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This dissertation focuses on the development of computational models

and algorithms related to diffuse reflectance spectroscopy. Specifically, this

work aims to advance diffuse reflectance spectroscopy to a technique that is

capable of measuring depth dependent properties in tissue.

First, we introduce the Monte Carlo lookup table (MCLUT) method

for extracting optical properties from diffuse reflectance spectra. Next, we ex-

tend this method to a two-layer tissue geometry so that it can extract depth

dependent properties in tissue. We then develop a computational model that

relates photon sampling depth to optical properties and probe geometry. This

model can be used to aid in design of application specific diffuse reflectance

probes. In order to provide justification for using a two-layer model for ex-

tracting tissue properties, we show that the use of a one-layer model can lead

to significant errors in the extracted optical properties. Lastly, we use our

two-layer MCLUT model and a probe that was designed based on our sam-

pling depth model to extract tissue properties from the skin of 80 subjects at
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5 anatomical locations. The results agree with previously published values for

skin properties and show that can diffuse reflectance spectroscopy can be used

to measured depth dependent properties in tissue.
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Chapter 1

Introduction

1.1 Diffuse Reflectance Spectroscopy and Applications

Diffuse reflectance spectroscopy (DRS) is a technique that uses light

to non-invasively measure the optical properties of tissue. In DRS, light is

injected into the tissue, undergoes scattering and absorption, and a portion of

light is reemitted to the surface and collected for analysis (see Figure 1.1). The

collected light is called the diffuse reflectance, and this light contain quantita-

tive information about the tissue’s structure, compositions, and biochemical

properties. DRS has been used in many different biomedical applications in-

cluding tissue diagnostics for cervical cancer [1], breast cancer [2], oral cancer

[3], lung cancer [4], esophageal [5] and gastrointestinal cancer [6], as well as

monitoring of therapeutic procedures [7].

1.2 Instrumentation

A typical setup for measuring reflectance spectra consist of a broadband

light source, a flexible optical fiber probe to direct the light to the tissue and

collect the reemitted light, and a spectrometer to disperse and detect the

measured signal. A computer is used to control the spectrometer and store

1



Figure 1.1: This is a simplified schematic of how a typical diffuse reflectance
spectroscopy system works. Light is injected into the tissue and at some
distance from the source, called the source-detector separation (SDS), the
reflected light is detected.

2



the collected signal.

In addition to having inexpensive and simple instrumentation, another

advantage of DRS is that it can be performed quickly and noninvasively. Ad-

ditionally, the simple instrumentation used in DRS can easily be modified for

specific applications. The most common DRS system uses a fiber based probe

where one or more fibers connected to the light source is placed in contact

with the tissue and delivers light to the tissue. At a distance from the source,

called the source detector separation (SDS), is another set of fibers that col-

lects the reflected light and sends it to the spectrometer for analysis. While

the instrumentation for DRS is very simple, the accurate extraction of optical

properties from the collected signal provides a significant challenge. A com-

putational model is needed to relate the collected signal to tissue properties.

1.3 Modeling and Data Analysis

1.3.1 Scattering Coefficient

The two wavelength-dependent optical properties used to describe the

scattering and absorption properties of tissue are the scattering coefficient

(µs(λ)) and the absorption coefficient (µa(λ)). The scattering of light in tissue

is not isotropic (having an equal probability of scattering in any direction),

but is strongly in the forward direction. Because of this, scattering in tissue

is often described using the reduced scattering coefficient (µ′s(λ)). Using the

anisotropy factor (g(λ)), µ′s(λ) can be calculated as shown in Equation 1.1.

3



µ′s(λ) = µs(λ)[1− g(λ)]. (1.1)

The anisotropy factor (g(λ)) is a measure of the forward direction retained

after a scattering event and is equal to the average cosine of the scattering

angle.

Over a wide range of values for tissue properties, the decrease in µ′s(λ)

as a function of wavelength has been shown to be well described by a power

law. The single power law shown in equation 1.2 has been widely used to

describe µ′s(λ).

µ′s(λ) = µ′s(λ0)

(
λ

λ0

)−B
(1.2)

The two parameters, µ′s(λ0) and B, can be extracted to describe the tissue

scattering properties when the wavelength dependence of scattering is modeled

using Equation 1.2. µ′s(λ0) is related to the magnitude of scattering and B is

related to the size of the scatterers.

1.3.2 Absorption Coefficient

The Beer-Lambert law (Equation 1.3) describes the attenuation of light

that has passed through a non-scattering, absorbing solution.

I(λ) = I0(λ)e−ε(λ)cL (1.3)
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Where I0 is the initial intensity of the light, ε is the extinction coefficient of

the absorber, c is the concentration of the absorber, and L is the path length

(the distance the light travels through the absorbing solution). The absorption

parameter, µa(λ), can be calculated by using Equation 1.4 for when there are

multiple absorbers.

µa(λ) =
N∑

i=1

εi(λ)ci (1.4)

Where N is the number of absorbers, εi(λ) is the wavelength dependent ex-

tinction coefficient of absorber i, and ci is the concentration of absorber i. The

concentration values ci can be extracted to describe the absorption properties

of the tissue. A model of light transport is needed to separate and quantify

the absorption and scattering coefficients. Many of these models are based on

the radiative transport equation.

1.3.3 Radiative Transport Equation

The radiative transport equation (RTE) describes the propagation of

light through a medium in terms of a conservation law that accounts for gains

and losses of photons due to scattering and absorption. The specific intensity,

I(r, ŝ), is the intensity at position r in the direction ŝ and obeys the radiative

transport equation which is shown in Equation 1.5.

ŝ · ∇I + (µa + µs)I = µs

∫
p(ŝ, ŝ)I(r, ŝ′)dŝ′ (1.5)
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where µa and µs are the absorption and scattering coefficients and p is the

phase function. The RTE can only be solved numerically and requires simpli-

fications in order to obtain a closed form solutions. One such solution is the

diffusion approximation.

1.3.4 The Diffusion Approximation

The diffusion approximation is a solution to the RTE that assumes light

transport is dominated by scattering (minimal absorption) and that scatter-

ing is isotropic [8]. In tissue, scattering is not isotropic, so to satisfy this

assumption, µ′s is used instead of µs. By correcting scattering using g, it can

be treated similarly to isotropic scattering. In addition to isotropic scattering,

there must be a sufficiently large number of scattering events before the photon

is absorbed in order for the diffusion approximation to be valid. A commonly

used rule to ensure that the diffuse approximation is valid is that µ′s/µs should

be greater than 10. For probe based systems, the SDS must be greater than

1 or 2 transport mean free paths which is defined as 1/[µ′s + µa]. For many

medical applications, such as measuring the properties of highly absorbing tis-

sue, or applications that require short SDSs, the diffusion approximation is not

valid. In these cases, computational methods, such as Monte Carlo simulation,

can be used.
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1.3.5 Monte Carlo Simulations

Monte Carlo (MC) simulation is a computational technique that can

be used to provide an exact solution to the RTE. In the MC method, a large

number of photons (> 1 × 107) are launched into a medium that is defined

by it’s geometry, index of refraction, µs, µa, scattering phase function, and

g [9]. During the simulation, “photons” are injected into the tissue and the

step size is determined based on the selection of a random number [0,1] and

the local attenuation coefficient of the medium. At the end of each step, the

weight of the photon is reduced by absorption. The photon is then redirected

by a scattering event with the direction determined by a random number

and the phase (or scattering) function. Once the trajectory is calculated, the

photon is then moved a random distance and the whole process repeats (see

Figure 1.2). Monte Carlo simulations can be time consuming because of their

computational intensity and the large number of photons required to achieve

a solution without significant stochastic noise.

1.3.6 Inverse Models

The models for light transport previously described are examples of

forward models. A forward model is where the model parameters are defined

a priori and then the output is data. In a typical real-world application,

you have data that’s been collected and you’d like to determine the model

parameters. To solve this type of problem you need what is called an inverse

model. For non-linear inverse problems, an iterative optimization algorithm

7
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Figure 1.2: Flow chart of the Monte Carlo simulation for photon transport.
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can be used to find a solution. Typically, these work by first making an

initial guess, computing the error, and making more guesses until the error is

minimized or some other criteria has been met. Because these optimization

techniques are iterative, and depending on the dimensionality of the problem

can take a lot of iterations, it’s necessary that the computational intensity of

each iteration is minimal. This is one reason for the limited application of

Monte Carlo simulations in inverse models.

1.4 Outline of Thesis

In applications with highly absorbing tissues where short SDSs are nec-

essary, the diffusion approximation is not valid and Monte Carlo simulation

must be used to model light transport. However, the computational intensity

of Monte Carlo simulations and the use of iterative techniques required for

solving inverse problems presents a serious problem when trying to extract

model parameters from clinical data. In Chapter 2, we present a solution to

this problem based on what we call the Monte Carlo lookup table method. In

this method, Monte Carlo simulations are run over a range of optical property

combinations, then the values are saved in a lookup table so that they can be

referred to when using the inverse model. This allows for significant speedup

compared to running the Monte Carlo simulations during the inverse model

and also provides the accuracy that comes with using Monte Carlo simula-

tions. This technique was validated using optical phantoms and was found to

be extremely accurate [10].
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Most models of tissue used in DRS assume that the tissue is homoge-

neous (i.e. one-layer). In reality, tissue is composed of multiple layers with

different optical properties. One example is skin, where you have the epidermis

(containing melanin) and the dermis (containing hemoglobin). The use of a

homogenous model in these cases can lead to significant errors in the extracted

properties. Additionally, using a multi-layered model allows for the extraction

of depth-dependent optical properties, which can provide diagnostically useful

information. In Chapter 3, we extend the Monte Carlo lookup table method

to two-layers. This is accomplished by increasing the dimensions of the lookup

table so that a second layer in included [11].

One of the main findings from the two-layer model discussed in chapter

3 is that the accuracy of the extracted parameters was highly dependent on

the thickness of the top-layer. This is due to the limited sampling depth of

the probe that we used for the measurements. You can only measure the

properties of a medium if light has passed through that medium. So when

the top layer was very think, the errors for the bottom layer properties were

high, and when the top layer was very thin, the errors for the top layer were

very high. Based on this finding, we wanted to determine the relationship

between the geometry of a DRS probe, the optical properties of the tissue,

and the sampling depth of this photons. This was done in Chapter 4 using a

combination of experimental, computational, and analytical approaches [12].

As discussed in Chapter 3, using a homogenous model to analyze DRS

spectra can lead to errors in the extracted properties. In Chapter 5 we explore

10



this idea in detail. This is accomplished by first creating modeled spectra

using a physiologically realistic two-layer model of skin and then using a ho-

mogeneous model to extract the properties from those spectra. We can then

compare the parameters used to create the two-layer spectra to the extracted

parameters and determine the specific errors caused by using a one-layer as-

sumption [13].

In Chapter 6, the work described in the previous chapters is applied

to in vivo DRS skin data collected from 80 different subjects on 5 different

anatomical locations. The Monte Carlo lookup table method described in

Chapters 2 and 3 is used to analyze the data. The depth sampling work

described in Chapter 4 was used to aid in the design of a specialized probe made

for skin applications. The depth dependent properties extracted from the in

vivo data agreed with published results of the properties of skin. These results

are promising, and show that DRS has potential to be used for measuring

depth dependent properties in tissue for clinical applications.
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Chapter 2

One-Layer Monte Carlo Lookup Table Model

This chapter is modified from “Monte Carlo lookup table-based inverse

model for extracting optical properties from tissue-simulating phantoms us-

ing diffuse reflectance spectroscopy” published in The Journal of Biomedical

Optics, 20131 [10].

2.1 Background

Diffuse reflectance spectroscopy (DRS) has been widely used to charac-

terize tissue optical properties for disease diagnosis [6, 14–16]. Typically, DRS

uses a fiber to deliver light to tissue. The delivered light is both scattered

and absorbed by the tissue and is then recollected by another fiber a short

distance from the source fiber. The collected light, or diffuse reflectance, con-

tains quantitative information about tissue structure and composition. While

the instrumentation for a DRS system is very simple, the accurate extraction

of optical properties from the collected signal is a significant challenge. An

1R. Hennessy, S.L. Lim, M.K. Markey, & S.W. Tunnell, “Monte Carlo Lookup Table-
Based Inverse Model for Extracting Optical Properties from Tissue Simulating Phan-
toms Using Diffuse Reflectance Spectroscopy.” Journal of Biomedical Optics, 18(3), 037003
(March 2013). R. Hennessy developed the computational model. S.L. Lim performed the
experimental work. M.K. Markey and J.W. Tunnell were advisors.
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accurate tissue model is needed to relate the collected signal to tissue opti-

cal properties. One method for analyzing diffuse reflectance spectra relies on

the solution to the diffusion approximation of the radiative transport equa-

tion. However, the diffuse approximation is not valid for short source-detector

separations or in highly absorbing tissue [8].

Because most cancers originate in the epithelial layer, it is necessary to

use probes with a short source-detector distance in order to sample photons

that travel primarily through the epithelial layer [1]. Additionally, angiogene-

sis, an indicator of early cancer, can cause a significant increase in absorption

due to blood. Unfortunately, the diffusion approximation is not valid in these

regimes. Recently, reflectance lookup tables have been used to analyze diffuse

reflectance spectra [17, 18]. These lookup tables are created in two different

ways: experimental measurements of phantoms with known optical properties

[17] or Monte Carlo simulations [19]. Creating a lookup table (LUT) with

experimental measurements has the advantage of incorporating unknown sys-

tem responses into the LUT. However, the creation of an experimental LUT is

time-consuming, and the accuracy is dependent on the skill and experience of

the investigator. The Monte Carlo method is especially useful from creating

an LUT, because it provides the ability to model complex probe geometries

and tissue structures. However, intensive computation is required to achieve

results with desirable variance, which can make it extremely time-consuming

to populate an LUT containing thousands of values.

Much prior work has been undertaken to improve the speed and ef-
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ficiency of the Monte Carlo method for modeling light transport in turbid

media. These methods can be separated into three groups:

1. methods that use the information from a small set of Monte Carlo simu-

lations and scale the results to calculate a wide range of optical properties

[20],

2. methods that use geometry splitting techniques to increase the fraction

of useful photons [21], and

3. methods that parallelize the Monte Carlo simulations [22].

The first set of methods has the advantage of not requiring a large

number of simulations to create and LUT. However, errors arise because the

photon trajectory information necessary to perform the scaling operation can

be recorded only in several depth intervals with finite widths [23]. Geometry

splitting techniques decrease the number of photons need for a simulation to

converge, but their implementation is very difficult for complex probe geome-

tries. The third set of methods uses classical Monte Carlo simulations and

therefore does not make any sacrifices in accuracy, flexibility, or implementa-

tion difficulty. Speedup is achieved by simulating multiple photons simulta-

neously on different processors. Because each photon is independent of every

other photon, this problem is considered “embarrassingly parallel.” Alerstam

et al. have shown that general-purpose graphic processing units (GPGPUs)

can increase the speed of Monte Carlo simulations of photon transport by
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three orders of magnitude on a relatively inexpensive GPU when compared to

the sequential implementation [22]. We present, for the first time, a Monte

Carlo LUT (MCLUT) based model where all values in the LUT were created

by independent Monte Carlo simulations by using a parallel implementation

on a GPGPU.

2.2 Creation of the Lookup Table

A two-dimensional Monte Carlo code written in ANSI C implemented

on an NVIDIA GTX 560 Ti GPU with NVIDIA’s Compute Unified Device Ar-

chitecture (CUDA) was used to simulate photon reflectance in a single-layer

tissue model on 386 parallel threads [22]. The multiply with carry random

number generator was used. The refractive index above the tissue was set

to 1.452 to match the refractive index of the fiber, and the refractive index

of the tissue was set to 1.33 to match the refractive index of the phantoms.

To test the effect of errors in the refractive index, we created LUTs with

different refractive indices and repeated the extraction of optical properties

with the different LUTs. We found a 5% error rate in the refractive index

corresponds to error increases of 1.3% for extracted µ′s values and 0.8% for

extracted µa values. To prevent photons from exiting the tissue volume, the

radius and width of the tissue volume were set to 3 cm. A total of 1 × 106

photons were launched to obtain the impulse response. To ensure stochastic

noise would be sufficiently low in LUT location with high albedo, 100 sepa-

rate MC simulations were performed with the optical properties that would
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give the lowest value of reflectance. We found that using 1 × 106 photons

reduced the standard deviation of the 100 different reflectance values to less

than 0.5% of the mean. The diffuse reflectance for our specific probe geom-

etry was then calculated by convolving the impulse response with the beam

profile [24]. Our probe was modeled using a Gaussian sapped beam profile of

collimated light with a diameter of 200 µm, a detector diameter of 200 µm,

and a source-detector separation of 250 µm. The diffuse reflectance values

for all physiologically realistic combinations of scattering and absorption were

calculated using the GPGPU Monte Carlo implementation with the tissue and

probe geometry described above. Twenty evenly spaced increments were used

for both scattering (0 to 50 cm−1) and absorption (1 to 50 cm−1), meaning

a total of 400 separate Monte Carlo simulations were needed to create the

LUT. The Henyey-Greenstein phase function was used for sampling scattering

angles. The scattering anisotropy (g) was set to 0.85 for all simulations. For

the range of g values present in human tissue (g > 0.8), it has been shown [20]

that the diffuse reflectance will be the same for any values of µs and g that

generate the same µ′s. The resulting MCLUT is shown in Figure 2.1. It took

2 minutes to run the 400 separate Monte Carlo simulations.

2.3 Forward and Inverse Models

For the forward model used to generate diffuse reflectance spectra, the

reduced scattering coefficient was contained to the form
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Figure 2.1: The resulting lookup table [R(µ′s, µa)] created using 400 separate
Monte Carlo simulations. Each Monte Carlo simulation was used to calculate
a reflectance value for a given scattering coefficient and absorption coefficient.

µ′s(λ) = µ′s(λ0)×
(
λ

λ0

)−B
(2.1)

where λ0 = 630 nm. The absorption coefficient was calculated using

µa(λ) =
N∑

i=1

ln 10εi(λ)Ci (2.2)

where εi(λ is the wavelength-dependent extinction coefficient of a chromophore,

Ci is the concentration of that chromophore, and N is the number of chro-

mophores. Depending on the type of tissue sampled and the wavelength range

of interest, any number of chromophores can be used to calculate µa(λ). Once

µ′s(λ) and µa(λ) are calculated, the MCLUT can be used to generate a modeled
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Figure 2.2: Flowcharts for the (a) forward and (b) inverse models of one-layer
diffuse reflectance used to create modeled spectra and to fit the MCLUT model
to the reflectance data.

reflectance spectrum. Cubic splines were used to interpolate between values

in the LUT. Figure 2.2(a) shows the forward model of diffuse reflectance.

Figure 2.2(b) shows the inverse model used to fit our diffuse reflectance

spectra. First, we made an initial guess for the optical properties, and then the

forward model was used to generate a spectrum. Next, the sum of squares error

between the predicted reflectance and the measured reflectance was calculated

using

δ =
K∑

i=1

[Rm(λi)−Re(λi)]
2 , (2.3)

where δ is the sum of squares error, K is the number of wavelength points, Rm
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is the measured spectrum, Re is the modeled spectrum, and λi is the wave-

length. The parameters are then iteratively updated until the sum of squares

error is minimized. An interior-point nonlinear optimization routine proved

in the MATLAB optimization toolbox (Mathworks, Nattick, Massachusetts)

was used as the optimization algorithm. The average fit time was 1.3 seconds,

with the number of iterations limited to 5000 and the termination tolerance

on the error function set to 1× 10−3. Because the modeled spectra are in ab-

solute units (photons counted) and the measured spectra are in units relative

to a baseline calibration measurement, it is necessary to perform a calibration

so that the modeled spectra can be compared. Additionally, the calibration

corrects for wavelength-dependent responses in the experiment that are not

accounted for in our forward model. We performed the calibration by taking

the ration of a modeled spectrum and a measured spectrum with the same

optical properties. Then, to make the measured spectra equivalent to the

modeled spectra all measured spectra were multiplied by this ratio. To ensure

that the choice os optical properties used in the calibration step did not bias

the results, the mean of the ratios for all spectra used in the validation set was

used for calibration. The mean calibration ratio is shown in Figure 2.3.

2.4 Validation and Results

To test the performance of our MCLUT-based inverse model, we created

21 tissue phantoms with hemoglobin (Hb) (Sigma-Aldrich) as the absorber

and polystyrene beads (diameter = 1 µm) as the scatterer. Hb concentra-
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tion ([Hb]) ranged from 0 to 3 mg/ml, and the reduced scattering coefficient

[µ′s(λ0)] ranged from 6.4 to 27.5 cm−1. We used Mie theory to calculate the µ′s

of the tissue phantoms. For our inverse model, we assumed the absorption in

the visible range was due to oxyhemoglobin. We measured the optical density

for the HbO2 solution using a spectrophotometer and calculated the absorp-

tion spectrum using Beer’s Law. Because the addition of HbO2 dilutes the

solution, a small change in µ′s was accounted for when calculating the known

values for µ′s. The DRS system consisted of a xenon flash lamp (Model: E6611,

Hamamatsu) as the light source, a spectrograph (Model: SP2150i, Princeton

Instruments) and camera (Cool-SNAP, Photometrics) as the spectrometer,

and a fiber optic probe with the same geometry as described above (FiberTec-

tOptica, Ontario, Canada). A diffuse reflectance spectrum and its associated

fit can be see in Figure 2.4 and shows that the inverse model can accurately

fit the experimental data.

Figures 4.2(a) and 4.2(b) show scatter plots of the extracted versus

expected values for µ′s(λ0) and [Hb], respectively. The solid line in each plot

is the line of perfect agreement. The results indicate that there is excellent

agreement between the extracted and expected values. The MCLUT inverse

model estimated the optical properties over a wide range with average root-

mean-square percent errors of 1.74% for µ′s, 0.74% for µa, and 2.42% for [Hb].

We compared the performance of our MCLUT-based model to an experimental

LUT-based model. The MCLUT model was able to estimate µ′s and µa with

decreases is percent error magnitude of 3.16% and 10.86%, respectively, when
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Figure 2.5: (a) Hemoglobin concentration extracted from the MCLUT inverse
model versus known hemoglobin concentration. The solid line indicates per-
fect agreement. (b) µ′s(λ0) extracted from the MCLUT inverse model versus
known µ′s(λ0). The solid line indicates perfect agreement. (c) In vivo re-
flectance spectra from two representative groups: clinically normal and basal
cell carcinoma (BCC). The thin solid line ins the fit.

compared to the experimental LUT model [17].

Our inverse model was then tested on previously collected data from a

clinical feasibility study [25] to illustrate the application of the mode for non-

invasive detection of skin cancer. Figure 4.2(c) shows representative spectra

from two groups: clinically normal and basal cell carcinoma (BCC). The plot

shows good agreement between the MCLUT fit and the measured in vivo spec-

tra. For this analysis, the absorption coefficient was determined using melanin,

deoxygenated hemoglobin, and oxygenated hemoglobin as the absorbers.
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2.5 Conclusions

Although other inverse models have recently been developed for extract-

ing optical properties from diffuse reflectance spectra, this work represents the

first Monte Carlo lookup table-based inverse model where the LUT was gen-

erated entirely by Monte Carlo simulations. Previously, the amount of time

required to generate an LUT entirely by Monte Carlo simulations made this

technique infeasible. However, recent advances in GPGPU computing have

allowed parallel Monte Carlo implementations capable of running three orders

of magnitude faster than traditional, serial implementations of Monte Carlo

simulations. By creating an LUT entirely by Monte Carlo simulation, our

method is not subject to the errors that arise from using either the diffusion

approximation or the Monte Carlo scaling method. When compared to an

experimental LUT, our method was more accuracy, but, more importantly, it

has the advantages of being repeatable and easier to implement. This model

can also be adapted to more complex probe and tissue geometries. In the next

chapter, we extend the MCLUT method to a two-layer tissue geometry so that

it can measure depth dependent properties.
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Chapter 3

Two-Layer Monte Carlo Lookup Table Model

This chapter is modified from “Verification of a two-layer inverse Monte

Carlo absorption model using multiple source-detector separation diffuse re-

flectance spectroscopy” published in Biomedical Optics Exress, 20131 [11].

3.1 Background

Diffuse reflectance spectroscopy (DRS) has been used to noninvasively

measure tissue properties for skin-related disease diagnosis [14, 15, 25–27]. Typ-

ically, DRS uses a fiber to deliver light to tissue. The delivered light is both

scattered and absorbed by the tissue and is then detected by another fiber,

which is at a certain distance, known as the source-detector separation (SDS),

from the source fiber. The diffuse reflectance spectra, calculated as the ra-

tio of the collected light intensity to the delivered light intensity, contains

quantitative information about tissue structure and composition. While the

instrumentation for a DRS system is relatively straight forward, the accurate

1M. Sharma*, R. Hennessy*, M.K. Markey, & J.W. Tunnell, “Verification of a two-
layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse
reflectance spectroscopy.” Biomedical Optics Express, 5(1), 40-53 (January 2014). *These
authors contributed equally to this work. R. Hennessy developed the computational model.
M. Sharma performed the experimental work. M.K. Markey and J.W. Tunnell were advisors.
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extraction of optical properties from the measured reflectance is a significant

challenge. An accurate model of light transport in tissue is needed to relate

the measured reflectance to tissue optical properties. One method for analyz-

ing diffuse reflectance spectra is the diffusion approximation of the radiative

transport equation; however, the diffusion approximation is not valid for short

source-detector separations or in highly absorbing tissues [6, 8, 28].

Because many diseases are located in the epithelial layer at the tissue

surface, it is necessary to use probes with a short SDS in order to sample pho-

tons that travel through the epithelial layer [1, 29]. Additionally, angiogenesis,

an indicator of early cancer, can cause a significant increase in absorption

due to blood. Many models of light transport in tissue have been developed

to overcome this limitation. These include empirical models [30, 31], experi-

mental models [17, 18], and computational models [9, 10, 19]. The majority of

these models assume tissue to be a homogeneous semi-infinite turbid medium.

However, many tissues have a layered structure and the homogeneity assump-

tion can lead to errors in extracted optical properties [32]. Towards this end,

two-layer models of diffuse reflectance have been developed in order to model

light transport in two-layer tissues. Despite representing significant advances

to the field, these models have several limitations including requiring the top

layer thickness to be known a priori [33–35] and utility only for specific tissue

types and probe geometries [23, 34–38].

Towards addressing these limitations, we present a two-layer Monte

Carlo look-up table (MCLUT) model, extended from a single layer MCLUT
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model previously developed by our group [10]. Briefly, the advantages of a

MCLUT approach are its ability to work for a wide range of probe geometries

and tissue types, the ease of implementation, and its speed. Our two-layer

MCLUT inverse model is capable of extracting optical properties and top

layer thickness from diffuse reflectance spectra. This current work aims to

validate our two-layer model by comparing model predictions to experimental

measurement for two different SDSs (370 and 740 µm) across a physiologically

realistic range of optical properties and top layer thicknesses. Two SDSs were

used because the 740 µm SDS will sample deeper than its 370 µm counterpart;

it is the difference in reflectance spectra obtained from each SDS - due to the

sampling depth variation - that aids in the accurate prediction of top layer

thickness over a wider range of thicknesses. The ability of this technique to

measure both morphological properties, such as top layer thickness, as well as

functional properties, such as hemoglobin concentration, allows us to provide

useful diagnostic information with application including (1) pigmentary disor-

der studies, (2) disease (rosacea, lupus, scleroderma, morphea, lymphedema)

monitoring, (3) treatment outcome measures, (4) topical medical absorption

studies, (5) thickness of psoriasis plaque, and (6) cosmetic studies.

3.2 Creation of the Monte CarloLookup Table

Photon transport in tissue was modeled using Monte Carlo simulation

of a two-layer model with four free parameters: top layer thickness (Z0), top

layer absorption coefficient (µa,t), bottom layer absorption coefficient (µa,b)
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Figure 3.1: Two-layer model geometry used in the Monte Carlo simulations.
Absorption for the top and bottom layers, scattering for both layers, and the
top-layer thickness are used as inputs to generate reflectance values for all
SDSs. The coverslip was modeled as a middle layer with constant thickness of
.625 mm, no scattering or absorption, and an index of refraction of 1.5.

and the reduced scattering coefficient (µ′s), which is assumed to be the same

for both layers. In reality, scattering can change from one layer to the next;

however our simplifying assumption improves the convergence properties of the

inverse model. Additionally, previous two layer models of diffuse reflectance

have made this same assumption and shown the ability to accurately measure

depth dependent absorption properties in the presence of scattering differences

between layers [34, 35, 39]. Figure 3.1 shows the two-layer geometry of the

model.
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A two-dimensional Monte Carlo code written in ANSI C implemented

on an NVIDIA GTX 560 Ti GPU with NVIDIA’s Compute Unified Device

Architecture (CUDA) was used to simulate photon reflectance in the two-layer

tissue model on 386 parallel threads [22]. The multiply-with carry random

number generator was used. The refractive index above the tissue was set

to 1.452 to match the refractive index of an optical fiber, and the refractive

index of the medium was set to 1.4 to match the refractive index of tissue.

Spatially resolved diffuse reflectance was calculated by convolving the impulse

response using a Gaussian shaped beam profile with a diameter of 100 µm

[24]. We created two separate MCLUTs: one with an SDS of 370 µm, and

one with an SDS of 740 µm, where each was modeled as concentric annuli in

order to increase the number of detected photons. The coverslip used in the

two layer phantoms was modeled as a middle layer with a constant thickness

of .625 mm, no scattering or absorption, and an index of refraction of n = 1.5.

Every entry in each MCLUT contains a reflectance value for a given Z0, µa,t,

µa,b, and µ′s. In the MCLUTs, Z0 ranges from 0 to 3000 µm, µa,t ranges

from 0 to 5 mm−1, µa,b ranges from 0 to 5 mm−1, and µ′s ranges from 0 to 7

mm−1. The ranges for the parameters were selected to cover a range larger

than the optical properties used to create the phantoms in order to prevent

biasing of the results. Twenty evenly spaced increments were used for each

of the free parameters listed above, giving a total of 160,000 separate MC

simulations. Cubic splines were used to interpolate between values in the

MCLUT. A total of 1 × 106 photons were used for each MC simulation and
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were found to sufficiently reduce stochastic noise below 2% for all values in the

MCLUT; however, the error for the values in the MCLUT within the optical

property range of the phantoms is below 0.2%. The Henyey-Greenstein phase

function was used for sampling scattering angles. Scattering anisotropy, g,

was set to 0.85 for all simulations. For the range of g values present in human

tissue (g > 0.8), it has been shown [20] that the diffuse reflectance will be the

same for any combination of values of µs and g that generate the same µ′s.

For light transport near the source location (short SDSs) as employed in this

study, previous look-up table studies conducted in our laboratory have shown

that extracted absorption and reduced scattering coefficient values have less

than 10% error when the anisotropy is greater than 0.7 [18]. Total time to

create the MCLUTs was 16.2 hours.

3.3 Forward Model

A forward model of diffuse reflectance relates tissue optical and geomet-

ric properties to diffuse reflectance as described by the flowchart in Fig. 3.2.

For our two-layer model, the properties of interest are top-layer (µa,t) and bot-

tom layer (µa,b) absorption coefficients, top-layer thickness (Z0), and reduced

scattering coefficient (µ′s), which is assumed to be the same for both layers.

Reduced scattering at all wavelengths is calculated using Equation 3.1, which

is commonly employed for tissue optics.

µ′s(λ) = µ′s(λ0)×
(
λ

λ0

)−B
, (3.1)
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Figure 3.2: Flowchart for the forward model of diffuse reflectance for a two-
layer tissue model. Tissue parameters are inputs into the model and the out-
put is a diffuse reflectance spectrum. The Monte Carlo lookup table is used
to determine reflectance based on the set of optical properties and top layer
thickness.
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where µ′s(λ) is the reduced scattering coefficient at wavelength λ, λ0 = 630

nm, and B is the scattering exponent. The scattering exponent, B, was fixed

to 1.5 and the selection of a value for B was found to have negligible impact

on the accuracy of extracted parameters because of the calibration procedure

described in section 3.3. Absorption in the top layer at each wavelength is

calculated using Equation 3.2.

µa,t(λ) =
Nt∑

i=1

ln(10)εi,t(λ)Ci,t, (3.2)

where µa,t(λ) is the absorption coefficient at wavelength λ in the top layer,

Nt is the number of chromophores in the top layer, εi,t(λ) is the extinction

coefficient at wavelength λ of chromophore i in the top layer, and Ci,t is the

concentration of chromophore i. Similarly, the absorption coefficients at each

wavelength for the bottom layer are calculated using Equation 3.3.

µa,b(λ) =

Nb∑

i=1

ln(10)εi,b(λ)Ci,b (3.3)

where µa,b(λ) is the absorption coefficient at wavelength λ in the bottom layer,

Nb is the number of chromophores in the bottom layer, εi,b(λ) is the extinction

coefficient at wavelength λ of chromophore i in the bottom layer, and Ci,b is

the concentration of chromophore i. Once the optical properties are deter-

mined at each wavelength, the MCLUT is used to determine the reflectance

at each wavelength and cubic splines used to interpolate between values in the

MCLUT.
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3.4 Inverse Model

Initial Input 
Parameters

Forward Model

Modeled SpectraMeasured Spectra

Interior-Point 
Optimization

Updated Input 
Parameters

Calculate Error

Iterate Until Error 
Is Minimized

Figure 3.3: Inverse model of diffuse reflectance. First, an initial guess for
the tissue parameters is used to generate a spectrum with the forward model.
Next, the error between the measured and modeled spectra is calculated and
the parameters are updated using an optimization routine that minimizes the
error between the modeled and measured spectra.

While the forward model provides a useful tool for analyzing the effect

of layered tissue geometry on diffuse reflectance, the real utility of the model

is realized by inverting the model so that we can extract tissue properties from

measured spectra. Fig. 3.3 illustrates the flowchart for the inverse model of

diffuse reflectance in a two-layer tissue. This allows one to use the model in

conjunction with a DRS system to characterize tissue and aid in disease diag-

nosis. The two-layer model that relates tissue properties to diffuse reflectance

is non-linear and, therefore, cannot be directly inverted. One method is to
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use an iterative optimization routine. This is achieved by first estimating an

initial value for the tissue properties and using the forward model to generate

an initial reflectance spectrum. The mean squared percent error between the

measured spectrum and model spectrum is then computed using Eq. 3.4:

E =
1

nS

∑

S

∑

λ

[
Rs,meas(λ)−Rs,model(λ)

Rs,meas(λ)

]2
(3.4)

where E is the error, n is the number of wavelength points, S is the number

of source detector separations, Rs,meas(λ) is the reflectance of the measured

spectrum at wavelength λ and source detector separation S (370 µm and 740

µm), and Rs,model(λ) is the reflectance of the model spectrum at wavelength λ

and source detector separation S. Next, the tissue properties are updated using

an interior-point optimization routine [40] from the MATLAB optimization

toolbox to work towards minimizing the error. An initial guess of Z0 = 300

µm, µa,t = 1 mm−1, µa,b = 1 mm−1, and µ′s = 1.5 mm−1 was used for all

spectra, and the choice of initial guess was found to have negligible impact on

the final results. The average time to convergence is on the order of 1 second

on an Intel Core i5 2.7GHz processor.

3.5 Experimental Validation

3.5.1 Two-Layered Phantoms

Experimental data for model verification were obtained by constructing

two-layered phantoms. In total, 15 phantoms were constructed to cover the
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Table 3.1: Summary of the optical properties of the two-layer phantoms used
in this study for comparison with MC simulations. The scattering values are
given for λ = 630 nm. For the absorbers: g is green dye; r is red dye; b is blue
dye; and Hb is dissolved Hemoglobin powder. The largest source of uncertainty
for the optical property values is due to errors in the pipette volumes required
in order to create the liquid phantoms. The pipettes were calibrated; however,
based upon vendor specifications, pipette volume uncertainties were calculated
to result in approximately a 4% error in optical property values.

Phantom Number µ′s(λ0) (mm−1) µa,t,max (mm−1) µa,b,max (mm−1)
1 1.5 0.25 (b) 1.275 (r)
2 1.5 0.25 (r) 1.275 (b)
3 1.5 2.3 (b) 0.25 (g)
4 1.5 2.3 (g) 0.25 (b)
5 1.5 0.25 (b) 2.3 (g)
6 1.5 0.25 (g) 2.3 (b)
7 2.85 0.25 (r) 2.3 (b)
8 2.85 0.25 (b) 2.3 (b)
9 2.85 2.3 (r) 0.25 (b)
10 2.85 1.275 (g) 0.25 (r)
11 2.85 1.275 (g) 2.3 (r)
12 0.75 0.25 (r) 2.3 (g)
13 0.75 0.25 (r) 2.3 (g)
14 1.7 0 1 (Hb)
15 1.54 0 1.5 (Hb)

relevant range of optical properties [41, 42]. Table 3.1 summarizes their optical

properties.

For Phantoms 1-13, food dyes were used as the absorbers for both

the top and bottom layers, while phantoms 14-15 were designed to simulate

physiological circumstances with a scattering top layer (epithelial layer) and an

absorbing bottom layer containing hemoglobin (stromal layer). Each phantom
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has the same top and bottom scattering properties, which is presented in terms

of the reduced scattering coefficient at 630 nm, µ′s(λ0). The top and the bottom

layer absorption properties differ in terms of concentration (maximum absorp-

tion co-efficient [µa,t,max and µa,b,max]) and absorbing molecule. Polystyrene

1.025 µm diameter beads with 2.5% solid by volume (Polysciences, PA) were

used as the scattering media; red, green and blue food dyes (Safeway, TX)

and lyophilized hemoglobin powder (H0267, Sigma Aldrich, MO) were used as

absorbers. The optical density for all absorbers was measured using a spec-

trophotometer (DU720, Beckman Coulter, CA.) and the absorption spectra

were calculated using Beer’s law.

Across all these phantoms, µ′s ranges from 0.81-4.91 mm−1 and the

µa values range from 0-2.3 mm−1. µa,t,max and µa,b,max represent the maxi-

mum absorption coefficient for top and bottom layers across all wavelengths,

respectively. These values correspond to physiologically relevant values of

cutaneous optical properties used for skin cancer and other dermatological

purposes [25, 41, 42]. The µ′s(λ0) values were chosen and the resultant bead

solution (beads + de-ionized water) volumes calculated using a Mie theory al-

gorithm that evaluates the total scattering cross-section across the wavelength

range 350-750 nm for each specified bead solution. Both the top and bot-

tom layers were mixed in vials and thoroughly agitated in order to guarantee

complete mixing.

As shown in Figure 3.4, each phantom consists of a bottom layer (en-

capsulated by a small vial cap and a glass coverslip) and a top layer. The
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Figure 3.4: Schematic of the two-layered experiment and the DRS system used
to collect the data, including the “photon flow” from: excitation provided
by the xenon lamp, whose signal is passed through a long-pass filter and an
optical lens system for collimation and focusing into a fiber-optic switch to be
delivered to the two-layer phantom, consisting of a top layer (TL) and bottom
layer (BL). The bottom layer is housed in a small vial cap with a coverslip
placed on top, and the top layer poured on top of it. Collection is at 370 and
740 µm SDSs and passed into a spectrograph and imaged by a cooled CCD
camera. Custom software provides the trigger for the light source and detector
and also processes and stores the measured spectra for later analysis.
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vial cap diameter was 19.05 mm; no change in spectra was observed between

spectra taken in the center of the vial cap and 5 mm offset from the cen-

ter, which confirmed that the vial cap was a semi-infinite medium and the

vial side-wall was not causing photon attenuation or altering the photon path.

The probe is mounted on a fine-scale translation stage with 5 µm resolution

(Model 433, Newport, CA) such that it is centered about the vial cap and

can be traversed vertically through the volume of the beaker. The bottom

layer solution was pipetted into the inside of a small vial lid and capped off

by affixing a 0.625 mm thick microscope coverslip to the outside rim of the lid

using superglue. Once dry, this lid was then affixed to the internal base of a

30 mL beaker using superglue and care taken to ensure that the vial cap was

as flat as possible. The probe was traversed downwards using the translation

stage until flush. The top layer solution was then pipetted into the beaker.

Small 4-40 screws were placed at the bottom of the beaker (but all below the

microscope slide) in order to occupy as much volume as possible and save cost

on the polystyrene beads. In each case, the height of the top layer (depth of

liquid above microscope slide after top layer volume addition), was measured

in order to ensure that the top layer was at least 2 mm deep. Prior to data

collection, initial measurements were taken to ensure that no top layer liquid

had seeped in between the probe tip and microscope slide.
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3.5.2 Diffuse Reflectance Spectroscopy System

Reflectance measurements were made using a linear probe (FiberTech

Optica, Canada), consisting of 15 fibers aligned side-by-side, each at a center-

to-center separation of 370 µm. Excitation light was delivered through the

central (7) fiber and light collected from fibers 8 and 9, corresponding to SDSs

of 370 and 740 µm respectively. As shown in Fig. 3.4, the 740 µm SDS will

sample deeper than the 370 µm and, as discussed previously, it is this difference

in sampling depth between the two channels that enables top layer thickness

measurements over a wide range. Measurements were taken at flush (0 µm,

probe touching microscope slide) and subsequently at 50 µm increments until

there was no change in reflectance across all wavelengths.

We used a pulsed Xenon flash lamp as the DRS light source (L7684,

Hamamatsu Photonics, NJ), which provided broadband 375-700 nm illumina-

tion as identified in Fig. 3.4. The Xenon lamp provided a pulse of full width

half maximum (FWHM) 2.9 µs. In order to prevent second-order dispersion

contaminating the reflectance spectra, the Xenon white light was first passed

through a 340 nm long-pass filter (Asahi Spectra, Torrance, CA). The light

was then collimated and focused using two lenses. Per acquisition, the Xenon

lamp was pulsed twice to deliver light for both the 370 and 740 µm SDSs.

The two white light pulses are coupled into an optical fiber and guided into

a 3× 1 optical switch (FSM-13, Piezosystems Jena, Germany). The switch is

a microelectromechanical (MEMS) device, which uses microprisms to control

and open different optical ports to ensure that the two broadband Xenon light
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pulses are separated and coupled sequentially into the linear probe without any

overlap. The switch is controlled via transistor-transistor logic (TTL) pulse

trains. Light from the switch’s output was then passed to the input of the

linear probe via a subminiature version A (SMA) nipple fitting; roughly 30%

loss in signal is measured due to the optical switch and SMA fitting. The distal

end of the linear probe was aligned with the vertical axis of the spectrograph

(SpectraPro 2150i, Princeton Instruments, Trenton, NJ) using software pro-

vided by the manufacturer (WinSpec, Princeton Instruments, Trenton, NJ).

A 150 grooves/mm grating, blazed at 500 nm, was used in order to capture

the entire visible spectrum needed DRS (375-700nm). A slit width of 200 µm

was used. All spectra were collected for an exposure time of 50 µs.

The data collection was controlled via custom software written in Lab-

VIEW (National Instrument, Austin, Texas). The software executes two-layer

data collection by sequentially capturing the 370 and 740 µm signals. Onboard

calculations were performed to convert the raw signals into reflectance spec-

tra (see Section 3.4). The Xenon pulsed lamp was triggered via TTL pulses

provided by a timer-counter board (NI 2121, National Instruments, Austin,

Texas). The camera was controlled by a PCI card (PCI-6602, National In-

struments, Austin, Texas) and operated, in part, by pre-written software (R3

Software, Princeton, NJ). The timing of optical port switching was also con-

trolled by TTL pulses sent by the custom software.
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3.5.3 Calibration Measurements

For each phantom, wavelength calibration was performed using a mercury-

argon light source (HG-1, Ocean Optics, FL) which provides clear, distinct

atomic spectral lines. Because the modeled spectra are in absolute units (pho-

tons counted) and the measured spectra are in units relative to a calibration

measurement, it was necessary to perform an additional calibration so that the

modeled and measured spectra can be compared. Reflectance measurements

were taken each day of a stock solution of polystyrene beads (no absorption)

where µ′s(λ0) = 1.5 mm−1 and then modeled spectra were calculated using the

same optical properties as the stock solution. Next, the ratio of the measured

to modeled spectra were calculated and all measured spectra were multiplied

by this ratio. Additionally, the calibration corrects for wavelength dependent

responses in the experiment that are not accounted for in the forward model,

including the wavelength dependent response of the spectrograph, and the

wavelength dependance of scattering anisotropy (g) and index of refraction

(n).

3.5.4 Spectral processing

At each height, the final DRS spectrum per SDS is the average across

five separate measurements (five pulses per height). To improve the SNR, we

bin every three pixels for a final spectral dispersion of 0.77 nm/pixel and a

resulting spectral resolution FWHM of 5.3 pixels (4.08 nm). We calculate the

reflectance using Equation 3.5.
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Figure 3.5: Measured spectra (colored and dashed) and associated MCLUT
fits (solid black) from phantom 3 with a top layer thickness of 300 µm.

R(λ) =
Isample(λ)− Ibackground(λ)

[Istandard(λ)− Ibackground(λ)]× 100/Rstandard

(3.5)

where Isample(λ) is the raw spectrum from the phantom, Ibackground(λ) is the

background (spectra collected without the white light excitation), Istandard(λ)

is the spectralon standard spectra and 100/Rstandard is used to account for the

calibrated reflectance level of the spectralon standard (throughout this paper

all results were obtained with a 20% spectralon reflectance standard). Spectra

are presented in terms of wavelength by using the Hg-Ar lines to convert pixels

to wavelength. Fig. 3.5 shows the measured spectra and associated MCLUT

fits from phantom 3 with a top layer thickness of 300 µm.
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3.6 Results and Discussion

Fig. 3.6 is included as a visual demonstration of how the reflectance

spectra change with increasing Z0 and of the increased sampling depth with

increased SDS. Here spectra are shown at selected heights from phantom 8.

Scaled absorption spectra of the red and blue dye are shown for reference. We

see that at flush (0 µm) only the red dye is sampled. As the depth increases,

the blue ink absorption becomes increasingly more pronounced; conversely,

the red dye absorption decreases. These are consistent with physical intu-

ition that increasing top layer thickness corresponds to increased top layer

absorption and decreased bottom layer absorption. Finally, at 1000 µm, red

dye absorption is barely detectable and only the blue ink top layer is being

sampled. These trends are more evident for the 740 µm SDS as more dye

molecules are sampled. The most dramatic change in the reflectance spectra

occurs at reasonably shallow depths (from 250-600 µm).

The inverse model was used to extract optical properties (Z0, µ
′
s(λ0),

µa,t,max, µa,b,max) from all spectra across all phantoms. For each of these 4

variables, at each height up to 0.95mm, we computed the normalized root-

mean-square-deviation (NRMSD) averaged across all 15 phantoms, which is

calculated as shown in Equation 3.6.

NRMSD =
1

xi,max − xi,min

√∑n
i=1 (xi(Z0)− x̂i(Z0))

2

n
(3.6)

where x is the variable of interest, i is the phantom number, n is the total
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Figure 3.6: Measured reflectance spectra at selected heights for phantom 8.
Top and bottom plots correspond to 370 and 740 µm source-detector sepa-
rations, respectively. Scaled absorbance profiles of red (dashed red line) and
blue (dashed blue line) dyes are also included for reference.

number of phantoms, and xi(Z0) and x̂i(Z0) are the predicted and known

values, respectively, at a particular top layer thickness, and xi,max − xi,min is

the range of known measurements for variable xi.

The results from these calculations are plotted in Figure 4.3 for the

four variables of interest. Overall, amongst the four variables, we see the best

agreement in Z0 for which the average NRMSD (for all thicknesses) is 17%.

However, as the Figure 4.3 shows, the prediction of the top layer thickness

is considerably better for thicknesses up to 550 µm, with an average error of

10%. We see that the error in both the top and bottom layer absorption is

also thickness dependent. With increasing top layer thickness, the top layer

absorption error decreases while the bottom layer error decreases. Such a result
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Figure 3.7: Average calculated NRMSD values for each top layer thickness.

is expected as an increasing top layer thickness corresponds to less photons

from the bottom layer being measured (and more top layer photons being

measured). Therefore, the accuracy of the model prediction to be dependent

on Z0. The top layer absorption value decreases from 72% at flush to 12% for

Z0 = 950 µm. µa,b,max varies from a minimum of 22% at flush up to 118% at

maximum thickness. Lastly, the model retains very good accuracy for reduced

scattering at 630 nm as the average error (across all thicknesses) is 15%.

The comparison between the measured and expected top layer thick-

nesses is plotted in Fig. 3.8. The solid line represents perfect agreement. For
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Figure 3.8: Comparison between measured and predicted top layer thicknesses.
The error bars in the figure represent the standard deviation of the thickness
prediction at each particular height. The solid line is the line of perfect agree-
ment.

Z0 between 100-500 µm the agreement is excellent. As the thickness increases,

this agreement decreases and considerable divergence occurs for Z0 > 800 µm.

Such a trend is physically expected as the model requires a sufficient number

of photons originating from the bottom layer for an accurate prediction; how-

ever, the probability of a photon arriving from the bottom layer through a

thick top layer is very low, and therefore, the prediction significantly suffers.

To demonstrate how the use of two SDSs improves results, the top layer

thickness was also estimated using only one SDS. For an SDS of 370 µm, the
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Figure 3.9: NRMSD for Z0 vs. known Z0 for when only one of the SDSs is
used and for when both are used. This plot shows how using multiple SDSs
can expand the range where Z0 can accurately be predicted.

average error across all thicknesses was 38% with the error increasing rapidly

when Z0 was above 300 µm. For an SDS of 740 µm, the average error across all

thicknesses was 28%, with increased error relative to the 370 µm detector when

Z0 was below 200 µm. The use of multiple SDSs increases the range where

Z0 can accurately be predicted. Fig. 3.9 shows the NRMSD for predicted Z0

vs. known Z0 when only one of the SDSs was used. For comparison purposes,

the results from using both SDSs are also plotted. Scattering and absorption

values were predicted with similar accuracy to using both SDSs.
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3.7 Conclusions

We present a two-layer Monte Carlo model for skin applications which

offers increased utility compared to existing two-layer models as prior knowl-

edge of the top layer thickness is not required. Additionally, our model is

sufficiently generalized to be used for a wide variety of probe geometries. The

performance of the model has been validated against experimental measure-

ment of reflectance spectra obtained from two-layered liquid phantoms. The

phantoms were chosen to span the physiological range of optical properties

and three different absorption media (2 food dyes and hemoglobin) were used.

In order to construct the depth profiles, spectra were obtained at 50 µm incre-

ments until no further changes in spectral profiles occurred. At each height,

spectra were measured at two source-detector separations: 370 and 740 µm.

We show that the use of multiple SDSs increases the range of values where

we can accurately predict top layer thickness. Model predictions of top layer

thickness, top and bottom layer absorption coefficient, and reduced scatter-

ing coefficient were compared to known experimental values. For thicknesses

between 0-550 µm, good agreement was obtained between the numerical and

experimental results for top layer thickness and reduced scattering coefficients.

The accuracy of top and bottom layer absorption coefficient measurements was

found to be highly dependent on top layer thickness, which agrees with phys-

ical expectation; however, within appropriate thickness ranges, the error for

absorption properties varies from 12-25%. Choosing different source detector

separations or including more than two detectors would help to minimize the
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dependency of the accuracy on top layer thickness. Based upon these results,

our two-layered Monte Carlo lookup table based model shows considerable

promise for extracting top layer thicknesses using multiple source-detector dif-

fuse reflectance measurements. In the next chapter, we explore the full poten-

tial of our two layer model by performing computational parametric studies to

optimize source-detector separation selection for experimental measurement

based upon prescribed layer optical properties.
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Chapter 4

Sampling Depth of Diffuse Reflectance

Spectroscopy Probes

This chapter is modified from “Effect of probe geometry and optical

properties on the sampling depth for diffuse reflectance spectroscopy” pub-

lished in The Journal of Biomedical Optics, 20141 [12].

4.1 Background

Diffuse reflectance spectroscopy (DRS) can be used to noninvasively

measure tissue optical properties [6, 10, 11, 14–17, 25, 43–45]. Typically, DRS

uses a fiber to inject light into the tissue. The light undergoes scattering and

absorption, and the reflected light is collected by a second fiber at a short dis-

tance, known as the source-detector separation (SDS), from the illumination

fiber. The collected light contains quantitative information which can be ex-

tracted using an inverse model that relates the collected signal to tissue optical

properties [10, 11]. Since the reflected light only contains information about

1R. Hennessy, W. Goth, M. Sharma, M.K. Markey, & J.W. Tunnell, “Effect of Source-
Detector Separation and Optical Properties on the Sampling Depth for Diffuse Reflectance
Spectroscopy Probes.” Journal of Biomedical Optics, 19(10), 107002 (October 2014). R.
Hennessy developed the computational model. W. Goth and M. Sharma performed the
experimental work. M.K. Markey and J.W. Tunnell were advisors.
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the tissue that it passes through, accurate interpretation of the results requires

knowledge of the penetration depth. The light penetration depth depends not

only on the absorption and scattering properties of the tissue, but also on the

geometry of the diffuse reflectance probe [46]. Because of this, the sampling

depth of a DRS probe can be tune by adjusting the probe geometry, allowing

for the design of application specific probes [47].

Many studies have investigated the sampling depth in scattering me-

dia both experimentally and numerically [46–50]. Most of these studies rely

on the diffusion approximation, which is not valid for short SDSs and highly

absorbing media. Others investigated the sampling depth only for reflectance

probes with specific geometries, such as single-fiber reflectance [50], overlap-

ping illumination and collection areas [51, 52], large SDSs (SDS > 1/µ′s) [53],

and diffuse reflectance spectroscopy probes only at specific SDSs and fiber di-

ameters [47, 54]. Backman and Gomes recently developed an empirical model

to describe sampling depth for a DRS probe. This model is based on a pre-

vious study on the sampling depth of single-fiber spectroscopy probes and

is only valid for DRS probes with fiber diameters of 200 µm and an SDS

of 250 µm [47]. A model that can accurately determine sampling depth for

any given SDSs and tissue optical properties will allow the development of

application specific probes where light sampling from a specific depth is neces-

sary. Additionally, knowledge of the sampling depth can be used to determine

wavelength-dependent differences in the sampling depth due to the difference

in optical properties across wavelengths.
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In this paper, we analyze the effect of probe geometry and optical

properties on the sampling depth using both computational and experimental

approaches. First, many Monte Carlo (MC) simulations are performed to

determine the sampling depth for a range of optical properties and SDSs. Next,

the MC results are validated using a set of phantom experiments. Finally, we

developed an analytical expression that can be used to quickly determine the

sampling depth for a given SDS, absorption coefficient, and reduced scattering

coefficient.

4.2 Monte Carlo Model of Sampling Depth

This study adapts the MC model of light transport in layered tissue

code developed by Wang et al. [9] implemented in parallel on a GPU us-

ing NVIDIA’s compute unified device architecture (CUDA) by Alerstam et al

[22, 55]. The MC model for modeling light transport is a stochastic method

that simulates light transport in a scattering medium with the probabilities of

scattering and absorption events determine by the user-specified optical prop-

erties of the medium and the geometry of the light source and measurement

probe. Photon’s step sizes were selected from an exponential distribution that

depended on the scattering coefficient, and scattering angles were determined

by the scattering anisotropy (g) and the phase function. We used the Heyney-

Greenstein phase function. Reflection and refraction due to index of refraction

mismatches were calculated using the Frensel equation and Snell’s law.

A two-layer model was used with reduced scattering in the bottom layer
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set to zero, and the absorption in the bottom layer set to 1×1015 cm−1 so that

photons reaching the bottom layer were terminated. Scattering anisotropy

was held constant at 0.85. The sensitivity of photon path length and sam-

pling depth to phase function and anisotropy (g) has been explored by Kanick

et al. for single-fiber spectroscopy [50]. They performed simulations with

g = [0.8, 0.9, 0.95] and with both the Henyey-Greenstein phase function and

the modified Henyey-Greenstein phase function. The data showed that the

path lengths and sampling depths are independent of anisotropy. The phase

function was found to have an observable effect on path length, but the mean

sampling depth remained relatively unchanged.

The refractive index above the medium was set to 1.452 to match the

refractive index of an optical fiber, and the refractive index of the medium was

set to 1.33 to match the refractive index of water. The top layer absorption

coefficient (µa) ranged from 0 to 30 cm−1 in 20 increments, the top layer

reduced scattering coefficient (µ′s) ranged from 0 to 30 cm−1 in 20 increments,

and top top layer thickness (Z0) ranged from 0 to 3000 µm in 250 increments.

This gave a total of 100,000 separate MC simulations with each using 107

photons. The geometry for the simulations is shown in Figure 4.1(a). Spatially

resolved reflectance was calculated by convolving the impulse response using

a Gaussian-shaped beam profile with radius R1, and the reflectance signal

was calculated by summing the reflectance values centered at the SDS with a

collection fiber radius of R2. For a given set of optical properties (µa and µ′s)

and probe geometry parameters (SDS, R1, and R2), we plotted the percentage
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Figure 4.1: (a) A two-layer geometry was used for the Monte Carlo (MC)
simulations. The bottom layer had an absorption coefficient of 1× 1015 cm−1

and a scattering coefficient of zero so that photons reaching the bottom layer
were terminated. The top layer thickness (Z0) ranged from 0 to 3000 µm in
250 increments, the top layer absorption coefficient (µa) ranged from 0 to 30
cm−1 in 20 increments, and the top layer reduced scattering coefficient (µ′s)
ranged from 0 to 30 cm−1 in 20 increments. Reflectance measurements were
recorded out to 1 cm from the source. (b) A plot showing the percentage
of photons that never reach a depth of Z0 verses Z0 with SDS = 300 µm,
R1 = 100µm, R2 = 100µm, µa = 1.6cm−1, and µ′s = 16cm−1. Sampling depth
(ZS) is defined as the depth reached by 50% of the photons.

of photons that never reach depth Z0 versus Z0 (P) in Figure 4.1(b). If we

model the curve in Figure 4.1(b) as a sigmoid function, the greatest slope

will occur at the depth that is reached by 50% of the photons, meaning that

the measured reflectance signal is most sensitive to optical properties at that

depth. Because of this, the sampling depth (ZS) of a probe for a given set of

optical properties is defined as the depth reached by 50% of the photons.
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4.3 Experimental Measurements of Sampling Depth

To validate the computational results, 12 different phantoms were con-

structed in order to perform an experimental analysis of sampling depth for

DRS probes of varying SDSs. The phantoms were composed of 5 mL solu-

tions of water, India ink (Salis International, Golden, Colorado, USA), and

scattering microbeads (Polysciences, Warrington, Pennsylvania, USA), which

spanned absorption and scattering values across a range consistent with those

normally found in human tissue. Mie theory was used to determine the scat-

tering properties of the 0.99 µm diameter beads. Mix ratios of water and

microbeads were determined so that so that three different scattering spec-

tra from 11 to 25 cm−1 were achieved at the reference wavelength of 630 nm.

Each of these mix ratios was prepared with four different concentrations of

India ink so that the absorption coefficient for the samples ranged from 0 to

23 cm−1, results in 12 total phantoms with different scattering and absorption

properties, as seen in Table 4.1.

Each of these 12 phantoms was placed into a blackened beaker. Reflec-

tion measurements were taken while varying the distance between the probe

and the bottom of the beaker from 0 to 3 mm in 50 µm increments. Reflectance

spectra were collected at wavelengths from 500 to 700 nm and at SDS of 370,

740, and 1100 µm. Using the known wavelength dependent of scattering and

absorption, µa and µ′s were calculated at each wavelength, and for each set of

µa and µ′s a plot of P versus Z0 was created. These plots were then used to

calcite ZS for each set of optical properties.
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Table 4.1: Optical properties of phantoms used in sampling depth experiments.
Phantom µ′s(λ = 630 nm) [ink] (% vol.)

1 11 0.00
2 11 0.15
3 11 0.27
4 11 0.45
5 17 0.00
6 17 0.15
7 17 0.27
8 17 0.45
9 25 0.00
10 25 0.15
11 25 0.27
12 25 0.45

4.4 Mathematical Model of Sampling Depth

The sampling depth for a DRS probe is dependent on the optical prop-

erties (µa and µ′s) and the probe geometry parameters (SDS, R1, and R2). The

sampling depth data from the MC simulations were accurately described by

the equation

ZS = a1 + a2

(
1

(1 + a3µa)a4

)(
1

(1 + a3µ′s)
a4

)
. (4.1)

Equation 4.1 is an empirical expression that accurately describes the MC sam-

pling depth data. This expression was found by trying thousands of candidate

function with help of TableCurve 2-D (Automated Curve Fitting and Equa-

tion Discovery Software, Systat, 2002). Equation 4.1 has four free parameters

(a1, a2, a3, a4) whose values must be determined by first fitting the MC data.
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This was accomplished by minimizing the residual between the MC sampling

depth results and the sampling depths calculated using Equation 4.1 and a

Levenberg-Marquardt algorithm scripted in MATLAB. The dependence of the

free parameters on SDS was then determined so that Equation 4.1 could be

used to determine sampling depth for a given probe geometry and set of opti-

cal properties. SDS and ZS are in units of cm, and µa and µ′s are in units of

cm−1.

4.5 Results

4.5.1 Experimental Validation

The sampling depth results from the phantom experiments were used

to validate the computational sampling depth results at SDSs of 370, 740,

and 1100 µm with optical properties in the range µa ∈ [0 − 25] cm−1, and

µ′s ∈ [0 − 30] cm−1. Figures 4.2(a-c) plot ZS predicted by the MC model

vs. experimental values for ZS and show excellent agreement. Figures 4.2(d-

f) show an overlay of the computational (transparent mesh) and the experi-

mental (colored surface) results and provides a visual illustration of the good

agreement between the experimental and computational results. The room-

mean-squared percent error for an SDS of 370 µm was 1.71%, for an SDS of

710 µm it was 1.27%, and for 1100 µm it was 1.24%. This agreement indicates

that the MC model accurately models sampling depth. The ripples in the data

indicate that the agreement between the phantom measurements and the MC

data is wavelength dependent. We believe this is due to the use of the inverse
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Table 4.2: Values for fitting parameters at various fiber diameters.
Diameter (µm) a1 a2 a3 a4

50 0.187SDS 1.87SDS + .004 (2.80SDS + .16)2 0.85
100 0.186SDS 1.83SDS + .01 (2.55SDS + .18)2 0.85
200 0.183SDS 1.81SDS + .013 (2.31SDS + .19)2 0.85
400 0.175SDS 1.78SDS + .015 (1.87SDS + .22)2 0.85

power law to describe the wavelength dependence of scattering in the phan-

toms containing polystyrene microbeads, which in reality, the true scattering

values of the phantoms as a function of wavelength contain “humps” in the

curve due to the relatively narrow size distribution of the microspheres.

4.5.2 Analytical Model of Sampling Depth

The analytical model of sampling depth shown in Equation 4.1 was fit

to MC data for a probe with fiber diameters of 50, 100, 200, and 400 µm. For

each fiber diameter, SDS ranges from adjacent fiber up to 1000 µm, µ′s ranges

from 3 to 40 cm−1, and µa ranges from 0 to 40 cm−1. Fitting parameters

a1 and a2 were found to have a linear relationship with SDS, a3 was found

to have a quadratic relationship with SDS, and a4 is a constant. Table 4.2

shows the fitting parameters used for the four different fiber diameters as a

function of SDS. Table 4.2 allows the fitting parameters in Equation 4.1 to be

determined for a given fiber diameter and SDS so that Equation 4.1 can be

used to determine sampling depth for a specific probe geometry.

Figure 4.3 below shows the sampling depth predicted by the analytical

model in Equation 4.1 and Table 4.2 versus the MC sampling depth. Model
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Figure 4.2: Plots of ZS predicted by Monte Carlo modeling versus the exper-
imental values of ZS at source-detector separations (SDS) of (a) 370, (b) 740,
and (c) 1100 µm. An overlay of two-dimensional surfaces showing the rela-
tionship between scattering and absorption on sampling depth for both Monte
Carlo and experimental results. These plots provide a visual illustration of the
agreement between the computational (transparent mesh) and experimental
(colored surface) results for source-detector separations (SDS) of (d) 370, (e)
740, and (f) 1100 µm.
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Figure 4.3: Monte Carlo results for simulation of sampling depth versus sam-
pling depth prediction from the analytical model for all four fiber diameters
[Equation 4.1]. The line of unity is shown for comparative purposes. There is
a 2.89% error between the Monte Carlo simulation results and the analytical
model results.

predictions were strongly correlated with the MC data with a mean residual

error of 2.89%.

4.5.3 Effect of Anisotropy and Phase Function of Sampling Depth

Because scattering anisotropy and the choice of a phase function can

impact reflectance at short SDSs [56], a subset of MC simulations was per-

formed to investigate the effect of anisotropy and phase function on sampling

depth. The data showed no change in sampling depth for simulations of dif-

ferent anisotropy values (g = [0.80, 0.85, 0.90, 0.95]) over a range of optical
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properties (µa ∈ [0 − 25] cm−1, µ′s ∈ [0 − 30] cm−1) and probe geometries

(SDS ∈ [50− 800]µm, R ∈ [50− 400]µm). This is illustrated in Figure 4.4(a),

where sampling depth vs. SDS is plotted for a probe with 50 µm diameter

fibers, a reduced scattering coefficient of 10 cm−1 and an absorption coeffi-

cient of 10 cm−1 for four different anisotropy values. The mean percent error

across all anisotropy values for all probe geometries and optical properties

was 3.74%. Additionally, the eta shows no change in sampling depth for sim-

ulations performed with the Heyney-Greenstein (HG) phase function or the

modified Heyney-Greenstein (MHG) phase function. This is illustrated in Fig-

ure 4.4(b), where the sampling depth versus SDS is plotted for a probe with

50 µm diameter fibers, and anisotropy values of 0.85, a reduced scattering co-

efficient or 10 cm−1, and an absorption coefficient of 10 cm−1 for both the HG

and MHG phase function. A change in g or the phase function did affect the

raw reflectance values; however, there was no change in the sampling depth as

defined in this study. These results agree with the findings by Kanick et al. for

single-fiber reflectance spectroscopy that show sampling depth is unaffected by

both the anisotropy value and the choice of phase function [50].

4.6 Discussion and Conclusions

This study utilizes an MC model to investigate how the optical prop-

erties of a turbid media and the geometry of a DRS probe affect sampling

depth. This MC model for sampling depth was experimentally validated and

was shown to accurately predict sampling depth. We developed an analytical
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(a) (b)
Figure 4.4: (a) Sampling depth versus SDS for varying anisotropy values with
µa = 10 cm−1, µ′s = 10 cm−1, and fiber diameter at 50 µm. (b) Sampling
depth versus SDS for both HG and MHG phase functions with µa = 10 cm−1,
µ′s = 10 cm−1, g = 0.85 and the fiber diameter at 50 µm.
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model where sampling depth is expressed in terms of optical properties and

probe geometry.

The utility of the model prediction of sampling depth is shown in Figure

4.5, which plots sampling depth versus fiber diameter for a probe geometry

where the source and detector fibers are adjacent for multiple combinations

of optical properties. Figure 4.5 was created using MC simulations and not

the empirical model in Equation 4.1. This type of probe geometry accurately

models the commonly used 6-around-1 fiber orientation, where a center fiber is

used for illumination and six collection fiber of the same size are placed around

the illumination fiber. All three series have the same value for scattering

(µ′s = 10 cm−1), and series 1 represents a moderately absorbing tissue (µa = 10

cm−1, series 2 represents a highly absorbing tissue (µa = 20 cm−1, and series

3 represents a non-absorbing tissue (µa = 0 cm−1). As expected, the sampling

depth decreases with increasing absorption. Importantly, a relatively small

increase in sampling depth results from a large change in fiber diameter. This

is especially evident in the highly absorbing tissue. For example, in series 3,

doubling the fiber diameter from 500 to 1000 µm only increases the sampling

depth by 17% (from 240 to 270 µm). This result indicates that the 6-around-

1 orientation is best for interrogating shallow depths and that it may not

be possible to substantially increase sampling depth by increasing the fiber

diameter.

The models developed in this study can also be used to provide an

estimate of wavelength-dependent differences in optically sampled tissue vol-

63



	
  

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

Fiber Diameter (µm)

Sa
m

pl
in

g 
D

ep
th

 (µ
m

)

 

 
series 1
series 2
series 3

Figure 4.5: Mathematical model estimates of sampling depth for adjacent
fibers for three different sets of optical properties: series 1 (µa = 10 cm−1,
µ′s = 10 cm−1), series 2 (µa = 0 cm−1, µ′s = 10 cm−1), series 3 (µa = 20 cm−1,
µ′s = 10 cm−1). These data were created using MC simulation and not the
empirical model in Equation 4.1.
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umes, which occurs when optical properties change as a function of wavelength.

Figure 4.6 shows sampling depth as a function of wavelength for a sample con-

taining 1 mg/ml of fully oxygenated hemoglobin at three different SDSs. The

reduced scattering coefficient is 20 cm−1 across all wavelengths. The mod-

els can also be used to explain discrepancies between measurements of tissue

taken with different probe geometries. The main utility of the proposed model

is that it can be used to aid in the design of application specific DRS probes.

For example, to design a probe that measures the properties of the epidermis,

one may desire a sampling depth equal to or less than the epidermal thickness

( 70 µm [57]) to ensure that most sampled photons only interact with the

epidermis and not the dermis. As shown in Figure 4.5, achieving a sampling

depth of less than 70 µm would require a 6-around-1 fiber orientation with

fibers diameters of 50 µm or less.

This study uses an MC model of DRS to investigate the effect of optical

properties and probe geometry on the sampling depth of photons collected by

a DRS probe. The MC model of sampling depth was experimentally validated

and shown to accurately predict sampling depth. An analytical model of sam-

pling depth was developed and is valid for a DRS probe with fiber diameters

of 50, 100, 200, and 400 µm and for a wide range of SDSs (200 to 1000 µm),

absorption coefficients (0 to 40 cm−1), and reduced scattering coefficients (0

to 40 cm−1). The model of sampling depth indicates that for adjacent fibers

in the 6-around-1 orientation, the sampling depth cannot be significantly in-

creased by increasing the fiber diameters. This result suggests that deeper
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Figure 4.6: Sampling depth versus wavelength for a sample containing 1 mg/ml
of fully oxygenated hemoglobin at source detector separations of 250, 500, and
1000 µm. Reduced scattering is 20 cm−1 across all wavelengths.
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sampling depth can only be accomplished by increasing the gap between the

source and collection fibers. Future work will involve the application of the

sampling depth model to aid in the design of application specific probes that

will be used to interrogate the optical properties of specific layers of tissue

such as the epidermis and the dermis. In the next chapter, we show that

the one-layer assumption for skin can lead to significant errors in extracted

properties.
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Chapter 5

Impact of the One-Layer Assumption of

Diffuse Reflectance Spectroscopy of Skin

This chapter is modified from “Impact of one-layer assumption on dif-

fuse reflectance spectroscopy of skin” published in The Journal of Biomedical

Optics, 20151 [13].

5.1 Background

Diffuse reflectance spectroscopy (DRS) is an optical technique that has

been widely used to noninvasively measure skin optical properties [14, 15, 25,

41, 58–62]. Typically, a DRS probe consists of a group of fibers that are placed

in contact with the skin. The most common fiber orientation is the six-around-

one geometry where a central fiber connected to a light source injects light

into the tissue, and the six peripheral fibers collect the light that has travelled

through the tissue and returned to the surface. This light contains quantitative

information about the tissue that it has passed through, and this information

1R. Hennessy, M.K. Markey, & J.W. Tunnell, “Errors Caused by One-Layer Assump-
tion of Skin for Diffuse Reflectance Spectroscopy.” Journal of Biomedical Optics, 20(2),
028001 (February 2015). R. Hennessy developed the computational model. M.K. Markey
and J.W. Tunnell were advisors.
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can be used to assess the tissue’s physiological state. A model that relates the

diffuse reflectance to physiological properties of tissue is used to extract physio-

logical parameters from the DRS spectra. Many models based on the diffusion

approximation have been developed to extract properties from DRS spectra;

however, this technique requires SDSs of at least 1 mm [6, 14, 63]. Because

the thickness of the epidermis is on the order of 100 µm [57], source detec-

tor separations (SDS) much less than 1 mm are necessary in order to probe

the epidermis properties, meaning the assumptions required for the diffusion

approximation are invalid. To overcome this problem, recently developed mod-

els for extracting physiological properties from DRS spectra have used Monte

Carlo simulations to model the transport of photons through tissue [10, 19, 64].

Most of these models are based on the assumption that skin is homogeneous

and that properties are independent of depth. In reality, skin is composed

of multiple layers with different properties. For example, melanin is located

primarily in the epidermis, whereas hemoglobin is only located in the dermis.

Additionally, the thickness of the epidermis varies with anatomical location.

Assuming that skin is homogenous can lead to errors in the extracted phys-

iological properties because variations in epidermal thickness can make the

measurement of chromophore concentrations difficult by changing the sensi-

tivity of the probe to each layer. Some multilayered inverse models of skin have

been developed to overcome this problem [11, 34, 37, 38, 65, 66]. While depth

dependent heterogeneities were analyzed in this study, heterogeneities that are

spatially in the plane of detection were not considered. Such heterogeneities
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would include the border of a nevus or other concentrations of pigment in the

skin as well as the localization of hemoglobin in vessels, which was investigated

by Fredriksson et al. [65]. Additionally, Fredriksson et al. generated a spectra

using a two layer model of skin with individual blood vessels and fit those

spectra with a one layer model. They found that using the one layer model

led to much greater errors in extracted parameters when compared to using a

three layer model to fit the spectra[65].

In this study, we analyze the specific errors that are caused by the

one-layer assumption of skin. This is accomplished by first creating modeled

DRS spectra using a two-layered forward diffuse reflectance skin model in the

400 - 750 nm wavelength range with a SDS of 250 µm. Next, parameters are

extracted from the spectra using an inverse one-layer, or homogenous, skin

model. The extracted parameters can then be compared to the parameters

used to generate the modeled two-layer spectra, and this allows for a quanti-

tative and systematic analysis of the errors that arise from the homogeneity

assumption for skin.

5.2 Two-Layer Forward Model

Modeled spectra were created using a two-layer skin model based on

a Monte Carlo lookup table (MCLUT) approach [11]. A four-dimensional

MCLUT was created using a two-dimensional Monte Carlo code written in

ANSI C [9] implemented on an NVIDIA GTX 560 Ti GPU on 386 parallel

threads [55]. The refractive index above the tissue was set to 1.45 to match
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the refractive index of an optical fiber, and the refractive index of the medium

was set to 1.4 to match the refractive index of tissue. Spatially resolved diffuse

reflectance was calculated by convolving the impulse response using a Gaussian

shaped beam profile with a radius of 100 µm, and reflectance was calculated

at a center-to-center SDS of 250 µm with a 100 µm radius collection fiber [24].

This geometry was chosen because of its common use in skin applications [16].

Each entry in the MCLUT contains a reflectance value for a given top layer

thickness (Z0), epidermal absorption (µa,epi), dermal absorption (µa,derm), and

reduced scattering coefficient (µ′s), which is assumed to be equal in both layers.

In the MCLUT, Z0 ranges from 0 to 1000 µm, µa,epi ranges from 0 to 50 cm−1,

µa,derm ranges from 0 to 50 cm−1, and µ′s ranges from 0 to 70 cm−1. Ten

evenly spaced increments were used for each of the parameters, giving a total

of 10,000 separate MC simulations. A total of 107 photons were used for each

MC simulations. The Henyey-Greenstein phase function was used for sampling

scattering angles. Scattering anisotropy was set to 0.85 for all simulations.

The MCLUT based forward model for diffuse reflectance is based on a

two-layer skin model where a reference absorption spectrum of melanin [67]

is used for the top layer and oxy- and deoxy- hemoglobin [68] spectra are

used for the bottom layer with a wavelength range of 400 - 750 nm. Spectra

are generated by first selecting the following properties: (1) epidermal thick-

ness (Z0), (2) hemoglobin concentration ([Hb]), (3) oxygen saturation (SO2),

(4) melanin concentration ([mel]]), and (5) µ′s(λ0). Reduced scattering at all

wavelengths is calculated using Equation 5.1, which is commonly used in tissue
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optics [10, 11, 19, 64].

µ′s(λ) = µ′s(λ0)×
(
λ

λ0

)−B
(5.1)

where µ′s is the reduced scattering coefficient at wavelength λ, λ0 = 630 nm,

and B is the scattering exponent, which is related to the size of the scattering

particles. Absorption in the top layer at each wavelength is calculated using

Equation 5.2

µa,epi(λ) = εmel(λ)[mel] (5.2)

where µa,epi(λ) is the epidermal absorption coefficient at wavelength λ, εmel(λ)

is the extinction coefficient of melanin at wavelength λ, and [mel] is the con-

centration of melanin. Absorption in the bottom layer at each wavelength is

calculated using Equation 5.3

µa,derm(λ) = [Hb][εHbO2(λ)SO2 + εHb(λ)(1− SO2)] (5.3)

where µa,derm(λ) is the dermal absorption coefficient at wavelength λ, [Hb] is

the total concentration of hemoglobin, εHbO2(λ) is the extinction coefficient of

oxygenated hemoglobin at wavelength λ, εHb(λ) is the extinction coefficient of

deoxygenated hemoglobin at wavelength λ, and SO2 is the oxygen saturation.

Once the optical properties are determined at each wavelength, the MCLUT is

used to determine the reflectance at each wavelength. Cubic splines are used

to interpolate between values in the MCLUT.
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5.3 One-Layer Inverse Model

A one-layer inverse skin model was used to extract the parameters from

the two-layer spectra. The same code used to generate the two-layer MCLUT

was also used to create the one-layer MCLUT. Refractive indices and probe

geometry parameters were also the same. In the one-layer MCLUT, µ′s ranges

from 0 to 70 cm−1 and µa ranges from 0 to 50 cm−1 to cover the range of optical

properties present in skin [69]. Ten evenly spaced increments were used for

each parameter. In the one-layer inverse model, the first step is to set initial

values to the following parameters: (1) µ′s(λ0), (2) [mel], (3) [Hb], (4) SO2,

and (5) vessel radius (Rvess). Next, µ′s(λ) is calculated using Equation 1 and

µa(λ) is determined using Equation 5.4.

µa(λ) = εmel(λ)[mel] + µcorrecteda,Hb (λ) (5.4)

where [mel] represents the concentration of melanin and µcorrecteda,Hb (λ) is the

wavelength dependent absorption due to hemoglobin that has been corrected

for the inhomogeneous distribution. Because hemoglobin is confined to very

small volumes in blood vessels, we account for this inhomogeneous distribution

in tissue by using the corrections described by van Veen et al. to calculate

a corrected absorption coefficient of blood [70]. The correction factor can be

calculated using Equation 5.5.

Cpack(λ) =

[
1− exp(−2µa,bl(λ)rvess)

2µa,bl(λ)rvess

]
(5.5)
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where µa,bl(λ) is the absorption coefficient of whole blood and rvess is assumed

to be the mean vessel radius in the tissue volume sampled. The packaging

corrected absorption coefficient of blood in tissue can now be written as shown

in Equation 5.6

µcorrecteda,Hb (λ) = Cpack(λ)µa,bl(λ) (5.6)

where

µa,bl(λ) = [Hb][εHbO2(λ)SO2 + εHb(λ)(1− SO2)] (5.7)

where [Hb] is the hemoglobin concentration, εHbO2(λ) is the extinction coef-

ficient for oxygenated hemoglobin at wavelength λ, εHb(λ) is the extinction

coefficient for deoxygenated hemoglobin at wavelength λ, and SO2 is the oxy-

gen saturation. After Equations 5.1, 5.4, 5.5, 5.6, and 5.7 are used to calculate

µa(λ) and µ′s(λ), the one-layer MCLUT is used to generate a reflectance spec-

trum. The root-mean-sqared error between this spectrum and the modeled

two-layer spectrum is then calculated. The parameters are then iteratively

updated until the error is minimized. An interior-point nonlinear optimization

routine provided in the MATLAB optimization toolbox (Mathworks, Nattick,

MA, USA) was used as the optimization algorithm. In order to avoid con-

verging to a local minima, the optimization algorithm was run three time with

three different sets of initialization parameters and then we used the solution

that gave the smallest error. We are confident that the global minimum was
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found because the three different initialization parameters led to very similar

solutions.

5.4 Results

Spectra based on a two-layer skin model were generated and then pa-

rameters from the spectra were extracted using a one-layer inverse skin model.

Figure 5.1 shows a representative fit and illustrates the good agreement be-

tween the two-layer and one-layer spectra. Because the same scattering value

was used for both layers in the two-layer model, the error in extracted scat-

tering values was alway less than 1.7%. Figure 5.2 shows the two-layer [mel]

vs. the one-layer extracted [mel]. This plot was created by varying the two-

layer [mel] used to create the spectra and fixing all other parameters at three

different values for Z0 (50 µm, 100 µm, and 200 µm). [Hb] was fixed at 1

mg/ml, µ′s was fixed at 20 cm−1, SO2 was fixed at 100%, and B was fixed at

-1.5. [mel] ranged from 0 to 5 mg/ml in 20 increments. The one-layer inverse

model was then used to extract [mel] from each spectra.

Figure 5.3 shows the two-layer [Hb] vs. the one-layer extracted [Hb].

This plot was created by varying the two-layer [Hb] used to create the spectra

and fixing all other parameters at three different values for Z0 (50 µm, 100

µm, and 200 µm). [mel] was fixed at 1 mg/ml, µ′s was fixed at 20 cm−1, SO2

was fixed at 100%, and B was fixed at -1.5. [Hb] ranged from 0 to 3 mg/ml

in 20 increments. The one-layer inverse model was then used to extract [Hb]

from each spectra.
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Figure 5.1: A representative fit showing the good agreement between the two-
layer and one-layer spectra.
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Figure 5.2: Two-layer [mel] vs. the one-layer extracted [mel]. This plot was
created by varying the two-layer [mel] used to create the spectra and fixing
all other parameters at three different values for Z0 (50 µm, 100 µm, and 200
µm). [Hb] was fixed at 1 mg/ml, µ′s was fixed at 20 cm−1, SO2 was fixed
at 100%, and B was fixed at -1.5. [mel] ranged from 0 to 5 mg/ml in 20
increments.
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Figure 5.3: Two-layer [Hb] vs. the one-layer extracted [Hb]. This plot was
created by varying the two-layer [Hb] used to create the spectra and fixing
all other parameters at three different values for Z0 (50 upmum, 100 µm, and
200 µm). [Hb] was fixed at 1 mg/ml, µ′s was fixed at 20 cm−1, SO2 was fixed
at 100%, and B was fixed at -1.5. [mel] ranged from 0 to 3 mg/ml in 20
increments.
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Figure 5.4 shows the two-layer SO2 vs. the one-layer extracted SO2.

This plot was created by varying the two-layer SO2 used to create the spectra

and fixing all other parameters at three different values for Z0 (50 µm, 100

µm, and 200 µm). [mel] was fixed at 1 mg/ml, µ′s was fixed at 20 cm−1, [Hb]

was fixed at 1 mg/ml, and B was fixed at -1.5. SO2 ranged from 0 to 100%

in 20 increments. The one-layer inverse model was then used to extract SO2

from each spectra.

Figure 5.5 shows Z0 vs. the vessel radius parameter used in the one-

layer inverse model. This plot was created by varying Z0 in the two-layer

model used to create the spectra and fixing all other parameters. [mel] was

fixed at 1 mg/ml, [Hb] was fixed at 1 mg/ml, µ′s was fixed at 20 cm−1, SO2

was fixed at 100%, and B was fixed at -1.5. Z0 ranged from 0 to 300 µm in

20 increments. The one-layer inverse model was then used to extract vessel

radius from each spectra. To illustrate the relationship between the pigment

packaging factor in the one-layer model and the epidermal thickness, a pigment

packaging factor was not included in the two-layer model.

Figures 5.6(a) and 5.6(b) were created by generating 100 random pairs

of [mel] and [Hb] to generate two-layer spectra while all other parameters

were fixed. Z0 was fixed at 100 µm, µ′s was fixed at 20 cm−1, SO2 was fixed

at 100%, and B was fixed at -1.5. The random pairs of [Hb] and [mel] used

to generate the two-layer spectra are plotted in Figure 6(a) and the extracted

one-layer values for [Hb] and [mel] are plotted in Figure 6(b). In Figure 6(a),

[Hb] and [mel] have a Pearson correlation coefficient (PCC) of R = 0.0438. In
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Figure 5.6: (a) Random pairs of [Hb] and [mel] used to generate the two-layer
spectra. (b) Extracted one-layer values for [Hb] and [mel].

Figure 6(b), [Hb] and [mel] have a Pearson correlation coefficient (PCC) of R

= 0.7950.

5.5 Discussion and Conclusions

In this study, we investigated errors caused by using a one-layer assump-

tion for skin when using diffuse reflectance spectroscopy to measure optical

properties. This was accomplished by first creating spectra using a two-layer

skin model and then extracting the properties from the modeled spectra using

a one-layer inverse skin model. The parameters used to generate the two-layer
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spectra were then compared to the parameters extracted with the one-layer

inverse model.

Figure 5.2 shows the extracted one-layer [mel] vs. the two-layer [mel]

for three different epidermal thicknesses. Notice that the one-layer model

underestimates [mel]; however, this would be expected since the one-layer

inverse model is extracting a volume average for [mel], and the melanin is

located only in a thin top layer. Additionally, the magnitude of the error

is dependent on epidermal thickness, with an underestimation by a factor of

5 when the epidermal thickness is 50 µm and by a factor of approximately

1.25 when the epidermal thickness is 200 µm. If the epidermal thickness is

unknown, it would not be possible to interpret a [mel] value extracted with a

one-layer skin model. Similarly, Figure 5.3 shows the extracted one-layer [Hb]

vs. the two-layer [Hb] for three different epidermal thicknesses. [Hb] is also

underestimated when a one-layer skin model is used; however, the errors are

smaller than the ones for [mel] and the relationship of the error to epidermal

thickness is the opposite with an underestimation of a factor of 1.2 when

the epidermal thickness is 50 µm and by a factor of 2 when the epidermal

thickness is 200 µm. Figures 5.2 and 5.3 show that [Hb] and [mel] will be

underestimated when a one-layer skin model is used and that the magnitude

of the underestimation is a function of epidermal thickness. If the epidermal

thickness were known, it could be possible to correct for these errors; however,

in many clinically realistic scenarios, the epidermal thickness will be unknown.

If epidermal thickness could be known a priori it would be possible to account
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for these errors; however, in most clinically relevant scenarios the epidermal

thickness will be unknown.

Figure 5.4 shows the extracted one-layer SO2 vs. the two-layer SO2

for three different epidermal thicknesses. For SO2 < 50%, the one-layer model

overestimates SO2, and for SO2 > 50%, the one-layer model underestimates

SO2. The magnitude of the errors is directly proportional to epidermal thick-

ness, meaning the error will be larger when the epidermis is thicker with error

levels reaching 20% when the epidermal thickness is 200 µm. Similar to the

problem with using a one-layer model to extract [mel] and [Hb], it will be dif-

ficult to interpret SO2 values that are extracted using a one-layer skin model

when the epidermal thickness is unknown.

To account for inhomogeneously distributed blood in skin, many one-

layer models have incorporated a pigment packaging factor. This factor, of-

ten calculated as the average vessel radius, accounts for the flattening of the

hemoglobin absorption spectra that is caused by the reduced path length of

photons at wavelengths where the absorption is high. We noticed a similar

flattening phenomenon is caused by increasing the epidermal thickness. Fig-

ure 5.5 was created in order to further investigate the relationship between

the vessel radius factor in a one-layer model and the epidermal thickness in a

two-layer model. Figure 5.5 shows that there is a strong positive correlation

between epidermal thickness and the vessel radius factor. Because of this, we

believe the pigment packaging factor is influenced by both the localization of

blood in vessels and the localization of blood under the epidermis.
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In Figure 5.6, we investigate if the one-layer assumption would have

any effect on the correlation between [mel] and [Hb]. First, random pairs of

[mel] and [Hb] were selected and used to generate two-layer spectra. These

random pairs are plotted in Figure 5.6(a) and are essentially uncorrelated with

a PCC of R = 0.044. Figure 5.6(b) plots the pairs of [mel] and [Hb] that were

extracted using the one-layer model and shows that they are highly correlated

with a PCC of R = 0.795. This correlation is due to the wavelength depen-

dence of photon sampling depth. At shorter wavelengths, both scattering and

absorption in skin are higher and therefore photons with shorter wavelengths

have shallower sampling depths and are more heavily weighted towards the

properties of the epidermis [12]. This means that the effect of melanin is

larger at shorter wavelengths in a two-layer model. In a one-layer model, this

does not occur because hemoglobin and melanin are evenly distributed. When

you attempt to fit a one-layer model to two layer data, the one-layer model

will underestimate the absorption due to melanin at shorter wavelengths. To

compensate for this, the optimization routine can increase the hemoglobin

concentration since hemoglobin absorbs strongly at shorter wavelengths. This

allows the optimization routine to minimize the error, but causes the artifi-

cial correlation between melanin concentration and hemoglobin concentration.

We believe that this is the biggest limitation of using a one-layer model since

there is no way to correct for the artificial correlation between [mel] and [Hb].

Additionally, correlation between extracted parameters can decrease the per-

formance of a classifier. For example, if the extracted parameters were used
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to train a classifier for the diagnosis of skin cancer, we would expect inferior

performance from the classifier because of the artificial correlation between

[mel] and [Hb] that is caused by the one-layer assumption of skin.

We have demonstrated evidence that using a one-layer model for skin to

extract properties from DRS spectra leads to errors in the extracted properties.

By generating modeled spectra with a more physiologically realistic two-layer

model, and then extracting properties from those spectra using a one-layer in-

verse skin model, we were able to quantitatively and systematically analyze the

errors that arise from the one-layer assumption for skin. All of our simulations

were performed using a 400-750 nm wavelength range and a SDS of 250 µm

since these values are common for DRS in skin. At longer wavelength where

the absorption due to hemoglobin and melanin is negligible, a one-layer model

could be sufficient. Additionally, a one-layer model could also be sufficient for

much larger SDSs where the effect of the epidermis is greatly diminished. The

main disadvantage of using a two layer model is the increased computational

complexity; however, through the use of a LUT method and advances in GPU

computing, this is no longer a major issue. Our results can be used to aid in

the interpretation of extracted one-layer parameters, but more importantly,

these results provide evidence showing that a one-layer model is inadequate

for extracting optical properties from a two-layered tissue. In the next chap-

ter, we use a custom probe to measure take in vivo measurements of skin and

extract the tissue properties using the two-layer MCLUT model.
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Chapter 6

In Vivo Estimation of Epidermal Thickness,

Melanin and Hemoglobin Concentrations,

Oxygen Saturation, and Scattering Using

Diffuse Reflectance Spectroscopy

6.1 Background

Diffuse reflectance spectroscopy (DRS) has been widely used for the

noninvasive measurement of tissue properties [2, 3, 71–80]. This technique is

able to investigate tissue structure, chromophore concentration, and health by

measuring the tissue’s optical properties. Typically, a DRS measurement sys-

tem consists of a broadband light source, a spectrometer, and an arrangement

of optical fibers used for delivering and collecting light to and from the tissue.

One or more of the optical fibers is connected to the light source and delivers

light into the tissue by being placed in direct contact with the tissue. Another

set of optical fibers placed in contact at a short distance, called the source-

detector separation (SDS), from the illumination fibers collects light that has

reflected back to the surface of the tissue and delivers this light to a spectrom-

eter. This collected spectrum is called the diffuse reflectance spectrum and it

contains information about the tissue that it has passed through. Extraction

of this information from the spectrum requires the use of a computational
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model that can relate the collected spectrum to physiological properties. One

common approach is to use the diffusion approximation to the radiative trans-

port equation (RTE) [81]; however, this technique requires SDSs on the order

of 1 cm [82], and is therefore not practical for use in skin where the epider-

mal thickness can be less than 100 µm [83]. Another approach involves the

use of Monte Carlo simulation to model photon transport in tissue, which can

accurately model short SDSs [84]. The major limitation of Monte Carlo sim-

ulation is that it’s very computationally intensive; however, our recent work

has overcome this limitation by using a combination of parallel processing and

pre-computed lookup tables [10, 11].

Many techniques for analyzing DRS spectra are based on the assump-

tion that tissue is homogeneous and that properties are independent of depth

[6, 10, 14, 85–89]. In reality, most tissue has a layered structure where there is

a thin lining of epithelial tissue at the surface. One example of this is skin,

where there is a thin epidermal layer on top of the dermal layer [90]. The

epidermis contains melanin, whereas the dermis is perfused with blood vessels

and nerves [70]. These differences in cellular structure and chemical composi-

tion cause the two layers to have very different optical properties. Because of

this, assuming that the optical properties in skin are homogenous can lead to

significant errors in extracted optical properties. In our previous study (Chap-

ter 5), we were able to show that the homogeneity assumption in skin causes

an artificial correlation in hemoglobin and melanin concentrations [13]. Addi-

tionally, using a layered model to extract tissue properties provides valuable
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information such as epidermal thickness, which can be of great significance in

many areas of medical and biological research.

In this study, we used a custom designed DRS probe specifically created

for measuring the properties of skin to collect DRS spectra from 80 subjects

at 5 different anatomical locations including the cheek, palm, forearm, calf,

and back. We then used our previously developed two-layer inverse model

for extracting properties from diffuse reflectance spectra in order to measure

epidermal thickness, hemoglobin concentration, melanin concentration, scat-

tering properties, and oxygen saturation. The goals of this study are to show

that DRS can noninvasively and accurately measure depth epidermal thickness

and chromophore concentrations in skin.

6.2 Data Collection

6.2.1 Study Population

In total, 80 health subjects were included who gave their informed

consent for the participation in the study. The study received IRB approval

from The University of Texas at Austin (IRB No. 00002030). The study was

performed in a university setting (The University of Texas at Austin) during

the summer of 2014. We recorded the subjects’ age and gender. The average

age of participants was 25.7 years and included subjects aged between 18 and

46. There were 51 males and 29 females.
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6.2.2 Instrumentation

We developed a custom fiber optic DRS probe designed specifically for

interrogating the optical properties of skin. Source and detector fiber were

arranged so that the photon sampling depth was optimized for measuring the

properties of both the epidermis and dermis. This was accomplished by using

the work described in chapter 4 [12]. The probe consisted for four separate

arms:

1. Central fiber of 40 µm diameter connected to the light source.

2. An inner ring of six 40 µm diameter collection fibers with an SDS of 55

µm connected to the first spectrometer.

3. An outer ring of five 200 µm diameter collection fibers with an SDS of

205 µm connected to the second spectrometer.

4. An outermost ring of fibers that were not used.

The inner ring of 40 µm fibers was designed to sample light that in-

teracts primarily with the epidermis. The outer ring of five 200 µm fibers

was designed to sample light that interacts with both the epidermis and the

dermis. A diagram of the fiber arrangement is shown in Figure 6.1. The

main components of the entire measurement system are a tungsten halogen

light source (HL-2000, Ocean Optics, Dunedin, FL, USA) that illuminates

between 360-2400 nm, two spectrometers (USB2000+UV-VIS, Ocean Optics,
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Figure 6.1: Fiber design.

Dunedin, FL, USA), the fiber optic probe described above (FiberTech Optica,

Kitchener, Ontario, Canada), and a laptop using OceanView (Ocean Optics,

Dunedin, FL, USA) to record the data.

6.2.3 In Vivo Data Acquisition

Before in vivo data were acquired, at the beginning of each day we

collected a dark measurement and a calibration measurement using a phan-

tom with known optical properties. The dark measurement was collected by

turning lights off in the room and covering the tip of the probe. The cali-

bration measurement was taken by submerging the probe into a calibration

phantom with no absorption and a reduced scattering value of 17 cm−1 at 630

91



nm. Reflectance could then be calculated using equation 6.1

R(λ) =
Iinvivo(λ)− Idark(λ)

Ical(λ)− Idark(λ)
, (6.1)

where R(λ) is the reflectance, Iinvivo(λ) is the raw in vivo data, Idark(λ) is the

dark measurement, and Ical(λ) is the calibration measurement.

After the dark and calibration measurements, in vivo data were col-

lected by placing the probe in direct contact with the subject’s skin. Spectra

were collected from the forearm, cheek, palm, calf, and lower back. The in-

tegration time for both spectrometers was set to 1200 ms. Reflectance values

between 425 and 650 nm were saved for processing. Unfortunately, the data

from the closest SDS had to be thrown out. We suspect this was caused by

an issue with the probe where the inner ring of fibers was obstructed.

6.3 Extracting Tissue Properties

Our recently developed Monte Carlo lookup table (MCLUT) for two-

layers that was discussed in chapter 3 was used to extract properties from the

in vivo data. The following properties were extracted from the spectra:

1. Reduced scattering coefficient at 630 nm (assumed to be the same in

both layers),

2. The scattering exponent parameter (B),

3. Melanin concentration (confined to the top layer),
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4. Hemoglobin concentration (confined to the bottom layer),

5. Oxygen saturation, and

6. Epidermal thickness.

6.4 Results and Discussion

Figures 6.2 - 6.7 show the average values of µ′s, B, [mel], [Hb], SO2, and

epidermal thickness, respectively, for the five different anatomical locations.

The error bars represent the standard deviation of the data. The results were

compared to published values of skin properties.

The main goal of the study performed in this chapter was to show DRS

can accurately extract depth dependent skin properties in vivo. While it’s

not possible to directly validate the results, we can compare the results to

published values for skin optical properties. For reduced scattering (Figure

6.2), we found no significant difference between the 5 different anatomical lo-

cations. The average value across all 80 subject for all 5 anatomical locations

was µ′s(λ = 630 nm) = 22.75 cm−1. This result agrees with the review by Lister

et al. [69] which shows an average reduced scattering value of approximately

20 cm−1 at 630 nm across multiple studies. There was no significant differ-

ence found between the 5 anatomical locations for the scattering exponent, B

(Figure 6.3).

For melanin concentration (Figure 6.4), we found the measurement

from the palm had significantly less melanin when compared to the other
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Figure 6.2: Mean and standard deviation of µ′s for the N = 80 subjects on
their back, calf, cheek, forearm, and palm.
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Figure 6.3: Mean and standard deviation of B for the N = 80 subjects on their
back, calf, cheek, forearm, and palm.
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Figure 6.4: Mean and standard deviation of [mel] for the N = 80 subjects on
their back, calf, cheek, forearm, and palm.

groups. This result is expected, as skin on the palm is known to have re-

duced melanin concentration. The average value across all 80 subject for all

5 anatomical locations was [mel] = 1.83 mg/ml in the epidermis. This result

agrees with results by Patwardhan et al. [91], Marchesini et al. [92], and

Salomatina et al. [93], which all show that 1.83 mg/ml is within the range of

normal values for epidermal melanin concentration.

For hemoglobin concentration (Figure 6.5), we found no significant dif-

ference between the 5 different anatomical locations. The average value across

all 80 subject for all 5 anatomical locations was [Hb] = 1.37 mg/ml in the

epidermis. This result agrees with the review by Lister et al. [69] which shows

a hemoglobin concentration in the dermis of approximately 1.25 mg/ml across

multiple studies.

For epidermal thickness (Figure 6.7), we found no significant difference
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Figure 6.5: Mean and standard deviation of [Hb] for the N = 80 subjects on
their back, calf, cheek, forearm, and palm.
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Figure 6.6: Mean and standard deviation of SO2 for the N = 80 subjects on
their back, calf, cheek, forearm, and palm.
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Figure 6.7: Mean and standard deviation of epidermal thickness for the N =
80 subjects on their back, calf, cheek, forearm, and palm.

between the 5 different anatomical locations. This result was unexpected as

the palm and lower back are known to have a thicker epidermis, and could

be due to short SDS part of the probe not working properly. The average

value across all 80 subject for all 5 anatomical locations was 90 µm. This

result agrees with the study by Gambichler et al. [57] which shows an average

epidermal thickness of 75 µm using OCT.

Overall, the results match up well with previously published values for

skin properties. This promising finding shows that DRS can be used to mea-

sure the depth dependent optical properties of skin in vivo. Future work would

involve repairing the inner SDS fiber bundle on the probe, collecting more in

vivo data, and also recording additional information about each subject in-

cluding skin color or race.
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Chapter 7

Conclusions

Diffuse reflectance spectroscopy (DRS) is a technology that has high

potential for the noninvasive measurement of physiological information. This

dissertation extends previously developed methods for analyzing DRS spectra

and also develops methods that can be used to optimize the design of DRS

instrumentation. We also answered some important questions in the field; for

example, what errors arise when a one-layer model of skin is used to analyze

DRS spectra, and how DRS instrumentation can be designed to sample light

at specific depths.

In Chapter 2, we introduced the Monte Carlo lookup table (MCLUT)

method for extracting properties from DRS spectra. Monte Carlo simulation

is the most accurate way to model light transport in turbid media; however,

its computational intensity has limited its application in inverse models used

for extracting properties from DRS spectra. To overcome this issue, we pre-

computed reflectance values for a range of optical properties and stored these

values in a lookup table (LUT) that could be referred to later on. This allowed

for a significant speed up in the inverse model as well as the increased accu-

racy that came from using Monte Carlo simulation to model light transport.
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The MCLUT method was validated using using liquid phantoms made from

polystyrene microspheres that scatter light and hemoglobin. Since the con-

centration of the microspheres and hemoglobin were known, we can compare

the known values to the values extracted using the MCLUT method. The

results of the validation study showed that the MCLUT method had an er-

ror of 1.74% for extracted reduced scattering values and 2.42% for extracted

hemoglobin concentration values. These promising results showed that the

MCLUT method can be successfully used to extract optical properties from

DRS spectra.

In Chapter 3, we extended the MCLUT method described in Chapter

2 to two-layers. This was accomplish by increasing the dimensions of the

LUT from just scattering and absorption to scattering, absorption on the top,

absorption on the bottom, and the thickness of the top layer. This means

that the total number of Monte Carlo simulations increased dramatically, but

by performing the simulations on a GPU and saving the values in a LUT, we

were still able to maintain the speed of the inverse algorithm. This two-layer

MCLUT method was validated using specially constructed two-layer liquid

phantoms where we were able to control the thickness of the top layer. These

phantoms were composed of water, polystyrene microspheres for scattering,

an absorber in the top layer, and and absorber in the bottom layer. Three

different absorbers (red, green, blue), were used, and multiple phantoms were

constructed with different combinations of top and bottom absorbers. The

results of the validation study were mixed. For specific top layer thicknesses,

99



we were able to extract the depth dependent optical properties with low levels

of error; however, for top layer thickness near 0 µm or greater than 500 µm,

the errors were significantly higher. We attributed this to the limited sampling

depth of the probe that was used in this study. This realization showed the

importance of designing application specific DRS probes that are optimized

for specific sampling depths.

In Chapter 4, we looked at the effect of probe geometry and optical

properties on sampling depth for diffuse reflectance spectroscopy. Monte Carlo

simulation was used to model sampling depth this model was experimentally

validated and was shown to accurately predict sampling depth. We then de-

veloped an analytical model where sampling depth is expressed in terms of

optical properties and probe geometry. This work indicates that for adjacent

fiber in the 6-around-1 orientation, the sampling depth cannot be significantly

increased by increasing the fiber diameters. This result suggests that deeper

sampling depth can only be accomplished by increasing the gap between source

and collection fibers. Additionally, the models proposed in Chapter 4 can be

used to aid in the design of application specific probes that will be used to in-

terrogate the optical properties of specific layers of tissue such as the epidermis

and dermis.

In Chapter 5, we investigated the errors that occur when a one-layer

model is used to used to extract properties from a two-layer tissue. This

was accomplished by first creating spectra a two-layer model of skin where

melanin was confined to the epidermis and hemoglobin was confined to the
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dermis. Next, we extracted the properties from the two-layer spectra using

an inverse one-layer model. The extracted parameters were then compared to

the parameters used to create the two-layer spectra, which allowed us analyze

the specific errors caused by the one-layer assumption. We found that using a

one-layer model causes an underestimation in hemoglobin concentration and

melanin concentration. Additionally, the magnitude of the error is dependent

on epidermal thickness. The one-layer assumption also causes an artificial cor-

relation between hemoglobin and melanin concentration. Oxygen saturation

is overestimated when it is below 50% and underestimated when it is above

50%. We also found that the vessel radius factor used to account for pigment

packaging is correlated with epidermal thickness. These provide strong justi-

fication for using a two-layer model when extracting properties from diffuse

reflectance spectra collected from skin.

In Chapter 6, we used a custom DRS probe to take skin measurements

on 80 subjects at 5 different anatomical locations. Our two-layer MCLUT

model was used to extract the properties from the measurements. The ex-

tracted properties agreed with published values of skin properties. This promis-

ing result shows that DRS has potential to be used for the measurement of

depth dependent properties in skin. Future research could extend this dis-

sertation is several ways. For example, the two-layer MCLUT model could

be modified to include more complex tissue geometries. This might include

adding additional layers or by including a non-layered element to the geome-

try. The methods described in this dissertation could also be used in a pilot
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clinical study for diagnostic purposes.
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