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Abstract 

 

A Comprehensive Comparison of FFT-Accelerated Integral Equation 

Methods vs. FDTD for Bioelectromagnetics 

 

Jackson White Massey, MSE 

The University of Texas at Austin, 2015 

 

Supervisor: Ali E. Yılmaz 

 

The performance of two FFT-accelerated integral equation methods—the adaptive 

integral method (AIM) and GMRES-FFT—and the finite-difference time-domain (FDTD) 

method are systematically compared for their use in bioelectromagnetic (BioEM) analysis. 

The comparison involves four steps: (i) A BioEM benchmark is developed. The power 

absorbed by a human model illuminated by an impressed time-harmonic source is selected 

as the problem of interest. The benchmark consists of three inhomogeneous models (a 

multilayered spherical head phantom, an anatomical male, and an anatomical female 

model), two types of models (pixel or surface based), two types of sources (far or near), 

and three frequencies in the UHF band (402 MHz, 900 MHz, and 2.45 GHz). (ii) Error and 

cost measures are identified: The total power absorbed, the power absorbed in different 

tissues, and the absorbed power density are compared to either analytical results or results 

from other methods. The peak memory requirement and computation time of the 

simulations are recorded. (iii) The benchmark problems are solved using each method with 

optimized parameters. (iv) Plots of results, errors, and computational costs are presented 
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and the tradeoff between increased accuracy and cost is quantified for each method. The 

data show that when surface-based models can be used AIM generally outperforms 

GMRES-FFT and FDTD: AIM achieves lower errors at the same computational cost or 

costs less to achieve the same error. When restricted to pixel-based models, however, 

FDTD generally outperforms GMRES-FFT and AIM: All three methods yield comparable 

errors, in most cases FDTD is less costly than GMRES-FFT (especially for anatomical 

models, far sources, and higher frequencies), and GMRES-FFT is slightly less expensive 

than AIM. These results suggest that for the type of BioEM analysis represented by the 

benchmark, AIM should be used whenever surface-based models are available and FDTD 

should be used if only pixel-based models are available.  
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Chapter 1: Introduction 

Bioelectromagnetic (BioEM) simulations in the UHF band (0.3-3 GHz) are 

becoming increasingly more important in the design of body-centric wireless 

communication systems [1], wireless implants [2]–[4], and medical imaging tools [5]–[7]. 

They are also needed to develop body area networking standards and to ensure that 

exposure to non-ionizing radiation remains lower than values specified in safety standards 

[8]–[10]. BioEM simulations can be categorized according to the complexity of the models 

used to represent the problem of interest and the type of numerical method used to solve 

the governing equations.  

The complexity of the models used in BioEM simulations range from simplified 

models, e.g., infinite slabs [1], [2], [4], spheres [3], or phantoms [11], [12], to anatomical 

models, e.g., human or animal models [13]–[16]. Simplified models—which are generally 

piecewise homogeneous—are easy to build, modify, verify, and simulate accurately by a 

large variety of numerical methods, but have limited predictive capacity. In contrast, 

anatomical models—which are generally inhomogeneous—can yield detailed and highly 

predictive information, but are difficult to create, alter, validate, and simulate accurately. 

The numerical methods used in BioEM simulations can be categorized as 

differential-equation based methods, e.g., the finite-difference time-domain (FDTD) 

method [17] or the finite-element method [18], or integral-equation based methods, e.g., 

the conjugate-gradient fast-Fourier-transform (CG-FFT) method [19], [20], fast multipole 

method [21], [22], or the adaptive integral method (AIM) [23]. Differential-equation based 

methods, which require the solution of sparse (or diagonal) matrix equations, are currently 

the most popular methods for BioEM simulation, especially when anatomical models are 

used; this can be attributed to their generality and flexibility in modeling position-
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dependent material parameters, ease of implementation, robustness, and low computational 

overhead. These methods, however, have major accuracy and efficiency drawbacks that 

can limit their effectiveness. For example, classical explicit FDTD solvers must meet the 

(necessary but not sufficient) Courant-Friedrichs-Lewy (CFL) condition to yield stable 

results, implement approximate absorbing boundary conditions on an extended convex 

volume enclosing the biological object of interest to emulate open regions, ensure that 

unacceptable levels of numerical dispersion and phase error buildup are avoided for 

electrically large regions, and overcome staircasing errors at curved boundaries. In 

comparison, integral-equation based methods are not bound by the CFL condition, impose 

the radiation condition analytically, mesh only the surfaces of homogeneous regions and 

volumes of inhomogeneous regions (not an extended region around them), are more 

immune to phase error buildup, and can avoid staircasing errors robustly by using 

unstructured meshes. Yet, they require the use of carefully designed cubature rules to 

evaluate up to six-dimensional integrals with singular kernels, as well as complicated fast 

algorithms to efficiently solve dense matrix equations. 

The above comparison of different numerical methods is inconclusive and should 

be enhanced with computational experiments to quantify the performance of these methods 

for BioEM simulations. This thesis develops benchmark BioEM problems, systematically 

compares two FFT-accelerated integral-equation methods to the FDTD method, and 

presents quantitative, comprehensive, and replicable computational results. 

The performance of FDTD and integral-equation methods have been compared for 

BioEM simulations before [24]–[28]. Nevertheless, a comprehensive study of the different 

methods’ performances is needed because of four reasons: (i) Existing comparisons are 

rather rudimentary; e.g., only 2-D BioEM problems were considered in [24]; the accuracy 

of the results were quantified only by plotting the electric field components along a line 
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through the object of interest in [24], [26]–[28] (no accuracy comparison was performed 

in [25] and analytical references were not used in [26], [28]); the integral-equation solution 

was not accelerated by a fast algorithm in [26], [28]; and computation times were not 

reported in [25], [26]. (ii) Complexity and realism of BioEM models have increased 

drastically. The latest anatomical human models feature mm-scale details and are 

comprised of more than 100 million elements (orders of magnitude larger than in [24]–

[28]). Additionally, even though most anatomical models continue to be pixel-based 

models, several surface-based human models have been developed [14], [29], [30]. 

Because such models can potentially minimize the staircasing error inherent in pixel-based 

models, it is important to compare numerical methods for both pixel- and surface-based 

models. (iii) FDTD and FFT-accelerated integral-equation methods have been actively 

researched. For instance, for FDTD, more effective perfectly matched layers (PML) 

terminations have been developed [31] while for FFT-accelerated integral-equation 

methods, more accurate basis functions [32], [33], more advanced algorithms that are 

effective for unstructured meshes [34], and novel parallelization techniques [35] have been 

developed. (iv) Computer hardware has improved significantly. Increases in raw 

computing power (faster processors, more memory, more cores, and higher-speed 

interconnections) have enabled the solution of larger and more complex problems [36]. 

These improvements also enable better visualization of the large data sets—and therefore 

better means for interpreting results and measuring errors—generated by BioEM 

simulations. 

Motivated by the shortcomings of previous comparative studies and by the ongoing 

advances in BioEM simulations, a systematic approach was recently introduced to 

empirically evaluate the advantages and tradeoffs of different methods for modern BioEM 

simulations [37]–[40]. The methodology is based on using error-vs.-cost plots with well-
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defined and useful error measures. This thesis extends the methodology in [37]–[40] by 

modifying the error measures (from pointwise to cellwise), adding new error measures 

(visualizations, L∞-norm, and tissue absorbed power analysis), and providing a method for 

comparing numerical methods without a reliable reference result. It also introduces a 

BioEM benchmark that is appropriate for judging the performance of methods that 

compute the power absorbed by a human model illuminated with an impressed time-

harmonic source. The benchmark consists of a multilayered sphere and two anatomical 

human models, two different excitations (plane wave and a nearby Hertzian dipole), and 

three representative frequencies in the UHF band.  

Using the proposed comparison methodology and BioEM benchmark, this thesis 

compares the performance of FDTD and two FFT-based algorithms—AIM and GMRES-

FFT (a variant of the CG-FFT method that uses the generalized minimal residual (GMRES) 

algorithm as the iterative solver). It is shown that all three numerical methods yield similar 

error levels for pixel-based models and that FDTD simulations are significantly less costly 

than GMRES-FFT and AIM simulations (which have similar costs), especially for 

anatomical models, plane-wave excitations, and higher frequencies in the UHF band. It is 

also shown that AIM simulations can yield significantly lower errors by using surface-

based models (meshed with unstructured tetrahedral elements) and this approach requires 

less computation time and memory for a desired accuracy when compared to AIM, 

GMRES-FFT, or FDTD simulations that use pixel-based models (meshed with voxel 

elements). 

The rest of the thesis is organized as follows: Chapter 2 reviews the different 

BioEM simulation methods evaluated in this thesis. Chapter 3 details the comparison 

methodology. Chapter 4 presents the results. Chapter 5 concludes the thesis. 
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Chapter 2: Review of Bioelectromagnetic Simulation Methods 

This Chapter describes the scattering problems of interest, the governing equations, 

their discretization, and the three numerical solution methods considered in this thesis—

GMRES-FFT, FDTD, and AIM. The FDTD and AIM methods are presented briefly as 

they are well established; more complete formulations and detailed explanations can be 

found in [17], [34], [38], [41], [42]. Although GMRES-FFT type methods are also available 

in the literature [20], [33], [41], [43], the formulation used here is more accurate compared 

to the existing ones and is thus presented in more detail. The goals of this Chapter are to 

identify the methods’ key features and define all the parameters that must be specified to 

replicate the results presented in Chapter 4. 

2.1 SCATTERING PROBLEM AND GOVERNING EQUATIONS 

The biological object of interest is modeled as an inhomogeneous, lossy, and 

nonmagnetic volume V  in free space. The object is illuminated by the incident field 

inc inc{ , }E H  generated by (nearby or far away) impressed sources. The fields scattered by 

the object sca sca{ , }E H  satisfy the equations 
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for Vr . Here, 0 0{ ,  }   denotes the free-space {permittivity, permeability},  ,   

denotes the {permittivity, conductivity} of the object,   denotes temporal convolution, and 

t  denotes the time derivative. For time-harmonic fields with angular frequency  , these 

equations can be simplified as 
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   

     

   

sca sca

0

sca sca

inc

0

, ,

, , ,

, , ,

j

j

j

  

   

    

  

 

   

E r H r

H r r E r

r E r

 (2) 

where j      denotes the complex permittivity of the object that includes the effects 

of static permittivity, dielectric heating, and Ohmic heating. Throughout the thesis, a tilde 

above a variable identifies it as a frequency-domain quantity. 

Because the above partial differential equations are linear, various integro-

differential equations that govern the fields can be formulated; e.g., a frequency-domain 

volume electric field integral equation (V-EFIE) can be formulated [32], [42] by expressing 

the scattered field in terms of the conduction-current corrected electric flux density 

c inc sca[ ] D E E : 

 
 

 
   

c

sca c inc
,

, , ,  for ,
,

V


 
 

  
D r

E D r E r r
r

  (3) 

where,  

 

 
   

    

0

0

/c

sca c 2

0

/c

0

, ,
, ,

4

, ,
.

4

j R c

V

j R c

V

e
dv

R

e
dv

R





  
  



  

 





 


   






r D r
E D r

r D r
 (4) 

In (4),       0, , ,       r r r  is the complex contrast ratio, R  r r , and 

0 0 01c    is the speed of light in free space. It is worth emphasizing that the unknown 

c
D  is constrained only to the object volume and the radiation condition is satisfied 

inherently by the choice of the negative exponent in the Green’s function. It should also be 

noted that the integrals in (4), which have singular kernels, have to be computed rather 

accurately to ensure that addition of the incident and scattered fields, both of which are 

computed using the free-space phase speed, equals the total electric field, which propagates 

at different phase speeds in the inhomogeneous volume [44]. 
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2.2 DISCRETIZATION 

To solve the scattering problem, the fields are discretized in a volume numV  that 

either approximates V  (for integral-equation based methods) or includes an extended 

region around V  so that the radiation condition can be approximated accurately enough by 

local absorbing boundary conditions (for differential-equation based methods) [17]. This 

is typically accomplished by dividing numV  into small cells that are assigned homogeneous 

material properties [17], [32]. For the numerical methods studied in this thesis, either voxel 

or tetrahedral cells are used (Figure 1).  

 

Figure 1: A biological object volume V  meshed using voxel cells (left) or tetrahedral 

cells (right). The staircasing in voxel meshes yield poorer representation of 

the orginal boundaries. 

Most anatomical models are created by segmenting a dataset of 2-D images and 

extruding pixels into voxels [16]. The resulting pixel-based models and their voxel meshes 

are immediately suitable for methods constrained to regular meshes (e.g., classical FDTD 

and GMRES-FFT methods). Unfortunately, voxel meshes constrain the material 

boundaries to align with a Cartesian coordinate system and thus can result in significantly 

less accurate solutions [45]. Indeed, the errors from staircasing in volumes that have curved 

surfaces can reduce the rate of convergence of the solution to zeroth-order locally and first-

order globally (regardless of the simulation method) [46]. Furthermore, particularly with 
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coarser meshes, voxel meshes can yield extremely inaccurate volumes for small or thin 

tissues, e.g., the skin layer (see Chapter 3.1); thus, even if the overall solution is accurate, 

secondary quantities of interest derived from the solution that are localized, for instance, 

the total power absorbed by a small or thin tissue, can be inaccurate. 

Unstructured tetrahedral meshes represent material boundaries significantly more 

accurately than voxels (Figure 1). Well-behaved tetrahedral meshes of V  can be generated 

using standard algorithms [47], [48] provided that a surface-based model is available whose 

geometry can be represented analytically/drawn in a CAD program. Unfortunately, 

anatomical BioEM models cannot be easily represented as parameterized surfaces because 

of the complex topology, intricate spatial connectivity, and the multiple length scales of 

the tissues and because of the pixelated nature and very large size of the medical image 

datasets used to create these models. One avenue for generating quality tetrahedral meshes 

is to consider voxel meshes of pixel-based models as samples on a rectilinear grid of the 

volume V , extract isosurfaces for each tissue, smooth/improve these surfaces, combine the 

improved isosurfaces into one surface model, and then mesh the model with tetrahedra 

[14], [49]; this is also known as mesh-based geometry reconstruction [49]–[51]. Although 

it is relatively simple to extract one tissue/organ and construct a surface model for it from 

a pixel-based model, it is generally impossible to process each tissue/organ independently 

(one at a time) to obtain a topologically consistent (non-intersecting) set of surfaces that 

can be combined to form a surface-based anatomical BioEM model [30], [52]. 

Nevertheless, by introducing additional constraints on the surface construction algorithm, 

simplifying the surfaces, and introducing a background material [53], very complex 

surface-based anatomical models can be constructed [14], [29]. 
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2.3 FFT-ACCELERATED INTEGRAL EQUATION METHODS 

This Subchapter reviews the two FFT-accelerated integral equation methods that 

are evaluated in this thesis. First, the classical iterative MOM solution of the frequency-

domain V-EFIE is reviewed; then, the GMRES-FFT and AIM algorithms are described. 

2.3.1 Method of Moments (MOM) 

The classical MOM solution of the V-EFIE consists of three steps: (i) The scattering 

volume is meshed into tetrahedral/voxel cells and the unknown quantity c
D  is expanded 

using MOMN  sub-domain basis functions: 

    
MOM

c

1

, ( ) .
N

n n

n

I 


 D r f r  (5) 

Here, 
MOM1, , Nf f  are either SWG basis functions [32] defined on tetrahedral cells or 

volumetric rooftop basis functions [33] defined on voxel cells (Figure 2) and 
MOM1, , NI I  

are their unknown coefficients. Both types of basis functions are divergence-conforming 

and are associated with cell faces such that the function support is over two cells if the face 

is an interior face and over only one cell if the face is on the boundary of V  (Figure 2). 
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Figure 2: SWG [32] and volumetric rooftop [33] basis functions. The support of the 

basis functions is either over two cells if it is associated with an interior face 

(left) or over a single cell if it is associated with a boundary face (middle). In 

the formulas, na  denotes the area of the face associated with the basis 

function, n


r  is the position of a node that belongs to nV   that is not on the 

associated face, and ˆ nn  is the unit vector normal to the associated face 

pointing from nV   to nV  . 

(ii) For each frequency of interest, the V-EFIE is converted into a linear system of equations 

by Galerkin testing it with contrast-weighted basis functions: 

 
   

 

 
     

     

c

sca

inc

,
, , , , ,

,

, , ,  

m m m m

m m


    

 

  





D r
r f r r f r E r

r

r f r E r

 (6)  

MOMfor 1, ,m N  . Here,       0, , ,m m m       r r r  is an approximation of the 

contrast ratio that is piecewise-constant over the support of mf , i.e.,   and   are assumed 

constant in each cell. In (6), ,  denotes the inner product of the two arguments; in the 

following, the integral resulting from the c D  term is referred to as the self-term. The 

resulting system of equations can be written in matrix form as 
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 self sca inc( ) ( ) ( ) ( ) ( ) ( ),         Z I Z Z I V  (7)  

where Z , self
Z , and sca

Z  are MOM MOMN N  impedance matrices and I  and incV  are 

MOM 1N   vectors that store the unknown coefficients and the tested incident field, 

respectively. The sparse matrix self
Z  stores the self-term contribution in (6) and the dense 

matrix sca
Z  results in the tested scattered field when multiplied with I ; the entries of these 

matrices and vectors are: 

 

     

 

       

         

     

num

0

num num

0

num num

num

self

/

sca 2

0

/

0

inc inc

,
[ , ]

,

, ,
[ , ]

4

, ,1

4

[ ] , .

m m n

nV

j R c

m m n n

V V

j R c

m m n n

V V

m m

V

m n dv

e
m n dv dv

R

e
dv dv

R

m dv





 

 

   
 



   

 

 







 
 

   






 

 



r f r f r
Z

r

r f r r f r
Z

r f r r f r

V r f r E r

 (8) 

(iii) The linear system of equations in (7) is formed and solved. Because the sca
Z  matrix is 

dense, the classical iterative MOM procedure requires  2

MOMO N  operations to fill this 

matrix,  2

MOMO N  bytes of memory to store it, and  2

MOMO N  operations to multiply it at 

each iteration. These costs imply that the MOM procedure quickly becomes unfeasible for 

the problem sizes encountered in BioEM analysis, which reach up to 9

MOM 10N   [23], and 

advanced algorithms must be used to reduce the computational costs. 

2.3.2 GMRES-FFT 

Similar to the CG-FFT [33], [43], BCG-FFT [20], [41], and TFQMR-FFT [54] 

methods, the GMRES-FFT method accelerates the MOM solution by exploiting the 

translational invariance of the Green’s function. In the following, the GMRES-FFT method 

is formulated by first describing the common CG-FFT method, then highlighting the 



 12 

shortcomings of this formulation and presenting alternate formulations, including the 

GMRES-FFT implementation used in this thesis. 

Common CG-FFT Formulation 

As is commonly formulated (e.g., see [33]), the CG-FFT method follows the MOM 

formulation in Chapter 2.3.1. Here, the smallest cuboid that encloses V  is meshed into 

x y zN N N   voxels for the discretization step (Figure 3). The mesh is defined by the voxel 

cell size ( , ,x y z   ), the number of voxels in each dimension ( x y z, ,N N N ), and the mesh 

offset ( 0r ) from the Cartesian origin. The mesh, which includes both free-space cells and 

cells inside V , is a regular mesh, i.e., the edge lengths of the voxels must all be the same 

size but are not required to be uniform ( , ,x y z    are constant throughout the mesh but 

not equal to each other). Voxels are identified using the mesh indices,  x1, , ,i N  

   y z1, , ,  1, ,j N k N  , e.g., the center of voxel , ,i j k  is located at ( , , ) 0i j k r r

ˆ ˆ ˆ( 0.5) ( 0.5) ( 0.5)i x j y k z        x y z . 
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Figure 3: The smallest cuboid that encloses the biological object volume V (shaded) 

from Figure 1. The voxel mesh of the cuboid is defined by the the mesh offset 

( 0r ), the voxel size ( , ,x y z   ), and the number of voxels in each dimension 

( x y z, ,N N N ). The z dependent quantities are not shown in this 2-D cut. 

In the common CG-FFT method [33], the sub-domain vector basis functions are 

volumetric rooftop functions (that are piecewise linear in one dimension and piecewise 

constant in the other two dimensions) and are defined across pairs of voxels whose support 

both lie in V  [33]. The orientation and location of the volumetric rooftop functions on the 

voxel mesh are denoted using the notation 
q

nf , where { , , }q x y z  indicates the function’s 

orientation and the vector  , ,i j kn  indicates the position of the common face between 

two voxels (Figure 4). More specifically, the volumetric rooftop function 
q

nf  is defined 

over the two voxels whose centers are at 0
ˆ ˆ ˆ( 0.5) ( 0.5) ( 0.5)i x j y k z         nr r x y z  

and  ˆ ˆˆ ˆ ˆ( )q x y z


    nn Δ
r r q x y z q , where q

Δ  is the +1 shift operator in the q̂  

direction; e.g., 
 
x

, ,i j k
f  would denote an x-directed rooftop function whose center of the 

shared face is located at  0 , ( 0.5) ,( 0.5)i x j y k z     r . A total of x y z( 1)N N N    x-
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directed, x y z( 1)N N N    y-directed, and x y z( 1)N N N    z-directed volumetric 

rooftop functions are used1, i.e.,  

  ( , , ) x y z
ˆ ˆ ˆˆ ˆ ˆ|1 ,  1 ,  1  for {x, y, z}.q q

i j k i N j N k N q          nf f q x q y q z  (9) 

Thus, the unknown is expanded as2  

    c

{ , , }

, ( ) .q q

q x y z

I 


   n n

n

D r f r  (10) 

It is important to notice that, unlike the expansion in (5), all of the basis functions in (10) 

have a support over two cells, i.e., the “half” volumetric rooftop function depicted in Figure 

2 is not used in CG-FFT when only one voxel lies in V , such as those on the boundary 

(see various alternative formulations that address this shortcoming below). 

 

Figure 4: The notation used to refer to the volumetric rooftop functions. The x-directed 

(blue) and y-directed (orange) basis/testing functions are shown as arrows 

across the shared face. The figure shows x y 5 3N N    voxels, x y( 1)N N   

x-directed volumetric rooftop functions 
 
x

, ,i j k
f , and x y( 1)N N   y-directed 

functions. The z-directed basis/testing functions are not shown in this 2-D cut. 

                                                 
1 These basis functions include those defined over free-space voxels inside the cuboid enclosing V .  
2 The coefficients 

qIn  corresponding to basis functions whose support include free-space voxels are set to 0. 
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In the CG-FFT method of [33], the V-EFIE is Galerkin tested with the basis 

functions3:  

  
 

 
       

c

sca inc
,

, , , , , ,
,

p p p


 
 

 m m m

D r
f r f r E r f r E r

r
 (11) 

where 

  ( , , ) x y z
ˆ ˆ ˆˆ ˆ ˆ|1 ,  1 ,  1  for {x, y, z}.p p

i j k i N j N k N p          mf f p x p y p z  (12) 

Separating the basis and testing functions by their orientation, the equation that is enforced 

by each4 testing function p

mf  can be written as: 

           self , , , inc,

{ , , }

,pq pq pq q p

q x y z

Z Z Z I V    


    A

mn mn mn n m

n

 (13) 

where 

      inc, inc ,
p

p p

V

V dv  
m

m m
f r E r  (14) 

  
   

 
self ,

,p

p q

pq

V

Z dv
 

 
m

m n

mn

n

f r f r

r
 (15) 

  
      0/

, 2

0

,

4p q

j R cp q

pq

V V

e
Z dv dv

R

 
  



 
   

m n

m n nA

mn

f r r f r
 (16) 

  
        0/

,

0

,1
.

4p q

j R cp q

pq

V V

e
Z dv dv

R




 


 

   
  

m n

m n n

mn

f r r f r
 (17) 

Here, 
pVm  and 

qVn  denote the support of the testing function 
p

mf  and basis function 
q

nf , 

respectively. Note that 
self,pqZmn  and 

, pqZ A

mn  are both 0 for p q  due to the dot product. 

                                                 
3The careful reader will notice another difference between the CG-FFT method of [33] and the integral-

equation methods in this thesis: The V-EFIE is tested with contrast-weighted functions in (6). Although this 

testing scheme—also referred to as “symmetric testing” [55], [56]—lowers AIM matrix fill time and memory 

requirement (because it yields identical anterpolation and interpolation coefficients), it appears not to have a 

significant effect on the number of iterations or other MOM or GMRES-FFT costs [56]. Nevertheless, 

symmetric testing is also used for GMRES-FFT and MOM to ensure that all integral-equation methods in 

this thesis attempt to (approximately) solve the exact same set of equations; in other words, AIM and 

GMRES-FFT solutions will converge to the MOM ones.  
4 The equations corresponding to testing functions whose support include free-space voxels are discarded. 
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Furthermore, self,pqZmn  is almost always zero: it has at most 3 testing functions that give non-

zero values per basis function.  

Using the formula for the volumetric rooftop function given in Figure 2, the basis 

functions can each be separated into two pieces: q

nf  and q

q

n Δ
f  defined over the two voxels 

that are centered at 
nr  and qn Δ

r , i.e., the support of these two pieces are Vn
 and qV

n Δ
, 

respectively. This separation ensures that the contrast ratio is constant over the integration 

domain, i.e., ( , ) n r  is equal to ( ) n
 in the first voxel and ( )q 

n Δ
 in the second one. 

Thus, (16) can be rewritten as 

  

 
   

 
   

0

0

/

, 2

0 /

4
,

4

p

q

q

p
q

j R cp q

VV
pq

j R cp q

VV

e
dv dv

R
Z

e
dv dv

R





 


  

 












 
 

 
   

 
 
 

 

 

nm

m n Δ

m n

n

A

mn

m n Δ

n Δ

f r f r

f r f r
 (18) 

which emphasizes the translational invariance of the two integrals (they only depend on 

m n ). Prior to updating (17),     , q    nr f r  is expanded using the chain rule: 

     

   

   

   

,

,
,

,

0, otherwise

q q q

q

q

q

q

q

V

V

S

 

 
 

   





  



    


   
    

 



n n n

n Δ n Δ n Δ
n

n nn Δ

f r r

f r r
r f r

r
 (19) 

yielding 
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q
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j R cp q
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VV

j R cp q

VV

j R cp

V S

j R cp q

V
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Z dv dv

R

e
dv dv

R

e
ds dv

R

e

R











 


 




 

   

 

 

















  


  


 


  



 

 

 



nm

m n Δ

m n

n

m nn

mn

m n Δn Δ

n mn Δ

m n

n

f r f r

f r f r

f r

f r f r

  

 

     

  

0

0

0

/

/
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0
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4
.

4

p

p q

q

p
q q

p q

V

j R cp

V S

j R cp q

VV

j R cp

V S

dv dv

e
ds dv

R

e
dv dv

R

e
ds dv

R









 

















 
 

  
 

 
 

  

   
 

  
  

 
 

  

 

 

 

 

m

m n

m n Δ

m n

m

m n Δ

n Δ

m

f r

f r f r

f r

 (20) 

where qSn  is the common face between the two voxels. The terms in curly brackets in (20) 

are also translationally invariant and only depend on m n . Thus, (13) can be expressed 

as 

 

       

             

inc, self , sca,

sca,

{ , , }

,q

p pp p p

p pq q pq q

q x y z

V Z I V

V I I

   

         

  


 

   



 

m mn n m

n

m m n n n m n nn Δ
n

 (21) 

where 
sca, pVm  is the scattered electric field tested by the volumetric rooftop function 

p

mf  and 

 

 
   

     

  

0

0

0

/

2

0

/

0

/

0

4

1

4

1

4

p

p

p q

j R cp q

pq

VV

j R cp q

VV

j R cp

V S

e
Z dv dv

R

e
dv dv

R

e
ds dv

R







  


 

 












 

  





 

 

 

nm

nm

m n

m n

m n

m n

m

f r f r

f r f r

f r

 (22) 



 18 

 

 
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0

0

0

/

2

0

/

0

/

0

4

1

4

1
.

4

q
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q

q

p
q
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pq

VV

j R cp q

VV

j R cp

V S

e
Z dv dv

R

e
dv dv

R

e
ds dv

R







  


 

 







 









 

  





 

 

 

m n Δ

m n Δ

m n

m n Δ
m n

m n Δ

m

f r f r

f r f r

f r

 (23) 

These equations can be organized into 3-level block-Toeplitz matrix-equation form and the 

multiplications in (21) can be accelerated using 3-D FFTs as follows: 

  
       

       

3D 3D
sca,

3D

{x,y,z}
3D 3D

FFT FFT
IFFT

FFT FFT

pq q q

p

pq q q
q

  


  

 

 


       
      


Z κ I

V
Z κ I

 (24) 

for {x, y, z}p . Here,   denotes element-wise multiplication and sca, ,  ,  ,p q q
V I κ  and 

pq
Z  are 3-D arrays of size CG-FFT x y z(2 1) (2 1) (2 1)N N N N       whose entries are  



 19 

 

sca,

sca, ( , , ) x y z

( , , ) x y z

( , , ) x

ˆ ˆ ˆˆ ˆ ˆif 1 ,  1 ,  1
[ , , ]  

otherwise

ˆ ˆ ˆˆ ˆ ˆif 1 ,  1 ,  1
[ , , ]

0 otherwise

ˆ ˆif 1 ,  1
[ , , ]

p

p i j k

q

q i j k

i j kq

V i N j N k N
i j k

I i N j N k N
i j k

i N j
i j k




         
 



         
 


    


p x p y p z
V

q x q y q z
I

q x
κ

x

y z

x y z( , , )

x y z

( 1, 1, 1) 1 1 1

x y

( 2 , 1, 1) 2 1

ˆ ˆˆ ˆ,  1

0 otherwise

ˆ ˆ ˆˆ ˆ ˆif 1 ,  1 ,  1
[ , , ]

0 otherwise

if , ,

if , ,

[ , , ]

qi j kq

pq

i j k

pq

i N j k

pq

N k N

i N j N k N
i j k

Z i S j S k S

Z i S j S

i j k






  



  



   



        
 


  

 



Δ

q y q z

q x q y q z
κ

Z

y

x y

z

x z

y z

z

1

x y z

( 1, 2 , 1) 1 2 1

x y z

( 2 , 2 , 1) 2 2 1

x y z

( 1, 1, 2 ) 1 1 2

x y z

( 2 , 1, 2 ) 2 1 2

x y

( 1, 2 , 2 ) 1 2

if , ,

if , ,

if , ,

if , ,

if ,

pq

i j N k

pq

i N j N k

pq

i j k N

pq

i N j k N

pq

i j N k N

k S

Z i S j S k S

Z i S j S k S

Z i S j S k S

Z i S j S k S

Z i S j S



  



  



  



  



  



  

  

  

  

 

x y z

z

2

x y z

( 2 , 2 , 2 ) 2 2 2

,

if , ,pq

i N j N k N

k S

Z i S j S k S

  












 


  

 (25) 

for   x y z( , , ) (1,1,1), , 2 1,2 1,2 1i j k N N N    . In (25), the sets are given as 

 

x x

1 x 2 x x

y y

1 y 2 y y

z z

1 z 2 z z

{1, , },  { 1, ,2 1}

{1, , },  { 1, ,2 1}

{1, , },  { 1, ,2 1}.

S N S N N

S N S N N

S N S N N

   

   

   

 (26) 

It should be observed that in (25) the 
pq

Z  arrays are filled by computing 
pqZ 

m n  terms such 

that m n  values are in the set  

  x x y y z z( , , ) 1 1,  1 1,  1 1 .i j k N i N N j N N k N             m n  (27) 

Because of the translational invariance of the terms, they can be computed in various ways, 

e.g., by setting (0,0,0)n  and varying m  or by setting (1,1,1)m  and varying n . Note 

that the unique values that m n  can take for all basis/testing functions on the mesh are 

limited to the smaller set 
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x x

y y

z z

ˆ ˆˆ ˆ1 1,

ˆ ˆˆ ˆ( , , ) 1 1,   for , {x, y, z}

ˆ ˆˆ ˆ1 1

N i N

i j k N j N p q

N k N

      
 

         
 

      

q x p x

m n q y p y

q z p z

 (28) 

which can be found using (9) and (12). That is, some of the pqZ 

m n  correspond to testing-

basis function pairs that are not present in the mesh of the cuboid that encloses V . These 

pqZ 

m n  values arise because of the zero-padding scheme in (25) and are either multiplied by 

zero coefficients in q
I  arrays or the result of the multiplication is discarded after the sca , p

V  

arrays are computed in (24). 

The costs of computing (24) dominate the computational costs of the CG-FFT 

method. The self-term contribution in (21) requires negligible computations (a sparse 

matrix-vector multiplication) compared to the FFTs. The 18 pq
Z  matrices can be pre-

FFTed and stored prior to the matrix-vector multiplications during the iterative solution. 

At each iteration, 6 FFTs ( q q κ I  and q q κ I  for {x,y,z}q ) and 3 IFFTs must be 

performed to compute sca , p
V  for {x,y,z}p . Each FFT and IFFT requires 

 CG-FFT CG-FFTlogO N N  operations. 

Alternate Formulations 

The above common CG-FFT formulation [33] does not include the “half” 

volumetric rooftop functions that are defined over only one voxel (a “boundary voxel” that 

is just inside V  and has at least one face on the boundary of V ) in the list of basis or testing 

functions. These missing basis/testing functions at the boundaries of the volume have an 

important role in the MOM system of equations and should not be left out. Indeed, leaving 

these functions out is tantamount to approximating the component of c
D  normal to the 

boundary surface as 0  at the boundary and as linearly increasing away from the boundary 

throughout each boundary voxel inside V . Although common CG-FFT variants that use 

volumetric rooftop functions do not mention any special treatment for basis or testing 
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functions on the boundary [20], [43], [54], various approaches can be used to address this 

shortcoming. 

One approach might be to simply define a regular (“full”) volumetric rooftop basis 

and testing function over each boundary voxel and its neighbor that is outside V . The 

multiplication with the contrast ratio (which is zero in every voxel outside of V ) effectively 

transforms the full volumetric rooftop basis functions into half basis functions when 

calculating the , pqZ A

mn  and , pqZ 

mn  entries in (16) and (17). There is no contrast ratio term to 

transform the full basis functions into half basis functions, however, when calculating the 

self , pqZmn  entries in (15). Thus, this alternative would yield a system of equations that is not 

exactly the same as the MOM system of equations. More importantly, the full volumetric 

rooftop basis functions at the boundaries would approximate the component of c
D  normal 

to the boundary surface as a function that linearly decreases to zero from each boundary 

face to the opposite face of each neighboring voxel outside V [41]. Thus, compared to the 

common CG-FFT formulation, this formulation would replace one incorrect expansion 

with another incorrect (but perhaps more accurate) one. 

Another approach for addressing the discrepancy between CG-FFT and MOM 

system of equations was proposed in [41]. In this alternative, the “full” volumetric rooftop 

functions defined over boundary voxels and their neighbors outside V  are only used as 

testing functions and “mixed” volumetric functions that are half volumetric rooftop 

functions (defined over boundary voxels) and half volumetric pulse functions (defined over 

neighbor voxels outside V ) are used as basis functions. This is equivalent to approximating 

the component of inc scaE E  normal to the boundary surface as constant over each 

neighboring voxel outside of V . While this alternative yields a system of equations that is 

not exactly the same as the MOM system of equations, it should improve the agreement 

between CG-FFT and traditional MOM results significantly as the additional 
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approximation introduced is rather benign. Although this approach has negligible 

additional computational costs compared to the common CG-FFT formulation, the 

modified CG-FFT solution will still fail to match the MOM solution exactly (within 

machine precision).  

 

Figure 5: The notation used to refer to the volumetric rooftop functions for the GMRES-

FFT formulation used in thesis. The x-directed (blue) and y-directed (orange) 

basis/testing functions are shown as arrows across the shared face. The 

additional basis/testing functions (compared to the common CG-FFT 

formulation in Figure 4) are shown using dashed arrows. To fit the additional 

basis/testing functions, the mesh is exteneded by one cell in each dimension 

(dashed mesh). There are x y( 1)N N   x-directed rooftop functions and 

x y( 1)N N   y-directed functions. The z-directed basis/testing functions are 

not shown in this 2-D cut. 

Proposed GMRES-FFT Formulation 

In this thesis, as detailed below, an alternative approach that exactly matches the 

MOM solution (within machine precision) is developed and used for the numerical 
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experiments. In this approach, the common CG-FFT formulation is also modified to use 

regular (“full”) volumetric rooftop basis and testing function over each boundary voxel and 

its neighbor that is outside V . Importantly, however, the testing functions are contrast-

weighted; thus, the resulting system of equations have 0 contributions from any voxel 

outside V  ( ( ) 0    in the background medium by definition) and are identical to those 

in (7) and (8). The symmetric testing [55], [56] of the V-EFIE yields the equations in (6); 

using the notation introduced above to identify the orientation and location of the rooftop 

functions, these equations can be expressed as: 

 
   

 

 
     

     

c

sca

inc

,
, , , , ,

,

, , ,

p p

m m

p

m


    

 

  





m m

m

D r
r f r r f r E r

r

r f r E r

 (29) 

where  

  ( , , ) x y z
ˆ ˆ ˆˆ ˆ ˆ|1 ,  1 ,  1  for {x, y, z}.p p

i j k i N j N k N p          mf f p x p y p z  (30) 

These equations can be expressed in terms of the unknown coefficients just as in (13): 

           self , , , inc,

{ , , }

.pq pq pq q p

q x y z

Z Z Z I V    


    A

mn mn mn n m

n

 (31) 

Unlike (13), however, the basis functions are in the extended set 

  ( , , ) x y z
ˆ ˆ ˆˆ ˆ ˆ|1 ,  1 ,  1  for {x, y, z},q q

i j k i N j N k N q          nf f q x q y q z  (32) 

and the matrix entries are 

        inc, inc, ,
p

p p

m

V

V dv    
m

m m
r f r E r  (33) 

  
     

 
self ,

,

,p

p q

mpq

V

Z dv
 


 

 
m

m n

mn

n

r f r f r

r
 (34) 

  
        0/

, 2

0

, ,

4p q

j R cp q

mpq

V V

e
Z dv dv

R

   
  



 
   

m n

m n nA

mn

r f r r f r
 (35) 
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  
          0/

,

0

, ,1
.

4p q

j R cp q

mpq

V V

e
Z dv dv

R




   


 

   
  

m n

m n n

mn

r f r r f r
 (36) 

Next, as before, the basis functions are separated into two pieces such that   is 

constant for each piece; now, the testing functions p

mf  are also separated in two pieces: p

mf  

and p

p

m Δ
f , whose support are Vm

 and pV
m Δ

, respectively. The contrast ratio ( , ) m r  is 

equal to ( ) m
 in the first voxel and ( )p 

m Δ
 in the second one. Thus, just as in (18)-

(20), the integrals can be rewritten as: 

  

   
   

   
   

   
   

   
 

0

0

0

/
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4

4

4

q

q

q

p

p

p

p

p q

j R cp q

V V

j R cp q

V V
pq

j R cp q

V V

p

e
dv dv

R

e
dv dv

R

Z
e

dv dv
R







   


   


  

   


   





 

 





 







 

 







 






 

 

 

m n

m
n Δ

n
m Δ

m n

m n

m n Δ
m n Δ
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mn

nm Δ
nm Δ

m Δ n Δ

m Δ n Δ

f r f r

f r f r

f r f r

f r f   0/

4

q

p q

j R cq

V V

e
dv dv

R




 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
m Δ n Δ

r

 (37) 
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To emphasize the translational invariance of the integrals in (37) and the terms 

within curly brackets of (38), (31) can be expressed as  
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 (39) 

where 
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Next, these equations are organized into 3-level block-Toeplitz form and the 

multiplications in (39) are accelerated using 3-D FFTs: 
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for {x, y, z}p . Here, 
sca , p

V ,  q
I  , q

κ , p
κ  and pq

Z  are 3-D arrays of size 

GMRES-FFT x y z(2 1) (2 1) (2 1)N N N N       whose entries are 
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for   x y z( , , ) (0,0,0), , 2 ,2 ,2i j k N N N . Here, the sets are given as 

 

x x

1 x 2 x x

y y

1 y 2 y y

z z

1 z 2 z z

{0, , },  { 1, ,2 }

{0, , },  { 1, ,2 }

{0, , },  { 1, ,2 }.

S N S N N

S N S N N

S N S N N

  

  

  

 (46) 

The 
pq

Z  arrays are filled by computing 
pqZ 

m n  terms such that m n  values are in the 

extended set  

  x x y y z z( , , ) ,  ,  .i j k N i N N j N N k N          m n  (47) 



 29 

Note that the actual basis/testing functions on the mesh give rise to a m n  values that are 

limited to the smaller set 

 

x x

y y

z z

ˆ ˆˆ ˆ1 1 ,

ˆ ˆˆ ˆ( , , ) 1 1 ,   for , {x, y, z}

ˆ ˆˆ ˆ1 1

N i N

i j k N j N p q

N k N

      
 

         
 

      

p x q x

m n p y q y

p z q z

 (48) 

which can be verified by using (30)-(32). The pqZ 

m n  corresponding to testing-basis function 

pairs that are not present in the mesh exist because of the zero-padding scheme in (44) and 

are either multiplied by zero coefficients in the q q
κ I  arrays or the result of the 

multiplication is discarded after the sca , p
V  arrays are computed in (44). 

The self-term contribution is still computationally negligible (sparse matrix-vector 

multiplication) compared to the FFTs. The 36 pq
Z  matrices can be pre-FFTed and stored 

prior to the matrix-vector multiplications in the solve step. At each iteration, 6 FFTs (

q q n nκ I  and q q n nκ I  for  , ,q x y z ) and 6 IFFTs must be performed to compute sca , p
V  

for  , ,p x y z . Table 1 compares the computational costs of the proposed GMRES-FFT 

method to the common CG-FFT method: (i) The proposed GMRES-FFT requires nearly 

twice as much memory because of the additional separation of matrices arising from the 

contrast-weighted testing functions. (ii) The matrix-fill time (including the time to pre-FFT 

the block-Toeplitz matrices) of the proposed method will be essentially the same as that of 

the common CG-FFT method because both times are dominated by the computation of the 

integrals and because both methods construct about the same number of equations. (iii) 

The proposed GMRES-FFT will require approximately 33% more operations to multiply 

matrices at each iteration because it computes more inverse FFTs.  
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Table 1 Computational costs of common CG-FFT vs. proposed GMRES-FFT  

Method Large Arrays Stored 
Pre-

FFTs 

FFTs / 

Iteration 

IFFTs / 

Iteration 

Common CG-

FFT sca,

22

18 ( ) 1 ( ) 3 ( )pq q p  Z I V
  18 6 3 

Proposed 

GMRES-FFT sca,

43

36 ( ) 1 ( ) 6 ( )pq q p  Z I V
 36 6 6 

In summary, by filling and storing only the unique entries of the block-Toeplitz 

matrix components of Z  and by using 3-D FFTs to accelerate the matrix-vector 

multiplication during the iterative solution, the GMRES-FFT method reduces the MOM 

computational costs to  GMRES-FFTO N  matrix fill operations,  GMRES-FFTO N  memory 

space, and  GMRES-FFT GMRES-FFTlogO N N  operations per iteration. The GMRES-FFT method 

yields solutions that are identical (within machine precision) to the MOM solution as it 

makes no approximations while compressing the Z  matrix; however, the method 

constrains the geometry discretization to voxels and is thus inapplicable for irregular 

(tetrahedral) meshes [34]. 

2.3.3 Adaptive Integral Method (AIM) 

While AIM also utilizes the translational invariance of the Green’s function to 

reduce the MOM computational costs, it does not require the geometry to be regularly 

meshed. Instead, in the AIM approach, an auxiliary regular grid of point sources and 

observers is used to approximate the impedance matrix entries: (i) The primary mesh of  

is enclosed by an auxiliary grid composed of C cx cy czN N N N    grid points. (ii) The 

impedance matrix Z  is then split into two terms [34], [57]: 

 * FFT * corr *, ZI Z I Z I  (49) 

where 

V



 31 

 
 

FFT †

, , ,

.i i

N N

i x y z



 

 Z Λ GΛ   (50) 

The sparse anterpolation matrices i
Λ  map currents from the primary mesh to the auxiliary 

grid, the 3-level block Toeplitz matrix G  propagates potentials from source points on the 

auxiliary grid to observer points on the same grid, and the transpose matrices †i
Λ  

interpolate the fields from the auxiliary grid back to the primary mesh. In (10), corr
Z  is a 

sparse correction matrix with corrN  non-zero entries defined as: 

  
   FFT

corr , , , if  near 
,

0, otherwise.

m nm n m n
m n

 
 


Z Z f f
Z  (51) 

The functions mf  and nf  are considered near if the minimum distance among the points 

that they map to is less than a pre-specified distance along each Cartesian direction [34], 

[58]; i.e., only if all three of the following conditions are met: 

 x x y z z
, , ,

min ,  min ,  min .
m n m n m n

u u u u y u u
u C u C u C u C u C u C

x x c y y c z z c    
       

          (52) 

Here, x,y,zc  denote the auxiliary grid spacing along different Cartesian directions, ,m nC  

denote the set of auxiliary grid points associated with  and nf , and x,y,z  are independent 

parameters that define the size of the near-zone correction region. 

The anterpolation matrix, i
Λ , is a sparse matrix with mapN  non-zero entries that are 

found by matching multipole moments of potential functions at M grid points to the 

functions, n n f  [34]. The propagation matrix G  is an C CN N  matrix that has CN  unique 

entries arranged in a 3-level block-Toeplitz structure; thus it requires  CO N  operations 

to fill G ,  CO N  bytes to store it, and  C ClogO N N  operations to perform an accelerated 

matrix-vector multiplication with 3-D FFTs just as in (44) [35]. For the BioEM simulations 

considered in this thesis, x,y,zc , x,y,z , and M  can be chosen such that C MOMN N , 

corr MOMN N , and map MOMN N , resulting in  MOMO N  operations to fill all of the 

matrices,  MOMO N  bytes to store them, and  MOM MOMlogO N N  operations to perform 

mf
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the multiplication at each iteration [59]. These parameters also offer a tradeoff between the 

accuracy and the computational costs of the method. 

2.4 FINITE-DIFFERENCE TIME-DOMAIN (FDTD) 

The FDTD solution of (1) is performed in five steps: (i) A regular voxel mesh of 

numV  (with spacing  , ,x y z   ) is used to sample the scattered fields in space and time 

according to the Yee scheme: Electric field components are sampled on the cell edges at 

times T,2 ,...,t t N t    and magnetic field components are sampled at the center of the 

faces at times T0.5 ,1.5 ,..., ( 0.5)t t N t     [60]. The FDTD time-step size must be chosen 

to satisfy the Courant-Freidrisch-Levy stability condition 2 2 2

01t c x y z          

[17], [61]. (ii) The material properties  ,   of the scattering volume are assumed 

frequency independent. Because constant parameters can represent tissue properties 

accurately only over narrow bands of frequencies [62], this simplification sacrifices an 

inherent advantage of time-domain methods: their ability to find results over a broad 

frequency band with a single transient simulation. That is, just like frequency-domain 

methods, the solution must be re-calculated using different constant material parameters 

when different frequencies are of interest. Nevertheless, using frequency-independent 

material properties is the most efficient approach when time harmonic solutions are of 

interest because temporal convolutions in (1) become multiplications. (iii) The partial 

derivatives in (1) are approximated using a second-order accurate central differencing 

scheme; this yields the FDTD update equations [38], e.g., for the x̂  components of the 

electric and magnetic fields: 
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 (53) 

where the subscript indicates the spatial position and the superscript the time instant, e.g. 

    
1
2

1
sca sca 1

2, ,
, , , 1

l

x xi j k
E E i x j y k z l t




       . The electric field update equations require 

 ,   values at the location of the electric field samples, i.e., on the voxel edges. As is 

common, effective material properties that are equal to the average of the material 

properties of the four cells that share the edge are used in this case [63], [64]. (iv) The mesh 

is truncated by introducing an absorbing layer outside the scattering volume to minimize 

erroneous reflections from the grid’s artificial truncation [17], [31]. The absorbing layer is 

comprised of a PML that is backed by a perfect electrically conducting wall. The split-field 

PML formulation used in this thesis is constructed by splitting the scattered field into two 

non-physical fields and artificially introducing conductivities for each component such that 

theoretically there are no reflections at the PML interface [17], [31]. In the actual 

implementation, however, there are some reflections at the interface due to finite precision 

arithmetic, numerical errors, and the layer’s finite thickness. The PML is characterized by 
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the layer thickness, the conductivity profile over the region, and its distance from the 

scattering volume. (v) The electric and magnetic field samples are found by a leap-frog 

time-marching scheme [17], [60]. The FDTD implementation used in this thesis is 

described in greater detail in [38]. 

Let 
FDTDN  represent the total number of cells in the FDTD mesh of volume numV , 

which includes an extended region around V , and the PML region; clearly, FDTD vox .N N  

Then,  FDTDO N  operations are required to precompute the averaged material properties 

required at each sample point in (53),  FDTDO N  bytes are required to store the material 

properties and field values at each sample point, and  FDTDO N  operations must be 

performed at each time step. Since the fields are sampled using a regular mesh, FDTD also 

suffers from staircasing errors. Several approaches have been proposed to reduce the 

staircasing error for FDTD, e.g., subgridding [65] and conformal FDTD [66], but come 

with additional computational costs, stability limitations, and implementation complexity. 
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Chapter 3: Comparison Methodology 

This Chapter presents the benchmark scattering problems and the performance 

criteria that are used to systematically compare the different numerical methods in Chapter 

4. 

3.1 BENCHMARK PROBLEMS 

The numerical methods of interest are quite general and can be used to perform a 

large variety of BioEM simulations in the UHF band. To be able to draw useful and broad 

conclusions about the performance of these methods, a BioEM benchmark is introduced. 

The benchmark is intended to provide information about the performance of different 

BioEM simulation methods when computing the power absorbed by a human model 

illuminated with an impressed time-harmonic source. The human and source models in the 

benchmark are as follows.  

3.1.1 Pixel- and Surface-based Models 

The BioEM benchmark consists of three inhomogeneous models: a multilayered 

spherical head phantom, an anatomical male, and an anatomical female model. The head 

phantom is a sphere of 108-mm radius that is composed of four layers: 4 mm skin (dry), 4 

mm fat, 8 mm bone average (mean of bone cortical and bone marrow), and 92 mm brain 

average (mean of grey matter and white matter) [40]. The human models are the AustinMan 

v2.2 and AustinWoman v2.1 [16], which were developed from the anatomical cross-

sectional images in the Visible Human Project [67]. The AustinMan model fits in a 

rectangular cuboid of size 
3325 569 1877 mm   and is comprised of 63 different tissues, 

and the AustinWoman model fits in a rectangular cuboid of size 
3292 536 1730 mm   and 

is comprised of 56 different tissues. The material properties of the tissues in the models are 

obtained from [62], [68] for the frequencies of interest; see Appendix A.  



 36 

Both a pixel-based and a surface-based model are used for the spherical head 

phantom, while only pixel-based models are used for the AustinMan and AustinWoman 

models. The pixel-based spherical and anatomical models were created in a similar manner 

starting from a set of fine-resolution ( 31 1
3 3 1 mm  ) pixelated cross-sectional images, 

segmenting the pixels using the original resolution of the images, and coarsening the pixels 

to various resolutions [16]. The pixels were then extruded to create voxel meshes of the 

models. The tetrahedral meshes for the head phantom were generated from the analytical 

surface definitions using a CAD program [69]. The meshes are visualized in Figure 6 (head 

phantom), Figure 7 (AustinMan), and Figure 8 (AustinWoman) and the number of cells in 

each mesh is listed in Table 2. For additional visualizations and material properties, see 

[70]. All the meshes used in this thesis are available for download in [70], [71]. 

 

Figure 6: The multilayered spherical head phantom with one quadrant removed to show 

the inner layers. Voxel – (a) 4×4×4 mm3 with a zoomed in portion to its left, 

(b) 2×2×2 mm3, (c) 1×1×1 mm3 with a zoomed in portion to its right, 

Tetrahedral – (d) 60.7 mm3 with a zoomed in portion to its left, (e) 8.32 mm3, 

and (f) 0.91 mm3 with a zoomed in portion to its right. Staircasing causes a 

poor representation of the original boundaries in the voxel mesh. 
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Figure 7: AustinMan v2.2 visualizations with one quadrant removed to show the 

internal tissues for the (a) 8×8×8 mm3, (b) 4×4×4 mm3, (c) 2×2×2 mm3, and 

(d) 1×1×1 mm3 resolutions. Portions of the head and thorax are zoomed in for 

the 8×8×8 mm3 and 1×1×1 mm3 resolutions on the left and right, respectively. 
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Figure 8: AustinWoman v2.1 visualizations with one quadrant removed to show the 

internal tissue details for the (a) 8×8×8 mm3, (b) 4×4×4 mm3, (c) 2×2×2 mm3, 

and (d) 1×1×1 mm3 resolutions. Portions of the head and thorax are zoomed 

in for the 8×8×8 mm3 and 1×1×1 mm3 resolutions on the left and right, 

respectively. 
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Table 2 Mesh properties for the benchmark models 

Model 
Cell 

Type 

Avg. Cell 

Volume 

Number 

of Cells 

Avg. Edge 

Length 

Head Sphere Tetra 60.7 mm3 86 663 8.53 mm 

Head Sphere Tetra 8.32 mm3 633 632 4.38 mm 

Head Sphere Tetra 0.91 mm3 5 803 958 2.09 mm 

Head Sphere Voxel 4×4×4 mm3 82 504 4 mm 

Head Sphere Voxel 2×2×2 mm3 658 976 2 mm 

Head Sphere Voxel 1×1×1 mm3 5 276 488 1 mm 

AustinMan v2.2 Voxel 8×8×8 mm3 195 556 8 mm 

AustinMan v2.2 Voxel 4×4×4 mm3 1 588 389 4 mm 

AustinMan v2.2 Voxel 2×2×2 mm3 12 743 667 2 mm 

AustinMan v2.2 Voxel 1×1×1 mm3 102 009 137 1 mm 

AustinWoman v2.1 Voxel 8×8×8 mm3 157 082 8 mm 

AustinWoman v2.1 Voxel 4×4×4 mm3 1 276 976 4 mm 

AustinWoman v2.1 Voxel 2×2×2 mm3 10 241 026 2 mm 

AustinWoman v2.1 Voxel 1×1×1 mm3 81 949 413 1 mm 

3.1.2 Excitations 

A plane wave and an impressed Hertzian dipole are used to excite the models. The 

plane wave excitation, which represents illumination from far away sources such as cell-

phone towers, is given as 

    inc inc

PW 0 d 0
ˆˆ, / , ,t E f t t c    E r p k r  (54) 

where PWp̂  is the polarization vector, 
inc

0E  is the magnitude, f  is the waveform function, 

k̂  is the propagation direction, and dt  is the time delay. The dipole excitation, which 

represents illumination from nearby sources such as cell-phone antennas, is given as 
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

E r R R p

R R p
 (55) 
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for a 
HDp̂ -oriented Hertzian dipole centered at r  with current I  and length L ; here, 

 ˆ R R r r . For time-domain simulations, the sinusoidally modulated ramp defined in 

[38], which is the turn-on ramp and steady-state portion of the multiple cycle m-n-m pulse 

in [72], is used as the waveform function, i.e.,  

      

 

0, 0

, sin , 0 2

sin , 2 ,

t

f t g t t t

t t

   

  




  
 

  (56) 

where   is the number of periods over which the waveform function ramps up before 

becoming a sinusoid, g  is the ramp function in [72],   3 4 510 15 6g t      , and 

 2t   . 

The frequency-domain representation of the incident fields corresponding to the 

above expressions are 
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for the plane wave and  
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 (58) 

for the dipole. 

3.1.3 Frequencies 

Three frequencies in the UHF band are considered: 402 MHz, 900 MHz, and 2.45 

GHz, which are in the MICS, GSM-900, and ISM bands used in medical implants, cell 

phones, and Wi-Fi and microwave ovens, respectively. 
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3.2 PERFORMANCE CRITERIA 

The criteria used in this thesis to quantify the accuracy, computational costs, and 

the accuracy-cost tradeoff of the simulations are detailed next. 

3.2.1 Error Measures 

In Chapter 4, five different measures are used to quantify the errors. These error 

measures are defined using the pointwise time-averaged absorbed power density  
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 (59) 

and integrating it over different volumes; e.g., 

 

   

   

   

cell

tissue cell

 s.t. 

tot cell

,  (W)

,  (W)

,  (W)

k

k

T k

k TT

k

V

k V VV

kV

P P dV

P P dV P

P P dV P

 

 

 







 

 







r

r

r

 (60) 

yields the power absorbed in cell k , in tissue T , and the entire scattering volume, 

respectively. It is important to observe that even if 
cellk

P could be computed exactly in each 

cell, the last two integrals in (60) would still be approximate because the volumes TV  and 

V  are approximated in terms of small cells. In the above equations, the superscript * 

denotes the complex conjugate and the single bar above a variable indicates that it is a time-

averaged quantity. 

To illustrate the pros and cons of the different error measures defined below, a 

simple example is used (Figure 9). In this example, the scattering volume is composed of 

four 1 mm3 cells illuminated by an unspecified source such that, in the reference solution, 

the cells on the left absorb the time-averaged power of 1 nW and the cells on the right 
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absorb 0.1 nW; i.e., the cell-averaged time-averaged absorbed power density ( P ) in these 

cells are 1 W/m3 and 0.1 W/m3. Three different numerical results are contrasted in Figure 

9: in scenario 1, arbitrary numbers are assigned to the cells (the numbers are normalized to 

match totP  in the reference); in scenarios 2 and 3, P  is identical to the reference in two of 

the cells, 20% higher than the reference in a third cell, and 10% lower than the reference 

in the last cell. 
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Figure 9: A simple example with four cells that demonstrates the properties of the error 

measures. Top: Reference solution. Each cell is colored according to the value 

of P  (W/m3), which is shown in the middle of the cell. Middle: Three 

different approximate solutions. The cells are colored according to the value 

of P  shown in the middle of the cell. The relative error of the total absorbed 

power toterr
P

 is also shown for each scenario. Bottom: Cellwise absolute error. 

Each cell is colored according to the value of errP  shown in the middle of 

the cell. Also shown are the L∞- and L1-norms of errP  for each scenario. All 

colors are set using the logarithmic color bar on the right. All error measures 

indicate a larger error in Scenario 2 than in Scenario 3 even though in both 

cases a 20%  and a 10%  relative error is made in two of cells; this is 

because the measures are more sensitive to the errors in hot spots. 
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Error Measure 1: Relative Error of the Total Absorbed Power 

The first measure used in this thesis to quantify accuracy is the relative error of the 

total absorbed power defined as 

  
   

 
tot

ref

tot tot

ref

tot

err .
P

P P

P

 





  (61) 

The reference ref

totP  can be found from analytical, experimental, or more accurate numerical 

results; e.g., for the multilayered spherical head phantom, the analytical solution is 

available and is used as the reference in Chapter 4 [73]. On the one hand, toterr
P  is 

straightforward to calculate, is a single number at each frequency, and directly quantifies 

the accuracy of the total power absorbed by the model totP —an important quantity for 

assessing compliance with safety standards such as limitations on the whole-body specific 

absorption rate (SAR) [9], [74]. On the other hand, it is a rather insensitive measure that is 

often inadequate when comparing numerical methods because two simulations with very 

different results (field distributions) could have the same toterr
P . This is demonstrated in 

the scenario 1 in Figure 9, where toterr 0
P
  despite the fact that the absorbed power density 

is very different than the reference solution. 

This insensitivity is a natural limitation of whole-volume error norms like toterr
P  

that first integrate a function of interest and then compare the result to a reference. A 

possible alternative is to use pointwise error norms that first compare the result to a 

reference at each point and then integrate the difference. For example, consider the 

pointwise error in the absorbed power density  

      ref 3err , , ,  (W/m )P P P   r r r  (62) 

and its L∞- and L1-norms: 
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Unfortunately, there are difficulties when computing such pointwise error norms (see note 

2 below); instead, cell-averaged quantities (also known as “cellwise” rather than pointwise 

quantities) are used in this thesis as an alternative to pointwise error norms. 

Error Measure 2: Absolute Error of the Cell-Averaged Absorbed Power Density—

Visualization 

The second measure used in this thesis to quantify accuracy is the absolute error of

P , the cell-averaged time-averaged absorbed power density,  

  
 

 
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Because it is a function of position, this error measure contains more information than 

toterr
P

. The information is best represented using color images that visualize P  and errP  

using the same color scale (e.g., middle and bottom rows in Figure 9). Because the same 

quantity (power density) is visualized, the colors in images resulting from simulations that 

use different sized cells can be compared meaningfully and intuitively. 
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Error Measures 3-4: L∞- and L1-norm of the Error in the Cell-Averaged Absorbed 

Power Density 

The third and fourth error measures are the L∞-norm and L1-norm of errP : 
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These error norms are sensitive to the distribution of power (unlike toterr
P ), they are 

relatively easy to compute compared to pointwise error norms (see note 2 below), and they 

are single numbers at each frequency (unlike errP ) that can be used to analyze the tradeoffs 

between computation costs and accuracy. The L∞-norm provides a worst-case bound on 

the error that can be valuable when the simulations are used to ensure safety standards are 

met. While the L∞-norm provides a global maximum, it still only reports the error at one 

point. The L1-norm captures the errors over the entire domain. 

Error Measure 5: Relative Error of the Power Absorbed in Different Tissues  

The last error measure is the relative error of the power absorbed in each tissue :T  
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This error norm is more sensitive than toterr
P  to the location of the errors; indeed, it can 

even be more sensitive than cell

L1err
P

 to errors in small or localized tissues (e.g., eyes) that 

absorb relatively small amounts of power. For large tissues, however, it suffers from the 

same limitations as toterr
P —a simulation that yields a very inaccurate power density can 

have a very small toterr
P ; see Figure 15 vs. Figure 16 in Chapter 4.1—and becomes a poor 

measure for comparing numerical methods. 

Note 1: Insensitivity to Cold Spots 

It should be observed that all five error measures emphasize the errors in cells that 

absorb more power (hot spots) over those that absorb less power (cold spots). This effect 

can be seen in Figure 9, where toterr
P , LerrP

 , and L1errP  are an order of magnitude larger in 

scenario 2 compared to scenario 3 and the warmest color in visualization of errP  is orange 

in scenario 2 and aquamarine in scenario 3, despite both scenarios having the same +20%  

and -10% relative error in two cells. In this thesis, this type of measure is preferred over 

other measures that are more sensitive to errors in cold spots [75], [76] because a major 

function of BioEM simulators is to quantify whether the power absorbed by the whole 

model, the power absorbed by specific tissues in the model, or the peak absorbed power 

density remain below safety thresholds and because errors made in hot spots are more 

important than the errors made in cold spots for these purposes. 

Note 2: Cellwise vs. Pointwise Error Norms 

While both pointwise error norms (e.g., 
LerrP


,

L1errP ) and cellwise error norms (e.g., 

LerrP

 , L1errP ) require the evaluation/integration of referrP P P  , there are three major 

differences between cellwise and pointwise computation of the norms. First, errP  is a 

continuous function whereas errP  is a piecewise continuous function that is constant over 

each cell used in the analysis. Second, cellwise error norms average errP  over each cell 
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before finding its maximum/integrating it; thus, they in general give smaller values than 

pointwise error norms. Third, and most importantly, refP  and P  must be evaluated at the 

same points to calculate pointwise error norms (i.e., to evaluate/integrate referrP P P  ), 

whereas they must only be evaluated at the same cells to calculate cellwise error norms 

(i.e., to evaluate/integrate referrP P P  ). In other words, cellwise error norms can be 

found by independently computing    ref ref

cell ,
k

kV
P P dV   r  and  cellk

P  

 ,
kV
P dV r  rather than by computing    ref , ,

kV
P P dV  r r  in each cell k . 

This is a significant advantage for cellwise error norms because it is often difficult to 

accurately integrate refP  and refP P  over the volume kV : standard cubature rules will 

often not yield accurate results. This difficulty arises because different representations/ 

approximations of the volume are used to find refP  and P  in general; as a result, refP  can 

vary sharply and even be discontinuous when a change in tissues is encountered in the 

reference model within kV . Because refP  and P  integrations are independent in the 

cellwise error norms, the complicated integrals can be performed once for each mesh, the 

reference result in each cell of the mesh can be stored, and the results can be reused 

whenever needed. Pointwise error norms would have to repeat the complicated integrals 

every time a new P  is to be evaluated. 

For example, in Chapter 4, cellwise error norms for the spherical phantom are 

calculated by using a Mie series result as reference. When cells cross analytical boundaries 

(e.g., the support of the cell belongs to two layers of the multilayered sphere), standard 

cubature rules fail to give accurate results due to the discontinuity in refP  that occurs at the 

analytical boundary; thus, refP  is integrated adaptively using a recursive algorithm:  

(i) Check if the smallest circumsphere centered at the centroid of the cell crosses an 

analytical boundary. If the circumsphere belongs to more than one layer, then 

subdivide the cell. Check the circumsphere for each subcell; repeat the subdivision 
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until the circumsphere belongs to only one layer. For each (sub)cell whose 

circumsphere resides in a single layer, perform step (ii). 

(ii) Use a standard cubature rule to compute the integral over the (sub)cell. To ensure 

that the cubature rule has accurately calculated the integral, subdivide the cell, 

calculate the integral over each subcell, add the results, and compare to the integral. 

If the two results agree within a threshold (within 10-4 of each other for the Mie 

series reference in Chapter 4) then return the result obtained using the subcells 

(which should be more accurate than the cubature over the original cell). If the 

convergence criterion is not met; repeat step (ii) for each of the subcells. 

In this thesis, the cells are always subdivided into 8 subcells of the same shape: tetrahedral 

cells are refined using uniform octasection refinement [77] and voxel cells are divided into 

8 subvoxels at their centroid. In Chapter 4, the recursion continues for a maximum of 4 

subdivisions (at which point the subcells have a volume of 4/ 8 / 4096k kV V ). 

Note 3: Assessing Accuracy without a Reliable Reference  

All five error measures rely on a reference solution. Unfortunately, for the most 

complex models (e.g., the anatomical models), a reliable reference is often not available 

and different methods can yield significantly different results. To assess the accuracy of 

the methods without a reliable reference, the following approach is used: Increasingly 

higher resolutions of the model are simulated, totP  and various 
tissueT

P  values are calculated 

for the finest resolution models, and the range of values for tissueerr T
P

 are plotted for different 

resolutions (similar to an error-bar graph) by using the results from the finest resolution 

models (simulated by the same method) as reference. The computational costs of each 

simulation are also presented for the different resolutions. While it is not easy to deduce 
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the accuracy vs. cost tradeoff from such plots, they enable different methods to be 

compared even without a reliable reference. 

3.2.2 Cost Measures 

To compare the computational costs of the different methods, computation times 

and memory requirements are recorded for different stages of each simulation. The 

computation time is split into two parts: the preprocessing time and the solve/marching 

time (for FFT-accelerated integral equation methods/FDTD). The preprocessing time 

consists of processing the mesh and filling the relevant matrices for FFT-accelerated 

integral equation methods; it consists of reading the input parameters from disk, filling in 

(averaging) material properties, and setting up the grid (including the PML) for FDTD. The 

solve time consists of filling the right-hand-side (the tested incident field) plus the time the 

iterative solver takes to converge once the iterations start for FFT-accelerated integral 

equation methods. The marching time is the time needed to march through all the time 

steps for FDTD. For simulations involving multiple excitations, such as a sweep over 

incident plane waves from different directions (e.g., see [23]), the solve/marching time 

dominates the preprocess time which occurs just once. Therefore, more significance is 

given to the solve/marching time when analyzing computational costs. 

Given the complexity of the problems solved and the increasing importance of 

parallel computing, BioEM simulations are often performed on parallel computers; in fact, 

several of the larger-scale simulations in this thesis were performed in parallel. A 

comprehensive comparison of the parallel efficiency and scalability of the different 

methods, which would require a multitude of potentially low-efficiency simulations for the 

different parallel algorithms [23], [57], is out of the scope of this thesis. Instead, all of the 

simulations in Chapter 4 are performed using the smallest number of processes dictated by 
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the memory available to each processor and the computer time that could be afforded. The 

computational costs of the parallel runs are serialized as  

 
serialized

1

serialized wall

max

,

i
i P

M P M

T PT

 



 (70) 

where wallT  is the wall-clock (parallel) compute time, iM  is the maximum memory required 

by process i , and P  is the total number of processes used.  

3.2.3 Accuracy-Efficiency Tradeoffs 

To identify the potentially different accuracy-efficiency tradeoffs of different 

methods, plots of error vs. computational cost are used in this thesis. These plots are drawn 

by varying the model resolution/mesh density and optimizing the parameters of the 

numerical method to minimize both the error and the computational costs; indeed, the ideal 

simulation would yield no errors and use zero computational resources. In a plot of error 

vs. cost, such a simulation would be represented by the origin of the plot.  
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Chapter 4: Results 

In this Chapter, the performance of GMRES-FFT, AIM, and FDTD are compared 

and the effects of three factors (frequency, excitation type, model complexity) on the 

comparison are investigated using the benchmark problems and performance criteria 

detailed in Chapter 3. To facilitate the comparison, a baseline case is presented first and 

then differences are observed as the factors of interest are modified one at a time. 

The simulations were carried out on Stampede at the Texas Advanced Computing 

Center (TACC) [78]. Each computing node on Stampede has two Intel Xeon E5-2680 2.7 

GHz 8-core processors for a total of 16 cores with 32 GB of memory per node. Each 

simulation was constrained to a maximum wall-clock time of 48 hours and a maximum of 

32 GB memory/process; as mentioned in Chapter 3.2.2, the minimum number of processes 

that satisfied these constraints were used in the following simulations and the 

computational costs were serialized. Further details, including the number of processes 

used for each simulation, can be found in Appendix B. 

4.1 BASELINE CASE – MULTILAYERED SPHERICAL HEAD PHANTOM EXCITED BY A 900 

MHZ PLANE WAVE 

Among the various benchmark problems, the multilayered spherical head phantom 

illuminated at 900 MHz with a unit-magnitude plane wave ( inc

0 PW
ˆˆ ˆ ˆ1,  , E     p x k z ) 

was selected as the baseline case. The spherical phantom was chosen because an analytical 

Mie series reference solution can be used to calculate the error measures, 900 MHz was 

chosen because it is the middle frequency of interest, and the plane-wave excitation was 

chosen because the incident field is simpler/varies less than that for the Hertzian dipole 

excitation. 
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Figure 10: Accuracy-efficiency tradeoffs of the methods for the multilayered spherical 

head phantom excited by a 900-MHz plane wave. The relative error of totP  is 

plotted vs. the (a) preprocess time, (b) memory, (c) solve/marching time, and 

(d) average cell volume as model resolution increases. 

First, the total time-averaged power absorbed by the head phantom is computed for 

various model resolutions and the results are compared to the Mie series solution, which is 

ref

tot 69.69853 WP   [73]. The relative error made in each simulation is plotted vs. the 

computational costs of that simulation and the average cell volume used in the simulation 

in Figure 10. Figure 10(d) shows that when a pixel-based model and voxel cells are used, 

   
 (a) (b) 

   
 (c) (d) 
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all three methods (GMRES-FFT, AIM-Voxel, and FDTD) compute the total time-averaged 

absorbed power with about the same accuracy and when surface-based model and 

tetrahedral cells are used, AIM achieves results that are one- to two-digits more accurate 

for the same average cell volume. Figure 10(a)-(c) show that FDTD has a significantly 

lower preprocess time (about 3 orders of magnitude), somewhat lower memory 

requirement (about 1 order of magnitude), and about the same solve/marching time cost 

compared to other methods that use voxel cells5,6. The error-vs.-cost tradeoff in Figure 

10(a) shows that FDTD data is closer to the origin even compared to the AIM-Tetra case, 

suggesting that the method is superior to all three alternatives when toterr
P  is used as the 

error measure and the preprocess time is used as the cost measure. Figure 10(b)-(c) show, 

however, that FDTD performance is comparable to GMRES-FFT and AIM-Voxel, 

whereas the AIM-Tetra results are closest to the origin; i.e., when using surface-based 

models and tetrahedral cells, AIM is superior to the other three numerical methods when 

toterr
P  is the error measure and memory requirement or solve/march time are the cost 

measures. Even though the preprocess times in Figure 10(a) are comparable or larger than 

the solve/marching time for FFT-accelerated integral equation solvers, as mentioned in 

Chapter 3.2.2, less emphasis should be placed on the preprocess time as a cost measure 

because it can be amortized; e.g., it becomes negligible for multiple excitations. Thus, the 

results in Figure 10 indicate that AIM using tetrahedral cells has the best performance out 

of the four methods and should be the preferred numerical method for this problem. 

                                                 
5 The higher preprocess time and memory requirement of FFT-accelerated IE methods when using voxels is 

primarily because of the computationally intensive integrals and the memory space required for filling and 

storing the relevant portions of the MOM impedance matrix Z . 
6 The GMRES-FFT preprocessing time can be reduced further (by upto a factor of 10) relatively easily by 

exploiting redundancies that arise because the voxels are not only regular but also uniform (i.e., 

x y z     ). These improvements were not adopted in this thesis, however, to keep the formulation and 

implementation more general. Moreover, as explained later in the paragraph, preprocessing time is a less 

important cost measure than solve time and memory requirement. 
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While toterr
P  is of interest for whole-body safety standards [9], [74], it is a rather 

insensitive error measure and a low toterr
P  does not imply that other quantities of interest, 

such as the absorbed power density, are computed accurately (see Figure 9 in Chapter 

3.2.1). Alternatively, the errors can be quantified by visualizing the cell-averaged time-

averaged absorbed power density P  and its absolute error errP  compared to a reference 

result. The Mie series reference results are plotted in Figure 11 and P  is plotted for the 

different methods in Figure 12 as the cell sizes are varied. The two figures show that the 

absorbed power density is large in the skin layer, small in the fat and bone-average layers, 

and has a hot spot near the center of the brain-average layer. Despite noticeable differences 

in the peak values of P  and minor differences on the surface and interior cold spots, the 

power distributions in Figure 12 all appear quite similar. Visualizing the error errP  in 

Figure 13 makes it is easier to distinguish the simulation results. Figure 13 shows that the 

largest errors are typically located in the skin layer (likely as a result of both higher field 

values and staircasing errors). Overall, the AIM-Tetra error levels are significantly lower 

than the methods that use pixel-based models; in the skin layer, the results have one to two 

orders of magnitude lower errors. The FDTD results have somewhat smaller internal error 

levels compared to the integral equation based methods that use voxel cells, while the 

maximum error is larger for the FDTD method and does not appear to converge with 

increased model resolution. In Figure 12, the GMRES-FFT and AIM-Voxel results appear 

identical, e.g., P  at the surfaces of the coarsest simulations have the same pattern; this is 

because both methods solve the same underlying MOM system of equations. Yet, there are 

additional (error-controllable) approximations in AIM compared to GMRES-FFT, which 

solves the MOM equations exactly (within machine precision). This implies that the errors 

for AIM-Voxel will not be identical to those for GRMES-FFT. Indeed, Figure 13 shows 

that errP  for AIM-Voxel is similar to but slightly higher than that for GMRES-FFT.  
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Figure 11: Mie series reference: Cell-averaged time-averaged absorbed power density 

when the head phantom is excited by a 900 MHz plane wave incident from 

the top of the model. The reference results are shown as the meshes are refined 

with average voxel (tetrahedron) volumes of 64 (60.7), 8 (8.32), and 1 (0.91) 

mm3. One quadrant of the sphere is removed in the images to show the 

internal power density. 



 57 

 

Figure 12: Cell-averaged time-averaged absorbed power density for the baseline case. 

The results from four different methods are shown: GMRES-FFT, AIM-

Voxel, and FDTD use a pixel-based model and voxel cells; AIM-Tetra uses a 

surface-based model and tetrahedral cells. The meshes are refined for each 

method with average voxel (tetrahedron) volumes of 64 (60.7), 8 (8.32), and 

1 (0.91) mm3. One quadrant of the sphere is removed in the images to show 

the internal power density. 
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Figure 13: Errors in the absorbed power density plots in Figure 12. The maximum errP  

value in each image is also shown. The meshes are refined for each method 

with average voxel (tetrahedron) volumes of 64 (60.7), 8 (8.32), and 1 (0.91) 

mm3. One quadrant of the sphere is removed in the images to show the 

internal errors  

While the visualizations in Figure 11-Figure 13 are helpful in assessing the power 

density and its distribution (e.g., to identify hot spots or worst-case error spots), it is not 

clear how to correlate these images with the computational costs and to identify cost vs. 

error tradeoffs. The L∞- and L1-norm of the error of the cell-averaged time-averaged 

absorbed power density defined in (67) and (68) converts the errors visualized in Figure 13 

into numbers that can be used in error-vs.-cost plots. 

In Figure 14, LerrP

  is plotted vs. the computational costs and average cell volume 

for each simulation. These plots show the costs associated with the maximum error in the 
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cell-averaged time-averaged absorbed power density (shown underneath each visualization 

in Figure 13) normalized by the maximum power density (shown underneath the 

visualizations in Figure 11); see (67). The AIM-Tetra results have about one extra digit of 

accuracy compared to other methods and show reasonable convergence as the mesh is 

refined. AIM-Voxel and GMRES-FFT show similar behavior (again, because they are 

solving the same underlying system of equations): the error decreases mildly from the 

coarsest to finest resolution while the results for the 2×2×2 mm3 cells have the highest 

error, indicating a somewhat inconsistent convergence trend. The FDTD results, on the 

other hand, show increasing error as the mesh is refined, which is an undesirable feature in 

a numerical method. Examining LerrP

  with respect to computational costs in Figure 14(a)-

(c) suggest that AIM-Tetra should be the preferred method as it is the only method that 

consistently shows expected behavior for a numerical method (decreasing error as the cost 

is increased).  



 60 

 

Figure 14: Accuracy-efficiency tradeoffs for the baseline case using the L∞-norm. The 

L∞-norm of errP  is plotted vs. the (a) preprocess time, (b) memory, (c) 

solve/marching time, and (d) average cell volume as the model resolution is 

increased. 

In Figure 15, L1errP  for each simulation is plotted vs. the computational costs of that 

simulation. According to the L1errP  error measure, all of the numerical methods show 

expected accuracy behavior (decreasing error as costs are increased) unlike LerrP

  shown in 

Figure 14. In other words, even though FDTD, GMRES-FFT, and AIM-Voxel have 

difficulty improving their worst-case errors in the power density, improving the resolution 
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of the models does improve the overall power density computation. At first glance, the 

error-vs.-cost plots in Figure 15 appear similar to those in Figure 10 but with higher error 

due to the more sensitive error measure. Indeed, the general trends in the two figures are 

the same, e.g., AIM-Tetra outperforms the numerical methods using pixel-based models, 

which are comparable with respect to solve/marching time, and FDTD has a somewhat 

lower memory requirement and significantly lower preprocess time. Upon closer 

inspection, however, Figure 15 shows that the FDTD error is slightly lower than GMRES-

FFT and AIM-Voxel ones, which agrees with the error visualizations in Figure 13. As a 

result, FDTD results move closer to the origin compared to GMRES-FFT and AIM-Voxel 

when L1errP  is used as the error measure, suggesting that FDTD is the best method for 

solving the baseline case (when only pixel-based models and voxel meshes are available). 

Nonetheless, AIM-Tetra still significantly outperforms FDTD with respect to memory and 

solve/marching time, while FDTD continues to hold the advantage for the less significant 

preprocess time. 



 62 

 

Figure 15: Accuracy-efficiency tradeoffs for the baseline case using the L1-norm. The 

L1-norm of errP  is plotted vs. the (a) preprocess time, (b) memory, (c) 

solve/marching time, and (d) average cell volume as the model resolution is 

increased. 

Next, the accuracy-efficiency tradeoffs are quantified by using tissueerr T
P

 as the error 

measure in Figure 16-Figure 18. Figure 17 shows that when estimating the total power 

absorbed in the brain layer (when BrainAvg.err
P

 is used as the error measure), the relative 

performances of the methods remain essentially the same as those in Figure 15 (using L1errP  

as the error measure). Figure 16 shows that FDTD performs especially poorly and 
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GMRES-FFT exhibits extraordinary convergence when estimating the total power 

absorbed in the skin layer (when Skinerr
P  is used as the error measure). This is because, as 

mentioned in Chapter 3.2.1, whole-volume error norms are rather insensitive to errors and 

can be poor measures for judging numerical methods for large tissues. Results for other 

tissues are shown in Appendix C. 

Lastly, Figure 18 presents the computational costs of the methods, their estimates 

for total power absorbed in different tissues, and tissueerr T
P

 as function of the model 

resolution. The values for tissueerr T
P

 shown in Figure 18(b) correspond to the simulations 

shown in Figure 18(a). Figure 18(a) shows that for a given average cell volume, all FDTD 

costs are lower than all other methods. Figure 18(b) shows that the estimated total power 

absorbed shows good agreement with Mie series result (within ~10% of the Mie series 

reference) in all the tissues when the finest resolution models are used, regardless of the 

method. Figure 18(b) also shows that AIM-tetra results have the lowest errors relative to 

the Mie series result. As mentioned in Note 3 in Chapter 3.2.1, it is not easy to deduce the 

accuracy vs. cost tradeoff from such plots. Unlike Figure 15, it is not clear that FDTD 

would require more computational resources than AIM-Tetra to reach the same level of 

errors. Indeed, while these plots can be used to identify the relative power absorbed in 

different tissues, the correlation among results from different methods, the range of 

uncertainty in the results due to model resolution, and to judge the performance of different 

methods even when a reliable reference is missing, the data should be considered very 

cautiously. It should be emphasized again that tissueerr T
P

 is a poor error measure when large 

tissues are considered (see Section 3.2.1).  
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Figure 16: Accuracy-efficiency tradeoffs for the baseline case using the relative error of 

the power absorbed in the skin layer. The relative error of SkinP  is plotted vs. 

the (a) preprocess time, (b) memory, (c) solve/ marching time, and (d) average 

cell volume as the model resolution is increased. 
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Figure 17: Accuracy-efficiency tradeoffs for the baseline case using the relative error of 

the power absorbed in the brain layer. The relative error of 
Brain Avg.P  is plotted 

vs. the (a) preprocess time, (b) memory, (c) solve/ marching time, and (d) 

average cell volume as the model resolution is increased. 
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Figure 18: Costs and results of the methods for the multilayered spherical head phantom 

excited by a 900 MHz plane wave. (a) The computational costs vs. the average 

cell volume as the model resolution is increased. (b) Top: Plot of the total 

time-averaged absorbed power for each tissue of the head phantom for the 

finest mesh (1 mm3) and the reference absorbed power from the Mie series. 

Bottom: The relative error made for each tissue as the mesh resolution is 

increased (
ref

tissueP  is obtained from the analytical Mie series solution). 

In the following, when an analytical reference solution exists (i.e., for the 

multilayered spherical head phantoms), the L1-norm of the cell-averaged power density 

 

 
 (a) (b) 
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error (defined in (68)) is used as the error measure in the error-vs.-cost plots. When there 

is not an analytical reference (e.g., the AustinMan and AustinWoman anatomical models), 

to quantify the performance of the different numerical methods, the computational costs, 

the power absorbed by different tissues, and tissueerr T
P

 are plotted (by using the finest 

resolution results as reference) as model resolutions are varied (similar to Figure 18). 

4.2 FREQUENCY VARIATION – 402 MHZ, 2.45 GHZ CASES  

The head phantom is analyzed at 900 MHz (Figure 15) and two additional 

frequencies in the UHF band: 402 MHz (MICS band) and 2.45 GHz (ISM band). The 

results are shown in the error-vs.-cost plots using the L1-norm of the cell-averaged power 

density error (defined in (68)) in Figure 15, Figure 19, and Figure 20 for 900 MHz, 402 

MHz, and 2.45 GHz, respectively. First, examining the error with respect to cell volume 

(subfigure d) between frequencies indicates that the error increases as the frequency 

increases; this is due to the wavelength decreasing while the scattering geometries are not 

changed, resulting in fewer cells per wavelength. This is particularly pronounced for the 

AIM-Tetra results at 2.45 GHz, which see a large jump in error compared to 900 MHz. 
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Figure 19: Accuracy-efficiency tradeoffs of the methods for the multilayered spherical 

head phantom excited by a 402-MHz plane wave. The L1-norm of errP  is 

plotted vs. the (a) preprocess time, (b) memory, (c) solve/marching time, and 

(d) average cell volume as the model resolution is increased. 
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Figure 20: Accuracy-efficiency tradeoffs of the methods for the multilayered spherical 

head phantom excited by a 2.45 GHz plane wave. The L1-norm of errP  is 

plotted vs. the (a) preprocess time, (b) memory, (c) solve/marching time, and 

(d) average cell volume as the model resolution is increased. 

The preprocess time (subfigure a) and memory (subfigure b) are not strongly 

affected by frequency for any of the methods. As a result, the only shifts that occur in 

subfigures a and b between the figures are due to the changes in the error (y-axis). On the 

contrary, the solve/marching time is quite frequency dependent. For integral equation based 

methods, larger number of iterations are required for iterative solver convergence as the 
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frequency increases (see Table 22 in Appendix C). It is worth noting that for both GMRES-

FFT and AIM, preconditioners could be applied to reduce the number of iterations required 

for convergence, which in turn would reduce the total solve time [79], [80]. For FDTD, the 

marching time decreases as the frequency increases; this is because shorter time intervals 

are simulated and the time-step sizes, which are dictated by the CFL condition for the 

meshes simulated, remain the same (thus, fewer number of timesteps are needed to achieve 

steady state, see Table 22 in Appendix C). These observations for the timing results are 

consistent with the BCG-FFT vs. FDTD comparison in [27]. 

Overall, in the error-vs.-cost plots for solve/marching time, AIM-Tetra outperforms 

FDTD for each of the frequencies investigated – significantly at 402 MHz with the 

performance gap decreasing as the frequency increases, resulting in almost comparable 

behavior at 2.45 GHz (with a slight edge to AIM-Tetra). Thus, if a surface-based model is 

available, the plots suggest that AIM should be used to obtain more accurate results for 

approximately the same cost compared to the other methods. Among the methods using 

pixel-based models, GMRES-FFT and AIM-Voxel have similar behavior at all frequencies 

and outperform FDTD at 402 MHz, are comparable with FDTD at 900 MHz (with a slight 

edge to FDTD), and have poorer performance than FDTD at 2.45 GHz. These results 

suggest that, when constrained to a voxel model, it is better to use integral equation based 

methods at lower frequencies and FDTD at higher frequencies, playing to each of the 

methods’ strengths – lower iterations for integral equation based methods at low 

frequencies and fewer timesteps for FDTD at high frequencies. It should be noted that it is 

a significant achievement for the AIM algorithm, which is a more general purpose 

algorithm not limited to voxel meshes, to obtain comparable performance to GMRES-FFT 

algorithm for pixel-based models. 
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4.3 EXCITATION VARIATION – HERTZIAN DIPOLE CASE 

Changing the excitation from a plane wave to a Hertzian dipole results in localized 

field distributions which are prominent when wireless devices are considered in BioEM 

analysis. Figure 21 shows the error-vs.-cost plots for excitation with a Hertzian dipole that 

should be compared to the results in Figure 15 obtained with a plane wave excitation. 

First, examining the errors with respect to cell volume (Figure 15(d) vs. Figure 

21(d)), there is a minor decrease in error when using a Hertzian dipole excitation for the 

numerical methods that use pixel-based models. AIM-Tetra still achieves the highest 

accuracy among the numerical methods; when confined to pixel-based models, FDTD 

yields slightly more accurate results compared to the FFT-accelerated integral equation 

methods. 
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Figure 21: Accuracy-efficiency tradeoffs of the methods for the multilayered spherical 

head phantom excited by a Hertzian dipole. The dipole is ẑ -oriented and 

located 50 mm away from the outermost surface of the sphere at (0.158m,0,0). 

The L1-norm of errP  is plotted vs. the (a) preprocess time, (b) memory, (c) 

solve/marching time, and (d) average cell volume as the model resolution is 

increased.  

The preprocess time and memory costs are not dependent on the excitation and thus 

the results in Figure 21(a) and Figure 21(b) are nearly identical to the results shown in 

Figure 15(a) and Figure 15(b). The excitation does affect the solve/marching time 
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differently for each of the numerical methods. The FFT-accelerated integral equation 

methods have similar solve times for both excitations, while the marching time for FDTD 

increases due to the more complex formula for the incident field (55) which must be 

recalculated for each timestep making all of the methods that use voxel models comparable. 

It should be noted that even though the Hertzian dipole excitation is provided to 

show how the numerical methods perform for localized field distributions, the incident 

field for all space and time is still obtained analytically. For more realistic examples of 

antennas placed near a human body, AIM is expected to yield significantly more accurate 

results due to its ability to better model the intricacies of complex antennas [81]. 

4.4 MODEL VARIATION – AUSTINMAN AND AUSTINWOMAN CASES 

Next, the AustinMan and AustinWoman models are simulated. The models are 

excited by a normally incident 900 MHz plane wave from behind, which is the angle that 

the AustinMan model absorbs the most power [23]; the field magnitude is normalized to 

the ICNIRP reference strength ( inc

0 PW
ˆˆ ˆ ˆ58.34V/m,  , E    p z k x ) [23], [74]. The total 

time-average power absorbed in a few select tissues of the models when the finest-

resolution models are simulated are plotted in Figure 22 and Figure 23 and listed in Table 

3 and Table 4. The data shows that there is a good agreement between the different 

numerical methods (less than ~10% difference for all tissues). Comparing the 

computational costs in Figure 22 and Figure 23 to those in Figure 18 indicate that FDTD 

marching time has improved relative to the iterative solution time for GMRES-FFT and 

AIM-voxel; this is because the number of iterations for the AustinMan and AustinWoman 

simulations are ~3 times higher than those for the spherical phantom (see Appendix C). 

The absorbed power density found by the three different methods using the finest-

resolution models are visualized in Figure 24 and Figure 25. 
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Figure 22: Costs and results of the methods for the AustinMan v2.2 model excited by a 

900 MHz plane wave. (a) The computational costs vs. the average cell volume 

as the model resolution is increased. (b) Top: Plot of the absorbed power for 

select tissues of the AustinMan model for the finest mesh (1 mm3). Bottom: 

The range of tissueerr
P

 for each tissue as the model resolution is increased. The 

reference, 
ref

tissueP , is found by using the finest model using the same method, 

i.e., the data plotted in the top. 
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Figure 23: Costs and results of the methods for the AustinWoman v2.1 model excited by 

a 900 MHz plane wave. (a) The computational costs vs. the average cell 

volume as the model resolution is increased. (b) Top: Plot of the absorbed 

power for select tissues of the AustinWoman model for the finest mesh (1 

mm3). Bottom: The range of tissueerr
P

 for each tissue as the model resolution is 

increased. The reference, 
ref

tissueP , is found by using the finest model using the 

same method, i.e., the data plotted in the top. 

   
 (a) (b) 
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Figure 24: Cell-averaged time-averaged absorbed power density for the finest mesh of 

the AustinMan v2.2 model excited by a plane wave from behind. The results 

from three different methods are shown: GMRES-FFT, AIM-Voxel, and 

FDTD, all of which use a pixel-based model and voxel cells. One quadrant of 

the model is removed in the images to show the internal power density. 
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Table 3 Tissue absorbed power for the 1 1 1   mm3 AustinMan v2.2  

Tissue Plot ID 

FDTD 

tissue (W)P   

GMRES-FFT 

tissue (W)P  

AIM-Voxel 

tissue (W)P  

Volume 

(m3) 

Total 1 2.750E+00 2.736E+00 2.745E+00 1.020E+08 

Muscle 2 1.439E+00 1.440E+00 1.451E+00 4.317E+07 

Skin 3 7.720E-01 7.436E-01 7.352E-01 5.140E+06 

Grey 

Matter 
4 2.593E-02 2.700E-02 2.721E-02 7.000E+05 

White 

Matter 
5 1.249E-02 1.337E-02 1.360E-02 4.710E+05 

Blood 

Vessel 
6 1.292E-02 1.112E-02 1.119E-02 9.019E+05 

Cerebro 

Spinal 

Fluid 

7 9.355E-03 8.901E-03 9.020E-03 1.481E+05 

Liver 8 6.069E-03 5.810E-03 6.086E-03 1.815E+06 

Eye 9 3.315E-04 3.503E-04 3.473E-04 1.327E+04 

Prostate 10 1.279E-04 1.226E-04 1.311E-04 1.949E+04 
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Figure 25: Cell-averaged time-averaged absorbed power density for the finest mesh of 

the AustinMan v2.2 model excited by a plane wave from behind. The results 

from three different methods are shown: GMRES-FFT, AIM-Voxel, and 

FDTD, all of which use a pixel-based model and voxel cells. One quadrant of 

the model is removed in the images to show the internal power density. 
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Table 4 Tissue absorbed power for the 1 1 1   mm3 AustinWoman v2.1 

Tissue Plot ID 

FDTD 

tissue (W)P   

GMRES-FFT 

tissue (W)P  

AIM 

tissue (W)P  

Volume 

(m3) 

Total 1 2.483E+00 2.483E+00 2.492E+00 8.195E+07 

Muscle 2 9.803E-01 9.903E-01 9.975E-01 2.115E+07 

Skin 3 8.545E-01 8.290E-01 8.210E-01 4.247E+06 

Grey 

Matter 
4 2.800E-02 2.854E-02 2.887E-02 8.208E+05 

White 

Matter 
5 7.749E-03 7.993E-03 8.196E-03 3.382E+05 

Blood 

Vessel 
6 1.419E-02 1.262E-02 1.283E-02 1.046E+06 

Cerebro 

Spinal 

Fluid 

7 1.349E-02 1.251E-02 1.269E-02 2.058E+05 

Liver 8 1.227E-02 1.201E-02 1.248E-02 2.262E+06 

Eye 9 2.976E-04 2.892E-04 2.851E-04 1.286E+04 

Uterus 10 1.464E-04 1.514E-04 1.553E-04 6.292E+04 
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Chapter 5: Conclusion 

This thesis compared two fundamentally different FFT-accelerated integral 

equation methods, GMRES-FFT and AIM, to FDTD when they are used to solve an 

important class of BioEM problems; specifically the power absorbed by a human model 

illuminated with an impressed time-harmonic source. A systematic approach that utilized 

benchmark problems, error measures, cost measures, and error-vs.-cost plots was 

developed to quantify the tradeoff between accuracy and computational costs of the 

methods and to judge to performance of the different methods. 

It was found that AIM using surface-based models meshed with tetrahedral 

elements obtains significantly higher accuracy results compared to the numerical methods 

that used pixel-based models meshed with similar sized voxel elements. More importantly, 

the method was found to generally outperform the other numerical methods with respect 

to the accuracy-cost tradeoff, especially when comparing the memory requirement and 

solve/marching time costs of the methods. When only pixel-based models are available, 

however, FDTD became the best alternative for solving the benchmark problems 

(especially for anatomical models, far sources, and higher frequencies) because (i) AIM 

(using voxel meshes) and GMRES-FFT could not achieve higher accuracy results—in fact, 

the errors in all methods appeared to be dictated by the low fidelity of the pixel-based 

models—and (ii) FDTD required lower computational resources. An important caveat 

should be noted when comparing the methods’ costs: Preconditioners can reduce the 

iterative-solution cost of AIM and GMRES-FFT and improve the methods competitiveness 

with FDTD [79], [80]. Finally, it is noteworthy to observe that AIM performed essentially 

on par with GMRES-FFT in this case.  
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Results also demonstrated that each of the three numerical methods are able to 

simulate complex whole-body pixel-based models, such as the AustinMan and 

AustinWoman models. The time-averaged absorbed power in the tissues computed by the 

different methods agreed within ~10% (if 1 1 1   mm3 resolution models were used). 

Solving the same problem using the fundamentally different methods can identify the level 

of uncertainty and increase/decrease the confidence in the result from each method. 

Lastly, when performing BioEM analysis using more realistic device models than 

impressed Hertzian dipole sources, the error levels for FDTD and GMRES-FFT 

simulations are expected to increase due to the inaccurate modeling that arises from regular 

meshes/grids while the AIM error levels should remain similar to the results shown here. 

Thus, when complex antenna models are included in the simulations, AIM is expected to 

outperform the other numerical methods. 
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Appendix A 

The following table provides the electromagnetic material properties that were used 

for the multilayered spherical head phantom at the three frequencies of interest. The 

material properties were obtained from [62], [68]. Bone average is a linear average of bone 

cortical and bone marrow. Brain average is a linear average of brain grey matter and brain 

white matter. 

Table 5 Electromagnetic material properties for the multilayered spherical head 

phantom 

 402 MHz 900 MHz 2.45 GHz 

 
r     (S/m) r    (S/m) r    (S/m) 

Skin Dry 46.741 0.68892 41.405 0.86674 38.007 1.464 

Fat 5.5789 0.041151 5.462 0.051043 5.2801 0.10452 

Bone Average 9.40725 0.0604105 8.97915 0.091759 8.33895 0.2446735 

Brain Average 49.721 0.59178 45.8055 0.76653 42.539 1.51135 

The material properties for the anatomical human models, AustinMan v2.2 and 

AustinWoman v2.1, were based on the data in [62], [70]. Additional details about the 

development of the model can be found on the website: http://bit.ly/AustinMan. 
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Appendix B 

The following tables provide information about the parameters used for the 

simulations presented in this thesis. All of the simulations were run on Stampede at TACC 

[78]. 

METHOD OF MOMENTS (MOM) 

The MOM parameters that are used by both AIM and GMRES-FFT are listed in 

Table 6-Table 9 below. The GMRES iterative solver from PETSc (v3.4) [82] was used 

with an iterative solver tolerance equal to 10-4. The GMRES restart value was set to 100.  

Notes: * Volume cubature order is given as a pair of numbers. The first number 

denotes the order of the rule for the source integral (the inner integral in (8)); the second 

number denotes the order of the rule for the testing integral (the outer integral in (8)).  

† If any of the cells comprising the testing function is closer than the singularity 

extraction factor multiplied by the maximum edge length of the source cell, then the inner 

integral is calculated by using traditional single-term singularity extraction [83]. 

Table 6 MOM parameters for the tetrahedral mesh of the spherical head phantom  

Cell Volume MOMN  
Volume Cubature 

 Order* 

Singularity 

Extraction Factor† 

60.7 mm3 175 494 {5, 3} 0.75 

8.32 mm3 1 276 029 {5, 3} 0.75 

0.91 mm3 11 645 244 {5, 3} 0.75 

Table 7 MOM parameters for the voxel mesh of the spherical head phantom 

Cell Volume MOMN  
Volume Cubature  

Order* 

Singularity 

Extraction Factor† 

4×4×4 mm3 254 388 {3, 3} 1.01 

2×2×2 mm3 2 004 408 {3, 3} 1.01 

1×1×1 mm3 15 939 336 {3, 3} 1.01 
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Table 8 MOM parameters for AustinMan v2.2 

Cell 

Volume MOMN  
Volume Cubature 

Order* 

Singularity 

Extraction Factor† 

8×8×8 mm3 613 869 {3, 3} 1.01 

4×4×4 mm3 4 879 647 {3, 3} 1.01 

2×2×2 mm3 38 709 164 {3, 3} 1.01 

1×1×1 mm3 308 0012 198 {3, 3} 1.01 

Table 9 MOM parameters for AustinWoman v2.1 

Cell 

Volume MOMN  
Volume Cubature 

Order* 

Singularity 

Extraction Factor† 

8×8×8 mm3 494 477 {3, 3} 1.01 

4×4×4 mm3 3 928 920 {3, 3} 1.01 

2×2×2 mm3 31 130 421 {3, 3} 1.01 

1×1×1 mm3 247 549 701 {3, 3} 1.01 

GMRES-FFT 

Additional GMRES-FFT parameters and the computational environment used in 

the simulations with the multilayered spherical head phantom, AustinMan v2.2, and 

AustinWoman v2.1 are specified in Table 10-Table 12. 

Table 10 GMRES-FFT parameters for multilayered spherical head phantom 

Cell Volume x y zN N N   
0r  (mm) MPI Processes Compute Nodes 

4×4×4 mm3 54 54 54   (-108,-108,-108) 1 1 

2×2×2 mm3 108 108 108   (-108,-108,-108) 1 1 

1×1×1 mm3 216 216 216   (-108,-108,-108) 4 4 

Table 11 GMRES-FFT parameters for AustinMan v2.2 

Cell Volume x y zN N N   
0r  (mm) MPI Processes Compute Nodes 

8×8×8 mm3 41 71 234   (32,48,5) 1 1 

4×4×4 mm3 81 142 469   (36,52,1) 1 1 

2×2×2 mm3 162 284 938   (36,50,1) 16 16 

1×1×1 mm3 325 569 1877   (35,50,0) 256 256 

 



 85 

Table 12 GMRES-FFT parameters for AustinWoman v2.1 

Cell Volume x y zN N N   
0r  (mm) MPI Processes Compute Nodes 

8×8×8 mm3 36 67 216   (40,88,2) 1 1 

4×4×4 mm3 73 133 432   (36,92,2) 1 1 

2×2×2 mm3 146 267 865   (38,90,0) 16 16 

1×1×1 mm3 292 536 1730   (37,89,0) 256 256 

AIM-TETRA 

Additional AIM parameters and the computational environment used in the 

simulations with the tetrahedral mesh of the multilayered spherical head phantom are 

specified in Table 13. Here, Q  denotes the number of auxiliary grid points used to 

anter/interpolate each basis/testing cubature point (defined in [84]).  

Table 13 AIM-Tetra parameters for multilayered spherical head phantom  

Cell 

Volume 
Q x,y,z  x,y,zc  cx cy czN N N   

0r  (mm) 
MPI 

Processes 

Compute 

Nodes 

60.7 mm3 8 1 4 mm 64 64 64   

(-108, 

-108, 

-108) 

1 1 

8.32 mm3 8 1 2 mm 112 112 112   

(-108, 

-108, 

-108) 

1 1 

0.91 mm3 8 2 1 mm 224 224 224   

(-108, 

-108, 

-108) 

16 16 

AIM-VOXEL 

Additional AIM parameters and the computational environment used in the 

simulations involving the voxel mesh of the multilayered spherical head phantom, 

AustinMan v2.2, and AustinWoman v2.1 are specified in Table 14-Table 16. Here, Q  

denotes the number of auxiliary grid points used to anter/interpolate each basis/testing 

cubature point (defined in [84]).  



 86 

Table 14 AIM-Voxel parameters for multilayered spherical head phantom 

Cell 

Volume 
Q x,y,z  x,y,zc  cx cy czN N N   

0r  (mm) 
MPI 

Processes 

Compute 

Nodes 

4×4×4 mm3 8 0 4 mm 64 64 64   

(-108, 

-108, 

-108) 

1 1 

2×2×2 mm3 8 0 2 mm 112 112 112   

(-108, 

-108, 

-108) 

1 1 

1×1×1 mm3 8 1 1 mm 224 224 224   

(-108, 

-108, 

-108) 

16 16 

Table 15 AIM-Voxel parameters for AustinMan v2.2 

Cell 

Volume 
Q x,y,z  x,y,zc  cx cy czN N N   

0r  (mm) 
MPI 

Processes 

Compute 

Nodes 

8×8×8 mm3 8 0 8 mm 48 80 240   (24,40,0) 1 1 

4×4×4 mm3 8 0 4 mm 96 144 480   (32,48,0) 4 2 

2×2×2 mm3 8 0 2 mm 192 288 960   (34,48,0) 32 16 

1×1×1 mm3 8 1 1 mm 384 576 1920   (34,49,0) 512 256 

Table 16 AIM-Voxel parameters for AustinWoman v2.1 

Cell 

Volume 
Q x,y,z  x,y,zc  cx cy czN N N   

0r  (mm) 
MPI 

Processes 

Compute 

Nodes 

8×8×8 mm3 8 0 8 mm 48 80 224   (32,80,0) 1 1 

4×4×4 mm3 8 0 4 mm 80 144 448   (32,88,0) 4 2 

2×2×2 mm3 8 0 2 mm 160 288 896   (36,88,0) 32 16 

1×1×1 mm3 8 1 1 mm 320 576 1792   (36,88,0) 512 256 

FDTD 

For the FDTD simulations, the optimized parameters from [38] are used. A 5-cell 

thick split-field PML is used to truncate the computational domain for every simulation 

(regardless of mesh resolution). The PML conductivity profile is tapered using a third-

order polynomial grading with a reflection error of 8(0) e  . The minimum distance 

between the scattering volume and the PML boundary is 64 mm in every simulation. The 
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ramped-up sinusoid defined in (56) (and based on the multiple cycle m-n-m pulse from 

[72]) is used for the excitation with 2   ramp-up periods. The simulations are performed 

for 6 periods after the ramp up to achieve steady state; the resulting number of time steps 

TN  for each simulation are shown in Appendix C. Once in steady-state, the fields are 

converted to the frequency domain using an on-the-fly Fourier transform. Additional 

FDTD parameters and the computational environment is described in Table 17 for the 

multilayered spherical head phantom simulations, in Table 18 for the AustinMan v2.2 

simulations, and Table 19 for the AustinWoman v2.1 simulations. 

Table 17 FDTD parameters for multilayered spherical head phantom 

Cell Volume FDTDN  0r  (mm) MPI Processes Compute Nodes 

4×4×4 mm3 96 96 96   (-192,-192,-192) 1 1 

2×2×2 mm3 182 182 182   (-182,-182,-182) 1 1 

1×1×1 mm3 354 354 354   (-177,-177,-177) 1 1 

Table 18 FDTD parameters for AustinMan v2.2  

Cell Volume FDTDN  0r  (mm) MPI Processes Compute Nodes 

8×8×8 mm3 67 97 260   (-72,-56,-99) 1 1 

4×4×4 mm3 123 184 511   (-48,-32,-83) 1 1 

2×2×2 mm3 236 358 1012   (-38,-24,-73) 1 1 

1×1×1 mm3 463 707 2015   (-34,-19,-69) 16 8 

Table 19 FDTD parameters for AustinWoman v2.1  

Cell Volume FDTDN  0r  (mm) MPI Processes Compute Nodes 

8×8×8 mm3 62 93 242   (-64,-16,-102) 1 1 

4×4×4 mm3 115 175 474   (-48,8,-82) 1 1 

2×2×2 mm3 220 341 939   (-36,16,-74) 1 1 

1×1×1 mm3 430 674 1868   (-32,20,-69) 16 8 
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Table 20 FDTD timestep parameters for simulations at 402 MHz, 900 MHz and 2.45 

GHz 

Cell Volume t  (s) 

8×8×8 mm3 
11

00.99 / 1.525259895624805 10x c     

4×4×4 mm3 12

00.99 / 7.626299478124023 10x c     

2×2×2 mm3 
12

00.99 / 3.813149739062012 10x c     

1×1×1 mm3 
12

00.99 / 1.906574869531006 10x c     

Table 21 FDTD excitation time delay values 

Model Excitation dt  (s) 

All head sphere 

resolutions 
Plane wave 

10

00.108 / 3.602492228140042 10c      

All head sphere 

resolutions 

Hertzian 

dipole 
10

00.050 / 1.667820475990760 10c    

AustinMan 8×8×8 mm3 Plane wave 
10

00.032 / 1.067405104634087 10c    

AustinMan 4×4×4 mm3 Plane wave 
10

00.036 / 1.200830742713347 10c    

AustinMan 2×2×2 mm3 Plane wave 
10

00.036 / 1.200830742713347 10c    

AustinMan 1×1×1 mm3 Plane wave 
10

00.035 / 1.167474333193532 10c    

AustinWoman 8×8×8 

mm3 
Plane wave 

10

00.040 / 1.334256380792608 10c    

AustinWoman 4×4×4 

mm3 
Plane wave 

10

00.036 / 1.200830742713347 10c    

AustinWoman 2×2×2 

mm3 
Plane wave 

10

00.038 / 1.267543561752978 10c    

AustinWoman 1×1×1 

mm3 
Plane wave 

10

00.037 / 1.234187152233163 10c    
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Appendix C 

Additional data is included in this Appendix for completeness. 

Table 22 The number of iterations required for the iterative solver to converge for 

AIM and GMRES-FFT and the number of timesteps for FDTD 

Simulation 

Avg. Cell 

Volume 

(mm3)† 

AIM-

Tetra iterN   

GMRES-FFT 

iterN   

AIM-

Voxel iterN   

FDTD

TN   

Head 

PW 

402 MHz 

60.7/64 149 95 99 2616 

8.32/8 173 94 98 5224 

0.91/1 165 90 98 10440 

Head 

PW 

900 MHz 

60.7/64 423 363 374 1168 

8.32/8 505 353 361 2336 

0.91/1 488 334 339 4664 

Head 

PW 

2.45 GHz 

60.7/64 1191 1205 1168 432 

8.32/8 1343 1156 1140 864 

0.91/1 1362 1084 1063 1720 

Head 

HD 

900 MHz 

60.7/64 434 367 380 1168 

8.32/8 532 355 371 2336 

0.91/1 509 341 347 4664 

AustinMan 

PW 

900 MHz 

512 - 1260 1210 584 

64 - 1217 1187 1168 

8 - 1187 1168 2336 

1 - 1163 1148 4664 

AustinWoman 

PW 

900 MHz 

512 - 1036 992 584 

64 - 1016 980 1168 

8 - 997 972 2336 

1 - 984 955 4664 

Legend: PW = Plane Wave; HD = Hertzian Dipole; Head = multilayered spherical head 

phantom; AustinMan = AustinMan v2.2; AustinWoman = AustinWoman v2.1 

† the average cell volume is given as average tetrahedron/voxel volume where applicable 
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Figure 26: Accuracy-efficiency tradeoffs for the baseline case using the relative error of 

the power absorbed in the fat layer. The relative error of FatP  is plotted vs. the 

(a) preprocess time, (b) memory, (c) solve/ marching time, and (d) average 

cell volume as the model resolution is increased. 

   
 (a) (b) 

   
 (c) (d) 
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Figure 27: Accuracy-efficiency tradeoffs for the baseline case using the relative error of 

the power absorbed in the bone layer. The relative error of 
Bone Avg.P  is plotted 

vs. the (a) preprocess time, (b) memory, (c) solve/ marching time, and (d) 

average cell volume as the model resolution is increased. 

  

   
 (a) (b) 

   
 (c) (d) 
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