
Copyright

by

Xin Sui

2015



The Dissertation Committee for Xin Sui
certifies that this is the approved version of the following dissertation:

Principled Control of Approximate Programs

Committee:

Keshav Pingali, Supervisor

Derek Chiou

Inderjit Dhillon

Donald S. Fussell

Vijaya Ramachandran



Principled Control of Approximate Programs

by

Xin Sui, B.S.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

Decemeber 2015



Dedicated to my father Yongjie Sui and my mother Xiuyan Dong.



Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor

Keshav Pingali for his invaluable guidance and support over the past years.

Without his encouragement and help, this thesis would not have been possible.

From Keshav, I learned not only research skills in one research area but also

the way to think difficult problems and the way to present things clearly, which

will benefit my entire life. I am really thankful to his great patience to listen

to my talks many times and help me improve them.

I would like to thank all the members of my PhD committee. Inderjit

Dhillon and Donald Fussell have devoted a lot of their time to solving problems

and giving advice on the projects on which we collaborated. Inderjit, Donald,

Vijaya Ramachandran and Derek Chiou have given very helpful feedback and

spent a lot of time.

Martin Burtscher has been a great mentor for me during the early

stage of my PhD study. Andrew Lenharth inspired many research ideas and

provided constructive comments on technical details.

I am really grateful to Dimitrios Prountzos and Joyce Jiyoung Whang

for being friends and colleagues. Dimitrios gave me a lot of helps during my

PhD study and going lunch with him every weekday has been great memories

in my life. Working with Joyce was very enjoyable.

I would like to thank the past and current members of Intelligent Soft-

ware System research group for their technical and personal support: Noah

Anderson, Roshan Dathathri, Gurbinder Gill, Amber Hassaan, Jiayuan He,

v



Rashid Kaleem, Milind Kulkarni, Yi-Shan Lu, Mario Mendez-Lojo, Rupesh

Nasre, Donald Nguyen, and Sreepathi Pai.

I would also like to acknowledge my friends and colleagues for all mem-

orable moments in Austin: Meiru Che, Song Han, Byeongchol Lee, Dong Li,

Na Meng, Bin Wang, Wei Tang, Guowei Yang, Xiuming Zhu, Zifei Zhong.

Lastly and most importantly I would like to thank my parents for their

unconditional love and selfless support throughout my life.

vi



Principled Control of Approximate Programs

Publication No.

Xin Sui, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Keshav Pingali

In conventional computing, most programs are treated as implementa-

tions of mathematical functions for which there is an exact output that must

computed from a given input. However, in many problem domains, it is suf-

ficient to produce some approximation of this output. For example, when

rendering a scene in graphics, it is acceptable to take computational short-

cuts if human beings cannot tell the difference in the rendered scene. In other

problem domains like machine learning, programs are often implementations

of heuristic approaches to solving problems and therefore already compute

approximate solutions to the original problem.

This is the key insight for the new research area, approximate com-

puting, which attempts to trade-off such approximations against the cost of

computational resources such as program execution time, energy consump-

tion, and memory usage. We believe that approximate computing is an im-

portant step towards a more fundamental and comprehensive goal that we

call information-efficiency. Current applications compute more information

(bits) than are needed to produce their outputs, and since producing and
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transporting bits of information inside a computer requires energy/computa-

tion time/memory usage, information-inefficient computing leads directly to

resources inefficiency.

Although there is now a fairly large literature on approximate comput-

ing, system researchers have focused mostly on what we can call the forward

problem; that is, they have explored different ways in both hardware and soft-

ware to introduce approximations in a program and have demonstrated that

these approximations can enable significant execution speedups and energy

savings with some quality degradation of the result. However, these efforts do

not provide any guarantee on the amount of the quality degradation. Since the

acceptable amount of degradation usually depends on the scenario in which

the application is deployed, it is very important to be able to control the degree

of approximation. In this dissertation, we refer to this problem as the inverse

problem. Relatively little is known about how to solve the inverse problem in

a disciplined way.

This dissertation makes two contributions towards solving the inverse

problem. First, we investigate a large set of approximate algorithms from

a variety of domains in order to understand how approximation is used in

real-world applications. From this investigation, we determine that many ap-

proximate programs are tunable approximate programs. Tunable approximate

programs have one or more parameters called knobs that can be changed to

vary the quality of the output of the approximate computation as well as the

corresponding cost. For example, an iterative linear equation solver can vary

the number of iterations to trade quality of the solution versus the execution

time, a Monte Carlo path tracer can change the number of sampling light paths

to trade the quality of the resulting image against execution time, etc. Tunable
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approximate programs provide many opportunities for trading accuracy versus

cost. By carefully analyzing these algorithms, we have found a set of patterns

for how approximation is applied in tunable programs. Our classification can

be used to identify new approximation opportunities in programs.

A second contribution of this dissertation is an approach to solving the

inverse problem for tunable approximate programs. Concretely, the problem

is to determine knob settings to minimize the cost while keeping the quality

degradation within a given bound. There are four challenges: i) for real-world

applications, the quality and cost are usually complex non-linear functions of

the knobs and these functions are usually hard to express analytically; ii) the

quality and the cost for an application vary greatly for different inputs; iii)

when an acceptable quality degradation bound is presented, determining the

knob setting has to be very efficient so that the extra overhead incurred by the

identification will not exceed the cost saved by the approximation; and iv) the

approach should be general so that it can be applied to many applications.

To meet these requirements, we formulate the inverse problem as a

constrained optimization problem and solve it using a machine learning based

approach. We build a system which uses machine learning techniques to learn

cost and quality models for the program by profiling the program with a set of

representative inputs. Then, when a quality degradation bound is presented,

the system searches these error and cost models to identify the knob settings

which can achieve the best cost savings while simultaneously guaranteeing the

quality degradation bound statistically. We evaluate the system with a set of

real world applications, including a social network graph partitioner, an image

search engine, a 2-D graph layout engine, a 3-D game physics engine, a SVM

solver and a radar signal processing engine. The experiments showed great
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savings in execution time and energy savings for a variety of quality bounds.
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Chapter 1

Introduction

1.1 Achieving Information-Efficiency Via Approximate
Computing

We live in an era in which computation is increasingly constrained by

power and energy consumption. In portable devices like smart-phones and

tablets, computation is often restricted both by battery capacity and by limits

on power dissipation; in fact, for many applications, energy efficiency is more

important than performance. At the other end of the computing spectrum,

supercomputer and data center designs are being constrained by the cost of

energy and by looming regulatory limits [33].

These concerns about power and energy efficiency are relatively recent

because until a few years ago, Moore’s Law and Dennard scaling reduced the

size and energy consumption of digital circuits while simultaneously increasing

their speed. As a result, contemporary applications have not been designed

for energy efficiency.

One popular approach to improving the energy efficiency of applications

is approximate computing [28, 61, 63, 70, 73, 76]. The key insight is that when

executing a program, energy can be reduced by taking computational short-

cuts such as skipping iterations and tasks or reducing the precision of data

values, and while this changes the output of a program in general, the resulting

output may still be “acceptable” for some applications. For example, when
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rendering a scene, computational short-cuts to save energy are acceptable as

long as the changes to the rendered image do not matter to the person viewing

the image.

We believe that approximate computing is an important step towards a

more fundamental and comprehensive goal that we call information-efficiency.

Current applications compute more information (bits) than is needed to pro-

duce their outputs, and since producing and transporting bits of information

inside a computer requires energy, information-inefficient computing leads di-

rectly to energy inefficiency.

Besides approximate computing, there are other ways to achieve infor-

mation efficient computing. For example, a low-precision ray-tracing acceler-

ator for GPUs is proposed by [41, 42]. In this system, a conventional GPU

is augmented with an accelerator that performs a very low-precision spatial

search for tracing rays in which inaccuracies resulting from the lowered preci-

sion are corrected later in the computation and prevented from affecting the

output. This information-efficient design improves performance but reduces

the area and power spent in ray traversal while producing exactly the same

output as the standard full-precision search.

Approximate computing achieves the area/energy/performance gain by

reducing the information produced at the output, while the other approach

achieves this by eliminating the computation and movement of intermediate

information that was not needed to produce the output.

In this thesis, we focus on approximate computing as the way to achieve

information efficiency. In particular, we focus on a class of approximate pro-

grams that we call tunable approximate programs. Intuitively, these programs

have one or more knobs or parameters that can be changed to vary the fidelity

2



of the produced output. Not all approximate algorithms are tunable. For

example, Kempe’s heuristic for graph coloring [24] works for most graphs that

arise in register allocation, but if it fails for a particular graph, there is no way

to tune it to produce a coloring even if one exists.

One of the oldest examples of a tunable approximate algorithm is the

method used by Archimedes to estimate the value of π by constructing in-

scribed and circumscribed regular polygons for circles; the number of sides

of the polygons is the knob, and more accurate estimates for π can be ob-

tained by “dialing up” this knob. Iterative algorithms for solving linear or

non-linear systems control the number of iterations to trade off solution accu-

racy for computational time and energy. Knobs might also control the number

of iterations performed by a loop [12, 61], determine the precision with which

floating-point computations are performed [63, 70], or switch between precise

and approximate hardware [28].

Most of the existing literature in approximate computing focuses on

solving the the Forward Problem: introducing hardware or software knobs

into programs and studying what happens to the output of a tunable approx-

imate program when its knobs are dialed up or down. For example, [68], [50],

and [27] explore introducing approximations into computer hardware such as

arithmetic operations, registers and memory; and [28] replaces code segments

with hardware-implemented neural networks which produces approximate out-

put generated by the code segments. In the context of software approaches,

loop perforation [73] explores skipping iterations during loop execution; [60]

explores randomly discarding tasks in parallel applications; and [61] and [15]

explores relaxing synchronization in parallel applications. Those studies have

demonstrated experimentally that in some programs, approximations can en-

3



able significant execution speedup and energy savings with little quality or

fidelity degradation of the result.

While these studies of the forward problem are useful, optimizing en-

ergy, rather than merely reducing it, requires the solution to what we called

the Inverse Problem for tunable approximate programs: roughly speaking,

given a permissible error for the output, we want to set the knobs to minimize

the cost of computation, such as running time or energy, while meeting the

error constraint. This problem can be seen as the Control Problem for tunable

programs. Few studies have attempted to solve this problem. One example is

the Green system [6] but it is targeted for streaming applications in which the

estimated error for one input is used to control error for the next input. This

kind of reactive control is not useful for applications like the ones considered

in this thesis that require proactive control since they are given a single input

value.

1.2 Thesis Statement

The dissertation has the following two objectives.

I. Understand the space of tunable approximate algorithms, and

identify opportunities for control knobs in these applications.

A comprehensive understanding of tunable approximate algorithms will

help identify appropriate knobs and how they can be controlled.

To meet this objective, we survey a variety of tunable approximate algo-

rithms across different application domains such as graphics, machine learning,

database and internet, and classify these algorithms into a small number of

4



categories. The classification provides a systematic understanding of approxi-

mate algorithms.

II. Solve the Control Problem for tunable approximate programs.

To understand how to achieve this objective, consider an example, the

GEM algorithm [85] for clustering social networks. Given a social network

graph and the number of clusters, GEM produces an assignment of nodes to

clusters. The quality of the clustering is estimated using a metric called the

normalized cut, defined in more detail in Chapter 2, but roughly speaking, it

computes the ratio of inter-cluster edges to intra-cluster edges (lower is bet-

ter since it means there are fewer edges connecting nodes in different clusters).

The GEM program has two components: the first one extracts a representative

skeleton of the original graph by picking high degree nodes and clusters this

skeleton graph using a weighted kernel k-means algorithm, and the second one

projects this clustering to the original graph and uses weighted kernel k-means

again to refine this clustering. Weighted kernel k-means is an iterative algo-

rithm, so there are two knobs in GEM, one for each component. For a given

input graph, running both components to convergence produces a clustering

of some quality; reducing the number of iterations in either component may

reduce the computational cost but may impact the quality of the clustering.

Given an input graph and some desired quality of the output, the Control

Problem is the following: how do we set the knobs for the two components op-

timally to minimize computational time or energy, given some desired fidelity

of the output?

To solve the control problem for programs such as GEM, there are

several design goals.
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• We would like to find an approach which can solve Control Problem for

different tunable approximate programs. A control approach targeting

a particular program is not our goal.

• Tunable approximate programs such as GEM are given a single input,

not a stream of inputs. Therefore, reactive control approaches such as

the approach used in Green system [6] cannot be applied. In addition,

reactive approaches require a cheap way to compute the quality of an

output in order to generate the feedback for the control system, but the

quality of the outputs of many tunable approximate programs cannot be

evaluated without computing the exact output. Therefore a proactive

approach is needed for general tunable approximate programs.

• Solving the Control Problem requires knowing the relationships between

quality, cost and knobs. These relationships are usually very complex.

Therefore, building an analytic model for the interactions between the

quality and the knobs for tunable approximate programs such as GEM

is very hard even for people with expert mathematical knowledge, if

not impossible. Building an analytic model for the interactions between

knobs and cost requires a deep understanding of the computer architec-

ture. It is hard to find experts in both areas. In addition, the quality of

the output or the cost usually depends on inputs, so analytic models are

usually too conservative to be useful.

• Solving the Control Problem has to be efficient. Identifying optimal knob

settings should not exceed the savings by executing the approximate

version of the programs.
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To meet the above design goals, we formulate the control problem as

an optimization problem, justifying it by describing other reasonable formu-

lations and explaining why we do not use them. We solve the optimization

problem by using a machine learning based approach to build error/quality

and cost models which model the interactions among quality, cost and knobs.

Machine learning based approaches eliminate the requirement of analytic mod-

eling skills. It is a general approach for any kind of tunable approximate

programs. We validate the approach using a set of complex applications.

1.3 Contributions

The dissertation makes the following contributions.

• The dissertation analyzes approximation patterns in a variety of tunable

approximate algorithms and proposes a classification for approximate

programs. The classification helps the understanding of approximation

patterns in approximate algorithms.

• The dissertation shows that the error and cost behaviors of approximate

programs are very complex. The error and cost functions of the approx-

imate programs are usually non-linear and vary greatly across inputs.

• The dissertation proposes a proactive approach to solve the control prob-

lem. It formulates the control problem as a constrained optimization

problem, dealing explicitly with the problem of input variability. This

formulation provides a systematic way to trade-off accuracy and cost for

tunable approximate programs.
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• The dissertation describes a machine learning based system to solve the

formulated control problem. The machine learning based approach al-

lows the system to control a variety of approximate programs without

the requirement of expert analytic modeling skills from programmers.

The approach uses machine learning approaches to build error and cost

models. Then a control algorithm is used to find the optimal knob set-

tings by querying the models. The proposed approach is validated using

six complex approximate programs. The dissertation shows the pro-

posed approach can not only tune the approximate programs using the

compute-time as the cost metric, but can also successfully tune programs

to optimize energy. We believe the proposed approach can be applied to

other cost metrics.

• The dissertation shows the problem formulation can be easily extended to

include multi-criteria error constraints. For example, it allows bounding

the maximal error besides the average error.

• The dissertation describes how to scale the proposed approach to a large

number of knobs.

1.4 Dissertation Organization

The dissertation is organized as follows:

Chapter 2 surveys a variety of approximate algorithms. By analyzing

the patterns in the approximate algorithms, a classification scheme is proposed.

Chapter 3 describes a set of approximate algorithms in detail and the

characteristics of their error and cost functions are presented.
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Chapter 4 proposes three different ways to model the control problem

systematically. Their advantages and disadvantages are discussed.

Chapter 5 proposes a machine learning based system to solve the control

problem. The system is validated using a set of real-world complex applica-

tions.

Chapter 6 extends the system proposed in Chapter 4 to include multi-

criteria error constraints and discusses how to scale the system to applications

with larger number of knobs.

Chapter 7 surveys the related research work in approximate computing

area.

Chapter 8 concludes the dissertation and discusses future directions for

extending the work.
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Chapter 2

Tunable Approximate Programs

This chapter addresses the question of where approximate programs

come from. The literature in this area has focused mainly on creating approx-

imate versions of arbitrary programs by making ad hoc code transformations,

such as dropping iterations or tasks [60, 73], in application code that was not

necessarily designed for exploiting approximation. The main problem with this

approach is that there are no correctness guarantees: the modified program

can crash on some inputs or provide arbitrary output.

We believe a more promising approach to producing tunable approxi-

mate programs is to recognize that tunable approximate algorithms arise nat-

urally in a large number of problem domains. For example, approximations

are used to solve NP-hard problems(Polynomial time approximation schemes

(PTAS) [36] are used for solving NP-hard problems) or undecidable problems

such as program optimization; approximations are used to simulate the physi-

cal world; approximations are used to discover rules from data. In this chapter,

we argue that these applications can be written so as to expose a set of knobs

that can be given to a control system that sets knob values for a desired level

of output fidelity in a disciplined way. We also propose a classification scheme

to understand the different approximation techniques in such algorithms.
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2.1 Classification of Approximate Programs

Table 2.1 lists a number of tunable approximate programs from a vari-

ety of domains such as social networks, machine learning, graphics and image

processing. By analyzing the approximation patterns in these approximate

algorithms, we came up with a classification shown in Figure 2.1. In the

following sections, each class in the classification is described in detail.

For the most part, these programs take a set X as input and compute a

value f(X). To compute the value of f(X) approximately, we can perform the

computation with function that approximates f , compute f precisely with an

input that approximates X, or we can use approximations to both f and X.

We call the former computation approximation and the latter, data approxi-

mation. Data and computation approximations may or may not be tunable.

Tunable approximations have one or more parameters called knobs that can

be changed to vary the fidelity of the output produced by the programs and

execution costs such as running time or energy consumption are changed cor-

respondingly.

2.1.1 Data Approximation

We classify data approximation into subset, superset and quotient ap-

proximation.

2.1.1.1 Subset approximation

In subset approximation, a function over a set is approximated by com-

puting that function over a sample of elements from that set. The size of the

subset is the knob for tuning the fidelity of result as well as for changing the

cost of function evaluation.

11



Name Area

1 Multi-Level of Details based Collision Detection [56] Graphics
2 Probability based Collision Detection [43] Graphics
3 Monte Carlo Collision Detection [59] Graphics
4 Smallpt: Path Tracing [9] Graphics
5 MPEG2 Encoding [40] Video Processing
6 ApproxQuickSort [74] Graphics
7 FlatRendering [30] Graphics
8 Hierarchical Rendering [47] Graphics
9 KmeansClustering [79] Data Mining
10 VLSISteinerTree [23] VLSI
11 AbstractionRefinementPointToAnalysis [45] Programming Language
12 ApproxStringJoin [35] Database
13 Aqua: approximate query system [2] Database
14 Image Compression [82] Image Processing
15 Cascade Classifier [20] Machine Learning
16 Iterative Linear Solver [64] Numerical Analysis
17 Multigrid Solver [83] Numerical Analysis
18 BarnesHut N-Body Simulation [8] Physics
19 FPGA Placement and Routing [53] FPGA
20 Survey Propagation [13] SAT Solver
21 Relaxing Max-SAT [22] SAT Solver
22 Mini-Buckets [25] Machine Learning
23 Loopy Belief Propagation [54] Machine Learning
24 Block Pagerank [10] Internet
25 Monte-Carlo Pagerank [5] Internet
26 SGDSVM: SVM Solver [12] Machine Learning
27 GEM: Graph Clustering [85] Data Mining
28 Ferret:Image Search Engine [11] Internet
29 Radar Processing [37] Signal Processing
30 OpenOrd:Graph Layout Engine [49] Visualization
31 Dot 2D Graph Layout Engine [31] Visualization
32 Clustered Low-rank Approximation [77] Data Mining
33 Approximate Kernel Kmeans [21] Data Mining
34 2D Multi-stoke Gesture recognition [81] Mobile

Table 2.1: List of Approximate Algorithms
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Figure 2.1: Classification of Approximate Programs

Monte Carlo methods are the best examples of this style of data ap-

proximation. One of the simplest Monte Carlo algorithms estimates the value

of π by sampling points at random within a unit square centered at the origin

and finding the fraction of samples that are within a distance of 0.5 from the

origin. It is easy to see that this fraction approaches π/4 as the number of

samples increases (this is the area of the circle of radius 1/2 centered at the

origin). In this application, we can provide a knob that controls the number

of samples. Sampling more points improves the accuracy of the estimate but

requires more computation. Other examples are Monte Carlo path tracing,

Monte Carlo collision detection [59] and Monte Carlo Page-Rank [5].

Numerical integration techniques can be viewed as performing subset

approximation. Consider the computation of the integral
∫ b
a
g(x)dx, shown

in Figure 2.2. The value of this integral is the sum of the values of g(x) for

all values of x in the interval [a, b]. Since this interval contains an infinite
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Figure 2.2: Subset Example: Numerical Integration

number of points, we cannot carry out this procedure literally, so in numerical

integration, we select a subset of points in that interval, evaluate g at those

points, and estimate the integral from these values; Figure 2.2 shows one

estimation method called forward-Euler. The knob for this application is the

number of points at which the function is evaluated: if more points are used,

the approximation is improved at the cost of additional computation.

The third example is a multi-stroke gesture recognition algorithm [81]

used in mobile phones. In this algorithm, users pre-save a set of gestures in

the phones and each gesture is represented by a set of points (point cloud)

in 2-D space, as shown in Figure 2.3. When the user inputs a gesture, the

algorithm tries to match the gesture to one of the gestures saved in the phone.

The recognition process is the following: first, the input gesture is transformed

to a point cloud and each point is given an index. Then the recognition can be

formulated as a minimum weighted bipartite graph matching problem. The

point cloud of the input gesture can be regarded as one partite set of graph

nodes in the bipartite graph and the point cloud of a gesture saved in the phone

as the other partite set. Each point pair in the two point clouds has an edge

14



Figure 2.3: Subset Example: Multi-Stoke Gesture Recognition

weighted by the Euclidean distance between them. The gesture saved in the

phone with the best matching to the query image is the recognized gesture.

Since solving the minimum weighted bipartite graph matching problem has

high time complexity, an approximate algorithm based on simple heuristics is

used to solve it. The simple heuristic is as follows: the points in each cloud are

indexed. For each point(Ci) in a point cloud, the matching algorithm finds the

closest point from the other point cloud that has not been matched yet. Once

the point Ci is matched, the matching algorithm continues with Ci+1 until all

points from C are matched. The matching algorithm tries different starting

points to starts the above process and returns the best matching among those

starting points. All of the possible starting points constitute a set and the knob

controls the size of the subset of starting points that are actually evaluated.

If more starting points are chosen, higher computational cost is incurred but

may result in more accurate recognition.

2.1.1.2 Superset approximation

In contrast to subset approximation, superset approximates the data

by enlarging the input data to a super set of the input data. Like in subset
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Figure 2.4: Superset Approximation Example: Interpolation

approximation, the size of the set affects the quality and usually affects the

cost of the computation.

The example of superset is generating the new data points by interpo-

lation. Interpolation is a technique to estimate the values on the new data

points based on known data (input data). Interpolation assumes the data

is generated by an underlying function which pass through the known data

points. Figure 2.4 shows a one dimensional example. The solid black points

represent input data. The dashed curve represents the underlying function

computed by the interpolation method. The hollow black points represent

the new generated points. The generated super set as the new input for the

later phase. Depending on how well the new generated data align with the

true data, larger size of the super set may provides better or worse inputs

for the later phase and therefore leads to better or worse quality of the final

output. Therefore, the quality is usually not monotonic with the size of the

super set. Meanwhile, more data points generally lead to more computation

in later phase.

One application of interpolation is used in the multi-stroke gesture

recognition algorithm described before. When a user draws a gesture using
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her fingers on the screen of a phone or a tablet, the sensors on the screen will

detect a set of points to represent the gesture. The points obtained by the sen-

sors depends on the movement speed of the fingers. To make the recognition

independent of the finger moving speed, the gesture recognition algorithm first

interpolates the points obtained by the sensors and then generates N number

of evenly spaced points from the interpolation for a input gesture. N is a

parameter for the algorithm.

2.1.1.3 Quotient approximation

Quotient operations approximate a set by partitioning the elements of

the set into equivalence classes and assigning a representative value to each

equivalence class. Instead of computing with a given input value, we compute

with the representative of its equivalence class. Quotient operations lose in-

formation; using more equivalence classes reduces the information loss at the

cost of more computation.

Projective techniques in many problem domains usually involve quo-

tient operations. One simple example is the projection of objects from a high

dimensional space to a lower dimensional space. If finding intersections of ob-

jects in the high dimensional space is expensive, we can compute intersections

approximately by projecting the objects into a lower dimensional space and

compute intersections of the projections. However, this may result in false

positives because it is possible that the projections intersect even when the

objects do not; for example, the shadows cast by two people on a wall may

intersect even when the two people are not touching each other. Increasing

the dimension of the projected space may improve accuracy at the cost of

additional computational complexity.
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Figure 2.5: Quotient Example: Quantization

Another classical example of quotient approximation is quantization.

For example, quantization is used to convert analog signals to digital signals.

As shown in Figure 2.5, nearby values of the analog signal in the top sub-figure

are converted to the same discrete value in the digital signal in the bottom

sub-figure (for example, by rounding the continuous values). Analog signal

values that map to the same digital signal value form an equivalence class.

Floating-point representations of real numbers are other examples of quotient

approximation. In these applications, the number of bits used to represent the

approximate values is the knob. Computers support floating-point numbers

of different precisions such as 32-bit/64-bit/128-bit. Using more bits in a

floating-point computation may produce more accurate results at the cost of

additional computation time and energy.
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2.1.2 Computation Approximation

Computation approximation estimates the value of f(x) by computing

f̃(x) where f̃ is an approximation of f . This subsection discusses common

patterns of tunable computation approximations.

2.1.2.1 Series

Series like Taylor series and Maclaurin series are the basis for many

computational approximations. For example, under suitable conditions, the

Taylor series formula can be used to estimate function values:

f(x) = f(a) + f (1)(a)
1!

(x− a) + f (2)(a)
2!

(x− a)2 + f (3)

3!
(x− a)3 + ....

Summing up more terms of the series will make the approximation more

accurate at the price of additional computation.

Many approximate algorithms follow the similar pattern as Taylor se-

ries. In such approximate algorithms, the computation can be divided into

phases and each phase produces an output which has better quality/lower er-

ror than the output produced by the previous phase. The phases compose the

series. After any phase, the computation can be stopped and the output of

the current phase can be used as the final output. So the stopping criteria is

a tuning knob. Depending how the series is defined, we further divided the

series class into recursive formula, level of detail and explicit series.

Recursive formula In recursive formula class, the series is defined in a re-

cursive way. Each phase takes the output of the previous phase as its input

and perform the same computation as the previous step and produce the out-

put as the input for the next phase. The output produced by later phases is
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expected to be better than the ones produced by the previous phases (This

may not always monotonic for all the algorithms but with more phases, the

output is expected to be better than the one with less phases).

One example is the linear equation solver by Jacobi method. The lin-

ear equation solver solves a system of linear equations ai1x1 + ai2x2 + ... +

ainxn = bi, i ∈ [1, n] and output xi, i ∈ [1, n]. Jacobi method based lin-

ear solver initialize xi randomly and performs the computation in an iter-

ative way. In each iteration, it uses the xi output by the previous itera-

tion and perform the following computation defined by the following formula:

xk+1
i = 1

aii

(
bi −

∑
j 6=i aijx

k
)
, i ∈ [1, n], where k is the kth iteration. The

output xk+1
i obtained by the k + 1th iteration is a refinement of the one xk+1

i

obtained by the previous iteration. Here the iterations construct the series.

Another example is the k-means clustering algorithm [79]. Given a

set of points in n-dimensional euclidean space, k-means clustering groups the

points into k clusters such that the sum of the distances between each point

and the center of the cluster the point belongs to is minimized. The algorithm

works as follows: each point is initialized to a cluster randomly, then the cluster

each point belongs to is updated in an iterative way. In each iteration, the

cluster center is computed by averaging over all the points currently belongs

to this cluster; then each point is assigned to the cluster the point is closet

to. In this algorithm, each iteration takes the result(the cluster assignment)

as the input and output a cluster assignment for the next iteration. So the

iterations construct the series.

Level of Details The level of details class constructs the series by first

building a set of versions of the input data with different amount of approxi-
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mation in each version. The different versions of the input data including the

original one is organized in a way that the next more accurate version can be

accessed from the current version. Then the series can be constructed by run-

ning the program on the least accurate version of input data, to running the

program on next more accurate version until the original version. The benefit

of this is running on the less accurate version of data usually has significant

less computation cost than the more accurate version. Depending on the ac-

curacy requirement, the computation can be stopped early without going to

the original data. Different from Recursive formula, each phase in the Level of

Details does not take the output of previous phase as input, but takes a more

accurate version of the input to compute the output from scratch.

One example is the Barnes-Hut algorithm, an approximate algorithm

for simulating the gravity interactions of n particles in 2-D or 3-D space.

Barnes-Hut algorithm partitions the space recursively into subspace until in

each subspace only one particle exists, as shown in Figure 2.6. In each sub-

space, an approximate version of the particles in this subspace is constructed

by replacing all of the particles with one new particle whose position and mass

is respectively the center of mass and the total mass of all of the particles

in the subspace. The way that the approximate version is built belongs the

quotient class in data approximation. All of the subspaces can be organized as

a tree, as shown in Figure 2.6. The root of the tree represents the entire space,

the internal node represents a subspace and the leaf node represents a particle.

Barnes-Hut algorithm computes the force for a particle in the following way:

starting from the root, for each children node A, if node A is far from the par-

ticle, computes the force between the particle and the approximate version of

the particle in the subspace associated with node A; otherwise the algorithm
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Figure 2.6: Level of Details Example: Barnes-Hut algorithm

will repeat the same process with the children of node A until the leaves are

reached. From the algorithm, we can see the series is composed of taking each

node from the root to the leaves as input to compute the force for a particle.

Explicit Series In Recursive Formula and Level of Details, the computa-

tion in each phase of the series remains the same. In Explicit Series, the

computation in each phase is different and is defined explicitly.

One example is Cascade Classifier for optical character recognition

(OCR) [20]. The input of the algorithm is a image representing an char-

acter and the output is the class the character is classified into. As shown

in Figure 2.7, a set of neural network based classifier is combined into a se-

quence. The neural network at stagei has less computational cost and also less

accuracy than the one in stagei+1. Given an image, each classifier can output

the classification of this character as well as an error rate which measures the

confidence of the classification. When the error rate produced by a classifier

Ci is larger than 1 − Ti, where Ti is the threshold in Ci, it pass this image

to its following classifier in the sequence. Otherwise, it absorbs this character

and return the classification result. Depending on the threshold setting for

each classifier, an input image may pass to more or less classifiers and lead to
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Figure 2.7: Explicit Series Example: Cascade Classifier for Optical Character
Recognition (OCR)

more accurate or less accurate output. Here the sequence of classifier forms

the series. Different from Recursive formula and Level of Details, each phase

in the series is different and is explicitly defined.

2.1.2.2 DivideMerge

Divide and Conquer approach is very efficient if a problem can be di-

vided into sub-problems and each sub-problem can be solved independently.

However, many problems cannot be divided into independent sub-problems,

due to global constraints. One pattern in approximate programs is that they

relax global constraints so that the problem can be divided into independent

sub-problems. After solving each sub-problem, the solutions for sub-problems

are merged into the final solution. During the merging phase, extra work may

be done to compensate the relaxation when dividing the problems.

An example is the block Page-Rank algorithm [10], which is an approx-

imate version of the classic Page-Rank algorithm. The input of the Page-Rank

algorithm is the web graph and the output is a Page-Rank value assignment

for each node in the graph. The Page-Rank value is a estimation of the im-

portance of the node. The classic Page-Rank algorithm initialize each node

with a Page-Rank value, and then repeatedly iterates the nodes in the graph
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until a stable assignment of the Page-Rank value is obtained. In each itera-

tion, each node propagates its current Page-Rank values to its neighbors and

gathers Page-Rank values from its neighbors to update its Page-Rank values.

Since the web graph is very large, the classical algorithm takes very long time

to finish. The block Page-Rank algorithm [10] approximates the Page-Rank

algorithm in the following way. First, the algorithm divides the graph into

blocks, for example, by the domain name of the hosts. Second, for each block,

the algorithm uses the classic Page-Rank algorithm to compute a Page-Rank

value for each node in the block (Local Page-Rank value). This step is divid-

ing the problems into a set of small problems by ignoring the edges between

blocks. Third, each block can be treated as a node and all of the blocks form a

new graph. The algorithm uses the classic Page-Rank algorithm again on the

new graph and computes a Page-Rank value for each block (Block Page-Rank

value). Fourth, the final Page-Rank value for each node in the original graph

is the local Page-Rank value of the node weighted by the Block Page-Rank

value of the block the node belongs to. The third and fourth steps are merging

the solutions of sub-problems. The algorithm uses Block Page-Rank value to

compensate the relaxation in the first step.

Table 2.2 shows the classification of each algorithm listed in Table 2.1.

2.2 Summary

In this chapter, we surveyed a variety of tunable approximate algo-

rithms in different domains. By analyzing the patterns in these algorithms,

we proposed a classification for them. The classification provides a systematic

way for understanding tunable approximate algorithms.
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Name
Data

Approx

Comput

Approx
1 Multi-Level Collision Detection [56] Level of Details
2 Probability based Collision Detection [43] Level of Details
3 Monte Carlo Collision Detection [59] Subset Level of Details
4 Smallpt: Path Tracing [9] Subset
5 MPEG2 Encoding [40] Explicit Series
6 ApproxQuickSort [74] Recursive Formula
7 FlatRendering [30] Explicit Series
8 Hierarchical Rendering [47] Explicit Series
9 KmeansClustering [79] Recursive Formula
10 VLSISteinerTree [23] Explicit Series
11 AbstractionRefinementPointToAnalysis [45] Level of Details
12 ApproxStringJoin [35] Superset
13 Aqua: approximate query system [2] subset
14 Image Compression [82] Quotient
15 Cascade Classifier [20] Explicit Series
16 Iterative Linear Solver [64] Recursive Formula
17 Multigrid Solver [83]
18 BarnesHut [8] Level of Details
19 FPGA Placement and Routing [53] Level of Details, Recursive Formula
20 Survey Propagation [13] Recursive Formula
21 Relaxing Max-SAT [22] DivideMerge
22 Mini-Buckets [25] DivideMerge
23 Loopy Belief Propagation [54] Recursive Formula
24 Block Pagerank [10] DivideMerge
25 Monte-Carlo Pagerank [5] Subset
26 Clustered Low-rank Approximation [77] DivideMerge
27 SGDSVM [12] Subset Recursive Formula
28 GEM [85] Recursive Formula
29 Ferret [11] Explicit Series
30 Radar Processing [37] Quotient
31 OpenOrd [49] Recursive Formula
32 Dot 2D Graph Layout Engine [31] Recursive Formula
33 Approximate Kernel Kmeans [21] Quotient Recursive Formula
34 2D Multi-stoke Gesture recognition [81] Superset, Subset

Table 2.2: List of Approximate Algorithms
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Chapter 3

Characteristics of Tunable Approximate

Programs

In this chapter, we study the characteristics of some of the tunable

approximate programs introduced in the previous chapter. In particular, we

present experimental results that show that the relationship between knob set-

tings and output fidelity or quality in these programs is very input-dependent

and non-linear, making it unlikely that one can find closed-form expressions

describing such relationships.

Most of the programs considered in this thesis produce complex ob-

jects like graphs or sets as output. The notion of quality for the output of

such programs is usually application dependent, so we require the application

programmer to provide a divergence function that quantifies the difference in

quality between a given output and the “reference” output without approxi-

mation, for a given input. The reference output can be the output produced

by the exact execution, if this is available, or the best execution in the space

of knob settings, for that input. Note that smaller divergences are better. The

error is defined as a normalized version of divergence:

Error(d) = d/dmax

where dmax represent the maximum values of divergence over the space
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of knob settings for a given input.

In our experiments, we also study how computational cost changes as

knob values are changed. This cost can be execution time, energy consump-

tion, memory consumption or the cost of other resources consumed by the

execution. In the following sections, we use execution time and energy con-

sumption to exhibit the characteristics of tunable approximate programs.

3.1 Description of Applications

3.1.1 GEM

GEM [85] is a graph clustering algorithm for social networks. Given a

social network graph and the number of clusters, GEM produces an assign-

ment of nodes to clusters. The GEM program has two components: the first

one extracts a representative skeleton of the original graph by picking high

degree nodes and clusters this skeleton graph using a weighted kernel k-means

algorithm, and the second one projects this clustering to the original graph

and uses weighted kernel k-means again to refine this clustering. Weighted

kernel k-means is an iterative algorithm, so there are two knobs in GEM, one

for each component. For a given input graph, running both components to

convergence produces a clustering of some quality; reducing the number of it-

erations in either component reduces the computational cost but may impact

the quality of the clustering.

Knobs There are two components, and both use a weighted kernel k-means

algorithm, and have a knob controlling the number of iterations for that com-

ponent. Each knobs can be tuned up to 40 levels. All of the graphs are

partitioned into 100 clusters in our experiments.
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Error Metrics The output of GEM is the cluster assignments of each node

in the graph. There is a standard way to measure the quality of graph clus-

tering, using the notion of a normalized cut, which is defined as follows:∑N
k=1

∑N
i=1,i 6=k edges(Ck, Ci)/edges(Ck)

N

where N is the number of clusters, edges(Ck, Ci) denotes the number of edges

between cluster k and cluster i, and edges(Ck) denotes the edges inside cluster

k.

The reference execution is the execution achieving the smallest nor-

malized cut. As shown in Figure 3.1, the divergence function first applies the

normalized cut to convert the output of GEM to a numerical value and then

compute the divergence by computing the numerical difference between the

calculated numerical value and the numerical value of the reference output.

The error is a normalized version of the divergence which is the divergence

value for an output divided by the maximum divergence value.

3.1.2 Ferret

Ferret [11] performs content-similarity based image search from a im-

age database. Given a query image, Ferret first decomposes it into a set of

segments, and for each segment, Ferret finds a set of candidate image matches

by indexing its database. After indexing, all of the candidate images are

ranked, and the top K images are returned. There are two major computa-

tional phases in this process: finding the candidate image set and ranking the

candidate images. In the first phase, the candidate images consist of the 2K

nearest neighbors of the query image in the database. An algorithm called

Multi-probe LSH is used to approximately find 2K nearest neighbors. This
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Figure 3.1: Error Metric for GEM

algorithm uses multiple hash tables, each with a different hash function, which

map similar images to the same hash bucket with high probability. Besides

the mapped hash bucket, Multi-probe LSH probes nearby buckets in each hash

table until a specified number of buckets are explored. In the second phase, the

Earth Mover’s Distance (EMD) between each candidate image and the query

image is computed. EMD is a measure of distance between two probability

distributions and is computed by an iterative optimization algorithm which

calculates the minimum work to transform one probability distribution to the

other.

Knobs In the multi-probe LSH, the number of hash tables per bucket and

the number of buckets probed can be changed to trade off error for cost.

Computing EMD is an iterative optimization algorithm, and the number of

iterations trade-off error for cost. The first knob can be tuned to change the

29



number of hash tables to up to 4 levels, the second knob can tune the number

of probed buckets to up to 10 levels and the third knob can be tuned to change

the number of iterations to up to 25 levels in our experiments.

Error Metrics The output of Ferret is an ordered image list. There is no

method to convert the ordered image list to an numerical value to measure

the output quality, but there is method to compare two ordered image list. As

shown in Figure 3.2, unlike GEM, divergence is directly computed by applying

the divergence function on the output of Ferret.

We adopt a metric [7] which is widely used in the comparing search

engine results as the divergence function. Given two image lists L1 and L2

returned by two executions, the divergence function is:

2× (k − z)(k + 1) +
∑
i∈Z

|rank1(i)− rank2(i)|

−
∑
i∈S

rank1(i)−
∑
i∈T

rank2(i) (3.1)

where Z is the set of images appears in both L1 and L2, S and T are the sets

of images only appearing in L1 and L2 respectively. k, z are the sizes of L1(or

L2) and Z respectively. rank1(i) and rank2(i) are the rank of the image i in

L1 and L2.

The reference execution is obtained by turning three knobs to the max-

imum levels.

3.1.3 ApproxBullet(Bullet)

ApproxBullet(Bullet) is a 3D physics game engine for approximately

simulating the rigid body dynamics of objects. The input of ApproxBullet is
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Figure 3.2: Error Metric for Ferret

a set of objects represented by triangular meshes. ApproxBullet simulates the

behaviors of the objects in frames. In each frame, ApproxBullet performs two

major computations: approximate collision detection and sequential impulse-

based constraint solving. The approximate collision algorithm is a simplified

version of [56]. It first builds a multi-resolution representation for each ob-

ject by coarsening its triangular mesh repeatedly [32]. A surface deviation

threshold can be specified to control the level of mesh detail used for detecting

collisions. The approximate collision detection component outputs a set of

collision points to the constraint solver. The collision points are formulated

as a set of constraints of a linear complementarity problem (LCP). The LCP

problem is solved by an iterative Gauss-Seidel method.

The inputs for this benchmark consist of a set of object pairs repre-

sented by triangle meshes. We make one object a stationary object and the

other one a moving object. The moving object starts from a high position and
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drops on the stationary object. We only consider the computation in the frame

when the two object first collide. Different inputs are created by enumerating

object pairs from a set of objects and rotating them randomly.

Knobs When a coarse mesh is used in the approximate collision detection

algorithm, computation will be reduced but the collision detected may be

inaccurate. In the sequential impulse-based constraint solver, the number of

iterations can trade-off the accuracy of the solution for running time. The

knob for the first component is the surface deviation threshold, and the knob

for the second component is the number of iterations for the constraint solver.

The first knob can be tuned to 15 levels from the original mesh to the coarsest

mesh. The second knob can be tuned to set the number of iterations for the

Gauss-Seidel solver at 20 different levels.

Error Metrics The output of Bullet for one frame is the “delta change

vector” of the speed of the moving object. The divergence function is the

Euclidean distance between the two delta speed vectors of the moving object.

The reference execution is obtained by turning both knobs to their maximum

levels.

3.1.4 SGDSVM(SGD)

Support Vector Machines (SVM) are a supervised machine learning

method for binary classification. Classifier training is formulated as an opti-

mization problem that can be solved in many ways. SGD [12] is an approxi-

mate SVM solver using an iterative stochastic gradient descent algorithm. The

input of SGD is a set of training examples and the output is a model to classify
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new data. In each iteration of SGD, an approximate gradient is computed to

update the model parameters. The process stops after a specified number of

iterations.

Knobs The number of training instances and the accuracy of solving the

underlying optimization problem can be tuned to trade off higher classifica-

tion error for faster runtimes. One knob controls the size of the subset, and

another knob controls the number of iterations of the stochastic gradient de-

scent algorithm. The first knob can be tuned to randomly sample the training

instances at 20 different levels from 5% to 100%. The second knob can be

tuned up to 100 levels.

Error Metrics SGD outputs the learned SVM model. The misclassifica-

tion rate when using the resulting model to classify the test instances is a

standard way to measure the quality of the output. The divergence function

is computing the difference of the misclassification rates between two models

resulted from two executions. The reference execution is the one achieving the

minimum misclassification rate for the same input.

3.1.5 OpenOrd

OpenOrd [49] is a graph layout algorithm for drawing graphs in two

dimensions. It specializes the force-directed graph layout algorithm to scale

to large graphs. The drawing problem is formulated as an optimization prob-

lem where nodes connected by high edge weights attempt to move together

but nodes attempt to push their nearby nodes far away. The optimization

problem is solved by initially positioning all the nodes at the origin and it-
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eratively moving the nodes until their relative positions do not change where

the objective is minimized. The iterations are divided into five phases, liquid,

expansion, cool-down, crunch and simmer. In each phase, simulated annealing

is used to control how far the nodes are allowed to move.

Knobs In practice, the algorithm is not run until convergence. The number

of iterations used in each phase affects how far the resulting solution is from

the exact solution as well as the amount of time required to compute it. Since

there are 5 phases, the application has 5 knobs. In the experiments, the five

knobs can be tuned into 3, 6, 6, 3 and 4 levels respectively.

Error Metrics The objective value is used as the quality metric to measure

how well the optimization problem is solved. The divergence function is com-

paring the difference between the objective values from two executions. The

reference execution is the one achieving the minimum objective value.

3.1.6 Radar processing

The radar processing application [37] was developed by a team at the

University of Chicago. Unlike the five applications described above, this code

was already instrumented with knobs, so we used it out of the box as a blind

test for our system. This code is a pipeline with four stages. The first stage

(LPF) performs a low-pass filter to eliminate high-frequency noise. The second

stage (BF) does beam-forming which allows a phased array radar to concen-

trate in a particular direction. The third stage (PC) performs pulse compres-

sion, which concentrates energy. The final stage is a constant false alarm rate

detection (CFAR), which identifies targets.
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Knobs The application supports four knobs. The first two knobs change the

decimation ratios in the finite impulse response filters that make up the LPF

stage. The third knob changes the number of beams used in the beamformer.

The fourth knob changes the range resolution. The application can enter 512

separate configurations using these four knobs.

Error Metrics The signal-to-noise ratio (SNR) is used to measure the qual-

ity of the detection. The reference execution is the one achieving the highest

SNR.

3.2 Characteristics

3.2.1 Cost versus Error

Figures 3.3a through 3.3l show the Runtime versus Cost for the appli-

cations described in the Section 3.1.

In the Runtime versus Error sub-figures of these figures, each point rep-

resents a single input and knob settings combination; points that correspond

to the same input are colored identically. It can be seen that even for a single

input, there are many knob combinations that produce the same output error,

and that these combinations have widely different costs. For a given input

and output error, we are interested in minimizing cost so only the leftmost

point for each such combination is of interest. The Pareto-optimal curve for

each application shows these points. Except for the Radar application, each

application exhibits significant input variance: the Pareto-optimal points vary

greatly across inputs for an application such as GEM, Ferret and SGD.
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3.2.2 Errors and Costs as Functions of Knobs

For an application, both error and cost are functions of knobs and

inputs. Figure 3.4 shows the functions for GEM application for two inputs.

Figure 3.4a shows the function for input MS-Set5 and Figure 3.4b shows the

function for the input youtube. In both figures, the top figure shows when

knob1 is set to 25, how the error and cost changes with the change of knob0,

represented by the pink and blue curve respectively. The bottom figures shows

when knob0 is set to 25, how the cost and error changes with the change of

knob1. The x-axis represents a knob. The left y-axis represents the error(pink

color) and the right y-axis represents the cost in terms of running time(blue

color).

Let us look at the error first. From Figure 3.4a, it can be seen that

the error is not monotonically changed with the increase of knob0 for the

fixed knob1, although there is a trend that the error decreases when increasing

the knobs. On the other hand, the error monotonically decreases when the

knob1 increases for the fixed knob0. This phenomena can be explained when

we look at the computations in GEM. GEM has two components, which are

sequentially connected with each other. The output of the first component is

the input of the second component. knob0 controls the number of iterations in

the first component and knob1 controls the number of iterations of the second

component. If we look at each component separately, the quality of the output

of each component is monotonically decreases when the corresponding knob

increases. Therefore if we fix knob0, the error decreases when knob1 increases.

However, when tuning knob0, a better output of the first component may

not yield a better input for the second component, so the error may not be

monotonically change with knob0. In addition, we can also see the error is
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non-linear function of the knobs. In Figure 3.4b, the curves are different from

the ones for input MS-Set5. In top sub-figure, it is more obviously showing the

trend that the error decreases when knob0 increases. In the bottom sub-figure,

the error drops much faster with the knob1 increases than in Figure 3.4a. This

shows the error behaviors of knobs vary greatly for different inputs.

For input MS-Set5, the cost is almost linear increases with the increases

of the knobs. This can be easily understood since the knobs controls the

number of iterations and the computation is roughly the same in each iteration.

However, for input Youtube, the cost shows very complicated behavior. In

Figure 3.4b, in the top sub-figure, the cost first decreases and then increases;

in the bottom sub-figure, the cost first increases and then stays flat. In GEM,

both knobs controls the maximum number of iterations. The kernel k-means

algorithm may converge before it reaches the maximum number of iterations,

so setting larger value for the knob may have no effect. That’s why in the

bottom sub-figure, the cost stays flat. In addition, the first component with

some value of knob0 may output a result which lead to a faster converge rate

for the second component. Therefore, although the first component runs more

iterations, but the second component may run much less iterations, so the

overall cost may become less. Overall, the cost may be a complex non-linear

functions of knob settings and may vary greatly across inputs.

Figure 3.5 shows the error and cost functions for GEM when the cost

metric is changed from runtime to energy consumption. The error function

remains the same. The cost function remains roughly the same except for the

settings in Figure 3.5a. In general, when the cost metrics changed, the cost

functions may change significantly.

Figure 3.6, Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10 shows
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the functions for other applications. Except for the application Radar, other

applications have the similar behaviors as GEM. The error and cost functions

for Radar are non-linear but they has little input variances.

Figure 3.11a, Figure 3.11b, Figure 3.11c and Figure 3.11d use Ferret

as an example to show the dependence between different knobs given a fixed

input. In Figure 3.11a, knob0 can only lower the error a little from 1.0 to 0.985

when knob1 and knob2 is set to low values although the cost can be increased.

In Figure 3.11b, when knob1 and knob2 are lifted to larger values, tuning knob0

can reduce the error to much lower. knob1 and knob2 has similar phenomena

when other knobs are fixed at increased levels shown in Figure 3.11a, Fig-

ure 3.11b, Figure 3.11c and Figure 3.11d. This shows that in order to search

a knob setting to make the error within a certain bound, it is more efficient

to make all knobs reach a certain value than searching on one dimension to

its extreme. Consider a simple case: all the knobs has same value range and

the values in each knob plays the same effects on error and cost, what is the

knob setting which has the lowest cost to achieve a certain error bound? If we

consider the knobs construct a multi-dimensional matrix with each dimension

represents a knob, the knob setting to search will be located in the diagonal

entries of the multi-dimensional matrix. When the knobs have different value

range and the values for each knob plays different effects, the knob settings

are deviated from the diagonal entries of the matrix.

3.3 Summary

In this chapter, we describe six complex tunable approximate applica-

tions in details. In particular, we describe the knobs and the error metric for

each application. We show the characteristics of tunable apporixmate algo-
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rithms through experiments. The characteristics of the tunable approximate

programs can be summarized as follows:

• The Pareto-optimal curves for an application vary greatly across inputs.

So for a fixed amount of cost, it may lead to different errors for different

inputs. Similarly, a certain amount of error can be achieved by different

amount of costs for different inputs.

• Error or cost is a function of knobs and the input. For a particular input,

there are many different knob value combinations to achieve the same

error with different amount of cost or the same cost with different errors.

For a fixed knob setting, the error and cost vary greatly across inputs.

• For a particular input, the error function or cost function is usually non-

linear and is not monotonic with the change of knobs. In addition, when

the cost metric is changed to other metric, the cost functions may change

significantly.

• For a particular input, the error or cost behavior of a knob highly depends

on the values of other knobs. For example, changing a knob may only

change the error within a small range when setting other knobs to their

small values. On the other hand, changing a knob can change the error to

a increasing range when setting other knobs to their higher values. The

dependence is usually not an additive relationships. This dependence

also vary greatly across inputs.
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(d) Ferret: Pareto-Optimal Curves
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Figure 3.3: Runtime vs Error and Pareto-Optimal Curves
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Figure 3.4: GEM: the relationships between knobs, error, and runtime for
input MS-Set and Youtube
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Figure 3.5: GEM: the relationships between knobs, error, and energy for input
MS-Set and Youtube
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Figure 3.6: Ferret: the relationships between Knobs, Error, and Runtime for
input Fire and Melting-Ices
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Figure 3.7: Bullet: the relationships between knobs, error, and runtime for
input MugSpider and StratoCaster
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Figure 3.8: SGD: the relationships between knobs, error, and runtime for input
Epsilon and Forest
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(a) Input: Amazon
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(b) Input: Friendster

Figure 3.9: OpenOrd: the relationships between knobs, error, and runtime for
input Amazon and Friendster
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(b) Input: tb5-ts28

Figure 3.10: Radar: the relationships between knobs, error, and runtime for
input tb4-ts64 and tb5-ts28
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(b) Ferret: Setting 2
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(c) Ferret: Setting 3
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(d) Ferret: Setting 4

Figure 3.11: Ferret: the dependence between knobs for an input
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Chapter 4

Formulation of the Control Problem

In this chapter, we give a precise mathematical formulation of the prob-

lem of controlling knobs optimally, given a quality bound for the output of a

tunable approximate program. We justify this formulation by describing other

reasonable formulations and explaining why we do not use them. To keep no-

tation simple, we consider a program that can be controlled with two knobs

K1 and K2 that take values from finite sets κ1 and κ2 respectively. We write

K1 : κ1 and K2 : κ2 to denote this, and use k1 and k2 to denote particu-

lar settings of these knobs. The formulation generalizes to programs with an

arbitrary number of knobs in an obvious way.

It is convenient to define the following functions.

• Output: In general, the output value of the tunable program is a function

of the input value i, and knob settings k1 and k2. Let f(i, k1, k2) be this

function.

• Error/quality degradation: Let fe(i, k1, k2) be the magnitude of the out-

put error or quality degradation for input i and knob settings k1 and

k2.

• Cost: Let fc(i, k1, k2) be the cost of computing the output for input i

with knob settings k1 and k2. This cost can be running time or energy

or any other quantity associated with program execution which should

be optimized.
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In Section 4.1, we formulate the control problem as an optimization

problem in which the error is bounded for the particular input of interest.

This optimization problem is difficult to solve, so in Section 4.2, we formulate

a different optimization problem in which the expected error over all inputs

is less than the given error bound. In the final variation of this problem, this

error bound is satisfied with some probability, which gives the implementation

more flexibility in finding low-cost solutions.

4.1 Input-specific error bound

One way to formulate the control problem informally is the following:

given an input value and a bound on the output error, find knob settings that

minimize the cost and meet the error bound. This can be formulated as the

following constrained optimization problem.

Problem Formulation 1. Given:

• a program with knobs K1:κ1 and K2:κ2, and

• a set of possible inputs I.

For input i ∈ I and error bound ε > 0, find k1∈κ1, k2∈κ2 such that

• fc(i, k1, k2) is minimized

• fe(i, k1, k2) ≤ ε

In the literature, the constraint fe(i, k1, k2)≤ε is said to define the feasi-

ble region, and values of (k1, k2) that satisfy this constraint for a given input are

said to lie within the feasible region for that input. The function fc(i, k1, k2)

is the objective function, and a solution to the optimization problem is a point

that lies within the feasible region and minimizes the objective function.
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For most tunable programs, this is a very complex optimization prob-

lem. As shown in Chapter 3, the Pareto-optimal curves vary greatly across

inputs. Therefore, it is difficult to predict the knob settings that produce the

Pareto-optimal point, for a given input graph and output error, without explor-

ing much of the space of knob settings for a given input, which is intractable

for non-trivial systems.

4.2 Controlling expected error

One way to simplify the control problem is to require only that the

expected output error over all inputs be less than some specified bound ε.

Since some inputs may be more likely to be presented to the system than

others, each input can be associated with a probability that is the likelihood

that that input is presented to the system. This lets us give more weight

to more likely inputs, as is done in Valiant’s probably approximately correct

theory of machine learning [80]. Since the cost function is still a function of

the actual input, knob settings for a given value of ε will be different in general

for different inputs, but the output error will be within the given error bounds

only in an average sense.

To formulate this as an optimization problem, we assume that the prob-

ability of getting input j is p(j).

Problem Formulation 2. Given:

• a program with knobs K1:κ1 and K2:κ2,

• a set of possible inputs I, and

• a probability function p such that for any i∈I, p(i) is the probability of

getting input i.
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For input i∈I and error bound ε>0, find k1∈κ1, k2∈κ2 such that

• fc(i, k1, k2) is minimized

•
∑
j∈I

p(j)fe(j, k1, k2) ≤ ε

This optimization problem seems more complex than the previous one

since it also requires knowing the probability of being asked to solve the control

problem for each possible input. However, it is intended to capture the intu-

ition that if we can come up with knob settings that work well for the most

common inputs, these knob settings will be acceptable in an average sense.

Note that the feasible region for this optimization problem does not depend

on the particular input i for which the control problem must be solved, which

is a major simplification.

4.3 Controlling expected error probabilistically

Formulation 2 has the drawback that even if the average error is below

ε for given knob settings, the error could be large for some likely inputs; if

this is unacceptable, there is no way out for the application developer other

than to avoid approximation. To solve this problem, we consider a variation

of this optimization problem, inspired by [80], in which we are also given a

probability π with which the error bound must be met. Intuitively, values of

π less than 1 give the control system a degree of slack in meeting the error

constraint, permitting the system to find lower cost solutions. This control

problem can be formulated as an optimization problem as follows.

Problem Formulation 3. Given:

• a program with knobs K1 : κ1 and K2 : κ2,
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• a set of possible inputs I, and

• a probability function p such that for any i ∈ I, p(i) is the probability

of getting input i.

For an input i ∈ I, error bound ε > 0, and a probability 1 ≥ π > 0 with which

this error bound must be met, find k1 ∈ κ1, k2 ∈ κ2 such that

• fc(i, k1, k2) is minimized

•
∑

(j∈I)∧(fe(j,k1,k2)≤ε)
p(j) ≥ π

In the rest of this dissertation, we refer to Problem Formulation 3 as

“the control problem”.

4.4 Discussion

We conclude this section with a justification of the choices made in the

problem formulation, and a presentation of experimental results that demon-

strate some of the difficulties in solving the control problem.

Design choices: We have framed the control problem in terms of bounding

the expected error but for some problems, it may be preferable to bound the

maximum error or some other function of the error distribution. The tech-

niques we discuss here apply to such measures as well. This is discussed in

Chapter 6.1.

In Problem Formulation 3, the feasible region depends on the values of

π and ε, but the objective function fc depends on the actual input. This is an

important design choice. The machine learning techniques used in Chapter 5.1

to build models for fc exploit features of the input, and in most problems,
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these features are simply the parameters in the asymptotic complexity of the

algorithm (for example, the asymptotic complexity of GEM is O(N ∗K +E)

where N and E is the number of nodes and edges in the graph respectively

and K is the number of clusters). In contrast, our experience is that it is

difficult to find input features that are strongly correlated with the error or

quality, which is why the feasible region in our formulation depends only on

the values of π and ε. Therefore, the objective function (computational cost)

in our formulation depends on the actual input but the feasible region does

not. More insight into how features of the input affect output error will be

useful.

Difficulties in solving the control problem: To gain insight into the con-

trol problem, it is useful to study the feasible region defined by the inequality

for given values of the parameters ε and π. Notice that this feasible region

is independent of the input. It is intuitively reasonable that if a knob setting

(k1, k2) is in the feasible region for given parameter values (ε1, π1), then this

knob setting is also in the feasible region for points (ε ≥ ε1, π1) (less strin-

gent output error requirement) as well as points (ε1, π ≤ π1) (less stringent

likelihood of meeting the output error requirement).

Figure 4.1 illustrates this for the GEM benchmark. Each line in this

graph corresponds to one knob setting. This knob setting is in the feasible

region for all values of (ε, π) on this line or below it. We call this line the isocline

for the given knob setting. In general, a given point (ε, π) will be contained in

several isoclines, each of which corresponds to a different setting of knobs, and

therefore a different (input-dependent) cost. To solve the optimization problem

for a given input, and given ε and π values, we must find the lowest cost isocline
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that contains the point (ε, π) (or report that the problem is infeasible if there

is no such isocline).
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Figure 4.1: Isoclines for GEM benchmark. Colors represent knob settings.
The region below each line is the feasible region for that knob setting.

Figure 4.2 shows how the probability of meeting a fixed quality bound

ε changes as knobs are tuned. The x- and y-axes represent knob settings, and

each line in the graph is a contour for some probability value. If output quality

increases monotonically with knob settings, we would expect the probability

contours to be shaped roughly like rectangular hyperbolas, with higher prob-

ability contours being closer to the top-right corner of the graph. This can

be seen for small values of probability in Figure 4.2. The more complex con-

tours for higher values of probability arise from the fact that output quality

does not increase monotonically with the setting of knob1, which adds to the

complexity of the control problem.
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Figure 4.2: Probability contours for GEM. Lines represent the probability of
achieving an error of 0.2.

4.5 Summary

In this chapter, we discussed a number of reasonable formulations of

the problem of setting knobs optimally given a quality/error bound on the

output of a tunable approximate program. These explorations led to propose

a formulation based on ideas from Valiant in which the quality/error bound

is met probabilistically. We show how to solve this formulation of the control

problem next.
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Chapter 5

A solution to the proactive control problem

To solve the control problem for a given tunable program, we need the

following information.

• I and p(i): the set of possible inputs, and the probability of being pre-

sented with input i ∈ I.

• fe(i, k1, k2): error for input i, and knob settings k1 and k2.

• fc(i, k1, k2): cost function for input i, and knob settings k1 and k2.

Figures in Section 3 and 4.2 show that for the kinds of complex appli-

cations considered here, it is difficult if not impossible to derive closed-form

analytical expressions for the functions fe and fc. Therefore, we use machine

learning to learn these functions, given a suitable collection of training inputs.

Figure 5.1 is a pictorial representation of the overall system. For a

given program, the system must be provided with a set of training inputs,

and metrics for the error/quality of the output and the cost (for example for

GEM, the quality metric might be the normalized cut and the cost metric

might be the running time or total energy, as explained in Section 1.2). The

off-line portion of the system runs the program on these inputs using a variety

of knob settings, and learns the functions fe and fc. These models are inputs

to the controller in the online portion of the system; given an input and values
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of ε and π, the controller solves the control problem to estimate optimal knob

settings.

We have implemented our system in a extensible way to permit easy

exploration of a variety of machine learning and optimization strategies. In

this dissertation, we restrict the discussion here to particular choices of these

strategies. For fe, we use a Bayesian network [55] that captures the relation-

ships between errors from different tunable components; this is described in

Section 5.1. For fc, we consider both running time and energy, and use the

tree-based model in the M5 system [58]. This cost model uses a classification

of the input based on features provided by the application programmer, and is

described in Section 5.2. To solve the control problem in Section 5.4, we uses

an simple exhaustive search over the space of knob settings, which is possible

when the space of knob settings is small. Scaling to a very large space of knob

settings is discussed in Section 6.2.

5.1 Error Model

The error model is used to determine whether or not a knob setting

is in the feasible region. Intuitively, Problem Formulation 3 says that a knob

setting is in the feasible region if the inputs for which the error is between 0

and ε have a combined probability mass greater than or equal to π.

We use Bayesian networks [55] to estimate this. A Bayesian network is a

graphical model that represents the probabilistic relationships among random

variables. It is a directed acyclic graph (DAG), where each node represents

a random variable in the model and an edge represents the dependence rela-

tionships between the variables corresponding to the nodes of its end points.

Each node or variable may take one of its possible states and the probability

56



Tunable	
  Program	
   Controller	
  

Error	
  
Model	
  

Cost	
  
Model	
  

Model	
  Builder	
  Profiler	
  

Training	
  
Inputs	
  Training	
  
Inputs	
  Training	
  
Inputs	
  

Input	
   (ε,	
  π)	
  

Offline 

Online 

Cost	
  
Metric	
  

Error	
  
Metric	
  

Blue	
  boxes	
  provided	
  by	
  programmers	
  	
  	
  

Figure 5.1: Overview of control method

of a state is directly affected by the states of predecessor nodes, if any, in the

graph. To quantify this influence, each node is associated with a conditional

probability distribution (CPD). The CPD of a node describes the conditional

probability distribution of the node’s associated variable, given the states of

its dependent variables. When a random variable is continuous (as is the case

with errors), Bayesian networks require a closed-form distribution to be spec-

ified for that variable. The closed-form distribution is generally not available

for real-world applications we’ve observed. Therefore, without making any

assumptions about the possible forms of distributions, we discretize the con-

tinuous random variables and use a discrete Bayesian network and Bayesian
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inference to determine the probability that the final error is between 0 and ε

given a knob setting (v1, v2, ..., vn).

There are several ways to model the error probability distribution using

a Bayesian network. A simple model for n knobs is shown in Figure 5.2. In

this model, each of the knobs and the error is modeled as a random variable

and the error depends on all of the knobs. This simple model works well for

the applications we have investigated, but our system allows new models for

error to be plugged in easily into the overall framework.
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Figure 5.2: Bayesian Network for Error Modeling

5.2 Cost Model

For cost, we model the running time for a given input and knob settings

(in Section 5.6.6, we show that this approach can also model energy). The

running time can vary substantially depending on the input; after all, even for

simple algorithms like matrix multiplication, the running time is a function of

the size of the input. For complex irregular algorithms like the ones considered

in this paper, running time in general will depend also on other features of

the input. For example, the running time of a graph clustering algorithm is

affected by the number of vertices and edges in the graph as well as the number

of clusters. Therefore, the running time is usually a complex function of input
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features and knob settings.

We use M5 [58], which builds tree-based models, to model the cost

function fc. Input features and knob setting define a multidimensional space,

and the tree model corresponds to dividing the space into a set of sub-spaces.

In each of the subspace, a linear model is constructed to approximate the func-

tion. This model is a multi-dimensional analog of a piecewise linear function

in mathematics. Intuitively, this model can approximate cost well because the

running time does not usually exhibit sharp discontinuities with respect to

knob settings. For example, an iterative algorithm to solve the graph cluster-

ing problem may have a knob to control the number of iterations. A small

change of the knob value corresponds to the small change of the number of it-

erations, and it is reasonable to assume the iteration space can be divided into

areas where the amount of work per iteration does not change dramatically.

5.3 Learning the Models

The error and cost models are built by learning from the data obtained

by executing the programs on a set of representative inputs. The program

is profiled exhaustively over the knob space. During each execution of the

program, the following data is collected for learning the models.

Learning the Bayesian network model Although the topology of the

Bayesian network model is fixed, the conditional probability tables are usually

not known in advance. We use a standard Bayesian network learning algo-

rithm, Bayesian posterior estimates [55], to learn the CPD’s. The user must

provide the error metric for evaluating the error in the program output (Sec-

tion 3.1 has several examples). During program execution, the knob setting

59



and the corresponding errors are collected.

Learning the cost model The M5 model is constructed automatically from

a set of training data. Each training data point is a vector of input features,

knob settings and the running time. The input features are application specific

and need to be specified by the programmer. The training data is recursively

partitioned to form a tree and in each leaf of the tree, multi-variate linear

regression is used to construct a linear model. The details of the learning

algorithm are described in the classic M5 paper [58].

5.4 Control Algorithms

To solve optimization Problem 3, the control algorithm must search the

space of knob settings to find optimal knob settings, using the error and cost

models as estimates of fe and fc respectively. Our system is implemented so

that new search strategies can be incorporated seamlessly.

If the error and cost models are tractable and each knob has a finite

number of settings κ, we can use the algorithm shown in Algorithm 1 to solve

optimization Problem 3. We sweep over the space of knob settings, and for

each knob setting, use the error model to determine if that knob setting is in

the feasible region. The cost model is then used to find a minimal cost point

in the feasible region.

The exhaustive search strategy is guaranteed to find the optimal so-

lution. It is useful to show that the effectiveness of the combined error and

cost models without introducing extra noise from search approach. However,

it cannot scale to large knob space. In Chapter 6, we discuss using heuristic-

based search strategy to scale the control algorithm to large knob spaces.
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Algorithm 1: The control algorithm based on exhaustive search

input : error bound ε and probability bound π, input features
output: A knob setting
for (v1,v2,...,vn) in space of knob settings do

P ← BayesModel.P (0 ≤ E ≤ ε|k1 = v1, k2 = v2, ..., kn = vn);
if P ≥ π then

Add (v1, v2, ... ,vn) to feasible region ;
end

end
return CostModel.Min(input features, FeasibleRegion);

5.5 Oracle control

To evaluate the effectiveness of overall control system for given choices

of the error model, cost model, and search strategy, it is useful to define an or-

acle control that implements an (i) exhaustive search based control algorithm,

using (ii) the actual measured error and (iii) the actual measured cost, for a

given input and ε and δ values. For most applications and inputs, running

the application takes less time than it takes to invoke this oracle control to

find optimal knob settings, so the utility of the oracle control is that it per-

mits us to evaluate the effectiveness of the overall system in finding good knob

settings.
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5.6 Evaluation

We use the applications discussed in Section 3.1 as the benchmarks for

evaluating the system. For each benchmark, we collected a set of inputs as

shown in Table 5.1. To evaluate the error and cost models, inputs were ran-

domly partitioned into training and testing subsets in the proportions shown.

The input features for modeling the costs for each benchmark are listed

as follows.

1. GEM: the number of vertices in the graph, the number of edges and the

number of clusters.

2. Ferret: the number of segments in the image.

3. Bullet: the number of triangles in each of the triangle meshes represent-

ing the objects.

4. SGD: the number of training instances, the dimension of a training in-

stance and the number of non-zero entries of the training instances.

5. OpenOrd: the number of vertices and the number of edges in the graph.

6. Radar: no input features are used in this application.

All experiments were run on the Texas Advanced Computing Center’s

Stampede machine. Nodes were equipped with two Xeon E5 processors and

32G memory. We used BNLearn [71] for learning Bayesian networks and

gRain [39] for performing inference in Bayesian networks. In addition, we

used the Cubist [1] implementation of the M5 Cost Model. We used Python

to implement the control algorithm.
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Benchmark #Total #Train #Test Source

GEM 43 26 17 [44], [86]
Ferret 3500 1750 1750 [11]
Bullet 1460 730 730 [14]
SGD 30 18 12 [46], [75], synthetic
OpenOrd 43 26 17 [44], [86]
Radar 128 64 64 synthetic

Table 5.1: Inputs for benchmarks. Inputs are randomly divided into training
set and testing set.

GEM Bullet Ferret SGD OpenOrd Radar

Train error model 0.109 0.268 0.927 0.120 0.119 0.072
Train cost model 7.52 49.95 133.37 7.18 15.00 3.80
Control(Exhaustive) 0.034 0.002 0.004 0.020 0.032 0.0009
Max execution time 584.951 1.111 2.59 388.364 221.285 608
Min execution time 0.570 0.010 0.038 0.594 2.362 550
Mean execution time 48.348 0.057 0.341 92.276 76.087 562

Table 5.2: Training time(seconds), running time for Control Algorithm, and
Application execution times

We evaluated our system for ε ranging from 0.0 to 1.0 and π ranging

from 0.1 to 1.0.

5.6.1 Time for Training Models and Executing Control Algorithm

Since training is done offline, training time is not particularly impor-

tant. Table 5.2 shows the time for training the error and cost models for the

five applications. Training time obviously increases with the number of train-

ing inputs, but even for Ferret, which has the largest training set, it takes only

0.927 seconds to train the error model and 133.366 seconds (about 2 minutes)
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Bullet Ferret GEM
π ‖ ε 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 NA NA 1.3 1.4 1.6 1.9
0.9 1.0 1.0 1.0 1.0 1.0 1.4 1.1 1.4 1.4 1.6 1.7 1.9 NA 1.1 1.5 1.9 2.2 2.5
0.8 1.0 1.0 1.0 1.0 1.4 18.3 1.1 1.4 1.6 1.6 1.9 1.9 NA 1.2 1.7 2.1 2.4 2.6
0.7 1.0 1.0 1.0 1.4 18.3 18.3 1.1 1.4 1.6 1.7 1.9 2.0 NA 1.3 1.7 2.1 2.5 2.7
0.6 1.0 1.0 1.4 12.1 18.3 24.3 1.2 1.4 1.6 1.7 1.9 2.0 NA 1.4 2.0 2.2 2.6 2.7
0.5 1.0 1.0 2.2 18.3 24.3 29.0 1.2 1.4 1.6 1.7 2.0 2.0 NA 1.7 2.3 2.5 2.7 3.0

OpenOrd Radar SGD
π ‖ ε 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
1.0 NA 2.0 2.4 6.3 6.3 5.9 1.0 1.0 1.0 1.1 1.1 1.1 NA 2.5 5.6 14.1 31.3 77.4
0.9 NA 2.9 6.5 6.0 5.9 8.4 1.0 1.0 1.0 1.1 1.1 1.1 NA 11.8 30.3 43.0 56.3 94.9
0.8 NA 5.2 6.4 8.7 8.7 8.5 1.0 1.0 1.0 1.1 1.1 1.1 NA 39.7 52.5 103.7 165.0 184.0
0.7 NA 6.3 6.1 8.5 8.8 8.5 1.0 1.0 1.0 1.1 1.1 1.1 NA 73.3 101.4 139.9 176.1 271.7
0.6 NA 6.0 8.5 8.7 8.5 8.5 1.0 1.0 1.0 1.3 1.3 1.3 1.0 97.5 136.7 207.0 302.0 395.3
0.5 NA 8.5 8.5 8.6 8.4 8.4 1.0 1.0 1.0 1.3 1.3 1.3 1.0 104.6 161.1 259.1 302.0 418.4

Table 5.3: Speedups of the tuned programs for a subset of constraint space.

to train the cost model.

In contrast, the control algorithm is executed online, so it is important

for it to be fast. Table 5.2 shows that the time for executing the control

algorithm is very small; for example, for SGD, it takes 20 milliseconds. This

is an acceptable overhead, particularly for large inputs, as can be seen by

comparing these times to the max, min, and mean running times for the

applications with maximum quality knob settings shown in the table.

5.6.2 Speedups of Tuned Programs

Speedup is defined as ratio of the running time at a particular knob

setting to the running time with the knobs set to maximum quality.

Table 5.3 shows speedups for each application for ε values between 0 and

0.5 and π values between 0.5 and 1.0. Each entry gives the average speedup

over all test inputs for the knob settings found by our control algorithm given

(ε, π) constraints in the intervals specified by the row and column indices.
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Speedups depend on the application and the (ε, π) constraints. For

each application, the top-left corner of the constraint space is the “hard”

region since the error must be low with high probability. The knob settings

must be at or close to maximum, and speedup will be limited. Table entries

marked “NA” show where the control system was unable to find any feasible

solution for these hard constraints.In contrast, the bottom-right corner of the

constraint space is the “easier” region, so one would expect higher speedups.

This is seen in all benchmarks. For SGD, significant speedup can be obtained

since the asymptotic complexity of the algorithm is proportional to the product

of the number of training instances and the number of iterations; therefore, a

ten-fold reduction in both these numbers results in a 100-fold speedup.

Overall, we see that controlling the knobs in these applications can

yield significant speedups in running time.

5.6.3 Evaluation of control system

While Table 5.3 shows speedups obtained from the knob settings found

by the control algorithm in different regions of the constraint space, it does

not show how well these constraints were actually met. To provide context,

we have evaluated this both for our method and for a similar method using

the linear regression model developed in [60] to model both error and running

time. The results are shown in Figure 5.3.

For each (ε, π) combination, we evaluated the quality of the achieved

control as follows:

• For each test input, use the control algorithm to set the knobs. If no

knob settings are returned, the tile is colored grey. Otherwise measure
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Figure 5.3: Performance of error and cost models for applications

the actual error and the actual running times for this returned knob

setting.

• Using the measured actual error for each input, find the probability that

the error bound ε has actually been met (if all inputs are equally likely,

this is just the fraction of inputs for which the actual error is less than

or equal to ε). If this probability is greater than π, the control algorithm

has succeeded in meeting the (ε, π) constraint. Give the tile a color

between green and blue, depending on how close the average cost (over

all inputs) is to the cost of the solution found by the oracle described in

Chapter 5.4.

• If the (ε, π) constraint has not actually been met, color the tile red. The

shade of red indicates how far the achieved average error is from the

error of the solution found by the oracle control.
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In short, grey tiles indicate that the algorithm was unable to find a

solution. Red tiles indicate that the algorithm found a feasible solution but

failed to satisfy the (ε, π) constraint and the shade of red indicates the degree

of failure in the average error. Green-blue tiles indicate that the algorithm

succeeded, and the color indicates how close the cost is to the optimal cost

solution found by the oracle. Ideally, all tiles would be colored grey to light

red, indicating that the error bound was met with low cost.

The top set of squares shows the results from the control system pro-

posed in this paper, while the bottom set of squares shows the results from the

control system based on linear regression. Overall, the control system using

the Bayes model for error and the m5 model for cost performs quite well for all

inputs and regions of the constraint space. The only noticeable problem is in

SGD: the cost model seems to be somewhat conservative for this application,

which is why there are a lot of blue squares. In contrast, the control system

based on linear regression performs quite poorly. No solutions are found in

most parts of the space, and even when solutions are found, the cost of the

solutions is very sub-optimal.

To further evaluate the quality of the results produced by our method,

we performed the same study using an oracle method in which our error and

cost models are replaced by actual measurements of the error and running

times of the algorithm for each input.

In Figure 5.4 we compare the results produced by this oracle with our

method. Even the oracle is sometimes unable to find a solution: this happens

in the hard region of the (ε, π) space. Even for the oracle, a few points are

colored red because the control algorithm of Figure 1 may return different knob

settings for different inputs. Therefore, when the entire set of test inputs is
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Figure 5.4: Comparing bayes + m5 with oracle on performance of error and
cost models

looked at, we may find that the (ε, π) constraint is not met even though there

are particular knob settings for which the constraint would have been satisfied

had they been used for all inputs. Using the Bayesian network to model error

and m5 to model cost is fairly successful across the constraint space: for most

points, it finds solutions and the cost difference from the oracle’s solution is

within 40%.

5.6.4 Average Accuracy of the Error and Cost Models

In this section, we estimate how good the different error and cost models

are on the average. These estimates can be misleading because a model that

is very accurate in an uninteresting portion of the constraint space may be

accurate on the average but it is still not very useful if it is inaccurate in the

interesting portion on the constraint space! Nevertheless, we present some

estimates for the sake of completeness.
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measuredE bayes linearReg

App mT m5 mT m5 mT linearReg

GEM 0.908 0.842 0.914 0.927 0.124 0.156
Bullet 0.982 1.000 0.980 0.987 0.710 0.679
Ferret 0.992 0.982 0.947 0.935 0.296 0.259
SGD 0.922 0.710 0.801 0.854 0.276 0.276
Radar 1.000 1.000 1.000 1.000 0.333 0.546
OpenOrd 0.997 0.997 0.945 0.945 0.823 0.579

Mean 0.967 0.922 0.931 0.941 0.427 0.416

Table 5.4: Accuracy of the error models. mT represents measuredT.

measuredE bayes linearReg

App mT m5 mT m5 mT linearReg

GEM 0.006 0.010 0.006 0.006 0.429 0.416
Bullet 0.0001 0.000 0.0001 0.0001 0.045 0.056
Ferret 0.0001 0.0001 0.0002 0.003 0.271 0.346
SGD 0.003 0.017 0.014 0.011 0.256 0.256
Radar 0.000 0.000 0.000 0.000 0.350 0.198
OpenOrd 0.0001 0.0001 0.004 0.004 0.047 0.134

Mean 0.002 0.005 0.004 0.004 0.233 0.234

Table 5.5: The average gap between the fraction of satisfied inputs and the
probability bound(π) for unsatisfied constraints. mT represents measuredT.
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Table 5.4 shows the accuracy of the error model. The accuracy is

defined as follows.

Accuracy =
number of sastisfied constraints

number of total constraints

Recall that a constraint(ε, π) is satisfied when ni/ti ≤ π, where ni is the

number of test inputs on which the predicted knob setting achieves error less

than ε and ti is the total number of testing inputs. From Table 5.4, we can see

both measuredE and bayes consistently achieve high accuracy across the four

benchmarks while linearReg achieves very poor accuracy. On average, bayes

with m5 achieves 94.1%, which is very close to the accuracy 96.7% achieved

by MeasureE + MeasureT. LinearReg only achieves 31.2% accuracy on

average.

The reason why measuredE does not achieve 100% accuracy is that

different knob settings may be used for different inputs, as explained in Chap-

ter 5.6.3.

Table 5.5 shows the average gap between the fraction of satisfied inputs

(n1/ti) and the probability bound(π) for unsatisfied constraints. Here we see

that the gap is very small for measuredE and bayes across benchmarks.

On average, the gap for both models is less than 0.3% for both measuredT

and m5. As a result, measuredE and bayes are very close to meeting the

unsatisfied constraints. On the other hand, linearReg has a significant gap

of 23.3% and 23.4% on the average.

Figure 5.5 shows the root mean square error(RMSE) to evaluate the

cost models. RMSE is a standard statistical way to evaluate predictions.

RMSE =

√√√√ 1

n

n∑
i=1

(actuali − predictedi)2
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Figure 5.5: RMSE of Cost Models.

The RMSE is computed on all of the testing inputs for all the knob settings.

Since linearReg predicted relative cost, in order to compare with it, we nor-

malizes the predicted and measured cost. On five benchmarks, m5 performs

better than linearReg. On Ferret, linearReg is significantly worse than m5.

5.6.5 Effect of tuning on individual inputs

While the previous charts showed average behavior over all inputs, it

is also interesting to see how responsive the system is to tuning for a given

input. Figure 5.6 and Figure 5.7 show how the measured error and measured

cost for a number of inputs to GEM evolve with changing probability and error

bounds. We see that when we increase the probability bound, bayes + m5

can effectively pick the knob setting to lower errors for different inputs. On

the other hand, linearReg + linearReg does not respond at all π changes.

When we look at each column in Figure 5.6, we see that with the

increase of error bound ε, bayes + m5 is effective in relaxing the error. The

71



bayes + m5 measuredE + measuredT linearReg + linearReg

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.1
0.3

0.6

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
probability bound

m
ea

su
re

d 
er

ro
r

Figure 5.6: Per-input evolution of errors for GEM. Blue line represents the
mean of errors across different test inputs.

corresponding row in the Figure 5.7 shows the cost decreases as the error

bound ε increases, as expected. On the other hand, linearReg + linearReg

over-relaxes the errors.

5.6.6 Optimizing Energy Consumption

Finally, we note that a major advantage of our approach is that it

can be used to optimize not just running time but any metric for which a

reasonable cost model can be constructed. Therefore, in principle, the system

can be used to optimize metrics such as energy consumption, bandwidth or

memory consumption. In this section, we show the results of applying the

system to optimizing energy consumption for the same benchmarks.

We measured energy on a Intel Xeon E5-2630 CPU with 16Gb of mem-

ory. We used the Intel RAPL (Running Average Power Limit) interface and
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Figure 5.7: Per-input evolution of costs for GEM. Blue line represents the
mean of costs across different test inputs.

PAPI to measure the energy consumption. Since this machine does not support

DRAM counters, we measured the whole CPU package energy consumption.

Table 5.6 shows the power savings obtained for our benchmarks for ε

values between 0 and 0.5 and π values between 0.5 and 1.0. Each entry gives

the average power savings over all test inputs for the knob settings found by

our control algorithm given (ε, π) constraints in the intervals specified by the

row and column indices. As expected, savings are greater when the constraints

are looser.

Figure 5.8 shows the performance of our system compared to the linear

regression approach on the four applications. We can see that our approach

performs very close to the oracle measuredE + measureP, while linearReg

+ linearReg does cannot satisfy a great portion of the constraints.
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Bullet Ferret GEM
π ‖ ε 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 NA 1.0 1.0 1.0 1.1 1.1 NA NA 1.3 1.5 1.7 1.9
0.9 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.5 1.7 1.8 1.8 1.8 NA NA 1.7 2.0 2.1 2.3
0.8 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.6 1.8 1.8 1.8 1.8 NA 1.1 1.8 2.1 2.3 2.5
0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.7 1.8 1.8 1.8 1.8 NA 1.2 1.8 2.3 2.5 2.5
0.6 1.0 1.0 1.0 1.0 1.0 1.2 1.4 1.8 1.8 1.8 1.8 1.8 NA 1.5 2.1 2.3 2.5 2.8
0.5 1.0 1.0 1.0 1.0 1.2 1.3 1.4 1.8 1.8 1.8 1.8 1.8 NA 1.7 2.3 2.5 2.8 2.8

OpenOrd Radar SGD
π ‖ ε 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
1.0 NA 2.4 6.1 7.2 7.2 8.9 1.0 1.0 1.0 1.1 1.1 1.1 NA 21.6 59.5 83.3 108.3 107.3
0.9 NA 6.0 7.1 7.2 8.9 8.9 1.0 1.0 1.0 1.1 1.1 1.1 NA 51.0 98.0 149.2 168.7 262.7
0.8 NA 6.0 7.2 8.9 8.9 8.9 1.0 1.0 1.0 1.1 1.1 1.1 NA 91.0 192.5 266.0 265.0 319.0
0.7 NA 7.1 7.2 8.9 8.9 8.9 1.0 1.0 1.0 1.1 1.1 1.1 NA 112.7 193.6 265.0 338.2 319.0
0.6 NA 7.2 8.9 8.9 8.9 8.9 1.0 1.0 1.0 1.3 1.3 1.3 1.0 110.2 193.6 345.1 341.8 410.2
0.5 NA 8.9 8.9 8.9 8.9 8.9 1.0 1.0 1.0 1.3 1.3 1.3 1.0 129.9 254.2 345.1 420.2 410.2

Table 5.6: Energy Savings of the tuned programs for a subset of constraint
space.

5.7 Summary

In this chapter, we presented a system using a machine learning based

approach to solve the control problem defined in the Formulation 3. Through

experiments on a set of complex applications, we showed this system performs

well for different error constraints and different cost metrics.
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Figure 5.8: Performance of error and energy cost models for all applications
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Chapter 6

Extending The Approach

This chapter describes a number of extensions to the basic control sys-

tem described in Chapter 5.

6.1 Multi-Criteria Error Constraints

6.1.1 Problem Formulation

In Problem Formulation 3, the error constraint is that the probability

of achieving an error bound ε must be larger than a given bound π. In some

circumstances, this may not be adequate. For example, an application may

achieve an error bound of less than 0.3 with 0.9 probability, so it may fail to

meet this error bound with a probability of 0.1.

However if the application cannot tolerate large errors, we may need

to restrict the probability of high errors occurring; for example, we may need

to require that the probability of the error being larger than 0.8 must be less

than 0.05. Problem Formulation 3 can be easily extended to handle such a

requirement by adding additional error constraints. As shown in Problem

Formulation 4, multiple constraints can be specified. Each of the constraints

specifies the allowed probability lower bound and upper bound for an error

range. The above example will have two error constraints:
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0.9 ≥
∑

(j∈I)∧(0.0≤fe(j,k1,k2)≤0.3)

p(j) ≥ 1.0

and

0.05 ≥
∑

(j∈I)∧(0.8≤fe(j,k1,k2)≤1.0)

p(j) ≥ 0.0

Problem Formulation 4. Given:

• a program with knobs K1 : κ1 and K2 : κ2,

• a set of possible inputs I, and

• a probability function p such that for any i ∈ I, p(i) is the probability

of getting input i.

For an input i ∈ I, error bound ε > 0, and a probability 1 ≥ π > 0 with which

this error bound must be met, find k1 ∈ κ1, k2 ∈ κ2 such that

• fc(i, k1, k2) is minimized

• πl1 ≥
∑

(j∈I)∧(εl1≤fe(j,k1,k2)≤εh1)

p(j) ≥ πh1

• πl2 ≥
∑

(j∈I)∧(εl2≤fe(j,k1,k2)≤εh2)

p(j) ≥ πh2

• . . .

• πln ≥
∑

(j∈I)∧(εln≤fe(j,k1,k2)≤εhn)

p(j) ≥ πhn

Figure 6.1 shows a pictorial view of the multiple error constraints. The

multiple error constraints in Problem Formulation 4 specify the shape of the

desired error probability density function. In Figure 6.1, the probability den-

sity function of a knob setting is presented with three error constraints. An

error constraint πli ≥
∑

(j∈I)∧(εli≤fe(j,k1,k2)≤εhi)
p(j) ≥ πhi specifies that the

area under the density function between the error range [εli, εhi] is within the
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Figure 6.1: Error constraints specify the shape of the probability density func-
tion of a knob setting

[πli, πhi]. For example, the third constraint requires that the probability that

the error is larger than 0.8 must be less than 0.05.

To solve Problem Formulation 4, only the control algorithm 1 needs to

be changed; the error model and cost model remain the same. The modified

control algorithm is shown in Algorithm 2: the knob space is swept and all

the constraints are checked for each knob setting to find the feasible region.

6.1.2 Evaluation

In the experiments, besides the error constraints used in Chapter 4, we

bound the maximum error by the following constraint:

0.05 ≥
∑

(j∈I)∧(0.8≤fe(j,k1,k2)≤1.0)

p(j) ≥ 0.0

.
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Algorithm 2: The control algorithm based for Multiple Con-
straints

input : error bound ε and probability bound π
output: A knob setting
for (v1,v2,...,vn) in space of knob settings do

Satisfied = False ;
for error constraint i do

P ← BayesModel.P (εli ≤ E ≤ εhi|k1 = v1, k2 = v2, ..., kn =
vn) ;
if P ≥ πli and P ≤ πhi then

Satisfied = True ;
end

end
if Satisfied then

Add (v1, v2, ... ,vn) to feasible region ;
end

end
return CostModel.Min(FeasibleRegion);

Table 6.1 shows the results from adding the extra constraint. We can

see that by adding the extra constraint, the speedups decrease for some appli-

cations in comparison to the speedups shown in Table 5.3 in Chapter 4. This is

because the system chooses more conservative knob settings in order to satisfy

the extra error constraint. By keeping the same maximum error constraint,

tuning π and ε achieves similar behaviors as before: relaxing either π or ε can

increase the speedups.

Figure 6.2 shows the performance of the error and cost model compared

to the oracle. We can see that the knob settings the system chooses satisfy

the error constraints for most of error constraint spaces. For applications

GEM, OpenOrd and Radar, the cost achieved by the system is close to the

cost achieved by the oracle. For SGD and Bullet, the system chooses more
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Bullet Ferret GEM
π/ε 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 NA NA 1.3 1.4 1.6 1.9
0.9 1.0 1.0 1.0 1.0 1.0 1.5 1.1 1.5 1.5 1.7 1.8 2.0 NA 1.1 1.6 1.9 2.2 2.5
0.8 1.0 1.0 1.0 1.0 2.3 2.3 1.1 1.5 1.7 1.8 2.0 2.1 NA 1.3 1.7 2.1 2.4 2.6
0.7 1.0 1.0 1.0 1.5 2.3 2.3 1.2 1.5 1.7 1.8 2.0 2.2 NA 1.3 1.7 2.1 2.5 2.7
0.6 1.0 1.0 1.5 2.3 2.3 2.3 1.2 1.5 1.7 1.9 2.1 2.2 NA 1.5 2.0 2.3 2.6 2.8
0.5 1.0 1.0 2.3 2.3 2.3 2.3 1.2 1.5 1.7 1.9 2.1 2.3 NA 1.7 2.3 2.5 2.7 2.9

OpenOrd Radar SGD
π/ε 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
1.0 NA 2.0 2.5 5.9 6.1 5.9 1.0 1.0 1.0 1.1 1.1 1.1 NA 2.6 5.7 14.4 30.4 78.1
0.9 NA 2.9 6.1 5.8 5.9 8.4 1.0 1.0 1.0 1.1 1.1 1.1 NA 11.6 29.9 41.2 50.5 94.8
0.8 NA 4.7 6.2 8.5 8.4 8.0 1.0 1.0 1.0 1.1 1.1 1.1 NA 39.8 52.8 94.3 112.0 169.2
0.7 NA 6.1 5.9 8.2 8.2 8.0 1.0 1.0 1.0 1.1 1.1 1.1 NA 58.0 77.6 130.7 170.1 256.6
0.6 NA 6.1 8.2 8.2 8.0 8.0 1.0 1.0 1.0 1.3 1.3 1.3 1.0 76.0 81.3 162.2 221.8 256.6
0.5 NA 8.4 8.2 8.0 8.0 8.0 1.0 1.0 1.0 1.3 1.3 1.3 1.0 85.3 131.7 201.0 221.8 256.6

Table 6.1: Speedups of the tuned programs for a subset of constraint space
when bounding the maximum error: 0.05 ≥

∑
(j∈I)∧(0.8≤fe(j,k1,k2)≤1.0)

p(j) ≥ 0.0.

conservative knob settings than the oracle. The performance of SGD is similar

to the performance shown in Figure 5.3.
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Figure 6.2: Bounding the maximum error: 0.05 ≥∑
(j∈I)∧(0.8≤fe(j,k1,k2)≤1.0)

p(j) ≥ 0.0
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6.2 Scaling to Large Knob Spaces

The basic approach described in the Chapter 4 may not scale to large

number of knobs. In this section, we discuss scaling bottlenecks in the basic

approach and the corresponding approaches to overcome them.

6.2.1 Scaling Error Models

The conditional probability distribution(CPD) in the simple Bayesian

error model discussed in Section 5.2 is a discrete table, requiring |V1| × |V2| ×

...× |Vn| × |E| entries, where |Vi| is the number of discrete values for the knob

ki and |E| is the number of discrete values for the error. This number of entries

increases exponentially with the number of knobs. There are several ways to

make the error model scale to large number of knob spaces.

The number of entries in the CPD in a node in a Bayesian network de-

pends on the number of incoming edges of that node. In the simple Bayesian

error model, the number of incoming edges of the error node is equal to the

number of knobs. One way to scale this model is to introduce intermediate

nodes between the error node and the knob nodes. The introduction of in-

termediate nodes can be done by decomposing an approximate program into

components and modeling the error propagation among the components. For

example, a large class of approximate programs can be modeled as a chain of

components and each component is associated with a knob to vary the fidelity

of the component. In a chain of n tunable components, the error introduced

by varying the fidelity of a component is independent of the error introduced

by components downstream from it. This independence can be exploited to re-

duce the complexity of the error model. Figure 6.3 shows a possible Bayesian

network for such a program of this sort. The final error can be thought of
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Figure 6.3: The Chain Model

as being accumulated over the chain of components. Each component of the

chain model receives a propagated error from its previous component. The

error propagated to its output is a combination of its received error and the

local error generated by its knob setting. The propagated error of the last

component is the final error. In this way, each node in the Bayesian network

has two incoming edges, so the CPD does not increase with the number of

knobs. This chain model can be easily extended to a DAG(Directed Acyclic

Graph) model which will allows more general program structures. The disad-

vantages of the chain model is that it is hard to deal with programs in which

the components form a loop structure. In addition, it requires the users to

define the intermediate error metrics, which in certain cases could be hard to

define.

Instead of using Bayesian networks, we can use other machine learning

techniques to model the error to avoid the exponential increase of the size

of CPD. To solve Problem formulation 3, we need an error model that is

a function f(v1, v2, ..., vn, eb) which maps a knob setting (v1, v2, ..., vn) and

an error bound eb to the corresponding probability defined in the Problem

formulation 3. Regression techniques can be applied to learn the function. To

train the regression model, we must extract training instances from profiling

data. The following steps can be used to generate the training data from the
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profiling data.

• Kernel density estimation can be used to learn the error probability

density function for each knob setting, using the profiling data. Kernel

density estimation is a non-parametric approach to estimating the prob-

ability density function of a random variable. Non-parametric means

it does not assume any closed form distribution for the variable. The

kernel density estimator is defined as

f̂h(x) =
1

nh

n∑
i=1

K(
x− xi
h

)

. where K is a kernel which is a non-negative function that integrates

to one and has mean zero, and h is a smoothing parameter called the

bandwidth. Intuitively, the density at x is estimated by summing up the

values of n kernel functions at x.

• For each knob setting in the profiling data, query its probability density

function and obtain the probabilities for a set of sampled error values.

The overall procedure is shown in Figure 6.4. To gain more insight into

this model, we can look at Figure 6.5 and Figure 6.6. The error model can be

thought as a space of one dimensional probability density functions, as shown

in Figure 6.5, where the knobs form a space and each knob is associated with

a 1-dimensional probability density function. The simple model of Figure 5.2

actually stores the density functions for all the knob settings. Figure6.6 shows

how the probability density function changes across different knob settings

in the knob space for the application GEM. We can see that from a knob

setting to a nearby knob setting in the knob space, the probability density
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function in many cases changes only slightly. Instead of saving the density

functions explicitly for all the knob settings in the knob space, we can save

a set of representative density functions and other density functions can be

generated from the representative density functions. This is the reason why

the regression approach can avoid the exponential space problem in the simple

model. For example, we can use M5 model for the regression. Intuitively,

we can think the knob space as being partitioned into subspace and in each

sub-space, a linear model is used from one density function to generate other

density functions.

6.2.1.1 Evaluation

In the experiments, we use M5 for the regression in Figure 6.4 and we

use kernel density estimator in Scipy package.

Figure 6.7 shows the result of replacing the Bayesian error model with

the model shown in Figure 6.4. For GEM, Bullet, OpenOrd and SGD, the

result is a little worse than using Bayesian network error model. In Radar,
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Figure 6.7: Performance of using kernel density estimation based error model
for applications

the system chooses similar quality knob settings as the simple model for most

of the constraints. However when the error bound is between 0.75 and 1.0,

the system chooses very conservative knob settings so the cost is much higher

than using the Bayesian network error model.

6.2.2 Scaling Control Algorithms

The exhaustive search in Algorithm 1 cannot scale to large number

of knobs. There is a vast literature on non-linear optimization methods and

among them, there are many heuristics that can be used to speed up the

search, possibly at the cost of finding sub-optimal solutions. Our system is

implemented so that new search strategies can be incorporated seamlessly.

As an example, we applied the search strategy used in the Precimonious

system [63]. Precimonious search is a heuristic search strategy, based on the
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delta-debugging algorithm [87], to trade off search time for solution quality.

The search algorithm is initialized with a change set consisting of all the knobs

set to the highest values and it lowers the values of knobs in the change sets

iteratively. In each iteration, all the knobs in the change set are lowered

to their next levels. If this chosen setting satisfies the accuracy constraint, it

continues to the next iteration. Otherwise, the algorithm partitions the change

set into subsets and check which subset can be lowered to satisfy the accuracy

constraint and achieves the lowest cost. Then the algorithm continues to the

next iteration with the chosen subset as the new change set. If none of the

subsets can be lowered, a finer partitioning of the change set is checked until

the change set cannot be further partitioned. Precimonious can quickly prune

the space to find a local minimum solution. There is of course no guarantee

that this solution is the global optimum.

6.2.2.1 Evaluation

Table 6.2 shows that using Precimonious to solve the control problem is

significantly faster than using exhaustive search. On the other hand, Figure 6.8

shows that the knob settings it finds may be worse than the ones found by

the exhaustive search, as one might expect. For OpenOrd, we see that the

Precimonious-based system is unable to find knob settings in many more cells,

and finds much higher cost knob settings in the top left cells. The main reason

for this is that Precimonious uses a greedy search strategy that may get stuck

in a local minimum, which in the case of OpenOrd is not the global minimum.

However, this experiment shows that the search strategy in our system is not

restricted to exhaustive search, and that other search strategies can be used

easily.

89



GEM Bullet Ferret SGD OpenOrd Radar

Control(Exhaustive) 0.034 0.002 0.004 0.020 0.032 0.0009
Control(Precimonious) 0.0008 0.0003 0.0010 0.0018 0.0016 0.0006

Table 6.2: Running Time for Control Algorithm
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Figure 6.8: Control using precimonious search vs using exhaustive search
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6.3 Summary

In this chapter, we discussed extending the control system presented in

Chapter 5 to handle multi-criteria constraints. The experiments showed that

the extended control system can perform well for multi-criteria constraints. In

addition, we discussed ways to scale the system to a large number of knobs by

scaling the error model and the search algorithm. Through experiments, we

showed the new error model performs a little worse than the simple Bayesian

error model, and that the Precimonious search algorithm is much faster than

the exhaustive search algorithm although the knob settings chosen are not

quite as good.
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Chapter 7

Related Work

There is a large body of existing work, much of it produced in the last

few years, on exploiting approximation to reduce the running time or energy

required to execute a program. This chapter surveys some of this work, and

describes how it relates to the work described in this dissertation.

7.1 Exploiting approximation in software

A large body of existing work has focused on making modifications to

existing applications to produce approximate versions of these applications.

For example, loop perforation [73] explores skipping iterations during loop

execution. [60] explores randomly discarding tasks in parallel applications. [61]

and [15] explores relaxing synchronization in parallel applications. [78] explores

different algorithmic level approximation schemes on a video summarization

algorithm. In [52] and [65], methods are developed to recognize patterns in

programs that provide approximation opportunities. These techniques could

be used to provide knobs automatically and thus complement our work.

7.2 Approximation opportunities in hardware

Researchers have proposed several hardware designs for exploiting ap-

proximate computing [27, 28, 50, 57, 68, 72, 76]. [68], [50], [72] and [27] explore
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introducing approximations into different parts of computer hardware such

as arithmetic operations, registers and memory; [28] replaces code segments

with hardware-implemented neural networks that approximate the output gen-

erated by the code segments. Our techniques can be useful in choosing how

to most efficiently map programs onto such hardware and increase the effec-

tiveness of such approaches.

7.3 Reactive control of streaming applications

In this problem, the system is presented with a stream of inputs in

which successive inputs are assumed to be correlated with each other, and

results from processing one input can be used to tune the computation for

succeeding inputs. The Green System [6] periodically monitors QoS values and

recalibrates using heuristics whenever the QoS is lower than a specified level.

PowerDial [38] leverages feed-back control theory for recalibration. SAGE [66]

exploits this approach on GPU platforms. In [29], the authors use simulated

annealing to adjust the knob settings. The problem considered in this paper

is fundamentally different since it involves proactive control of an application

with a single input rather than reactive control for a stream of inputs. However,

the techniques described in this paper may be applicable to reactive control

as well.

7.4 Auto-tuning

Auto-tuning [3, 84] explores a space of accurate implementations to

optimize cost, while the control problem has to deal with both error and cost

dimensions. [4, 26] have extended PetaBricks [3] to include an error bound.
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[63, 70] use search to lower the precision of floating point types to improve

performance for a particular accuracy constraint.

The main difference between our work and auto-tuning is that we build

error and cost models that are input-sensitive, so optimal knob settings can be

chosen in an input-sensitive way. Since auto-tuning approaches do not build

models, they do not have the ability to generalize their results from the inputs

they were trained for to other inputs.

7.5 Programming language support

EnerJ [67] proposes a type system to separate exact and approximate

data in the program. Rely [17] uses static analysis techniques to quantify

the errors in programs on approximate hardware. The work in [16] provides

programming language support to help programmers verify approximations.

The work in [69] uses Bayesian networks to verify probabilistic assertions. [62]

developed tools for debugging approximate programs. None of these deals with

controlling the tradeoff of error versus cost.

7.6 Error Guarantees

In [88], the author formulated a randomized program transformation

which trades off expected error versus performance as an optimization prob-

lem. However, their formulation assumes very small variations of errors across

inputs, an assumption violated in all of our complex real-world benchmarks

applications. They also assume the existence of an a priori error bound for

each approximation in the program and that the error propagation is bounded

by a linear function. These assumptions make it hard to apply this approach to
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real-world applications. For example, we know of no non-trivial error bounds

for our benchmarks.Chisel [51] extends Rely [17] to use integer linear program-

ming(ILP) to optimize the selection of instructions/data executed/stored in

approximate hardware. The ILP constraints are generated by static analysis,

which propagates errors through the program. While they consider input re-

liability, i.e. the probability that an input contains errors, they do not deal

with input sensitivity of the error function. Moreover, their error propaga-

tion method requires that the error function be differentiable and their static

analysis technique cannot deal with input-dependent loops, which are common

in our benchmarks and many other applications. ApproxHadoop [34] applies

statistical sampling theory to Hadoop tasks for controlling input sampling and

task dropping. While statistical sampling theory gives nice error guarantees,

the application of this technique is restricted to very special scenarios. [48]

uses neural networks to predict whether to invoke approximate accelerators or

executing the precise code for a quality constraint.

7.7 Analytic properties of programs

Researchers have developed techniques to verify whether a program is

Lipschitz-continuous [19]. Smooth interpretation [18] can smooth out irregular

features of a program. Given the input variability exhibited in our applications,

analytic properties usually provide very loose error bounds and are not helpful

for setting knobs.
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Chapter 8

Conclusion and Future Work

Although there is a large body of work on using approximate computing

to reduce computation time as well as power and energy requirements, little

is known about how to control approximate programs in a principled way.

Previous work on approximate computing has focused either on showing the

feasibility of approximate computing or on controlling streaming programs in

which error estimates for one input can be used to reactively control error for

subsequent inputs.

We found most of programs that are suitable for approximate comput-

ing have tunable approximate algorithms in them, which have one or more

knobs that can be changed to vary the fidelity of the output of the computa-

tion. Such tunable approximate algorithms are designed by algorithm experts

in the corresponding application domain and their knobs can be used reliably

for tuning the fidelity of the output. We investigated a variety of such tunable

approximate algorithms. By analyzing the computation patterns in such algo-

rithms, we proposed a classification scheme that captures the approximation

patterns in a systematic way. The classification is useful for understanding

tunable approximate algorithms from the perspective of approximate comput-

ing and help identify appropriate knobs in tunable approximate programs.

We addressed the problem of controlling tunable approximate programs

which contain tunable approximate algorithms. We proposed controlling tun-
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able approximate programs in a proactive way. The proactive control prob-

lem is suitable for general tunable approximate programs without assuming a

stream of inputs or that the fidelity of the output can be estimated quickly.

We showed how the proactive control problem for tunable programs can be

formulated as an optimization problem, and then gave an algorithm for solving

this control problem by using error and cost models generated using machine

learning techniques. The machine-learning based approach eliminates the need

for programmers to build analytic error and cost models. We validated the

approach using a set of complex tunable approximate programs. Our exper-

imental results show that this approach performs well on controlling tunable

approximate programs. We believe our techniques are suitable for other tun-

able approximate programs such as tunable approximate programs with knobs

switching between exact hardware or approximate hardware and with knobs

changing precision of floating point operations.

8.1 Future Work

In our work, we discover algorithm-level knobs for tuning output fidelity

of approximate programs by analyzing the internal algorithms of the approx-

imate programs whereas hardware researchers design approximate hardware

to expose hardware-level knobs. It is interesting to experimentally compare

the advantages and disadvantages of algorithm-level knobs and hardware-level

knobs, e.g the situations in which each kind of knob is more effective for sav-

ing energy as well as reducing the quality degradation. In addition, it will be

useful to explore how to combine algorithm-level knobs with hardware-level

knobs.

As introduced in Section 7.1 and Section 7.1, many existing researches
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uses other kind of knobs both in software and hardware, instead of using

algorithm-level knobs. A direction for future research is to evaluate how well

our control approach applies to such knobs. In addition, we evaluated our

approach using the cost metrics of executing time and energy consumption.

Future work could evaluate other cost metrics such as power, bandwidth and

memory consumption.

In Chapter 5, we do not use any input feature for the error model since

it is not easy to find input features strongly correlated to errors. However

such features may exist. For example, for GEM, the structure of the social

network graph structures may be strongly correlated with the errors. There are

different ways to characterize social network graph structures such as network

diameter and degree distributions. Future work might explore whether such

features can enhance the error model or not and how to incorporate such

input features into the error model when such features are available. It will be

expected that inputs having similar features have similar error behaviors. So

one candidate approach to incorporate such features into the error model is

clustering the inputs into a set of classes according to the input features and

building one error model for each class. Within one class, the error model is

expected to be simpler than building one model over all the inputs since the

input variance is reduced.

Our control approach can also be applied to streaming applications by

treating each input in the input stream as an independent input. Since it does

not utilize the feedback from previous inputs, it might set knob settings too

conservatively. A direct extension is using the classical feedback control theory

in our system to replace the control algorithm. Classical feedback control

theory requires a model of the controlled object (called control plant). In our
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setting, the control plant is the program and the model of the control plant

is the error model and cost model. Intuitively, the control algorithm works

as follows: 1) it maintains the current estimated probability of achieving the

required error bound; 2) when it sees the error for an input, it will re-estimate

the probability; 3) if the estimated probability is lower than the probability

bound, it will set the knob setting for next input with higher probability of

achieving the error bound than the probability of the knob setting for the

current input; 4) if the estimated probability is higher than the probability

bound, it will set the knob setting with lower probability of achieving the error

bound. Future work might implement this approach and compare against the

current state of the art reactive control approaches in approximate computing

such as Green [6] and SAGE [66].

The Green system [6] builds a simple model for each knob in the

program independently without considering the interactions among different

knobs in the offline phase. In the online phase, if an input does not achieve

the error bound, it will adjust the knob setting by assuming the models for

different knobs are additive. If feedback shows the assumption is violated, it

uses heuristic search to further adjust the knob settings. We can see that the

models built in Green play very limited role when the knobs do not have an

additive effect on error. In comparison to the existing reactive approaches, we

expect that the models in our system play a more important role in adjusting

the knobs when feedback is received.

SAGE [66] does not build error and cost models, but in the offline

phase, by profiling a set of inputs, it uses hill-climbing techniques to search for

a set of directions for optimal knob setting. Along each direction, the quality

of the knob settings decreases for the profiled inputs. In the online phase,
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SAGE switches between those settings. These directions can be thought of as

simple version of the error model.

This dissertation is an attempt to provide a clean foundation for princi-

pled control of tunable approximate programs. We hope that other researchers

build on this foundation to advance the state of the art in this important area

of systems research.
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