can be written as the products of powers of the dimensions of the variables

in the subset. Albrecht, et al. (2013) refer to this subset as the basis set.

3. Identify the dimensionless forms of the variables not in the basis set. (Not sure how

much to provide here—need to make this consistent with the statement of the new

theorem). See Albrecht, et al. (2013) for details.

4. Apply Buckingham’s Π-Theorem to obtain a DA model. In practice this simply

means that we can now employ (7.2), where π0 is the dimensionless response, and

π1, . . . , πm−k are the dimensionless forms of the omitted variables.

7.3 Buckingham Π-Theorem for multivariate responses

The examples in Albrecht, Nachtsheim, Albrecht, and Cook (2013) show that DA is a

valuable tool that provides dimension reduction of the predictors when the response is a

scalar. The same ideas apply to any regression or design of experiments problem with a

vector-valued response. In this setting, the Buckingham Π-Theorem has a multivariate

analog where Y ∈ R
r is the vector of responses and x ∈ R

p is the vector of predictors. Both

types of variables can be expressed as power-law combinations ofm fundamental dimensions

that are measured with respect to a particular system of units. Let bi = (b1i, b2i, ..., bmi)
′

be the dimension vector of xi, i = 1, ..., p, and let

B =




b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
...

bm1 bm2 · · · bmp
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be them×p dimension matrix for the predictors in a given problem. Let ai = (a1i, a2i, ..., ami)
′

be the dimension vector of Yi, i = 1, ..., r, and let

A =




a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

am1 am2 · · · amr




be the m× r dimension matrix for the response variables in a given problem. Define

LY = {Li : aij 6= 0, some j = 1, ..., r},

LX = {Li : bij 6= 0, some j = 1, ..., p}.

The Multivariate Buckingham Π−Theorem assumes the following where the assumptions

and some of the theoretical details follow from Bluman and Kumei (1989, p. 5-9).

Theorem 16

Assume the following:

(i) A vector Y ∈ R
r has a functional relationship with p predictors (x1, ..., xp):

Y = f(x1, ..., xp), (7.3)

where f is an unknown function of the predictors.

(ii) The quantities (Y1, ..., Yr, x1, ..., xp) involve m fundamental dimensions labeled by

L1, ..., Lm where m < p is assumed to ensure a meaningful problem. Then it is

assumed that span(A) ⊆ span(B) where Lx contains all m fundamental dimensions.

(iii) Let Z represent any of (Y1, ..., Yr, x1, ..., xp). Then,

[Z] =

m∏

i=1

Lαi

i



7.3. Buckingham Π-Theorem for multivariate responses 133

for some αi ∈ R, i = 1, ..,m which are the dimension exponents of Z.

(iv) For any set of fundamental dimensions one can choose a system of units for measuring

the value of any quantity Z. A change from one system of units to another involves a

positive scaling of each fundamental dimension which in turn induces a scaling of each

quantity Z. Under a change of system of units the value of a dimensionless quantity

is unchanged, i.e. its value is invariant under an arbitrary scaling of fundamental

dimension.

Assumptions (i)-(iv) give:

(i) Formula (7.3) can be written in terms of dimensionless quantities.

(ii) The number of dimensionless predictors is k = p− rank(B) where rank(B) is the rank

of the matrix B.

(iii) Let xi = (π1i, π2i, ..., πpi)
′, i = 1, ..., k represent the k = p− rank(B) linearly indepen-

dent solutions of the system Bxi = 0. Let ai = (a1i, a2i, ..., ami)
′ be the dimension

vector for response Yi, i = 1, ..., r and let yi = (ρ1i, ρ2i, ..., ρpi) represent a solution

to the system Byi = −ai. Then formula (7.3) simplifies to π̃ = h(π1, ..., πk) where

π̃ ∈ R
r. All elements of π̃ and πi are dimensionless quantities for all i = 1, ..., k. �

The proof of the Multivariate Buckingham Π-Theorem is included in the Appendix.

To see why span(A) ⊆ span(B) is needed, consider a design problem with two responses

and three predictors where each variable has fundamental dimensions given by [Y1] =ML,

[Y2] =MT , [x1] =ML, [x2] =MT 2, [x3] =MT 2. In this setup, LY = LX and

A =




1 1

1 0

0 1


 , B =




1 1 1

1 0 0

0 2 2


 .

We can use DA to create a single dimensionless predictor x2/x3 and a dimensionless response

Y1/x1. However, no combination of predictors can combine with Y2 to yield a second

dimensionless response. This is a result of violating span(A) ⊆ span(B).
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When span(A) ⊂ span(B) the Multivariate Buckingham Π-Theorem holds and Di-

mensional Analysis is applicable for multivariate models. However, all is not lost when

span(A) \ span(B) 6= ∅ but care is needed in this setting. When span(A) \ span(B) 6= ∅,
it may be the case that certain responses need to be excluded from the DA model. For

j = 1, ..., r let Aj denote the jth column of A and let A−j be the matrix A with Aj re-

moved. Suppose that Aj /∈ span(A−j) ∪ span(B) then the response Yj cannot be made to

be dimensionless and cannot be used to make other responses dimensionless. Therefore Yj

must be excluded from consideration in the DA model. With such cases in mind we proceed

with the a corollary to the Multivariate Buckingham Π-Theorem that accounts for when

span(A) \ span(B) 6= ∅.

Corollary 2

Multivariate Buckingham Π-Theorem II. Suppose that span(A) \ span(B) 6= ∅ and exclude

responses such that Aj /∈ span(A−j)∪span(B) from consideration. Suppose that 0 < r1 ≤ r

responses remain. Let r2 be the number of responses not belonging to span(B), let A∗ be

the dimension matrix corresponding to these responses and put C =
[
A∗ B

]
. Assume the

following:

(i) A vector Y ∈ R
r1 has a functional relationship with p predictors (x1, ..., xp) given by

Y = f(x1, ..., xp) where f is an unknown function of the predictors.

(ii) The quantities (Y1, ..., Yr, x1, ..., xp) involve m fundamental dimensions labeled by

L1, ..., Lm where m < p is assumed to ensure a meaningful problem.

(iii) Let conditions (iii)-(iv) be as in the Multivariate Buckingham Π-Theorem.

These assumptions give:

(i) The number of dimensionless predictors is k = p− rank(B).

(ii) The number of dimensionless response variables is r3 = r1 − rank(C) + rank(B).
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(iii) There exists a function g : Rr1 → R
r3 such that

Y′ = g(Y) = g ◦ f(x1, ..., xp) (7.4)

can be written in dimensionless quantities. �

The proof of this Corollary is included in the Appendix. We now outline a four step

procedure necessary for implementation of the DA model. The steps outlined here are

similar to those in Albrecht, et al. (2013, section 2.4). However, our procedure differs

from that in Albrecht, et al. (2013, section 2.4) because we need to account for when

span(A) \ span(B) 6= ∅ occurs. Care is needed in identifying the functional form that

describes the experiment when the response is multivariate.

Step 1. Identify which variables are responses and which are predictors. Before the DA

model can take its form, the experimenter needs to identify the roles of the variables consid-

ered. The response variables {Y1, ..., Yr} and the predictors {x1, ..., xp} require specification.

The set of variables {x1, ..., xp} is complete if no other quantity has an effect on the response

vector, and is independent if each quantity can be changed without altering the other p− 1

quantities. This is to say that the predictors are defined on a product space. It is of utmost

importance for the validity of the DA approach that the set of predictors is complete and

independent. This rules out the consideration of simplex designs where uniform designs

over all predictors do not produce marginal uniform designs for each predictor.

Step 2. Identify the dimensionless forms of the variables not in the basis set. The

dimensionless forms must keep the role of the response variables intact.

Step 3. Identify a complete and dimensionally independent subset of variables. When

the roles of variables are identified we then find a basis subset of variables in the context

of base quantities and fundamental dimensions. In the case where span(A) \ span(B) 6= ∅
the functional form of interest may need changing. Also, new predictors may need to be

considered and/or some response variables may need to be removed from consideration.

Step 4. Apply the Multivariate Buckingham Π-Theorem to build the DA model. Whether

or not span(A) ⊆ span(B) holds with respect to the original variables under consideration,
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the Multivariate Buckingham Π-Theorem preserves a functional relationship between di-

mensionless response variables and predictors.

We consult White (1999, p. 722) for an example of dimensional analysis in the pres-

ence of multiple responses. For a given pump design, the output variables gH and brake

horsepower (bhp) should be dependent upon discharge Q, impeller diameter D, and shaft

speed n, at least. Other possible parameters include fluid density ρ, viscosity µ, and surface

roughness ǫ. Thus, we have a functional relation where f : R6 → R
2 given by


 gH

bhp


 = f(Q,D, n, ρ, µ, ǫ) (7.5)

where the variables are comprised of dimensions as seen in the table below:

variable dimensions

gH
[
L2T−2

]

bhp
[
ML2T−3

]

Q
[
L3T−1

]

D [L]

n
[
T−1

]

ρ
[
ML−3

]

µ
[
ML−1T−1

]

ǫ [L]

There are eight variables in this model and a total of three fundamental dimensions,

length (L), mass (M) and time (T ). In this example we see that span(A) ⊆ span(B).

Therefore we can express the functional relationship (7.5) in terms of three dimensionless

quantities as a result of the Multivariate Buckingham Π-Theorem. Implementation with

respect to this example is continued in Section 5.
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7.4 Design for DA with multiple responses

In this section, we consider the design of DA experiments for multiple responses. We assume

that the DA model has been formulated, that there are r responses, Y = (Y1, ..., Yr)
′, p

dimensionless factors, x = (x1, . . . , xp)
′, so that our DA model can be written:

E(y|x) = h(x) =




h1(x)
...

hr(x)




In the univariate setting, when the form of the DA model h is unknown and potentially

complex, Albrecht et al. (2013) identified the use of a nonparametric uniform design as one

alternative. In a uniform design, the design points are distributed in such a way that the

empirical cumulative distribution is as close as possible to the cumulative distribution of a

uniform probability measure on the design space. We note that for nonparametric designs,

the multivariate design will be the same as the univariate design for any one of the responses

provided that predictors are defined on a product space. Thus, given the multivariate DA

model, there are no new design issues.

The alternative approach suggested by Albrecht, et al. (2013) is to design for estimation

of third- or higher-order polynomials in the dimensionless factors, and they advocated the

use of D-optimal designs in that context. They also suggested that the integrated variance

might be more appropriate for design of dimensional analysis experiments, since the objec-

tive is to predict the expected response over the design space. In this paper, V-optimality

will be of primary design criterion of interest when polynomial models are to be estimated.

We will assume for simplicity that the design, denoted ξn, is exact and concentrated on

the n design points x1, . . . ,xn ∈ R
p. The value of the jth response variable for the ith run

of the experiment can be modeled as:

yj(xi) = g′j(xi)βj + εij , for i = 1, . . . , n and j = 1, . . . , r (7.6)
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where the model vectors gj(x), j = 1, . . . , r, are known and the coefficient vectors β are

unknown. The multivariate formulation of model (7.6) is constructed with

β =




β1

...

βr


 fj =




0j,1

gj(x)

0j,2




for j = 1, . . . , r where 0j,1 ∈ R
m1+···+mj−1 , 0j,2 ∈ R

mj+1+···+mr , βj ∈ R
mj and gj(x) ∈ R

mj

and m· = m1 + · · ·mr, and βi and βj , i 6= j, do not have terms in common. Here it is

possible that fi and fj , i 6= j, may have terms in common, but there is no reason to expect

the regression coefficients of the common terms to be the same. The covariance matrix of

the response vector is also assumed known and denoted

Var(y|x) = W−1(x)

where W(x) is the weight matrix for at x. We assume that the weight matrix W(x) is

known. This assumption is reasonable since variability of engineering measurement instru-

ments is known. Let F(x) denote the m×r matrix [f1(x), f2(x), . . . , fk(x)]. Theorem 1.7.1

(Federov, 1972). The best linear estimator for β is

β̂ = M−1(ξn)Y

where

M(ξn) =

n∑

i=1

F(xi)W(xi)F
′(xi) and Y =

n∑

i=1

F(xi)W(xi)yi

The variance-covariance matrix of the estimator is

D(β̂) = M−1(ξn)
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Corollary 1. The best linear unbiased estimate of f′l(x)β, for l = 1, . . . , r is the function

η̂l(x) = f′l(x)β̂, (7.7)

Let η̂(x) = [η̂1(x), η̂2(x), . . . , η̂k(x)]
′. The dispersion matrix of η̂(x) is

d(x, ξn) = F′(x)M−1(ξn)F(x).

We make two simplifying assumptions concerning Var(y|x):

1. The error variance matrix is constant over the design space. That is Var(y|x) = W−1.

2. The covariances of the errors are zero, that is:

Var(y|x) =




σ21
. . .

σ2r


 so that W =




w1

. . .

wr




where wi = σ−2
i for i = 1, . . . , r.

For a discussion of multivariate design in the presence of correlated errors, see Cook and

Nachtsheim (2017). Given these assumptions, we have:

M(ξn) =
∑

F(xi)WF′(xi) (7.8)

=




w1M1(ξn)

. . .

wrMr(ξn)


 (7.9)

where Mi(ξn) =
∑n

j=1 fi(xj)f
′
i(xj). One measure of the “goodness” of the design ξ is given

by the D criterion:

|M(ξn)| =
r∏

i=1

wi|Mi(ξn)| (7.10)
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If the r approximating models are identical such that f1 = · · · = fr, the D criterion simplifies

to:

|M(ξn)| = (
r∏

i=1

wi)|M1(ξn)|r

Thus, the D-optimal design maximizes |M1(ξn)|. As noted, our emphasis herein will be on

the minimization of the integrated variance of prediction, that is, the V criterion. We have

from (7.9)

M−1(ξn) = D−1(ξn) =




w−1
1 D1(ξn)

. . .

w−1
r Dr(ξn)


 (7.11)

where Di(ξn) = M−1
i (ξn), for i = 1, . . . , r. Let vχ =

∫
χ dx denote the volume of the design

space χ. Then the average value of the dispersion matrix η̂(x) over the design space is:

v−1
χ

∫

χ
d(x, ξn)dx = v−1

χ

∫

χ
F′(x)D(ξn)F(x)dx

= v−1
χ




w−1
1

∫
χ f1(x)D1(ξn)f1(x)dx

. . .

w−1
r

∫
χ fr(x)Dr(ξn)fr(x)dx




Since
∫
χ fr(x)Dr(ξn)fr(x)dx = Trace[Di(ξn)

∫
χ fi(x)f

′
1(x)dx] = Trace[DiMχ], where Mχ =

∫
χ fi(x)f

′
1(x)dx, we have:

v−1
χ

∫

χ
d(x, ξn)dx = v−1

χ




w−1
1 Trace[D1Mχ]

. . .

w−1
r Trace[DrMχ]




At this point the criterion is multivariate. One natural way to reduce the criterion to a

scalar is obtained by averaging. Let

VMV (ξn) = r−1v−1
χ

r∑

i=1

Trace[DiMχ] (7.12)
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Similar to the determinant case, if the forms of the r approximating polynomials are iden-

tical, the criterion reduces to the minimization of the Trace[D1Mχ].

7.5 Illustrations: Multivariate DA designs for pump design

We now continue with the pump design that is mentioned at the end of Section 3. In this

section, we show how the Multivariate Buckingham Π-Theorem leads to a cheaper pump

design with dimensionless variables. We can rewrite (7.5) as




gH
n2D2

bhp
ρn3D5


 = g

(
Q

nD3
,
ρnD2

µ
,
ǫ

D

)
(7.13)

where ρnD2

µ and ǫ
D are recognized as the Reynolds number and roughness ratio respectively.

Three new pump parameters have arisen:

Capacity coefficient CQ =
Q

nD3

Head coefficient CH =
gH

n2D2

Power coefficient CP =
bhp

ρn3D5

For purposes of illustration, we make the simplifying assumption that the pump is being

designed for use in one fluid only (e.g., water) and that roughness ratio is constant. Thus

ǫ, µ, and ρ are constant. The response models become:




gH
n2D2

bhp
ρn3D5


 = g

(
Q

nD3
,
ρnD2

µ

)
(7.14)

where g : R
3 → R

2. Expression (7.14) is a valid dimensionless functional form by the
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Figure 7.1: Design space for π1 and π2 in original units (a) and discretized and scaled to
[−1, 1]2

Multivariate Buckingham Π-Theorem since the set of fundamental dimensions present in

the response variables is equal to the set of fundamental dimensions present in the predictors.

The design region for the original variables variables Q, n, and D is

χ = { (Q,n,D) : 4 ≤ Q ≤ 30, 710 ≤ n ≤ 1170, 28 ≤ D ≤ 42 }.

The dimensionless variables are π1 =
Q

nD3 and π2 = nD2. The design region correspond-

ing to the dimensionless π-variables is given by

χπ = { (π1, π2) : π1 = Q/(nD3), π2 = nD2 where (Q,n,D) ∈ χ }.

χπ is shown in Figure 7.1(a), and a discretized version, scaled to [−1, 1]2 is shown in Fig-

ure 7.1(b).

We now construct a series of alternative designs for this problem, assuming that n = 16.

Albrecht et al., (2013) considered two alternatives: (1) the use of D-optimal designs for a

full third-order (approximating) model; and (2) the use of nonparametric, uniform designs.

They also suggested in Note that eight support points are in evidence, although two could

easily be combined to provide an additional degree of freedom for pure error. For the third-
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order approximation, a minimum of 10 support points and four levels for each factor are

required. For π1, there are many levels, for π2 there are roughly four. Finally, the fourth-

order approximation requires a minimum of 15 support points; the design has 16 distinct

points spread somewhat uniformly through the design space.

7.5.1 Parametric design: g1(π) 6= g2(π)

We now consider the case where the two approximating polynomials do not have the same

form. In this case the design criteria will not reduce to familiar univariate criteria. For

simplicity, we will assume that the first response requires a third-order approximating poly-

nomial in both π1 and π1, and that the second response is cubic in π2 only. The V-optimal

design for the first response was previously computed and is shown in Figure 7.2(c). Optimal

design theory tells us that the optimal approximate design for the second model will place

50% of the observations near zero, with the other 50% split evenly at the ±1 boundaries.

The V-Optimal multivariate design, as indicated by (7.12) will attempt to optimize both of

these criteria simultaneously. Thus we expect to see a shifting of the points in Figure 7.2(c)

toward π2 = 0 and toward π2 = ±1. The optimal multivariate design, shown in Figure 7.3,

confirms this expectation.

7.5.2 Parametric design: V̄-optimal design for g1(π) = g2(π)

Since we do not know in advance of the experiment what level of approximating polynomial

will be required, a compromise approach is to use a V̄ -optimal design as suggested by

Albrecht et al;.(2013). The V̄ -optimal design maximizes the average efficiency of the design

for the alternative approximating polynomials considered. Here the experimenter would give

the set of approximating polynomials that might be effective and assigns weights to each

of the posited orders. As an example, we will assume that the models being considered are

the first- through fourth-order models as previously considered in Figure 7.2. For simplicity

and for purposes of illustration, we assign each model weight equal to 0.25. The V̄ -optimal

design is shown in Figure 7.4.
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(a) First-order model 
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(b) Second-order model
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(c) Third-order model 
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(d) Fourth-order model

Figure 7.2: V-optimal designs for first- through fourth-order approximating polynomials for
n = 16
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Figure 7.3: The multivariate design: g1 is a full third-order polynomial in π1 and π2; g1 is
a quadratic in π2 only.
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Figure 7.4: V̄ -optimal design given equal weighting of the first- through fourth-order ap-
proximating polynomials for n = 16
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7.5.3 Robust-DA design

From a statistician’s perspective, the traditional choice is the design space is χ, the design

space in the base factors, x1, . . . , xn. The traditional statistical approach is then to design

an experiment that will permit efficient estimation of first- or second-order empirical models

in those factors. From the engineer’s perspective, a more economical and powerful design

can be constructed in the lower-dimensional π-space. But any design setting in the π

factors requires choosing specific values for each of the base factors. For example, the first

dimensionless factor in the current example is π1 =
Q

nD3 . Recall that the design region in the

original factors is χ = { (Q,n,D) : 4 ≤ Q ≤ 30, 710 ≤ n ≤ 1170, 28 ≤ D ≤ 42 }. Suppose

the DA design specified that in a particular run π1 = 0.5 × 10−6. Referring to Figure 7.1,

this refers to a value of π1 that is just left of center. Various combinations of values of Q,

n, and D can be employed to produce the desired result. Figure 7.5 shows values of Q, n,

and D that lead to π1 = 0.5 × 10−6. While all of these combinations lead to the desired

value of π, some will be better than others as design points for the empirical design. This

motivated the development of “Robust-DA” designs in Albrecht, et al. (2013). The basic

idea is to construct highly efficient DA designs that are also efficient for the estimation of

empirical models in χ. In this way, if a variable is omitted from the DA model, so that the

DA model fails, a good design in the χ will have been fielded, and the empirical model can

still be estimated efficiently.

Albrecht, et al. (2013) construct robust-DA designs using a compound design crite-

rion. Let EEMP(ξ) denote the V-efficiency of the empirical design ξn for estimation of full

quadratic model in the base factors, and let EDA(ξ) denote the efficiency of the DA design.

For 0 ≤ w ≤ 1, let Ew
RDA denote the weighted average of the empirical design efficiency and

the DA design efficiency:

Ew
RDA = (1− w)Ew

DA + wEEMP(ξ) (7.15)
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Figure 7.5: Combinations of Q, n, and D that yield π1 = 0.5× 10−6

We can now define the robust-DA design as follows:

ERDA = argmax
w

Ew
RDA

In practice, to find a robust-DA design, we compute Ew
RDA for a grid of w values between

zero and one and then choose the design that maximizes (7.15). Albrecht, et al. (2013)

recommend the use of a “w-trace”, that is, a plot of Ew
RDA, EDA, and E

w
EMP(ξ) against w,

as an aid to choosing a design.

We constructed a robust-DA design using V̄ -optimality as the criterion for the DA design

with equal weights for first through fourth-order polynomial models, and V -optimality for

the second-order empirical model in the base factors. For ease of exposition, we have chosen

a sparse w-grid based on seven values. For ease of exposition we only consider seven values

in order to communicate efficiency trade-offs. We recommend searching through a finer grid

of possible w values in actual design problems. The w-trace is shown in Figure 7.6. From

the figure, we see that Ew
RDA is maximized for w = 0.4 For this design the V -efficiency

of the empirical design is 0.68 and the V̄ -efficiency of the DA design is 0.95. This yields

E0.4
RDA = 0.84.

The progression of empirical and DA designs as w varies from zero to one is shown

in Figure 7.7. For w = 0, the empirical design places most of the observations at the
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Figure 7.6: Trade-off (w-trace) plot for robust DA designs

boundaries of the design space with just a few points at the corners or near the center. As

w increases, the design points gravitate (as much as possible) toward the corners, the edge

centers and the center of the design space. These locations, of course, comprise the support

of the empirical V -optimal design. On the negative side, as w increases, the near uniform

spread through the design space, clearly in evidence for w = 0, degrades as w increases.
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Figure 7.7: DA designs for the χ-space and for χπ-space for varying w
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7.6 Discussion

In this paper, we have developed new methodology for designing DA experiments when

there is more than one response. We began by extending the Buckingham Pi-Theorem has

been extended to the multivariate case. We then developed basic criteria for multivariate

design of experiments and we illustrated various approaches for a DA problem involving

mechanical pump design.

Our multivariate extension of DA design techniques allow for scalable experiments and

have the potential to reduce the dimensions of the design problem when multiple responses

are of interest. This methodology provides an appropriate design context when response

variables are of incomparable fundamental dimensions (eg, one is length and one is mass).

After the DA procedure is applied, the previously incomparable responses are then di-

mensionally homogeneous. The multivariate DA experiment design allows for reduction

of design costs in two ways. There is the potential to run smaller experiments since the

DA model is of lower dimension than the original model. Then the experiment can be

run on much smaller units because results obtained from the DA model are scalable. This

methodology works when that the span of dimension matrix for the response variables A is

contained in the span of dimension matrix for the explanatory variables B and no relevant

fundamental dimensions are missing in the functional form (3). Absence of a key funda-

mental dimension is fatal but such a design flaw can be mitigated through the robust DA

design or the addition of more predictors. Adding more variables to the experiment can

seem prohibitively costly but this cost can be largely offset or completely recovered through

scalability of the DA experiment.

Other points:

Algorithms: Can search in the Q space and project to the π-space or can search directly

in the π-space. The latter will generally involve irregular designs spaces, so that the space

should first be discretized and then a candidate-set-based row-exchange algorithm, such as

the modified Fedorov algorithm (Cook and Nachtsheim (1980)) can be used. Alternatively,

searching in the often regular Q-space (this notation has to change because we have an
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actual Q in the example). requires a higher-dimensional search, and the projections of

the points into the π-space will not be uniform, which can negatively affect the search.

Examples showing what can be an extreme lack of uniformity are given in Albrecht, et al.

(2013). For robust-DA designs, the search must be carried out in the Q-space so that the

empirical design in the Q space can be optimized.

7.7 Appendix

In this Appendix, we provide the proofs of the Multivariate Buckingham Π-Theorem and

then its Corollary. The following is the proof of the Multivariate Buckingham Π-Theorem.

Proof: We have Y ∈ R
r as our response vector, x ∈ R

p as our vector of predictors, and m

fundamental dimensions where assumption (ii) states that all fundamental dimensions are

represented by elements in the vector of predictors. The dimensions of elements in either

the response vector or the vector of predictors can be written as

[Yj ] =
m∏

i=1

L
aij
i , j = 1, ..., r

[xj ] =
m∏

i=1

L
bij
i , j = 1, ..., p

Now, for the first dimension L1, consider invariance under arbitrary scaling. Let L∗
1 = eεL1

where ε ∈ R and according to this scaling define

Y ∗
i = ea1iεYi, i = 1, ..., r, (7.16)

x∗j = eb1jεxj , j = 1, ..., p. (7.17)

These equations define a one-parameter Lie group of the p+r quantities (x1, ..., xp, Y1, ..., Yr).

This group is induced by the one-parameter group of scalings of the fundamental dimension
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L1. Assumption (iv) says that equation (7.3) holds iff

(Y ∗
1 , ..., Y

∗
r )

′ = f(x∗1, ..., x
∗
p)

holds for all ε ∈ R. Consider the following three cases that occur when trivialities exist in

our original problem.

(i) : b11 = · · · = b1p = 0 and/or at least one a1j 6= 0 for some j = 1, ..., r which implies

that L1 is not a fundamental dimension for the problem and Yj = 0 whenever a1j 6= 0.

(ii) : If in case (i) we have a1j 6= 0 for all j = 1, ..., r then Y = 0r where 0r is the 0’s

vector in R
r.

(iii) : If only one b1j 6= 0 for some j = 1, ..., p and a1i = 0 for all i = 1, ..., r, then either

Y = 0r and L1 is a fundamental dimension for the problem or Y is independent of

xj and L1 is not a fundamental dimension for the problem.

Suppose the problem is set up so that cases (i)-(iii) do not occur. It follows that b1j 6= 0 for

some j = 1, ..., p. Without loss of generality, assume that b11 6= 0. Define new measurable

quantities

Wi−1 = xix
−b1i/b11
1 i = 2, ..., p,

Wp = x1,

and

V = (Y1W
−a11/b11
1 , ..., YrW

−a1r/b11
1 )′.

Then formula (7.3) is equivalent to

V = F(W1, ...,Wp)
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where F is an unknown function and the group of transformations seen in (7.16) and (7.17)

yields

V∗ = V,

W ∗
i =Wi, i = 1, ..., p− 1,

W ∗
p = eb11εWp,

so that (V1, ..., Vr,W1, ...,Wp−1) are invariants of (7.16) and (7.17). These quantities satisfy

assumption (iii) and

V∗ = F(W1, ...,Wp)

holds as a result of assumption (iv). Hence,

V∗ = F(W1, ...,Wp−1, e
εb11Wp)

for all ε ∈ R. Consequently, F, is independent of Wp. Moreover, the measurable quantities

(W1, ...,Wp−1) and the elements of V are power-law combinations of the original (x1, ..., xp).

Formula (7.3) reduces to

V = H(W1, ...,Wp−1),

where all variables are dimensionless with respect to L1 and H is an unknown function.

This argument is repeated for the other m − 1 fundamental dimensions. The repetition

of this argument reduces (7.3) to a dimensionless formula one fundamental dimension at a

time. We arrive at the functional form

π̃ = h(π1, ..., πk),

where

π̃ =




π̃1
...

π̃r


 = diag

(
p∏

i=1

xyi1
i , ...,

p∏

i=1

xyir
i

)



Y1
...

Yr


 .
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Next it is shown that the number of measurable dimensionless predictors is in fact p −
rank(B). This follows immediately since




p∏

j=1

x
πij

i


 = 1 if and only if Bxi = 0

and Bx = 0 has p− rank(B) linearly independent solutions. The vectors yi are chosen such

that 
Yi

r∏

j=1

x
ρji
j


 = 1.

This choice is valid because of assumption (ii). Therefore Byi = −ai for i = 1, ..., r and

this completes the proof. �

The following is the proof of the Corollary to the Multivariate Buckingham Π-Theorem.

Proof: Conclusion (i) follows using the same techniques in the proof of the Multivariate

Buckingham Π-Theorem. Now to show that conclusion (ii) holds. The argument used to

show that conclusion (i) holds shows that variables corresponding to the dimension matrixC

can be made into k′ = p+r2−rank(C) dimensionless quantities. k′−k of these dimensionless

quantities are responses. A little algebra shows that there are r3 dimensionless responses in

total. We can see that a function g exists (satisfying (7.4)) by combining what has already

been proved, assumption (i), and the Multivariate Buckingham Π-Theorem. The other

assumptions are necessary for these manipulations to hold. This completes the proof. �



Chapter 8

Central Limit Theory under
Additive Deformations

8.1 Introduction

The classical central limit theorem (CLT) is a cornerstones of statistics. We generalize this

classical result to settings in which standard addition on the real line is replaced by a binary

operation that satisfies Lie group properties. Additional mild smoothness assumptions are

also imposed, allowing us to obtain explicit limiting distributions.

Our principal motivation comes from physics. As explained by Tempesta (2011), differ-

ent Lie group operations on the real line are associated with distinctive forms of entropy

that extend Boltzmann–Gibbs entropy, which corresponds to standard addition and classi-

cal central limit theory. Tsallis entropy applies to statistical systems exhibiting the features

of long range dependence (Tsallis, 1988), and has been successfully applied, for example,

in image thresholding (Portes de Albuquerque et al., 2004), modeling debris flow (Singh

and Cui, 2015), analyzing electromagnetic pre-seismic emissions (Potirakis et al., 2012),

and modeling the distribution of momenta of cold atoms in optical lattices (Douglas et

al., 2006). Kaniadakis entropy arises when combining momenta in special relativity (Kani-

adakis, 2006, 2013), and its associated central limit theory has recently been developed by

McKeague (2015), who showed that the limiting distributions take the form of hyperbolic

functions of standard normals.

There is a general formulation of the CLT on locally compact Lie groups due to Wehn

155



8.2. CLTs under additive deformations 156

(1962), but conditions are placed on the random elements after they are logarithmically

mapped into the Lie algebra (tangent space at the identity). The limit distribution is

described in terms of the infinitesimal generator of a semi-group of probability measures on

the Lie group, but in general it does not have an explicit form. In our setting of Lie groups on

the real line, however, we are able to provide an explicit CLT using only classical conditions

on the random summands and a mild smoothness condition on the associated logarithmic

map. Our main result generalizes the classical CLT to this setting, and addresses an open

problem raised by (Tempesta, 2011, Section VIII) as to whether under suitable conditions an

analogue of the CLT holds for “universality classes” related to generalized types of entropy,

including those mentioned above.

We also establish an extension of our main result to more severe deformations that

arise when the smoothness condition on the logarithmic map is relaxed (for which a slower

than
√
n-normalization is required). We then discuss in detail all the Lie group examples

mentioned above, as well as the operation for combining velocities in special relativity, and

more severe additive deformations defined via exponentiation.

Both the Tsallis and Kaniadakis universality classes involve fitting parameters, so the

question naturally arises as to the effect of a random specification of such parameters on

the central limit behavior of the system. We investigate this question by Monte Carlo

simulation studies, and reach the somewhat surprising conclusion that there is a universal

limit law in the sense that it is determined solely by the form of the deformation and the

expected value of the fitting parameter.

8.2 CLTs under additive deformations

Our results extend the classical CLT on the real line to allow additive deformations of the

following form. Standard addition is replaced by a group operation ⊕ defined on an open

and possibly infinite interval G, with (G,⊕) assumed to be a Lie group under the usual

topology on the real line. Since all Lie groups on the real line are isomorphic to their

Lie algebra (R,+), there exists an isomorphism g : G → R (that is unique up to scalar
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multiples) such that

g(x⊕ y) = g(x) + g(y) (8.1)

for all x, y ∈ G. In Lie group terminology, g is called the “logarithmic” map, and its inverse

f = g−1 the “exponential” map. Let e ∈ G be the identity, and denote Ge = G − e. We

now give our main result showing that if g has a second order Taylor expansion around e,

in which the leading term is linear, then the CLT extends to ⊕-addition.

Theorem 17

Let {Xi} be a sequence of iid Ge-valued mean-zero random variables with finite variance

σ2, and let Xn,i = e+Xi/
√
n. Suppose there exists a function ρ : Ge → R

+ such that

ρ(x) → 0 as x→ 0, ρ(x/s) ≤M for x ∈ Ge, s ≥ s0 (8.2)

|g(e+ x)− x− ax2| ≤ x2ρ(x) for x ∈ Ge, (8.3)

where a, s0 > 1 and M > 0 are prespecified constants. Also suppose there exist constants

c1, c2, c3, and s1 > 0, such that for all x ∈ Ge and s ≥ s1,

s|g(e+ x/s)| ≤ c1|x|1(|x| ≥ c2) + c3. (8.4)

Then

Xn,1 ⊕Xn,2 ⊕ ...⊕Xn,n
d−→ f(Z) (8.5)

�

where Z ∼ N(aσ2, σ2).

Remarks:

1. The key smoothness condition (8.3) in Theorem 17 is that g has a parabolic local

approximation at the identity e. The parabola can take the general form x 7→ a(x−
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e)2 + b(x − e), the only requirements being that it go through (e, 0), since g(e) = 0,

and that b 6= 0 (so the leading term is linear). The coefficients a and b, along with σ2,

determine the “bias” of the normal r.v. Z that appears in the limit; for simplicity we

stated the result just for the case b = 1 (giving bias aσ2), but the result extends to

the general case, where the limit is f(bZb) with Zb ∼ N(aσ2/b, σ2). This follows from

Theorem 17 with a changed to a/b, and the maps g and f changed to x 7→ g(x)/b

and x 7→ f(bx), respectively. When g is locally approximated by a straight line

x 7→ b(x− e) (i.e., a = 0), there is no bias.

2. In Section 3 we will examine various examples in which we can find the logarithmic

map g, along with its local parabolic approximation, leading to an explicit limit dis-

tribution. A classical and well-known instance arises in connection with the CLT for

products of positive r.v.s, in which case G = (0,∞), x ⊕ y = xy for x, y ∈ G, e = 1,

g = log, f = exp, and the limit distribution is log-normal. Specifically, our result

gives
∏n

i=1Xn,i
d−→ exp(Z), where Z ∼ N(−σ2/2, σ2), where Xi > −1 is assumed to

have mean zero and finite variance σ2. Condition (8.3) holds in this case by a Taylor

series expansion of x 7→ log(1 + x) around 0 ∈ Ge = (−1,∞), namely

| log(1 + x)− x+ x2/2| ≤ x2ρ(x), x > −1, (8.6)

where ρ(x) = |x/(1 + x)| satisfies (8.2) with M = 1/(s0 − 1) for any s0 > 1. This

expansion is verified in Section Section 8.3.2.

3. Condition (8.4) was only used in the proof to allow dominated convergence arguments

to be applied to
√
ng(X1/

√
n) and ng(X1/

√
n)2. However, if X1 is assumed to have

a finite fourth moment then (8.4) is not needed and the theorem continues to hold, as

shown in Lemma 10.
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Proof: For simplicity we assume that the identity e = 0, so Ge = G, but the proof easily

extends to the general case. By the definition of isomorphism, we have

Xn,1 ⊕Xn,2 ⊕ ...⊕Xn,n = f [g(Xn,1) + g(Xn,2) + ...+ g(Xn,n)]

= f

[
n∑

i=1

(g(Xn,i)− E g(Xn,i)) + nE g(Xn,1)

]
.

Therefore,

Xn,1 ⊕Xn,2 ⊕ ...⊕Xn,n = f [Tn + nE g(Xn,1)] (8.7)

where Tn =
∑n

i=1 (g(Xn,i)− E g(Xn,i)). The Lindeberg–Feller theorem is used to find the

asymptotic distribution of Tn. We first find the asymptotic variance of Tn. For s > s0,

|sg(x/s)− x| ≤ |sg(x/s)− x− ax2/s|+ |a|x2/s

≤ ρ(x/s)x2/s+ |a|x2/s

≤ x2(M + |a|)/s,

where the last two inequalities follow from assumptions (8.2) and (8.3), so

lim
s→∞

sg(x/s) = x (8.8)

for all x ∈ G. From assumption (8.4), we have |√ng(Xn,1)| ≤ c1|X1|1(|X1| ≥ c2) + c3 and

[
√
ng(Xn,1)]

2 ≤ 2c21X
2
1 + 2c23, so by dominated convergence and (8.8), E [

√
ng(Xn,1)] →

EX1 = 0 and E [
√
ng(Xn,1)]

2 → σ2, resulting in

Var(Tn) = nVar (g(Xn,1)) = E
(√
ng(Xn,1)

)2 −
(
E
√
ng(Xn,1)

)2 → σ2.

We next check the Lindeberg condition. Fix ε > 0 and note that

n∑

i=1

E
[
(g(Xn,i)− E g(Xn,i))

2 1(|g(Xn,i)− E g(Xn,i)| > ε)
]

≤ Var(Tn)− E
[(√

ng(Xn,1)− E(
√
ng(Xn,1))

)2
1((

√
ng(Xn,1)− E(

√
ng(Xn,1)))

2 ≤ t)
]
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provided t ≤ nε2. The variance term above tends to σ2 (as we have already seen). If

t is a fixed continuity point of the distribution of X2
1 then the last term above tends to

−EX2
11{X2

1 ≤ t} by the continuous mapping theorem and dominated convergence, which

in turn tends to −σ2 as t → ∞ by dominated convergence. Therefore the Lindeberg

condition holds and Tn
d→ N(0, σ2). The result then follows form (8.7) using Slutsky’s

lemma and the continuous mapping theorem provided we show nEg(Xn,1) → aσ2. Using

the zero mean property of X1 and assumption (8.3) we have

|nE g(Xn,1)− aσ2| ≤ nE |g(Xn,1)−Xn,1 − aX2
n,1|

≤ nE
[
X2

n,1ρ(Xn,1)
]
= E

[
X2

1ρ(X1/
√
n)
]

which tends to zero by (8.2) and dominated convergence. �

Lemma 10

Suppose the conditions of Theorem 17 hold with (8.4) replaced by E(X4
1 ) < ∞. Then

nE g(X1/
√
n)2 → σ2 and the conclusion of the theorem continues to hold. �

Proof: Assume that e = 0 as in the proof of Theorem 17. For x ∈ G we have

ng

(
x√
n

)2

= ng

(
x√
n
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∣∣∣
√
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∣∣∣
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n
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n
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n
+
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x√
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(
x√
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where
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√
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)
± 2x2 ± 2ax3√
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∣∣∣
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(
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)
x3√
n
+ 2x2 +

2x3√
n
,
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2ax2g

(
x√
n

)
= 2ax2g

(
x√
n

)
± 2ax3

n
± 2a2x4

n

≤ 2ax2

n

∣∣∣
√
ng

(
x√
n

)
− x− ax2√

n

∣∣∣+ 2ax3

n
+

2a2x4

n

≤ 2ax4

n3/2
ρ

(
x√
n

)
+

2ax3

n
+

2a2x4

n
.

Using the above inequalities, we can construct a dominator of ng(x/
√
n)2 that does not

depend on n. By (8.2), for n sufficiently large we have that ρ(x/
√
n) ≤M for all x ∈ G, so

a suitable dominator is given by

h(x) = (M2 + 2|a|M + 2a2)x4 + 2(1 + 2|a|+M)|x|3 + 2x2.

The assumption that X1 has a finite fourth moment guarantees that Eh(X1) < ∞, so

(8.8) gives nE g(X1/
√
n)2 → σ2 by dominated convergence. A similar argument, but

only requiring finite second moment (and zero mean), shows that
√
nE g(X1/

√
n) → 0.

Inspection of the proof of Theorem 17 shows that (8.4) was only used to provide these two

limits. �

We now proceed with a generalization of Theorem 2 in McKeague (2015). In this setting,

G = R and the inverse isomorphism g is defined over all of R. The classical Lindeberg–Feller

theorem is extended by this second result. Unlike the results obtained in McKeague (2015),

our second result does not contain Theorem 17 as a special case. For Theorem 18 to hold,

the following assumptions are required:
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A1. Let {Xn,i} be a triangular array of mean-zero random variables that are independent

across rows.

A2.
∑n

i=1 E
(
X2

n,i1(|Xn,i| > η)
)
→ 0 for all η > 0.

A3.
∑n

i=1Var(Xn,i) → σ2 <∞

The conditions A1-A3 are nothing more than the conditions of the classical Lindeberg Feller

CLT. We now state Theorem 18.

Theorem 18

Suppose A1–A3 hold. Let G = R and suppose there exists ρ : G → R
+ where ρ(x) → 0 as

x→ 0 and M > 0 such that ρ(x) ≤M for all x ∈ G, and

|g(x+ e)− x| ≤ ρ(x)x2. (8.9)

holds for all x ∈ R. Then

Xn,1 ⊕Xn,2 ⊕ ...⊕Xn,n
d−→ f(Z)

where Z ∼ N(0, σ2). �

Proof: First, we have

Xn,i ⊕ · · · ⊕Xn,n = f

[
n∑

i=1

g(Xn,i)

]
and

n∑

i=1

g(Xn,i) = Sn +Rn

where Sn =
∑n

i=1Xn,i and Rn =
∑n

i=1 [g(Xn,i)−Xn,i]. We have Sn → N(0, σ2) from the

Lindeberg–Feller CLT and Slutsky’s Lemma. We now show that Rn
P→ 0. We have

|Rn| ≤
n∑

i=1

|g(Xn,i)−Xn,i| ≤
n∑

i=1

ρ(Xn,i)X
2
n,i.

Let ε > 0 be arbitrarily chosen. We can choose an η > 0 such that supδ∈[−η,η] ρ(δ) < ε/σ2.

We have

n∑

i=1

E
(
ρ(Xn,i)X

2
n,i

)
=

n∑

i=1

E
(
ρ(Xn,i)X

2
n,i1(|Xn,i| > η)

)
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+
n∑

i=1

E
(
ρ(Xn,i)X

2
n,i1(|Xn,i| < η)

)

≤M
n∑

i=1

E
(
X2

n,i1(|Xn,i| > η)
)
+

ε

σ2

n∑

i=1

E
(
X2

n,i

)

where

M
n∑

i=1

E
(
X2

n,i1(|Xn,i| > η)
)
+

ε

σ2

n∑

i=1

E
(
X2

n,i

)
→ ε

as n→ ∞. Therefore E |Rn| → 0 which shows Rn
P→ 0 and

n∑

i=1

g(Xn,i)
d−→ N(0, σ2)

from Slutsky’s Lemma. Our desired result follows from the continuous mapping theorem.

�

The assumption that g has a parabolic approximation with a linear trend was crucial for

Theorem 17 in the sense that it is the natural condition for the case of
√
n-normalization.

We now show that higher-order approximations to g also lead to CLTs, provided the normal-

ization matches the order of the leading term in the approximation, and the sum is centered

by a “drift” term. When the approximation to g has no linear leading term, the deformation

can cause the drift term to tend to infinity, so in general a tight limiting distribution is not

possible without centering.

Suppose that g does not have a parabolic local approximation at the identity e. In this

case we suppose that

|g(e+ x)−
p∑

j=1

ajx
kj | ≤ ρ(x)xkp

holds in place of (8.3) where 1 ≤ k1 < k2 < · · · < kp with k1 odd and aj 6= 0 for j = 1, ..., p.

Then

lim
s→∞

sg(e+ x/s) = 0

when k1 > 1 for all x ∈ G. The proof of Theorem 1 requires that the condition (8.3) implies

that

lim
s→∞

sg(e+ x/s) = x
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holds for all x ∈ G. When g does not have a parabolic local approximation at the identity

e, then the CLT can not be extended to ⊕-addition at
√
n normalization. In Theorem 19,

we show that the CLT can be extended to ⊕-addition where Xn,i = e+ n−1/k1X1.

Theorem 19

Suppose there exists a function ρ : Ge → R
+ satisfying (8.2) and

|g(e+ x)−
p∑

j=1

ajx
kj | ≤ ρ(x)xkp (8.10)

for all x ∈ Ge, where the aj and 1 ≤ k1 < k2 < · · · < kp are prespecified, with a1 = 1.

Assume

|sg(e+ s−1/k1x)| ≤ c1|x|k11(|x| ≥ c2) + c3 (8.11)

for all x ∈ Ge and s > s1, where c1, c2, c3 and s1 > 0 are prespecified. Let {Xi} be a

sequence of iid Ge-valued random variables with E(Xk1
1 ) = 0 and σ2 = E(X2k1

1 ) < ∞. Let

Xn,i = e+ n−1/(2k1)Xi. Then

Xn,1 ⊕Xn,2 ⊕ ...⊕Xn,n ⊖ f(µn)
d−→ f(Z) (8.12)

where Z ∼ N(0, σ2) and µn = nE g(Xn,1). �

Proof: The proof follows similar lines to the first part of Theorem 17, so we do not repeat

all the details. Again assume that the identity e = 0. From (8.1), with Tn defined as before,

but now with nE g(Xn,1) moved to the other side of the equation, it suffices to use the

Lindeberg–Feller theorem to find the asymptotic distribution of Tn. Conditions (8.2) and

(8.10) give

∣∣∣sg(s−1/k1x)− xk1 −
p∑

j=2

ajs
1−kj/k1xkj

∣∣∣ ≤ s1−kp/k1ρ(s−1/k1x)xkp → 0
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as s→ ∞, so

lim
s→∞

sg(s−1/k1x) = xk1 (8.13)

for each x ∈ G. From (8.11),

[√
ng(n−1/(2k1)x)

]2
≤ 2c21x

2k11(|x| ≥ c2) + 2c23

for all n > s21, so by dominated convergence and (8.13) we have

E
[√
ng(Xn,i)

]2 → E(X2k1
1 ).

A similar argument shows that E[
√
ng(Xn,i)] → E(Xk1

1 ) = 0. Thus,

Var(Tn) = nVar (g(Xn,1)) = E
(√
ng(Xn,1)

)2 −
(
E
√
ng(Xn,1)

)2 → E(X2k1
1 ).

The Lindeberg condition is checked is the same way as before, so Tn
d−→ N(0, σ2). �

8.3 Examples

Statistical systems that can be described in terms of Boltzmann–Gibbs entropy are asso-

ciated with classical addition. Since both the logarithmic and exponential maps are the

identity in this setting, the conditions of Theorem 17 are satisfied trivially. It is immedi-

ately seen that our main theorem generalizes the classical CLT. In this section we present

several examples that go beyond the classical setting.

8.3.1 Kaniadakis addition

Our result can be used to derive a relativistic CLT given by McKeague (2015), who consid-

ered the case of Kaniadakis addition:

x
κ
⊕ y = x

√
1 + κ2y2 + y

√
1 + κ2x2,

representing the addition of momenta in special relativity. The parameter 0 < κ ≤ 1 is the

reciprocal of the speed of light in the ambient space (when all variables are expressed in
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dimensionless units). The Lie group (R,
κ
⊕) has exponential map fκ(x) = sinh(κx)/κ, and

logarithmic map

gκ(x) =
1

κ
sinh−1(κx) =

1

κ
log(κx+

√
1 + κ2x2).

Condition (8.3) can be checked using an inequality in McKeague (2015), which yields

|gκ(x)− x| ≤ x2ρ(x)

with ρ(x) = κmin(κ|x|, 1) for all x ∈ R. This ρ is bounded everywhere and ρ(x) → 0

as x → 0, so condition (8.2) holds. Further, |gκ(x)| ≤ |x|, so (8.4) holds. Therefore, all

conditions of Theorem 17 are met, and we conclude that, for any iid sequence {Xi} of

mean-zero random variables with finite variance σ2,

Xn,1

κ
⊕ Xn,2

κ
⊕ ...

κ
⊕ Xn,n

d−→ 1

κ
sinh(κZ)

where Z ∼ N(0, σ2). In this setting, Z has mean zero since (8.3) is satisfied with a = 0.

We have reached the same conclusion as (McKeague, 2015, Theorem 1).

McKeague (2015) also derived CLTs for velocity and energy using identities of Kani-

adakis (2006) and the continuous mapping theorem to translate the corresponding CLT

for momentum into velocity and energy. Our Theorem 1 provides a more direct approach.

Velocities are combined according to the Einstein addition rule

x
v
⊕ y =

x+ y

1 + κ2xy

for x, y ∈ G = (−1/κ, 1/κ), and the corresponding Lie group (G,
v
⊕) has exponential map

fv(x) =
1
κ tanh(κx) and logarithmic map

gv(x) =
1

κ
tanh−1(κx) =

1

2κ
log

(
1 + κx

1− κx

)
.

We now verify that (8.3) holds:

|gv(x)− x| ≤ ρ(x)x2

with ρ(x) = |x/(1− κ|x|)|. This ρ obviously satisfies condition (8.2). The function h(x) =

x2ρ(x)− |gv(x)− x| has derivative

h′(x) =

(
x2

1− κ|x|

(
κx2

|x|(1− κ|x|) + 1

)
+

κ2x2

1− κ2x2
+

2x2

1− κ|x|

)
sign(x),
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which is negative when x < 0, positive when x > 0. Since hv(0) = 0, it follows that

h(x) ≥ 0 for all x ∈ G, so condition (8.3) holds as claimed. Similarly, the derivative of

x 7→ κ|x| − gv(x), namely

κ

[
1− |x|

κ2x2 − 1

]
sign(x),

is negative for x < 0 and positive for x > 0, so condition (8.4) holds with c1 = κ, c2 = c3 = 0.

All the conditions of Theorem 17 are satisfied, and we conclude that if {Xi} is an iid sequence

of mean-zero G-valued random variables with variance σ2 (which is necessarily finite), then

Xn,1

v
⊕ Xn,2

v
⊕ ...

v
⊕ Xn,n

d−→ 1

κ
tanh(κZ)

where Z ∼ N(0, σ2).

8.3.2 Tsallis addition

We next show that our theory leads to CLTs under addition associated with Tsallis entropy.

Tsallis addition is a combination of standard addition and multiplication:

x
q
⊕ y = x+ y + (1− q)xy,

where x, y ∈ G = (−1/(1 − q),∞), and 0 ≤ q < 1. The exponential map fq : R → G and

respective logarithmic map gq are given by

fq(x) =
exp((1− q)x)− 1

1− q
, and, gq(x) =

log(1 + (1− q)x)

1− q
,

respectively. Condition (8.3) of Theorem 17 holds by a Taylor series expansion of gq around

0 ∈ G, namely

|gq(x)− x+ (1− q)x2/2| ≤ x2ρ(x), x > −1,

where ρ(x) = |x/(1+x)| and a = −(1−q)/2. This expansion follows from (8.6) in Remark 1,

where we already noted that ρ satisfies condition (8.2). Let

h(x) = x2ρ(x)− |log(1 + x)− x+ x2/2|. (8.14)
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The derivative

h′(x) =

(
x

x+ 1

)3 ∣∣∣x+ 1

x

∣∣∣+ 2x
∣∣∣ x

x+ 1

∣∣∣− x2

x+ 1
sign

(
x2 − 2x+ 2 log(1 + x)

)

is negative for −1 < x < 0 and positive for x > 0. Since h(0) = 0, we then have h(x) ≥ 0

for all x ∈ G, so (8.6) holds. Next we check that (8.4) holds for gq with q = 0, from which

the case of general gq follows immediately. First it is easy to check that |s log(1+x/s)| ≤ |x|
for all s > s0 > 1 when x > 0. Second, suppose −1 < x < 0. From the monotonicity of

the logarithm, s log(1 − 1/s) ≤ s log(1 + x/s) ≤ 0. Fix ε > 0. As seen in the proof of

Theorem 17, condition (8.3) implies that sg(x/s) → x as s → ∞. Thus, for some positive

s1, we have

−1− ε ≤ s log(1− 1/s) ≤ s log(1 + x/s) ≤ ε

for all s > s1. Therefore condition (8.4) holds with

s| log(1 + x/s)| ≤ |x|1(|x| ≥ 1) + 1 + ε.

All of the conditions of Theorem 17 are now verified for Tsallis addition, and we conclude

that if {Xi} is an iid sequence of mean-zero random variables with finite variance σ2 then

Xn,1

q
⊕ Xn,2

q
⊕ ...

q
⊕ Xn,n

d−→ fq(Z), where Z ∼ N(−(1− q)σ2/2, σ2).

Example 3.1. (Tsallis addition and the product of positive random variables.) The

verification of the conditions of Theorem 17 for the product of iid positive random variables

in Remark 1 overlaps with the verifications for Tsallis addition. This is because there is a

direct connection between the two binary operations: (1 + x)(1+ y) = 1+ x
q
⊕ y for Tsallis

addition with q = 0. We can then derive the limit distribution of the product as a shifted

version of the limit in the CLT under Tsallis addition. To see this, express Xn,i in Remark 1

as 1 + Yn,i, where Yn,i = Xi/
√
n, so when q = 0 we have

∏n
i=1Xn,i = 1+ Yn,1

q
⊕ · · ·

q
⊕ Yn,n.

It is now apparent that as a consequence of Theorem 17 distinct central limit theories

are associated with Boltzmann–Gibbs, Kaniadakis, and Tsallis group entropies. Tsallis

entropy is the only one of these to exhibit asymptotic bias in the sense that the normally

distributed Z appearing in the limit f(Z) has non-zero mean. The bias is due to the
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presence of a second-order term in the Taylor expansion of the corresponding logarithmic

map.

8.3.3 Deformations via exponentiation

We now provide an example that falls outside of the scope of Theorem 17, but that is

covered by Theorem 19 which allows for more extreme types of deformations, provided the

normalization of the summands is chosen appropriately. Consider the Lie group on G = R

with binary operation

x
α
⊕ y = (xα + yα)1/α , (8.15)

where α ≥ 1, the integer part of α is odd, and xα = exp [α log |x|] sign(x). The identity

element is e = 0, the exponential map fα(x) = x1/α, and the logarithmic map gα(x) = xα.

Condition (8.10) is satisfied with ρ(x) = 0, p = 1, a1 = 1 and k1 = α. Condition (8.11)

holds with c1 = c2 = 1 and c3 = 0. Let {Xi} be an iid sequence of random variables with

E(Xα
1 ) = 0 and σ2 = E(X2α

1 ) <∞ and put Xn,i = n−1/(2α)Xi. Then (8.12) holds, and since

there is no drift in this case (µn = 0), we conclude that Xn,1

α
⊕ Xn,2

α
⊕ ...

α
⊕ Xn,n

d−→ Z1/α

where Z ∼ N(0, σ2).

8.4 Random additive deformations

A basic assumption of the central limit theory we have developed is that the additive

deformation is fixed. In particular, under Tsallis and Kaniadakis addition, the deformations

are determined by the parameters q and κ. In this section, we present the results of a

simulation study in which these parameters are allowed to be random. For applications of

Kaniadakis addition, a random κ can arise when there are local variations in the ambient

space through which (relativistic) particles are moving. In typical applications of Tsallis

addition, q is regarded as a fitting parameter (Portes de Albuquerque et al., 2004), so

treating it as random provides a way of adjusting for uncertainty about its actual value.
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Suppose the iid mean-zero random variables Xi, normalized as Xn,i = Xi/
√
n, are

combined according to

Xn,1

κ1⊕ Xn,2

κ2⊕ · · ·
κn−1⊕ Xn,n (8.16)

where the κi are iid and x
κ
⊕ y = x + y + κxy, as in Tsallis addition with κ = 1 − q,

or x
κ
⊕ y = x

√
1 + κ2y2 + y

√
1 + κ2x2 as in Kaniadakis addition. Associativity no longer

holds, so we need to specify the order of operations in (8.16). The order is assumed to be

from left to right, as in ((. . . ((Xn,1

κ1⊕ Xn,2)
κ2⊕ Xn,3)

κ3⊕ · · · )
κn−1⊕ Xn,n. We have found from

simulations that the sampling distribution appears to be the same in the reverse order, or

in fact in any order, but we do not have a proof of this.

It would be interesting to establish the existence of limiting distributions of sums of the

form (8.16), that are universal in the sense that they do not depend on the distributions of

Xi or κi, but only on certain features of these distributions (such as their mean an variance)

and on features of the deformation. This appears to be a very challenging problem. Our

simulation studies, however, do shed some light on the question of whether such a universal

limit exists.

A broad simulation study provides support for this finding across a wide range of scenar-

ios. The behavior of sampling distributions for (8.16) is investigated for two data generating

models with six additive parameter distributions each for both Tsallis and Kaniadakis ad-

dition. The sampling distributions corresponding to each scenario are constructed with

one million samples of size n = 2000. The settings and empirical results are displayed in

Table 8.1. It should be noted that the distribution of the Xi has been standardized and the

additive parameter distributions have been shifted and scaled so that the mean is 1/2 and

the standard deviation is 0.10. The densities of the sampled random sums from Table 8.1

are plotted in Figure 8.1. The curves in both panels of Figure 8.1 provide strong visual

evidence for the existence of a universal limit law.

The numerical summaries in Table 8.1 further support the visual evidence in favor of

the existence of a universal limit law. A Kolmogorov–Smirnov test between each sampling
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Figure 8.1: Evidence for the existence of a universal limit law. The sampling distributions
for the simulation settings in Table 8.1 are plotted here. The left panel displays the density
curves corresponding to the Tsallis case. The right panel displays the density curves corre-
sponding to the Kaniadakis case. The green lines correspond to density curves for the fixed
q = κ = 1/2 case for both data generating distributions and both addition operations.

distribution in Table 8.1 and a sampling distribution with fixed κ = q = 1/2 shows no

significant difference at any reasonable testing level. Shapiro–Wilks tests between each

sampling distribution in Table 8.1 and the asymptotic log-normal (Tsallis case) and sinh-

normal (Kanidakis case) distributions also provide evidence in favor of a universal limit

law. The shapiro.test function used to implement the Shapiro–Wilks tests in R can only

handle a maximum of five thousand entries. As a result of this, we repeatedly sample five

thousand entries from the million possible values a total of ten thousand times and report

the proportion of p-values exceeding 0.05. What is striking about this procedure is the vast

differences in the proportion of p-values exceeding 0.05 across addition operations and data

generating distributions alike. The exponential data generating model and Tsallis addition

are seen to be further away from asymptopia than the uniform data generating model and

Kaniadakis addition respectively.

Figure 8.2 offers some additional explanation to the difficulties that arise when random

deformations are considered. The left panel displays the results for Tsallis addition. In the

Tsallis case, we consider fixed q = 1 (regular addition), q = 1/2, and q = 0 as reference

distributions and we generate q ∼ U(0, 1) to form a random deformation. The black line

depicts the sampling distribution of our random deformation where the additive parameter
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Figure 8.2: The random variables are generated as X ∼ U(−2, 2) for all sampling distri-
butions in both panels. The sampling distributions are constructed with twenty thousand
samples of size n = 1000. The left panel depicts sampling distributions for Tsallis addition
at three fixed q values and one random deformation with q ∼ U(0, 1). The right panel de-
picts sampling distributions for Kaniadakis addition at three fixed κ values and one random
deformation with κ ∼ U(0, 1).

has mean 1/2. The sampling distribution with q generated at random is similar in appear-

ance to the sampling distribution with a fixed additive parameter equal to the mean of q.

However, this similarity is not enough to suggest that a mathematical argument can be

made to prove this observation true. This is because the sampling distribution takes on

mass below the theoretical lower bound value of -2 when q = 1/2 is fixed.

The right panel of Figure 8.2 displays simulation results for Kaniadakis addition. In

the Kaniadakis case, we consider κ = 0 (regular addition), κ = 1/2, and κ = 1 as reference

distributions and we generate κ ∼ U(0, 1) to form a random deformation. The discrepancies

between the sampling distributions in the Kaniadakis case are much less than those seen

in the Tsallis case. Just as before, the sampling distribution with κ generated at random

is similar in appearance to the sampling distribution with a fixed additive parameter equal

to the mean of κ.

8.5 Discussion

Our theorems extend classical central limit theory to cases in which random variables are

combined with a binary operation satisfying Lie group properties. We have shown that
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different algebraic deformations with distinct isomorphisms yield different limiting distri-

butions. The three statistical systems considered, the combination of velocity mentioned in

McKeague (2015), and α-norms of random variables all arise as special cases of our extended

central limit theorems.

Theorem 1 in McKeague (2015) provided the inspiration for the development of our

theory. However, (McKeague, 2015, Theorem 1) arises as a very special case of our theorems.

In particular, g has a local linear approximation instead of a local parabolic approximation,

g : R → R, and ρ(x) is bounded everywhere. However, these properties do not hold in

generality and they are relaxed in the present work. As a consequence, limiting normal

distributions in (8.5) are not necessarily mean-zero and operations not defined over all of

R have extensions. Theorem 19 then relaxes the requirement that g has a local parabolic

approximation. In this Theorem, the approximation to g is then more general than a second

order Taylor expansion.

The generality of our theory allows us to find the limiting distribution when random

elements are combined via Tsallis addition. We are not the only authors to investigate

limiting distributions in this setting. Umarov, et al. (2008) presents a q-central limit theory

motivated by nonextensive statistical mechanics and Tsallis addition. In their setting,

random variables are correlated and generalizations of independence (qk-independence) are

characterized by the Fourier transform defined within (Umarov, Tsallis, and Steinberg, 2008,

section 2.4 and definition 3.2). They show that a qk-independent sequence qk converges to a

qk−1-normal distribution(Umarov, Tsallis, and Steinberg, 2008, Theorem 1). The statistical

context of this result is not immediately apparent. Our theorems show that classical central

limit theory can be extended to nonextensive statistical mechanics by exchanging standard

addition with Tsallis addition when random variables meet classical assumptions.

The simulation studies within provide strong evidence in favor of the existence of a

universal limit law. This universal limit law states that when additive parameters are

themselves random, the sampling distribution of (8.16) will converge to that of (8.5) where

the fitting parameter in (8.5) is the mean of the random additive parameters in (8.16). The

evidence suggests that random deformations converge to the asymptotic distributions with
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fixed parameters given by our theorems. In addition, the output in Table 8.1 suggests that

some data generating mechanisms and addition operations approach the universal limit law

faster than others.

The copyright for this chapter belongs to Statistics and Probability Letters.
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Table 8.1: Simulation results. The first column displays the type of addition. The second
column displays the data generating mechanism. The third column displays the additive
parameter generating mechanism. The distributions in the third column have been scaled
to have a mean of 0.5 and a standard deviation of 0.1. The random variables Y1 through
Y3 are given below. The fourth column displays the p-values of the Kolmogorov–Smirnov
test comparing to the fixed parameter setting q = κ = 1/2. The final column displays
the proportion of Shapiro–Wilks p-values exceeding 0.05. A Shapiro–Wilks p-value greater
than 0.05 suggests that the asymptotic distribution of the random combination is log-normal
(Tsallis case) or sinh-normal (Kaniadakis case) where q = κ = 1/2.

Addition distribution of data distribution of κ or q KS p-value SW p-value proportion
Tsallis X ∼ U(−1, 1) q ∼ Y1 0.755 0.572

q ∼ Y2 0.675 0.554
q ∼ Y3 0.703 0.561
q ∼ Beta(1/2, 1/2) 0.648 0.529
q ∼ Beta(1, 3) 0.764 0.557
q ∼ Beta(3, 1) 0.781 0.565

X ∼ Exp(2)− 2 q ∼ Y1 0.347 0.066
q ∼ Y2 0.465 0.058
q ∼ Y3 0.565 0.048
q ∼ Beta(1/2, 1/2) 0.352 0.046
q ∼ Beta(1, 3) 0.470 0.057
q ∼ Beta(3, 1) 0.689 0.068

Kaniadakis X ∼ U(−1, 1) κ ∼ Y1 0.531 0.950
κ ∼ Y2 0.728 0.941
κ ∼ Y3 0.569 0.942
κ ∼ Beta(1/2, 1/2) 0.456 0.948
κ ∼ Beta(1, 3) 0.399 0.952
κ ∼ Beta(3, 1) 0.545 0.950

X ∼ Exp(2)− 2 κ ∼ Y1 0.336 0.423
κ ∼ Y2 0.293 0.400
κ ∼ Y3 0.212 0.415
κ ∼ Beta(1/2, 1/2) 0.291 0.444
κ ∼ Beta(1, 3) 0.344 0.377
κ ∼ Beta(3, 1) 0.312 0.424

Y1 =





1/3 w.p. 1/2

2/3 w.p. 1/2
Y2 =





1/3 w.p. 1/3

2/3 w.p. 2/3
Y3 =





1/3 w.p. 2/3

2/3 w.p. 1/3
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