
The University of Texas at Austin

A Randomized Proper Orthogonal
Decomposition Method for Reducing

Large Linear Systems

Brad T. Marvin

Supervisor:
Dr. Tan Bui-Thanh

Second Reader:
Dr. Rachel Ward

This thesis is submitted in partial fulfillment
of the requirements for the Engineering

Honors Program

May 18, 2015

Abstract

The proper orthogonal decomposition (POD) method is a powerful tool for
reducing large data systems which can quickly overwhelm modern computing
tools. In this thesis we provide a link between randomized projections and
statistical methods by introducing the randomized POD method. We also
apply the POD method to a heat transfer finite element model and image
compression. In doing so we demonstrate the practical use and quantify the
error introduced by the POD method.

i

Acknowledgements

I wish to express my sincere thanks to my supervisor, Dr. Tan Bui for his guidance
and support over the past year. I am very thankful for his patience while bringing me
up to speed on POD methods. This project would have not been possible without his
mentorship. I also thank Dr. Rachel Ward for her helpful input. Finally I thank my
family and friends for their continued encouragement.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Structure of Thesis . 1

2 Background 1
2.1 Proper Orthogonal Decomposition . 1
2.2 Snapshot Matrix . 2
2.3 Model Order Reduction Using Exact SVD 3
2.4 Johnson-Lindenstrauss Lemma . 4
2.5 Random Projections . 5

3 Theoretical Results 6

4 Application 11
4.1 Heat Transfer FEM Model . 11
4.2 Image Compression . 15

5 Conclusion 17

6 Future Work 18

References 19

Appendix 20

A Matlab Code 20

iii

1 Introduction

1.1 Problem Statement

Suppose we are given a linear system Ax = b and tasked with finding the solution x. This

problem is simple when the dimensions of A are small, but when A is very large, issues

arise with memory and computational power required to compute solutions. For example,

IBM’s Watson computer which competed on Jeopardy in 2011 was required to compute

solutions to questions by analyzing over 1 Terabyte [1] of data in a span of seconds.

For the case of Watson and our large linear system, we need a systematic way of

reducing our data to the most important information and then using that reduced system

to compute a solution. Randomized proper orthogonal decomposition methods solve

this issue by finding the most important directions within a set of data and using that

information to predict a solution rapidly.

1.2 Structure of Thesis

This thesis is divided in to three major sections: Background (Section 2), Theoretical

Results (Section 3), and Application (Section 4). In the background section we establish

preliminary results needed to understand our results. In the theoretical results section we

make a new connection between randomized POD and randomized projection methods.

In the application section we show how random projections and randomized POD can be

used to solve a heat conduction model and to compress an image. We use the results of

the exact heat conduction model to quantify the error incurred by using a POD method.

2 Background

2.1 Proper Orthogonal Decomposition

The goal of the proper orthogonal decomposition method is to seek the most dominant

subspace of a set of vectors. This subspace (a.k.a reduced basis) can then be used to solve

1

the problem under consideration more efficiently. For example, consider a linear system

Ax = b, (1)

where A ∈ Rm×m and A may be a function of time or other parameters. We first find a

reduced basis V ∈ Rm×k which spans the dominant subspace of A. We then assume that

x ≈ V xr, where xr is the reduced solution. Next we use the Galerkin projection method

to establish the reduced system

V TAV xr = V T b, (2)

and solve for xr. The full solution can then be recovered by x ≈ V xr. Solving Equation 2

now requires solving a k× k system instead of an m×m system required by Equation 1.

If k � m then this procedure greatly reduces the amount of computing required to solve

our original system. In the next three sections we will discuss how the reduced basis V

is constructed.

2.2 Snapshot Matrix

Suppose A is a function of a set of parameters µ, i.e. A = A(µ), each time we want to

solve A(µ)x = b with a new set of parameters we need to solve a new m ×m system of

equations. If instead we wish to solve the reduced k × k system of equations shown in

Equation 2, then we must form V so that it captures the most dominant subspace of A

for every possible choice of parameters.

Suppose D represents the space spanned by every possible choice of inputs and we

discretize this space into n points. We solve the full system for each point in D and store

the solution in a column of a matrix X ∈ Rm×n, known as a snapshot matrix. We then

assume that any solution of the system A(µ)x = b can be approximated by the column

space of X. Now that we have captured the desired subspace of X, all that is left is to

find an orthonormal basis V which approximates the column space of X.

2

2.3 Model Order Reduction Using Exact SVD

One way to form the reduced basis V is to represent the problem as finding the unit

vector v which maximizes ‖XTv‖2, i.e. the vector v which best aligns with the span of

X. This can be solved by performing a constrained optimization of the cost function J ,

i.e.

min
v
J = −1

2
‖XTv‖2 s.t. ‖v‖2 = 1.

This constrained optimization problem can then be represented in a Lagrange multiplier

form:

min
v,Λ
L = −1

2
‖XTv‖2 +

Λ

2
(‖v‖2 − 1).

The benefit of the Lagrangian multiplier approach is that the optimization problem is

now unconstrained with a cost of introducing a new unknown Λ. Carrying out the

optimization gives the following result.

Lemma 1. v maximizes ‖XTv‖ when (v,Λ) is the eigenpair of XXT .

Proof. Recall from before, maximizing ‖XTv‖ with respect to v subject to ‖v‖2 = 1 is

equivalent to minimizing L with respect to v. To carry out the optimization we require

that the gradient of L go to zero:

∂L
∂v

= −XXTv + Λv = 0,

which yields:

XXTv = Λv.

The eigenpair (v,Λ) is the dominant left-singular vector and singular value of X. Tak-

ing the singular value decomposition X = UΣV T gives all of these pairs in the columns

of U and along the diagonal of Σ. From the result of Lemma 1 it is apparent that the

problem of maximizing ‖XTv‖ is solved by computing the singular value decomposition

(SVD) of X.

3

A reduced basis composed of k left-singular vectors can be achieved by truncating the

SVD to the k largest singular values. The truncated SVD is denoted as:

Xk = UkΣkV
T
k ,

where Uk ∈ Rm×k, Σk ∈ Rk×k, and Vk ∈ Rn×k.

Using a truncated SVD provides a direct method for computing the reduced basis, but

comes at a significant computational cost. The reason is that computing the SVD of an

m× n matrix requires O(mn min{m,n}) operations. Halko et al [3] showed that a more

efficient method is to compute the partial QR factorization which can then be used to

recover a truncated SVD with O(kmn) operations. To further reduce the computational

cost of computing a reduced basis, it was shown by Sarlós [4] that random projection

methods could be used to approximate the SVD of large matrices at a reduced cost.

The key principle behind random projection methods was first described by Johnson and

Lindenstrauss [5] and is described in the following section.

2.4 Johnson-Lindenstrauss Lemma

Johnson and Lindenstrauss [5] showed that a set of n points in d dimensions can be

projected on to a k dimensional space without distorting the distance between any two

points more than a factor of (1± ε) provided that k satisfy:

k ≥ 4 log n

ε2/2− ε3/3
.

The resulting distortion is bounded by:

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2, (3)

4

where u and v are any of the original high-dimensional points and f is a map from

Rd → Rk.

The importance of the Johnson-Lindenstrauss Lemma for our purpose is that it in-

dicates that we can project our high dimensional matrix X on to a lower dimensional

subspace

X̃ =
1√
k
Xε

without loosing much information due to Equation 3. The SVD can then be computed

on this lower dimensional matrix X̃ to reduce the computational cost.

2.5 Random Projections

Most of the projection matrices used to carry out Johnson-Lindenstrauss embeddings

draw from random distributions to project the high dimensional data on a random sub-

space. It was shown by Achlioptas [6] that several random distributions preserve the

bounds described by Johnson and Lindenstrauss [5]. Achlioptas suggested two random

distributions as alternatives to the obvious choice of drawing from a normal distribution.

The first being a Rademacher distribution given by:

εij =

 +1 with probability 1/2

−1 with probability 1/2
.

The second distribution utilizes sparsity to reduce the cost of computing Xε. We later

refer to this distribution simply as an Achlioptas distribution:

εij =
√

3×


+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

.

5

Achlioptas [6] showed that each of these distribution choices can result in a successful

Johnson-Lindenstrauss embedding with a probability of at least 1− e−β if

k ≥ 4 + 2β

ε2/2− ε3/3
log n.

3 Theoretical Results

Our first result is a novel method for showing that we can form an approximate reduced

basis Ṽ with columns ṽ using a random projection provided that E[ε] = 0 and Var[ε] = I.

Theorem 1. Lemma 1 holds when (ṽ, Λ̃) is the eigenpair of X̃X̃T and X̃ = 1√
k
Xε.

Proof. Recall from Section 2.3 that maximizing ‖XTv‖ is equivalent to the optimization

problem:

min
v
L = −1

2
‖XTv‖2 +

Λ

2
(‖v‖2 − 1).

Using the trace property ‖A‖2 =
√

Tr(ATA), we have

L = −1

2
Tr(vTXXTv) +

Λ

2
(‖v‖2 − 1).

We now introduce a new term E[εεT] into the expression. This does not change our

original expression if E[ε] = 0 E[εεT] = Var[ε] = I.

L = −1

2
Tr(vTXE[εεT]XTv) +

Λ

2
(‖v‖2

2 − 1).

The trace operator and expectation can be interchanged to get

L = −1

2
E[Tr(vTXεεTXTv)] +

Λ

2
(‖v‖2

2 − 1).

Recognizing that vTXε and εTXTv are both scalar simplifies the expression to

L = −1

2
E[vTXεεTXTv] +

Λ

2
(‖v‖2

2 − 1).

6

We now introduce the Monte Carlo approximation

E[f(x)] ≈ 1

k

k∑
i=1

f(xi),

and then define L̃ such that

L̃ = −1

2

vT

k

k∑
i=1

(Xεi)(Xεi)Tv +
Λ

2
(‖v‖2

2 − 1).

Carrying out the minimization of L̃ with respect to v gives

∂L̃
∂v

= −1

k

k∑
i=1

(Xεi)(Xεi)Tv + Λv = 0. (4)

We define a new variable X̃ := 1√
k
Xε, then Equation 4 becomes

X̃X̃T ṽ = Λ̃ṽ.

It should be noted that Theorem 1 is a new way of arriving at the random projection

method described in Section 2.4. If X̃ ∈ Rm×k then approximating v with ṽ using the

result of Theorem 1 requires computing the eigendecomposition of an m × m matrix.

This computation can be prohibitively costly if m is very large. If k � m then a better

method would require computing the eigendecomposition of a k× k matrix. This can be

achieved using the following result, known as the method of snapshots, first introduced

by Sirovich [2]. Here we present a new way to obtain the method of snapshots.

Theorem 2. w̃ maximizes ‖X̃T ṽ‖ such that ṽ = X̃w̃ when (w̃, Λ̃) is the eigenpair of

X̃T X̃ and X̃ = 1√
k
Xε.

Proof. Recall that maximizing ‖XTv‖ subject to ‖v‖2 = 1 is equivalent to minimizing

the Lagrangian multiplier L = −1
2
‖XTv‖2

2 + Λ
2
(‖v‖2 − 1). Now let us define v = Xw to

7

obtain

L = −1

2
‖XTXw‖2 +

Λ

2
(‖Xw‖2 − 1).

Carrying out the minimization with respect to w

∂L
∂w

= −XTXXTXw + ΛXTXw = 0,

which reduces to

XTXw = Λw.

Solving for w which maximizes ‖XTv‖ leads us to finding the right-singular vectors of X.

We then recover v by v = Xw. Notice that v = UΣV Tw, so the columns of V recovered

via this method are the left-singular vectors of X scaled by their corresponding singular

values. Now we define ṽ = X̃w̃ with the same approach to obtain:

X̃T X̃w̃ = Λ̃w̃ where X̃ :=
1√
k
Xε.

Solving X̃T X̃w̃ = Λ̃w̃ amounts to performing an eigendecomposition on a matrix with

dimensions k × k. This method is thereby more efficient than the method outlined in

Theorem 1 when k � m.

The convergence of the cost function J̃ = −1
2
‖X̃T X̃w̃‖2

2 with respect to the number

of random vectors k is shown in Figure 1. To numerically evaluate J̃ a snapshot matrix

X with dimensions 1333 by 31875 is used to compute w̃ using a Achlioptas distribution

[6] for several values of k. The cost function is then evaluated for the first vector in each

w̃ and compared against the cost function evaluated with X and w taken from the exact

SVD. The results of this procedure show that the relative error between the cost function

evaluated with the approximate and exact dominant right-singular vector converges with

O(1√
k
), which is predicted by Monte Carlo theory.

8

1√
k

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

|J
−
J
p
|

|J
|

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 1: Convergence of the cost function with respect to the number of vectors in the
random projection. The cost function converges with O(1√

k
). The cost for each k value

is computed 75 times and averaged to make the convergence trend more clear.

Next we verify that the method of snapshots minimizes the cost function for any

choice of k using the three random distributions mentioned in Section 2.5 (Achlioptas,

normal, and Rademacher). First we define a new cost function

J(κ) := −1

2
‖XTX(w0 + κ∇J(w0))‖2.

This new function is equivalent to our original cost function in the case that κ = 0 and

w = w0. We chose w0 to be the dominant right-singular vector of X̃. If the method out-

lined in Theorem 2 truly minimizes ‖XTXw‖ then we expect J(κ) to have a minimum

at κ = 0. A snapshot matrix X with dimensions 1333 × 31875 was used to compute w̃

and evaluate the cost function. Figure 2 shows the results of this procedure. All k and

distribution choices show a minimum at approximately κ = 0 as expected.

9

κ
×10 -5

-1 -0.5 0 0.5 1

|c
o
s
t
J
|

10 -4

10 -2

10 0

10 2

10 4

k = 1
k = 10
k = 50
k = 100
Exact

(a) Achlioptas Distribution

κ
×10 -5

-1 -0.5 0 0.5 1

|c
o
s
t
J
|

10 -4

10 -2

10 0

10 2

10 4

k = 1
k = 10
k = 50
k = 100
Exact

(b) Normal Distribution

κ
×10 -5

-1 -0.5 0 0.5 1

|c
o
s
t
J
|

10 -4

10 -2

10 0

10 2

10 4

k = 1
k = 10
k = 50
k = 100
Exact

(c) Rademacher Distribution

Figure 2: J(κ) := J(w0 + κ∇J(w0)).

10

4 Application

4.1 Heat Transfer FEM Model

We applied the randomized POD method to a heat transfer finite-element model to

illustrate the method’s potential use for time dependent systems. The particular model

represents a heat sink structure with several fins to facilitate convective cooling. The

mesh consists of 1333 node points and is shown in Figure 3. The inputs to this system

include the thermal conductivity of each set of fins relative to that of the center section

and the Biot number for the structure’s surface. This model forms the system

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3: computational domain for heat sink structure

M
d

⇀

T

dt
+ A

⇀

T =
⇀

F,

which can be solved by applying the Euler implicit method:

⇀

Ti+1 =
⇀

Ti + hM−1[−A
⇀

Ti+1 +
⇀

F],

11

where the subscript i indicates the time index and h = ti+1 − ti. Rearranging terms

simplifies the expression to

(
M

h
+ A)

⇀

Ti+1 =
M

h

⇀

Ti + F.

Solving this system amounts to solving a system of 1333 equations for each time step.

We can reduce this system by projecting on to a reduced basis V ∈ R1333×k:

V T (
M

h
+ A)V

⇀

T ri+1 = V T (
M

h

⇀

Ti + F)

where
⇀

Ti+1 ≈ V
⇀

T ri+1,

which amounts to solving a system of k equations for each time step.

The thermal conductivities µi for the four sets of fins were taken from the set D =

[0.1, 10] and the Biot number was held fixed at 0.1. The parameter set D was discretized

into five uniformly spaced points, resulting in 54 points in the discrete parameter space.

The model was solved at every point in the parameter space for 101 time steps uni-

formly distributed from t = 0 to t = 10. Each solution vector was compiled into a column

of a snapshot matrix X. The resulting dimension of X was 1333×63125. A reduced basis

was created from this snapshot matrix using the method of snapshots described in Section

3.

The full model was solved for a particular input from D which was not one of the 54

points used to construct X. The reduced model was solved with the same input set for

several values of k and compared against the solution from the full model. Figure 4 shows

these solutions for k = 2, 3, 10 and the full model solution. The approximate solutions

converged to the full model solution as k increased.

12

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

(a) k = 2

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

(b) k = 3

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

(c) k = 10

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0.2

0.4

0.6

0.8

1

1.2

(d) exact

Figure 4: Solutions from the reduced FEM model for various k (a-c) and the solution
from the full FEM model (d). These solutions are taken at t = 10.

The relative error between the reduced model solutions and full model solution was

computed for each node and plotted in Figure 5. Overall the relative error decreased

when increasing k. For k = 25 the maximum point-wise relative error is 0.8%.

13

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

(a) k = 2

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) k = 3

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) k = 10

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4 ×10 -3

1

2

3

4

5

6

7

8

(d) k = 25

Figure 5: Maps of the relative error between the reduced and exact FEM solutions at
t = 10.

The H1 norm given by ‖T‖H1 =
√
T TMT + T TAT was computed at each time step

for the reduced models and the exact model. Figure 6 shows the relative error between

H1 norms for the reduced models and the exact model at each time step. For each choice

of k the error decreases rapidly within the first second and then grows slowly with time.

The time averaged error decreases as k increases.

14

Time [s]
0 5 10

R
el

at
iv

e
er

ro
r

in
 H

1
no

rm

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a) k = 2

Time [s]
0 5 10

R
el

at
iv

e
er

ro
r

in
 H

1
no

rm

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(b) k = 3

Time [s]
0 5 10

R
el

at
iv

e
er

ro
r

in
 H

1
no

rm

0

0.005

0.01

0.015

0.02

0.025

(c) k = 10

Time [s]
0 5 10

R
el

at
iv

e
er

ro
r

in
 H

1
no

rm

10 -6

10 -5

10 -4

10 -3

10 -2

(d) k = 25

Figure 6: Convergence over time of the H1 norm.

4.2 Image Compression

The POD method and randomized projection method can also be used for image com-

pression. Consider a gray scale image denoted as X and represented by an m×n element

array of doubles. A potential method for compressing this image is to compute the SVD

of X and truncate U, S, and V to the first k columns. The cost of storing this decompo-

sition would then be k(m+ n) + k2. This procedure was performed on a 413×508 image

shown in Figure 8(a) and the resulting compressed image is shown in 8(b) for k = 50.

We later refer to this compression method as Method 1. The value k = 50 was chosen

by plotting the singular values of X, shown in Figure 7 and determining where the decay

became linear.

15

We can extend the POD principle to image compression by forming a reduced basis

V ∈ Rm×k using the first k left-singular vectors of X and then forming a reduced X by

Xr = V TX, (5)

where Xr ∈ Rk×n. Storing Xr and V would then cost k(n + m). This compression

method was applied to our sample image and shown in Figure 8(c). We later refer to this

compression method as Method 2.

We can reduce the computation required to form a reduced basis of X by first pro-

jecting X on to a random subspace spanned by k random vectors as we have done before:

X̃ =
1√
k
Xε,

where X̃ ∈ Rm×k. From here the basis vectors can be computed using the method of

snapshots described in Theorem 2. By applying the projection method in Equation 5,

we can form Xr and V that can be stored with a cost of k(n + m). This procedure was

applied to our image using an Achlioptas Distribution [6] and the resulting compressed

image is shown in Figure 8(d). We later refer to this compression method as Method 3.

Index

0 50 100 150 200 250 300 350 400

σ

10 -2

10 -1

10 0

10 1

10 2

10 3

Figure 7: decay of singular values

16

(a) Original Image (b) Method 1: Truncated SVD with k = 50.

(c) Method 2: Truncated SVD with reduced
basis approximation and k = 50.

(d) Method 3: Randomized SVD with re-
duced basis approximation and k = 50.

Figure 8: Image compression techniques applied to a Schlieren image showing the shock-
wave structure formed around a wedge in a supersonic windtunnel.

By comparing the compressed images in Figure 8 it is obvious that the randomized

method in (d) reduces the quality of the compression. The benefit to this randomized

projection method was that it reduced the computational cost required to form a reduced

basis. The original image required storing 209, 804 elements. Method 1 required storing

48, 550 elements (a 77% reduction), and Methods 2 and 3 required storing 46, 050 elements

(a 78% reduction).

5 Conclusion

The randomized proper orthogonal decomposition method can be used to reduce the cost

of solving large linear systems. This method requires computing a reduced basis which

17

can be accomplished either directly via the singular value decomposition, or approxi-

mately via a random projection and reduced singular value decomposition.

In this thesis we have outlined some of the major contributions to POD in the last 30

years and presented some original results. Our contributions included:

• a new way of showing that randomized projections can produce a reduced basis

which links Johnson-Lindenstrauss embeddings and statistical methods,

• numerical analysis of the convergence rate associated with randomized projection

methods,

• an application of the POD method to a heat transfer FEM model,

• error analysis of the heat transfer solution predicted via the POD method,

• an application of the POD method to image compression.

By applying the POD method to a heat transfer FEM model, we show that the system

could be reduced from 1333 equations and variables to just 25 equations and variables

while only introducing a maximum point-wise relative error of 0.8%. By applying the

POD method to image compression, we showed that for a particular image we can store

78% less data while only incurring a modest reduction in image quality.

6 Future Work

Our planned future work in this topic includes:

• applying the POD method to a three-dimensional heat transfer model

• applying the POD method to large scale problems for aerospace applications

• tightening the error bounds on random projection methods using the statistical

approach described in Section 3

18

References

[1] D. Ferrucci, IBM’s Watson/DeepQA, Proceedings of the 38th annual international

symposium on Computer architecture, (2011).

[2] L. Sirovich, Turbulence and the dynamics of coherent structures, Quarterly of Applied

Mathematics, vol. 45 , no. 3 (1987), pp. 561-590.

[3] N. Halko, P.G. Martinsson, J.A. Tropp, Finding Structure with Randomness: Prob-

abilistic Algorithms for Constructing Approximate Matrix Decompositions, SIAM

Rev., 53 (2011), pp. 217-288.

[4] T. Sarlós, Improved Approximation Algorithms for large Matrices via Random Pro-

jections, Proceedings of the 47th Annual IEEE Symposium on Foundations of Com-

puter Science, (2006), pp. 143-152.

[5] W. B. Johnson, J. Lindenstrauss, Extensions of Lipschitz Mappings into a Hilbert

Space, in Contemporary Mathematics, Vol. 26, R. Beals, A. Beck, A. Bellow, A.

Hajian, ed., American Mathematical Society, New Haven, CT, 1984, pp. 189-206.

[6] D. Achlioptas,Database-friendly random projections: Johnson-Lindenstrauss with bi-

nary coins, Journal of Computer and System Sciences, 66 (2003), pp. 671-687.

19

A Matlab Code

1 %tROM driver .m
2 %Author : Brad Marvin
3 %c r e a t e s reduced order model o f FEM heat model and p l o t s e r r o r
4 c l e a r a l l
5 addpath (’ . / plotpub ’) ;
6 %n : number o f t r a i n i n g po in t s a long s i n g l e dimension in parameter space
7 n = 5 ;
8
9 %Time step parameters
10 h = 0 . 1 ;
11 tmin = 0 ;
12 tmax = 10 ;
13 t = tmin : h : tmax ;
14
15 %k : rank o f reduced ba s i s
16 k = 25 ;
17
18 load g r i d s
19
20 %form input matrix from s e c t i o n s o f parameter space
21 mu = input gen (n) ;
22 %form snapshot matrix from FEM model
23 [Aq,Fh ,M,Ah0 ,X] = tsnapshot (coarse ,mu, t , h) ;
24
25 %form reduced ba s i s from snapshot matrix us ing method o f snapshots
26 [V,w,Xnew] = reduced ba s i s (X, k) ;
27
28 q = length (Fh) ;
29
30 %i n i t i a l cond i t i on
31 uh0 = ze ro s (q , 1) ;
32
33 %FEM so l u t i o n us ing reduced ba s i s
34 mul= [6 , 7 , 8 , 9 , 1 , 0 . 1] ;
35 Ah = Ah0 ;
36 f o r i = 1 :6
37 Ah = Ah+mul (i) ∗Aq{ i } ;
38 end
39 un = ze ro s (q , l ength (t)) ;
40 un (: , 1) = uh0 ;
41 xr = ze ro s (k , 1) ;
42 kr = V’ ∗ (M/h+Ah) ∗V;
43 [L ,U, p] = lu (kr) ;
44 f o r i i = 1 : l ength (t) − 1
45 Br = V’ ∗ (M/h∗un (: , i i)+Fh) ;
46 y = L\(p∗Br) ;
47 xr = U\y ;
48 un (: , i i +1) = V∗xr ;
49 end
50
51 %so l v e exact FEM model f o r comparison
52 uh = ze ro s (q , l ength (t)) ;
53 uh (: , 1) = uh0 ;
54 k = (M/h+Ah) ;

20

55 [L ,U, p] = lu (k) ;
56 f o r i i = 1 : l ength (t) − 1
57 B = M/h∗uh (: , i i)+Fh ;
58 y = L\(p∗B) ;
59 uh (: , i i +1) = U\y ;
60 end
61
62 % p lo t H1 e r r o r over time
63 e r r = ze ro s (l ength (t) , 1) ;
64 f o r i i = 1 : l ength (t)
65 Hp1 = sq r t (un (: , i i) ’∗M∗un (: , i i)+un (: , i i) ’∗Ah∗un (: , i i)) ;
66 Hp2 = sq r t (uh (: , i i) ’∗M∗uh (: , i i)+uh (: , i i) ’∗Ah∗uh (: , i i)) ;
67 e r r (i i , 1) = abs (Hp1−Hp2) . /Hp2 ;
68 end
69 p l o t (t , e r r)
70 opt . XLabel = ’Time [s] ’ ;
71 opt . YLabel = ’ Re la t i v e e r r o r in H1 norm ’ ;
72 opt . LineWidth = 1 . 5 ;
73 opt . YScale = ’ l og ’ ;
74 opt . FontSize = 12 ;
75 opt . FileName = ’ h1er ror n25 . eps ’ ;
76 opt .BoxDim = [2 , 2] ;
77 setPlotProp (opt) ;
78 % p lo t r e l a t i v e e r r o r at l a s t t imestep
79 err map = abs (un (: , end)−uh (: , end)) . / abs (uh (: , end)) ;
80 p l o t s o l u t i o n (coarse , err map , 0) ;
81 % p lo t s o l u t i o n at l a s t t imestep
82 p l o t s o l u t i o n (coarse , un (: , end) ,1) ;

1 % tsnapshot .m
2 % Author : Brad Marvin
3 % runs t r an s i e n t FEM heat model f o r each po int in parameter space
4 func t i on [Aq,Fh ,M,Ah0 ,X]= tsnapshot (gr id ,mu, t , h)
5 % bu i ld FEM matr i ce s
6 [Aq,Fh ,M] = FEM(gr id) ;
7 q = length (Fh) ;
8 Ah0 = spar s e (g r id . nodes , g r i d . nodes) ;
9 X= [] ;
10 [n , ˜] = s i z e (mu) ;
11 % so l v e system f o r each s e t o f inputs and bu i ld snapshot
12 pa r f o r j = 1 : n
13 muj = mu(j , :) ;
14 Ah = Ah0 ;
15 f o r i = 1 :6
16 Ah = Ah+muj (i) ∗Aq{ i } ;
17 end
18 uh0 = ze ro s (q , 1) ;
19 uh = ze ro s (q , l ength (t)) ;
20 uh (: , 1) = uh0 ;
21 k = (M/h+Ah) ;
22 [L ,U, p] = lu (k) ;
23 f o r i i = 1 : l ength (t) − 1
24 B = M/h∗uh (: , i i)+Fh ;
25 y = L\(p∗B) ;
26 uh (: , i i +1) = U\y ;
27 end
28 X=[X uh] ;

21

29 end
30 end

1 % reduced ba s i s .m
2 % Author : Brad Marvin
3 % forms a reduced ba s i s o f rank k f o r the column space o f an input snapshot

matrix
4 func t i on [V,w,Xnew]= reduced ba s i s (X, k)
5 [˜ , n] = s i z e (X) ;
6 %Xnew=X/ sq r t (k) ∗ randraw (’ rademacher ’ , [] , [n , k]) ;
7 %Xnew=X/ sq r t (k) ∗ randn (n , k) ;
8 Xnew=X/ sq r t (k) ∗ liRandomMatrix (n , k , 3) ;
9 [˜ , ˜ ,w]=svd (Xnew) ;
10 V=Xnew∗w;
11 end

1 %FEM.m
2 %Author : Unknown
3
4 func t i on [Aq,Fh ,M] = FEM(gr id)
5 % This func t i on w i l l take the c on f i gu r a t i on and a t r i a n gu l a t i o n and return

Aq and Fh
6 % by us ing f i n i t e element method
7
8 % Global node
9 Node = ze ro s (3 , 1) ;
10 % Global coo rd ina t e s
11 x = ze ro s (3 , 1) ;
12 y = ze ro s (3 , 1) ;
13 % Elemental matr i ce s I
14 AI = ze ro s (3 , 3) ;
15 % Right hand s i d e vec to r F
16 Fh = ze ro s (g r id . nodes , 1) ;
17 % Assembly Matrix Aq from AI
18 M = spar s e (g r id . nodes , g r i d . nodes) ;
19 Am = [2 1 1 ;1 2 1 ; 1 1 2] ;
20 nd = length (g r id . theta) ;
21 f o r n = 1 : (nd−2)
22 Aq{n} = spar se (g r id . nodes , g r i d . nodes) ;
23 % Number o f e lements on each reg i on
24 m = s i z e (g r id . theta {n} , 1) ;
25 f o r k = 1 :m
26 % Take g l oba l node f o r cur rent element
27 Node (1) = gr id . theta {n}(k , 1) ;
28 Node (2) = gr id . theta {n}(k , 2) ;
29 Node (3) = gr id . theta {n}(k , 3) ;
30 % x−y coo rd ina t e s f o r each g l oba l node
31 f o r i = 1 :3
32 x (i) = gr id . coor (Node (i) , 1) ;
33 y (i) = gr id . coor (Node (i) , 2) ;
34 end
35 % The area o f cur rent element
36 Area = 0.5∗ abs (x (2) ∗y (3)−y (2) ∗x (3)−x (1) ∗y (3)+y (1) ∗x (3)+x (1) ∗y (2)−y

(1) ∗x (2)) ;
37 % Calcu la te cx and cy

22

38 cx (1) = y (2) − y (3) ;
39 cx (2) = y (3) − y (1) ;
40 cx (3) = y (1) − y (2) ;
41 cy (1) = x (3) − x (2) ;
42 cy (2) = x (1) − x (3) ;
43 cy (3) = x (2) − x (1) ;
44 % e s t a b l i s h the e l ementa l matr i ce s
45 f o r i = 1 :3
46 f o r j = 1 :3
47 AI (i , j) = cx (i) ∗cx (j) + cy (i) ∗cy (j) ;
48 end
49 end
50 AI = AI/(4∗Area) ;
51
52 % Element Mass matrix
53 AM = (Area /12) ∗Am;
54
55 % Assembly matrix A
56 f o r alpha = 1 :3
57 i = Node (alpha) ;
58 f o r beta = 1 :3
59 j = Node (beta) ;
60 Aq{n}(i , j) = Aq{n}(i , j) + AI (alpha , beta) ;
61 M(i , j) = M(i , j) + AM(alpha , beta) ;
62 end
63 end
64 end
65 end
66
67 % Elemental matr i ce s I I
68 AII = ze ro s (2 , 2) ;
69 Node = ze ro s (2 , 1) ;
70 x = ze ro s (2 , 1) ;
71 y = ze ro s (2 , 1) ;
72 % Assembly Matrix A from elementa l matr i ce s AII and RHS
73 Aq{nd−1} = spar se (g r id . nodes , g r i d . nodes) ;
74 f o r m=(nd−1) : nd
75 % The number o f segments on the boundary exc lud ing the Root
76 n = s i z e (g r id . theta {m} , 1) ;
77 f o r k = 1 : n
78 % Global node o f cur rent segment
79 Node (1) = gr id . theta {m}(k , 1) ;
80 Node (2) = gr id . theta {m}(k , 2) ;
81 % x−y coo rd ina t e s o f g l oba l nodes
82 f o r i = 1 :2
83 x (i) = gr id . coor (Node (i) , 1) ;
84 y (i) = gr id . coor (Node (i) , 2) ;
85 end
86 % Length o f cur rent segment
87 h = sq r t ((x (1) − x (2)) ˆ2 + (y (1) − y (2)) ˆ2) ;
88 i f m==(nd−1)
89 % Estab l i sh the e l ementa l matr i ce s I I
90 AII =(h/3) ∗ [1 1/2 ; 1/2 1] ;
91 % Assembly matrix A
92 f o r alpha = 1 :2
93 i = Node (alpha) ;
94 f o r beta = 1 :2
95 j = Node (beta) ;

23

96 Aq{m} (i , j) = Aq{m}(i , j) + AII (alpha , beta) ;
97 end
98 end
99 e l s e
100 % Estab l i sh the e l ementa l matr i ce s f o r RHS
101 Fe = h/2∗ [1 1] ;
102 % Assembly the RHS
103 f o r alpha = 1 :2
104 i = Node (alpha) ;
105 Fh(i) = Fh(i) + Fe (alpha) ;
106 end
107 end
108 end
109 end

1 % input gen .m
2 % Author : Brad Marvin
3 % gene ra t e s parameter space from input number o f t r a i n i n g po in t s
4 func t i on [mu]= input gen (n)
5 x=l i n s p a c e (0 . 1 , 1 0 , n) ;
6 mu=nchoosek ([x , x , x , x] , 4) ;
7 mu=unique (mu, ’ rows ’) ;
8 mu=[mu, ones (nˆ4 ,1) , 0 . 1∗ ones (nˆ4 ,1)] ;
9 end

1 %liRandomMatrix .m
2 %Author : Aditya Krishna Menon
3 func t i on [R] = liRandomMatrix (d , k , s)
4 R temp = rand (d , k) ;
5 R = ze ro s (d , k) ;
6 R(f i nd (R temp>1−1/(2∗ s))) = sq r t (s) ;
7 R(f i nd (R temp<1/(2∗ s))) = −s q r t (s) ;
8 end

1 % cos t conve rgence .m
2 % Author : Brad Marvin
3 addpath (’ . / plotpub ’)
4 % form input parameter s e t
5 mu = input gen (5) ;
6 load g r i d s
7 % bu i ld snapshot matrix
8 t = 0 : 0 . 1 : 5 ;
9 [˜ , ˜ , ˜ , ˜ ,X]= tsnapshot (coarse ,mu, t , 0 . 1) ;
10 % se t k va lue s such that kˆ(−1/2) i s l i n e a r l y d i s t r i b u t e d
11 kmin = 100 ;
12 kmax = 2000 ;
13 nk = 200 ;
14 q = l i n s p a c e (1/ sq r t (kmin) ,1/ sq r t (kmax) , nk) ;
15 k = 1 ./ q . ˆ 2 ;
16 k = round (k) ;
17 [˜ , n] = s i z e (X) ;
18 % so l v e co s t func t i on f o r each k
19 Jp = ze ro s (1 , l ength (k)) ;
20 pa r f o r i i = 1 : l ength (k)

24

21 a = 75 ;
22 f o r j j = 1 : a
23 % Random pro j e c t i o n us ing Achl ioptas Dist .
24 Xp=X/ sq r t (k (i i)) ∗ liRandomMatrix (n , k (i i) , 3) ;
25 [˜ , ˜ ,w]= svds (Xp, 1 , ’L ’) ;
26 V=Xp∗w;
27 Jp (i i) = Jp (i i) + norm(Xp’∗V, ’ f r o ’) ;
28 end
29 Jp (i i) = Jp (i i) /a ;
30 k (i i)
31 end
32 % so l v e co s t func t i on f o r exact inputs
33 [˜ , ˜ ,w] = svds (X, 1 , ’L ’) ;
34 V=X∗w;
35 J=norm(X’∗V, ’ f r o ’) ;
36 % p lo t co s t func t i on convergence
37 s e t (0 , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’)
38 f=abs (J−Jp) /abs (J) ;
39 x=1./ sq r t (k) ;
40 p = p o l y f i t (x , f , 1) ;
41 y = po lyva l (p , x) ;
42 f i g u r e ; hold on
43 p l o t (x , f)
44 p l o t (x , y)
45 hold o f f
46 opt . YLabel = ’ $\ f r a c { | J−Jp | } { | J | } $ ’ ;
47 opt . XLabel = ’ $\ f r a c {1}{\ s q r t {k}}$ ’ ;
48 opt . LineWidth = 1 . 5 ;
49 opt . L ineSty l e = { ’− ’ , ’−− ’ } ;
50 opt . FontSize = 14 ;
51 opt . Colors = [
52 0 , 0 , 1 ;
53 0 ,0 ,0
54] ;
55 opt . FileName = ’ t e s t . eps ’ ;
56 setPlotProp (opt) ;

1 %Jmin .m
2 %Author : Brad Marvin
3 %Evaluates co s t func t i on along grad i en t
4 addpath (’ . / plotpub ’)
5 % bu i ld snapshot matrix
6 mu = input gen (5) ;
7 load g r i d s
8 t = 0 : 0 . 1 : 5 ;
9 [˜ , ˜ , ˜ , ˜ ,X]= tsnapshot (coarse ,mu, t , 0 . 1) ;
10 % se t POD and cos t func t i on parameters
11 N = [1 , 1 0 , 5 0 , 1 0 0] ;
12 K = −1E−5:1 .0E−8:1E−5;
13 a = 10ˆ6 ; % s c a l i n g f a c t o r
14 [˜ , p] = s i z e (X) ;
15 % so l v e co s t func t i on f o r exact inputs
16 [˜ , ˜ ,w] = svds (X, 1 , ’L ’) ;
17 XTX = (X’∗X) ;
18 gradJ = −XTX∗XTX∗w;
19 J = ze ro s (1 , l ength (K)) ;
20 f o r j j = 1 : l ength (K)

25

21 Kj = K(j j) ;
22 J (1 , j j) = −1/(2∗a ˆ2) ∗norm(XTX∗(a∗w+Kj∗gradJ) , ’ f r o ’) ;
23 end
24 c l e a r XTX
25 % so l v e vost func t i on f o r randomized inputs
26 Jp = ze ro s (l ength (N) , l ength (K)) ;
27 f o r i i = 1 : l ength (N)
28 Ni = N(i i) ;
29 %Xp = X/ sq r t (Ni) ∗ liRandomMatrix (p , Ni , 3) ;
30 %Xp = X/ sq r t (Ni) ∗ randraw (’ rademacher ’ , [] , [p , Ni]) ;
31 Xp=X/ sq r t (Ni) ∗ randn (p , Ni) ;
32 XpTXp = (Xp’∗Xp) ;
33 [˜ , ˜ ,wp] = svds (Xp, 1 , ’L ’) ;
34 gradJp = −XpTXp∗XpTXp∗wp;
35 f o r j j = 1 : l ength (K)
36 Kj = K(j j) ;
37 Jp (i i , j j) = −1/(2∗a ˆ2) ∗norm(XpTXp∗(a∗wp+Kj∗gradJp) , ’ f r o ’) ;
38 end
39 end
40 c l e a r XpTXp
41 % p lo t co s t func t i on vs kappa
42 f i g u r e ; hold on
43 f o r i i = 1 : l ength (N)
44 p l o t (K, abs (Jp (i i , :)))
45 end
46 p l o t (K, abs (J))
47 hold o f f
48 s e t (0 , ’ d e f a u l t t e x t i n t e r p r e t e r ’ , ’ l a t e x ’)
49 opt . YLabel = ’ $ | $cos t J$ | $ ’ ;
50 opt . XLabel = ’ κ ’ ;
51 opt . YScale = ’ l og ’ ;
52 opt .YLim = [1E−4, 1E4] ;
53 opt .XLim = [−1E−5, 1E−5] ;
54 opt . YGrid = ’ o f f ’ ;
55 opt . LineWidth = 1 . 5 ;
56 opt . FontSize = 14 ;
57 opt . Legend = { ’ k = 1 ’ , ’ k = 10 ’ , ’ k = 50 ’ , ’ k = 100 ’ , ’ Exact ’ } ;
58 opt . LegendBox = ’ on ’ ;
59 opt . LegendLoc = ’ SouthWest ’ ;
60 opt . FileName = ’ kmin normal . eps ’ ;
61 setPlotProp (opt) ;

26

