
 

 

 

 

 

 

 

 

 

Copyright 

by 

Kristy Joy Kormondy 

2017 

 

 

  



The Dissertation Committee for Kristy Joy Kormondy Certifies that this is the 

approved version of the following dissertation: 

 

 

Oxide Materials at the Two-Dimensional Limit 

 

 

 

 

 

Committee: 

 

Alexander A. Demkov, Supervisor 

Keji Lai 

Alejandro L. De Lozanne 

Maxim Tsoi 

John G. Ekerdt 

 



Oxide Materials at the Two-Dimensional Limit 

 

 

by 

Kristy Joy Kormondy, B.S. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2017 



Dedication 

 

For my sisters Michelle and Charlene. 

 

 



 v 

Acknowledgements 

 

I am grateful to my advisor, Professor Alex Demkov, for his guidance and 

support. I would also like to thank Jean Fompeyrine and Stefan Abel, my supervisors at 

IBM ZRL. 

I have learned much thanks to the members of the Demkov Group (Agham, 

Chungwei, Richard, Chandrima, Lukas, Alex S., Hosung, Miri, Andy, Kurt, Patrick, 

Donghan, Lingyuan, Elliott, Ali, Tobi, Wei, and Jackie), Professor John Ekerdt and the 

members of his group (Martin, Thong, Ed, Bryce, Shen, and Annie), and the many 

talented people at IBM (Heike, Chiara, Marilyne, Daniele, Heinz, Marta, Steffen, Lukas, 

Vladimir, Veeresh, Emanuele, Felix, Florian, Youri, and Mateusz). 

This work would not have been possible without the Air Force Office of 

Scientific Research (AFOSR) grant FA9550-12-10494 and the National Science 

Foundation grant IRES- 1358111. 

 



 vi 

Oxide Materials at the Two-Dimensional Limit 

 

 

Kristy Joy Kormondy, Ph.D. 

The University of Texas at Austin, 2017 

 

Supervisor:  Alexander A. Demkov 

 

Emergent phenomena in transition metal oxide films are receiving considerable 

attention with the development of techniques for the preparation of well-controlled oxide 

surfaces. On the macroscopic scale, such display novel physics phenomena including 

superconductivity, magnetism, ferroelectricity, and more. On the nanometer scale, the 

properties of epitaxial interfaces are further impacted by strain, band alignment, and 

crystal imperfections that may affect the long-range as well as the short-range order. 

Furthermore, symmetry lowering at the interface creates entirely new environments that 

are not accessible in the bulk environment. Thus, thin-film oxide materials are 

increasingly important in many applications. My work focuses on epitaxial oxides of the 

perovskite, spinel, and rocksalt structure and covers two main phenomena: (1) the two-

dimensional electron gas at epitaxial oxide interfaces, and (2) thin epitaxial electro-optic 

oxides. 

Because polar oxides are of prominent interest as a mechanism for the formation 

of the two-dimensional electron gas, I start with a study of polar semiconductor Co3O4. 

Ellipsometry reveals a direct band gap of 0.75 eV, and magnetic measurements show the 

signature of antiferromagnetic ordering at 49 K, higher than the typical bulk value.  Next, 

I look closer at the role of defects by studying the highly conducting layer at the 
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crystalline γ-alumina/SrTiO3 (STO) interface which is attributed to oxygen vacancies. 

Annealing in oxygen is found to reduce the carrier density and turn a conductive sample 

into an insulator. Building upon these results, I show that even at room temperature, out-

diffusion of oxygen from SrTiO3 during epitaxy of highly spin-split semiconductor EuO 

epitaxy creates a highly conductive layer of oxygen vacancies on the SrTiO3 side of the 

interface. The films are ferromagnetic with a Curie temperature of 70 K and display giant 

magnetoresistance below the transition temperature. Leveraging this approach offers an 

as-yet unexplored route to seamlessly integrate ferromagnetism and the oxide two-

dimensional electron gas for the development of novel nano-oxide spintronic devices.  

The large effective Pockels coefficient for high-quality epitaxial BTO films on Si 

distinguishes BaTiO3 as a highly promising material for integrated silicon nanophotonics. 

However, the linear electro-optic effect in BaTiO3 thin films determined in previous 

experiments clearly shows deteriorated properties compared to bulk BTO crystals. First, I 

study BaTiO3 films of varied thickness in order to quantify the Pockels coefficient with 

respect to crystalline orientation. As a next step, I report on the strong dependence of the 

Pockels effect in BaTiO3 thin films on their microstructure, and provide guidelines on 

how to engineer thin films with strong electro-optic response. The 25× enhancement of 

the Pockels coefficient indicates a promising route to increase the performance of 

nonlinear oxides in the two-dimensional limit for the development of novel hybrid silicon 

photonic platform. 
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Chapter 1: Introduction 

1.1. NEW OPPORTUNITIES WITH OXIDE INTERFACES  

After more than 50 years, the steady scaling of semiconductor device dimensions 

following “Moore’s Law”  [1] is swiftly approaching the limits of conventional materials. 

Rather than simply following the miniaturization approach, new materials have been 

proposed to replace Si channels, SiO2 gate dielectrics, and metal interconnects with high 

mobility channels, high-κ dielectrics, and optical interconnects, respectively. [2] 

One candidate class of materials is heterostructures based on oxides of transition 

metals with perovskite crystal structure  [3–8]. Owing to the exquisite, atomic level 

control of layer design, afforded by new developments in oxide epitaxy, these systems 

are expected to enable militarily significant and commercially valuable products. The 

unprecedented richness of physical phenomena observed in these materials systems, 

stems from the delicate balance of multiple interactions that control the quantum behavior 

of d- and sometimes f-electrons in the unfilled shells of the transition metal ion. In bulk 

materials, this is the origin of magnetism, superconductivity, ferroelectricity and several 

other related effects [9]. On the other hand, the properties of epitaxial interfaces are 

controlled by strain, band alignment, and crystal imperfections that may affect the long-

range as well as the short-range order. Symmetry lowering at the interface creates entirely 

new environments for the electrons of the “active” atomic species that are not realizable 

in the bulk environments. In heterostructures, the role of substrate/overlayer interaction is 

a major contributor to the performance of oxide materials in the two-dimensional limit. 

While the perovskite oxides (ABO3) were initially of interest for high-κ gate 

dielectrics, oxide thin films are of increasing importance in a diverse range of 

applications, including for example spintronics and photonics. In this dissertation, I 
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explore two classes of materials, (1) the high mobility two-dimensional electron gas at 

epitaxial oxide interfaces, and (2) thin epitaxial electro-optic oxides. 

1.2. TWO-DIMENSIONAL ELECTRON GAS AT OXIDE INTERFACES 

Contents of this Section were published in Ref.  [10]. * 

A recently discovered revolutionary class of polar oxide heterostructures  [11] 

holds tremendous promise for exploiting the physical properties of the novel quasi two-

dimensional electron gas (2DEG) formed at the oxide/oxide interface. [10] The 

fundamental scientific understanding of these oxide heterostructures is of significant 

fundamental importance. After this pioneering work, the origin of the 2DEG has been 

widely investigated and can be attributed to at least three interfacial phenomena, as 

illustrated in Figure 1.1: (i) electronic reconstruction, as suggested for the original 

LaAlO3/SrTiO3 (LAO/STO) structure  [11]; (ii) electrically active defects  [12–14]; or 

(iii) stoichiometry deviations  [14,15].  

Figure 1.1: Highly conductive interfaces can be formed between two insulating oxides 

due to (a) electronic reconstruction, (b) oxygen vacancies, and (c) 

stoichiometry deviations. 

                                                 
*Contributions: AAD, KJK, and KDF contributed equally to this publication. 
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Although the 2DEG is usually thought of as localized at the interface, the spatial 

extent of the gas has been found to vary from a depth of a few nanometers to hundreds of 

micrometers. [16] The varying spread of the 2DEG is due to many factors, including 

oxygen vacancy concentration, [16] temperature of the system, [12] charge density of the 

gas, [17] amount of cationic exchange, [18] and ionic relaxation at the interface. [19–21]  

Experiment and theory show that the 2DEG at the oxide/oxide interface has many 

exotic features. It can be paramagnetic, ferromagnetic or even superconducting, [22–25], 

[97, 99] with strong Rashba splitting leading to a controllable magnetic moment. [26–28]. 

It has been demonstrated that various modifications of the LAO/STO heterostructure also 

lead to a variety of interesting effects. Arras et al. used density functional theory (DFT) 

to calculate the effect of metallic layers on LAO/STO heterostructures. For a thin STO 

substrate (2.5 unit cells (UC)), 1 monolayer (ML) of Ti deposited on LAO lead to the 

vanishing of the electric field in LAO; even given this, the LAO/STO interface is still 

conducting, due to the migration of charge to the lowest unoccupied states that exist at 

the bottom of the STO conduction band; moreover, the Ti metallic layer and the interface 

are both magnetic. For thicker STO (6.5 UC), the system is the same, except that the 

interface is nonmagnetic; the authors ascribe the magnetization of the interface for 

thinner STO to quantum confinement effects. Upon the addition of more MLs of Ti metal 

on the LAO surface, the conducting states do not change appreciably, but the 

magnetization of the Ti metal is reduced; by 3 ML of Ti, the surface metal (and thus the 

entire system) is nonmagnetic. The authors also tried different metallic contacts (single 

ML of Na, Al, Fe, Co, Cu, Ag, Pt and Au). The field in LAO was not always reduced to 

zero; in fact, for the Au contact, the electric field was enhanced! This is due to the large 

work function of Au, which places the Fermi energy mid-gap in STO; therefore, no 

charge is transferred to the STO/LAO surface and the field in LAO is not destroyed  [29].  
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Although most of the experiments were done on LAO grown on bulk STO, there 

have also been reports of the 2DEG found in LAO/STO heterostructures deposited on Si, 

paving the way for semiconducting devices utilizing the properties of the oxide 

2DEG. [30] Levy and co-authors used atomic force microscope lithography to induce a 

reversible metal/insulator transition of the interface. [31,32]  

In this section, we identify oxide systems which exhibit interfacial conductivity 

(often two dimensional) stemming from (one or more of) three separate origins: 

electronic reconstruction, cation exchange, and oxygen vacancies.  

Figure 1.2: (a) Illustration of electrostatic model for the polar catastrophe. (b) and (c) 

illustrate critical thickness for electronic reconstruction. 

Discussions of the origins of the oxide 2DEG often start with polar catastrophe 

and electronic reconstruction.  [33–35] Left uncompensated, a large electric field is built-

up in a polar oxide such as LAO; the alternating positively charged LaO and negatively 

charged AlO2 layers lead to a ramping up of the electrostatic potential that grows without 
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limit (Figure 1.2). Due to the large energy cost of this internal field, and to avoid 

dielectric breakdown, the heterostructure must find a way to compensate this diverging 

electrostatic potential. One way to avoid the polar catastrophe is electronic 

reconstruction, where the electronic charge migrates to the interface to eliminate the field 

once a critical thickness is reached (Figure 1.2). 

1.2.1. Oxygen Vacancies in LAO/STO 

Surprisingly, conductivity has been demonstrated at the interfaces between the 

STO surface and oxide thin films of the polar, nonpolar, epitaxial and amorphous 

varieties.  [36–38] These studies have highlighted a need to investigate the role of defects 

in the formation of the oxide 2DEG and its corresponding transport properties. Interfacial 

redox reaction of STO can n-dope the material to stabilize a confined conducting layer. 

Thus, interfacial defect formation has been studied alongside electronic reconstruction 

the LAO/STO system.  

An alternative explanation for the conductivity at the n-type interface is due to 

surface O vacancy formation. These O defects introduce electrons to the system, which 

settle at the STO conduction band bottom and kill the polar field in LAO, creating the 

interfacial 2DEG. The enthalpy of formation for these vacancies decreases with 

increasing LAO thickness, spontaneously forming at the LAO critical thickness, which 

shows why the system is not insulating under the critical thickness but becomes 

insulating suddenly at the critical thickness. In contrast, at the p-type interface, the 

enthalpy of formation of surface O vacancies never becomes negative, so the 2DEG does 

not form at any thickness  [39]. O vacancies at the p-type interface create a defect state 

just above the Fermi energy, which also causes the interface to become insulating  [22]. 
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Slabs of pure LAO that show electronic reconstruction can also be made insulating by the 

addition of O vacancies at the surface that donate electrons to the system  [40]. 

Ferrari et al. examined the less-traditionally studied AlO2/TiO2 interface for a 

LAO/STO heterostructure, which has been found to be more stable when O vacancies are 

included  [41]. The heterostructure consisted of 10 UC of both LAO and STO, with 10 

ML of vacuum to prevent slab-slab interactions; the lateral size of the cell was (√2x√2) to 

include more O to perform O vacancy studies. For 50% and 25% O vacancies at the AlO2 

/TiO2 interface, the AlO2/TiO2 interface contained a 2DEG that was found occupied the 

interfacial Ti d states, and the O at the LAO surface contained 2D hole states.  [42] 

Kalabukhov et al. experimentally investigated optical, electrical, and 

microstructural properties of heterointerfaces between two thin-film insulating perovskite 

materials, SrTiO3 (STO) and LaAlO3 (LAO), deposited at different oxygen pressure 

conditions. Cathode and photoluminescence experiments suggested that oxygen 

vacancies were formed in the bulk STO substrate during the growth of LAO films, 

resulting in high electrical conductivity and mobility values. In both high and low oxygen 

pressure interfaces, the electrical Hall mobilities followed a similar power law 

dependence as observed in oxygen reduced STO bulk samples. The results were 

confirmed on a microscopic level by local strain fields at the interface reaching 10 nm 

into the STO substrate [13]. Electrical measurements were made in a four-point van der 

Pauw configuration in the temperature range 2–300 K and in magnetic field up to 5 T. 

Gold contact pads were fabricated by sputtering using a Ti adhesion layer. The 

temperature dependence of the sheet resistance RXX, the Hall mobility H, and the 

charge-carrier density nS are presented in Ref.  [13]. The results strongly suggest that 

oxygen vacancies in STO are responsible for the conductivity in LAO/STO 

heterostructures prepared even at high oxygen pressures.  
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Similarly, based on transport, spectroscopic, and oxygen-annealing experiments, 

Siemons et al. concluded that extrinsic defects in the form of oxygen vacancies 

introduced by the pulsed laser deposition (PLD) process were the source of the large 

carrier densities  [12]. Annealing experiments showed a limiting carrier density. In 

addition, a model was introduced that explains the high mobility based on carrier 

redistribution due to an increased dielectric constant. Measurement of the electronic 

properties of the interfaces created by depositing LaAlO3 on SrTiO3 showed electronic 

properties similar to those found originally by Ohtomo and Hwang  [11]. Also, UPS 

spectra showed states at the Fermi level, indicating a conducting interface. The number of 

these states was reduced when the sample was oxidized, suggesting that oxygen 

vacancies played an essential role in supplying the charge carriers. This was further 

confirmed by NEXAS and VUV-SE measurements, which showed more Ti3+ for samples 

made at lower pressures. It appeared that the vacancies were created by the pulsed laser 

deposition (PLD) process itself where relatively high energy particles sputter off 

oxygen. [43] Annealing samples in atomic oxygen reduced the number of carriers but 

kept the mobility the same. The dependence of sheet carrier density as a function of 

temperature was changed dramatically. To determine the electron location, the authors 

calculated the potential and the carrier density in the SrTiO3 as a function of distance 

from the interface and concluded that electrons moved into the pristine SrTiO3 over large 

distances, mainly due to the high dielectric constant of SrTiO3 at low temperatures. 

Chen et al. deposited several insulating amorphous oxide thin films by PLD.  [44] 

While amorphous LAO, STO, yttria-stabilized zirconia (YSZ) films deposited on STO 

rendered metallic interface, La7/8Sr1/8MnO3 interfaces remained highly insulating. Along 

with the thickness-dependence of conductivity, this suggests that sputtering due to the 

high energy of incident ions cannot account solely for the formation of oxygen vacancies. 
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Therefore, interfacial chemical reactions play an imporatnt role in the formation of the 

STO oxygen vacancy 2DEG, with possible enhancement due to the sputtering effect. This 

is consistent with studies of amorphous LAO, alumina, and YAlO3 deposited by 

ALD. [45] 

In conclusion, interfacial oxygen vacancies in STO contribute to the formation of 

a conducting layer. The confinement of this layer depends on the chemical reactivity of 

the film. The demonstration of room-temperature 2DEG formation based on oxygen 

vacancies is particularly promising for future applications. Thin conductive layers have 

been demonstrated at the interfaces of several oxide systems. In many cased the two-

dimensional nature of the carriers (two-dimensional electron gas or 2DEG) has been 

clearly demonstrated in transport measurements. For the 2DEG at the oxide/oxide 

interface, several factors, including electronic reconstruction, oxygen vacancy 

concentration, and level of cationic exchange, have been shown to influence the 

localization of charge at the interface to varying degrees. The phenomenon of electronic 

reconstruction has been investigated in LAO/STO heterostructures, as well as other polar 

and ferroelectric oxides. Study of amorphous and nonpolar oxides on STO has 

highlighted the role of oxygen vacancies. Cation intermixing can also lead to the 

formation of thin conductive layers. Rapid advances in experiment and theory alike, 

promise to provide new insights and discoveries in this fast-growing field. 

1.3. FILMS OF INTEGRATED NONLINEAR OXIDES 

Among the many functionalities found in complex oxides, ferroelectricity is one 

of the most intensely studied. The first demonstration of ferroelectric switching in 

synthetic perovskite BaTiO3 [46] was reported in 1946, just 25 years after the first 

measurement of the electrical hysteresis in the Rochelle salt in 1921. [47] This initial 
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bulk characterization phase of research was motivated by the high dielectric constant of 

BaTiO3. [48] In the ferroelectric phase, rumpling of Ti causes BaTiO3 to lose its center of 

inversion, as shown in Figure 1.3. 

Figure 1.3: Tetragonal BaTiO3 has a 

center of inversion (top), while 

ferroelectric BaTiO3 is non-

centrosymmetric (bottom). 

This loss of inversion symmetry is 

of crucial technological significance. The 

linear electro-optic  effect was first 

demonstrated in 1893 by Friedrich 

Pockels. [49] Since the 1970s, another 

ferroelectric perovskite oxide, LiNbO3, 

has emerged as the material of choice for 

replacing traditional metal wires with 

electro-optically modulated optical fiber links. [50,51] As early as the 1980s, [52] a 

similar need was identified to thwart delays due to scaling limitations of wiring. [53] The 

solution proposed was to swap metal interconnects with waveguides, nanoscale optical 

interconnects. [52,54–59] The following development of Si photonics in the 2000s was a 

key move towards this goal.  

This effort to replace metal interconnects with waveguides has been motivated by 

the prospect of leveraging the speed of optical communication in conjunction with 

semiconductor logic. Among several approaches, the linear electro-optic (or Pockels) 

effect offers an attractive route for switching in Si photonics. [60–72] The Pockels 

coefficients of several candidate materials are shown in Figure 1.4. While silicon can be 
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used as a waveguide, this material has a nonzero Pockels coefficient only if strained due 

to its centrosymmetric structure in bulk. This demonstrates the need for selection of a 

CMOS-compatible electro-optically active material for development of a hybrid Si 

nanophotonics platform. When selecting a candidate material, two main criteria emerge: 

the material should not only have a large Pockels coefficient for efficient low-power 

performance, but should also be compatible with Si.  

Figure 1.4: Electro-optical Pockels 

coefficients r for various materials  [73–

75].  

The first waveguides based on 

optical-quality perovskite films were 

fabricated in 1994 [76] with resulting thin-

film channel electro-optic modulators 

following by 1997. [77] The substrate of choice was MgO (001), due to its low refractive 

index and transparency. [74] A review of ferroelectric films can be found in Ref.  [74]. 

Within a decade, electro-optic modulators based on BaTiO3/MgO performance metrics 

reached electro-optic coefficients of 360 pm/V and half-wave voltage–length products as 

small as 0.5 Vcm at telecom wavelength of 1561 nm. [78] The challenge of oxide 

integration on semiconductors was first addressed in 1998 [79]. In the 2010s, major 

advances in epitaxial BaTiO3/Si were reported, including ferroelectric switching, [80] 

electro-optically active integrated films, [67] active electro-optic devices, [63,72] and 

low-loss waveguides. [81] This demonstrates the viability of BaTiO3/Si for development 

of a hybrid Si nanophotonic platform. 
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1.4. OBJECTIVE AND OVERVIEW OF CHAPTERS 

As indicated in the above introduction, emergent phenomena in transition metal 

oxide films are receiving considerable attention due to the development of techniques for 

the preparation of well-controlled oxide surfaces. This dissertation focuses on epitaxial 

oxides of the perovskite, spinel, and rocksalt structure deposited by molecular beam 

epitaxy. Chapter 2 provides an overview of the main equipment used for film deposition 

and characterization in the Materials Physics Lab at the University of Texas at Austin and 

at IBM ZRL.  

Because polar oxides are of prominent interest as a mechanism for the formation 

of the two-dimensional electron gas, Chapter 3 provides details on the growth and 

characterization of polar semiconductor Co3O4. A closer look at the role of defects is 

presented in Chapter 4, where a highly conducting layer is formed at the crystalline γ-

alumina/SrTiO3 interface due to oxygen vacancies. Building upon these results, Chapter 5 

applies the same concept to highly spin-split semiconductor EuO to explore proximity 

effects in this functional oxide heterostructure.  

Switching to photonics, Chapter 6 examines BaTiO3 films of varied thickness 

deposited on Si to quantify the Pockels coefficient with respect to crystalline orientation. 

As a next step, Chapter 7 reports the strong dependence of the Pockels effect in BaTiO3 

thin films on their microstructure, and provide guidelines on how to engineer thin films 

with strong electro-optic response for the development of novel hybrid silicon photonic 

platform. 
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Figure 1.5: Overview of dissertation chapters. 
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Chapter 2: Experimental Techniques 

2.1. MOLECULAR BEAM EPITAXY 

Figure 2.1: Schematic (left) and picture (right) of customized oxide molecular beam 

epitaxy chamber in the Materials Physics Lab at UT Austin. Labels indicate 

include components in the top-half (cooling panel, substrate, RHEED gun, 

phosphor screen, thickness monitor) and bottom-half (cryopump, effusion 

cells and shutters, electron beam gun, O2 gas) of the chamber. 

Molecular beam epitaxy (MBE) is a powerful technique for atomic layer-by-layer 

deposition of thin films. Alternating deposition of molecules from sources in ultra-high 

vacuum (UHV) allows precise stoichiometry control. The technique was pioneered in the 

late 1960s and developed for III-V compounds in the 1970s [82]. In 1998, this technique 

was first applied to the uniquely challenging task of oxide heteroepitaxy on 

semiconductors [79]. Figure 2.1 displays the MBE chamber in the Materials Physics Lab 
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at UT Austin. Main components include evaporation sources, gas sources, thickness 

monitor, and in situ reflection high-energy electron diffraction (RHEED). 

Metal sources are often evaporated thermally from effusion cells (Figure 2.2) or, 

for the case of refractory metals with high melting points, evaporated by electron beam. 

High-temperature effusion cells can also be used to evaporate materials such as Ti and La 

from TiC and W crucibles, respectively. Background gas sources, such as oxygen and 

nitrogen, are introduced through a leak valve. For the case of MBE under oxygen-rich 

conditions, as in this dissertation, radiative heating of the substrate is much safer than 

direct heating. 

Figure 2.2: Left: Low-

temperature effusion 

cell. A knife-edge 

covered by a copper 

gasket in the bottom of 

the image is crucial to 

maintain UHV when 

the cell is mounted on 

the chamber pictured in 

Figure 2.1. Right: PBN 

crucible filled with 

metal in specialized 

cold-lipped effusion 

cell shows structural 

damage after repeated 

temperature cycling. 

To form certain compounds, increased gas reactivity is desired to stay within a 

practical range of background gas pressures. An RF plasma generator can provide 

reactive gases such as nitrogen and oxygen. An ion deflector is employed to maximize 

reactive species while maintaining charge-neutrality. 

 



 15 

Quadrupole mass spectrometers, ion gauges, and quartz crystal monitors mounted 

in the chamber provide careful monitoring of the partial pressures and deposition rate. 

For a metal, such as Sr, the target rate can be calibrated from the target surface number 

density per the equation, 

𝜌×𝑁𝐴×𝑡/𝑀 = 𝑛2𝐷, (2.1) 

where n2D is the target surface number density, ρ and M are the mass density and atomic 

weight of the metal, NA is Avogadro’s number, and t is the thickness measured by the 

quartz crystal monitor. As a standard, rates can be calibrated using the Si(100) surface. 

The Si fcc unit cell has 2 atoms per (5.43 Å)2, or n2D = 6.78x1014 cm-2. Using Sr as an 

example (MSr= 87.63 g/mol, ρSr=2.63 g∙cm-3), using Eq. (2.1) the target thickness for 1 

ML Sr on Si(100) is 3.75 Å. Table 2.1 provides values for other metals used in this 

dissertation.  

 

Metal Evaporation Source  
M 

[ g/Mol ] 
ρ 

[ g∙cm-2 ] 
t for  Si(100) 

[ Å ] 

Sr Low-T K-cell  87.63 2.63 3.75 

Co 
High-T K-cell OR 

 e-beam 
 58.93 8.90 0.75 

Ti High-T K-cell  47.87 4.61 1.17 

Al Cold-lipped low-T K-cell  26.98 2.70 1.13 

Ba Low-T K-cell  137.33 3.51 4.41 

Eu Low-T K-cell  151.96 5.26 3.25 

Table 2.1: Evaporation rate calibration parameters for metals used in this dissertation. 

As labelled in Figure 2.1, the chamber used for this dissertation was equipped 

with in situ RHEED, a powerful tool commonly used to characterize and monitor surface 

crystallinity [83] The high-energy electron beam scatters coherently from a periodic 

surface, and the resulting diffraction pattern is visible on the phosphor screen. The 

surface-sensitivity of RHEED stems from the glancing angle of incidence of the electron 
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beam (less than 6°). The use of in situ RHEED system (STAIB) during the deposition is a 

significant advantage of the MBE growth method. In addition to symmetry monitoring, 

the oscillations of RHEED maxima intensity (Figure 2.3) can serve as a direct measure of 

the deposition rate. A local maximum indicates that a layer has been completed, while a 

local minimum indicates a half-completed layer. 

Figure 2.3: RHEED intensity oscillations 

for a fixed azimuth during STO deposition 

on Si(001). Each individual oscillation 

indicates the completion of one atomic 

layer of STO. From a sinusoidal fit to the 

data (red), the directly measured time for 

deposition of one atomic layer is 

approximately 1 minute and 4 seconds for 

this sample. 

2.2. X-RAY PHOTOELECTRON SPECTROSCOPY 

Figure 2.4: XPS analysis chamber in the 

Materials Physics Lab at UT Austin. 

Another powerful surface science 

technique is x-ray photoelectron 

spectroscopy (XPS). In the Materials 

Physics Lab at UT Austin, the deposition 

chamber (Figure 2.2) is connected to the 

VG Scienta R3000 photoemission chamber 

(Figure 2.4) by a twelve-foot-long UHV 

transfer line. This in situ transfer allows for incremental analysis during the film 

deposition without exposing the sample to ambient, and is particularly useful for oxygen-
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sensitive experiments. Available wavelengths include monochromatic Al Kα radiation 

(hν = 1486.6 eV) and a UV (hν =21.22 eV) plasma-based source.  

Figure 2.5: Ti 2p (a) and valence band (b) 

spectrum of Nb-doped SrTiO3(100) 

substrate after a water boiling process and 

vacuum annealing [84]. 

This system allows for 

measurement of both core level and 

valence band spectra of the samples. For 

example, Figure 2.5 displays a typical Ti 

2p and valence band spectrum of Nb-

doped SrTiO3(100) substrate after a water 

boiling process and vacuum 

annealing. [84] The procedure for core 

level and valence band fitting for oxide 

films is covered in greater detail in Chapters 3-7. 

2.3. FREE-SPACE ELECTRO-OPTIC CHARACTERIZATION 

We determined the Pockels coefficients by analyzing the change of the 

polarization of a laser beam transmitted through the BTO film while applying an electric 

field. To generate such a field, pairs of 300-nm-thick tungsten electrodes with the 

electrode gap d = 5 μm were defined by optical lithography and SF6/N2 reactive ion 

etching. To assess the tensorial nature of the Pockels effect, we varied the angle θE 

between the electric field and the BTO crystalline axis by fabricating differently oriented 

electrode pairs, as defined in Figure 2.6(a).  
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Figure 2.6: (a) Picture and (b) schematic of Sénarmont setup components. A half-wave 

plate is used to set the incident linear polarization. After passing through the 

sample, the light becomes elliptically polarized, which is transformed into 

linearly polarized light after passing a quarter-wave plate. Finally, a Glan-

laser prism is used to determine the orientation of the transmitted 

polarization. (c) Corresponding states of the polarization along the path of 

the laser beam are visualized as the ellipse traced out by the light’s electric 

field vector with (red) and without (blue) an external electric field. After 

transmission through the sample and quarter-wave plate, the polarization is 

rotated by angle δ. (d) Detector for recording changes in transmission.  

The electro-optic characterization follows the principle illustrated in Figure 

2.6(b)-(c) using the Sénarmont set up described in detail elsewhere. [67] A linearly 

polarized New Focus diode laser model 6262 with wavelength 1550 nm focused to a spot 

size of ~30 μm full-width at half-maximum was first aligned to the electrode gap. A half-

wave plate was used to set the incident polarization. Due to the birefringence of BTO, the 
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sample introduces a phase shift between orthogonal polarization components of the 

incident light.  

For increased sensitivity, a lock-in amplifier system was used to isolate the 

rotation δ induced by a sinusoidal AC field modulated at frequency f = 17.3 kHz. Typical 

values of the peak-to-peak AC voltage VPP ~ 3 V were much smaller than the typical 

voltage used to align ferroelectric domains VDC ~ 20 V. Since in the lock-in configuration 

only the rotation δ corresponding to the AC modulation is measured, we introduce a 

field-normalized rotation, ACE 
, where the root mean square AC field was defined 

as 
)22(VPP dEAC 

 and δ is the rotation defined in Figure 2.6.  

The static offset field applied to align ferroelectric domains was defined as 

Eoff=VDC/d, where d is the gap between electrodes. While the magnitude of this offset 

field does not enter directly into the definition of the Pockels coefficient, it does influence 

the fraction of poled domains ν. In the presence of polarization-reversed domains as in an 

un-poled film, a reduced response could be measured due to cancellation of contributions 

from antiparallel domains, leading to underestimated Pockels coefficients. [85] For this 

reason, Pockels coefficients reported in this dissertation are for poled films, 

corresponding to ν = 1 at at θE ~ 45° and ν = 0.5 at at θE ~ 90° as justified in the 

following sections. 

The effective electro-optic coefficient can then be defined as follows,  

)( 3 tnEr BTOACeff  
, (2.2) 

adapted from Ref.  [86], where 2  is the induced phase shift between orthogonal 

polarization components, λ = 1550 nm is the wavelength of the transmitted light, ν is the 

net fraction of poled BTO domains, EAC is the measuring field defined above, nBTO is the 

refractive index of the film, and t is the thickness of the BTO layer. As described in detail 

elsewhere, [67] the rotation of polarization δ depends strongly on the orientation of the 
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electric field. To capture this dependence and fully describe the Pockels effect, we report 

both the effective Pockels coefficient reff and the c-axis Pockels coefficient rc for each 

sample.  Specifically, we extract reff from measurements at θE ~ 45° assuming ν = 1 and 

rc from measurements at θE ~ 90° assuming ν = 0.5. [67] Full dependence of these 

coefficients on the Pockels tensor elements are discussed in Refs.  [67] and  [85].  

To extract Pockels tensor elements in addition to these effective values, numerical 

simulations based on the Pockels tensor and domain structure were carried out to best 

approximate δ for all measured electrode angles θE. The change in refractive index can be 

described by the change in the impermeability tensor,  
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By symmetry using tensor notation the index ellipsoid can be represented in three 

dimensions, 
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representing in general a refractive index ellipsoid which is in general distorted and 

rotated with respect to the zero-field values. By taking the projection of this index 

ellipsoid in the plane perpendicular to the angle of incidence passing through the center 

of the ellipsoid, we can extract the birefringence nb = no - neo and rotation of optical axis 

θγ. At this point, we must consider the ferroelectric domain structure, as described in 

detail in Appendix B, to determine a weighting factor for summing Jones vectors from 

each of the four distinct domain orientations.   
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Chapter 3: Epitaxy of polar semiconductor Co3O4 (110) 

Contents of this Chapter were published in J. Appl. Phys. 115, 243708 

(2014) [87].† 

The (110) plane of Co3O4 spinel exhibits significantly higher rates of carbon 

monoxide conversion due to the presence of active Co3+ species at the surface. However, 

experimental studies of Co3O4 (110) surfaces and interfaces have been limited by the 

difficulties in growing high-quality films. We report thin (10- 250 Å) Co3O4 films grown 

by molecular beam epitaxy in the polar (110) direction on MgAl2O4 substrates.  

Reflection high-energy electron diffraction, atomic force microscopy, x-ray diffraction, 

and transmission electron microscopy measurements attest to the high quality of the as-

grown films. Furthermore, we investigate the electronic structure of this material by core 

level and valence band x-ray photoelectron spectroscopy, and first-principles density 

functional theory calculations. Ellipsometry reveals a direct band gap of 0.75 eV and 

other interband transitions at higher energies. A valence band offset of 3.2 eV is 

measured for the Co3O4/MgAl2O4 heterostructure. Magnetic measurements show the 

signature of antiferromagnetic ordering at 49 K. FTIR ellipsometry finds three infrared-

active phonons between 300 and 700 cm-1. 

3.1. INTRODUCTION 

Complex oxides of cobalt find applications in gas sensing, [88,89] 

spintronics, [90–93] batteries, [89,91] and catalysis [94–101], most notably for oxidation 

of carbon monoxide (CO) [96,97] and water. [98–101] At room temperature, the most 

                                                 
† Contributions: KJK designed and performed the experiments related to the sample growth, RHEED, 

AFM, XRD, and XPS and analyzed the data. AAD and ABP contributed to the conception and analysis of 

data. AS designed and performed first-principles calculations. AD and DJS performed TEM experiments. 

KNM, TIW, and SZ performed ellipsometry characterization. LGM and JZ performed and analyzed 

magnetic measurements. All authors contributed to interpretation of the data and to discussions. 



 22 

stable form of cobalt oxide is Co3O4, a semiconductor with a modest band gap of less 

than 2.0 eV, as compared to the 6.0 eV gap of charge-transfer insulator CoO. [102–107]  

Co3O4 assumes the cubic Fd3m spinel-type phase, shown in Figure 3.1. Cobalt 

spinels have a history of use as gemstones, and their high stability makes them well-

suited for the decorating of ceramics (cobalt-containing spinels in particular are 

responsible for the striking “cobalt blue” pigment). [108,109] In Co3O4, vertices-sharing 

tetrahedral Co2+ ions carry a magnetic moment, while the nonmagnetic Co3+ ions occupy 

the edge-sharing octahedral sites. Co3O4 undergoes an antiferromagnetic phase transition 

below ~40 K. [110–113] 

Figure 3.1: At room temperature, Co3O4 assumes the normal spinel structure. Based on 

the crystal field splitting, the Co2+ ions (tetrahedral, light blue) carry 

magnetic moment, while the Co3+ (octahedral, dark blue) ions are 

nonmagnetic. 
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Studies of crystalline thin film surfaces and interfaces of this material could help 

provide insight into both its basic properties and catalytic behavior. [89,94–100] Of 

particular interest is the (110) plane that exhibits significantly higher reaction rates due to 

the presence of active Co3+ species at the surface [97]. Though epitaxially grown films 

offer a natural way to achieve high crystallinity, epitaxy of Co3O4 is complicated by the 

fact that all low-index planes are polar. As shown in Figure 3.2, the (110) direction of 

Co3O4 contains two types of alternating planes: the most stable type-A plane is comprised 

of units of  with a formal charge of +2, while the type-B planes include 

, resulting in a charge of -2 per surface unit cell. This polarity further motivates 

study of polar Co3O4, as polar oxides are of prominent interest due to both their increased 

surface reactivity as compared to the bulk [114,115] and as a mechanism for the 

formation of the two dimensional  electron gas (2DEG). [35,116] 

Co3O4 films have been grown by post-oxidation [104,117], atomic layer 

deposition (ALD), [118–120] chemical vapor deposition (CVD), [121–124] pulsed laser 

deposition (PLD), [105,125] and molecular beam epitaxy (MBE) [126–128]. A number 

of substrates, including MgO, [105,120,122,124,125] SrTiO3, [105,120,124,125] 

MgAl2O4, [122,127,128] Al2O3, [105,126] LaAlO3, [125] Yttria-stabilized zirconia, [125] 

SiO2/Si, [118,119] and Iridium [117] have been studied for the growth of crystalline 

Co3O4 films. Among these substrates, spinel MgAl2O4 (110) is an ideal substrate choice 

not only due to its small lattice mismatch with Co3O4 (less than 0.05%), but also due to 

the fact that it is the only substrate thus far on which Co3O4 preferentially grows (110)-

oriented. [127,128] MBE growth offers several advantages including precise control over 

flux and in situ analysis, but reports by Vaz et al. have suggested that extensive post-

growth ex situ annealing is required. [127,128]  
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Figure 3.2: Side view: the (110) direction of Co3O4 is characterized by a 4-repeat period 

over a depth of 5.7 Å. The alternating planes are shown from a top view. 

The type A plane is comprised of units of Co3+
2Co2+

2O4 with a formal 

charge of +2, while the type B planes include Co3+
2O4 resulting in a charge 

of -2. 

In this chapter, we report on thin MBE-grown Co3O4 films on MgAl2O4 

substrates. We probe the structure of these as-grown highly crystalline (110)-oriented 

films by reflection high-energy electron diffraction (RHEED), atomic force microscopy 

(AFM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). The film 

surface roughens at intermediate thickness, but slowly smoothens as growth continues, 

returning to an RMS surface roughness of ~1 Å. A valence band offset of 3.2 eV is 

measured for the heterostructure by x-ray photoelectron spectroscopy (XPS). First-

principles density functional theory (DFT) calculations matching the shape of the XPS 

valence band calculate a band gap of 0.6 eV for Co3O4. Ellipsometry reveals a direct 

band gap of 0.75 eV and other interband transitions at higher energies. FTIR ellipsometry 

 



 25 

finds three infrared-active phonons between 300 and 700 cm-1. Superconducting quantum 

interference device (SQUID) magnetometry measurements show the signature of 

antiferromagnetic ordering at an enhanced Néel temperature of 49 K.  

3.2. EXPERIMENTAL DETAILS 

MgAl2O4 substrates of dimension 5 mm × 5 mm × 0.5 mm were degreased in 

acetone, isopropanol, deionized water, and UV ozone. Substrates were glued with silver 

paste to a sample holder to ensure good thermal contact. The samples were then 

introduced into a customized DCA 600 MBE system with a base pressure of 3x10-10 Torr. 

All substrates were outgassed in the chamber at 700° C for 30 minutes before lowering 

the substrate temperature to 500°C for growth. The substrate temperature is measured by 

a thermocouple in close proximity to the substrate heater and that the thermocouple is 

calibrated using a pyrometer measurement of a silicon substrate. 

The electron-beam evaporated Co flux was calibrated to a deposition rate of 3-4 

Å/minute by use of a quartz crystal microbalance. Atomic oxygen was then introduced by 

means of an RF plasma source at a power of 250 W with an oxygen background pressure 

of 1×10−5 Torr. After growth, the main shutter was closed, and the samples were cooled 

down in the presence of oxygen. The presence of the film affects the visual appearance of 

the sample, adding a brown tint as compared to the transparent substrate. This is 

consistent with the smaller band gap of Co3O4 as compared to that of the MgAl2O4 

substrate. [105,129] For ellipsometry measurements, a Co3O4 film was deposited on a 

large 2”-diameter MgAl2O4 substrate to eliminate artifacts due to the size of the sample. 

The unpolished side of this wafer was coated with Nb metal rather than silver paste 

before following the steps outlined above. 
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The samples were monitored during growth by in situ RHEED, and then 

transferred in situ to the XPS analysis chamber (VG Scienta R3000). For the remaining 

characterization techniques (AFM, XRD, TEM, Ellipsometry, and SQUID), the samples 

were removed from UHV and exposed to atmosphere.  

Spectroscopic ellipsometry measures the complex Fresnel ratio 

 

(3.1) 

i.e., the ratio of the p-polarized reflectance rp to the s-polarized reflectance rs. ρ is 

usually expressed in terms of the ellipsometric angles ψ and Δ. For a bulk sample with 

complex refractive index n, ρ is given by [130,131] 

 

(3.2) 

where  is the angle of incidence and  the angle of refraction given by Snell's 

Law.  

The imaginary part of the dielectric function ε = n2 is related to absorption in the 

sample by elementary excitations. For example, the absorption in the infrared (IR) 

spectral region is given by lattice absorption of infrared-active phonons or the free-carrier 

response in a metal. In the visible and UV spectral region, the absorption is due to 

interband electronic transitions. The application of this technique to bulk spinel 

(MgAl2O4) has been described recently. [129] 

In the case of a thin film on a substrate, we can still invert Eq. (3.1) to calculate 

and , but these quantities are no longer related to the optical constants of a 

specific material. Instead, and  are determined by the optical constants of the film 

and the substrate along with the film thickness and surface and interface roughness layer 

thicknesses. Therefore, and  are called the pseudo-refractive index and the 

pseudo-dielectric function. If the dielectric function εs of the substrate and the film 
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thickness are known, then the dielectric function εf of the film can be determined by 

fitting the experimental data using well-established procedures [130,131] and commercial 

software (J.A. Woollam Co., Inc., WVASE32). Surface roughness can also be considered 

within this approach. 

For this work, we used two instruments to acquire our data. From 0.76 to 6.5 eV, 

we measured the ellipsometric angles on a Woollam variable angle-of-incidence 

spectroscopic ellipsometer (VASE) with computer-controlled Berek waveplate 

compensator at seven angles of incidence (50° to 80°). For IR ellipsometry, we used a 

Woollam FTIR-VASE ellipsometer, which is based on a fixed analyzer (0° and 180°) and 

polarizer (±45°) and a rotating compensator. We measured from 250 to 7000 cm-1 at five 

angles of incidence (60° to 80°). In the FTIR experiments, the spectral resolution was set 

to 8 cm-1 to improve the signal to noise ratio. All data sets were merged and fitted 

simultaneously with the same model, including both lattice absorption and interband 

electronic transitions. The optical constants for the MgAl2O4 substrate were taken from 

Ref.  [129]  without adjustments. We assumed a surface roughness of 2 Å, guided by 

atomic force microscopy measurements. In the case of a thin absorbing Co3O4 layer on a 

substrate, the layer thickness cannot be determined. We use a film thickness of 220 Å 

(determined from the growth parameters and confirmed by x-ray reflectance 

measurements) as an input for our ellipsometry analysis. Small errors in film thickness 

cause errors in the amplitude of the dielectric function, but do not affect the peak energies 

and broadenings.  

3.3. RESULTS AND DISCUSSION 

The spinel surface was characterized during film deposition using in situ RHEED 

(Figure 3.3). The most stable surface of the MgAl2O4 (110) substrate is the A-type, which 
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contains both Mg and Al atoms.  The RHEED pattern for the substrate (Figure 3.3(a)) 

confirms the crystalline quality of the surface, with sharp diffraction maxima as expected 

for a periodic surface with negligible roughness. As the Co3O4 film grows (Figure 3.3(b), 

(d)), it follows the termination of the substrate to preserve charge neutrality, as is 

common in polar materials. [114,127]  

Figure 3.3: RHEED patterns along the 

[110] azimuth at grazing incidence for (a) 

the MgAl2O4 substrate, (b) ~13-Å-thick 

Co3O4 film, (c) ~24-Å-thick film, (d) 125-

Å-thick film. The most stable surface of 

the MgAl2O4 substrate is the A-type, 

which contains both Mg and Al atoms. 

The Co3O4 film follows the termination of 

the substrate to preserve charge neutrality, 

as is common in polar materials. The 

surface develops roughness at thickness 

starting between 10-20 Å, causing the 

observed broadening of the RHEED 

streaks. The surface again becomes 

smooth as growth continues, returning to 

substrate quality around 100 Å thickness. 

The surface roughens with 

thickness starting between 10-20 Å, causing broadening of the RHEED streaks. However, 

as the film continues to grow, the surface again becomes smooth, with a crystalline 

quality approaching that of the substrate at around 100-Å-thickness and above (Figure 

3.3(d)). One possible explanation for these observations is the electrostatic energy of a 

polar material diverges with increasing thickness. [114,132] Above a critical field and 

therefore critical thickness, the surface roughness may develop to compensate the surface 

charge density. Once the film can instead compensate by bulk rather than surface 

reconstruction, the surface can once again become smooth, as seen in the thicker films. 
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These RHEED observations are supported by ex situ AFM measurements for 

Co3O4 samples of varying thickness. Scans of 5 × 5 μm areas are shown for the substrate 

and three representative films in Figure 3.4. For the ~13-Å-thick film (Figure 3.3(b), 

Figure 3.4(b)), the RMS roughness was 1.26 Å. This is on the order of instrumental 

resolution; any perceived modulation of the surface is likely due to vibrations of the 

microscope. For slightly thicker films, such as the ~24 Å film (Figure 3.3(c), Figure 

3.4(c)), the surface becomes noticeably rougher. In this sample, the RMS roughness 

increased to 5.26 Å. Finally, the 125 Å film shown in Figure 3.4(d) shows the surface 

roughness has decreased back down to 1.04 Å; this sample serves as a representative 

example of the smoothing that occurs in thicker films.  

Figure 3.4: AFM measurements for: (a) 

bare MgAl2O4 substrate, followed by 

Co3O4 samples of thickness (b) 13 Å, (c) 

24 Å, and (d) 125 Å. The RMS roughness 

measured was 1.52 Å, 1.26 Å, 5.26 Å, and 

1.04 Å, respectively. 

X-ray diffraction measurements 

were carried out using a Panalytical 

X’PERT Pro diffractometer (Cu Kα1 

source, λ=1.5406 Å) operating at 45 kV and 40 mA. The symmetric  scan shows 

strong substrate peaks corresponding to an out-of-plane lattice constant of 8.07 Å. The 

high-resolution rocking curve of the (440) reflection for a 240-Å-thick film Co3O4 is 

shown in Figure 3.5(a). Experimental data points are shown by open circles, and a sum of 

two Voigt functions has been fitted to the data (blue curve). The contribution from the 

substrate (red curve) is mostly Gaussian, with a width of 0.015°, on the order of 

instrumental resolution as expected for a single-crystal substrate. The film peak (green 

2
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curve) has a width 0.03°, not much broader than that of the substrate. The shaded green 

area outlines values within the uncertainty of the position of the film peak, showing that 

the film is nearly lattice-matched to the substrate. Spot spacing in RHEED indicates that 

there is no change in the in-plane lattice constant for the film compared to the substrate 

up to the thickness that we have grown (250 Å). 

Figure 3.5: (a) Rocking curve data and 

analysis of the (440) reflection of 240 Å 

film (Co3O4 on MgAl2O4). Experimental 

data points are shown by open circles, and 

a sum of two Voigt functions has been 

fitted to the data. (b) X-ray reflectivity for 

the same film. The drawn (red) line is a 

simulation. Oscillations due to the 

difference in density between the substrate 

and film persist undamped to high angles, 

implying a smooth surface and abrupt 

interface. (c) High-resolution cross-

sectional transmission electron micrograph 

confirms the abrupt interface between the 

crystalline substrate and film. 

All thicknesses referenced above 

were first estimated from the quartz crystal 

microbalance calibration and verified by 

X-ray reflectivity (XRR). In this geometry, 

oscillations in the reflected intensity arise 

due to the difference in density between 

the substrate and film. An example is 

shown for the same 240 Å film (Figure 3.5(b)); the black line is experimental data, while 

the drawn (red) line is a simulation. The simulated oscillations correspond to a film 
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thickness of 240 Å with 1 Å roughness. Strong oscillations with minimal damping are 

indicative of a smooth surface and abrupt interface for the as-grown sample. 

To further characterize the interface, Figure 3.5(c) shows a cross-sectional 

transmission electron micrograph taken with a JEOL JEM-4000EX transmission electron 

microscope operated at 400 keV. The image shows a highly crystalline epitaxial Co3O4 

film on the MgAl2O4 substrate with a sharp and coherent interface, in agreement with the 

RHEED and XRD results above. 

Figure 3.6: XPS spectra. (a) Survey scan 

of representative 250-Å-thick Co3O4 film 

shows a spectrum dominated by cobalt and 

oxygen.  (b) High-resolution Co 2p scan 

shows characteristic strongly suppressed 

shake-up satellite peaks at +5.5 eV and +9 

eV, as compared to CoO. The O 1s peak 

shows a slight shoulder, which can be 

attributed to surface oxygen. (c) To 

determine the valence band offset, the 

spectra for pure MgAl2O4 (red shading) 

and Co3O4 (blue shading) were scaled, 

offset, and added together to create a 

simulated fit (purple line) to the measured 

valence band spectra for a heterostructure 

of 13 Å Co3O4 on MgAl2O4 (black open 

circles). The residual difference is also 

plotted (black line). 

XPS measurements were 

performed in situ using monochromatic Al 

Kα radiation (hν = 1486.6 eV).  To avoid 

charging due to the highly insulating 

substrate, a low-energy electron flood gun 

was used to replace the emitted electrons. Figure 3.6 summarizes the core level 
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spectroscopy. A representative survey scan of a bulklike 250-Å-thick Co3O4 film shows 

the expected peaks of a system dominated by cobalt and oxygen (Figure 3.6(a)). Higher-

resolution scans of the O1s and Co 2p peaks are shown in Figure 3.6(b). Spectra have 

been artificially shifted to fix the location of the O1s peak at 530.1 eV. The Co 2p scan 

shows characteristic strongly suppressed shake-up satellite peaks at +5.5 eV and +9 eV as 

compared to CoO. [102]  

Figure 3.6(c) displays XPS valence band spectra for the bare MgAl2O4 substrate 

(red shading) and 250-Å-thick Co3O4 film (blue shading). The band offset in Co3O4 

heterostructures may facilitate understanding of the catalytic properties of Co3O4; for 

example, in order to achieve a spontaneous water splitting reaction, both a small band gap 

and suitable alignment of band edges with respect to the water redox potentials are 

required. Band offsets were calculated by both core-level [101] and valence 

band [133,134] spectroscopy. The valence band maximum (EVBM) for each material was 

calculated using the linear extrapolation method. [135] By comparing energy offsets 

between the Co 2p, Al 2p, and valence band edge positions (as summarized in Table 3.1) 

using 

, (3.3) 

we calculate a VBOCL of 3.4 eV. 

Materials 
MgAl2O4 

substrate 
~13 Å 

Co3O4/MgAl2O4 
Co3O4 thick film 

Co 2p 

(eV) 
-- 777.02 777.87 

Al 2p 

(eV) 
74.40 74.65 -- 

VBM 

(eV) 
3.17 -- 0.852 

Table 3.1: XPS core levels for valence band offset calculation. 

     
42434243 /2222 OMgAlOCopAlpCoOMgAlVBMpAlOCoVBMpCoCL EEEEEEVBO 
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The VBO can also be determined directly from the valence band 

spectra. [133,134] For a heterostructure of 13 Å Co3O4/MgAl2O4 a contribution from the 

substrate is visible along with an attenuated contribution from the substrate (Figure 

3.6(c), black open circles). We simulated a fit (purple solid line) to the heterostructure by 

scaling and offsetting the pure valence band spectra measured for the MgAl2O4 substrate 

and thick Co3O4 film. This method uses an “all at once” fit minimizing χ2 by the 

Levenberg-Marquardt algorithm implemented in Igor Pro software (WaveMetrics, Lake 

Oswego, OR). The difference between the measured and simulated spectra is also plotted 

(black line). Using this method, we calculate VBOsim = 3.2 eV, in good agreement with 

the offset calculated above by the core levels. 

We modeled the electronic structure of bulk Co3O4 using the Hubbard-corrected 

local density approximation (LDA+U) to DFT. The problem is difficult, as two different 

oxidation states of Co with two different spin states must be described. Because of this, 

U-values for Co3O4 calculations vary widely in the literature. [105,136–138] The 

problem is further complicated by the debate over the size of the fundamental band gap 

of Co3O4. 

Figure 3.7: Valence band structure (a) 

Measured XPS valence band for a 250-Å-

thick sample is shown by open circles, 

with the envelope of the 5-peak fit shaded 

blue. Indicated by the solid black line, 

calculated density of states (DOS) for bulk 

Co3O4 with U(Co2+) = 4 eV and U(Co3+) = 

0 eV agrees well with experimental 

features. (b) Site- and orbital-projected 

DOS for U(Co2+) = 4 eV and U(Co3+) = 0 

eV. 

To identify a combination of U 
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which best matches experimental data, we started with the Shirley-background-subtracted 

XPS valence band (Figure 3.7(a), blue open circles) and fit 5 peaks to the data (Figure 

3.7(a), blue shaded regions). 5 peaks was the minimum number necessary to acquire a 

reasonable fit. We then calculated the total density of states (DOS) for 64 combinations 

of U (from 0-7 eV on Co2+ and Co3+ in 1 eV increments), broadened each DOS by 0.5 eV 

to account for experimental broadening, and again fit 5 peaks to each DOS. We then 

compared the overall band width and peak positions with the experimental data, 

narrowing down from the 64 original possible combinations to 3 best fits: {U(Co2+), 

U(Co3+)} = {0, 0}, {0, 3}, and {4, 0}. We then checked the magnetization as function of 

the two U parameters. Combination {4, 0} produced a magnetization of 2.65 µB for the 

Co2+ ions, while {0, 0} and {3, 0} produce lower values of 2.33 and 2.42 µB, 

respectively, with the remaining moment on the nonmagnetic Co3+ ions. Therefore, based 

on the peak positions and magnetic moment, we selected {U(Co2+), U(Co3+)} = {4, 0} for 

our calculations.  

As shown in Figure 3.7(a), after scaling by photoionization cross-section, [139] 

the peak positions, valence band width, and relative peak intensities of the calculated 

DOS (solid black line) are in good agreement with XPS valence band. Site- and orbital-

projected DOS for {U(Co2+), U(Co3+)} = {4, 0} are shown in Figure 3.7(b). Comparing 

with the literature, our U(Co2+) value agrees with the value used by Chen et al., [137,138] 

while our U(Co3+) value agrees with that of Qiao et al. [105] We calculate a band gap of 

0.6 eV, in agreement with the recent transmission measurements from Qiao et al. [105] 

The valence band features are dominated by contributions from Co2+ and Co3+ d states 

and O 2p states, with strong hybridization between these orbitals. The top of the valence 

band is mostly composed of Co3+ d and O 2p states, while the main O 2p states lie deeper 

in the valence band. The bottom of the conduction band has contributions from Co2+ and 
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Co3+ d states as well as O 2p states. The presence of Co3+ d states at the top of the valence 

band is in agreement with the assignments of Kim and Park. [106,136] Since both Co2+ 

and Co3+ d states are present at the conduction band minimum, we cannot resolve 

whether the gap originates from an on-site or cross-site transition.  

Figure 3.8: Pseudodielectric function 


 

of a 220-Å-thick Co3O4 film on spinel. 

Symbols: Experimental data. Lines: Fit 

with the dielectric function shown in 

Figure 3.9. 

The pseudo-dielectric function  

for a 220-Å-thick Co3O4 epilayer on spinel 

is shown in Figure 3.8. It is nearly 

independent of the angle of incidence. Also, the data from both instruments are well 

matched in the area of overlap near 0.8 eV. As mentioned above,  is not 

representative of the optical constants for Co3O4. Instead, it combines features of the 

layer and the substrate. For example, at low energies (near 0.5 eV, below the band gap of 

the film),  = 2.9, which is determined by the optical constants of the spinel 

substrate. [129] At intermediate energies (between 0.7 and 3 eV), the Co3O4 film causes 

interference effects and the absorption peaks of Co3O4 appear as peaks in . (In a bulk 

material, absorption causes peaks in .) In the UV, the absorption of the Co3O4 film is 

very large and interference effects decrease. Therefore,  resembles the dielectric 

function of the Co3O4. We also note that interference effects cause  to be negative 

below 2.5 eV, where the absorption of Co3O4 is related to minima of . At higher 

energies, it causes maxima.  
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The optical constants of the Co3O4 epilayer can be determined using well-known 

procedures, [130,131] since the film thickness and the optical constants of the spinel 

substrate are known. [129] We write the dielectric function ε as a sum of Kramers-Kronig 

consistent oscillators and vary the oscillator parameters until we reach good agreement 

between the data (symbols) and model (solid lines) in Figure 3.8. The details of the 

expansion are not important and the fit parameters are not physically meaningful. 

Figure 3.9: Real (dashed) and imaginary 

(solid) parts of the dielectric function ε of 

Co3O4 (220-Å-thick film grown by MBE) 

from the near-IR to the near-UV, showing 

peaks due to interband electronic 

transitions. The band gap for this Co3O4 

film is 0.75 eV. 

The resulting dielectric function ε 

of Co3O4 is shown in Figure 3.9. These 

optical constants are available online. We see that Co3O4 is an insulator, since ε vanishes 

at low energies. It has a direct band gap (onset of strong absorption) of 0.75 eV. An 

indirect band gap or defect absorption is not visible with ellipsometry, since the resulting 

absorption coefficient is very small. The first absorption peak (maximum in the joint 

density of states for allowed interband optical transitions) occurs at 0.9 eV. Since we 

merge data sets from two instruments in this spectral region, there is an artifact in the 

data, which shows a double-peak structure near 0.9 eV. (A double peak was also 

suggested in density-functional calculations [105] but we are unable to confirm this with 

our current experiments. More precise work, including low-temperature ellipsometry 

measurements optimized for the near-infrared spectral region are needed.) The absorption 

then drops and reaches a minimum at 1.2 eV. There is a second onset of strong absorption 
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near 1.4 eV, which has been associated with the direct band gap in previous 

studies. [106,107] The strong absorption peak at 0.9 eV was not identified in some of the 

earlier work because of the limited spectral range in some previous experiments. On the 

other hand, our results are in excellent agreement with those of Ref.  [105], where a band 

gap of 0.74 eV is reported from transmission and photoluminescence measurements. It 

has been argued [105] that this gap is due to direct dipole-forbidden d-d intraband 

transitions at tetrahedral-site Co2+ cations. These transitions (forbidden in the presence of 

perfect spherical symmetry) become allowed due to crystal-field splitting in the cubic 

spinel structure and due to hybridization of the oxygen 2p states with the cobalt 3d states. 

See the projected DOS shown in Figure 3.7(b) for comparison. Our calculations also find 

substantial Co3+ contributions to the valence band maximum and the conduction band 

minimum. Therefore, we also expect contributions to d to d intraband transitions from the 

Co3+ sites. 

Figure 3.10: Ellipsometric angles for a 

220-Å-thick Co3O4 film on spinel in the 

mid-infrared spectral region at five angles 

of incidence from 60°to 80°. (Symbols: 

Experimental data. Lines: Fit with a 

Lorentz oscillator expansion of the Co3O4 

lattice absorption.) 

The higher-energy peaks at 1.65 

and 2.6 eV were previously identified by 

Kim and Park. [106] Our work shows an 

additional broad absorption peak at 5 eV, 

comparable to Ref.  [105]. At even higher 

energies, ε2 drops significantly.  
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The ellipsometric angles in the region of the lattice absorption by infrared active 

phonons in the Co3O4 epilayer and the spinel MgAl2O4 substrate are shown in Figure 

3.10. The data (symbols) can be described with a model (lines) consisting of a spinel 

substrate and a layer, in which the lattice absorption is written as a sum of Lorentzian 

lineshapes. [129] 

Figure 3.11: Real (dashed) and imaginary 

(solid) parts of the dielectric function of 

Co3O4 in the mid-IR, showing lattice 

absorption by three infrared-active 

phonons. 

The spectra are very similar to 

those of bulk spinel, see Fig. 10 in 

Ref.  [129], with four notable exceptions 

due to the presence of the Co3O4 epilayer: (1) There is a dip in the first reststrahlen band 

ψ at 555 cm-1 because of a strong Co3O4 phonon. (2) At 982 cm-1, ψ becomes larger than 

45°, where the dielectric function of the substrate is close to 1 at an LO peak of the 

substrate. This is an interference effect. For a bulk material, ψ is always below 45°. (3) A 

Co3O4 TO phonon at 655 cm-1 causes a tiny modification in the rise of the second 

reststrahlen band. (4) The fit is not good below 400 cm-1, which was attributed to cation 

disorder in the earlier work on spinel. [129] Nevertheless, we are able to find a small 

feature in ψ at 395 cm-1, where a Co3O4 phonon is expected. In summary, we find Co3O4 

phonon peaks at 395, 557, and 656 cm-1, in agreement with FTIR reflectance and electron 

energy loss measurements. [107,140,141] In the spinel structure, we expect four infrared-

active TO phonons. [129] For Co3O4, the literature also reports an infrared-active T1u 

phonon at 214 cm-1, which is below the spectral range of our infrared ellipsometer and 

therefore was not observed by us.  
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In Figure 3.11, we show an estimate for the mid-IR dielectric function of Co3O4, 

which was obtained from the fit to the data in Figure 3.10. The peak at 395 cm-1 is 

influenced by cation disorder in the substrate. The peak at 656 cm-1 is close to a TO mode 

in the substrate. Therefore, the amplitudes, positions, and broadenings of these peaks are 

not very accurate. On the other hand, the Co3O4 TO peak at 656 cm-1 is not influenced by 

any substrate features and can be determined with good accuracy. The Lorentzian 

broadening of this TO peak is about 6 cm-1, limited by the spectral resolution (8 cm-1) of 

our experiment.   

We do not observe any signs of a metallic response, which would lead to 

discrepancies between our lattice-dynamical model and the data at low frequencies. 

Therefore, we are unable to investigate a two-dimensional electron gas, which might be 

present at the interface between Co3O4 and MgAl2O4. Also, we do not find any signs of 

free carriers due to doping in the Co3O4 layer. (Other Co3O4 layers were reported to be p-

type. [105])  

Finally, magnetization of a 240-Å-thick Co3O4 (110) film was measured as a 

function of temperature under zero-field-cooled conditions at a constant magnetic field of 

1T oriented in-plane (Figure 3.12). Field-cooled measurements were in good agreement 

with the zero-field-cooled values. The data includes a signal that can be attributed to a 

background diamagnetic & paramagnetic contribution from substrate, [142] backing, and 

sample mount as compared to the small signal from the film. Despite the strong 

background contribution, a local maximum in the magnetization is clearly visible at 49 K. 

This value is higher than the Néel temperature TN ≈ 40 K for a Co3O4 crystal. [110] The 

TN enhancement appears due to the stress created by lattice-parameter mismatch between 

Co3O4 and MgAl2O4. Since the lattice parameter of Co3O4 is slightly smaller than that of 

MgAl2O4, the mismatch places Co3O4 under a tension stress. It has been widely observed 
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that TN in antiferromagnetic oxides including Co3O4 increases under high 

pressure. [143,144] Why a tension stress increases TN in a G-tpye antiferromagnet 

deserves further study. Alternatively, a much enhanced TN could be related to the change 

in the oxygen stoichiometry. 

Figure 3.12: SQUID magnetometer: Magnetization of a 240-Å-thick Co3O4 (110) film 

was measured as a function of temperature under zero-field-cooled 

conditions (blue circles) with constant in-plane magnetic field of 1 T. Field-

cooled data show similar characteristics. The onset of antiferromagnetism is 

labeled at 49 K. Inset image shows G-type antiferromagnetic ordering in the 

spinel structure. The overall negative magnetization is from the diamagnetic 

contribution from the substrate. 

3.4. CONCLUSION 

In conclusion, we have grown Co3O4 films on MgAl2O4 (110) using MBE. We 

investigated surface roughness and smoothing during growth with RHEED and AFM, 

and further affirm the high quality and sharp interface of the as-grown film and by XRD 

and TEM. Ellipsometry measurements find a small gap of 0.75 eV, in good agreement 

with DFT calculations based on the shape of the XPS valence band. A valence band 

offset of 3.2 eV is measured for the heterostructure. Finally, we find that the films are 

antiferromagnetic with a transition temperature of 49 K, higher than the typical bulk 
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value. These results motivate future study of this material, including DFT/TEM study to 

determine atomic positions at the interface & surface, low-temperature ellipsometry and 

optical Hall-effect measurements, and growth on different substrates to study changes in 

the magnetic properties, band offsets, and catalytic activity. 
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Chapter 4: Quasi-two-dimensional electron gas at the epitaxial 

alumina/SrTiO3 interface 

Contents of this Chapter were published in J. Appl. Phys. 117, 95303 

(2015)  [145].‡ 

In this chapter, we report on the highly conducting layer formed at the crystalline 

γ-alumina/SrTiO3 (STO) interface which is attributed to oxygen vacancies. We describe 

the structure of thin γ-alumina layers deposited by molecular beam epitaxy on STO (001) 

at growth temperatures in the range of 400 to 800°C, as determined by reflection-high-

energy electron diffraction, x-ray diffraction, and high-resolution electron microscopy. In 

situ x-ray photoelectron spectroscopy was used to confirm the oxygen-deficient layer. 

Electrical characterization indicates sheet carrier densities ~1013 cm-2 at room 

temperature for the sample deposited at 700°C. A maximum electron Hall mobility of 

560 cm2V-1s-1 at 15 K and room temperature mobility of 5 cm2V-1s-1 are measured and 

annealing in Oxygen is found to reduce the carrier density and turn a conductive sample 

into an insulator. 

4.1. INTRODUCTION 

SrTiO3 (STO) has received much attention because of its large dielectric constant 

and its role in the integration of other complex oxides on semiconductors, with 

applications including catalysis, tunable devices, and ferroelectric 

functionality. [79,80,101,146–150] A highly interesting application for STO involves the 

formation of a high mobility two-dimensional electron gas (2DEG) at the oxide/oxide 

                                                 
‡ Contributions: KJK designed and performed the work related to the sample growth, RHEED, XRR, and 

XPS and analyzed the data. AAD, ABP, TQN, and JGE contributed to the conception and analysis of data. 

JJ-S performed and analyzed the XRD results. SL, DJS, and MRM performed TEM experiments. NG and 

XPAG performed and analyzed electrical measurements. All authors contributed to interpretation of the 

data and to discussions. 



 43 

interface. [11,13,22–24,44,45,116,151–156] Among the mechanisms for 2DEG 

formation, one approach involves tailoring an interface between STO and oxides with a 

large negative enthalpy of formation, such as aluminum-based 

oxides. [13,44,45,116,154–156] Under such conditions, it is energetically favorable for 

oxygen atoms near the interface to diffuse out of the STO during growth, stabilizing a 

confined conducting layer.  [13,44,45,116,154–158] Since this metallic layer results from 

the formation of oxygen vacancies near the interface, it characteristically vanishes with 

oxygen atmospheric anneal. [44,45,116,155,156] 

Previous studies of crystalline γ-Al2O3 grown by pulsed laser deposition (PLD) 

have shown that the confinement of the conducting layer depends on growth parameters, 

particularly substrate temperature. [116,155] Furthermore, even amorphous oxide 

heterostructures grown on STO by PLD and atomic layer deposition (ALD) exhibit 

interfacial conductivity. [44,45,156] Considering that the diffusivity of oxygen in 

alumina varies widely depending on crystal structure, [159,160] the properties of the 

vacancy-controlled STO 2DEG need to be quantified with respect to thin film deposition 

parameters. The molecular beam epitaxy (MBE) method employed herein facilitates the 

fabrication of well-ordered oxide heterostructures with precise layer-by-layer atomic 

control, without complicating factors such as the plume dynamics of PLD [44,116,155] 

or precursor reactivity of ALD. [45,156] In this chapter, we describe the structure of 

MBE-grown crystalline γ-alumina on STO (001) as determined by reflection-high-energy 

electron diffraction (RHEED), x-ray diffraction (XRD), and high-resolution electron 

microscopy (HREM). The conducting STO layer exhibits a strong dependence on the 

growth temperature, as revealed by x-ray photoelectron spectroscopy (XPS), and 

electrical measurements. 
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4.2. EXPERIMENTAL DETAILS 

SrTiO3 (001) substrates with dimensions 5 mm × 5 mm × 0.5 mm (commercially 

available with TiO2-termination by HF etching from Crystec) were degreased in acetone, 

isopropanol, deionized water, and UV ozone. The samples were then introduced into a 

customized DCA 600 MBE system with a base pressure of 6×10-10 Torr. More details of 

the experimental system can be found elsewhere. [87,161] All substrates were outgassed 

in the MBE chamber at 700° for 30 min under ultra-high vacuum (UHV). The substrate 

temperature was measured by a thermocouple (calibrated by pyrometer measurement of a 

silicon substrate) in close proximity to the substrate heater. 

The substrate temperature during alumina deposition was varied between 400 to 

800°C. Al metal flux evaporated from an effusion cell was calibrated to a γ-alumina 

deposition rate of 1.8 Å/min as measured by a quartz crystal microbalance. Molecular 

oxygen was introduced at a background pressure of 1×10−6 Torr. The samples were 

monitored during growth by in situ RHEED. After film deposition, the main shutter was 

closed, and the samples were cooled down in the presence of oxygen (1×10−6 Torr). 

4.3. RESULTS AND DISCUSSION 

STO assumes the cubic Pm3m perovskite structure above 110 K, [162] while the 

cubic γ-phase of Al2O3 is based on the Fd 3 m spinel structure with Al vacancies to 

satisfy stoichiometry. [163,164] The measured distances between the diffraction lines in 

the STO and alumina RHEED patterns (Figure 4.1(a)) indicate the lattice relationship 

represented in Figure 4.1(b), with an alumina lattice parameter of 7.9 Å. [163,164] The 

oxygen sublattice of the spinel matches closely to that of the perovskite substrate, with a 

lattice mismatch of -1%. X-ray reflectivity analyses was performed using a Panalytical 

X’PERT Pro diffractometer (Cu Kα1 source, λ=1.5406 Å) operating at 40 kV and 30 mA. 

An x-ray reflectivity pattern of an estimated 10-nm alumina/STO sample is also shown in 
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Figure 4.1(b). The strong, regular oscillations indicate excellent uniformity and 

smoothness of the film. Additional x-ray diffraction was carried out at the National 

Synchrotron Light Source beamline X20A (Figure 4.1(c)). The low-intensity shoulder to 

the left of the main STO (002) peak is attributed to alumina. Due to weak scattering from 

aluminum combined with close proximity to strong STO substrate peaks, strain analysis 

of the film is not possible; however, in-plane scans (not shown) indicate cubic symmetry. 

To further characterize the samples, we examined the alumina/STO interfaces using 

cross-sectional transmission electron microscopy.  

Figure 4.1: (a) In situ RHEED of the crystalline STO and alumina surfaces. (b) X-ray 

reflectivity of structure and interface with inset epitaxial relationship of γ-

alumina on STO (001). (c) Bragg-Brentano scans along the (00l) direction. 

Figure 4.2 shows a representative micrograph recorded with a JEOL JEM-

4000EX transmission electron microscope operated at 400 keV. This image along the 

[100] direction clearly reveals an abrupt interface between the highly crystalline epitaxial 

alumina and the STO substrate. The structural model (inset) shows that the STO substrate 
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is terminated with a TiO2 layer, while the spinel side of the interface commences with 

aluminum in the 4-fold coordinated tetrahedral site. 

Figure 4.2: High-resolution electron 

micrograph in cross-section geometry 

confirming abrupt interface between 

highly crystalline epitaxial alumina on 

STO substrate. 

XPS measurements were 

performed in situ using a VG Scienta 

R3000 with monochromatic Al Kα 

radiation (hν = 1486.6 eV). As illustrated 

in Figure 4.3(a), we determine the valence-band offset between the STO substrate and a 

thick (7-nm) alumina film by aligning the spectra such that: (1) the Sr 3d core level (CL) 

in the heterostructure (3-nm alumina/STO) matches that of the pure STO substrate, and 

(2) the Al 2p CL in the thick alumina film matches that of the heterostructure, 

     
43232 /2323 STOOAlpAldSrOAlVBMpAlSTOVBMdSrCL EEEEEEVBO  . 

(4.1) 

A valence-band offset of +0.93 eV was calculated and also verified by simulating 

a thin-film valence band (Figure 4.3(b)), as described elsewhere. [87] As the two methods 

returned the same value, no band bending was detected. [165,166] Furthermore, the 

binding energy of the Al 2p core level (76 eV) and shape of the alumina valence band 

indicate no sign of any Al suboxide. [164,167]  
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Figure 4.3: Core level (a) and valence 

band (b) spectroscopy for the following: 

STO substrate (red), 3 nm alumina/STO 

(purple), and 7 nm alumina/STO (blue). 

The Ti 2p core level provides 

information on the oxygen vacancy 

concentration on the STO side of the 

interface. As illustrated in Figure 4.4(a), 

peak decomposition of the Ti 2p core level 

in STO allows a comparison of fully 

oxidized and reduced Ti. While the bulk 

STO substrate (purple solid line) shows 

only two spin-split Ti4+ (fully oxidized) 

peaks, the spectrum after MBE growth of 

a thin alumina film (raw data: light blue 

solid line, background: bright blue solid 

line, fit: black solid line) shows peaks at 

lower binding energies corresponding to Ti in a reduced environment (Ti3+: dark blue 

dashed filled line, Ti2+: navy dashed filled line) in addition to the main peak from fully 

oxidized Ti (Ti4+: light blue dashed filled line). The percentage of remaining fully 

oxidized Ti4+ was then calculated by comparing the relative peak areas, 

 
     







234

4

4
TiITiITiI

TiI
C . 

(4.2) 

This analysis of the XPS Ti 2p spectra was repeated for samples of different 

alumina thicknesses (0-7 nm) grown at 4 different substrate temperatures (400-800°C in 
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100°C increments), as summarized in Figure 4.4(b). The resulting depth profile indicates 

the presence of an interfacial oxygen-deficient STO layer. 

Figure 4.4: (a) Peak decomposition of the 

Ti 2p core level in STO allows 

comparison of fully oxidized and reduced 

Ti. (b) Analysis of reduced titanium based 

on XPS Ti 2p spectra for different samples 

of different thickness and growth 

temperature. 

In order to electrically contact the 

alumina/STO interface, four indium 

contacts were placed on scribed corners of 

each sample in a Van der Pauw geometry. 

Measurements took place in a Quantum 

Design physical property measurement 

system (PPMS) capable of applying a 9 T 

magnetic field and 1.9–350 K temperature 

range. Two Stanford SR830 lock-in amplifiers and one SR570 current preamplifier were 

used to perform 4-wire electrical transport measurement using less than 1 A current at a 

frequency of 7 or 13Hz. Conductivity measurements as a function of temperature using a 

4-wire lock-in measurement reveal metallic behavior for the interface between these two 

insulators (Figure 4.5(a)). Comparison between two samples (one deposited at a substrate 

temperature of 400°C and the other at 700°C) indicates a higher sheet resistance for 

lower growth temperature. 
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Figure 4.5: (a) Sheet resistance of MBE-

grown alumina/STO samples grown with 

deposition temperatures of 700C (6 nm 

Al2O3) and 400C (4 nm Al2O3). 

Annealing the 700C (6 nm Al2O3) sample 

in 1 Torr of O2 at 400oC for 5 minutes 

turned the sample’s R(T) into an insulating 

behavior below 200K. (b). Temperature 

dependent Hall carrier density of 700C (6 

nm) sample before and after the annealing 

in O2 (1 Torr, 400oC for 5 minutes). Hall 

coefficient was measured using a 5 T 

magnetic field. 

Sheet carrier densities on the order 

of 1013-1014 cm-2 are measured in the 

sample deposited at 700°C (Figure 4.5(b), 

blue squares), with a rapid drop in its 

temperature dependence below 110 K, 

coinciding with the cubic to tetragonal phase transition of the STO substrate. [162] A 

maximum electron Hall mobility of 3100 cm2V-1s-1 at 3.2 K and room temperature 

mobility of 22 cm2V-1s-1 are measured for the heterostructure. For the sample deposited at 

400°C, we were unable to obtain reliable Hall measurement. However, if one assumes 

similar carrier density as the sample grown at 700°C, then the carrier mobility is roughly 

two times lower at room T and ten times lower at 10K. To elucidate the oxygen vacancy 

effect on the carrier density and transport behavior, we annealed the 700°C deposited 

(6nm Al2O3) sample in 1 Torr of O2 at 400oC for 5 minutes. After annealing, the sample 

showed nearly halved carrier density (Figure 4.5(b), red triangles) and an insulating 

behavior at low temperature (Figure 4.5(a), red triangles). This attests to the oxygen 

vacancy origin of carriers at the conductive interface. 
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4.4. CONCLUSION 

In conclusion, we demonstrate the growth of crystalline γ-alumina on STO using 

molecular beam epitaxy. X-ray photoelectron spectroscopy of Ti 2p core level indicates 

an oxygen-deficient layer at the interface. Electrical measurements reveal that the 

interfacial layer exhibits an increased sheet resistance for decreased growth temperature. 

Future investigations will study the interface structure in more detail, and its influence on 

2DEG mobility and the dimensionality of the conducting layer as determined by 

Shubnikov-de Hass oscillations. These properties can then be compared with results 

using other film deposition methods. 
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Chapter 5: Positive linear magnetoresistance in the two-dimensional 

electron gas at the EuO/SrTiO3 interface 

The development of novel nano-oxide spintronic devices would greatly benefit 

from interfacing with emergent phenomena at oxide interfaces. In this chapter, we 

integrate highly spin-split ferromagnetic semiconductor EuO onto SrTiO3 (001). The 

EuO growth by molecular beam epitaxy results in oxygen out-diffusion from SrTiO3 

leaving behind a highly conductive layer on the SrTiO3 side of the interface through 

generation of oxygen vacancies. Below the Curie temperature of 70 K of EuO a spin-

polarized two-dimensional electron gas at the EuO/SrTiO3 interface displays positive 

linear magnetoresistance. This system offers an as-yet-unexplored route to pursue 

proximity-induced phenomena in the oxide two-dimensional electron gas. 

5.1. INTRODUCTION 

The high mobility two-dimensional electron gas (2DEG) at the oxide/oxide 

interface is currently under intense investigation [11]. In particular, different types of 

magnetism have been observed in the oxide 2DEG [39] providing a richness of physical 

phenomena ripe for the continuing development of novel oxide devices [31]. Thin films 

of perovskite oxides exhibit superconductonductivity [168] and colossal 

magnetoresistance [169], magnetism [170], ferroelectricity [171] and 

multiferroicity [172], piezoelectricity [173], and thermoelectricity [174]. On the other 

hand, a nearly ideal Heisenberg ferromagnet, rock salt EuO boasts a saturation magnetic 

moment of 7 μB (with corresponding 0.6 eV spin-splitting of the unoccupied 5d 

band [175]). Thus EuO can be used for spin filtering, [176] and is considered a strong 

candidate for spintronic applications [176]. There also have been proposals to combine 
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EuO with Al thin films [177], graphene layers [178] and MoTe2 [179] layers, to induce 

ferromagnetism in these systems by proximity effect. 

Therefore, it is of great interest to look for novel physical phenomena at the 

interface of ferromagnetic semiconductor EuO and other complex oxides. First-principles 

calculations predict a fully spin-polarized 2DEG at the LaAlO3/EuO interface due to 

electrostatic doping from the polar oxide [180,181]. However, from a thermodynamic 

perspective, creation of the heterostructure suggested by Lee et al. [181] is somewhat 

problematic. EuO is not stable under ambient conditions [182], much less the oxygen-rich 

high-temperature conditions necessary for deposition of crystalline LaAlO3 [183]. 

Among the various mechanisms for the oxide 2DEG formation, one viable approach 

involves tailoring an interface between SrTiO3 (STO) and oxides with large negative 

enthalpy of formation to stabilize a confined conducting layer of SrTiO3-δ. [116,145] As 

EuO is one such oxide, [184] the approach offers an as-yet-unexplored route to 

investigate proximity-induced phenomena in the oxide 2DEG. 

Here we demonstrate positive linear magnetoresistance of the 2DEG at the 

interface of epitaxial EuO/STO, for EuO film thicknesses in the range ~5-10 nm grown 

by molecular beam epitaxy (MBE). Growth is achieved by depositing Eu metal onto STO 

(001) without oxygen in UHV. The x-ray diffraction (XRD) and scanning transmission 

electron microscopy (STEM) show that epitaxy on TiO2-terminated STO plane results in 

the rock salt EuO (Eu 2+). The EuO thin films are ferromagnetic below the Curie 

temperature of 70 K with saturation moment ~6.3 μB.as demonstrated by superconducting 

quantum interference device (SQUID) magnetometry and low-temperature transport 

measurements. These EuO/STO heterostructures display temperature-dependent linear 

positive magnetoresistance below the Curie temperature. X-ray photoemission 

spectroscopy (XPS) shows the valence band offset of 2 eV and closely aligned 
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conduction bands. The density functional theory (DFT) analysis based on the 

XRD/STEM-derived structural model provides a consistent picture of the band 

alignment, magnetic state of EuO and electronic structure of the oxygen deficient 

conductive layer formed in STO. Using soft x-ray angle-resolved photoemission 

spectroscopy (SX-ARPES), we elucidate the dxy t2g character of the low dimensional 

electron system. The carriers reside at the STO side of the EuO/STO interface, which 

conclusively demonstrates symmetry breaking due to carrier confinement and thus the 

existence of the 2DEG. Combining these results with first-principles calculations we 

uncover the role of the spin-polarized oxygen vacancy as the origin of the linear positive 

magnetoresistance stemming from the ferromagnetism of Eu2+ magnetic moments in 

proximity to the confined oxygen-deficient conductive layer. 

5.2. EXPERIMENTAL DETAILS 

5.2.1. Film deposition  

SrTiO3 (001) substrates with dimensions 5 mm × 5 mm × 0.5 mm (commercially 

available with TiO2-termination by HF etching from Crystec) were degreased in acetone, 

isopropanol, deionized water, and UV ozone. The samples were then introduced into a 

customized DCA 600 MBE system with a base pressure of 6×10-10 Torr. More details of 

the experimental system can be found elsewhere. [185] All substrates were outgassed in 

the MBE chamber at 700° for 10 min under ultra-high vacuum (UHV). The substrate 

temperature was measured by a thermocouple (calibrated by pyrometer measurement of a 

silicon substrate) in proximity to the substrate heater. 

The substrate temperature during EuO deposition was fixed at 200°C. Eu metal 

flux evaporated from an effusion cell was calibrated to a metal deposition rate of ~0.36 

nm/min as measured by a quartz crystal microbalance. Molecular oxygen was introduced 
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at a partial pressure varied between 1×10−10 to 1×10−8 Torr. The samples were monitored 

during growth in situ by RHEED. After film deposition, the films were capped with ~1.4 

nm aluminum metal to form ~ 2-nm alumina upon exposure to ambient conditions for ex 

situ electrical and magnetic characterization. 

5.2.2. Sample Characterization 

XPS measurements were performed in situ using a VG Scienta R3000 electron 

energy analyzer with monochromatic Al Kα radiation (hν = 1486.6 eV). Superconducting 

quantum interference device magnetic moment measurements of a 7-nm-thick EuO (001) 

film were recorded as a function of temperature under field-cooled conditions at a 

constant magnetic field of .01 T oriented in-plane. 

To electrically contact the capped EuO/STO interface, four indium contacts were 

placed on corners of each sample in a van der Pauw geometry. Measurements were 

performed with a Physical Property Measurement System (PPMS) capable of applying a 

±9 T magnetic field. The magnetic properties were measured with a Superconducting 

Quantum Interference Device (SQUID) from Quantum Design.    

5.2.3. Density functional theory 

First-principles calculations based on density functional theory (DFT) were 

performed using generalized gradient approximation [186] (GGA) for the projector 

augmented wave pseudopotentials [187], as implemented in the Vienna Ab-Initio 

Simulation Package code [188]. For Sr, Ti, Eu and O, 4s24p65s2, 3s23p64s23d2, 5s25p64f 

76s2 and 2s22p4 are included, respectively. The plane-wave cutoff energy was 600 eV. To 

correct the on-site Coulomb interaction and consider the correlation effect in SrTiOv, we 

adopted Dudarev’s rotationally invariant approach [189] adding a Hubbard U term 

(GGA+U). Typical values Uf = 5.0 eV and Ud = 5 eV, Jd = 0. 64 eV were used for Eu 
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localized 4f orbitals and Ti 3d orbitals, respectively. We employed symmetric 

(EuO)3(STO)6(EuO)3 supercell geometry with vacuum region thicker than 1 nm to 

prevent interaction between adjacent slabs. The interface was TiO2-terminated and Eu 

atoms were on top of hollow positions in TiO2 plane, as continuation of Sr atom. Lattice 

parameter aSTO = 0.395 nm was used and EuO layers were rotated by 45° to match the 

lattice constant (8% tensile strain on EuO layers). For creation of a single vacancy, an O 

atom was removed at the sub-interface SrO layer in a 2×2 slab. All atom positions were 

fully relaxed until residual forces were less than 0.2 eV nm-1. The Brillouin zone was 

sampled with 4×4×1 Monkhorst-Pack k-point grids [190].  

5.2.4. Soft-X-ray ARPES experiments 

The experiments have been carried out at the SX-ARPES endstation  [191] of the 

ADRESS beamline  [192] at the Swiss Light Source (Paul Scherrer Institute, 

Switzerland). Circularly polarized X-rays were incident on the sample at a grazing angle 

of 20o to increase photoelectron yield from the buried EuO/SrTiO3 interface. The sample 

was cooled down to 12 K to quench the thermal effects reducing the coherent k-resolved 

spectral component at high photoexcitation energies  [193]. The combined (beamline and 

analyzer) energy resolution was ~100 meV. The SX-ARPES resonant measurements at 

the Ti L-edge were complemented by X-ray adsorption spectroscopy (XAS) 

measurements in total electron yield. 

With an intense photon flux of about 21013 ph/sec delivered by the ADRESS 

beamline into a spot of ~3074 m2 on the sample, the SX-ARPES spectra significantly 

depended on the X-ray irradiation dose due to photogenerated oxygen vacancies. This 

can be seen in time evolution of the SX-ARPES images presented in Appendix A, Figure 

A.9 through A.11. The irradiation apparently increases the spectral intensity and band 
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filling. To avoid any significant distortion of the pristine EuO/SrTiO3 spectral response, 

our SX-ARPES spectra were recorder under continuous translation of the sample under 

the beam. 

5.3. RESULTS AND DISCUSSION 

5.3.1. Sample Preparation and Characterization 

Since EuO is highly sensitive to oxygen pressure and tends to form Eu2O3, special 

care must be taken to ensure proper stoichiometry. In general, EuO epitaxy must be 

carefully controlled with regards to temperature, deposition rate, and oxygen pressure to 

preserve the Eu2+ oxidation state; metallic Eu0 has a low sticking coefficient [194], while 

over-oxidized Eu3+ is paramagnetic [195]. Here, we build upon the previous multi-metal 

study [184] of oxygen scavenging from SrTiO3 and demonstrate that it is possible to 

crystallize stoichiometric EuO by depositing Eu metal onto SrTiO3 (001) under ultra-high 

vacuum, where oxygen is provided only by the substrate. Details of the growth window 

were investigated by in-situ x-ray photoelectron spectroscopy as summarized in 

Appendix A, Figure A.1. For ex situ characterization, a capping layer of 2-nm AlOx was 

deposited directly after growth. For observations by scanning transmission electron 

microscopy (STEM), a 10-nm Ti capping layer was deposited to protect the surface from 

oxidation during STEM sample cross-sectioning for viewing along SrTiO3 [100]/EuO 

[110] projection. 

The EuO films crystallize in the rock salt structure (Space group Fm3m [196]) 

and the primary unit cell axis is rotated by 45° with respect to the unit cell axis of 

substrate surface to minimize lattice mismatch (22% down to ~7%). The films are fully 

relaxed, as shown schematically in Figure 5.1(a) and in the reciprocal space map in 

Figure 5.1(b). Additional x-ray diffraction results are provided in Appendix A, Figure 
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A.2. Lattice parameters extracted from the in-plane and out-of-plane scans are 0.513 and 

0.515 nm, respectively. 

Figure 5.1: Epitaxy of EuO on SrTiO3 (001). (a) Atomic model of the rocksalt / 

perovskite heterointerface. (b) Reciprocal space map of the STO (002) and 

EuO (113) peaks for 7 nm EuO on STO. The EuO rocksalt unit cell is 

rotated 45° with respect to the surface unit cell of the perovskite. (c) High-

angle annular-dark-field scanning transmission electron microscopy [100]-

projection image of the EuO/STO interface. (d) Corresponding false color 

map shows a distribution map from the Ti L-edge fit (SrTiO3, red; SrTiO3-δ, 

green). (e) Ti-L coefficient as a function of position shows a sharp peak at 

the interface. (f) Overall schematic, including the bulk STO substrate (red), 

layer of STO with oxygen vacancies (green), EuO film (blue), and capping 

layer (gray). Not to scale.  

As shown in the high-angle annular-dark-field image of the EuO/SrTiO3 interface 

in Figure 5.1(c), the films are epitaxial with defects in the first few layers. From the Ti-L 
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energy-loss near-edge fine-structure edge fitting [197], false color maps in Figure 5.1(d) 

show the distribution of oxygen vacancies at the interface. This result is in good 

qualitative agreement with x-ray photoelectron spectroscopy results reported for Eu metal 

on SrTiO3 by Posadas et al [184]. Complementary Eu-N edge data confirming Eu2+ 

oxidation state are given in Appendix A, Figure A.3. The proximity of EuO to the 

confined SrTiO3-δ conducting layer is shown in the heterostructure cross-section in Figure 

5.1(e). 

5.3.2. Electrical Characterization 

The EuO film exhibits a paramagnetic to ferromagnetic transition with decreasing 

temperature as seen in Figure 5.2(c), which shows the field-cooled magnetization of a 7-

nm EuO film as a function of temperature. Curie-Weiss fit to this data give a Curie 

temperature of TC ~70 K and effective magnetization of ~6.3 μB. From the magnetization 

loops measured at 10 K with magnetic fields applied in the plane of the film [see inset to 

Figure 5.2 (c)] we extract a coercive field ~0.02 T and remnant magnetization ~4.3 μB. 

These are essentially bulk values for EuO. 

Measurements of the sheet resistance RS over a temperature range from 2-300 K 

reveal metallic behavior (Appendix A, Figure A.4(a)) for 7-nm EuO/STO. Hall 

measurements indicate high sheet carrier densities on the order of 1016 cm-2 (Appendix A, 

Figure A.4(b)). Figure 5.2 (a) shows four-probe magnetoresistance RS(B) measurements 

for a 7-nm EuO film in a perpendicular magnetic field. RS increases linearly with the 

magnetic field at 20 K and quadratically at 100 K. Solid lines indicate fits to the data of 

the form, 

])([)0()( 2

21 BcBcRBR SS 
 (5.1) 
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Figure 5.2: (a) Magnetoresistance (MR) 

data measured in a perpendicular 

magnetic field at 20 K, 100 K, and 300 

K. Solid lines indicate fits to the data. 

The MR increases linearly with the 

magnetic field at 20 K, quadratically at 

100 K, and is field-independent at room 

temperature. (b) Linear c1 and quadratic 

c2 MR fit coefficients for the same film 

as a function of temperature. (c) Field-

cooled magnetization M of a similar 7-

nm EuO film as a function of 

temperature at constant in-plane 

magnetic field of 0.01 T. Inset: 

corresponding magnetization loop 

measured at 10 K. 

where c1 and c2 are the linear and 

quadratic fit coefficients, respectively, 

shown in Figure 5.2(b) as a function of 

temperature. The quadratic 

magnetoresistance component is 

present below ~150 K, while the linear 

component emerges below ~80 K. The 

magnetoresistance (MR), defined as, 

   
 0
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S
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MR




, 
(5.2) 

decreases rapidly as the measurement temperature increases, and is essentially zero at 

room temperature as shown in Figure 5.2(a). 

The quadratic MR component mentioned above can be attributed to the ordinary 

magnetoresistance, as in normal metals, stemming from the Lorentz force. On the other 

hand, a much more interesting linear MR needs special consideration. Since its 

 



 60 

emergence coincides with the Curie temperature (~70 K), we ascribe the origin of the 

positive linear MR to a Zeeman split of the 2DEG electronic structure [198] induced by 

magnetic order of oxygen vacancies in top STO layer, as DFT modelling illustrates 

below. 

5.3.3. First-principles Calculations  

For these EuO/SrTiO3-δ/SrTiO3 (001) heterostructures, the band alignment is 

crucial in determining the spatial extent of the conducting SrTiO3-δ layer and therefore the 

magnitude of the wave function overlap which is the origin of the exchange proximity 

interaction [199]. Band offsets were measured by x-ray photoelectron spectroscopy, as 

described in Appendix A and Figure A.6. The theoretical density of states (DOS) and 

valence band offset are in good agreement with the experimental XPS data, also shown in 

Figure 5.3 (the details of the first-principles calculations of the EuO/SrTiO3 interface are 

given in above). Figure 5.3 shows the simulation cell with one oxygen vacancy in the 

sub-interface SrO layer and the corresponding DOS projected onto atomic planes across 

the heterostructure. The interface structure in the calculations is kept consistent with 

STEM images recorded in the [110] projection (Appendix A, Figure A.5).  

A sharp, spin-up Eu 4f state forms the valence band edge and is fully spin-

polarized, with a magnetic moment of 7𝜇𝐵. This is in good agreement with studies of 

ferromagnetism in bulk EuO [200]. A localized impurity state emerges 0.4 eV below 

Fermi level. This state, residing on two Ti ions adjacent to a vacancy, has an eg orbital 

character mixed with pz due to lifting of the local cubic symmetry induced by a 

vacancy [201]. Importantly, the in-gap state is singly-occupied and polarized with its spin 

aligned with the Eu ion above the interface. The impurity state decays quickly into both 

EuO and SrTiO3, with the evanescent states present up to 2 layers away from the vacancy 
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plane. The decay length is 0.19 nm and 0.18 nm in EuO and STO respectively, consistent 

with the complex band structure [202]. 

Figure 5.3: (a) Density of states (DOS) projected onto atomic planes across the EuO/STO 

simulation cell, with an oxygen vacancy (V0) at the STO surface. The 

oxygen vacancy state can be seen at -0.4 eV. This state decays within ~0.2 

nm from the interface. The theoretical valence band (VB) shapes and 

valence band offset are in good agreement with experimental data, also 

shown. (b) Schematic illustration of Zeeman shift. 

Inspecting carriers in the conduction band of SrTiO3, we note that all itinerant 

electrons are located on the SrTiO3 side and the delocalized Ti t2g states are occupied by 

the second electron of the vacancy. Recent studies by Hou et al. [203] and Lin et 

al. [157], suggested that the vacancy-induced localized state can trap at most one 
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electron, while the second electron occupies the conduction band when correlation effects 

are taken into account. From the orbital-projected DOS (Appendix A, Figure A.7), we 

find that the occupied states at the interface are purely dxy orbitals, but mainly dxz/dyz 

orbitals away from the interface. The split-off dxy band has also been found at the 

LaAlO3/SrTiO3 interface and attributed to the orbital reconstruction due to symmetry 

lowering [22]. It is worth noting that the occupied dxy state at the interface is also spin-

split by ~0.3 eV and thus the interfacial carriers are fully spin-polarized in the same way 

as the vacancy-induced in-gap state and the Eu 4f state.  

To explain the positive linear MR we consider the Zeeman shift of spin-split 

bands. Below the critical temperature Tc, EuO becomes ferromagnetic and as suggested 

by calculation (Appendix A, Figure A.7), carriers at the interface (dxy) will be spin-

polarized while carriers in deeper layers (dxz/yz) remain nonmagnetic. With an external 

field H, the spin-polarized dxy band and the initially-nonmagnetic up band shift downward 

while the initially-nonmagnetic down band shifts upward, as shown in Figure 5.3(b). 

Following the work of Onose et al. [198] as detailed in Appendix A , the change of the 

resistivity suggests a positive linear MR with magnetic field. Another possible 

mechanism for the positive linear MR is quantum electron-electron interference [204]. 

However, following the work of Lee et al. [204] and Gerber et al. [205], the calculated 

quantum correction is several orders of magnitude smaller compared with our 

measurement. Our results suggest that below 70 K, ferromagnetism in the EuO layer 

causes the alignment of spin-polarized oxygen vacancies in STO. This causes the linear 

positive MR of the dxy carriers at the interface stemming from proximity induced defect 

magnetism. 
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5.3.4. Photoemission  

To visualize band structure of the EuO/SrTiO3 interface resolved in electron 

momentum k, we used soft-x-ray angle-resolved photoemission spectroscopy (SX-

ARPES). Spectral response of the buried interface states was boosted using resonant 

photoexcitation at the Ti 2p absorption edge. In Figure 5.4, we present the experimental 

(a) X-ray absorption spectra and (b) resonant (angle integrated) photoemission intensity 

across the Ti 2p edge. The latter embeds the Ti t2g derived 2DEG signal at EF, Eu 4f 

around EB ~ -2.5 eV and the O 2p derived valence band states of EuO and SrTiO3 below. 

Figure 5.4(c) shows the photoemission intensity variations in the corresponding EB-

regions. The 2DEG and valence band response resonates near the Ti absorption peaks. 

This confirms, respectively, the Ti 3d origin of the 2DEG and hybridization of the O 2p 

states with Ti, similarly to the paradigm LaAlO3/SrTiO3 interface [206,207]. On the other 

hand, the Eu 4f response shows no correlation with the Ti 2p absorption that indicates 

vanishing hybridization between the Eu 4f and Ti 3d states. Furthermore, similar resonant 

data at the Eu 3d absorption edge (Appendix A, Figure A.8) indicates no sign of any 

significant admixture of Eu 4f states in the 2DEG. This indicates that the 2DEG in the 

EuO/SrTiO3 heterostructure resides on the SrTiO3 side of the interface, in good 

agreement with density functional calculations. 



 64 

Figure 5.4: Resonant soft-X-ray ARPES of 2-nm EuO/STO heterointerface through the 

Ti L-edge. (a)  XAS spectrum. (b) Resonant photoemission from the valence 

band as a function of excitation energy. Intensity the near-EF region is 

scaled up by ~30. (c) Resonant intensity for constant EB in the valence band, 

Eu level and 2DEG. The valence band and 2DEG signals follow the Ti L-

edge XAS spectrum that confirms their Ti-derived character. (d,e) SX-

ARPES images at hv = 460.3 and 466 eV enhancing the dxy- and dyz-derived 

states, respectively. The intensity waterfalls are reveal polaronic nature of 

the interface charge carriers. (f) Fermi surface of the interface states 

measured at hv = 466 eV. 
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Photoelectron images visualizing electron dispersions E(k) in the 2DES are 

shown in Figure 5.4(d) for hv = 460.3 eV emphasizing the Ti dxy states localized near the 

interface, and Figure 5.4(e) for 466 eV emphasizing the Ti dyz/dxz ones more extended 

into the SrTiO3 bulk  [207]. This is consistent with our DFT calculations in the previous 

section. The EuO/SrTiO3 interface shows much smaller band filling compared to the 

LaAlO3/SrTiO3 case  [207] that is manifested by small Fermi vector kF of the heavy dyz 

band (e). The waterfalls going from the band dispersions down in EB is a hallmark of all 

SrTiO3-based systems that signal polaronic nature of the charge carriers with their 

characteristic peak-dip-hump spectral response involving electron coupling to the LO3 

phonon  [207,208]. Furthermore, significantly smaller intensity of the EuO/SrTiO3 

interface bands compared to LaAlO3/SrTiO3 may reveal larger fraction of the non-

conducting interfacial phase  [209,210] 

Finally, Figure 5.4(f) shows the Fermi surface formed by the interface electrons. 

It was measured at hv = 466 eV to emphasize the external contours formed by the 

ellipsoidal Ti dyz/dxz sheets. As expected from the experimental E(k) dispersions, the 

Fermi surface is nevertheless dominated by the circular dxy derived electron pocket with 

only small filling of the dyz/dxz sheets compared to the LaAlO3/SrTiO3 case  [207]. 

Therefore, the overall electron density has in our case stronger interface localization 

compared to LaAlO3/SrTiO3 interface. 

5.4. CONCLUSION 

In summary, we have discovered the linear positive MR in the EuO/SrTiO3-

δ/SrTiO3 heterostructure grown by depositing of Eu metal onto SrTiO3 (001). Such 

deposition enables crystallization of stoichiometric highly-spin-polarized semiconductor 

EuO in close proximity to a highly conductive interfacial layer of oxygen-deficient 
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SrTiO3-δ. The EuO films are ferromagnetic with a Curie temperature of 70 K and the 

interfacial 2DEG displays linear positive MR below the EuO transition temperature. 

Using density functional theory, we demonstrate a defect-driven spin-polarized 2DEG at 

the interface, with the t2g character of the low dimensional electron system confirmed by 

resonant SX-ARPES. Combining these results with first-principles calculations, we 

uncover the role of the spin-polarized oxygen vacancy state as the origin of the linear 

positive MR, suggesting a path towards developing novel nano-oxide spintronic devices 

based on strong proximity effects. 

This work was supported by the Air Force Office of Scientific Research (FA9550-

12-10494). We thank Chungwei Lin for helpful discussions. 
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Chapter 6: Analysis of the Pockels effect in ferroelectric barium 

titanate thin films on Si(001) 

Contents of this Chapter were published in Microelectron. Eng. 147, 215–218 

(2015)  [185].§ 

Figure 6.1: Graphical abstract from Ref.  [185]. 

High-quality epitaxial BaTiO3 (BTO) on Si has emerged as a highly promising 

material for future electro-optic (EO) devices based on BTO’s large effective Pockels 

coefficient. We report on the EO response of BTO films deposited on Si by molecular 

beam epitaxy (MBE), and characterize the structure of these films by reflection high-

energy electron diffraction and x-ray diffraction. O2 rapid thermal anneal at 600°C for 30 

min ensures full oxidation of BTO for minimal leakage current with minimal change in 

crystalline structure. 

                                                 
§ Contributions: KJK, ABP, FF, JF, HS, and SA designed and performed the experiments related to the 

sample growth. KJK, YP, and SA designed, performed, and analyzed the electro-optic measurements. DC 

performed the lithography steps. KJK, FF, MS, CM, and JF performed the XRD measurements and 

analyzed the data. AAD, PP, ABP, and LC contributed to the conception and analysis of data. All authors 

contributed to interpretation of the data and to discussions. 
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6.1. INTRODUCTION  

The large effective Pockels coefficient (reff=148 pmV-1) for high-quality epitaxial 

BTO films on Si distinguishes BTO as a highly promising material for integrated silicon 

nanophotonics  [67,72]. Monolithic integration of BTO on Si is enabled by molecular 

beam epitaxy (MBE) through the use of buffer layers, including BaO  [211], 

Ba0.7Sr0.3TiO3  [212], and most commonly, SrTiO3 (STO)  [67,80,213] 

Since the first successful integration of perovskite oxides on Si  [214] and 

successive demonstration of ferroelectric functionality  [80], electro-optic activity  [67], 

and devices  [72], it has become apparent that these interesting properties are strongly 

dependent on the crystalline structure of ferroelectric BTO. In order to achieve a strong 

electro-optic response, the film must have (1) the correct crystallographic orientation with 

respect to the applied electric field  [74], and (2) low vacancy density to sustain a strong 

electric field  [215]. 

In this chapter, we assess BTO films of thickness 40-130 nm in order to quantify 

the Pockels coefficient with respect to crystalline orientation. Highly insulating MBE-

grown BTO films can be achieved through exposure to oxygen plasma during the 

deposition or post-deposition O2 rapid thermal anneal (RTA). We also examine the role 

of oxygen vacancies and structural defects in films of intermediate thickness (80-90 nm). 

6.2. EXPERIMENTAL DETAILS 

Epitaxial BTO films of thickness 40-130 nm were deposited on highly insulating 

(>20,000 Ω-cm) 2”-diameter Si (001) wafers through use of a Sr Zintl template and 4-6 

nm SrTiO3 buffer layer  [79], with the growth monitored by in-situ reflection high-energy 

electron diffraction (RHEED) (Figure 6.2(a)-(c)).  
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Figure 6.2: RHEED patterns for (a) Sr 

Zintl template on Si along Si {110}, (b) 6 

nm STO along STO {110}, and (c) 90 nm 

BTO along {110}. (d) The BTO <210> 

surface unit cell was monitored during 

growth. An extra streak appears in the 

RHEED pattern for the Ti-rich surface, 

indicating a doubling of the surface unit 

cell size. (e) In a line scan taken during 

one unit cell of BTO deposition (120 s), the extra streak disappears for 

stoichiometric BTO. 

We note that for the Ti-rich surface, an extra streak appears in the RHEED pattern 

along the {210} direction (Figure 6.2(d)), indicating a doubling of the surface unit cell 

size. As shown in Figure 6.2(e), this extra streak disappears during the background-

subtracted line scan taken during one unit cell of BTO deposition (120 s), indicating 

stoichiometric BTO. For Ba-rich samples, BaOx particles can nucleate at the surface of 

the as-grown film  [216]. As indicated by AFM, soaking in water  [217,218] at room 

temperature for 4 hours reduces the RMS roughness from 0.763 nm (Figure 6.3(a)) to 

0.359 nm (Figure 6.3(b)). 

Figure 6.3: Atomic force microscopy 

(AFM) of the as-grown sample (a) reveals 

many small particles (presumably BaOx) 

on the surface. After soaking in water for 4 

hours (b), few particles remain. 

The backside of the Si wafer was 

polished for optical transmission measurements. A 300 nm-thick tungsten layer was 

deposited by magnetron sputtering and subsequently dry-etched to define electrode pairs 

with a gap of d=5 μm.  

The schematic of EO measurement in transmission geometry for is illustrated in 

Figure 6.4(a). The in-plane field modulates the refractive index of BTO, n(E) = n0-

 

 



 70 

(½)rn0
3E, which, in turn, induces a rotation (𝛿) of the incident linearly polarized light. To 

detect 𝛿, sinusoidal, alternating voltage (𝐸𝐴𝐶 = V𝐴𝐶/d) is applied to gain sensitivity using a 

lock-in amplifier. An additional DC voltage (Eoff = VDC/d) is also applied to align the 

ferroelectric domains.  

Figure 6.4: (a) Electro-optical 

characterization quantifies rotation (δ) of 

the polarization (θP) of a laser beam 

transmitted through pairs of 

lithographically defined electrodes. (b) 

Thickness-normalized electro-optic 

response 𝛿’=𝛿/(𝐸𝐴𝐶∙𝑡).  as a function of 

offset (DC) field for a-axis, mixed, and c-

axis films. 

 

6.3. RESULTS AND DISCUSSION 

Figure 6.4(b) illustrates the EO 

response for films with varying crystalline 

orientation.  

Since the magnitude of the response 𝛿 should scale with both the optical 

interaction length and the magnitude of the applied AC field, we compare the field- and 

thickness-normalized optical rotation 𝛿’=𝛿/(𝐸𝐴𝐶∙t), where t is the thickness of the BTO 

layer. The thickness of the STO and Si layers are not included, as no Pockels effect is 

expected for materials with inversion symmetry  [219]. 

The strongest optical response δ’ is observed when the BTO tetragonal axis is 

oriented in-plane (“a-axis”, solid squares). The hysteresis of δ’ vs DC offset electric field 

Eoff is also characteristic of reorientation of multiple in-plane ferroelectric domains  [67]. 

Alternatively, a vanishing EO response is measured when the BTO tetragonal axis is 
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oriented out-of-plane (“c-axis”, solid circles). Finally, a strong response is observed even 

for the “mixed” a- and c-axis film (open triangles), attributable to the fraction of a-axis 

domains.  

Figure 6.5: (a) Symmetric 2θ-ω scan of a 

40-nm BTO film as a sample undergoes a 

series of 30 min RTA in O2 at incremental 

temperatures (500-850°C). (b) 

Corresponding rocking curves about the 

(002) BTO Bragg peak. (c) Corresponding 

FWHM and out-of-plane lattice constants 

over the annealing series 

We also identify post-deposition 

O2 rapid thermal anneal (RTA) as a route 

to increase the fraction of a-axis BTO. 

Figure 6.5 illustrates the structural changes 

of an as-grown c-axis film after successive 

rounds of RTA (500-850°C, 50°C 

increments, 30 min each). A reduced 

FWHM of the (002) BTO Bragg peak 

rocking curve indicates improved 

crystallinity. Between the 700°C and 850°C annealing steps, the out-of-plane lattice 

constant decreases from 4.03 Å to 3.99 Å, indicating a transition from c- to a-axis 

orientation.  

An additional role of O2 RTA is the healing of oxygen vacancies, electrically 

active defects which can impede build-up of a strong electric field. To illustrate, we 

compare (Figure 6.6) two 90 nm BTO/STO/Si samples, one deposited in molecular 

oxygen and the other under oxygen plasma-assisted conditions. The sample as-grown in 
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molecular O2 exhibited a high leakage current (Figure 6.6, grey squares). While air 

anneal up to 300°C and RTA at 400°C resulted in minimal change, RTA at 600°C for 30 

min reduced leakage current by 4 orders of magnitude, ensuring a strong electric field 

and enabling EO measurement (Figure 6.6, black squares). A similarly low leakage 

current is measured for two as-grown oxygen plasma-assisted samples, one with Ti 

evaporated from a Knudsen cell (K-cell) at a rate of 4 Å/min (Figure 6.6, red circles) 

while the other used an electron-beam evaporated (e-beam) Ti source at a rate of  12 

Å/min (Figure 6.6, blue triangles). 

Figure 6.6: (a) Leakage current and (b) 

symmetric 2θ-ω scan for a series of films 

with varied growth conditions. 

From EO measurements of the 

three highly insulating samples, we 

calculate an effective Pockels coefficient, 

reff=(2𝛿max)λ/(πn3tEAC), where 𝛿max is the 

maximum induced rotation angle in 

radians, λ = 1550 nm is the wavelength of 

incident light, n = 2.26 is the refractive 

index of the film as determined by spectroscopic ellipsometry, t the total thickness of the 

BTO layer  [86]. Results are summarized in Table 1 for comparison with previous works, 

for example ~2 pm/V for strained Si, ~30 pm/V for LiNbO3 on Si, and 148 pm/V for 

BTO/Si  [61,67,220]. By comparing the effective Pockels coefficient for the mixed films, 

we see that the strongest response is observed for the e-beam Ti sample. XRD of this 

sample indicates a large fraction of in-plane oriented BTO as compared to the two K-cell 

Ti samples (Figure 6.6(b)).  
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Sample Oxygen 

source 

Ti 

source 

Thickness 

(nm) 

Leakage 

current (A) 

reff 

(pm/V) 

FWHM 

(°) 

aBTO (Å) 

A Molecular K-cell 90 10-3 N/A 0.75±0.07 4.023±0.008 

A’ Anneal K-cell 90 10-7 46 0.79±0.11 4.031±0.009 

B Plasma K-cell 90 10-7 39 0.40±0.05 4.028±0.004 

C Plasma E-gun 80 10-7 50 N/A 3.978±0.009 

Table 6.1: Pockels coefficients for samples grown under various growth conditions. 

6.4. CONCLUSION 

In conclusion, for epitaxial BTO/Si, we measure an increasing EO response for 

films with increasing a-axis fraction and low leakage current. We further identify post-

deposition O2 RTA as beneficial to achieve (1) in-plane tetragonal axis orientation and 

(2) full oxidation of BTO. Future work should focus on numerical simulations (based on 

the Pockels tensor, domain structure, field orientation, and angle of incidence) for 

modeling the response of c-axis domains. Such analysis might allow more accurate 

modeling of the electro-optic response of c- and a-axis domains in films with mixed 

domains to extract the full Pockels tensor of these films. 

This work was supported by the National Science Foundation (IRES- 1358111), 

the European Commission (FP7-ICT-2013-11-619456-SITOGA) and the Air Force 

Office of Scientific Research (FA9550-12-10494).  
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Chapter 7: Microstructure and ferroelectricity of BaTiO3/Si for 

integrated photonics 

Contents of this Chapter were published in Nanotechnology 28, 75706 

(2017) [221].** 

Significant progress has been made in integrating novel materials into silicon 

photonic structures in order to extend the functionality of photonic circuits. One of these 

promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large 

Pockels coefficient as required for high-speed light modulators. However, all previous 

demonstrations show a noticable reduction of the Pockels effect in BTO thin films 

deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the 

strong dependence of the Pockels effect in BTO thin films on their microstructure, and 

provide guidelines on how to engineer thin films with strong electro-optic response. We 

employ several deposition methods such as molecular beam epitaxy and chemical vapor 

deposition to realize BTO thin films with different morphology and crystalline structure. 

While a linear electro-optic response is present even in porous, polycrystalline BTO thin 

films with an effective Pockels coefficient reff = 6 pm/V, it is maximized for dense, 

tetragonal, epitaxial BTO films (reff = 140 pm/V). By identifying the key structural 

predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the 

linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices. 

  

                                                 
** Contributions: KJK, YP, and SA designed, performed, and analyzed the electro-optic measurements. 

KJK, MS, and CM performed the XRD measurements and analyzed the data. MS designed and analyzed 

the ellipsometry measurements. Simulations and data analysis were done by KJK and YP with support 

from SA. AAD JF and SA contributed to the conception and analysis of data. JF prepared the MBE sample, 

SA and DC prepared the sputtered samples, MT prepared the PLD sample with support from MF, and MR 

prepared the CVD sample with help from PH. DC performed the lithography steps. FE, MS, and MDR 

performed the STEM experiments and KJK analyzed the data. YP performed COMSOL simulations. All 

authors contributed to interpretation of the data and to discussions. 



 75 

7.1. INTRODUCTION 

For decades, increasing the efficiency and performance of information processing 

units has been mainly driven by reducing the size of transistors. However, since the 

scaling law approaches a natural limit, novel concepts such as the introduction of high-

mobility materials as transistor channels or optical links for intra-chip communications 

have more recently been actively investigated. Indeed, silicon photonics offers low-cost 

fabrication of high-bandwidth and low-power data transmission techniques beyond what 

is offered by ordinary electrical connections.  [55,56,60,62,71] The technology has been 

boosted by the development of novel components including silicon passives and 

germanium detectors, but it still lacks some essential device types such as high-

performing optical modulators. Since these components have been mastered in bulk 

telecommunication applications by the usage of materials with strong electro-optical 

properties such as lithium niobate, [50] a concerted effort has emerged to integrate 

similar materials into silicon photonic structures, where the refractive index index n can 

be expressed in terms of the static external electric field E, [222] 

where n0 is the zero-field value of the refractive index and r is the Pockels 

coefficient. In particular, the recent integration of barium titanate (BaTiO3) on silicon 

with large Pockels coefficients  [63,67,72,185] opens an exciting opportunity for 

designing and realizing high-speed modulators, and novel device types such as non-

volatile optical memories. The latter elements would be of great interest as synaptic 

elements for optical neural networks. [64] 

Despite the recent integration success, the linear electro-optic effect in BaTiO3 

(BTO) thin films determined in previous experiments clearly shows deteriorated 
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properties compared to bulk BTO crystals. [63,67,72,185] From a materials perspective, 

understanding the mechanism of this degradation opens exciting opportunities to further 

engineer and tailor the Pockels coefficients in thin films. We have developed and 

described in detail a characterization technique which allows us to determine the main 

tensorial properties of the Pockels effect and to demonstrate BTO ferroelectric switching 

by means of optical measurements. [67] We have formulated the systematic design rules 

to tailor deposition parameters and obtain high quality crystalline BTO layers on Si 

substrates. [223]  

In this chapter, we demonstrate experimentally how the crystalline quality and 

film morphology of the active material impact the magnitude of the Pockels effect. To 

compare and contrast layers of widely varied properties, we deposited ~100 nm thin BTO 

films on silicon substrates using several different deposition methods. By analyzing the 

structural and electro-optic characteristics of the layers, we identified key structural 

predictors of a large Pockels coefficient. In particular, reducing the porosity and 

increasing the crystalline grain size are the key contributors to maximizing the electro-

optic response. Our study outlines the path for material scientists to design highly 

efficient, novel hybrid silicon photonic devices based on nanoscale oxides integrated on 

silicon. 

7.2. EXPERIMENTAL DETAILS 

7.2.1. Sample preparation 

In order to realize different layer properties, we deposited BTO thin films via 

molecular beam epitaxy (MBE), pulsed laser deposition (PLD), chemical vapor 

deposition (CVD), and radio-frequency sputtering (RF sputtering). Except when 

explicitly mentioned, we used a 4-nm-thin SrTiO3 (STO) seed layer grown epitaxially by 
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MBE on highly-resistive (>20,000 Ω∙cm) double-side-polished Si (001) wafers for all 

successive BTO deposition. Details of the STO deposition can be found elsewhere. [224] 

Subsequently, BTO was fabricated by MBE (MBE-BTO) in a layer-by-layer 

deposition process. Therefore, layers of titanium and barium were iteratively deposited in 

oxygen atmosphere (p ~ 10-5 mbar) keeping the substrate at ~600°C. Details of the 

deposition process are described in Ref.  [67]. The PLD thin films (PLD-BTO) were 

grown at a substrate temperature of 690° C under an oxygen pressure of 0.15 mbar using 

an excimer KrF laser. The laser repetition rate was set to 2Hz and the fluence at 1.2 Jcm-

2. For CVD deposition of BTO the heated substrate (400°C) was exposed to barium 

isopropyl cyclopentadienyl, titanium isopropoxide and water as reactive precursors in a 

high vacuum (10-6 mbar) environment; comparable to the process described in 

Ref.  [225]. Two additional samples of BTO were prepared by RF sputtering. The first 

utilized an 8-nm-BTO/4-nm-STO/Si pseudosubstrate prepared by MBE as discussed 

above, while the second was sputtered directly on Si with no buffer layer using the same 

parameters as described in Ref.  [223]. After the sputter deposition at 500°C, the samples 

were annealed in oxygen at 650°C for 20 minutes to ensure full crystallization. 

7.2.2. Structural characterization 

For each of the samples, we extracted the lattice parameters for the BTO film via 

both out-of-plane and grazing incidence in-plane X-ray diffraction (XRD) measurements 

using a Bruker AXS D8 Discover. Out-of-plane and in-plane scans are aligned to Si (004) 

and (220) peaks, respectively. Atomic force microscopy analysis was performed using a 

Veeco Dimension V. The refractive index, thickness, and porosity of the BTO films have 

been characterized by spectroscopic ellipsometry using a Variable Angle Spectroscopic 
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Ellipsometer VASE® from J.A. Woollam Co. Data have been acquired for wavelengths 

between 300 nm and 1200 nm at three angles of incidence (65, 70 and 75°).  

Cross sectioning and lamella preparation were carried out by means of a FEI 

Helios Nanolab 450S focused ion beam. Bright-field and medium-angle annular dark 

field (MAADF) scanning transmission electron microscopy (STEM) measurements were 

performed using a double spherical aberration-corrected JEOL JEM-ARM200F 

microscope operated at 200 kV with a probe convergence semiangle set to 25.3 mrad. 

The annular semi-detection range of the annular dark-field detector was calibrated at 40-

160 mrad for the MAADF images. For the bright-field images, the outer semi-detection 

range of the bright-field detector was set to 45 mrad.  

7.2.3. Electro-optic characterization 

We determined the Pockels coefficients by analyzing the change of the 

polarization of a laser beam transmitted through the BTO film while applying an electric 

field. In order to generate such a field, pairs of 300-nm-thick tungsten electrodes with the 

electrode gap d = 5 μm were defined by optical lithography and SF6/N2 reactive ion 

etching. In order to assess the tensorial nature of the Pockels effect, we varied the angle 

θE between the electric field and the BTO crystalline axis by fabricating differently 

oriented electrode pairs, as defined in Figure 7.1 (a).  

The electro-optic characterization follows the principle illustrated in Figure 

7.1(b)-(c) using the Sénarmont set up described in detail in Section 2.3 and 

elswehere. [67] A linearly polarized New Focus diode laser model 6262 with wavelength 

1550 nm focused to a spot size of ~30 μm full-width at half-maximum was first aligned 

to the electrode gap. A half-wave plate was used to set the incident polarization. Due to 
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the birefringence of BTO, the sample introduces a phase shift between orthogonal 

polarization components of the incident light.  

Figure 7.1: (a) In-plane electrode pairs were patterned with various angles θE defined 

relative to the BTO [100]/[010]/[001] direction. As described in the text, the 

sinusoidal measuring and static poling voltages Vpp + VDC are applied across 

the electrodes. (b) For electro-optic transmission measurements, a half-wave 

plate is used to set the incident linear polarization. After passing through the 

sample, the light becomes elliptically polarized, which is transformed into 

linearly polarized light after passing a quarter-wave plate. Finally, a Glan-

laser prism is used to determine the orientation of the transmitted 

polarization. (c) Corresponding states of the polarization along the path of 

the laser beam are visualized as the ellipse traced out by the light’s electric 

field vector with (red) and without (blue) an external electric field. After 

transmission through the sample and quarter-wave plate, the polarization is 

rotated by angle δ. 

This phase shift is compensated by a quarter-wave plate (QWP), whose 

orientation is determined by iteratively rotating the QWP and a successive Glan-laser 

prism to minimize the transmitted power. After this alignment process, the light after the 

QWP is linearly polarized. In that configuration, a change of the birefringence in the 
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BTO layer results in a rotation of the polarization after the QWP by an angle δ with 

respect to the zero-field state. 

For increased sensitivity, a lock-in amplifier system was used to isolate the 

rotation δ induced by a sinusoidal AC field modulated at frequency f = 17.3 kHz. Typical 

values of the peak-to-peak AC voltage VPP ~ 3 V were much smaller than the typical 

voltage used to align ferroelectric domains VDC ~ 20 V. Since in the lock-in configuration 

only the rotation δ corresponding to the AC modulation is measured, we introduce a 

field-normalized rotation, ACE 
, where the root mean square AC field was defined 

as 
)22(VPP dEAC 

 and δ is the rotation defined in Figure 7.1. The static offset field 

applied to align ferroelectric domains was defined as Eoff=VDC/d, where d is the gap 

between electrodes. While the magnitude of this offset field does not enter directly into 

the definition of the Pockels coefficient, it does influence the fraction of poled domains ν. 

In the presence of polarization-reversed domains as in an un-poled film, a reduced 

response could be measured due to cancellation of contributions from antiparallel 

domains, leading to underestimated Pockels coefficients. [85] For this reason, Pockels 

coefficients reported here are for poled films, corresponding to ν = 1 at at θE ~ 45° and ν 

= 0.5 at at θE ~ 90° as justified in the following sections. 

The effective electro-optic coefficient can then be defined as follows,  

)( 3 tnEr BTOACeff  
, (7.2) 

adapted from Ref.  [86], where 2  is the induced phase shift between 

orthogonal polarization components, λ = 1550 nm is the wavelength of the transmitted 

light, ν is the net fraction of poled BTO domains, EAC is the measuring field defined 

above, nBTO is the refractive index of the film, and t is the thickness of the BTO layer. As 

described in detail elsewhere, [67] the rotation of polarization δ depends strongly on the 

orientation of the electric field. To capture this dependence and fully describe the Pockels 
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effect, we report both the effective Pockels coefficient reff and the c-axis Pockels 

coefficient rc for each sample.  Specifically, we extract reff from measurements at θE ~ 

45° assuming ν = 1 and rc from measurements at θE ~ 90° assuming ν = 0.5. [67] Full 

dependence of these coefficients on the Pockels tensor elements are discussed in 

Refs.  [67] and  [85]. In order to extract Pockels tensor elements in addition to these 

effective values, numerical simulations based on the Pockels tensor and domain structure 

were carried out to best approximate δ for all measured electrode angles θE. 

To accurately represent error bars, several known sources of error, including 

stability over time, position of the laser within the gap, and angle of incidence, were 

analyzed: Less than 4% uncertainty originates from experimental error sources. In 

addition, data were recorded for six sets of similar electrodes with θE ~ 45° for each 

sample in order to account for pad-to-pad variations originating from materials 

inhomogeneity. The combined errors are reported later in the chapter. 

7.3. RESULTS  

7.3.1. Structural Characterization 

The strong Pockels effect in BTO originates from the peculiarity of the Ti-O bond 

that results in a combination of a non-centrosymmetric crystal lattice of the tetragonal 

phase and an anharmonic potential. [226] Therefore, defects that break the periodicity of 

the lattice and thus affect long wave length phonons or that influence the crystalline 

symmetry are expected to diminish the electro-optic response. Examples of the impact of 

defects on the structural and functional properties of BTO are the stabilization of BTO in 

the cubic phase for polycrystalline layers with nanometer-sized grains, [223] strain 

enhancement of the ferroelectric polarization, [227] and relaxor behavior under 

stoichiometry deviation. [228] Hence, in the following we first discuss in detail the films’ 
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morphology and crystalline structure, before analyzing the electro-optic results and 

correlating both the structural and the functional features. 

Figure 7.2: (a) Medium-angle annular dark-field scanning transmission electron 

microscopy (MAADF-STEM) images of BTO thin films deposited by MBE, 

(b) PLD, (c) RF sputtering, and (d) CVD. Pores are labelled “P”. The 

boundaries of representative grains are outlined with solid lines. In (c), the 

boundary between epitaxial and polycrystalline BTO is indicated with 

dashed line. 

We determined the porosity and the thickness of the BTO layers by simulating the 

spectroscopic ellipsometry data with a Bruggeman effective medium approximation 

model. In this model, we assume the films to consist of a BTO matrix, having the 

refractive index of bulk BTO along its ordinary axis  [229] and a fraction of spherical 

voids, having the refractive index of air (1.0).  The porosity is quantified as the volume 

fraction p of the voids. In order to reduce the number of fit parameters we neglect the 

dependence of the refractive index of the BTO matrix on other structural parameters such 

as grain boundaries, stoichiometry, strain, and crystallographic orientation. This 

simplification allows us to consistently evaluate the porosity and thickness for all five 
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samples (Table 7.1). The BTO film thickness extracted from the spectroscopic 

ellipsometry model and compared with the MAADF-STEM images (Figure 7.2(a)-(d)) 

only show slight deviations of <5%. To account for this difference, we determined the 

uncertainty of p by intentionally varying the thickness of the BTO layer by ±5% around 

the value initially determined by spectroscopic ellipsometry (Table 7.1). We could 

qualitatively verify the large difference in porosity between the films as determined by 

spectroscopic ellipsometry with our bright-field-STEM analysis, where pores are clearly 

visible as areas of decreased density (Figure 7.2 and Appendix B, Figure B.1). The 

different surface roughness among the samples is also in agreement with the varying 

porosity. In particular, the atomic force microscopy of the dense MBE-BTO layer (p = 

3%) shows a low root mean square roughness of only ~0.5 nm (Appendix B, Figure B.2). 

BTO Method Buffer Layer 
n 

p [ % ] 
   t [ nm 

] 
Texture  edr [ nm ] 

MBE 4 nm MBE STO 
2.27 

3 (±2) 78 Epitaxial 21 (±6) 

PLD 4 nm MBE STO 
2.18 

14 (±3) 97 Epitaxial 21 (±4) 

RF Sputter 

4 nm MBE STO 

+ 8 nm MBE 

BTO 

2.21 11 (±3) 96 

Epitaxial 

+ 

Polycrystalline 

10 (±2) 

CVD 4 nm MBE STO 
2.13 

21 (±1) 70 Epitaxial 14 (±1) 

RF Sputter (no 

buffer) 
-- 

2.12 
21 (±3) 102 Polycrystalline -- 

Table 7.1: Summary of film microstructure parameters. From ellipsometry, we extract the 

refractive index n of the BTO matrix, porosity volume fraction p and 

thickness of the BTO layer t. Error bars of porosity correspond to a BTO 

thickness variation of 5% (details in the text). From STEM, edr is the 

average equivalent disc radius of the grains highlighted in Figure 7.2. 

With an epitaxial STO buffer layer, the epitaxial relationship of BTO to the Si 

substrate could be preserved even as an amorphous SiOx interfacial layer was formed 

during deposition or post-anneal (Figure 7.2), in agreement with previous 
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studies. [67,80,223] However, an STO buffer layer might not always prevent the 

formation of some randomly oriented domains. [223] Indeed, we observe a transition 

from epitaxial to polycrystalline orientation in the RF sputtered BTO film (Figure 7.2(c), 

dashed line). As expected, the film sputtered directly on Si without any buffer layer is 

fully polycrystalline. [223] 

In MAADF-STEM images (Figure 7.2), the contrast is sensitive to diffraction 

effects. Accordingly, the crystal lattice of bright grains is oriented along the electron 

beam, and homogenous brightness indicates homogenous crystalline orientation. 

Additional contrast modulation, as in Figure 7.2(a), originates from projecting a 3D 

domain structure of multiple grains into a 2D image. As a guide to the eye, we 

highlighted several grains per image in Figure 7.2. We estimated the grain size by 

calculating the equivalent disc radius edr via 
Aedr 

 (Table 7.1) where A 

corresponds to the area of the highlighted grains. While columnar grains with edr >20 nm 

were observed for BTO deposited by MBE and PLD (Figure 7.2(a) and (b)), smaller 

grains of edr < 15 nm were observed for BTO deposited by CVD and RF sputtering 

(Figure 7.2(c) and (d), Table 7.1).  

XRD was employed to quantify tetragonality, a signature of symmetry breaking, 

of the BTO films. In the ferroelectric phase at room temperature, bulk BTO shows a non-

centrosymmetric tetragonal P4mm symmetry with two distinct lattice parameters, a and c. 

The tetragonal distortion for bulk crystals is γ = c/a – 1 = 1%. [230] Previous studies of 

MBE-grown BTO films deposited on STO-buffered Si have shown a multi-domain 

structure: While thin films are single-domain with the long c-axis oriented perpendicular 

to the interface, a transition occurs for thicker films, [80,223] with a mixture of domains 

with the c-axis oriented perpendicular (along (001)) and parallel to the surface (along 

(100)/(010)).  
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Figure 7.3 (a) Schematic of 90° domain 

structure, with the BTO tetragonal axes 

indicated by white arrows. (b) X-ray 

diffraction patterns for different 

measurement configurations for epitaxial 

BTO deposited by MBE and (c) CVD. A 

sum of 3 Voigt functions has been fitted to 

each pair of scans (solid lines), with 

vertical dashed lines indicating the 

positions of the peaks corresponding to the 

BTO a and c lattice parameters. 

Using this “mixed model” of the 

domain structure (Figure 7.3(a)) we 

determined both the a and c lattice 

parameters from the XRD data. Therefore, 

we fit each pair of out-of-plane and in-

plane XRD scans simultaneously as the 

sum of three Voigt functions with shared 

peak parameters: Two components 

correspond to the (001)-oriented and (100)/(010)-oriented domains of BTO, with a third 

component corresponding to cubic STO. The STO component is only applied in samples 

with STO buffer layer. Figure 7.3 (b) and (c) illustrate fits to the BTO (002) and 

(200)/(020) peak of samples deposited by MBE (MBE-BTO) and CVD (CVD-BTO), 

respectively, with corresponding bulk lattice positions indicated by vertical dashed lines. 

The tetragonality of the CVD-BTO film is significantly reduced compared to the MBE-

BTO film. Lattice parameters and tetragonal distortion γ for all samples are summarized 

in Table 7.2. The XRD analysis also confirms the epitaxial relationship between BTO 

and Si in all samples (Appendix B, Figure B.3(a)). Only sputtered BTO layers show 

(110) reflections, indicating a small fraction of polycrystalline domains if a STO seed 
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layer is used and a fully polycrystalline film if no STO layer was deposited. The analysis 

of the misorientation of crystalline domains assessed via rocking curve measurements of 

the BTO (002) reflection does not show strong differences among the films, as it is 

essentially determined by the mosaicity of the underlying STO layer. The rocking curve 

full-width at half maximum for all samples is within a similar range of 1.2° to 2.1° 

(Appendix B, Figure B.3(b)), where the lower and upper bounds correspond to films 

deposited by PLD and MBE, respectively. 

BTO Method Peak  a / c [ Å ] γ [ (% ] 

MBE (002) 3.99 / 4.03 1.0 (±0.1) 

PLD (002) 4.00 / 4.02 0.6 (±0.1) 

RF Sputter (002) 3.99 / 4.05 1.7 (±0.1) 

CVD (002) 4.01 / 4.02 0.3 (±0.3) 

RF Sputter (no buffer) (110) 4.03 / 4.04 0.2 (±0.4) 

Table 7.2: Results from XRD analysis of c and a lattice parameters for BTO P4mm 

symmetry. Tetragonality γ = c/a – 1. Error bars correspond to uncertainty of 

fit parameters. 

Observing a variation of film density, crystallinity, surface roughness, texture 

(grain orientation and size), and tetragonality among differently fabricated samples is 

consistent with observations that film microstructure varies with deposition 

method, [231] temperature and growth rate  [232–234], post-deposition treatments [235], 

strain  [236], and stoichiometry . [237] The variation in the BTO films discussed here 

cannot be used to generally evaluate the different deposition techniques, as none of the 

deposition has been thoroughly optimized. [238,239] In this chapter, we instead leverage 

the range of crystalline quality to determine the predictors of electro-optic response. 
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7.3.2. Electro-optic Characterization 

Figure 7.4: (a) The field-normalized 

induced rotation δ’ was measured 

(symbols) and simulated (lines) for varied 

orientation angle θE (defined in Figure 

7.1(a)) of in-plane electric field for BTO 

films deposited by MBE and (b) CVD. 

Details on error bars can be found in the 

methods section. 

We provide effective Pockels 

coefficients reff and the c-axis coefficient 

rc for all samples in Table 7.3 according to 

Eq. (7.2) for comparison with the literature 

values and for evaluating device 

applications. Due to the random domain orientation, we can only extract reff but no 

individual tensor elements for the fully polycrystalline film. The Pockels coefficients 

strongly vary among the different samples (Table 7.3), which is for example directly 

visible in the comparison of the electro-optic response between MBE-BTO and CVD-

BTO (Figure 7.4).  

The dependence of δ’ on the orientation angle θE of in-plane electric field matches 

our simulations as shown in the examples for MBE-BTO and CVD-BTO (Figure 7.4). 

Data for all films are available in Appendix B, Figure B.4. Following the procedure 

described in the Appendix B, the polarization for light transmitted through a sample can 

be simulated based on the Pockels tensor for the space group P4mm, taking thickness 

values from ellipsometry and assuming bulk values for the refractive indices and 

birefringence. Because domains with the c-axis oriented out-of-plane of the film do not 

contribute to changes in transmission in our measurement geometry, we assume only in-
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plane 90° domains for our model in order to report a lower bound for the Pockels 

coefficients. By simulating the response of the samples for the specific measurement 

geometry used in our experiments, we extracted the best fit Pockels tensor elements r42 

and r33 for each BTO sample (Table 7.3). Because our geometry does not permit 

independent measurement of r33 and r13, we assume the bulk ratio of r33 = 10×r13.  [240]  

BTO Method r
42

 

[ pm/V ] 

r
33

 

[ pm/V ] 

r
eff

 

[ pm/V ] 

r
c
 

[ pm/V ] 

MBE 85 (±0.6) 20 (±0.4) 140 (±18) 20 (±3) 

PLD 26 (±0.2) 16 (±0.3) 37 (±27) 14 (±11) 

RF Sputter 27 (±0.2) 5.1 (±0.1) 41 (±15) 7 (±3) 

CVD 4.5 (±0.1) 6.2 (±0.1) 7 (±4) 5 (±3) 

RF Sputter (no buffer) N/A N/A 6 (±1) 3 (±1) 

Table 7.3: Summary of best-fit Pockels tensor elements r42 and r33 for each BTO sample. 

Effective Pockels coefficient reff and c-axis coefficient rc are calculated 

according to Eq. (7.2). Error bars for r42 r13 were estimated by repeating the 

fitting procedure for nb = 0.02 and 0.04. Error bars for reff and rc correspond 

to pad-to-pad variation determined from multiple measurements of the θE = 

45º orientation for each sample.  

For the determination of the Pockels tensor elements, we also need to take into 

account the overall ferroelectric domain structure. We evaluate the hysteresis by 

measuring δ’ as a function of the offset field Eoff for a fixed value θE ~ 45°, where δ’ and 

hence the resolution of the experiment is maximized (Figure 7.5, and Appendix B, Figure 

B.5). [67] As described previously, [67] on the macroscopic scale of our gap size, δ’ is 

generally zero for the as-deposited film, reaches a finite remanence value r'  = δ’(0) after 

poling with sufficiently large electric fields, and saturates at a maximum rotation of δS’. 

These values are indicated in Figure 7.5, and Appendix B, Figure B.5. We can then 

calculate the remanence ratio or “squareness” factor sr '/' 
, where a ratio of 1 
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corresponds to a perfectly square loop, and Ec is the coercive field for each sample (Table 

7.4).  

BTO Method sr '/'    

[ % ] 

E
c
 

[ kV/cm ] 

MBE 35 (±3) 7 (±0.4) 

PLD 34 (±2) 18 (±1) 

RF Sputter 10 (±5) 4 (±2) 

CVD 4 (±4) 2 (±2) 

RF Sputter (no buffer) 5 (±4) 4 (±3) 

Table 7.4: Summary of parameters related to ferroelectricity from electro-optic 

measurements, remanence ratio sr '/' 
 and coercive field Ec. Error bars 

correspond to uncertainty of fit parameters. 

Figure 7.5: (a) The field-normalized 

induced rotation δ’ measured as a function 

of a DC offset bias for BTO deposited by 

MBE and (b) CVD. Sigmoidal fits (solid 

lines) are utilized to extract saturation and 

remanent response, s'  and r'  

respectively, as well as the coercive field 

Ec. Sweep direction is indicated by arrows, 

with sigmoidal fits to the data described in 

Appendix B . 

The ferroelectric nature of the 

films largely varies, ranging from wide 

hysteresis and large remanence ratio in 

MBE-BTO to slim hysteresis and reduced 

remanence in CVD-BTO. Materials with finite remanence can be used for bistable optical 

switching, [241] while non-memory materials can be used over a broad continuous tuning 

range. [242] Due to the low leakage current in the µA range even at high voltages of 35V 
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(Appendix B, Table B.1), the tuning applications can be extremely energy efficient. [63] 

In principle, the variety of properties  render the films applicable for a broad range of 

application, such as low dielectric loss capacitors or ferroelectric storage. [243] 

7.4. DISCUSSION  

Figure 7.6: (a) Effective Pockels 

coefficient reff vs porosity, (b) anisotropy 

ratio of Pockels tensor elements r42/r33 vs 

tetragonal distortion γ, where cubic BTO 

corresponds to γ = 0, and (c) remanence 

ratio or squareness factor sr '/' 
 vs. grain 

size edr. Open symbols: polycrystalline, 

filled symbols: textured/epitaxial, half-

filled indicates a mixture. 

Our results show a strong 

correlation between the structural and 

electro-optic properties in BTO thin films. 

In particular, the consistent reduction of 

the effective Pockels coefficients for 

increasing porosity (Figure 7.6(a)) 

identifies the density of BTO as a key 

parameter for obtaining a large electro-

optic response. In the following, we 

discuss the physical origin of this 

correlation. 
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7.4.1. Electric Field Distribution 

First, we consider the impact of porosity on the electric field distribution in the 

BTO film. In our derivation of the electro-optic response as a function of the Pockels 

coefficient (Eq.(7.2)) we assume the voltage to drop homogenously along the BTO layer. 

However, due to the low permittivity of the voids compared to the BTO matrix (εBTO >> 

εair = 1), the electric field distribution might be significantly influenced in porous films. 

Since we cannot perform capacitance-voltage profiling on the exact samples in this study 

because of the highly-resistive silicon substrate, we assume the permittivity εBTO to range 

from 50 to 660 as reported for thin BTO films on Si. [80,234] A reduction of the effective 

electric field within the BTO matrix for larger porosities would indeed result in a strong 

reduction of the electro-optic response for porous films even though the Pockels 

coefficient of the matrix might not have changed.  

From this point of view, the values of the Pockels coefficients estimated earlier 

(Table 7.3) have to be considered as the average Pockels coefficients of the porous films, 

rather than the actual Pockels coefficient of the BTO crystal. Because the electric field is 

in the denominator of Eq. (7.2), a porosity correction factor cP = E / EBTO, defined as the 

ratio between the electric field in a pore-free BTO crystal (E) and the average electric 

field in the actual matrix of the porous BTO layer (EBTO), can be used to provide a sense 

of how the Pockels coefficients would scale with porosity.  

An electro-static finite elements study has been carried out for different pore 

geometries. Cylindrically shaped tubes through the material represent the geometry 

closest to the pores seen in Figure 7.2. For this geometry, even when assuming the largest 

experimentally observed porosity (20%) and relative permittivity of εBTO = 660, the 

correction factor remains rather moderate (cP ~ 1.15) (Appendix B, Figure B.6). In 

contrast to circular pores, fissures in the material would lead to a correction factor 
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between one and two orders of magnitude higher for the same porosity (Appendix B, 

Figure B.6). While this analysis shows the importance of obtaining crack-free layers for 

electro-optic applications, on the basis of STEM and AFM analysis (Figure 7.2 and 

Appendix B, Figure B.2) we preclude fissures as the origin of the reduction of the 

Pockels effect in our films. The reduction of the electric field in the BTO matrix can thus 

not be the main origin for the experimentally observed large differences of the electro-

optic response between the layers (reff,max/reff,miin ~ 20). This suggests that the Pockels 

effect of the BTO matrix has to significantly vary among the films in order to account for 

our observations of a strongly varying electro-optic response.  

7.4.2. Defects in BTO 

Next, we consider factors which could impact the electro-optic response of BTO 

itself. Because the linear electro-optic response originates from the anharmonic nature of 

the Ti-O bond and the loss of the inversion symmetry in the tetragonal phase (phonon 

condensation), defects which affect phonons (breaking the periodicity of the lattice, eg. 

finite size)  [244] or restore centrosymmetric structure (eg. antiphase 

boundaries)  [236,245] are expected to diminish the electro-optic response. This is 

consistent with Figure 7.6(a), considering pores as defects in the crystal.  

In addition to the change in magnitude, it has been already reported that defects 

such as pores and grain boundaries can stabilize the cubic centrosymmetric phase of 

BTO, which shows no Pockels effect. [236,246] The reduction of the Pockels effect when 

increasing the porosity could further be associated to a reduced tetragonality. This 

hypothesis is verified by comparing the anisotropy of the electro-optic response, defined 

as the ratio of the Pockels tensor elements r42/r33. In bulk single-crystal BTO, this 

anisotropy ratio is larger than ~10. [240] We observe in our samples that loss of 
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anisotropy correlates with loss of tetragonal distortion γ (Figure 7.6(b)). Besides being 

influenced by porosity, a reduced anisotropy could result also from the influence of strain 

on the electro-optic tensor. [240]  

These two effects, microstructure and symmetry, are in general coupled, as in the 

case of polycrystalline films containing a higher fraction of cubic BTO. [236]  In Figure 

7.6(a)-(b), the reduction in the magnitude and anisotropy of the Pockels tensor for cubic, 

porous, and polycrystalline films indicates a strong dependence of the electro-optic 

response on crystalline quality. In particular, high tetragonality and minimal porosity in 

BTO thin films is essential to achieve bulk-like electro-optic performance. 

7.4.3. Memory 

Although all films investigated in our study show ferroelectric functionality, 

strong variations in the remanent polarization response are observed (Figure 7.5). For the 

in-plane electrode geometry, low leakage current is needed to prevent film 

depolarization. [247] In previous studies, functional properties of BTO such as the 

spontaneous polarization  [245] and second harmonic generation  [248] improve 

significantly after poling in fields ~300 kV/cm. [245] Similarly, δ’ generally reaches a 

finite remanence value r'  after poling in sufficiently large electric field. [67] In contrast, 

δ’ exists only in the presence of an electric field for materials such as relaxors, where the 

behavior depends on polar nano-regions. [242] In our study, remanence correlates with 

grain size edr (Figure 7.6(c)), consistent with previous observations of reduced 

remanence for small-grained ceramics. [246] The physical origin of this reduced 

remanence can be structural defects in the films, for example present at grain boundaries, 

which pin ferroelectric domains. [223,239,247,249,250] The strong variations of the 

remanence show an additional degree of freedom in engineering the electro-optic 
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properties of BTO thin films: While films tuned for large grain sizes could be used for 

non-volatile memories, [241] small-grained layers might be beneficial for devices 

requiring periodic poling  [242] or filtering. [251] 

In summary, we have identified several key correlations between the structural 

and electro-optic properties of BTO thin films on silicon. The reduction of the effective 

Pockels coefficients, anisotropy, and remanence in BTO films on Si are concluded to 

result from crystalline defects and distortions originating from pores in the film, loss of 

tetragonality, and the finite size of BTO grains. While a linear electro-optic response was 

measured even for porous polycrystalline BTO, the response is higher by one order of 

magnitude for dense, tetragonal, epitaxial BTO films. 

7.5. CONCLUSION 

In conclusion, we analyzed BTO thin films of thickness ranging from 70 to 100 

nm deposited by several different methods (MBE, PLD, RF sputtering, and CVD) on 

STO-buffered Si (001) to produce an array of samples with varied morphology and 

structural quality. The effective Pockels coefficient varied from 6 to 140 pm/V and 

remanence ratio from 0.35 to 0.04 under this structural variation. Indeed, even highly 

porous, polycrystalline BTO films were found to have a linear electro-optic response. Our 

study provides a link between structural and electro-optic properties of BTO thin films, 

and demonstrates clearly the effectiveness of applying materials science to tailor 

customized properties of oxide thin films. While obtaining dense and highly tetragonal 

films is critical to achieve large Pockels coefficient as for example needed in high-speed 

BTO/Si photonic modulators, fabricating layers with large grain sizes is the crucial 

parameter to maximize the memory window as needed for non-volatile optical storage. 

For further development of BTO-based Si photonic devices, additional practical aspects 
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such as the Curie temperature shift  [227,246] should be addressed in future studies, as 

well as exploring routes including strain engineering and doping to enhance the electro-

optic coefficients. 
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Chapter 8: Summary and Future Work 

8.1. SUMMARY 

8.1.1. Two-Dimensional Electron Gas at Oxide Interfaces 

The first half of this dissertation presents a major step to obtain novel high-

mobility channels based on the defect-driven oxide interface 2DEG. Due to the strong 

gettering of oxygen by films of certain metal oxides, these heterostructures offer new 

solutions for transistor channels and novel sensors. To exploit these benefits of the 

defect-driven 2DEG, a full route for the formation such an interface is established, 

starting from the choice of substrate and thin-film deposition method.  

In combining two oxides epitaxially to form the 2DEG, several major issues arise. 

Lattice mismatch broadly limits the choice of materials. In Chapter 3 I demonstrated 

heteroepitaxy of spinel Co3O4 on lattice-matched (less than 0.05% strain) MgAl2O4 using 

plasma-assisted molecular beam epitaxy. [87] Another critical concern for 2DEG 

formation is the heterostructure band alignment. While no free carriers were found in this 

heterostructure, the 0.75 eV band gap of the cobaltate films is potentially well-situated 

for catalysis. Finally, complex oxides are often employed for their diverse array of 

functionalities not found in traditional semiconductors. The first SQUID measurements 

of these unstrained cobaltate films on MgAl2O4 indicated a paramagnet-to-

antiferromagnet transition below 49 K, a 9 K enhancement compared to the bulk value. 

In Chapter 4, I reported on the interfacial conducting layer formed at the surface 

of STO by depositing an oxide containing Al, a metal from the lower right quadrant of 

Figure 8.1 (moderate work function with high oxygen affinity) that additionally has a 

very low diffusivity for oxygen. This result was the first report of MBE-grown epitaxial 

γ-alumina films on STO. Crystallinity to reduce lattice mismatch. The large band offset 
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measured for this heterostructure offers a strong confining potential for carriers at the 

interface. This heterostructure serves as a model system to demonstrate a robust defect-

driven approach to oxide 2DEG formation. The key parameters identified in Figure 8.1 

are a prerequisite for formation of the defect-driven oxide 2DEG and are expected to be 

quite general design rules. [184] 

Figure 8.1: Plot of heat of formation of most stable oxide vs. work function for common 

metallic elements used in this dissertation and in Ref.  [184]. The elements 

naturally group into three categories as subdivided by the solid lines creating 

three occupied quadrants in the plot. The solid boundaries are based on 

several empirical reports of oxidation of metals on SrTiO3 and very roughly 

corresponds to the formation energy of an oxygen vacancy in SrTiO3 and 

the electron affinity (work function) of n-type TiO2-terminated SrTiO3.  

In Chapter 5, this approach is leveraged to explore proximity-induced emergent 

phenomena by depositing of Eu metal onto SrTiO3 (001). This deposition method 

enabled crystallization of stoichiometric highly-spin-polarized semiconductor EuO in 
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close proximity to a highly conductive interfacial layer of oxygen-deficient SrTiO3-δ. 

Combining these results with first-principles calculations, we uncovered the role of the 

spin-polarized oxygen vacancy state as the origin of the linear positive MR, suggesting a 

path towards developing novel nano-oxide spintronic devices based on strong proximity 

effects. Until now, no other concept using epitaxial EuO to explore proximity effects in 

the 2DEG has been demonstrated.  

8.1.2. Films of Integrated Nonlinear Oxides 

Figure 8.2:Pockels coefficients for oxide 

thin films. 

The large effective Pockels 

coefficient for high-quality epitaxial BTO 

films on Si distinguishes BaTiO3 as a 

highly promising material for integrated 

silicon nanophotonics. However, the linear electro-optic effect in BaTiO3 thin films 

determined in previous experiments clearly showed deteriorated properties compared to 

bulk BTO crystals. The goal of the second half of this dissertation was to compare films 

of widely varied morphology to establish the parameter space for a future manufacturing 

process. First, in Chapter 6, I studied BaTiO3 films of varied thickness to quantify the 

Pockels coefficient with respect to crystalline orientation. As a next step, in Chapter 7, I 

reported on the strong dependence of the Pockels effect in BaTiO3 thin films on their 

microstructure, and provide guidelines on how to engineer thin films with strong electro-

optic response. The 25× enhancement of the Pockels coefficient indicates a promising 

route to increase the performance of nonlinear oxides in the two-dimensional limit for the 

development of novel hybrid silicon photonic platform. By identifying the key structural 
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predictors of electro-optic response in BTO/Si, I outlined the path to leverage the linear 

electro-optic effect in nanoscale oxides integrated on Si. 

8.2. RECOMMENDATIONS FOR FUTURE WORK 

The relative ease with which STO gives up some of its oxygen is well-known but 

has The relative ease with which STO gives up some of its oxygen is well-known but has 

not always been given careful consideration by researchers in oxide thin film 

growth. [184] This dissertation indicates that novel interfacial phenomena observed at 

interfaces between STO and another metal oxide should be regarded with more care as 

STO is likely to become somewhat reduced even under relatively high oxygen pressure  

This reducibility of STO, however, can be useful in some cases. In this 

dissertation, I presented high mobility 2DEGs that have the same properties as the well-

known crystalline LAO-STO interface using a much easier process. One can also use this 

effect to grow certain metal oxides epitaxially on STO without oxygen such as SrO, EuO 

and even complex oxides like LaTiO3. This redox reactivity of STO could potentially be 

exploited to explore other phenomena where the oxygen vacancies themselves interact 

with the electrons and ions of the metal overlayer. 

Even highly porous, polycrystalline BTO films were found to have a linear 

electro-optic response. My studies provide a link between structural and electro-optic 

properties of BTO thin films, and demonstrates clearly the effectiveness of applying 

materials science to tailor customized properties of oxide thin films. While obtaining 

dense and highly tetragonal films is critical to achieve large Pockels coefficient as for 

example needed in high-speed BTO/Si photonic modulators, fabricating layers with large 

grain sizes is the crucial parameter to maximize the memory window as needed for non-

volatile optical storage. For further development of BTO-based Si photonic devices 
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(Figure 8.3), additional practical aspects such as the Curie temperature shift should be 

addressed in future studies, as well as exploring routes including strain engineering and 

doping to enhance the electro-optic coefficients. 

Figure 8.3: (a) Schematic from Ref.  [252] and (b) experimental realization of reservoir 

computing using Mach-Zehnder interferometer on the kilometer 

scale.  [253] 

  

 



 101 

Appendices 

APPENDIX A: SUPPLEMENT TO CHAPTER 4:POSITIVE LINEAR MAGNETORESISTANCE IN 

THE TWO-DIMENSIONAL ELECTRON GAS AT THE EUO/SRTIO3 INTERFACE 

Notes 

Note 1: Valence Band Offsets 

Figure A.6(a) displays XPS valence band spectra for the bare STO substrate (blue 

shading) and 10-nm-thick EuO film (red shading). Band offsets were calculated by both 

core-level [87] and valence band [133,134] spectroscopy. The valence band maximum 

(EVBM) for each material was calculated using the linear extrapolation method. [135] By 

comparing energy offsets between the Co 2p, Al 2p, and valence band edge positions (as 

summarized in Table 1) using 

     
STOEuOpTidEuSTOVBMpTiEuOVBMdEuCL EEEEEEVBO

/2323   (A.1) 

we calculate a VBOCL of 2.44 eV. 

The VBO can also be determined directly from the valence band 

spectra. [133,134] For a heterostructure of 1 nm EuO/STO a contribution from the 

substrate is visible along with an attenuated contribution from the substrate (Figure A.6 

(a), black open circles). We simulated a fit (purple solid line) to the heterostructure by 

scaling and offsetting the pure valence band spectra measured for the STO substrate and 

thick EuO film. This method uses an “all at once” fit minimizing χ2 by the Levenberg-

Marquardt algorithm implemented in Igor Pro software (WaveMetrics, Lake Oswego, 

OR). The difference between the measured and simulated spectra is also plotted (black 

line). Using this method, we calculate VBOsim = 2.26 eV, in good agreement with the 

offset calculated above by the core levels. The band profile is illustrated in Figure A.6(b).  
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Note 2: Positive MR Derivation 

Our calculations follow Onose et al.’s work [198], which is based on the 

Boltzmann transport theory. Based on our DFT calculations, three types of carriers 

contribute to conductivity: electrons in the spin-split dxy band (up) and electrons in 

nonmagnetic dxz/yz bands (both up and down). The change of the Fermi energy 𝛿𝜖𝐹 to first 

order of the external field is given by 

 

𝛿𝜖𝐹 ≈
1

2
𝑔𝜇𝐵𝐻

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)−𝐷𝑥𝑦+(𝜀𝐹)−𝐷𝑥𝑧/𝑦𝑧+(𝜀𝐹)

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)+𝐷𝑥𝑦+(𝜀𝐹)+𝐷𝑥𝑧/𝑦𝑧+(𝜀𝐹)
, 

And the corresponding change of conductivity can be expressed as 

𝜎(𝐻) − 𝜎(0) ≈  
1

3
𝑒2{[(2

𝜏𝑥𝑦+

𝑚𝑥𝑦+
∗ − 2

𝜏𝑥𝑧/𝑦𝑧−

𝑚𝑥𝑧/𝑦𝑧−
∗ ) + (𝜏𝑥𝑦+𝑣𝑥𝑦+(𝜀𝐹)2 𝜕𝑙𝑛𝐷𝑥𝑦+(𝜀𝐹)

𝜕(𝜀𝐹)
−

𝜏𝑥𝑧/𝑦𝑧−𝑣𝑥𝑧/𝑦𝑧−(𝜀𝐹)2 𝜕𝑙𝑛𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)

𝜕(𝜀𝐹)
)]

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)𝐷𝑥𝑦+(𝜀𝐹)

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)+𝐷𝑥𝑧/𝑦𝑧+(𝜀𝐹)+𝐷𝑥𝑦+(𝜀𝐹)
+ [(2

𝜏𝑥𝑧/𝑦𝑧+

𝑚𝑥𝑧/𝑦𝑧+
∗ −

2
𝜏𝑥𝑧/𝑦𝑧−

𝑚𝑥𝑧/𝑦𝑧−
∗ ) + (𝜏𝑥𝑧/𝑦𝑧+𝑣𝑥𝑧/𝑦𝑧+(𝜀𝐹)2 𝜕𝑙𝑛𝐷𝑥𝑧/𝑦𝑧+(𝜀𝐹)

𝜕(𝜀𝐹)
−

𝜏𝑥𝑧/𝑦𝑧−𝑣𝑥𝑧/𝑦𝑧−(𝜀𝐹)2 𝜕𝑙𝑛𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)

𝜕(𝜀𝐹)
)]

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)𝐷𝑥𝑧/𝑦𝑧+(𝜀𝐹)

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)+𝐷𝑥𝑧/𝑦𝑧+(𝜀𝐹)+𝐷𝑥𝑦+(𝜀𝐹)
}𝑔𝜇𝐵𝐻, 

Since initially dxz/yz bands are nonmagnetic, contributions from up and down dxz/yz 

bands should cancel with each other. Only the term in the first bracket survives. By 

replacing σ with 
1

𝜌
, the change of the resistivity with magnetic field can be expressed as, 

𝜌(𝐻) − 𝜌(0) ≈  −
1

3
𝑒2{[(2

𝜏𝑥𝑦+

𝑚𝑥𝑦+
∗ − 2

𝜏𝑥𝑧/𝑦𝑧−

𝑚𝑥𝑧/𝑦𝑧−
∗ ) +

(𝜏𝑥𝑦+𝑣𝑥𝑦+(𝜀𝐹)2 𝜕𝑙𝑛𝐷𝑥𝑦+(𝜀𝐹)

𝜕(𝜀𝐹)
−

𝜏𝑥𝑧/𝑦𝑧−𝑣𝑥𝑧/𝑦𝑧−(𝜀𝐹)2 𝜕𝑙𝑛𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)

𝜕(𝜀𝐹)
)]

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)𝐷𝑥𝑦+(𝜀𝐹)

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)+𝐷𝑥𝑧/𝑦𝑧+(𝜀𝐹)+𝐷𝑥𝑦+(𝜀𝐹)
}𝜌(0)2𝑔𝜇𝐵𝐻        

(A.2) 

where 𝜏, 𝑚∗, 𝑣(𝜖𝐹) and 𝐷(𝜖𝐹) are lifetime, effective mass, Fermi velocity and 

density of states at the Fermi level of corresponding carriers, respectively. For different 

carriers, 𝑚∗, 𝑣(𝜖𝐹) and 𝐷(𝜖𝐹) are of the same order, while the relaxation time 𝜏𝑥𝑦 at the 

interface is much shorter due to strong scattering [254–257]. Taking the limit 𝜏𝑥𝑦 → 0, 

the change of resistivity can be asymptotic as, 
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𝜌(𝐻) − 𝜌(0) ≈  
1

3
𝑒2[(2

𝜏𝑥𝑧/𝑦𝑧−

𝑚𝑥𝑧/𝑦𝑧−
∗ +

𝜏𝑥𝑧/𝑦𝑧−𝑣𝑥𝑧/𝑦𝑧−(𝜀𝐹)2 𝜕𝑙𝑛𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)

𝜕(𝜀𝐹)
)

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)𝐷𝑥𝑦+(𝜀𝐹)

𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)+𝐷𝑥𝑧/𝑦𝑧−(𝜀𝐹)+𝐷𝑥𝑦+(𝜀𝐹)
]𝜌(0)2𝑔𝜇𝐵𝐻        

(A.3) 
 

where the change of ρ to the linear order of H is consistent with experimental results. 

Further studies of the carrier lifetime would provide a quantitative estimate of the 

magnitude of the MR.  

Figures 

Figure A.1: XPS Eu (a) 4d and (b) 3d core level measurements for varied substrate 

temperature and oxygen partial pressure.  
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Figure A.2: (a) X-ray diffraction coupled scans with corresponding (b) in-plane 

reciprocal space map and positions in reciprocal space for (c) STO and (b) 

EuO with a 45° rotation of the surface unit cell. 
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Figure A.3: MLLS fitting. Red is EuO and Green is Eu2O3. Only a little Eu3+ is present in 

the disordered region. (Reference spectra taken from Mairoser et al. [194]).  
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Figure A.4: (a) Sheet resistance for a 7-

nm EuO film as a function of 

temperature. (b) Hall resistance RXY for 

a 7-nm EuO film at 120 K. Solid lines 

indicate linear fits. 

 

 

 

 

 

 

 

 

Figure A.5: High-angle annular dark-field scanning transmission 

electron microscopy [110]-projection image of the EuO/STO 

interface. 
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Figure A.6: (a) To determine the 

valence band offset, the spectra for 

pure EuO (red shading) and STO (blue 

shading) were scaled, offset, and added 

together to create a simulated fit 

(purple line) to the measured valence 

band spectra for a heterostructure of 1 

nm EuO on STO (black open circles). 

(b) Schematic of band alignment. 
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Figure A.7: The partial density of states projected onto Ti ions at each layer. Interface 

TiO2 layer is at top and middle bulk TiO2 layer is at bottom. dxy orbitals are 

marked as black line. dxz and dyz orbitals are marked as red line. 𝒅𝟑𝒛𝟐−𝒓𝟐 

orbitals are marked as blue and 𝒅𝒙𝟐−𝒚𝟐 orbitals are marked as magenta. 
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Figure A.8: Resonance photoemission spectra of valence band near Eu 3d threshold. 

Strong resonance of the Eu2+ states in the valence band at hv = 1128 eV and 

Eu3+ states at hv = 1130 eV. No resonating states at the EF. (b)  Valence 

band spectrum at hv = 457 eV shows the prevalence of Eu2+. 
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Figure A.9: Photoelectron images of 2DES for hv = 460.3 and 466 eV for a burnt spot of 

the sample surface. 
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Figure A.10: Photoelectron images of 2DES for hv = 460.3 and 466 eV for a fresh spot of 

the sample surface. 
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Figure A.11: “0” state. 
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APPENDIX B: SUPPLEMENT TO CHAPTER 7:MICROSTRUCTURE AND 

FERROELECTRICITY OF BATIO3/SI FOR INTEGRATED PHOTONICS 

Figure B.1: Bright-field scanning 

transmission electron microscopy (STEM) 

images of barium titanate (BTO) on 

strontium titanate (STO)/Si 

pseudosubstrates deposited by (a) 

molecular beam epitaxy (MBE), (b) pulsed 

laser deposition (PLD), (c) RF sputtering, 

and (d) chemical vapour deposition 

(CVD). Brighter areas in the film 

correspond to reduced film density, pores, 

labeled “p”.  

Figure B.2: (a) Atomic force microscopy 

images for BTO deposited by MBE, (b) 

PLD (c) RF sputtering, (d) RF sputtering 

(no buffer), and (e) CVD. Root mean 

square (RMS) surface roughness values 

are summarized in Table B.1. 
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Figure B.3: (a) X-ray diffraction patterns 

for BTO deposited by MBE, PLD, RF 

sputtering on STO/Si pseudosubstrate 

(green up triangles), RF sputtering directly 

on Si (orange down triangles), and CVD. 

Out-of-plane and grazing incidence in-

plane scans are shown by filled and open 

symbols, respectively. A sum of three 

Voigt functions has been fitted to each pair 

of scans, as shown by solid lines. (b) 

Corresponding rocking curves of the BTO 

(002) reflection (not available for BTO 

sputtered directly on Si). The rocking 

curves full width at half maximum (RC 

FWHM) are summarized in Table B.1. 
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Figure B.4: (a) The field-normalized 

induced rotation δ’ was measured 

(symbols) and simulated (lines) for varied 

orientation θE of in-plane electric field for 

BTO films deposited by MBE, PLD, RF 

sputtering on STO/Si pseudosubstrate 

(green up triangles), RF sputtering directly 

on Si (orange down triangles), and CVD. 

(b) The orientation of the incident 

polarization of the linearly polarized light 

at which the maximum in δ’ is observed, 

θp,max, was also measured and simulated. 

(c) Example of data fitting to select best-fit 

parameters r42 and r33. Squares: simulated 

points, contours: 2-d Gaussian fit. 

 

 

Figure B.5: (a) The field-normalized 

induced rotation δ’ measured as a function 

of a DC offset bias for BTO deposited by 

MBE, PLD, RF sputtering on STO/Si 

pseudosubstrate (green up triangles), RF 

sputtering directly on Si (orange down 

triangles), and CVD. Sigmoidal fits (solid 

lines) are utilized to extract saturation and 

remanent response, δS’and δR’ 

respectively, as well as the coercive field 

Ec. 
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Figure B.6: (a) Schematic of the geometry used for simulating the electric field 

distribution in porous BTO layers. While a cylindrical pore is shown here, 

we also considered rectangular cuboid pores. (b) Example of the electric 

field distribution in a cross-sectional plane as indicated in Fig. (a). The 

simulations were carried out using the commercial finite-element solver 

COMSOL Multiphysics. The color scale indicates the electric potential φ, 

with arrows indicating magnitude and direction of the corresponding electric 

field. Simulation parameters and results are summarized in Table B.3(c) 

Correction factors cP are calculated for varied porosities p, dielectric 

constants εBTO, and pore cross-section shapes (circle, square, or rectangular 

slab of width w (inset)).  
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BTO Method 
RMS  

Roughness  

[ nm ] 

RC FWHM  

[ ° ] 
Leakage  

Current 

[ A ] 

MBE 0.53 2.1 10-5 

PLD 3.10 1.2 10-7 

RF Sputter 2.40 1.7 10-4 

CVD 1.61 1.4 10-6 

RF Sputter (no buffer) 3.10 N/A 10-6 

Table B.1: Summary of additional film structural and electrical parameters. From the 

atomic force microscopy images in Figure B.2, the RMS surface roughness 

can be extracted for all samples. The FWHM of the rocking curves in Figure 

B.3(b) were also calculated. The leakage current at a DC bias of 35 V is 

shown for all samples. 

 

BTO Method 
t 

[ nm ] 

EAC 

[ kV/cm ] 

Eoff 

[ kV/cm ] 

dx  

[ cm/kV ] 

r33* 

[ pm/V ] 

r42* 

[ pm/V ] 
n 

MBE 78 2.12 -40 20 20 85 2.27 

PLD 97 2.12 -80 25 16 26 2.18 

RF Sputter 96 2.12 -40 20 5.1 27 2.21 

CVD 70 7.06 -80 24 6.2 4.5 2.13 

RF Sputter (no buffer) 102 2.12 -40 40 -- -- 2.12 

Table B.2: Parameters used for simulating δ' as a function of θE (Figure B.4). *fit 

parameter 

Parameter 
d 

[ μm ] 

w 

[ μm ] 

φ  

[ V ] 

εBTO  

 

p 

 (circle) 

 [ % ] 

p  

(square) 

 [ % ] 

p  

(slab) 

 [ % ] 

Value 1 1 5 -- -- -- -- 

Min Value -- -- -- 50 0 0 0 

Max Value -- -- -- 660 75 98 99 

Table B.3: Parameters used for COMSOL simulations of correction factor cp for porous 

structures shown in Figure B.6. Variables included distance between 

electrodes d, lateral periodicity w, electric potential drop φ, porosity p, 

dielectric constant εBTO, and pore cross-section shape (circle, square, or 

slab). 
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Note: Simulation Details 

The simulation process modified only slightly the procedure detailed in the 

Supplementary Text of Ref.  [67] and Ref.  [85]. Rather than interpolate the measured 

data, we approximate the two branches of data (Figure B.5) with sigmoidal curves of the 

form, 

s

dxEE

soff
coffeE ')1('2)('

/)(
 



, (0.4) 

where δS’ is the maximum rotation, Ec is the coercive field for each sample, and dx is a 

slope scaling factor (Table B.2). The domain population for a given electric field can then 

be estimated by shifting the curve to Ec = 0. Based on this field-dependent domain 

population, a weighting factor is used when summing Jones vectors from each of the four 

distinct domain orientations. 

Next, the induced rotation δ was simulated as a function of electric field 

orientation (Figure B.4(a)). The orientation of the incident polarization of the linearly 

polarized light where the maximum in δ’ is observed, θp,max, was also measured and 

simulated (Figure B.4(b)) and is in good agreement with best-fit values.  The simulation 

procedure follows Ref.  [85] using the parameters in Table B.2. To choose the best-fit 

values of r33 and r42 the simulated values were compared with measured values to 

minimize the parameter 

 





90

0

2

E

calcmeas



 

. Best-fit values of r33 and r42 were 

fitted as in Figure B.4(c) for the bulk value birefringence nb = 0.03, and bulk ratio r13 = 

r33/10. Error bars were estimated by repeating the fitting procedure for nb = 0.02 and 

0.04. [67] 
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