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In this work, metamaterial concepts are applied to improve the design and 

realization of microwave components of a new generation. Conventional radiation 

sources, despite the mature and efficient development over the past century, maintain 

fundamental limitations. Slow-wave structures, such as backward-wave oscillators and 

traveling-wave tubes, function on the order of several operational wavelengths, leading to 

bulky architectures. Cherenkov radiation-based detectors are constrained to forward 

propagation, where the detection or diagnostic scheme may be damaged by energetic 

particles. Metamaterial concepts, specifically negative-index structures, provide new 

opportunities for these applications. In this context, we developed a detailed design of a 

negative-index metamaterial conducive to microwave generation. We experimentally 

validated a negative-index waveguide based on patterned plates of complementary split 

ring resonators. The design is conducive to interaction between particles and waves; it 

maintains a scalable negative-index band along with a longitudinal electric field 
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component for particle interaction. The sub-wavelength resonant nature of the 

metamaterial allows for a compact design.  

In a different field of research, there is also significant need to squeeze the 

dimensions of microwave components. We have developed magnet-less, non-reciprocal, 

microwave circulators based on angular-momentum-biasing, which allow the realization 

of non-reciprocal devices that do not require magnets, and therefore lead to cheaper, 

lighter and significantly smaller devices. Angular-momentum-biasing, theoretically 

proposed recently in our research group, effectively mimics the collective alignment of 

electron spins seen in a ferromagnetic medium under a magnetic bias. Through spatio-

temporal modulation, one can generate electrical rotation, leading to strong non-

reciprocal response without magnetism.  We have experimentally proven the theory on 

lumped element circulators and proposed transmission-line variations, providing over 50 

dB of isolation in a range of frequency bands. This method provides efficient, easily 

tunable, fully integrable, compact devices that may revolutionize the future of integrated 

components. We have developed rigorous design principles that not only provide 

guidance for designs based on desired performance metrics, but also proves the passive 

nature of the concept. Furthermore, we have crafted mechanisms to enhance the 

bandwidth performance and improve linearity.     
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Chapter 1 Introduction 

The research presented in this work applies metamaterial concepts to address two 

crucial requirements in microwave systems: non-reciprocity and radiation generation and 

detection. The advancements in both categories will be developed and presented in the 

following sections. 

1.1 NEGATIVE-INDEX METAMATERIALS FOR COHERENT RADIATION GENERATION 

All naturally occurring dielectrics can be categorized as positive-index materials, 

in which the phase and the group velocity of a propagating wave are parallel. Negative-

index (NI) materials are constructed from arrays of specially designed inclusions, 

permitting the manipulation of electromagnetic wave propagation. Of particular interest 

are the potential applications for reverse Cherenkov radiation (RCR), where highly 

energetic particles interact with a NI media.  Unique prospects in wave-particle 

applications, such as coherent wave generation and detection, are grounded on a 

foundation of NI operation.  

In the past decade, researchers have successfully proposed and realized negative-

index propagation in a variety of composite materials loaded with periodic artificial 

inclusions [1]-[4]. NI structures, also known as left-handed materials (LHMs), are 

characterized by opposing vectors for phase and group velocity [5]. These metamaterials 

provide the opportunity for innovative applications for which conventional materials fail, 

such as the realization of super-resolving lenses, highly efficient antennas, and cloaking 

[6]-[10]. Examples and an illustration of NI media is shown in Fig. 1.  
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A common approach to realizing these metamaterials consists of embedding shunt 

wire elements and split-ring resonators (SRRs), that have been shown to provide bulk, 

homogenizable media with a NI band [1],[11]. NI behavior has also been achieved by 

loading conventional waveguides with resonant apertures, providing a natural transition 

for integration with microwave waveguide components [12],[13]. 

 

Figure 1: Negative index structures and phenomenon. (a) Bulk metamaterial from [1], 
(b) illustration of anti-parallel vectors for phase (k) and power (S) in NI 
medium [5], and (c) NI lens from [7].   

The interaction of electron beams and electromagnetic waves plays a pivotal role 

in microwave generation and radiation detection. Compared to conventional materials, NI 

metamaterials provide interesting opportunities in this field: for microwave generation, 

NI materials can provide the necessary resonance far below the diffraction limit, for sizes 

much smaller than the operating wavelength, allowing for compact designs [14]. In 

addition, a charged particle moving through an NI medium experiences RCR, where the 

group velocity of the emitted electromagnetic wave and the velocity of the beam are in 

opposite directions [15]. For radiation detection purposes, an RCR detection scheme 

could reduce sensor damage caused by the radiation source. The backward wave 

( )a ( )b ( )c
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propagation allows the detector to be placed outside the radiation region, which is ideal 

for accelerator diagnostics. This condition is also attainable in periodically loaded 

structures supporting backward modes, but bulk metamaterials may provide unique 

opportunities for stronger interaction and a more compact integration. 

A few constraints should be considered to maximize the e-beam interaction with 

an optimal NI metamaterial design. First, interaction between the beam and the 

metamaterial is achieved when the beam line and electromagnetic mode dispersion 

diagrams intersect. Additionally, the presence of a longitudinal electric field component 

in the guided mode is necessary for acceleration or deceleration of a non-undulating 

beam. Conventional NI designs based on quasi-TEM field patterns, such as loaded 

microstrip lines (i.e., [16]), fail to adhere with this requirement. Furthermore, an open, 

unimpeded path is necessary to allow an electron beam to propagate through the NI 

material freely, which is not achieved in many NI designs, such as fishnet periodic 

structures [17]. Finally, the use of planar technologies is usually preferred due to ease of 

fabrication, cost effectiveness and scalability. 

In this work, we consider a negative-index metawaveguide (NIMW) design 

consisting of an infinite stack of conducting parallel plates loaded by etched-out 

complementary split-ring resonators (CSRRs), as originally proposed in [18], ideal for 

RCR applications. This structure supports a transverse magnetic (TM) NI mode with a 

strong longitudinal component of the electric field in the middle plane between 

neighboring parallel plates. In contrast to more conventional SRR-based metamaterials, 

which interact with the magnetic field in the transverse direction, CSRRs strongly 

interact with the transverse component of the electric field [16]-[19]. In the NI band, 
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therefore, the CSRRs’ resonance leads to an effective negative permittivity (Re{εeff}<0). 

The negative permeability (Re{μeff}<0) of the NIMW originates from the confinement of 

the TM mode below the cutoff frequency of the parallel plate waveguide [20], leading to 

the opportunity of combining negative-index propagation with longitudinal electric fields. 

Although the NIMW is a promising design for RCR applications, there are some 

limitations that must be addressed. The considered design supports other (undesired) 

propagation modes in the same frequency band, leading to challenges in mode excitation. 

We will show that a properly tailored excitation is able to excite only the TM NI mode of 

interest. In addition, one potentially undesired effect of utilizing SRRs or CSRRs is their 

inherent bi-anisotropy [21],[22], which translates into magneto-electric effective 

constitutive parameters. Due to these bi-anisotropic properties, the NIMW characteristic 

impedance is complex and it depends on the direction of propagation [18], which may be 

a drawback in terms of proper matching with free-space or a feeding circuit.   

A thorough analysis of the NIMW is provided, to include modal analysis, 

homogenization, scattering, and excitation.  In addition, a transmission-line (TL) model is 

introduced to accurately predict the dispersion and impedance of the proposed 

metamaterial. Furthermore, a simplified NIMW structure was fabricated in order to 

validate the characteristics of the design. Finally, a tangible, finite NIMW tailored for 

electron beam coupling is simulated and source output parameters are provided.   

1.2 ACHIEVING NON-RECIPROCITY WITHOUT MAGNETS 

In order to realize non-reciprocity, a crucial task in electronic and optical 

applications, one must break time-reversal symmetry. Non-reciprocal devices play a 
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pivotal role in communication systems, from protecting coherent source generators from 

reflected signals, to cancelling cross talk between transmit and receive signal paths in 

antenna feeding networks [23]. Mobile communication protocols are constrained by the 

availability of non-reciprocal solutions, which are currently limited to half-duplex and 

duplex operations, whereas full-duplex modes would be highly desirable [24]. As seen in 

Fig. 2 (a) and (b), half-duplex operation must switch between transmit and receive mode, 

whereas duplex mode requires separate bands for transmit and receive signals. However, 

full-duplex (Fig. 2(c)) mode allows for simultaneous transmit receive operation, thus 

enhancing the available bandwidth. In order to enable full-duplex systems, one must find 

a compact, cost effective means of breaking time-reversal symmetry, and thus 

reciprocity. 
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Figure 2: Enhancing two-way communication channels. (a) Half-duplex mode – must 
switch between transmit and receive mode. (b) Duplex mode – separate 
transmit and receive channels. (c) Full-duplex mode – Simultaneous 
transmit and receive, at same frequency band.  

Onsager-Casimir’s principle on reciprocity states that, in order to break the 

reciprocity of a linear system, it is necessary to bias it with a quantity that is odd-

symmetric under time reversal [25]-[27]. Four quantities are known to satisfy this 

requirement: the magnetic field, the electric current, the linear momentum and the 

angular momentum. 

( )a

( )b

( )c
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For decades, the most common approach consisted in applying external magnetic 

fields to ferromagnetic media [23],[28]. In the absence of a magnetic field, electron spins 

in such materials are oriented in random directions and therefore the net magnetic activity 

is negligible. However, when biased with a static magnetic field [Fig. 3(a)], electron 

spins are aligned in the same direction (the direction of the magnetic bias) and are forced 

to rotate more easily (with less energy) in a particular direction [29]. As a result, 

circularly-polarized electromagnetic waves with opposite rotation directions interact 

differently with such media, and time-reversal symmetry (reciprocity) is broken. 

Magnetic biasing may provide a well-established means to break reciprocity, but contains 

innate limitations: the required ferromagnetic materials are unsuitable for complementary 

meta-oxide-semiconductor (CMOS) processing, since their lattice is incompatible with 

the lattice of metals and semiconductors, and they are based on external biasing devices, 

which increase size and weight. For these reasons, to date there has been little success in 

integrating magnetic-based devices. On the other hand, the integration of non-reciprocal 

devices is of tremendous importance, since it may eventually allow the realization of full-

duplex communication systems and enhance the speed of wireless communications 

networks. 
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Figure 3: Non-reciprocity through biasing with (a) magnetic and (b) angular-
momentum vectors [29].  

Several alternatives to magnetic biasing were proposed in the past decades, the 

first one involving circuits with field effect transistors [30],[31]. Such approaches are 

fully compatible with integrated circuit (IC) technology, but they generally suffer from 

poor noise performance and strong non-linearity. More recently, [32]-[34] proposed a 

class of magnet-less non-reciprocal metamaterials based on transistor-loaded rings. 

Transistors force waves in the rings to travel in only one direction, thereby mimicking the 

electron spin precession in magnetized ferrites. These works were successful in realizing 

effective ferrite media, which, like real ferrites, can produce Faraday rotation or be used 

as substrates in microwave devices. However, they are also bound to the limitations 

related to power handling, nonlinearities, and noise sensitivity of previous transistor-

based approaches. Transistor-based metamaterials were also presented in [35],[36], with 

similar limitations. Non-linearity was also studied as a potential path to magnet-less non-

reciprocity, especially at optical frequencies [37]-[40]. However, such approaches usually 

B Ω 

Δε(φ,t) 

( )a ( )b
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require strong input intensities and lead to significant signal distortion, in addition to 

being inherently dependent on the signal amplitude. 

Linear, low-noise, and strong non-reciprocity can be achieved by spatiotemporal 

modulation of waveguides via appropriate electrical or acoustical signals, as recently 

discussed in [41]-[50]. However, the weak nature of electro-optical and acousto-optical 

effects, through which modulation can be typically achieved, leads to bulky devices, 

especially at optical frequencies. Furthermore, many of these works rely on a non-

uniform modulation across the waveguide cross-section, significantly complicating the 

fabrication process. 

Inspired by the Onsager-Casimir’s principle and the physical mechanism that 

creates non-reciprocity in ferrites, Ref. [51] presented a new class of metamaterials that 

provide strong, low-noise, and linear non-reciprocity at the sub-wavelength scale through 

biasing with the angular-momentum vector. The main element of these metamaterials is a 

ring resonator, which, like the atoms of real materials, supports pairs of degenerate states 

with opposite angular momentum. Biasing the ring with the angular momentum vector 

lifts the degeneracy and produces non-reciprocity, much like a magnetic bias produces 

non-reciprocity in ferromagnetic materials (Fig. 3(b)). This concept was experimentally 

proven in acoustics by circulating air in a ring resonator, thereby demonstrating the first-

ever acoustic circulator [52]. 

Since physical rotation is obviously impractical for electromagnetic devices, [51] 

proposed to realize effective electric rotation through appropriate spatiotemporal 

modulation. In particular, it was shown that the degeneracy of the l-th order modes of a 

ring (modes with azimuthal variation ile  ) can be lifted by modulating the permittivity 
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of the ring as m m m( , ) cos( )t t l       , where m , m  and m 2l l  represents the 

perturbation of the ring permittivity, the modulation frequency and the modulation 

azimuthal order, respectively. Such permittivity modulation leads to an effective rotation 

with angular velocity m m ml  . Contrary to the approaches of [41],[44],[45], the 

modulation in [51] is continuous across the transverse surface area of the ring, 

significantly relaxing manufacturing requirements. In addition, the use of a ring resonator 

significantly boosts the otherwise weak modulation effect, resulting in strong non-

reciprocity at the sub-wavelength scale. 
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Chapter 2 Negative-Index Metawaveguide  

2.1 NEGATIVE-INDEX MEDIA AND REVERSE CHERENKOV RADIATION  

To understand the impact of Cherenkov radiation, in particular RCR, we may 

develop the theory through classical electromagnetics. The flow of charged particles may 

be described as a charge moving along the z axis on the x-y plane as 

            
ˆ ˆ, ,

2
t zqv z vt x y zqv z vt

 
   


   J r  (2.1.1) 

where δ(.) is the Dirac delta function. Here, a single charge, q, propagates with a velocity, 

v, along the z-axis.  The geometry for the charged particle beam is shown in Fig. 4. 

Assuming a time harmonic condition ( j te  ), the current may be represented in the 

frequency domain as 

    
ˆ ˆ, ( ) ( ) .

2

j z j z
v vqve e

zqv x y z
v v

 

 
  



 

 J r  (2.1.2) 

The inhomogeneous Helmholtz wave equation for the electric vector potential is found as 

 2 2( , ) ( , ) ( , ),k      A r A r J r   (2.1.3) 

 

                                                 
[53] Authors: N.A. Estep, A.N. Askarpour, S. Trendafilov, G. Shvets, and A. Alù.               
Author Contributions: N.A.E. and A.N.A developed theory. N.A.E. conducted calculations, theoretical 
modeling, and analysis. S.T. provided guidance with simulations. G.S. advised the research and A.A. 
directed and supervised the work.   
[65] Authors: N.A. Estep, A.N. Askarpour, and A. Alù.  
Author Contributions: N.A.E. and A.N.A developed theory, N.A.E. performed the experiments and 
analysis, and A.A. directed and supervised the work. 
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Figure 4: Cherenkov radiation for conventional and negative index media. When the 
velocity of a charged particle is greater than the phase velocity of the 
surrounding medium, the particle responds by emission of Cherenkov 
radiation.  In natural material, the radiation forms a cone in the direction of 
the charged beam. In NI materials, the power of the radiation is outwards 
and away from the beam. 

where A is the electric vector potential and J is the current density.  Since the charge in 

(2.1.1) only has a z component, the wave equation is expressed as 

 2 2 ( ) ( )
ˆ( , ) ( , )

2

j z
v

z z

qv e
A k A z

v



    




   r r  (2.1.4) 

and further reduced to 
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Assuming Az in (2.1.5) is the solution of the form 
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v
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A e g

v



 


  (2.1.6) 

then the partial differential equation in (2.1.5) may be solved as 

 

     2 2
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 (2.1.7) 

The dispersion relationship is then defined as 

 
2

2 2 2 2
2

.zk k k k
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
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The solution to (2.1.7) is dependent on the index of refraction, n, as 
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, (2.1.9) 

where the proper choice of Hankel function ensures causality. The solution to the vector 

potential for the represented source in (2.1.2) is of the form 

      , , .
z

j
v

z

qv
A g e

v


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From the electric vector potential, the magnetic field may be found by taking the curl as 
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Finally, the electric field outside the source region may be found in a similar fashion as 

    

   
2 2

2

1
ˆ ,

1
ˆ 1 , .

z
j

v

z
j

v

e q
h

j v

n v
zj q g e

v v c





  
  

  
 





   

 
  

 

E H
 (2.1.12) 

When only considering the z component of the electric field, its value may be found 

directly from the vector potential as 

 
2

.
( ) ( )z z

jk
E A

    
   (2.1.13) 

It can also be seen that when the velocity of the beam is lower than the relative 

wave velocity in the media, kρ becomes entirely imaginary.  This results in the evanescent 

form of the Hankel function, consistent with a field pattern where Cherenkov radiation is 

not present. The choice of g(ρ) in (2.1.9) provides the mathematical selection for either 

forward or backward Cherenkov radiation. 

The Poynting vector for the induced Cherenkov radiation may be found by taking 

the cross product of the electric and magnetic field 
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In both positive and negative index media, assuming Cherenkov radiation, the kz 

component of the wavenumber follows the direction of the beam propagation and kρ is 

positive or negative dependent on the selection of (2.1.9).  The general condition for 

Cherenkov radiation and the related cone angle is found by 

 
2

2
02

, cos .
c c

v
n nv

   (2.1.15) 

In order to further understand the relationship between the beam and the 

surrounding media, the above development was extended in a Matlab code.  Fig. 5 shows 

the electric field (Ez) lines due to a single electron in a lossless, dispersion-less medium 

of n = 2.  When the velocity of the electron is below the condition in (2.1.15), the Hankel 

term is imaginary.  This is the case when a charge travels at v = 0.4c, as seen in Fig. 5(a). 

However, when the electron is moving at v = 0.9c, the Cherenkov condition is met, 

leading to conventional Cherenkov radiation, as represented by Fig. 5(b). The field 

profiles in Fig. 5 are for a single snapshot in time.  
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Figure 5: Tangential electric field (Ez) due to traveling electron in a conventional 
medium.  Snapshot at 10 ns, with the particle at z = 0 for t = 0.  The charged 
particle is along the z axis, with the location dependent on the relative speed. 
(a) Below the Cherenkov threshold, the fields due to the electron are 
localized and evanescent. Charge at 1.2 m at snapshot. (b) Above the limit, 
the electron prompts Cherenkov radiation, with the cone angle dependent on 
the index of refraction and the speed of the particle.  Charge at 2.7 m at 
snapshot. 

Now we consider the case when the moving electron is propagating through a NI 

material.  Assuming Drude and Lorentz dispersion models for εeff and µeff respectively 

(NI band between 5.2 to 5.5 GHz), we obtain RCR for a fast moving electron of v = 0.9c. 

As shown in Fig. 6, the electromagnetic energy is flowing away from the electron in z, 

with the phase flowing in the opposing direction as the Poynting vector.  

,S k
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Figure 6: Tangential electric field (Ez) due to traveling electron in a dispersive, NI 
material. Snapshot at 10 ns, with the particle at z = 0 for t = 0. The charged 
particle is along the z axis, with the location dependent on the relative speed. 
The RCR leads to the electromagnetic energy power flow leading away 
from the electron. Charge at 2.7 m at snapshot.   

The unique circumstances of RCR have implications in radiation detectors and 

coherent sources.  Since the energy of the Cherenkov radiation is propagating away from 

the charged particle beam, the sensors and detection equipment may be easily shielded or 

positioned to avoid damage from the radiation. Additionally, the backward wave 

propagation may be used in a similar sense as a backward wave oscillator. The instability 

of the reverse travelling wave interacts with the opposing electron bunch, leading to 

coherent electromagnetic source.  A particular metamaterial conducive for both these 

applications will be presented in the following section.  

S

k



18 

 

2.2 NIMW GEOMETRY AND MODAL SOLUTION  

The geometry and unit cell of the NIMW that we consider is shown in Fig. 7(a), 

with geometry parameters indicated in the caption and consistent with the metamaterial 

originally proposed in [18]. The NIMW was simulated in CST Microwave Studio™ 

assuming periodic boundary conditions in all directions around the unit cell shown in Fig. 

7(b) [53]. The dispersion diagram for wave propagation along the x direction is shown in 

Fig. 8 around the design frequency, showing that the structure supports a backward (NI) 

TM and a positive-index transverse electromagnetic (TEM) mode. The confinement of 

the TM fields and the effect of periodically loaded CSRRs result in the NI propagation 

band (black line) between 5.5 to 5.2 GHz (kd ≈ 0.9): this sub-cutoff TM mode is 

responsible for a broad effective negative permeability, while the CSRR resonances result 

in a narrow negative permittivity region that opens the NI passband.  

In addition to the TM NI mode, a TEM mode is found in the frequency band of 

interest. The TEM solution represents conventional plane-wave propagation in the empty 

parallel-plate waveguide, showing minimal coupling with the CSRR loads. This mode 

(blue line) crosses the frequency band in which the NI mode of interest is supported, and 

therefore should be properly considered when exciting the structure (Section 2.6).  

Because the two modes have different reflection symmetries with respect to the x-y plane, 

the modes’ crossing disappears when the symmetry of the problem is reduced by 

introducing, for example, a finite propagation wavenumber crossing the plates βz ≠ 0. We 

assume βz = 0, i.e., the waves propagate entirely in the x-y plane, which is the preferred 

condition for maximal coupling with an electron beam traveling between any two 

neighboring plates. 
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Figure 7: NIMW geometry originally proposed in [18] and further investigated in 
[53]: (a) CSRR inclusion and (b) unit cell in the periodic structure. The 
integration area for computation of the potential V and the integration path 
for calculation of the current I are in panel (b). The CSRR dimensions are: d 
= 8 mm, L1 = 6.6 mm, L2 = 4.6 mm, g1 = 0.8 mm, g2 = 0.3 mm, and g3 = 0.2 
mm. Plate thickness (t) is 0.05 mm and cell height (h) is 12.8mm.     

 

Figure 8: NIMW dispersion diagram for the metamaterial geometry of Fig.7, obtained 
using full-wave simulations, for propagation along x. In addition to the TM 
NI mode, a TEM mode is supported within the same frequency band. The 
inset is a rendering of the NIMW geometry, which is infinitely periodic in 
all directions [53].      
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Fig. 9 shows the transverse electric and magnetic field amplitude and phase for 

the NI mode propagating along x on the plane x = -d/2 (highlighted in the inset) for βxd = 

π/4. As seen in the contour plots, both transverse electric and magnetic field distributions 

are odd functions of z and even functions of y. The amplitudes increase near the CSRR 

plate, confirming strong field interaction with the resonator within the NI band.  

 

Figure 9: Field distribution for the TM NI mode propagating along x, for βxd = π/4. 
Transverse electric field Ez (a) magnitude and (b) phase at the entrance 
plane of the unit cell of Fig. 7, for forward (x = -d/2) propagating modes. 
Corresponding transverse magnetic field Hy (c) magnitude and (d) phase. 
The phases are unwrapped for smooth visualization [53].       
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Next, we investigate the dependence of the modal dispersion on the angle of 

propagation inside the metamaterial, by sweeping the angle of propagation in the x-y 

plane. The corresponding iso-frequency contours (ω(βx,βy) = constant)  are shown in Fig. 

10. A completely isotropic structure would produce perfect circles, but the inherent 

asymmetries in the CSRR NIMW produce an anisotropic response, despite the long 

wavelength regime we are operating in [19].  

By analyzing the gradients of the dispersion diagram (arrows in Fig. 10), we can 

compute the group velocity components , ,/g
x y x yv    and we conclude that the 

structure supports backward-wave NI propagation for all directions in the x-y plane. It is 

possible to improve the isotropy of the response in various ways: in the following, we 

show that proper optimization may shift down the frequency of operation for a fixed 

period (Section 2.5, which makes the array granularity effectively smaller and the 

response more isotropic. Also, we have explored the possibility to rotate the CSRRs in 

superlattices to improve the array symmetry, which indeed improves the overall isotropy. 

This however comes at the price of an overall reduced bandwidth. 
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Figure 10: Iso-frequency contours for the NIMW design of Fig. 7. The contours show 
the values of propagation constant for different neighboring frequencies in 
the NI band [53].      

2.3 HOMOGENIZATION AND TRANSMISSION-LINE THEORY  

Assuming a general bi-anisotropic form for the homogenized constitutive 

relations of this metamaterial, we use Tellegen’s formalism to relate electric E and 

magnetic H fields to the electric and magnetic flux densities (D, B): 

 ,          D E H B H E   (2.3.1) 

where the four constitutive tensors fully describe the wave interaction with the periodic 

array. The effective permittivity ε and permeability μ tensors take into account the 

electric and magnetic response of the structure, whereas the coupling tensors (ξ, ζ) 

describe the magneto-electric coupling. For TM propagation in the x direction, the field 
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vectors have relevant components ˆ ˆˆ ,x z yxE zE yH  E H . The CSRR magneto-electric 

coupling for CSRRs oriented as in Fig. 7(b) is generated between the transverse 

components ˆ zzE , yyH
   as shown in Fig. 10, and therefore (2.3.1) can be written in scalar 

form as 

 0 0
0 0, ,z eff z y y eff y z

j j
D E H B H E

c c

         (2.3.2) 

with ξ0 and c representing the magneto-electric coupling constant and the speed of light 

in free space, respectively, while εeff, μeff are the components (εzz, μyy) of the effective 

constitutive tensors. Helmholtz’s wave equation in such material yields 

  
2

2 2
02

0,z x eff effE
c

   
 

   
 

 (2.3.3) 

where the propagation constant βx and corresponding index of refraction n are found as 

 2 2
0 0, .x eff eff eff effn

c

             (2.3.4) 

For passive materials, the proper root selection in (2.3.4) is Im{n}<0. 

The corresponding characteristic impedance, defined as the ratio of transverse 

electric and magnetic eigen-modal fields, depends on the propagation direction, as 

expected for bi-anisotropic materials [22],[53],[54]: 

 
0( )

eff oZ
n j

 
  

 (2.3.5) 
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where o o o    is the free-space impedance and the plus and minus signs indicate 

propagation along the positive and negative x-axis, respectively. This form of bi-

anisotropy, caused by the inclusion asymmetry, is typically undesirable, as it makes the 

design, modeling and impedance matching of the metamaterial more challenging. 

We may evaluate the characteristic impedance by averaging the fields in the 

modal solution shown in Fig. 9.  As discussed in [18], and schematically depicted in Fig. 

7(b), the effective voltage and current for the NIMW may be evaluated as 

 
/2 /2 /2

/2 /2 /2

1
, .

d h d

z y

d t d

V E dzdy I H dy
d  

      (2.3.6) 

The first integral is taken on a plane normal to the direction of propagation 

covering the upper half of a unit cell in the transverse direction. Since the NI mode is odd 

about z, we only integrate over half the plane of the unit cell. The second integral is 

defined over a line in the y direction just above the metal plate. Voltage and current 

integration domains are shown in Fig. 7(b). The transverse plane is selected based on the 

direction of propagation (x = -d/2 for Z+ and x = +d/2 for Z-). The calculated impedance, 

defined as the ratio V/I, is a function of the phase shift βxd in the NI band. The real (blue 

line) and imaginary (red line) terms for the complex impedance for forward propagation, 

as extracted from our simulations, are shown in Fig. 11. For reciprocal periodic media, Z+ 

and Z- form a complex conjugate pair (not shown in the figure) and, in the absence of bi-

anisotropy and assuming lossless inclusions, they become equal and purely real, i.e., the 

imaginary part of Z would disappear. 
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Figure 11: Effective impedance (Z+) for the CSRR design of Fig. 7. The forward and 
backward wave impedances are conjugate matched to each other, showing 
the bi-anisotropic nature of the metamaterial under analysis [53].     

By combining (2.3.4) and (2.3.5), we can define the relevant constitutive 

parameters of the metamaterial as a function of its secondary parameters βx and Z±: 
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Figure 12: Effective constitutive parameters for the homogenized NIMW of Fig. 7.  
The inset illustrates the constitutive parameters for small phase shifts [53].    

From the calculated characteristic impedance (Z±) and the wave number βx, the 

effective constitutive parameters were extracted, as shown in Fig. 12. The extraction 

method confirms that the CSRR structure behaves as a NI metamaterial, with Re{εeff, 

μeff}<0 within the frequency band of interest. The effective permeability is relatively flat 

throughout the band, confirming the fact that the response is due to the sub-cutoff nature 

of the TM mode. The effective permittivity displays a more dynamic variation in 

frequency, which is attributed to the CSRRs. The magneto-electric coupling coefficient 

has a significant relative value, confirming the strong bi-anisotropic nature of wave 

propagation in the homogenized NIMW. 
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2.4 NIMW TRANSMISSION-LINE THEORY  

In this section, we extract the primary parameters of the metamaterial under 

analysis from circuit theory and full-wave simulations, with the goal of defining its 

equivalent TL model. We start from the unloaded parallel-plate waveguide [shown in Fig. 

13 (a)]: its TM mode is well modeled by the circuit configuration in Fig. 13(b), in which 

a series impedance takes into account the effect of the longitudinal electric field Ex and 

the transverse magnetic field Hy, and a shunt admittance is associated with the transverse 

electric field Ez. As common in TL analysis, in this circuit model and the more 

sophisticated ones developed in this section the current in the series branch is directly 

related to the transverse magnetic field propagating in the structure, while the voltage 

drop across the shunt branch corresponds to the tangential electric field. The wavenumber 

and line impedance can be obtained using the exact TM field analysis [23]: 

 

 
2

2 , .x
x o o TM
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Z

h I d

   
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 (2.4.1) 
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Figure 13: TL model for an empty parallel-plate waveguide (TM propagation), and 
corresponding modal dispersion [53]. (a) Unloaded waveguide geometry, 
(b) TL model and (c) dispersion diagram.    

The corresponding TL model shown in Fig. 13(b) consists of a distributed series 

impedance ZPPWG and shunt admittance YPPWG. Over a finite sub-wavelength period d, 

their values can be obtained by requiring that -ZPPWG YPPWG = 4sin2(βxd/2) and that the 

ratio between ZPPWG and YPPWG corresponds to the product of the forward and backward 

Bloch impedances [23], giving 
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For small values of kd, the relationships in (2.4.2) reduce to the conventional 

expressions -ZPPWGYPPWG = (βxd)2 and ZPPWG/YPPWG  = ZTM
2. The series impedance can be 

represented as a series LC resonator (Ls and Cs) and the shunt admittance is equivalent to 

a capacitor (Cp). As expected, an increase in plate spacing h leads to a decrease in Cp and 
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Ls, while Cs increases. Alternatively, an increase in width or period d causes an increase 

in Cp and Ls and a corresponding decrease in Cs. 

The TL model in Fig. 13(b) acts as a high pass filter above c/(2h), which is 

consistent with the cut-off of the TM mode and with the fact that the series branch of the 

circuit model below the cut-off frequency is mainly capacitive, leading to a non-

propagating C-C TL [55]-[57]. Above the cutoff frequency, the series inductor 

dominates, leading to a conventional L-C TL with real propagation constant. The 

dispersion relation and impedances predicted by the circuit model of Fig. 13(b) exactly 

match the dispersion relation and impedances from field analysis, as expected and as seen 

in Fig. 13(c). The frequency window of interest to us is highlighted by the yellow region 

in Fig. 13(c), and is below the cut-off frequency of the waveguide, consistent with the 

previous discussion. In this region, βx, as well as ZPPWG and YPPWG, are purely imaginary. 

 

Figure 14: TL model of the NIMW neglecting magneto-electric coupling in the CSRR 
[53]. (a) TL circuit model, (b) Real and imaginary part of the propagation 
constant, and (c) real and imaginary parts of Z+, obtained from full wave 
simulation. The CSRRs are represented here by an LC resonator in the 
circuit model.   

The presence of a CSRR aperture can now approximately be taken into account in 

the TL model, as discussed in [16], by including an LC resonator (YCSRR) in the parallel 
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branch, as shown in Fig. 14. A passband is revealed below the TM cutoff frequency, 

associated with the CSRR resonance, which is consistent with our eigen-modal analysis. 

The additional shunt resonator introduces an inductive response, converting the C-C TL 

below cut-off into a C-L NI TL [58],[59]. For the shunt branch to be inductive, the 

following condition should be satisfied: 

 
1 1

( )c p c c cC C L C L
 


 (2.4.3) 

which is consistent with [60]. The bandwidth identified in (2.4.3) necessarily includes the 

NI band and is inherently limited by the geometry of the parallel-plate waveguide. As 

noted previously, as the plate separation increases, Cp decreases, effectively reducing the 

available bandwidth of the NI mode. 

Condition (2.4.3) is necessary, but not sufficient to sustain the NI passband. A 

more stringent condition on the circuit parameters may be derived considering that the 

lower (ωl) and higher (ωh) frequencies of the NI propagation band are directly controlled 

by the total series impedance (Z) and shunt admittance (Y) of the circuit model shown in 

Fig. 14(a) calculated at βxd = π and βxd =0, which translates into | 4
l

ZY      and 

| 0
h

ZY   .  The capacitance and inductance values in the LC resonator can be found in 

closed-form using the above conditions and (2.4.2) as 
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where ( )l
x , a purely imaginary term, is the wavenumber in the empty parallel-plate 

waveguide, calculated using (2.4.1) at ω = ωl. With the relationships provided in (2.4.4), 

the circuit elements modeling the CSRR in Fig. 14 (Cc, Lc) can be easily identified. The 

calculated values for the example at hand are Lc = 0.506 nH and Cc = 1.65 pF. The 

corresponding dispersion graph for the TL model is shown in Fig. 14(b), and it closely 

follows the full-wave band diagram in the propagating NI region, validating our TL 

analysis. 

The model in Fig. 14(a) is obviously approximate, as it assumes that the CSRRs 

only interact with the transverse electric field; for this reason, it cannot capture the 

inherent bi-anisotropy of the unit cell highlighted in the previous section, which arises 

from the CSRR asymmetry in the direction of propagation. While this model can well 

capture the dispersion features of the metamaterial, it cannot describe the characteristic 

impedance, as can be seen in Fig. 14(c). With the goal of accurately capturing all the 

physics of NIMW propagation within a simple TL model, we introduce the improved 

circuit configuration in Fig. 15.  
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Figure 15: A more accurate TL model allows for the accurate prediction of dispersion 
and impedance of the proposed metamaterial [53]. The mutual coupling M is 
defined between ZCSRR and YCSRR.   

Here, we load the series branch with an additional impedance (ZCSRR) to take into 

full account the interaction of the CSRR with the transverse magnetic field (current), i.e., 

to model the non-negligible magnetic response of the loading inclusion, and a coupling 

coefficient M between ZCSRR and YCSRR that models the bi-anisotropic effects arising in the 

CSRR, associated with the inherent asymmetry within the unit cell in the direction of 

propagation. This asymmetry is well-known to produce magneto-electric coupling within 

the inclusion, associated with its bianisotropic nature and consistent with earlier works 

for split-ring resonators [21]. 

In terms of currents and voltages in the unit cell, as indicated in Fig. 15, the 

coupling term introduces the following equations: 
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which ensure that reciprocity is satisfies in the two branches of the circuit. We note that 

the mutual coupling term used here differs from the more conventional definition, as 

used, e.g., in [55]. This is done in order to simplify the relationship with the magneto-

electric coupling coefficient of the homogenized metamaterial. The proposed TL unit cell 

is characterized by the secondary parameters [23]  
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 (2.4.6) 

where Yp and Zs are the total admittance and impedance in the shunt and series branches, 

and βxd is the phase shift across each unit cell.  

The forward and backward impedances are different, due to the mutual coupling 

coefficient, capturing the structure’s bi-anisotropy. This model holds to a good degree 

around the NI band, for which the interaction with the CSRR is strong and resonant. In 

the case of lossless elements, all the impedance and admittance values are imaginary, and 

the mutual coupling coefficient is real. 

Fig. 15 shows the new TL parameters numerically extracted using (2.4.6) as a 

function of phase shift in the NI band (the other parameters are obtained from the results 

in Fig. 13 and Fig. 14).  All parameters are dispersive, but they are fairly constant other 

than at the edges of the band of interest, and they can precisely and accurately model the 

wave propagation in the metamaterial. By combining (2.3.7) and (2.4.6), we can identify 
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the relationship between the mutual coupling coefficient M and the effective magneto-

electric coupling coefficient ξ0: 
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It is of special interest to analyze this model in the range for which 1xd  , on 

the edge of the NI band. We notice in Fig. 15 that in this region M diverges, a necessary 

condition to maintain a finite value of magneto-electric coupling, as predicted in Fig. 12, 

even if Zs and Yp tend to zero in the same limit. In this limit (2.4.5) implies 1 2 0V I  , 

i.e., the TL unit cell corresponds to an ideal short-circuit connection between entrance 

and exit, consistent with a zero phase propagation. It should also be mentioned that the 

singularity of the coefficient M is consistent with the usual constraints on the coupling 

coefficient between two reactive elements: in the notation of (2.4.5), we simply require 

that    Im / Im 0CSRR CSRRZ Y   to ensure that the mutual coupling between reactive 

elements is consistent with energy requirements, independent of M. 

Previous TL models, like the one in Fig. 14, have successfully predicted the 

modal dispersion, but not the line impedance of similar metamaterial geometries 

[12],[16]. With the primary parameters introduced in Fig. 15, on the contrary, we are able 

to fully capture the propagation properties of the proposed NI parallel-plate metamaterial 

within a TL model, which closely matches full-wave simulations. Before closing this 

section, we notice that in [56] a 3-D loaded waveguide metamaterial was described using 

a sophisticated transmission–line model, resulting in a negative index band. However, the 
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unit cell inclusions in that design were not inherently bi-anisotropic, leading to an 

alternative description of the mutual coupling term than the one presented here. 

2.5 UNIT CELL OPTIMIZATION AND ELIMINATION OF BI-ANISOTROPY 

After having successfully analyzed the original unit cell design shown in Fig. 7, 

we can apply the insights provided by the TL model to design a modified unit cell that 

increases the bandwidth and shifts the NI band to lower frequencies for a given period 

[53],[61]. The optimized unit cell design parameters are outlined in the caption of Fig. 16. 

We fixed the height of the plate spacing (h) for ease of future experimentation with 

particle beams. When the inside metallic patch is enlarged (g1 is reduced), the spacing 

between the inside metal patch and the middle ring is decreased, resulting in an increased 

capacitance (Cc) in the TL model of Fig. 14. By decreasing the outside aperture, a similar 

effect prompted an increased Cc. However, the reduction of the effective radius on the 

outer loop led to a decrease in TL inductance (Lc). This result is analogous to the effects 

of a changing radius on inductance on an isolated current loop [62]. It was decided to 

maintain the outer aperture width, since the decrease in inductance leads to a higher 

resonant frequency. By adjusting the two apertures, we can increase the product of Cc and 

Lc, thereby reducing the resonance frequency of the inclusion. In addition to the 

apertures, the metal connections between the resonators (g2) were examined. The 

effective inductance and capacitance vary with the size of g2, but their product (CcLc) 

remains relatively constant. Unlike the apertures, the width of the metal connections only 

affected the bandwidth, not the high frequency pole (ωh). By tuning g2, we increase Lc, 

and thereby reduce the lower frequency pole, as shown in (2.4.3). 
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Figure 16: Optimization of the CSRR structure to reduce the frequency of operation 
and increase the bandwidth [53]. (a) Black and red lines show the dispersion 
diagram of the original and optimized designs, respectively. The unit cells 
are shown as insets. The optimized parameters are: d = 8 mm, L1 = 7.8 mm, 
L2 = 6.2 mm, g1 = 0.1 mm, g2 = 0.6 mm, and g3 = 0.1 mm. Plate thickness (t) 
is 0.05 mm. (b) Graphical display of original and optimized unit cell.  

With the above analysis, we optimized the CSRR parameters in order to 

maximize the bandwidth of operation: when the aperture and inner resonator (g1, g3) is 

reduced to 0.1mm and the difference between L1 and L2 remains constant, the NI mode 

spans a broader range of frequencies from 4.4 to 3.7 GHz around the normalized 

wavenumber kd ≈ 0.74. Fig. 16(a) illustrates the improvement in dispersion of this 

optimized unit cell compared to the original design of Fig. 7. The TL parameters for the 

optimized unit cell are Cc = 0.444 pF and Lc = 2.94 nH, obtained from (2.4.4). The 

differences in physical layout are shown in Fig. 16(b).  
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In order to eliminate the undesirable bi-anisotropic response of metamaterial ring 

resonators, several solutions have been proposed, including broadside coupling of two 

SRRs [21]. In this geometry, a more convenient topology is represented by alternating 

CSRRs (ACSRR) with opposite orientation along the direction of propagation, 

eliminating the inherent asymmetry of the periodic configuration. The new unit cell of the 

metamaterial is shown in Fig. 17(a), with a period S that is twice the period of the 

original CSRR structure (S = 2d). The TL model for the symmetric NIMW geometry is 

composed of two mirrored circuits as shown in Fig. 17(b), in which the coupling terms 

cancel each other and force Z+- Z- = 0. 

 

Figure 17: Alternating CSRR design (a) to eliminate bi-anisotropy and (b) TL model 
for ACSRR NIMW [53]. 
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Figure 18: Field distributions for (a) the tangential electric and magnetic fields in the 
original CSRR metamaterial at x = -d/2, for 60° phase shift across the unit 
cell and (b) alternating CSRR NIMWs at x = -S/2, for 120° phase shift 
across the unit cell. The electric field distribution lines in (b) are exactly on 
top of each other, as expected for symmetry [53]. 

A more detailed investigation of the field distribution within each unit cell can 

provide physical insights into the connection between bi-anisotropy and unit cell design. 

The field distribution in the transverse plane for the original CSRR design at βxd=60° is 
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shown in Fig. 18(a). The same propagation constant (βxs=120°) is used to plot the fields 

in the ACSRR design in Fig. 18(b), for fair comparison. Real and imaginary parts of Ez 

(Hy) are plotted along a line parallel to z (y), as shown with orange (green) lines in the 

inset of Fig. 18. Forward (+βx) and backward (-βx) propagations are considered on the 

corresponding entrance planes (x = -d/2 for +βx and x = +d/2 for -βx). It is seen how there 

is a visible difference between the two entrance planes for forward and backward modes 

in the original design, which is compensated in the ACSRR case. 

 

Figure 19: Effective impedance for the alternating CSRR design [53]. The dispersion 
plot for the alternating CSRR is shown in the inset. The forward and 
backward impedances are equal and real within simulation accuracy (± 2 
Ω). 

The associated effective impedance for the ACSRR geometry is shown in Fig. 19. 

In contrast to Z± of the CSRR NIMW (Fig. 12), the ACSRR NIMW produces equal, real 
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impedances (blue lines in Fig. 19), regardless of the direction of propagation (Z+ = Z- = 

Re{Z}), ensuring that the ACSRR design can eliminate the bi-anisotropy while 

maintaining the desired NI behavior. The dispersion graph for this geometry is shown in 

the inset of Fig. 19. 

 

Figure 20: Effective transverse constitutive parameters for the homogenized ACSRR 
NIMW [53].  Real part of εeff and μeff are negative, as predicted, and the 
megnetoelectric coupling ξ0 is eliminated, suggesting a dramatic reduction 
in bi-anisotropic response of the structure. 

From the characteristic impedance (Z±) and the wave number (βx), the effective 

constitutive parameters were extracted using (2.3.7), as shown in Fig. 20. In this ACSRR 

case we still have negative permittivity and permeability, Re{εeff, μeff}<0, but we manage 

to suppress the bi-anisotropy coefficient throughout the band of interest. The same 

mechanisms producing NI propagation of the original design are still present here. The 
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effective permeability interestingly becomes very close to zero all across the band of 

interest in this alternative design, while the negative permittivity quickly becomes very 

large moving towards the bandgap, as in the symmetric case. This is necessary to ensure 

μeff = 0 at the edge of the bandgap, for which βx = π/S is finite. The near-zero permeability 

of this metamaterial design may be useful for microwave absorption, antenna directivity 

enhancement and radiation pattern shaping [63],[64]. 

2.6 NIMW SLAB SCATTERING AND EXCITATION 

After having established the eigen-modal properties of the metamaterial in the 

previous sections, we consider the scattering properties of a finite sample of NIMW 

metamaterial. As found in Section 2.2, a TEM positive-index mode also exists in the 

frequency band of interest, which may be excited by an external plane wave. Excitation at 

normal incidence with an electric field orthogonal to the plates indeed couples most of 

the impinging energy to the TEM mode. For this reason, we consider exciting the 

structure with oblique TM incidence, for which the electric field lies in the plane of the 

metallic plates, as shown in Fig. 21(a). In this case, while the impinging electric field 

does not have any component orthogonal to the plates, the longitudinal electric field at 

oblique incidence can ensure coupling to the NI mode without any interaction with the 

TEM mode. 

Fig. 22 shows the transverse electric field distribution inside and around a finite 

slab composed of eight unit cells, excited by such obliquely incident TM wave. As can be 

seen from the phase fronts in this figure, the plane wave indeed excites the NI mode 

inside the structure, producing negative refraction. Fig. 21(b) shows the electric field 
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vector distribution in a side view. Once the incident wave enters the NIMW, the fringing 

effects induce the magneto-electric coupling, leading to NI wave excitation. A strong Ex 

component is shown at mid-plane, which allows for the interaction with a charged 

particle beam. It has been reported that the longitudinal electric field and particle 

interaction can also translate into an effective active metamaterial [18], as the wave 

propagating in the structure can draw energy from the electron beam. 

 

 

Figure 21: Excitation and electric field distribution for a plane wave at 45° incidence at 
5.6 GHz [53]. (a) Plane-wave excitation perspective and (b) electric field 
response to plane wave excitation in a side view. The metamaterial is 
truncated in the longitudinal direction (first 3 cells shown in figure). Vertical 
lines illustrate the separation between unit cells. For clarity, only the Ex and 
Ez components of the electric field vector are shown in part (b). The |Ez| 
distribution is shown as a contour plot to illustrate the resonant behavior of 
the CSRRs.    
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Figure 22: Electric field distribution (snapshot in time) for the excitation of the CSRR 
metamaterial with an obliquely incident plane wave at 5.6 GHz [53]. 

 

Figure 23: The transmission coefficient for different incidence angles [53]. NIMW 
supports a pass band between 5.3 to 5.6 GHz, which closely matches the 
dispersion response of the infinite periodic simulations previously shown.  
Ripples in the transmission are due to Fabry-Pérot resonances, indicative of 
partially mismatched interfaces. 
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The transmission coefficients for the 8-cell CSRR structure for different angles of 

incidence are shown in Fig. 23. In all cases an NI passband is observed, consistent with 

the results of the eigen-mode simulations and TL model. The variations in transmission 

within the passband are due to the mismatch between free-space and the CSRR structure, 

leading to multiple Fabry-Pérot resonances. If the design were matched to free space, a 

smooth pass band would be expected. 

2.7 EXPERIMENTAL VALIDATION OF A 1D NIMW 

Before progressing to a full scale NIMW configured for beam interaction, it is 

advantageous to validate the electromagnetic properties of the NIMW in a simplified, 

cost effective structure [65]. The CSRR loaded waveguide introduced here is specifically 

tailored to emulate the electromagnetic coupling properties of the NIMW; the field 

distribution is consistent with the full bulk metamaterial in the central portion of the 

waveguide, while it changes near the waveguide boundaries. Due to the boundary 

condition constraints, in fact, the longitudinal electric field component of the NIMW, 

necessary for electron beam coupling, cannot be present on the lateral walls of the 

waveguide. 

At first glance, the presented experiment may appear similar to past research 

involving resonator-loaded waveguides. Previous experiments featured a host waveguide 

loaded with SRRs, where the negative permittivity is due to the dominant transverse-

electric (TE) mode operated below cut-off, and the negative permeability is due to the 

interaction between an axial magnetic field and the SRRs [12],[13].  Additionally, CSRR-

based metamaterials were embedded in microstrip transmission lines, operating in a 
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TEM-like mode [16]. In the experiment presented here, on the contrary, we excite a sub-

cutoff transverse-magnetic (TM) mode, which corresponds to an effective negative 

permeability, while the CSRR inclusions interact with an axial electric field, which 

provides an effective negative permittivity. Also this geometry is expected to support NI 

propagation. To the best of our knowledge, this is the first experimental demonstration of 

a CSRR-loaded TM rectangular waveguide supporting negative-index response. 

The geometry and unit cell of the NIMW, as first reported in [18], has been 

modified and optimized for a conventional waveguide, as seen in Fig. 24.  Our 

experimental apparatus, shown in Fig. 25, consists of a 13 cm long X-band waveguide 

loaded with a single column of 13 CSRRs, as shown in Fig. 26. The CSRR unit cell was 

tailored so that the length and width were the exact size as the width of the X-band 

waveguide. The CSRR plate was fixed at the center of the waveguide, and end caps were 

mounted to both waveguide flanges.  
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Figure 24: The dispersion diagram for an infinite periodic NIMW [65], a scaled version 
of the original unit cell proposed in [18].  Bottom left inset is the unit cell, 
top right is the CSRR geometry. The CSRR dimensions are: d=10.16mm, 
L1= 4.19mm, L2=5.84mm, g1=1.02mm, g2=0.38mm, and g3=0.25mm. Plate 
thickness is 0.25mm and unit cell height is 12.8mm. 

Proper excitation, due to the odd symmetry of the NI mode, requires odd 

symmetry around the CSRR plane. Efficient coupling to the odd NI mode requires a pair 

of excitation probes, with 180° phase difference. In order to avoid such complexities, a 

simple, asymmetric excitation scheme was chosen. The stimulation was optimized to 

closely match the electric field distribution on the top region of the CSRR plate, leading 

to the most efficient coupling for this simple excitation mechanism. 
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Figure 25: Rendering of the experimental apparatus [65]. A conventional waveguide is 
loaded with a single column of 13 CSRRs with metal caps placed on the end 
flanges. The 13 cm X-band waveguide dimensions are: a=22.86cm, 
b=10.16cm. The spacing between probe holes, p, is 5 mm. 

 

Figure 26: A single column of 13 CSRRs approximately 13 cm in length [65]. Their 
geometry is consistent with the one shown in the inset of Fig. 24. 
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Two SMA receptacle terminals were mounted to the upper waveguide wall, 

located between the third and fourth CSRR inclusion from each end. The inner pin for the 

receptacle was terminated on the CSRR plate whereas the outer jacket was grounded on 

the waveguide. The location of the terminals and depth of the excitation/extraction pin 

was determined through simulations in order to maximize matching in the passband. In 

order to extract the phase within the passband, eight probe holes were etched out in the 

waveguide walls. The probe holes were placed at a spacing (p) of 5 mm on both sides of 

the waveguide while collecting pertinent phase information. The holes on each side of the 

waveguide were offset, allowing for a field sample every 2.5 mm, due to lateral 

symmetry of the structure. Simulations and experiments confirmed that the drilled holes 

caused limited perturbations on the propagation mode of interest; surface currents on the 

waveguide walls at the probe locations were minimal. At each probe location (xk), 

relative magnitude and phase information (|E|, ϕE) was collected.  

If we can neglect reflections at the waveguide termination, the exciting probe 

produces as a single traveling wave of the form 

 ,kj x
oE E e   (2.7.1) 

where xk is the relative location of the probe at the kth hole along the direction of 

propagation. While the relative phase of the fields change given the probe locations, the 

wavenumber β remains unchanged, and therefore it may be extracted from the relative 

electric field measurements at each frequency. 
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Figure 27: A periodic TL model for the waveguide with embedded CSRRs [65]. Since 
the transmission-line unit cell is of finite length, all lumped circuit elements 
are in units Farads/Henrys. This transmission line has the dispersion relation 
shown in (2.7.2). 

Given a sufficient sampling of extracted wavenumbers, we extrapolate the 

dispersion relation from a derived transmission-line (TL) model describing the NIMW, as 

shown in Fig. 27. A periodic TL, which takes into account the effects of the waveguide 

and embedded CSRR plate (Section 2.4), provides a dispersion relation 
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where YC is the shunt admittance due to the CSRR resonance [16], YP is the parasitic 

capacitance, and ZS is a series capacitor that emulates the effects of TM mode 

propagation. This model does not account for the inherent bi-anisotropy of the CSRRs, 

but it is sufficiently accurate to predict and model the NI propagation band. If the CSRR 

plate were removed from the waveguide, the equivalent circuit reduces to a non-

propagative C-C TL, as expected for waveguide operation below the cutoff frequency. 
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Figure 28: Magnitude of the transmission parameter for experimental (black line) and 
full wave simulation (red line) data [65].  Both are in good agreement and 
reveal a passband between 4.4 to 4.6 GHz.    

A vector network analyzer was used to extract the scattering parameters in the 

described experimental apparatus.  Transmission data were collected across the expected 

frequency range, and compared with simulations. A plot of measured transmission 

magnitude and corresponding full-wave simulations are shown in Fig. 28. The anticipated 

bandpass, an indicator for NI response, was obtained from 4.4 to 4.6 GHz, well below the 

cut-off of the TM waveguide mode. The results are in good agreement with full wave 

simulations and past SRR loaded waveguide experiments [12],[13]. Variation in 

experimental and simulation results are attributed to the variance in parameters, such as 
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position of the CSRR plate, port receptacle locations, or warping of the CSRR plate 

inside the waveguide. 

Due to the simplified excitation scheme, which was not impedance matched, and 

Ohmic loss, the largest transmission magnitude was approximately -12 dB.  Within the 

passband, leakage and dissipation loss was generally limited to less than 3 dB. 

Conduction losses are expected in resonant or dispersive structures, where large field 

enhancements are typically induced. 

Without the CSRR loading, the waveguide alone only supports evanescent modes 

in this frequency band, leading to a complete stopband below the cutoff frequency. When 

the CSRRs are embedded, a strong, transverse magneto-electric coupling between the 

electric and magnetic fields allows for propagation. This propagation band is only present 

when there is a strong CSRR resonance, as predicted in the dispersion mode of Fig. 24 

and the transmission-line model in Fig. 27 and (2.7.2). 

The measured scattering parameters indicate that the best match to the 

experimental apparatus is around 4.41 GHz. As previously described, the wavenumbers 

were extracted in this region and fit to the TL dispersion relationship (2.7.2). The 

extracted wavenumber data points (markers) and resulting wavenumber fitted curves 

(solid lines) are shown in Fig. 29. For comparison, the simulation of an infinite, loaded 

waveguide with periodic boundary conditions is also shown. 
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Figure 29: Dispersion diagram for the X-band, CSRR loaded waveguide [65]. 
Wavenumbers extracted from the experimental and simulated data points 
are shown as markers. The fitted curves based on the transmission-line 
model are shown as blue and red lines. Dispersion curve of simulated 
infinite structure is shown in black line. All three dispersion plots signify 
negative index behavior within the pass band for all phase shifts.        

All measured dispersion bands confirm a NI response, with a negative slope for 

the phase relationship between 4.39 to 4.56 GHz. The extracted dispersion for the 

experimental (blue line) and simulation (red line) results are well aligned, with the 

simulated dispersion resulting in a moderately broader bandwidth. We note that the 

simulation of an infinite, periodic CSRR loaded waveguide (black line) provides an even 

wider propagation band, at a higher frequency of operation. The proposed experimental 

apparatus is only an approximation of the 2D periodic structure and therefore should not 
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match exactly with the eigen-modal simulation. However, it provides a similar dispersion 

in the expected frequency range. 

2.8 NIMW ELECTRON BEAM COUPLING 

In any application involving wave-particle interaction, it is essential to be able to 

study techniques to inject and extract electromagnetic power into and from the structure. 

A simple way to study effects of various parameters on the capacity of power transfer to 

the structure is shown in Fig. 30(a). We have simulated a four-port network of WR-340 

rectangular waveguides. The waveguides at the top and bottom of the structure are 

connected together via a rectangular cavity filled with rows of CSRRs. Although, in this 

simple example, the structure is not optimized for the best coupling to the CSRR 

structure, it is evident from the simulation results that in the frequency band of operation 

there is a relatively strong interaction between the fields propagating in the waveguides 

and the cavity filled with CSRRs. In Fig. 30(b), two of the S-parameters are shown. Since 

there is no interaction between CSRRs and the propagating wave below 2.41 GHz and 

above 2.9 GHz, S21 is not affected by the presence of CSRRs and there is virtually no 

coupling between the two waveguides in those frequency ranges. However, in the 

frequency band of operation, S21 decreases significantly. This decrease in transmitted 

power to the second port is in parts due to injection of power into the cavity and the 

reflection of power back into port 1.  

By changing the vertical distance between the rows of CSRRs, one can control the 

amount of power extracted by the cavity to some extent. As the distance between the 

rows is decreased, the coupled power increases. This is due to the fact that as CSRRs 
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from neighboring rows come closer to each other, the resonant fields which are located 

very close to the CSRRs can have a more significant effect on their neighboring 

resonators. However, decreasing the vertical distance between CSRR will reduce the free 

space for the electron beam to travel. Therefore the minimum distance which is still 

suitable for electron beam to travel is the best choice. 

 

Figure 30:  (a) Patterned CSRR cavity resonator coupled to a conventional WR 340 
waveguide with unit cell of dimensions in Fig. 1. (b) Transmission 
coefficients for the waveguide across the CSRR cavity (S21) and through the 
cavity to the bottom waveguide (S41). The top and bottom waveguides have 
the outmost CSRR plates etched into the WR 340 for efficient coupling.        

In addition, we can study the effect of the width of CSRR rows on the coupling. 

By increasing the number of CSRRs in the width of each row, we are able to change the 

width of the cavity in quantized steps, without changing the resonance frequency of the 

CSRRs. This will change the resonant frequency of the cavity and has an enormous effect 

on the behavior of the coupling from top to bottom waveguide. In numerical simulations, 

we have found that increasing the number of CSRRs in each row from one to two 

improves the coupling considerably.  However, three CSRRs in each row worsen the 

coupling through the cavity. Larger numbers of CSRRs in rows are computationally 
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expensive and are not simulated. Although these simulations can provide us with a 

computationally cheap understanding of how the fields interact with the CSRR filled 

cavity, a simulation with the presence of the electron beam is necessary to study the 

performance of the structure in more realistic situations. 

 

 

Figure 31:  3D build of the NIMW structure used in the ICEPIC simulations. An 
electron bean is propagated down the center of 4 CSRR plates, with 
waveguide ports mounted above for extraction of the wave energy.           

An electron beam driven CSRR based source has been simulated in the finite 

difference time domain (FDTD) code ICEPIC (see [66] as an example) for the geometry 

seen in Fig. 31. The simulation uses an injected beam with energy of 150 kV and current 

of 100 A guided by a 1 T magnetic field oriented along the beam propagation direction. 

As the beam interacts with the electromagnetic fields in the structure, it leads to bunching 
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of the electron beam and energy transfer to the fields in the structure. The microwave 

power generated in the structure is extracted into broad wall coupled waveguides at the 

top and bottom of the NIMW. Microwave power travels down both directions and is 

absorbed in a perfectly matched layer (PML). 

 

Figure 32: Dispersion relation measured in ICEPIC for the two CSRR plate 
configuration, similar to the rendering seen in Fig. 31.           

The corresponding dispersion relation is shown in Fig. 32.  The red line represents 

the light line and the blue line is a 300 kV beamline. This intersection with the cold 

structure mode occurs at approximately 2.9 GHz. Since ݀߱/݀݇ ൏ 0, the mode of interest 

is indeed a backward wave mode indicating NI behavior. Fig. 33 shows the forward and 

backward power (see inset of Fig. 33) in the waveguide and the frequency of oscillation 
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around 2.9 GHz as expected from the dispersion relation. This simulation corresponds to 

a cavity with two CSRRs in its width. The majority of the power travels backwards out of 

the waveguides. The output power is around 2 MW for an input power of 15 MW 

representing an electronic efficiency of  approximately 13%. Optimization of this 

structutre is expected to significantly increase the efficiency. 

 

Figure 33: Electron beam coupling to patterned, CSRR metamaterial. (a) Extracted 
frequency response from output waveguides for 150 kV beam voltage. Four 
CSRR plates, each with six unite cells, were embedded within a waveguide 
(shown in inset). (b) Output time domain power levels for the described 
geometry.           

  

2.88GHz

3h e− 0.77bv c=



58 

 

Chapter 3 Angular-Momentum-Biasing Metamaterials  

3.1 COUPLED-MODE THEORY FOR TEMPORALLY MODULATED, COUPLED RESONATOR 

LOOPS  

Non-reciprocal components, essential parts of modern communication systems, 

are today almost exclusively based on magneto-optical materials, severely limiting their 

integration and wide applicability. A practical and inexpensive route to magnetic-free 

non-reciprocity may revolutionize radio-frequency and nanophotonic communication 

networks. Among the available approaches in this direction [30]-[51], angular-

momentum biasing was recently proposed to realize isolation for sound waves traveling 

in a rotating medium [52], and envisioned as a path towards compact, linear integrated 

non-reciprocal electromagnetic components [51],[67]. Inspired by this concept, in this 

and the following chapters we demonstrate a route towards deeply sub-wavelength, 

magnetic-free, linear radio-frequency non-reciprocal components based on parametric 

modulation of three identical, strongly and symmetrically coupled resonators. Their 

resonant frequencies are modulated by external signals with same amplitude and a 

relative phase difference of 120°, imparting an effective electronic angular momentum to 

the system. We observe giant non-reciprocity, with large magnitude difference in 

transmission for opposite directions, in a deeply subwavelength, linear, noise-free device. 

                                                 
[75] Authors: N.A. Estep, D.L. Sounas, J. Soric, and A. Alù. 
Author Contributions: N.A.E. performed the experiment, D.L.S. and N.A.E. designed the structure and 
conducted the numerical calculations and theoretical modelling. J.S. helped in the selection and modelling 
of the modulation varactors. A.A. directed and supervised the work.   

   

 



59 

 

In addition, the device topology is tunable in real-time, and can be directly embedded in a 

conventional integrated circuit. 

Early attempts to realize magnetic-free non-reciprocity were based on the non-

reciprocal properties of transistors at microwave frequencies [30], and on networks of 

electro-optical modulators at optical frequencies [47]-[49]. However, such approaches 

traded the absence of magnetic bias with other significant drawbacks, such as the strong 

non-linearities and poor noise-performance of transistors, or the large size and 

complexity of the required electro-optical networks. More recently, non-reciprocity has 

been achieved in transistor-loaded metamaterials [32]-[35] and non-linear devices 

[40],[68],[69]. Also these solutions impose severe restrictions on the input power levels, 

generally degrading the signal quality because of noise or signal distortions. Another 

interesting approach to magnetic-free non-reciprocity has been introduced in [41], using 

asymmetric mode conversion in spatiotemporally-modulated waveguides. This concept is 

especially attractive for integrated optical networks, as it may be fully realized in silicon 

photonics [44]. However, this technique and its variants [42]-[46],[70],[71] lead to 

structures much larger than the wavelength, due to the weak electro-optic or acousto-

optic effects on which they rely, and require complex modulation schemes. In a similar 

context, [72] theoretically explored the concept of a non-reciprocal device based on 

parametrically-coupled resonators. 

An approach that can lead to compact, magnetic-free non-reciprocal devices with 

relaxed implementation complexity was recently introduced in [51],[52],[67], based on 

angular momentum biasing of a resonant ring. Angular momentum can be applied either 

by mechanically spinning a fluid, as proven for acoustic waves [52], or, more 
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conveniently for electromagnetic waves, by spatiotemporal modulation with a traveling 

wave, realizing an effective electronic spin [51],[67], as illustrated in Fig. 3(b). The 

resonant nature of the modulated ring can dramatically boost the otherwise weak electro-

optic effects through which spatiotemporal modulation is typically achieved [73],[74], 

allowing the design of largely non-reciprocal devices with dimensions in the order of, or 

even smaller, than the wavelength. Furthermore, in contrast to other approaches based on 

spatiotemporal modulation [41],[45], angular-momentum biasing is based on uniform 

modulation across the ring cross-section, thus significantly simplifying the fabrication 

process. 

In practice, consider the spatiotemporal modulation of a ring resonator, which 

may be efficiently imparted in a discrete fashion via a number of different regions with 

uniform modulation [67]. Such a discretization results in a reduction of the modulation 

efficiency by a factor sinc(2 )l N  for N modulation regions, revealing a trade-off between 

performance and fabrication complexity. To avoid this problem, Ref. [75] introduced a 

new design based on three identical resonators symmetrically coupled to each other and 

modulated by signals with the same amplitude and phase difference of 120  [Fig. 34]. In 

this particular design, non-reciprocity is the result of lifting the degeneracy of the 

counter-rotating modes of the composite loop, as opposed to lifting the degeneracy of the 

modes of a single ring, as in [51]. Since the modulation of each resonator in the loop is 

uniform, the modulation efficiency of this structure can reach 100%. 
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Figure 34: Angular-momentum non-reciprocity with a loop of identical resonators 
symmetrically coupled to each other [29]. Angular momentum is effectively 
applied to the loop by modulating the resonators with signals with equal 
amplitudes and phase difference of 120 deg. Modulation lifts the degeneracy 
of the counter-rotating modes of the loop, as opposed to the counter-rotating 
states of a single ring, as in Fig. 3(b).           

The design in [75] was based on a heuristic empirical approach and, although it 

provided large isolation, it exhibited quite large insertion loss and intermodulation 

products. In the following, by using coupled-mode theory we develop a rigorous theory, 

which allows designing circulators with optimum characteristics in terms of isolation, 

insertion loss and intermodulation products. The designs are based on wye resonators, 

which are easier to realize than the ring resonator in [75], and also exhibit significantly 

improved performance. The analysis in the section follows the i te   harmonic convention 

and simulations are performed with CST Microwave Studio and Advanced Design 

Studio.  
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Figure 35: Circulator based on a spatiotemporally modulated loop of coupled 
resonators, where the resonators are additionally coupled to external 
transmission lines [29].         

Fig. 35 illustrates the most general form of a circulator based on a loop of 

modulated resonators: it consists of three identical modulated resonators, symmetrically 

coupled to each other and to three external transmission lines. Networks of coupled 

resonators can be efficiently studied via coupled-mode theory [76], which, when applied 

to the network in Fig. 35, yields 
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In the above equation, T
1 2 3( )a a aa  is the state vector, Ω  is the frequency 

matrix, Γ  is the decay matrix, inc inc inc inc T
1 2 3( )s s ss  is the incident-signal vector, D  is 

the coupling matrix between the lines and the resonators, ref ref ref T
1 2 3

ref( )s s ss  is the 

reflected-signal vector and C  is the matrix describing immediate coupling between incs  

and refs . Since the resonators are identical and the coupling between them is symmetrical, 

Ω , Γ  and D  are symmetrical as well: 
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Ω Γ D  (3.1.2) 

The diagonal elements of these matrices refer to isolated resonators, while the off-

diagonal elements describe the effect of coupling. In general, Γ  consists of two parts, 

lossΓ  and cplΓ  corresponding to thermal loss and leakage to the external lines, 

respectively. Furthermore, H
cpl2 ΓD D  and   CD D , resulting from power 

conservation and time-reversal symmetry. Assuming that C  is a diagonal matrix, i.e., 

there is no direct coupling among different lines, and selecting the reference planes of the 

external lines so that the diagonal elements of D  are real, 3 C I , where 3I  is the 3 3  

identity matrix, implying that, if the resonators are not excited ( 0a ), all the incident 

power is reflected. 

Modulation is applied to the resonators as 1 0 m m( ) cos( )t t     , 

2 0 m m( ) cos( 2 3)t t        and 3 0 m m( ) cos( 4 3)t t       , where m  is 

the magnitude of the frequency perturbation and m  is the modulation frequency. This 

form of modulation imparts an effective electric rotation to the loop of coupled 
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resonators, as discussed in the Introduction. Then, 0 m Ω Ω Ω , where 0Ω  is the static 

part of the modulation matrix as given in (3.1.2) and 

 
m

m m m

m

cos( ) 0 0

0 cos( 2 3) 0 .

0 0 cos( 4 3)

t

t

t


   

 

 
   
  

Ω  (3.1.3) 

Since modulation is a perturbation of the static (non-modulated) loop, it is 

convenient to express (3.1.1) in the eigenbasis of the static loop (eigenbasis of 0Ω ), 

which consists of a common state with frequency c 0 2     and state vector 

T
c (1 1 31)a , a right-handed state with frequency 0      and state vector 

2 3 T
+

4 3 3(1 )i ie e a , and a left-handed state with same resonance frequency 

0       , and state vector 2 3 4 3 T(1 ) 3i ie e  
 a . The transformation 

from the eigenbasis of the separate resonators to the eigenbasis of the loop reads 1a U a

, where a  is the state vector in the eigenbasis of the loop and c( ) U a a a . Then, 

(3.1.1) becomes 
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ref inc

( ,)

,

i   

 

a s

s Cs

Ω Γ a D

Da


 (3.1.4) 

where 
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
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










  
      

      



Ω Ω

Ω UU Ω

 

 (3.1.5) 
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 
    
 
 

Γ U ΓU  (3.1.6) 
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d e d e

 

 







 





 
    
 
 

D DU  (3.1.7) 

In the above equations, c 2     and         are the decay rates of the 

common and rotating modes, respectively, while c 2d d g   and d gd d     are the 

coupling coefficients between the lines and these modes. Equation H
cpl2 ΓD D  is form-

invariant under this transformation, yielding c c,cpl2 3d   and 

,cpl ,cpl2 3 2 3d d       , where c,cpl , ,cpl   and ,cpl   are the parts of c ,    and 

   referring to leakage to the external lines. In the eigenbasis of the static loop, the state 

vectors of the common, right-handed and left-handed eigenstates become T
c (1 0 0)a

, T(0 1 0) a  and T(0 0 1) a , respectively. 

Before solving the source-driven problem (3.1.4), it is important to study the 

eigenstates of the modulated loop. For simplicity of analysis, we assume 0Γ , i.e., no 

loss and no coupling to external lines. The eigen-states of the modulated loop in Fig. 35 

are calculated from (3.1.4) for 0Γ  (no loss) and inc 0s .  

To solve this equation, we ignore the coupling between the common and rotating 

states. The results so obtained are shown to be accurate up to the order 2
m , provided 

that m c   . The coupling between the common and rotating states is due to the 

first column and the first row of mΩ . Taking these elements to be equal to zero, (3.1.4) 

becomes 
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 

  

  

 (3.1.8) 

where the “tilde” is used to distinguish the approximate solution from the exact one. The 

solution of the first of these equations is obviously c
c c

i ta A e  , where cA  is a complex 

number. The solution of the other two equations can be found by assuming i ta A e 
 

  

and m( )i ta A e  



  . Then, (3.1.8) becomes 

 m

m m

2
,

2

A A

A A

 


  
 

 





    
        

 (3.1.9) 

which is a typical eigenvalue problem with eigenvalues m 2      and 

m m2       , and corresponding eigenvectors T
m m(1 )   A  and 

T
m m( 1)  A , where 2 2

m m m      . The corresponding solutions of 

(3.1.8) read 

c m m m
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mc m m
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i t i t i t i t

i t

e e e e

e

   





 







  

    
          

          
 

a a a   (3.1.10) 

where 2
m1 ( )     .  

Next, we transform (3.1.4) in the basis defined by (3.1.10) via a Va


, where 
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V  (3.1.11) 

in particular, 

 ,i a Ωa
   (3.1.12) 

where H HiΩ ΩV VVV
  . After straightforward but lengthy manipulations, we find 
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  (3.1.13) 

where 0 c m mdiag{ , , }   Ω


 and 
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m

1 2
m m

m

2
m m

2

,
2 2

.
2 2
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
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 








 (3.1.14) 

The matrix Ω


 is time-periodic with periodicity m m2T   . Therefore, 

according to Floquet theorem, the solution of (3.1.12) can be expressed as 

 

 m
n

( ) ,ni t

n

e  










 a a
 

 (3.1.15) 
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where na


 is the state vector of the n-th Floquet harmonic. In the Floquet space, (3.1.12) is 

transformed to the regular infinite eigenvalue problem 

 F F F,a aΩ
  

 (3.1.16) 

where T T T
1

T
F 0 1( )a a a a
     and FΩ


 is the matrix whose ( , )m n  block relating 

ma


 with na


 reads 

F, 0 m 1 1 , 1 1 , 1 , 2 2 , 22 2( ) ( ) ( ),mn mn m n m n m n m nm                 Ω Ω Ω Ω Ω Ω
     

(3.1.17) 

where 

 1 12 2

0 1 0 0 0 1

0 0 0 , 1 0 0 .

1 0 0 0 0 0


   
         
   
   

Ω Ω Ω Ω
   

 (3.1.18) 

A pictorial representation of FΩ


 is provided in Fig. 36.  



69 

 

 

Figure 36: Matrix FΩ


in (3.1.17). All the blank locations correspond to zero elements 

[29].      

The matrix FΩ


 does not have degenerate terms in the main diagonal and, as a 

result, conventional perturbation theory can be applied on (3.1.16) [77]. For example, the 

first-order correction to eigenvalue m   is given by (1)
m F ,0 F F ,0( , )    Ωa a


, where FΩ


 

is the off-diagonal part of FΩ


, F ,0a


 is the Floquet vector with the “+” element of the 0-th 

harmonic equal to unity and all other elements equal to zero, and T( , ) u v u v . It is not 

difficult to show that (1)
m 0   . Similarly, the second-order correction to m   can be 

calculated from 
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 (3.1.19) 
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where F ,i na


 is the Floquet vector with the i-th element of the n-th harmonic equal to one 

and all other elements equal to zero. Substituting (3.1.17) into (3.1.19) yields 

 

 
2 2

(2) 1 2
m

c m m m

.
2

 
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

 
 

 (3.1.20) 

By taking the limit m 0   in (3.1.14), it can be shown that m
3

1 m2 ( )O     and 

4
m2
2

m m( ) )4 (O     . Therefore, if in addition m c m    , ( 2
m m
1) ( )O   . 

Following a similar analysis, it can be shown that the corrections to m   and c  are also 

m
2( )O  , while the correction to the corresponding eigenvectors are m )(O  . Therefore, 

(3.1.10) are solutions of (3.1.4) to the order m )(O  .  

Therefore, under these conditions, and for m c   , the states of the 

modulated loop read  
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 (3.1.21) 

where 
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71 

 

and 2 2
m m m      . Modulation affects the common state very little, as expected 

from the fact that m c   . On the other hand, it significantly affects the rotating 

states, resulting in two new quasi-rotating states, ma , consisting of the rotating ones with 

different amplitudes and frequencies separated by m , as illustrated in Fig. 37. The 

quasi-rotating states are separated from each other by  , an effect that resembles 

frequency-splitting of counter-polarized waves in magnetized ferrites and, therefore, it 

provides a direct evidence of the non-reciprocal properties of the modulated loop. 

 

Figure 37: Frequency diagram for the spatiotemporally-modulated loop of coupled 
resonators [29]. Without modulation, the loop supports degenerate counter-
rotating states a  (left- and right-hand side). Modulation mixes these states, 

producing the hybrid states ma  (center), which consist of the rotating states 

at frequency levels separated by m . Each of the hybrid states is dominated 

by one of the rotating states, making the hybrid states quasi-rotating. The 
quasi-rotating states exist at different frequency levels ( m  ), which is a 

direct evidence that the modulated loop is non-reciprocal.     

ω−ω+
+ma

ω ω+ −m m

ω +m

−ma
ω ω− +m m

ω −m

+a −a
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Neglecting the common mode, which is minimally affected by the modulation, 

(3.1.4) becomes 
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 (3.1.23) 

where a  and a  are the complex amplitudes of the right- and left-handed modes of the 

loop, 2 3 34(1 )i id e e 


 
k  and 2 3 34(1 )i id e e 

 k . (3.1.23) can be solved by 

assuming 
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 (3.1.24) 

where   is the frequency of the incoming signal, (0)a  are the amplitudes of the dominant 

sub-states and ( 1)a 
  the amplitudes of the secondary ones. For excitation from port 1, 

these amplitudes are found by substituting (3.1.24) into (3.1.23) as 
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 (3.1.25) 

Transmission to ports 2 and 3 can be calculated by substituting (3.1.24) into the second 

equation of (3.1.4) as 
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 (3.1.26) 

Due to the rotational symmetry of the structure, the rest of the S-parameters can be 

directly calculated from (3.1.26) by rotating the port indices as 

(3,1,2)(1,2,3) (2,3,1)  . For example, 13S  and 23S  can be calculated from (3.1.26) by 

applying ( (3,1,2)1,2,3) : 213 1S S  and  323 1S S . Note that, apart from signals at the 

input frequency (S-parameters given in (3.1.26)), there are also signals at frequencies 

m  . For excitation from port 1 the S-parameters for these signals can be found by 

substituting (3.1.24) into the second equation of (3.1.4) as 
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 (3.1.27) 

The rest of the S-Parameters at m   can be found again via rotation of the port 

indices. 

Due to its three-fold symmetry, the modulated loop operates as a circulator, if the 

signal at one of the output posters is equal to zero. For the modulation phase used here (0 

deg, 120 deg and 240 deg for resonators 1, 2 and 3, respectively), this condition is 

satisfied at port 3 if the frequency of the incident wave is   and 
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Observe that in order for m  to be real, the condition m 3   should hold. When 

(3.1.28) is satisfied, it is easy to show from (3.1.25) that the right- and left-handed states 

are respectively excited with phases 6  and 6  at port 1. Their phases become 

6 4 3 3 2     and 6 4 3 3 2       at port 3, leading to mutual cancellation 

by destructive interference at this port. Since no power is transferred to port 3, one may 

think that, in the absence of loss, the transmission to port 2 is perfect. However, this is 

not true since, as already hinted, modulation results in allocation of part of the energy to 

frequencies outside the main band in the form of intermodulation products. Under the 

ideal modulation condition (3.1.28), it can be found from (3.1.25) and (3.1.26) that the 

transmission at port 2 and the reflection at the input port (port 1) are respectively given 

by is 

 21 ,cpl

m

1 1

3
( ) ,S  




   (3.1.29) 

 11 21( 1) .)(S S    (3.1.30) 

Observe that, since ,cpl   , 21 )( 1S   , as expected from the conversion of 

part of the power to intermodulation products.  The intermodulation products at any port 

are found from (3.1.25) and (3.1.27) as 

 ,cpl
21 m 21 21

1
( () () )

3
S S S


   






 
  





 , (3.1.31) 

and they are always greater than zero. The transmission bandwidth, another important 

parameter of the structure, is given by 2   and it satisfies 
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 m 21
+,cpl

BW 2 1 ( ) .3 S
  





 
   

  
 (3.1.32) 

Considering that ,cpl   , where the equality holds in the absence of loss, Eqs. 

(3.1.31) and (3.1.32) lead to the following expressions, involving only 21( )S  : 

 21 m 21 21

1
( ( ( ,) 1

3
) )S S S        (3.1.33) 

 m 213 (W 1 .)B S       (3.1.34) 

Eq. (3.1.33) shows that the intermodulation products tend to zero, as the 

transmission approaches unity, as expected from power conservation. On the other hand, 

Eq. (3.1.34) reveals a fundamental trade-off between bandwidth and transmission. For a 

specified modulation frequency, bandwidth decreases, as transmission increases. In order 

to increase transmission without affecting the bandwidth, it is necessary to increase the 

modulation frequency. 

3.2 CONNECTING PERFORMANCE METRICS FOR GENERAL ANGULAR-MOMENTUM-

BIASED CIRCULATOR  

Fig. 38 presents 21 )(S  , 21 m( )S   , 11 )(S   and BW versus 

m m +,loss    and m m ,loss     under the infinite-isolation condition (3.1.28). In 

these plots we use the normalized modulation parameters, m  and m , instead of the 

absolute ones, m  and m , since the response of the structure, such as the S-parameters, 

depends on ,loss  , which generally is different for different structures. As a result, a plot 

of the structure’s response versus m  and m  is only valid for specific ,loss  , narrowing 
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its applicability. This problem is overcome by considering ,loss  , over which we have 

little control, as a normalization quantity, and plotting the response versus 

m m +,loss    and m m ,loss    . It should be noted that ,loss2   is the bandwidth of 

the intrinsic resonance of the system, i.e., the resonance under negligible coupling to the 

external lines, and, as such, it also represents a lower bound for the bandwidth of the 

loaded system BW . Considering that 0 ,loss(2 )Q    , where ,lossQ  is the intrinsic Q-

factor of the system, the normalized modulation parameters in Fig. 38 can also be 

expressed as m ,loss m 02Q    and m ,loss m 02Q   . The white region in Fig. 38 

corresponds to values of the modulation parameters for which infinite isolation is 

impossible. Furthermore, the charts in Fig. 38 are valid, provided that the conditions 

m m 0,   , under which Eqs. (3.1.23) have been derived, hold1. It is easy to show 

that these conditions are satisfied, if m m ,loss, 2Q     . Through numerical calculations, 

we have found that ,loss0.5Q  and ,loss0.1Q  are good upper bounds for m  and m , 

respectively. Fig. 38 allows designing structures with specified response, in terms of 

21 )(S  , 21 m( )S   , 11 )(S   and BW, for given ,loss  . 

                                                 
1 As explained before, the condition under which (3.1.23) are valid is m m m c c,        . 

Assuming that c  , as happens for the structures that are presented in Sec. III, the above condition 

becomes m m,   . 
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Figure 38: Design charts for magnetic-free circulators based on loops of modulated 
resonators. (a) Insertion loss, )21(S  , (b) return loss, )11(S  , (c) 
intermodulation products, 21 m( )S   , and (d) bandwidth, BW, versus the 

normalized modulation frequency, m m ,loss   , and the normalized 

modulation amplitude, m m ,loss    . All the results were derived under 

condition (3.1.28) to obtain maximum isolation. Point A corresponds to the 
design in [75], while points B and C to the designs in [29]. Inside the white 
regions, infinite isolation is impossible.       
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The charts in Fig. 38 allow reaching interesting conclusions about the effect of the 

modulation parameters on the characteristics of the structure. First of all, insertion and 

return losses generally decrease when both m  and m  increase. On the other hand, 

intermodulation products tend to decrease as m  increases. This behavior is consistent 

with (3.1.21), where the term m  , providing the amplitude of the undesired 

secondary sub-states of the modulated loop, decreases as m  increases. Apart from 

leading to smaller reflection, larger transmission and smaller intermodulation products, 

increasing m  is also advantageous from an implementation point of view: a large m , 

and therefore a large separation between the wanted frequency response and the 

unwanted intermodulation products, results in less steep filters for the rejection of these 

products, and therefore easier fabrication.  The charts in Fig. 38 and the above general 

conclusions will be used in the next section in order to design two magnetic-free 

microwave circulators based on lumped and distributed elements for low- and high-

frequency applications, respectively. 

We will use these general design charts to explore two proof-of-concept optimal 

designs for magnetic-free microwave circulators in Chapter 4. 

3.3 RESONANCE SHIFT DUE TO MODULATION  

Here, we show that modulation creates a shift in the resonance frequency of 

second order with respect to mC . Such an effect cannot be predicted by the first-order 

coupled-mode theory and it requires full solution of circuit equations. By defining the 

inductor currents and capacitor charges as in Fig. 39, Kirchhoff’s laws read 

 1 2 3 0,i i i    (3.3.1) 
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0 1 0
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1 2 2

2

inc inc 3

1

1 1
0 1 0

1

0

3
1 3 3

3

inc inc 3 32 2
3 02 2 3

2 3

2 2 ,

2 2 ,

2 2 .

di q di q
v Z i L v Z i L

dt C dt C

di qdi q
v Z i L v Z i L

dt C dt C

di qdi q
v Z i L v Z i L

dt C dt C

      

      

      

 (3.3.2) 

 

Figure 39: Circuit schematic of the lumped-element wye resonator [29]. 

The sources inc
iv  stand for the incident waves from the three ports of the circuit. Summing 

the two first equations of (3.3.2) and replacing the term 2 3i i  in the resulting equation 

with 1i  from (3.3.1) yields 

 3 inc inc inc
1 2

1 1
0 3

2
1

1 2 3

3 3 2 2(2 ).
qdi q q

L Z i v v v
dt C C C

        (3.3.3) 

By performing the same operation to the other pairs of (3.3.2) we get 

12 incV ~ 

L 

C1 

Z0 

+ 

- 

q1 

i1 

22 incV ~ 

L 

C2 

Z0 

+ 

- 

q2 

i2 

32 incV ~ 

L 

C3 

Z0 

+ 

- 

q3 

i3 
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31 2
0

1 2 3

31 2
0

1

inc inc inc2
2 1 2 3

inc inc inc3
3 1 2 3

2 3

3 3 2 2( 2 ),

3 3 2 2( 2 ).

qdi q q
L Z i v v v

dt C C C

di qq q
L Z i v v v

dt C C C

       

       
 (3.3.4) 

Equation (3.3.4) can be compactly written as 

 1 inc0 1 2
,

Z

L L L
  q q DC q Dv   (3.3.5) 

where T
1 2 3( )q q qq , inc inc inc inc

21 3( )v v vv , 1 2 3diag{ , , }C C CC  and 

 

2 1 1
1

1 2 1 .
3

1 1 2

  
    
   

D  (3.3.6) 

For the derivation of (3.3.5) we have also used i ii dq dt . In the presence of 

modulation, m mcos[ ( ) ]2 1 3nC tCC n       and, if mC C  , (3.3.5) becomes 

 inc0 m
2

1 2
,

CZ

L LC LC L


   q q Dq DMq Dv   (3.3.7) 

where m mdiag{cos( ),cos( 2 3 4),cos( 3)}mt      M . 

Similarly to (3.1.1), (3.3.7) can be transformed to the eigenbasis of the common 

and rotating states of the ring as 

 

inc0 m
2

1 2
,

CZ

L LC LC L


   q q Dq DMq Dv         

 (3.3.8) 

where Hq U q , Hv U v , diag{0,1,1}D  and 
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Neglecting the common mode, as in the case of the coupled-mode analysis, (3.3.8) 

becomes 
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     

   

 

 
 (3.3.10) 

where q  are the amplitudes of the rotating states, 0 1 LC  , 0 0Q L Z  and 

m 0 m (2 )CC   . For the derivation of (3.3.10) we have assumed that the structure is 

excited from port 1 with a signal of unitary amplitude and frequency  . Similarly to 

(3.1.23), (3.3.10) can be solved by making the assumption 
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which leads to 
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 (3.3.12) 

The resonances associated with the dominant sub-states of the circuit can be found from 

the roots of the denominator in the first equation of (3.3.12). For sufficiently high Q-

factor,  can be taken equal to zero and 
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 2 2 2
m m 0 0 m m m

1
4 ( ) .

2
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      
  (3.3.13) 

These frequencies are shifted from 0  by different amounts, implying that their center of 

mass, c m m( ) 2     , is also shifted from 0 . In particular, it is not difficult to 

show that 

 2 40
c 0 m m2 2

0 m

).(
8 2

O
   

 
  


 (3.3.14) 

Therefore, c  is red-shifted from 0  by the amount 2 2 2
0 m 0 m(8 )2     at the 

point in which isolation becomes maximum, or, for m 0  , 2
m 0( )8  . This shifting 

is the result of the second-order nature of (3.3.5), and it is related to the weak coupling 

between positive and negative frequencies, which are completely neglected in coupled-

mode analysis. 

3.4 PASSIVITY AND THE EXCHANGE OF POWER FOR ANGULAR-MOMENTUM-BIASED 

CIRCULATORS 

As previously described, imparting spatiotemporal modulation upon a resonant 

structure allows one to emulate an angular-momentum-bias, thus breaking reciprocity of 

the system. Here, we investigate power exchange between the modulation and operation 

signals for circulators based on this approach. In particular, we study the most practically 

relevant case of a circulator comprising three spatiotemporally modulated resonators with 

symmetrical coupling between them [29],[75]. Coupled-mode analysis is expected to zero 

power exchange between the modulation and operation signals, due to the conservation 

of power assumptions in (3.1.1).  The results to be shown are a proof that, like magnetic-
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based devices, angular-momentum-based ones are inherently passive. Like the magnetic 

field, angular-momentum interacts with the structure in a totally reactive way: it creates a 

phase asymmetry for wave propagating in opposite directions, but it does affect the 

power balance of the circuit.  

 

Figure 40: Input and output signals for an angular-momentum-biased circulator. 
Assuming an incident wave at the fundamental frequency, f, the output 
signals exist at both the fundamental and inter-modulation frequencies.     

Fig. 40 presents the possible output signals for the circulators in [29],[75], when 

excited from port 1 with a signal of frequency f . In addition to the output signals at the 

same frequency as the input one, there are also signals at frequencies mf f , where mf  

is the modulation frequency, as the result of the modulation or, equivalently, the Doppler 

ω3 ω1 

ω2 
κm κm 

κm 

0f

0 mf f±

0f0 mf f±

0f

mm0 mf f±
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effect related to the effective spinning of the structure. Through coupled-mode theory 

[78], analytical expressions for the scattering parameters of the structure were derived in 

Section 3.1, which are repeated here for convenience: 
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where 
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 (3.4.3) 

γc is the coupling decay rate between the ports and the resonator, δωm is the modulation 

amplitude, and ω0 is the frequency of the degenerate, un-modulated states. Perfect 

isolation at port 2 is obtained when 
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The power exchanged between the modulation and operation signals can be found from 
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The double sum in the right-hand side of the above equation is the output power 

at the input and intermodulation frequencies. Under the optimum modulation condition 

(3.4.4) and for 0  , when isolation is maximum (theoretically infinite), (3.4.5) reads 
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      (3.4.6) 

If c m3  , which is the necessary condition in order for m  to be real for a passive 

design ( c 0  ), 0( ) 0 X . We observe that the coupled mode theory predicts identically 

zero power exchange between the fundamental and modulation signals, at least under 

optimum modulation conditions.  
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Figure 41: Power distributed to the fundamental (main) and intermodulation (IM) 
signals for AM circulator, as predicted from coupled-mode theory. The total 
power, defined as the sum of the fundamental and intermodulation 
contributions, is also presented. Results correspond to two different Q-
factors. The intermodulation power maximum occurs at the maximum 
isolation condition. The total power remains equal to unity for all values of 
modulation amplitude, demonstrating the passivity of the circuit.     

The power exchange remains zero even if (3.4.4) is not satisfied, as can be seen in 

Fig. 41, which plots the output power at 0  and 0 m   versus m  for m 0 0.2    

and two different quality (Q) factors (without loss, as assumed here, 0 c/ (2 ) Q ). 

Observe that the sum of the output power at 0  and 0 m   is always unity, implying 

0 0( ) X . Similar results can also be found for an arbitrary input frequency  . Note 

0f fm− 0f mf+
0f
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that the zero power exchange is also in agreement with the fact that the coupled mode 

equations in [29] through which (3.4.1)-(3.4.3) are derived involve Hermittian matrices. 

Fig. 41 can also lead to interesting conclusions regarding the distribution of power 

to the different intermodulation products. When m 0  , i.e., when there is no 

modulation, the intermodulation products are zero. As m  increases, the 

intermodulation products grow and they become maximum at the optimum coupling 

condition, when isolation is maximum (theoretically infinite). Past the optimum 

modulation point, the effect of modulation is reduced and the same happens to the 

intermodulation products. It is evident that intermodulation is a necessary by-product in 

order to break reciprocity. Nevertheless, by increasing the Q-factor, it is possible to 

significantly reduce the intermodulation strength, as can be seen in Fig. 41 for the two 

different values of the Q-factor.  

The coupled-mode theory analysis states that power exchange is identically zero 

for any modulation amplitude and frequency, which obviously cannot be true: a 

parametric circuit with resonant frequency 0  is generally unstable for m 02 n  , 

where n is an integer. The reason why coupled-mode theory fails to predict possible 

power exchange between the modulation and input signals is that it is developed by 

assuming power conservation, which for systems described by symmetrical frequency 

matrices Ω , as in Fig. 40, remains valid even in the case of modulation. 

For this reason, investigation of the power properties of the parametric circulator 

in Fig. 40 can only be achieved through full-wave or circuit models for particular 

topologies. Here, we will use the wye circuit in Fig. 39, which exhibits favorable 

characteristics in terms of performance and implementation complexity, and for which 
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the scattering parameters can be expressed in closed form. As the general network in Fig. 

40, the circuit in Fig. 39 supports right- and left-handed rotating modes. By applying 

Kirchhoff’s laws and assuming an incident signal from port 1 with frequency   and 

unitary amplitude, it is possible to show that the complex amplitudes of these modes 

satisfy  
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where q+ and q– are the amplitudes of the right- and left-handed modes. Note that (3.4.7) 

is exact, despite the fact that it does not involve a common mode, as one might expect for 

a network with rotational symmetry. The reason is that the common mode of the wye 

circuit is a trivial with zero frequency and zero stored energy, practically implying that it 

does not really exist. (3.4.7) can be analytically solved to give 
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where  
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2 2 2 2 2 2
0 0 m m 0 m( 2 ( ][ 2 ( )) )i i                 , 0 (2 )Z L  , and m 0 m (2 )CC   . 

Interestingly enough, the only harmonics existing in the wye resonator are m  . From 

q+ and q– it is possible to find the varactor charges as 
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 (3.4.10) 

The power supplied by the modulation signal to the network is essentially the 

power leaving the resonator at points A, B and C, which can be calculated through 

 m A A CB B C

1
Re{ } ,

2
P v i v i v i       (3.4.11) 

where 

 
2

2

1
lim ( ) .

T

T T
f f t dt

T 
   (3.4.12) 

The currents and voltages at points A, B, and C are given by 

 
A 1 A inc 0 1

B 2 2

3

B 0

C 3 C 0

, 2 ,

, ,

, .

i ti q v V e Z q

i q v Z q

i q v Z q

  

  

  

 
 
 

 (3.4.13) 

Inserting (3.4.10) and (3.4.13) into (3.4.11) yields 

  2 20
m inc

1
Re{ ( ) } .

3 2
i t Z

P V q q e q q
           (3.4.14) 
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By taking the complex conjugate of (3.4.7) and multiplying the resulting expressions q+ 

and q–, we can show that 

 m mm
m 2

Re{ } .
4

i t i tP q q e q q
C

C
e  


 
      (3.4.15) 

Further reduction in (3.4.15) leads to the closed form expression for the exchanged power 

as 

  2 6 20 m m
inc m 0 mm 2 2

m p

2
.

3

Z
P CV

     
    
   

 (3.4.16) 

The exchanged power (red curve), along with the transferred power in the main 

band (blue), is shown in Fig. 42(a). Here, the given terms are normalized for a Q-factor of 

14, and the capacitor frequency and amplitude modulation is ωm = 0.2ω0 and δCm = 0.02, 

respectively. It is clear that the minimum power exchanged is very small compared to the 

main power transmitted in the circuit. Further investigation shows that the exchange 

power resembles a bipolar waveform, with 4 poles located at the counter rotating (ωm+, 

ωm-) and inter-modulation offset (ωm+ - ωm, ωm- + ωm) frequencies, as displayed in Fig. 

42(a). The power exchange is red-shifted, expected from the analysis in Section 3.3, and 

asymmetric about the center resonance, ω0. When comparing the power terms for a single 

frequency (ω0  = 1), the exchange power is 29.6 dB lower than the main band.   
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Figure 42: The main band, P0, (blue) and exchanged power, Pm, (red) between the 
carrier and modulation signals under optimum circulator conditions. (a) 
Response for theory developed in equations (3.4.1) and (3.4.16). Shown for 
q-factor of 14 and ωm = 0.2ω0. Highlighted region is the FWHM bandwidth 
used in integration region. (b) Simulation of circulator with ideal, linear 
capacitor implementation. Simulation of full lumped-element circulator 
without loss (c) and with loss (d). Additional peaks between 130 and 170 
MHz are higher order inter-modulation products attributed to circuit filters.  

The comparison of power levels at a given frequency provides insight, however, a 

realistic system requires a finite frequency spectrum in order to transfer information. 

When the power is integrated over the full width half maximum (FWHM) (even about ω0  

= 1), as shown as the highlighted region in Fig. 42(a), the exchanged power is more than 

35.5 dB lower than the transmitted power. Other fractional bandwidths also show that the 
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exchange power is extremely small compared to the transmitted power (40.8 dB for 10%, 

24 dB for 25%, and 23 dB for 40%). 

To validate the coupled-mode-theory and transmission-line results, a lumped-

element angular-momentum circulator, similar to the one in [29], was simulated in 

Agilent’s Advanced Design System (ADS) through the harmonic-balance technique.  The 

Q-factor of the circulator is around 15, the resonance frequency 198 MHz and the 

modulation frequency 40 MHz. In such a realistic scenario, the harmonics with order 

larger than one ( m m3 ,2 ,      ) are generally non-zero and for this reason they 

were considered in the simulation. The number of harmonics was selected so that 

convergence in the results was ensured. 

To begin with, an ideal, lossless lumped-element circulator consisting of linear 

capacitors (C0 = 1.13 pF) and 560 nH inductors was simulated. The main and exchange 

power for this circuit is shown in Fig. 43(b). The response agrees extremely well with the 

transmission line theory, with the four poles present at the appropriate frequencies. Next, 

the linear capacitor was replaced with a high fidelity varactor model (Skyworks SVM 

1233), to include the parasitic effects, but without loss. The power response is shown in 

Fig. 42(c). The power exchange response is similar to the linear capacitor simulation, but 

now includes two additional peaks (identified as m, 2mf f f f    in Fig. 42(c)). These 

additional peaks related to the higher order intermodulation products for a resonance 

attributed to the filter ( f  ~ 90 MHz). These terms were not present in frequency space of 

Fig. 42(b), but were lower in frequency due to the lower static capacitance of the linear 

capacitor in the simulation.  Additionally, the main transmission power is reduced from 

the linear capacitor simulation due to filters and some power being distributed to 
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harmonics introduced by the non-linearities.  Lastly, the addition of loss in the resonant 

inductor and varactors leads to the high fidelity response of Fig. 42(d). Here, the 

transmitted power is further reduced due to the loss in the resonant elements, while the 

exchange power response remains very similar to previous simulations.  Overall, the 

exchanged power is very small (the power exchange is less than 1% of the input power 

near operational band in all cases) in both theory and simulation, essentially validating 

the passivity of the angular-momentum approach. 
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Chapter 4 Realizing Angular-Momentum-Biased Circulators  

4.1 AM CIRCULATOR - LUMPED-ELEMENT DESIGN  

We realized the structure of Fig. 34 at RF using three basic L-C circuit tanks, as in 

Fig. 43(a), where the capacitance C  is equally distributed on both sides of the 

inductance L  to maintain a symmetric structure. The resonance frequency modulation is 

achieved via capacitance modulation, commonly obtained in RF with varactor diodes. 

These diodes are biased by two signals, a static one dcV , which provides the required 

reverse bias and controls the static capacitance, and a RF one mv  with frequency m  and 

amplitude mV , providing the time modulation. Assuming that the resonators are coupled to 

each other through capacitances cC , as in Fig. 43(b), the frequencies of the common and 

rotating states are c 0 c1 2C C    and 0 c c( 3 2) ( )2C C C C     , 

respectively, where 0 1 LC   is the static resonance frequency of each tank. Then, if 

the amplitude of the capacitance modulation is mC , the frequency modulation 

amplitude is found as m m (2 )CC   . The frequency c  should be designed to be 

as far as possible from   in order for the common mode not to affect the operation of 

the structure at  , at which non-reciprocity occurs. In the lumped-element circuit of Fig. 

43(b) this condition is satisfied by taking cC  , or equivalently by coupling the tanks 

through short circuits, yielding c 0   and 0 3 2   . 

                                                 
[75] Authors: N.A. Estep, D.L. Sounas, J. Soric, and A. Alù.                 
Author Contributions: N.A.E. performed the experiment, D.L.S. and N.A.E. designed the structure and 
conducted the numerical calculations and theoretical modelling. J.S. helped in the selection and modelling 
of the modulation varactors. A.A. directed and supervised the work.   
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The non-reciprocal response of the circuit of Fig. 43(b) is demonstrated by 

capacitively coupling it to three microstrip transmission lines, realizing a three-port 

device. Exciting the structure from, e.g., port 1 at frequency   results in the excitation 

of ma  and m-a  with same amplitude and opposite phase R L   , due to the 

symmetrical distribution of these states around  . Then, the signals at ports 2 and 3 are 

proportional to R L2 3 34i ii ie e e e    and R L2 3 34i ii ie e e e    , respectively, as the 

superposition of ma  and m-a  at these ports. If m  and m  are selected so that 

R L 6     , the signal at port 3 is identically zero, while the one at port 2 is non-

zero, routing the incident power from port 1 to port 2. Due to the symmetry of the 

structure with respect to its ports, incident power from ports 2 and 3 is similarly routed to 

ports 3 and 1, thus realizing the functionality of a non-reciprocal circulator with infinite 

isolation. Notice, that the above description assumes a weak excitation of the common 

state, which makes clear the importance of choosing its resonance frequency as far as 

possible from the resonance frequency of the rotating states. 
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Figure 43: Circuit implementation of the non-reciprocal coupled-resonator loop at radio 
frequencies [75]. (a) A single resonant circuit of the proposed device: an L-
C tank with modulated capacitance. The capacitance is equally distributed at 
both sides of the inductance to maintain symmetry. Capacitance modulation 
is achieved with varactor diodes, controlled by a static signal dcV  and the 

modulation signal m ( )v t . (b) A loop formed by three identical resonators 

coupled through three identical capacitances cC . The loop is further coupled 

to three external microstrip lines carrying the external signal. 

The complete circuit is designed to resonate at two frequencies: the modulation 

frequency mf  and the RF one RFf , as shown in Fig. 44. By doing this we avoid three 

additional ports for feeding the varactors with the modulation signals and filters required 

to prevent the RF signal to leak into the modulation ports and vice versa, thus 

significantly simplifying the design. The dual resonance of the ring is achieved by 

combining two complementary networks. The first one is designed to resonate at the RF 

2C(t) 2C(t) 

Vdc + vm(t) 

(a) 
1 2 

3 
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frequency RFf , and it consists of three L-C tanks with series inductances 2L  and shunt 

capacitances 2C  (red elements in Fig. 44), following the topology of Fig. 43.  

 

Figure 44: Implementation of the RF non-reciprocal coupled-resonator ring, including 
the biasing and modulation networks [75]. The ring consists of two 
complementary networks: one operating at the RF frequency (red elements) 
and another one operating at the modulation frequency (blue elements). 
Ports 1, 2 and 3 provide access to the ring for the RF and modulation 
signals. Ports 4, 5 and 6 provide access to the ring for the static biasing 
voltage.  
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The resonance frequency of this network can be found from elementary circuit 

analysis as 

 
RF RF

2 2

3 1
2 .

2 C
f

L
    (4.1.1) 

The second network is designed to resonate at the modulation frequency mf , and it 

consists of three L-C tanks with series capacitances 1C  and shunt inductances 1L  (blue 

elements in Fig. 44). The resonance frequency of this network reads 

 m m

1 1

2 1
2 .

3 L
f

C
    (4.1.2) 

Note that the complementarity of the networks is necessary in order to obtain two 

different modulation frequencies: if both networks were of the same type (e.g. series 

inductance and shunt capacitance), the distinct series and shunt elements would simply 

add up, resulting in a single resonance. 

Eqs. (4.1.1) and (4.1.2) strictly hold when no coupling exists between the 

corresponding networks. Such a condition is impossible in the setup of Fig. 44. However, 

it may be possible to minimize the effect of each network on the other, so that Eqs. 

(4.1.1) and (4.1.2) are approximately correct. This is achieved by selecting the 

inductances and capacitances as follows 

 RF 2 RF 1
RF 1 RF 2

1 1
, ,L L

C C
 

 
   (4.1.3) 

 m m 1
m 1 m 2

2

1 1
, .L L

C C
 

 
   (4.1.4) 
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Eq. (4.1.3) makes sure that the total series and shunt impedances at RFf  are 

approximately equal to the impedances of 2L  and 2C , respectively. Similarly, Eq. (4.1.4) 

makes sure that the total series and shunt impedances at mf  are approximately equal to the 

impedances of 1C  and 1L , respectively. In practice, the “much larger” and “much smaller” 

conditions of Eqs. (4.1.3) and (4.1.4) are considered to hold if the compared quantities 

are different by a factor of 10: 

 2 RF
RF 1 R

RF
2F

1

10 10
, ,L L

C C
 

 
  (4.1.5) 

 m 2 m
m 1

1
m 2

0.1 0.1
, .L L

C C
 

 
   (4.1.6) 

Eqs. (4.1.5) and (4.1.6) are mutually satisfied if RF m10  . Then, solving Eqs. 

(4.1.1), (4.1.2), (4.1.5) and (4.1.6) yields 

 1 2 1 2

40 40
, .

3 3
L L C C   (4.1.7) 

The capacitance 2C  is the static capacitance of the varactors. For the varactor 

model used in our design (Skyworks SMV 1237) and for a static bias voltage of 3 V, 

2 pF30 C  . Then, if we choose RF 15 Hz0 Mf  , 2L  is selected as 28 nH, according to 

Eq. (4.1.1), and mf  as 15 MHz (10 time smaller than RFf ), Furthermore, 1 37 nH0 L   and 

1 40 pF0 C  , according to Eq. (4.1.7). 

The ring needs to be coupled to three external lines through capacitances cC , as 

explained in the main text. The value of cC  determines the Q-factor of the ring: the 

leakage to the external ports increases and the Q-factor decreases as cC  increases. The Q-
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factor should be selected so that the intermodulation products fall outside the operation 

band, a condition which is satisfied if m RFQf f . Therefore, here cC  was selected so that 

the Q-factor is around 10. A coupling inductor was also added in parallel to cC  in order to 

achieve independent control over the Q-factor at mf . If such an inductor was not added, 

the Q-factor at mf  would be much larger than at RFf , due to the larger impedance of cC , 

leading to an undesirably high sensitivity with respect to mf . Note that the sensitivity of 

the measured structure should be small in order to be able to compensate unpredicted 

variations in the operation bandwidth of other components in the setup, such as the 

modulation phase shifters. 

The DC signal required for the biasing of the varactors is fed through three 

separate ports (ports 4, 5 and 6), as shown in the Fig. 44, and choke inductors rfcL  are 

used to prevent the RF and modulation signals from leaking to the DC source. For this 

purpose, any value larger than 1 μH  is sufficient. Indeed, the impedance of a 1 μ H  

inductor at the RF frequency of 150 MHz is 943  , which is much larger than the 

impedance 35   of the varactor 2C , meaning that the RF signal leaking to the DC source 

is very small. Similarly, the impedance of a 1 μH  inductor at the modulation frequency of 

15 MHz is 94  , which is fairly larger than the impedance 35   of the inductance 1L , 

meaning that the modulation signal leaking to the DC source is small. The capacitance 

dcbC  blocks the DC signal from leaking to the ground through 1L , while appearing as a 

short circuit at RF and modulation frequencies. A value of 10 μF , corresponding to an 

impedance of 1 mΩ  and 0.1 mΩ  at 15 MHz and 150 MHz, respectively, is enough for 

this purpose. 
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Table 1: Lumped elements used for the realization of the circuit in the Fig. 44. 

The values of the lumped elements used in the fabricated layout are listed in Table 

1. Notice, that these values are slightly different than the ones calculated before due to 

restrictions in the available commercial elements. The elements are of 0603 and 0805 

surface mount technology (SMT). Furthermore, the circuit was fabricated in a FR4 

substrate and the external microstrip lines as well as the ones connecting the elements 

between themselves were designed to have a characteristic impedance of 50  . 
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Figure 45: The modulation signals are generated by the waveform generator shown on 
the left-hand side. The output of the generator is split evenly into three 
signals through a power divider and then routed to three phase shifters that 
provide the necessary phase difference of 120° between the modulation 
signals. The phase shifters are powered with a DC source and 
potentiometers are used to control their phase. The outputs of the phase 
shifters are connected to the low-pass ports of three diplexers in order to 
combine the modulation signals with the RF ones. The high-pass ports of 
two of the diplexers are connected to the ports of a vector network analyzer 
(VNA), while the high-pass port of the third diplexer is terminated to a 
matched load. The outputs of the diplexers are led to ports 1, 2 and 3 of the 
ring. Rotating the diplexers where the VNA ports are connected allows for 
the measurement of all the S-Parameters of the circuit. The static biasing 
signal for the varactor is provided by a DC source connected to ports 4, 5 
and 6 of the ring [75]. 
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Table 2: Equipment used during the measurement of the coupled-resonator ring. 

The complete experimental setup is shown in the Fig. 45 and a list of the 

associated equipment is provided in the Table 2. A waveform generator provides the 

modulation signal, which is split into three equal parts by means of a power divider. The 

output signals are then led to three phase shifters, which provide the required phase 

difference of 120° for the modulation signals of the three coupled resonators. The phase 

shifters are powered by a DC source and their phase shift is controlled via 

potentiometers. The output of the phase shifters are connected to the low-pass ports of 

three diplexers, whose output is connected to the RF/modulation ports of the ring. The 

high-pass ports of two of the diplexers are connected to the VNA ports while the high-

pass port of the third diplexer is terminated to a matched load. The diplexers combine the 

modulation and RF signals and at the same time provide infinite isolation between the RF 

and modulation paths. By rotating the diplexers, which are connected to the VNA ports, it 

is possible to measure all the S-Parameters of the circuit. The DC signal for biasing of the 

varactors is provided by a DC source connected to ports 4, 5 and 6 of the ring. 
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The realized device was designed to resonate at 170 MHz with a Q-factor of about 

10 for dc 1.99V  V and m 0V  . The modulation frequency was set to 15 MHz, in order 

for the intermodulation by-products at frequencies m  , created by the secondary sub-

states of ma  and m-a , to fall outside the resonance band, whose bandwidth is here 

around 10 MHz. Fig. 46 shows a photograph of the experimental setup and the fabricated 

prototype. We underline here the deeply subwavelength size of the realized device (~

75 ), simply based on three lumped resonant circuit tanks.  

 

Figure 46: (a) Full experimental setup and (b) Fabricated prototype [75]. The maximum 
dimension of the structure is 2 cm, corresponding to an electrical size of 

75  at 200 MHz. 

Without modulation, the signal is equally split at the two output ports, as expected 

from symmetry, and the system is fully reciprocal (Fig. 47(a)). When the modulation 

signal is switched on, the symmetry is broken and power is unequally split. By varying 

the modulation amplitude it is possible to find a value for which all the energy entering 

port 1 is routed to port 3, corresponding to R L 6     . This condition is satisfied for 

(a) 
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2 3 
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m 0.6V   V, as can be seen in Fig. 47(b): at the resonance frequency of 170 MHz, power 

incident to ports 1, 2 and 3 is routed to ports 2, 3 and 1, respectively, demonstrating the 

operation of an ideal, magnetic-free, deeply subwavelength linear circulator. For 

comparison, Fig. 47(c) shows the S-parameters obtained using full-wave and circuit 

simulations: the agreement with the measurement is excellent. 

 

Figure 47: Response versus frequency [75]. (a) Measured transmission from port 1 to 
ports 2 and 3 without modulation ( m 0V   V). The power is equally split to 

the output ports. (b) Measured scattering parameters when m 0.6V   V. 

Incident power to ports 1, 2 and 3 is transmitted to ports 3, 1 and 2, 
respectively, thus realizing a three-port circulator. (c) Simulated response of 
the loop for the case of panel (b): excellent agreement between theory and 
experiment is observed. All results correspond to dc 1.99V   V. 

In order to get a deeper insight into the effect of mV  on the device operation, Fig. 

48(a) shows the transmission between ports 1 and 2 at resonance versus mV . For m 0V  , 

21 12S S , as expected. Increasing mV  results in a decrease of 21S  and an increase of 12S  

until m 0.6V   V, where 21 0S  . Past this point, 21S  and 12S get closer, as expected when 

we depart from the destructive interference condition. For very large values of mV , 21S  

and 12S  both tend to zero, since the counter-rotating states move far from   and, 

therefore, are weakly excited at  . The magnitude of the asymmetry between 21S  and 
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12S is measured by the isolation 12 21S S , plotted in Fig. 48(b) in logarithmic scale versus 

mV . At the optimum modulation voltage m 0.6V   V, 12S is over 4 orders of magnitude 

larger than 21S , indicating giant non-reciprocity, well above the levels of any commercial 

magnetic-based device. 

 

Figure 48: Response versus modulation [75]. (a) Measured and simulated transmission 
between ports 1 and 2. Transmission is different for opposite propagation 
directions, indicating non-reciprocity. Maximum contrast is observed for 

m 0.6V   V. The results correspond to dc 1.99V   V. (b) Isolation ( 12 21S S ) 

in logarithmic scale for the same biasing conditions as in panel b. For 

m 0.6V   V, the difference between 12S  and 21S  is over four orders of 

magnitude. 

Despite the impressive isolation provided by the design in Fig. 44, there are 

drawbacks that led to a re-evaluation of the design. The concept of angular-momentum-

induced non-reciprocity was experimentally demonstrated in [75] through a ring of 

capacitively-modulated L-C resonators, as in Fig. 49(a). The most straightforward way to 

realize a modulated capacitor is through a varactor and a diplexer, as in Fig. 49(b). If the 
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transmission phase between the high-frequency and common ports of the diplexer is zero, 

the input impedance at the high-frequency port is equal to the impedance of the 

modulated varactor. Furthermore, the diplexer makes sure that the modulation and input 

signals do not mix with each other outside the varactor. Although functional, the circuit 

in Fig. 49(b) has a major drawback: the diplexer is part of the resonant network – the 

input signal needs to go through the diplexer in order to reach the varactor – potentially 

complicating the design and detrimentally affecting the overall performance. For this 

reason, [75] followed an alternative approach to move the diplexers outside the resonant 

circuit. By combining the circuit in Fig. 49(a) with a dual one consisting of shunt 

inductors and series capacitors, the ring in [75] was designed to resonate at both the input 

and modulation frequencies, thus eliminating the need of separate modulation lines and 

diplexers. Such an approach led to very large isolation (more than 50 dB), but also quite 

large insertion loss (22 dB). The reason is that, in order to avoid interference between the 

main and modulation sub-circuits of the ring, the modulation frequency had to be selected 

quite far from the input frequency, forcing the circulator to operate in the sub-optimal 

bottom-left area in Fig. 38. Indeed, from the data provided in [75], it can be found that 

the corresponding circuit operates at point A in Fig. 38. 
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Figure 49: Circulator based on a ring resonator [29], as in [75]. (a) Ring of 
capacitively-modulated L-C resonators. (b) Implementation of a variable 
capacitor through a varactor and a diplexer. 

The aforementioned problems related to the ring topology may be overcome using 

the wye topology in Fig. 50(a). Modulation can be achieved by connecting varactors 

between filters, as in Fig. 50(b), which provide a low-impedance path for the DC and 

modulation signals, while they exhibit very large impedance for the input signal. A 

simple implementation of such a filter involves a parallel combination of a choke 

inductor ( rfcL ), which provides a low-impedance path for the DC signal, and a series L-C 

band-pass filter ( bpfL  and bpfC ), which, if designed to resonate at the modulation 

frequency, provides a low-impedance path for the modulation signal. Furthermore, the 

filter is designed to have large impedance at the resonance frequency of the circuit, in 

order to block the input signal. For the filters connecting the circuit ports and the 

inductors L, such as the filter on the left-hand side of the varactor in Fig. 50(b), this 
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condition is satisfied if filter 0 0( )Z Z  , where filter 0( )Z   is the filter impedance at the 

circuit resonance frequency 0 , considering that, at 0 , the impedance at the position of 

the filters looking towards the ports and the varactors is 0Z  and 0 2Z , respectively. 

Through a similar analysis, it is possible to show that the condition filter 0 0( )Z Z   is also 

sufficient to minimize the flow of the input signal through the filter connected at the 

center node of the circuit [filter at the right-hand side of the varactor in Fig. 50(b)]. Filters 

can also be connected between the external lines and the inductors of the wye circuit in 

order to prevent the modulation signals from leaking to the external lines. These filters 

can be simple parallel L-C band-stop filters ( bsfL  and bsfC ), which, although exhibiting a 

narrow bandwidth, they can effectively block the monochromatic modulation signal. 

Interestingly, none of the filters in the wye-circuit design intercepts the path of the input 

signal inside the resonant circuit formed by the varactors and the inductors L , and as a 

result their effect on the operation of the device at the input frequency is expected to be 

minimal. 
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Figure 50: Circulator based on a wye resonator [29]. (a) Capacitively-modulated 
lumped-element wye resonator. The parallel LC bandstop filters ( bsfL  and 

bsfC ) are used to prevent the modulation signal from leaking to the external 

lines. (b) Implementation of the variable capacitors through varactors and 
filters that create a low-impedance path for bias and modulation signals, 
while they block the input signal. 

The resonant states of the wye resonator can be calculated by terminating the 

transmission lines with matched loads, and assuming no external excitation. Conservation 

of charge at the center node of the circuit demands that the total charge of the three 

capacitors is zero. This fact excludes the presence of a common state, which would 

require all the capacitors to have the same charge and, as a result, the total charge to be 

non-zero. On the other hand, charge conservation is satisfied by the rotating states, since 

for such states the total charge is by definition zero, as a result of their three-fold 

symmetry, with 120 deg phase difference between different resonators. The three-fold 
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symmetry of the rotating states also requires that the voltage at the center node of the 

circuit is zero. Then, considering that at resonance the current flow is non-zero, the total 

impedance of each branch is zero, yielding 
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 (4.1.8) 

where 0Z  is the characteristic impedance of the transmission lines. For    , i.e., for 

a circuit with a large Q-factor, 1 LC  . Then, a capacitance perturbation mC  

produces a frequency perturbation m 0 m (2 )CC   . Loss in the inductors and 

varactors can be represented by a series resistance R , and in such a case 0Z  in (4.1.8) 

should be replaced by 0Z R . It is obvious that 0 (2 )Z L  and (2 )R L  correspond to the 

leakage and loss decay rates, ,cpl   and ,loss  , respectively. Then, the corresponding Q-

factors read cpl 0 0Q L C Z L Z   and lossQ L C R L R  . The fact that the 

wye resonator does not have a common state indicates that the coupled-mode analysis in 

Section 3.1 is only restricted by the parametric oscillation condition m 2  . A full 

circuit analysis for the wye resonator, including modulation and excitation from the 

external lines, is presented in Section 3.3.  
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Table 3: Lumped elements values for the circuit in Fig. 50. 

Based on the above analysis, we designed a circulator for operation at 200 MHz (

200 MHz  ), with a target resonance bandwidth of 10% ( 10Q  ). Considering that R 

can be much smaller than Z0 for good-quality inductors, we find that the values of L and 

C that satisfy these specifications are 400 nH and 1.6 pF, respectively. Based on these 

values and commercially available components, we choose the lumped elements listed in 

Table 3. Furthermore, the modulation frequency is chosen as 40 MHz, resulting in 

operation at point B in Fig. 38, where the insertion loss and intermodulation products are 

3.1 dB and –16  dB, respectively. Note that at 200 MHz the inductors Lbpf and Lrfc operate 

above self-resonance, and as a result, their effective response at this frequency is 

capacitive and very lossy. However, since their impedance is very large, they can still 

Component Value Equivalent Series 
Resistance 

Self-Resonance 
Frequency 

L 560 nH ~ 12 Ω at 200 MHz 
(Q-factor of 55) 600 MHz 

C 
Skyworks 
SMV1233 
Vdc ~ 4.5 V 

1.2 Ω – 

Lbpf Coilcraft 1.5 µH – 190 MHz 

Cbpf 

American 
Technical 

Ceramics 11 pF 
~ 0.05 Ω ~ 4 GHz 

Lrfc Coilcraft 1.5 µH – 190 MHz 
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efficiently prevent the input signal from leaking to the modulation lines. This fact shows 

that for the wye topology, contrary to the ring topology, it is not necessary for the filter 

components to operate optimally at both the modulation and input frequencies, thereby 

significantly relaxing the design constraints. Note that, for simplicity purposes, in the 

proof-of-concept design presented here, the band-stop filters used to prevent the 

modulation signals from leaking to the external lines [filters Lbsf-Cbsf in Fig. 50(a)] are 

omitted. The effect of these filters on the input signal is minimal, since the capacitors 

Cbsf, through which the input signal primarily flows, have a self-resonance frequency 

much larger than the operation frequency. 

 

Figure 51: Scattering parameters for the lumped-element wye resonator without 
modulation and under the optimum modulation condition [29]. (a) Full-
wave simulations. (b) Coupled-mode analysis. 

Fig. 51 presents the S-parameters with and without modulation as obtained 

through full-wave simulations and the coupled-mode equations presented in Section 3.1. 

Simulations were performed by considering full SPICE models for the varactors and the 

filter inductors, while inductors L were modeled through a series combination of 
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inductances and resistances, as listed in Table 3, considering that these inductors operate 

well below their self-resonances. Without modulation, the input power is equally split to 

the output ports. When modulation is applied, the signal is transmitted to port 3 with 

insertion loss of about 3.4 dB, a little larger than at point B in Fig. 38, due to additional 

loss introduced by the filters, while the power transmitted to port 2 is negligible (isolation 

is larger than 50 dB), showing a remarkable improvement in the performance compared 

to the ring topology. The numerical results are in excellent agreement with the theoretical 

ones, apart from a slight shift in the resonance frequency in simulations when the 

modulation is applied. As shown in Section 3.3, this is a second-order effect with respect 

to mC  that cannot be captured by first-order coupled-mode theory.  

Fig. 51 shows that the circuit exhibits a return loss of –10 dB, which, although not 

ideal, can be considered acceptable for practical applications. An interesting question that 

now arises is whether the return loss may be reduced by impedance matching. Matching 

the proposed circulator is equivalent to matching a lossy device, considering that 

intermodulation conversion in the proposed circulator is by all means a loss channel at 

the fundamental frequency, given the overall passivity of the device. Ideal matching of a 

lossy three-port circulator is possible only if the common mode of the circulator can 

absorb power. This can be proven by considering that the S-matrix of a lossy circulator 

with infinite isolation reads 
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Then, it is not difficult to show that the eigenvalue associated with the common 

mode of the system, i.e., the reflection coefficient of the common mode, is given by 

11 21S S  and, as a result, the power absorbed by the common mode is equal to 
2

11 211 .S S   It is clear that zero reflection, 11 0S  , is only possible if the common 

mode can absorb power, as mentioned before. For the simple wye resonators considered 

here such an effect is impossible, because these resonators do not support a common 

mode at all. Nevertheless, according to (3.1.30), it is possible to achieve very small 

values of 11S  if the modulation parameters are appropriately selected so that 21S  is close 

to unity. Total reflection cancellation may be possible by adding networks between the 

ports and the branches of the circulator that allow the excitation of a common mode. 

However, this is not a trivial problem and falls beyond the scope of the present work. 

 

Figure 52: S-parameters at input and intermodulation frequencies in the case of the 
lumped-element resonator, for the modulation condition in Fig. 51 [29]. (a) 
Full-wave simulations. (b) Coupled-mode analysis. 

Intermodulation frequencies are unavoidable by-products of the proposed concept 

and, therefore, it is important to know how strong they are. Fig. 52 plots the S-parameters 
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at the center frequency 0f  and the inter-modulation frequencies 0 mf nf , for the 

modulation parameters in Fig. 51. Both in simulations and theory, the first-order 

intermodulation products 0 mf f  are about 14 dB lower than the output power, a bit 

higher than at point B in Fig. 38(c), due to additional loss in the filters. Numerical 

simulations reveal the existence of additional higher-order intermodulation products 

0 mf nf  with 1n  , which result from higher-order modulation terms at frequencies mnf , 

due to the non-linear response of the varactors. These products are much weaker than the 

first-order intermodulation products and they are completely absent for perfectly linear 

varactors, as shown in Section 3.1. 

 

Figure 53: Realized wye resonator [29]. (a) Measured scattering parameters when Vm = 
1.28 V and the DC biasing= 1.7 V. (b) Simulated response, now including 
shift in inductance for the filter inductors. (c) Experimental prototype of 
wye resonant circulator.  

The circuit in Fig. 50(a) was realized on a printed circuit board, as shown in Fig 

53(a). Modulation of the varactors was achieved through the circuit in Fig. 53(b), which 

is different from the one in Fig. 50(b) with respect to the position of the filters Lbpf-Cbpf-

Lrfc 
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Lrfc. In particular, in Fig. 53(b) these filters are connected at the varactors’ anodes, while 

in Fig. 50(b) they are connected between the external lines and the inductors L. At a first 

glance, this difference may look not important for the circulator operation. However, a 

closer inspection reveals that the impedance at the position of the filters towards the 

circuit ports in the circuit of Fig. 53(b) is 0 0Z R i L  , instead of 0Z  as in Fig. 50(b) 

and, as a result, the condition filter 0 0( ) ZZ    may not be sufficient. Indeed, for the 

lumped-element values in Table 3, the modulation circuit in Fig. 53(b) leads to a 

resonance at 150 MHz, instead of 200 MHz as for the modulation circuit in Fig. 50(b). 

Furthermore, insertion loss with the circuit in Fig. 53(b) is larger than with the circuit in 

Fig. 50(b), due to the significant loss of Lbpf and Lrfc at the input frequency, and the fact 

that the input signal can now flow through these inductors. Loss can be reduced by 

reducing the resonance frequency, since inductor loss typically decreases as frequency 

decreases. For the fabricated circuit, loss becomes minimum for a DC bias voltage of 1.1 

V and a resonance frequency of 130 MHz.  
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Figure 54: Experimental and numerical results for the circuit in Fig. 50(a) with the 
modulation network in Fig. 53(b) [29]. The lumped-element values are the 
same as in Table 3. 

Measured and simulated S-parameters for this geometry are presented in Fig. 54. 

These results provide a clear experimental demonstration of the non-reciprocal properties 

of the lumped-element wye circulator in Fig. 50(a), with isolation exceeding 50 dB. 

Furthermore, although insertion loss is larger than in Fig. 51, due to the sub-optimal 

connection of the filters Lbpf-Cbpf-Lrfc, as explained before, it is significantly smaller than 

in the preliminary design [75], which was based on the ring topology in Fig. 49(a). It is 

also worth noticing the good agreement between experimental and numerical results, 
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even in terms of fine features, such as the small bump at 140 MHz, which is related to the 

dispersive characteristics of Lbpf and Lrfc
1. The good agreement between experimental and 

numerical results is a strong indication that the numerical results in Fig. 51, 

corresponding to optimal connection of the filters Lbpf-Cbpf-Lrfc, are practically 

achievable. 

4.2 AM CIRCULATOR – DISTRIBUTED-ELEMENT DESIGN 

The circulator presented in the previous section is based on lumped elements and, 

as such, it is ideal for low-frequency applications. However, as the frequency increases, 

lumped components exhibit poorer performance, or they are totally unavailable. For this 

reason, in this section we present a distributed design for wireless-communications band 

(~ 2.2 GHz), which, like the lumped-element design, is based on the wye topology, but 

with inductors now replaced by transmission-line sections, as in Fig. 55. The wye 

resonator is coupled to external lines through the capacitors cplC . The modulation 

network is identical to the lumped-element case, with the only variation in the position of 

the band-stop filters, which are now connected between the external lines and the 

coupling capacitors. 

 

                                                 
1 This small bump disappears, if Lbpf and Lrfc are modeled as a series combination of dispersion-

less inductances and resistances. 
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Figure 55: Circulator based on a distributed wye resonator for high-frequency operation 
[29]. The varactors and adjacent transmission line sections provide the 
resonance of the circuit, while the capacitors Ccpl couple the resonator to the 
external transmission lines. 

Neglecting the coupling to external lines ( cpl 0C  ), the input impedance of the 

transmission-line section from the side of the varactors reads TL 0 cot )(Z iZ l , where 

0Z ,   and l  are the characteristic impedance, wavenumber and length of the 

transmission line segments. Similar to the lumped-element case, the input impedance of 

each branch as seen from the center node of the circuit should be zero at resonance, 

resulting in 

 

 0

1
)ot( ,c 0Z l

C



   (4.2.1) 

which is satisfied if the length of the transmission-line sections is between a 

quarter and half wavelength. In reality, the resonance frequency is slightly lower than 
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what predicted by (4.2.1), due to the coupling capacitors. The frequency perturbation due 

to a change in the varactor capacitance can be calculated from (4.2.1). In particular, by 

taking the derivative of (4.2.1) with respect to C  it can be shown that 

 0 0
0 0 0 0 0

2
,

2 1 [ 1 ( )]C l Z C Z C

C 
  

 
 

 (4.2.2) 

where 0  is the resonance frequency and 0  the corresponding transmission-line 

wavenumber. Considering that 0 0 0 01 2( )Z C Z C    and 0 2l  , we find that 

0 0 (4 )CC   , which shows that, in the case of the distributed element design, the 

frequency perturbation is smaller than in the case of the lumped-element design, where 

0 0 (2 )CC    , by at least a factor of two.  

 

Table 4: Geometrical parameters and lumped element values for the circuit in Fig. 
55. 

Element Value Equivalent Series 
Resistance  

Self-Resonance 
Frequency  

C Skyworks SMV1234 
Vdc ~ 4 V  0.8 Ω – 

 

Ccpl 0.3 pF 0.15 Ω 20 GHz 

Lbpf Coilcraft 56 nH  –  2.07 GHz 

Cbpf 2.85 pF 0.15 Ω 7 GHz 

Lrfc Coilcraft 56 nH  –  2.07 GHz 

Parameter Value 

Substrate Rogers 4350 

Substrate thickness 0.762 mm 

Microstrip width 1.55 mm 

Microstrip thickness 0.043 mm 

Microstrip length 22 mm 
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Based on (4.2.1), we designed a circulator for operation at 2.2 GHz. The 

geometrical parameters of the structure and the values of the lumped elements are 

provided in Table 4. The structure is selected to operate at point C in Fig. 38, where 

insertion loss is less than 2.5 dB and intermodulation products are –20 dB. For 

loss 160Q  , which was calculated by fitting coupled-mode theory to simulations in the 

case without modulation1, we found that the modulation frequency would be 400 MHz.  

 

Figure 56: Scattering parameters for the distributed wye resonator without modulation 
and under the optimum modulation condition [29]. (a) Full-wave 
simulations. (b) Coupled-mode analysis. 

                                                 
1 Transmission in the case without modulation can be found by substituting (3.1.25) into (3.1.26) 

with m m 0    as 21 cpl 0(2 3) [ ( ) ]S i      . By fitting this expression to numerical results, we can 

calculate   and cpl . Then loss cpl    and loss 0 loss( )2Q   . Note, that the value of the coupling capacitor is 

not important for the calculation  of lossQ , because lossQ  is an inherent property of the resonator. 
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Figure 57: S-parameters at input and intermodulation frequencies in the case of the 
distributed wye resonator, for the modulation condition in Fig. 56 [29]. (a) 
Full-wave simulations. (b) Coupled-mode analysis. 

Fig. 56 shows the S-parameters of the structure for the optimum modulation 

condition. Results are similar to the lumped element case, apart from a slight asymmetry 

in the simulated resonance curves, resulting from a higher-order resonance above 3 GHz, 

which does not exist in the lumped-element design. This asymmetry is not visible in the 

theoretical results, because this higher-order mode is neglected in coupled-mode analysis. 

Fig. 57 shows the S-parameters at the center and intermodulation frequencies, for the 

modulation condition in Fig. 56. The intermodulation product at 0 mf f  is 20 dB below 

the main signal at 0f , in perfect agreement with Fig. 38(c), while the intermodulation 

product at 0 mf f  is slightly larger than 0 mf f , due to the asymmetry created by the 

higher-order resonance.  
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4.3 BANDWIDTH ENHANCEMENT FOR ANGULAR-MOMENTUM-BIASED CIRCULATORS 

Previously, it was shown that the isolation and insertion loss of an angular-

momentum circulator is related to the decay rates, both due to losses and external line 

coupling, and the modulation frequency. More explicitly, the modulation requirements to 

achieve optimal isolation are inversely proportional to the quality factor of the resonance. 

From this intrinsic relationship, the question arises: Is it possible to extend the 

instantaneous bandwidth of the device, which is entangled with the quality factor of the 

resonance, while maintaining reasonable modulation requirements?  

Prior to addressing the question regarding angular-momentum-biasing bandwidth, 

it is helpful to consider other microwave structures with similar limitations. Transmission 

line (TL) impedance matching networks in microwave networks, for example the quarter-

wave transformer, are simple, passive designs. However, these matching schemes present 

a tradeoff between the effectiveness of the matching (minimum reflection coefficient) 

and the bandwidth. Alternatively, binomial or Chebyshev cascaded matching sub-

sections are utilized in an effort to improve the bandwidth performance [23].  Here, we 

will show that the same principles used to broaden TL matching be applied to improve 

the instantaneous bandwidth of an angular-momentum circulator. 

Consider two angular-momentum-biased circulators with individual resonances (


1,2

), where the scattering parameters are (repeated from Section 3.1 for clarity) 
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are found from the coupled-mode equations 
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where the total decay rate is the sum of the loss and leakage coupling rates (  
c


l
), 


m

is the modulation frequency, and 
m

is the optimum coupling coefficient. If we 

assume two circulators are translated about a center frequency (
0
) by a fixed value , 

then the resonant poles of each circulator may be found as 1,2 0   . 

 

Figure 58: Scattering response for two, non-reciprocal resonators tailored for a 
symmetric response around a desired frequency. When evenly spaced about 
the desired center frequency (ω0), the transmitted (S21) and isolated (S12) 
signals are identical, but translated about the center by a frequency shift, 
∆Ω. (a) The magnitude response is equal and (b) the phase is opposite for 
the lower (ω1) and higher (ω2) frequency resonators. In order to provide 
cancellation of the isolated signal, and thus expand the breadth of the 
device’s performance, one must subtract the individual ports for each 
resonator. 
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The scattering response of such as system is shown in Fig. 58, where the isolated 

(transmitted) path is shown as S12 (S21) in dashed lines (solid), and the higher (lower) 

resonant circulator at 
1
 (

2
) is shown in red (blue). From this figure, it is clear that the 

magnitude for each circulator is identical, for both signal paths, at 
0
with even 

symmetry. Alternatively, the two-way response for the two circulators is completely out 

of phase, with odd symmetry about 0 . In order to expand the instantaneous bandwidth of 

the complete structure, alignment notwithstanding, one must cancel the isolated signal 

paths, and therefore subtract the signal paths of the two circulators.   

 

Figure 59: Bandwidth enhancement with two resonators at optimum spacing. (a) 
Abstract layout for macro-circulator based on two independent circulators, 
with 90˚ phase blocks for the necessary signal cancellation. (b) Combined 
(single resonator) scattering response, shown in black (grey), as calculated 
from the coupled-mode theory expressions for the angular-momentum 
circulator. When the frequency separation is optimum ( 2

opt ) for two 

resonators (shown in inset), we obtain a complete null at ω0, but with a less 
pronounced side-bands offsetting the null.  Alternatively, the combined 
transmission signal no longer achieves the maximum due to the matching of 
the side bands, which is located outside the maximum transmission for the 
individual resonator. 
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An abstract electrical schematic tailored for bandwidth enhancement is pictured in 

Fig. 59(a). Here, we have two circulators, symmetrically resonating about a center 

frequency with the color scheme matching the response presented in Fig 58. In order to 

provide the signal cancellation required, three 90° hybrids are connected to the signal 

lines of lower resonant circulator ( 2 ). One may consider replacing the three 90° hybrids 

with two 180° hybrids, but the symmetry of the system will be broken and a full 

circulator scattering response will be lost.  

The expression in (4.3.2) is under the condition of optimum isolation at the center 

of the resonance, leading to the null found in the scattering plots. When we invoke the 

scattering cancellation technique for two angular-momentum circulators, the conditions 

for isolation are not only related to the device parameters (
m
,

m
, ), but the frequency 

separation of the two resonators, . One would expect the cancellation of the sidebands 

found in the isolated signal paths is related to the quality factor, Q, of the resonator (

Q 
0

(2 )). A closer investigation of the scattering for the macro-circulator will 

validate the relationship between the quality factor and frequency separation.  

The scattering response for an angular-momentum-biased circulator is based on 

the mixing of modes, where hybrid sub-states consists of primary and secondary states, 

leading to the complex expressions in (4.3.1) and (4.3.2). Assuming the modulation 

frequency (
m

) is large enough, the energy distributed in secondary states is negligible, 

and the scattering may be approximated by a simple, two state system.  Then, the 

scattering expressions for the primary states may be described as 
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where the frequency split in the degenerate modes is introduced by the resonant 

frequencies and decay rates, ω1,2 and γ1,2. The expressions in (4.3.3) are commonly used 

to describe magnetic-biased circulators [79], where the resonant frequencies are satisfied 

by the condition, 0 / 3     . For simplification, we will assume the decay rates, 

and thus quality factors, are identical for both circulators.   

Assuming two non-reciprocal resonators are equally offset from the center 

resonance by ∆Ω, as shown in Fig. 58, then the total scattering response may be found by 

the difference of the two signals, S21
T = S21

1- S21
2 and S12

T = S12
1- S12

2. The introduction 

of the frequency shift ∆Ω leads to a change of variable, where the resonant frequencies 

are now described as 
1 

0
  / 3 and 

2 
0
  / 3.  The 

combination of the two isolated ports leads to the power expression 
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Assuming complete cancellation at the center of the band ω0, and thus infinite 

isolation (S21
T → 0) and normalized frequency, then the relationship between the quality 

factor and the optimum frequency shift for ideal signal cancellation of the isolated port is 

 2

1

3
opt

Q
  . (4.3.5) 

The simple expression in (4.3.5) is merely an approximation for angular-momentum-

biased circulators, yet provides a close representation useful for physical implementation 

of the signal cancellation technique. 

The combined scattering response for two combined angular-momentum 

circulators is shown in Fig. 59(b).  The circulator parameters closely resemble the design 

presented in Section 4.1 and 4.2, where the operation is customized for Wi-Fi operation 

(f0 = 2.4 GHz, fm = 450 MHz, Q = 68). The results are based on the expressions in (4.3.1) 

and (4.3.2), as developed from the complete coupled-mode theory. A frequency 

separation of 2 0.0088opt   resulted in a broadened null in the isolation port (black 

dashed); within 4% of the approximate expression developed in (4.3.5).  For clarity, the 

individual scattering response at 
2
opt  0.0088 is displayed in the inset of Fig. 59(b). 

Compared to the scattering of a single circulator (grey), the side bands are less 

pronounced, with a gradual null at ω0. Whereas the isolation has been improved, the 

combined transmission suffers some attenuation due to the signal cancellation. Since the 

optimum cancellation occurs where the sidebands are aligned, the main transmission 

peaks no longer overlap, leading to a reduction in transmission.  
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Figure 60: Isolation for a two resonator, macro-circulator. (a) Combined (single 
resonator) isolation response, shown in black (grey), as calculated from the 
coupled-mode theory expressions for the angular-momentum circulator at 
optimum frequency separation ( 2

opt ). (b) Various frequency spacing with 

their respective isolation response. By reducing the requirement for infinite 
isolation at ω0, we may extend the instantaneous bandwidth. As the 
frequency spacing is increased, the local minima becomes more 
pronounced, thus limiting the maximum isolation across the operating band.     

For a design based on two circulator, the corresponding isolation for optimum 

separation is shown in Fig. 60(a). The isolation for two resonators (black) follows the 

same Lorentzian form as a single resonance (grey) circulator, but with a broad pole at ω0. 

The improvement in bandwidth is evident, with 366% increase for 30 dB and 230% for 

20 dB. If the requirements for ideal isolation are reduced (maximum isolation at ω0), then 

improvement in instantaneous bandwidth will be even larger. In Fig. 60(b), performance 

is shown for various isolation thresholds: ideal (black), 30 dB (red), 20 dB (blue), and 10 

dB (green). As previously presented, the optimum frequency spacing 2
opt  generates a 

single isolation peak at ω0. As the frequency spacing increases, a local minima is 

introduced, which grows with an increased . In this circumstance, the sidebands are 
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no longer aligned, with maximum cancellation occurring further away from the center 

point. The bottom of the local minima, determined by the amount of shifting past the 

optimum operating point, determines the maximum isolation within the band.  For 

example, we obtain five times the bandwidth for 30 dB isolation, as highlighted by the 

shaded red region in Fig. 60(b), and a 226% improvement in bandwidth for a constraint 

of 10 dB isolation, as shown in green.    

To validate the concept, signal cancellation of two angular-momentum circulators 

was simulated in Agilent ADS. The angular-momentum circulator consists of three 

microstrip transmission line stub resonators, each loaded with Skyworks SMV1234 

varactor diodes at the center, and connected to the external lines though coupling 

capacitors. Three 90° hybrids, each designed to operate at ω0, were included in the design 

simulation. A detailed presentation of the angular-momentum transmission line circulator 

is found in Section 4.2. By adjusting the DC biasing conditions of two identical 

circulators, we may tune the location of each resonance.  Once the static biasing is 

identified, each circulator must be optimized to provide an optimum and congruent 

response.  For simplicity, we fixed the modulation frequency for both resonators (here, fm 

= 350 MHz) and only adjusted the modulation amplitude (related to 
m

) in order to tune 

each circulator at a given resonance.   
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Figure 61: Simulated results for a two resonator, macro-circulator. (a) Simulated 
scattering response and (b) isolation for the two resonator, combined (two 
individual resonator) circulator, shown in black (blue and red). The results 
are in good agreement with the theory predicted from the coupled-mode 
expressions. (c) Simulation illustrating the bandwidth for various quality 
factors, for 10, 20 and 30 dB of isolation. Naturally, the instantaneous 
bandwidth will increase as the quality factor for the resonators is reduced, 
especially for lower isolation thresholds.   

The combined circulator scattering response (black), along with the individual 

resonator (red and blue), is shown in Fig. 61(a). Here, the coupling capacitors are 0.22 

pF, culminating in a quality factor of 60. As predicted from the coupled-mode theory, the 

signal cancellation, when circulators are properly spaced, creates a broadened null at the 

center of the two resonances. The isolation performance, seen in Fig. 61(b), is also 

broadened, with over 35 dB centered at 2.292 GHz. The isolation may be optimized at the 

center, but in an effort to maximize bandwidth, isolation of 35 dB was chosen as the 
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threshold. For isolation above 30 dB, the simulations illustrated a bandwidth 

improvement from 2.4 MHz to 15 MHz; over five times as large as a single circulator. 

The frequency spacing of the simulation is 0.009, which closely matches the coupled-

mode theory predictions (
2
 0.0091) and the expression in (4.3.5) (

2
 0.0096). 

Due to the non-linearity of the varactor diodes, each circulator will not be completely 

symmetric in the scattering response for different DC biasing conditions, in particular the 

sidebands of the isolation, thus limiting the effectiveness of the cancellation process. This 

may be improved, which will be discussed in Section 4.4. 

By adjusting the coupling capacitance, we may manipulate the quality factor and 

related bandwidth. In Fig. 61(c), the operational bandwidth for lower Q circulators is 

shown, for both a single circulator (dashed lines) and the combined, two-resonator 

structure (solid lines). Depending on the requirements of a given application, this process 

is translatable for a desired quality factor. It should be noted, however, that phase 

cancellation with a passive, 90° hybrid will break down for significantly low Q-factors. 

For significant bandwidth, the signal cancellation will fall out gradually, unless other 

phase cancellation processes are considered. 

It is reasonable to expand the signal cancellation process to more resonators, as 

the case with higher order multi-section matching, if there is some tangible benefit. If the 

process is expanded to four resonators, centered about a center frequency f0, then the 

signal summation may be expressed as  S21
T = (S21

1 + S21
3) - (S21

2 + S21
4) and S12

T = (S12
1 

+ S12
3) - (S12

2 + S12
4), as depicted in Fig 62(a). With the same approach developed for the 

two-resonator cancellation process, the scattering parameters for four angular-momentum 

circulators are combined to provide the total response (black) seen in Fig. 62(b). For 
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comparison, the scattering for a single resonator is shown in grey and the optimum 

spacing between resonators is shown in the inset. Here, we assume equal spacing 

between all four resonators. Alternative, more complex shifting may lead to more 

efficient scattering response, but not considered in the scope of the presented research. 

 

Figure 62: Bandwidth enhancement with four resonators at optimum spacing. (a) 
Abstract layout for macro-circulator based on four independent circulators, 
with 90˚ phase blocks for the necessary signal cancellation. (b) Combined 
(single resonator) scattering response, shown in black (grey), as calculated 
from the coupled-mode theory expressions for the angular-momentum 
circulator. When the frequency separation is optimum ( 4

opt ) for four 

resonators (shown in inset), we obtain a complete null at ω0. Similar to the 
two resonant circulator, there is a reduction in the total transmission (S21) 
and rippling is observed in the isolation signal (S12).  

The maximum transmission is reduced, as in the case with two resonators, due to 

the separation of the combined signals from the center. The effect is more pronounced 
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than the two-circulator combined; here, the spacing between subtracted signals is greater 

at the optimal operational condition 4 0.0026opt  . The isolation improvement, 

displayed in Fig. 63(a), is minimal for values over 30 dB; however, two local minima, 

symmetric about the center frequency, provide enhanced performance for lower isolation 

tolerance. For 10 dB of isolation, the four combined resonators lead to a 280% increase in 

bandwidth. By reducing the frequency spacing from the optimal condition (red trace in 

Fig. 63(b)), the rippling in the isolation response is reduced, resulting in a smooth, 15 dB 

isolation across the band. The local minima continue to grow past the optimum spacing, 

eventually leading to discrete, isolation regions, which is not desired. 

 

Figure 63: Isolation for a four resonator, macro-circulator. (a) Combined (single 
resonator) isolation response, shown in black (grey), as calculated from the 
coupled-mode theory expressions for the angular-momentum circulator at 
optimum frequency separation ( 4

opt ). (b) Various frequency spacing with 

their respective isolation response. If minimal rippling (local minima) is 
desired (red curve), then the ∆Ω should be smaller than the optimum case 
(black). However, the optimum frequency spacing results in the largest 
bandwidth for a 10 dB isolation threshold and peak isolation at ω0.   
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4.4 IMPROVING LINEARITY  

The angular-momentum-biasing technique requires a form of modulation, which 

may be accomplished with variable capacitors. Varactors are non-linear elements and, as 

such, they are also expected to affect the maximum power that can be handled by the 

device. Fig. 64 presents the output power and third-order intermodulation distortion 

versus the input power for an input signal consisting of two tones centered at 200 MHz 

for the lumped element device of Fig. 50, for which isolation is maximum.  

The capacitance for a two-port varactor is expressed as 

 
 

( ) n

DC

K
C V

V



, (4.4.1) 

where K is the capacitance constant, n is the power law exponent, ϕ the built-in junction 

potential, and VDC is the applied voltage. As in any non-linear circuit, power saturation 

and intermodulation distortion are second-order non-linear effects, related to the third 

power of the excitation signal or, in the case of varactors, to the coefficient 2C  in the 

polynomial expansion 2
0 1 2C C C v C v     of the varactor capacitance around the DC 

biasing point, dcV . 2C  depends on dcV , but not on the modulation signal, showing that 

modulation does not affect the non-linear properties of the structure. Ideally, we would 

like to completely cancel 2C , which is however impossible with simple varactors, like 

the ones used here. Nevertheless, 2C  decreases as dcV  increases, making possible to 

reduce non-linear distortion by increasing dcV .  
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Figure 64: Non-linear distortion in the case of the lumped-element wye resonator of 
Fig. 50(a) for excitation with a dual-tone signal, with frequencies centered at 
200 MHz and separated by 1.5 kHz [29]. The results correspond to full-
wave simulations. 

In order to understand this property better, we consider a particular example of a 

silicon hyperabrupt varactor, like the ones used in our design, with C-V relation 

0 J0 01C C V V  , where J0C  is the junction capacitance and 0V  the built-in voltage. In 

such scenario, 02
2

0 dc3 [8( ) ]C C V V  , implying that, if 0 dcV V  is increased by a factor 

of four and J0C  by a factor of two (the area of the varactor junction is increased by the 

same factor), 2C  is reduced by a factor of 16, implying an improvement of 12 dB for the 

maximum power handled by the device. A drawback of this approach is that 1C , which 
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determines the capacitance modulation, also decreases as dcV  increases, making necessary 

the use of a larger modulation voltage. In the previous example, 01 0 dc[2( )]C C V V   , 

implying that for an increase of 0 dcV V  by a factor of four the modulation voltage also is 

required to increase by the same factor. This trade-off between modulation voltage and 

maximum input power may be overcome through more advanced varactor topologies, 

such as the ones recently proposed in [80], where non-linear distortion and capacitance 

modulation can be independently controlled. 

 

Figure 65: Non-linear distortion in the case of the distributed wye resonator for 
excitation with a dual-tone signal, with frequencies centered at 2.2 GHz and 
separated by 15 kHz [29]. The results correspond to full-wave simulations. 
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Fig. 65 shows non-linear distortion for excitation by a pair of tones centered at 2.2 

GHz for a transmission-line based circulator. Fig. 65 shows the non-linear distortion for 

excitation by a pair of tones centered at 2.2 GHz. The maximum input power is slightly 

larger than in the lumped-element case, which is attributed to the larger VDC (VDC = 4 V) 

and the smaller Q-factor in the distributed design.  

 

Figure 66: Modulation topologies. (a) Single and (b) anti-series varactor modulation 
schemes.  

The trade-off between modulation voltage and maximum input power may be 

overcome through more advanced varactor topologies, such as the ones recently proposed 

in [80],[81], where non-linear distortion and capacitance modulation can be 

independently controlled. Instead of using a single varactor to provide the modulation, an 

anti-series topology is used, where two varactor diodes are mirrored with a center tap 

biasing. The two varactor topologies are illustrated in Fig. 66. With the anti-series 

topology, all higher order distortion terms (C1, C2, …) vanish under ideal circumstances, 
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when the power law exponent is n = 0.5. If an alternative value for n is required, then the 

opposing diodes must be scaled appropriately in order to minimize C2.   

 

Figure 67: Non-linear distortion in the case of the anti-series distributed wye resonator 
for excitation with a dual-tone signal, with frequencies centered at 2.13 GHz 
and separated by 15 kHz. The results correspond to full-wave simulations. 

In order to validate the linearity improvement principles descried in this section, 

an anti-series transmission line circulator was designed. The same physical stub resonator 

layout from Fig. 55 was applied, but with the new varactor scheme and larger biasing 

conditions. Here, the diodes were selected for a junction capacitance of 4.2 pF, DC bias 

of 11 V, and modulation amplitude of 12 V, in order to maintain a similar frequency 

response as the TL circulator in Fig. 56 (f0 ~ 2.2 GHz). The resulting linearity plot for 

maximum isolation in Fig. 67 presented a substantial improvement in linearity, where the 
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1 dB compression point is now approximately 30 dBm input power. It is evident that 

operating a higher biasing conditions, along with more complex modulation topologies, 

significantly improve linear performance of the angular-momentum-biased circulator.
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Chapter 5 Tunability for Angular-Momentum-Biased Circulators and 

RADAR Pulse Tracking 

5.1 TUNABILITY FOR ANGULAR-MOMENTUM-BIASED CIRCULATOR  

Another unique property of the proposed device consists in its real-time tunability 

features. The biasing voltage dcV , which provides the reverse biasing condition for the 

varactor diodes, determines their static capacitance, as pictured in Fig. 68(a). Therefore, 

dcV  can be used to actively control the static resonance frequency of the L-C tanks, and 

consequently the frequency band over which non-reciprocity occurs.  

 

Figure 68: Response versus static voltage [75]. (a) Changing L-C resonator due to 
applied bias and (b) measured isolation in logarithmic scale versus 
frequency for different values of dcV . In all cases, mV  is selected, based on 

our theory, so that isolation at resonance is maximum. 

Fig. 68(b) shows the measured isolation versus frequency for the lumped element 

circulator of Fig. 43, for dcV  varied between 1.73 V and 4.5 V. The non-reciprocal 
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response of the device can be efficiently tuned between 150 MHz and 210 MHz, 

corresponding to a relative bandwidth of over 30%. Across all this range, our measured 

isolation is above 40 dB. This strong tuning capability is an additional advantage of the 

proposed device compared to conventional magnetic-based microwave circulators, and it 

may be exploited in scenarios requiring dynamic tuning to balance changes in 

temperature or in the environment. The electronic spin applied to the proposed coupled-

resonator loop realizes the equivalent of a dynamically tunable, strongly biased 

ferromagnetic metamaterial substrate.  

5.2 CHIRP TRACKING WITH ANGULAR-MOMENTUM-BIASED CIRCULATORS 

Due to the electrical tunability of the presented angular-momentum-biased 

circulator, it is an ideal circuit for RADAR systems. Certain RADAR applications, such 

as automotive Doppler [82], use a transient waveform that increases in frequency though 

the duration of the pulse, also known as a chirp [83]. The chirp time domain waveform, 

along with the spectrogram, are shown in Fig. 69. This type of waveform is used as a 

pulse compression technique, which increases range resolution while improving the 

signal to noise ratio [84].  Current chirp systems use conventional ferromagnetic 

circulators, where isolation ranges between 10 to 20 dB throughout the chirp frequency 

spectrum [85]. In order to demonstrate the principle operation in this environment, a 

lumped-element AM circulator, similar to Fig. 54, was designed for the VHF band (f0 ~ 

255 MHz, fm ~ 67 MHz), which included the anti-series topology described in Section 

4.4.  
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Figure 69: Chirp waveform commonly found in RADAR and Doppler applications. 
The frequency of the waveform increases/decreases with time, which is 
advantageous for determining distance and speed of a target. 

In order to evaluate the circulator in this transient domain, we must make minor 

additions to the circuit.  In the time domain, the isolated signal port will be comprised of 

all frequency content, to include the inter-modulation products. In order to reduce the 

effects of these signals, we must incorporate additional filters to the circulator.  In 

addition to a multi-stage Chebyshev band-pass filter [23], one may apply two cascaded 

diplexers.    A diplexer is a reciprocal filter, with separates signals though low and high 

pass filters. Here, we cascade two diplexers, where each is tuned to maximize isolation of 

both inter-modulation signals ( 0 mf f ) while allowing the main band to propagate 

unimpeded (f0).  
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Figure 70: Cascaded diplexers. (a) Electrical schematic illustrating the isolation of the 
inter-modulation products while allowing propagation of the main band and 
(b) scattering parameters for the Chirp simulation. 

 

Figure 71: Circulator performance at the boundary of the chirp waveform. (a) 
Scattering parameters and (b) isolation at f1 (235 MHz) and f2 (281 MHz). 

 Fig. 70 illustrates the diplexer design, along with the scattering response. Here, 

we used the ADS filter designer, which automates the Butterworth multi-stage low and 

pass filters. It is designed for the 3dB rolloff to occur halfway between the center 

0f fm− 0f mf+
0f

1P

HPF

LPF

HPF

LPF

2P

0f0 mf f− 0 mf f+

(a) (b) Frequency (MHz) 

S
-P

ar
am

et
er

s 
(d

B
)  

0f
0f

1f 1f
1f

2f

(b) Frequency (MHz) 

S
-P

ar
am

et
er

s 
(d

B
)  

Frequency (MHz) 

Is
ol

at
io

n 
(d

B
)  

(a) 



146 

 

frequency and the inter-modulation products. Based on the center band (f0), the device 

provides roughly 30 dB of isolation for the two inter-modulation bands.  It should be 

noted that there is a tradeoff between the level of inter-modulation isolation and the 

dynamic range in tunability, which will be presented shortly. 

 

Figure 72: Time domain simulation of circulator at the center of the operational band 
(f0 ~ 255 MHz).  Here the conditions are: VDC = 9.5 V, Vm = 7.7 V. The 
Fourier transform is shown in the inset.  

Before progressing to a scenario with a chirp waveform, it is beneficial to 

investigate the performance at the boundaries for the time harmonic case, i.e., isolation at 

f1 and f2 in the steady state. As seen in Fig. 71, the circulator provides significant 

isolation; over 50 dB at 235 and 280 MHz. For these conditions, merely the biasing (VDC 
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= 7 to 12.5 V) and modulation amplitude (Vm = 6 to 10 V) were altered. As seen in Fig. 

71(a), the scattering response is asymmetric on the exterior side-band (lower frequency 

for f1 and higher for f2) for both operating points.  This is due to the close operation at the 

roll-off of the diplexers (seen in Fig. 70), which limits the spectrum of tunability for the 

circulator. We will use these operating points as the range for the following chirp 

demonstration, which corresponds to a normalized range of approximately 20%. An 

example of the time domain simulation at the center of the band (f0 ~ 255 MHz) is shown 

in Fig. 72, with the Fourier transform shown in the inset.   

For signal transition between the boundary of f1 and f2, we must alter the 

circulator control signals. Here, we assign a sequence window of 10 µs.  The modulation 

and carrier signals may then be represented as,   

 

   

0 2
1

0

1
sin 2

2
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rf rf rf rf

m m m m m
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 

 

    
 

  
, (5.2.1) 

where 0
rfV   0

mV  is the starting amplitude, rfk   mk is the chirp (modulation) rate, and rf  

 m  is the phase offset. The phase offset for the modulation will be 0˚, 120˚ and 240˚ for 

each of the three sources, as described in the experimental demonstration. The 

modulation rate, as opposed to the chirp rate, is for the growth in the modulation 

amplitude and not an increase in oscillation over time.  The modulation frequency 

remains constant during the course of the chirp pulse. The representation of the control 

signals can be found in Fig. 73. The chirp input pulse, with a chirp rate of 39 MHz/µs, is 

shown in the time and frequency domain (Figs. 73(a) and (b)). The DC biasing is a 

smooth step function, rising from 7.2 to 12.5 V in 10 µs. The modulation signal (fm ~ 67 
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MHz) increases from 6.2 to 10 V in the same interval. These sources were selected based 

on the optimum operating conditions for isolation, as seen in Fig. 71. 

 

Figure 73: Circulator control signals for chirp scenario. (a) Time domain and (b) 
Fourier transform of the input chirp signal, illustrating the increasing 
oscillations in time. (c) DC biasing and (d) modulation signals. The 
modulation signal increases in time, from 6.2 to 10 V (partial time sequence 
shown). 

With the control signals shown in Fig. 73, we are able to maintain significant 

isolation throughout the time window, validating isolation from f1 to f2.  The time domain 

voltage output for the transmission (blue trace) and isolation (red trace) ports is shown in 

Fig. 74. The Fourier transform at different time intervals is shown in Fig. 75. Fig. 75(a) is 

the transmission port, and demonstrates a strong output signal that follows the chirp rate, 

(a) (b) 

(c) (d) 
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as expected. The isolated port, shown in Fig. 75(b), also follows the chirp change in time, 

but at much lower power levels. The results show that the circulator provides more than 

20 dB isolation throughout the pulse interval. Here, we also see leakage of the inter-

modulation products, when they are within the passband of the cascaded diplexers.  In 

order to avoid these signals, one must increase the rate of attenuation, or rolloff, which 

will reduce the range of tunability. Other filter networks may be incorporated, which 

could eliminate the inter-modulation signals without limiting the range of circulator 

operation. 

 

Figure 74: Transient response for angular-momentum-biased circulator to chirp pulse. 
Control signals based on Fig. 73. 
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Figure 75: Fourier transform of time domain signal in Fig. 74.  This simulation 
demonstrates the circulator’s ability to track a chirp pulse, providing over 20 
dB of isolation throughout.   

Note that this simulation is not optimized to take advantage of the angular-

momentum’s instantaneous tunability, but merely an extrapolation of the control 

parameters at the boundary, as shown in Fig. 73. A more appropriate solution would be a 

more extensive calibration of the control signals, at many frequency points within the 

tunable range. While this is more challenging from a simulation perspective, a calibration 

table would allow for optimization of isolation as the circulator tracks the chirp pulse.   

These simulations show that the angular-momentum-biased circulator is able to 

track a time variant, oscillating signal.  However, a RADAR system based on chirp pulse 

compression functions by analyzing the delay in the transmit and backscatter chirp 

signals.  The change in frequency between these two pulses, which are functions of the 

backscattering object distance and the chirp rate, must be simultaneously processed by 

the circulator, regardless of technology (ferrite or angular-momentum-biased). Therefore, 

the operation of the angular-momentum-biased circulator in these RADAR systems may 
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be restricted to round trip delays that are within the instantaneous operating band of the 

circulator. The tunability of the circulator may be utilized for given operating regions, 

where the maximum delay is still within the instantaneous operating region.   
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Chapter 6 Conclusions and Future Work    

In this dissertation, we introduced two general concepts based on microwave 

metamaterials that can drastically improve the performance and reduce the dimensions of 

current devices aimed at microwave generation, detection, and isolation. First, we 

presented the analysis of an NIMW constructed of stacked, patterned parallel plates based 

on a TL model. The periodic structure supports a TM NI band, due to the effects of the 

loading resonators and confinement of the TM mode below cut-off. We developed a 

homogenized metamaterial model that predicts negative permittivity and permeability, as 

well as a non-zero magneto-electric coupling coefficient within the NI propagation band. 

The developed TL model accurately describes the propagation properties of this NI mode 

and can be used to demonstrate the generation of a bandpass, typical of NI materials, to 

properly describe the mutual coupling in the metamaterial, and to provide circuital 

insights into its behavior for optimization and design purposes. Next, we analyzed how a 

small modification in the unit cell can suppress the bi-anisotropy while maintaining the 

NI mode of interest, realizing a low-permeability metamaterial. Finally, we discussed the 

optimal configuration for the excitation of this metamaterial from free-space. We believe 

that these results may open important venues in the design, optimization and realization 

of metamaterials for high-power, electron-beam applications, as well as active 

metamaterial technology. 

Then, we investigated the concept of spatiotemporally modulated coupled 

resonator networks for the realization of magnet-less microwave circulators. A rigorous 

analytical model was developed, through which the exact condition for obtaining infinite 

isolation was derived. The derived model, validated with numerical simulations, allows 
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determining in closed form the required modulation parameters for given lossy Q-factor, 

desired insertion loss and intermodulation products. Achieving low insertion loss 

generally requires large modulation parameters, while low intermodulation products can 

be achieved by increasing only the modulation frequency, irrespective of the modulation 

amplitude. Based on the analytical model, two circulators were designed for VHF and 

wireless communications bands. Both designs were based on wye resonators, which were 

shown to be easier to realize and lead to better performance than ring resonators. Lumped 

and distributed elements were used for the low- and high-frequency designs, respectively. 

Both designs exhibit remarkable performance in terms of insertion loss and isolation, 

very close to commercial standards for magnetic circulators. In addition to obvious 

advantages in terms of cost, weight and size reduction, an important advantage of the 

proposed magnet-less circulators is their tunability and noise performance. Power 

handling is limited by the varactors through which modulation is achieved, but it can be 

improved by either increasing the DC bias of the varactors or using more advanced 

varactor configurations. The proposed designs offer a large degree of flexibility in the 

selection of the modulation frequency, which can be made substantially lower than the 

signal frequency, significantly simplifying the design of the modulation networks. 

However, the modulation frequency should not be very low, in order to achieve enough 

distance between the input and intermodulation frequencies, which is important for the 

efficient rejection of intermodulation products using suitable filters. The research to-date 

constitute an important step towards the realization of integrated circulators, which may 

allow achieving full-duplex operation in wireless communications systems. We also point 

out that the proposed designs are well suited to push these concepts to very low and very 
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high frequencies, up to ranges in which magnetic circulators are not practical, 

respectively for the lumped and distributed-element designs. We also envision the 

realization of the proposed rotating modulation of coupled-resonator loops in photonic 

crystal technology, for which high-Q-factor coupled cavities may be implemented and 

efficiently modulated. Our research also represents a new demonstration of the exciting 

possibilities offered by dynamic modulation of coupled-resonator networks, with unique 

control over the flow of light, in the context of recently presented concepts of photonic 

topological edge states and effective magnetic field for photons. 

Angular-momentum-biasing and reverse Cherenkov radiation concepts may be 

independently utilized, but for specific circumstances, they may coalesce into a single, 

microwave system. Consider a coherent microwave generator, complete with source, 

energy extraction ports, waveguides, and finally an antenna. We may replace a 

conventional source, such as a magnetron, with NI structure tailored for reverse 

Cherenkov radiation, similar to backward wave oscillators (BWOs). Once the wave 

energy is extracted, a non-reciprocal device is always present to protect the source from 

reflected energy. Generally, the isolator or circulator is in the form of a magnetically 

biased ferromagnetic waveguide. Here, one may replace this component with a magnet-

less angular-momentum-biased device, reducing cost while limiting the constraints of 

ferromagnetic materials. One important limitation of conventional magnetic-based 

circulators is power handling, which is inherently limited. Waveguide-based angular-

momentum-biased isolators may be able to handle significantly larger power levels than 

in ferrite materials, opening an ideal venue for the implementation and integration of the 

two concepts put forward in this work.             
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