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This study explores the spatial pricing discrimination of ride-sourcing trips

using empirical data. We use information from more than 1.1 million rides in Austin,

Texas, provided by a non-profit transportation network company from a period

where the main companies were out of the city. We base the analysis on operational

variables such as the waiting or idle time between trips, reaching time, and trip

distance. Also, we estimate three different productivity measures to evaluate the

impact of the trip destination on the driver continuation payoff.

We propose the application of a total variation denoising method that en-

hances the spatial data interpretation. The selected methodology, known as the
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graph-fussed lasso (GFL), uses an `1-norm penalty term that presents a variety of

benefits to the denoising process. Specifically, this approach provides local adaptiv-

ity; it can adapt to inhomogeneity in the level of smoothness across the graph. Solv-

ing the GFL smoothing problem involves convex-optimization methods, we make

use of a fast and flexible algorithm that presents scalability and high computational

efficiency.

The principal contributions of this research effort include a temporal and

spatial evaluation of different ride-sourcing productivity measures in the Austin

area, an analysis of ride-sourcing trip pricing and its effect on driver equity, and

a description of the principal ride-sourcing travel patterns in the city of Austin.

The main results suggest that drivers with rides ending in the central area present

favorable spatial differences in productivity when including the revenue of two con-

secutive trips. However, the time effect was more contrasting. Weekend rides tend

to provide better driver productivity measures.
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Chapter 1

Introduction

Ride-sourcing companies, also known as transportation network companies (TNCs)

or ride-hailing, provide pre-arranged or on-demand transportation service for com-

pensation [Shaheen et al., 2016]. They operate as a two-side market connecting

drivers of personal vehicles with passengers. Drivers work as independent con-

tractors, with the flexibility to drive on their own schedule. Some TNCs allow

ride-sharing trips in their platforms, where multiple passengers share a ride with a

similar destination at a lower cost. For example, Uber and Lyft provide services

called UberPOOL and Lyft Line, respectively, explicitly used for ride-share trips.

TNCs have been involved in controversies in different cities around the world

due to multiple factors, such as taxi service unfair competition, and lack of regulation

of their pricing system and driver selection. Specifically, the pricing strategy has

been criticized due to concerns for the welfare of providers and consumers [Cachon

et al., 2017]. The price setting in ride-sourcing markets is important because it

has a crucial impact on the availability of resources (drivers) and the demand from

passengers. A known challenge is the incentive equity across drivers. Trips may

be mispriced relative to other trip opportunities [Ma et al., 2018], which leads to

a concern for fairness among drivers. For this reason, TNCs implemented different
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compensation or subsidization policies – such as reduced commissions, or bonuses

for meeting a certain number of rides [Bogage, 2016] – to avoid supply shortage and

beat the competition among platforms.

The design of pricing strategies in the ride-sourcing market is challenging.

Driver revenue is determined by a fare scheme that is similar to the taxi market,

with a base fare and price variating based on the time and distance of the trip. How-

ever, unlike taxi driver, ride-sourcing driver revenue variates based on factors like

pooled or shared-rides, company compensation policies, and the price surge factor

multiplier, determined based on temporal and spatial supply-demand unbalance.

Recent ride-sourcing research has been focusing on analysis of the surge price

[Zha et al., 2017a, Wang et al., 2016, Banerjee et al., 2015] and its effect on labor

supply [Chen and Sheldon, 2016, Sheldon, 2015]. The spatial analysis research is

limited. Recent evaluations include spatial pricing analysis [Ma et al., 2018, Bimpikis

et al., 2016, He et al., 2018]. However, the main limitation is the accessibility to

empirical data. Also, there is a lack of studies evaluating the drivers perspective.

Therefore, the present research intends to contribute to the current ride-sourcing

literature providing a spatial pricing evaluation of trips, using empirical data from

an Austin-based TNC, with emphasis on the equity among drivers.

1.1 Goal and Objectives

The principal objective of this research is to evaluate the spatial pricing discrim-

ination of ride-sourcing trips and its effect on the competitive equilibrium among

drivers. Specifically, we analyze the spatial impact on the drivers’ continuation pay-

off, evaluating productivity factors such as waiting time, reaching time, and trip

longitude. We use the data that a non-profit Austin-based ride-sourcing company

made available, including trips during the period that Uber and Lyft were temporar-
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ily out of the city 1.

1.2 Methodology

The first stage of the methodology includes data processing and mining. We se-

lected different measures as indicators of drivers productivity to evaluate its spatial

effect. Also, we discretized in time based on weekday peak and off-peak hours and

weekends, and in space using the traffic analysis zones (TAZ), the unit of geography

most commonly used in conventional transportation planning models.

Then, we smoothed (denoised) the data over the physical distances, using

a graph total variation (TV) denoising technique, to compensate for inherent sam-

pling noise and enhance the interpretability. The data presented diverse complexity

including sparsity and a heterogeneous inherent space, because of the distribution

of high and low trip demand zones. The city of Austin presents areas with high trip

density – such as downtown – and inter-connected zones with low demand. Thus,

a global smoothing approach is desirable. These methods include the long-range

dependencies, while local procedures, such as the Gaussian Kernel or K nearest

neighbor, tend to smooth over a specific window and do not account for the com-

plete available data.

We selected the graph-fussed lasso (GFL) method for the TV denoising. This

technique allows one to globally smooth anisotropic and discrete areas using an `1-

norm penalty term2. The effect of the `1 penalty is that it enables local adaptivity,

i.e. it can adapt to inhomogeneity in the level of smoothness of an observed signal

across the graph. It can set many high-order differences to zero exactly and leave

others at large nonzero values [Wang et al., 2015]. Thus, the approximated “true”

1Uber and Lyft left the city from May 2016 to May 2017 after the Austin City Council passed
an ordinance requiring ride-hailing companies to perform fingerprint background checks on drivers,
a stipulation that already applies to Austin taxi companies [Samuels, 2017].

2Formally, the `p-norm of x is defined as: ‖x‖p = p
√∑

i |xi|p, where p ∈ R.
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denoised signal can simultaneously be smooth in some parts of the graph, and wiggly

in others. In contrast to other global methods, such as the Laplacian, which uses

an `2 penalty and enforces a much heavier contrast, thus tends to estimate either

smooth or else wiggly throughout [Wang et al., 2015]. A relevant analogy for the

differences between `1 and `2 regularizations is the comparison between the lasso

and ridge regression.

The main disadvantage of global approaches is that they are slower than the

local ones and fail to scale to large graphs. Specifically, solving the GFL smoothing

problem involves convex-optimization methods that tend to require a high compu-

tational cost. We applied a fast and flexible algorithm, developed by Tansey and

Scott [2015], that is scalable and highly efficient. The algorithm decomposes the

graph into a set of trails which can each be solved efficiently using techniques for

the ordinary (1D) fused lasso.

The denoised information is then analyzed to evaluate the space and time ef-

fect on driver productivity and provide insights of the principal operational variables

in ride-sourcing trips in Austin.

1.3 Contributions

The main contributions of this research effort include: (1) temporal and spatial eval-

uation of different ride-sourcing productivity measures in the Austin area, including

waiting time, and reaching time, among others; (2) analysis of ride-sourcing trip

pricing and its effect on driver equity; (3) description of the principal ride-sourcing

travel patterns in the city of Austin; and (4) verification of the usefulness of big

data analytics in transportation problems.
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1.4 Outline

The subsequent sections of the paper are organized as follow. Section 2 provides a

literature review of the principal aspects of pricing, labor supply, and spatial analysis

in ride-sourcing markets. Section 3 presents an introduction to graph smoothing

techniques and a description of the selected graph fused lasso solver algorithm.

Section 4 describes the dataset and includes the methodology. Section 5 presents

the principal results. Finally, Section 6 contains conclusions and final remarks.
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Chapter 2

Literature Review

This chapter presents a literature review of the research focused on (i) pricing strate-

gies, and (ii) spatial pricing, for ride-sourcing trips.

2.1 Price Strategies

The popularity of ride-sourcing platforms relies not only on the advanced technology

of connecting users and providers through cell phone applications but also on the

pricing strategies. The price-setting analysis is complex because, as a two-sided

market, it requires economic models that capture the incentives of both driver and

passengers [Banerjee et al., 2015]. A key tool used by TNCs is the dynamic (or

surge) price, that help in managing both supply and demand. The surge-price can

be defined as the output of an algorithm which automatically raises the cost of a trip

when demand outstrips supply within a fixed geographic area [Chen and Sheldon,

2016]. The literature in price strategies encompasses the analysis of surge prices and

its effect on labor supply.
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2.1.1 Surge Price

The recent research in price strategies has been focused on analyzing the surge

price. Banerjee et al. [2015] studied the optimal pricing strategies using a queuing

model to explore the effect of surge pricing on the platform performance, defined

by throughput and revenue. Among the principal conclusions, the authors found

that the surge price is more robust to fluctuations on the system parameters such

as arrival rates, service rates, and preference distributions of passengers and drivers,

compared to the static pricing. Castillo et al. [2017] studied the motivations of the

surge price. They found that when prices are too low a “perverse equilibrium” –

called the wild goose chase – arises. In this equilibrium, drivers spend too much time

picking up passengers instead of driving them or waiting to be matched, resulting

in a low number of idle drivers and thus completing a vicious circle. The authors

found that the surge price is a natural tool to avoid this issue. Cachon et al. [2017]

analyzed the role of surge pricing of self-scheduling platforms and found that both,

providers and consumers, benefit from the surge price because providers are better

utilized and passengers benefit from lower rates during regular hours.

2.1.2 Labor Supply

A broader research area has been dedicated to studying pricing policies and its

effect on the labor supply. Specifically, some authors focused on evaluating two

labor supply theories: neo-classic and income-target. The neo-classic labor supply

theory predicts a positive response to transitory changes in wages. Thus, a driver

is expected to work more extended hours as average hourly earnings get higher in

shorter horizons. Camerer et al. [1997] introduced the income-target theory based on

an empirical study of New York taxi drivers. The authors found negative elasticities

– where, as earnings increase, the total driving time decreases – and argued that

taxi drivers have a reference point of income that influences the daily labor supply
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decision.

In the context of ride-sourcing trips, labor supply elasticities have substantial

implications on the effectiveness of surge pricing, because the temporary increase

in wages can have an immediate effect on whether or not drivers continue working.

Recent empirical studies have demonstrated that ride-sourcing trips are mainly in-

fluenced by the neo-classic labor supply theory. For instance, Chen and Sheldon

[2016] found that Uber drivers drive more at times when earning are high, and flex-

ibly adjust to operating more at top surge times. The authors found that surge

price significantly increases the supply of rides on the Uber system. Sheldon [2015]

found that the driver elasticities increase with experience using empirical data from

a peer-to-peer ride-sharing firm. His results suggest that income-targeting behavior,

if present, is only temporary.

Despite the empirical evidence found, the research in this area is limited,

and there is not a substantial agreement on which theory would outperform. Some

authors opted to include both approaches in their analysis, for instance, Zha et al.

[2017a] investigated the performance of surge pricing using a time-expanded net-

work, and proposed different formulations for the labor supply models that included

both theories.

2.2 Spatial Pricing

The research that incorporates the spatial distribution of the demand and supply is

limited. The existing literature mainly addresses the problem of dealing with tem-

poral demand fluctuations at a given location. Recent studies focused on evaluating

the spatial pricing of ride-sourcing.

Ma et al. [2018] proposed a Spatio-Temporal Pricing (STP) mechanism based

on a driver dispatching methodology. The model included a limited drivers supply

that is kept constant during the analysis period. Also, they considered multiple
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locations and time periods, with rider demand, willingness to pay, and driver supply

varying over space and time. The main motivation is based on the different market

failures of current ride-sourcing systems, as explained by the authors: (1) incorrect

spatial pricing, caused by prices substantially higher than adjacent locations that

will cause drivers to “chase the surge”; and (2) incorrect temporal pricing, where

drivers anticipate that prices will increase at certain times (e.g. at the end of a

major sport event) and decline trips in anticipation of the surge. Thus, prices need

to be appropriately “smooth” in space and time, the STP intends to provide this

with a drivers’ competitive equilibrium. The authors probed with a simulation that

this mechanism provides higher social welfare than the myopic origin-based pricing

scheme.

Bimpikis et al. [2016] explored the spatial price discrimination in a network

of locations. Unlike the Ma et al. [2018] study, their model included unlimited

driver supply, a continuum of potential riders that have heterogeneous willingness

to pay, and drivers that endogenously determine whether to provide service and

where to relocate themselves with the objective of maximizing their earnings. Using

simulations, the authors found that if the demand pattern is not“balanced”, the

platform can benefit substantially from pricing rides differently depending on the

location they originated from. Besides, they also found benefits when pricing rides

based on both origin and destination, but the improvements were less significant.

Similarly, Castro et al. [2018] propose a framework where a platform chooses prices

for the different locations, and drivers respond by deciding where to relocate based

on rates, travel costs, and driver congestion levels. They analyzed the spatial pricing

problem specifically in the short-term supply and demand imbalance.

Zha et al. [2017b] investigated the effect of spatial pricing on ride-sourcing

markets using a model with a discrete-time geometric-matching framework. Their

model includes frictions in the matching and meeting process, i.e., the waiting time
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for both drivers and customers calibrated using empirical data from Didi Chunxing

(a Chinese TNC). The primary results suggest that the platform and drivers are

better off under revenue-maximizing spatial pricing, while the effect on costumers

may vary.

Buchholz [2015] analyzed the spatial equilibrium in the taxi industry using

empirical data from New York City yellow medallion taxis. They proposed a spatial

equilibrium model to understand the welfare cost of taxi fare regulations. The

authors found that allowing tariffs to vary by time, location or distance can enhance

allocation efficiency given the presence of search frictions.

2.3 Contributions to Current Literature

Based on the previous literature review, we found a gap in empirical evidence of the

spatial pricing discrimination. Therefore, the contributions of the present research

are focused on providing empirical evidence of the spatial unbalance of trip pricing,

and its effect on driver equity.
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Chapter 3

Graph Spatial Smoothing

The present research effort makes use of the graph-fussed lasso (GFL) technique to

perform total variation (TV) denoising. This chapter presents an introduction to

graph spatial smoothing. The first section corresponds to a background of the use

and the most important aspects. The second section expands on the inherent statis-

tical model and introduces the most relevant techniques: kernel smoothing, Laplace

smoothing, and GFL. The last section presents details of the selected approach to

solve the GFL smoothing problem, which is based on the work developed by Tansey

and Scott [2015].

3.1 Background

The main purpose of the smoothing process is to increase the signal-to-noise ratio.

Spatial smoothing techniques are typically used for a wide range of applications. For

example, in the image processing field, smoothing approaches are used for image

denoising [Chambolle, 2004]; in computational geometry and object modeling, to

reconstruct surfaces [Yu and Turk, 2013, Tasdizen et al., 2002]; in machine learning,

to impute missing values [Compton et al., 2014]. Other applications include spatial
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statistical analysis, where data is smoothed over a physical distance to compensate

for inherent sampling noise [Gelfand et al., 2010]. Examples include predicting crime

hotspots by smoothing incident report locations [McLafferty et al., 2000], detecting

crash hotspots using historical crash data [Thakali et al., 2015], or event detection

in taxi trips [Wang et al., 2015].

Graphs can be continuous or discrete. Smoothing techniques for the con-

tinuous case include Gaussian process and continuous random fields, while for the

discrete case some methods include kernel smoothing and Laplacian smoothing. This

review is focused on techniques applied to the discrete case.

Graph-smoothing techniques can be classified into local and global approaches

[Tansey, 2017]. Local approaches smooth only a local window around each point,

such as neighboring pixels in an image, while global methods typically define an

objective function over the entire graph and simultaneously optimize the entire set

of points. The most simplistic local approaches simply replace each point with the

average or median of the points in its window [Tansey, 2017].

An important aspect of using spatial data is the specification of the covari-

ance function of the random field. Data can be isotropic, meaning that the spatial

dependence does not depend on the direction of the spatial separation between

sampling locations [Weller et al., 2016]. Methods such as the Gaussian kernel as-

sume isotropy. However, this assumption is often violated by real-world data, where

arbitrary discontinuities can be present in the graph. In some cases, it is more

appropriate to rely on anisotropic smoothing techniques.

Anisotropic local methods include the bilateral filter and guided filter, used

to preserve the edge. Global techniques for anisotropy include the Markov random

fields (MRFs). This method defines a joint distribution over a graph via a product

of exponentiated potential functions over cliques, or as a conditional autoregressive

(CAR) model where each nodes unnormalized likelihood is written conditioned on
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all other nodes in the graph [Tansey, 2017].

An alternative to MRFs for global smoothing is the graph-based trend fil-

tering (GTF) [Wang et al., 2015], which is a special case of the generalized lasso

[Tibshirani, 2011]. GTF applies an `1 penalty to the vector of (k+ 1)st-order differ-

ences, where the integer k ≥ 0 is a hyperparameter. While global approaches like

MRFs and GTF typically yield better results, they often fail to scale to large graphs

due to every node being dependent on the rest of the graph [Tansey, 2017]. One

exception is a special case of the GTF with k = 0, also known as graph-based total

variation denoising, also called the graph-fussed lasso (GFL).

3.2 Statistical Model

This section presents the statistical model and expands on the smoothing techniques

for discrete graphs. For the model, let’s say that we have observations yi, each

associated with a vertex si ∈ S in an undirected graph G = (V, E) with node set

V and edge set E . The edge set tells which sites are neighbors on the graph. In

spatial smoothing, the underlying statistical model can be represented as shown in

Equation 3.1 [Scott, 2017].

y(si) = x(si) + ε(si) , i = 1, . . . , n, (3.1)

where si is the spatial location of the ith data point, x is the “true” denoised

signal, y is data, and ε is mean-zero error. The goal is to estimate xi in a way that

leverages the assumption of spatial smoothness over the underlying graph. The next

subsections provide details of three different techniques to find xi, including kernel

smoothing, Laplacian smoothing, and GFL.
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3.2.1 Kernel Smoothing

The simplest technique for denoising a spatial signal is called kernel smoothing.

Suppose we want to estimate x(s) at some target location s. The kernel-smoothing

estimate takes the form of a weighted average of all the points in the dataset.

x(s) =

∑n
i=1wi(s, si)y(si)∑n

i=1wi(s, si)
, (3.2)

where w(s, si) is a weighting function that gets smaller as s and si get further apart.

The selection of the weights can lead to different kernel methods. A common

approach is called “K nearest neighbors,” where the weight function w(s, si) takes

the value 1/K if si is one of the K closest points to s, and 0 otherwise. Another

common approach is to define the weights in terms of a kernel function. One example

is the Gaussian kernel:

wi(s, si; b) =
1

b
exp

{
−(s− si)2

2b2

}
, (3.3)

which depends upon a bandwidth parameter b. The bandwidth will determine the

spread of kernel weights. Figure 3.1 illustrates Gaussian kernel smoothing in a brain

structure image. Another example is the quadratic or “Epanechnikov” kernel, which

has the advantage that it decays to zero beyond a certain distance.

wi(s, si; b) = max

0,
3

4b

[
1− (s− si)2

b2

] , (3.4)
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Figure 3.1: Denoising of an image. From left to right: original image, 2D Gaussian
kernel and smoothed image. [Garćıa-Mart́ı et al., 2013]

3.2.2 Laplacian Smoothing

In image processing, electronics, and spatial statistics, a common approach is Lapla-

cian smoothing. The Laplacian smoothing problem can be expressed as follow,

minimize
x∈Rn

1

2
‖y − x‖22 +

λ

2
xTLx , (3.5)

where L is the graph Laplacian, and λ > 0.

The Laplacian matrix has the alternate representation L = DTD, therefore

the penalty term xTLx can be rewritten as xTLx = ‖Dx‖22 , known as the `2 penalty,

where D is the oriented edge matrix of the graph 1. The solution of Equation 3.5

can be written as,

x̂ = (I + λL)−1y (3.6)

which is a linear system that can be solved using (1) a direct solver that uses a

sparse matrix factorization, (2) the Gauss-Seidel method, (3) the Jacobi iterative

method, among others.

1Letting m = |E| be the size of the edge set, D is the m × n matrix defined as follows. If
(j, k), j < k is the ith edge in E , then the ith row of D has a 1 in position j, a −1 in position k,
and a 0 everywhere else. Thus the vector Dx encodes the set of pairwise first differences across the
edges of the graph.
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3.2.3 Graph-Fused Lasso

As mentioned previously, there are cases where the isotropic assumption is violated,

and it is necessary to apply anisotropic methods. An example of this type of ap-

proach is the GFL, which consider a version of the spatial smoothing problem where

we change the `2 penalty to an `1 penalty. The penalty term rewards the solution

for having small absolute first differences across the edges in the graph. Figure 3.2

illustrates the GFL technique. The GFL smoothing problem can be represented as,

minimize
x∈Rn

1

2
‖y − x‖22 + λ‖Dx‖1 , (3.7)

where D is the oriented edge matrix of the graph, and λ > 0 is the regularization

parameter.

The Equation 3.7 does not have a closed-form solution. Therefore, con-

vex optimization approaches – such as the alternating direction method of multi-

pliers (ADMM) 2 [Boyd et al., 2011] – are required. Many efficient, specialized

approaches using ADMM have been developed, e.g. Wahlberg et al. [2012], Barbero

and Sra [2014], and Tansey and Scott [2015]. Specifically, the Tansey and Scott

[2015] method lead to an efficient approach that presents a fast solution and is also

scalable. The next section provides a brief description of this method.

3.3 A Fast and Flexible Algorithm for the GFL

Tansey and Scott [2015] proposed an ADMM approach to solving the GFL, where

the key insight is to decompose the graph into a set of trails which can then each be

solved efficiently using techniques for the ordinary (1D) fused lasso. “The resulting

technique is both faster than previous GFL methods and more flexible in the choice

2The ADMM is an algorithm that solves convex optimization problems by breaking them into
smaller pieces, each of which is then easier to handle.
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Figure 3.2: TV denoising of an image using the GFL [Tansey, 2017]
.

of loss function and graph structure” [Tansey and Scott, 2015]. This section provides

a summary of the method.

First, let’s rewrite Equation 3.7 for a more general case,

minimize
x∈Rn

`(y,x) + λ
∑

(r,s)∈E

|xr − xs|, (3.8)

where ` is a smooth convex loss function. For the case of Equation 3.7, the loss

function corresponded to the squared-loss error. Solving for a general case is an

advantage of the method, which is flexible enough to handle any smooth convex loss

function and any generic graph.

The core idea of the algorithm is to decompose a graph into a set of trails.

Recall the undirected graph definition, G = (V, E) with node set V and edge set E .

Tansey and Scott [2015] denote two preliminaries:

• Every graph has an even number of odd-degree vertices.

• if G is not connected, then the objective function is separable across the con-

nected components of G, each of which can be solved independently.
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Theorem 3.3.1 (Tansey and Scott [2015], Theorem 1) The edges of a connected

graph with exactly 2k odd-degree vertices can be partitioned into k trails if k ≥ 0. If

k = 0, there is an Eulerian tour. Furthermore, the minimum number of trails that

can partition the graph is max(1, k).

The Theorem 3.3.1 reassures that any connected graph can be decomposed

into a set of trails T = {t1, t2, ..., tk} on which the optimization algorithm can

operate, and allows one to rewrite the penalty function as:

∑
(r,s)∈E

|xr − xs| =
∑
t∈T

∑
(r,s)∈t

|xr − xs| (3.9)

The updated penalty function allows proposing an efficient ADMM algo-

rithm. The next sections present details of the updated optimization method and

the trial decomposition approaches suggested by the authors.

3.3.1 Optimization via ADMM

The objective function, shown in Equation 3.8, can be rewritten using the updated

penalty function. In addition, for each trail t (where |t| = m), we introduce m + 1

slack variables 3, one for each vertex along the trail. Multiple slack variables are

introduced if a vertex is visited more than once in a trail. Equation 3.8 is rewritten

as:

minimize
x∈Rn

`(y,x) + λ
∑
t∈T

∑
(r,s)∈t

|xr − xs|

subject to xr = zr

xs = zs

(3.10)

This problem can be solved using the ADMM algortihm [Boyd et al., 2011]

3In an optimization problem, a slack variable is a variable that is added to an inequality con-
straint to transform it into an equality.
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based on the following updates:

xk+1 = argmin
x

(
`(y,x) +

α

2
‖Ax− zk + uk‖2

)
(3.11)

zk+1
t = argmin

z

(
w
∑
(r∈t

(ỹr − zr)2 +
∑

(r,s)∈t

|zr − zs|

)
, t ∈ T (3.12)

uk+1 = uk + Axk+1 − zk+1 (3.13)

where u is the scaled dual variable, α is the scalar penalty parameter, w = α
2 ,

ỹr = xr − ur and A is a sparse binary matrix used to encode the appropriate xi for

each zj . Here t is used to denote both the vertices and edges along trail t.

For the squared-loss function, as used in Equation 3.7, the x updates have

the simple closed-form solution:

xk+1
i =

2yi + α
∑

j∈J (zj − uj)
2 + α|J |

, (3.14)

where J is the set of dual variable indices that map to xj . Crucially, the trail

decomposition approach means that each trail’s z update in Equation 3.12 is a one-

dimensional fused lasso problem which can be solved in linear time via an efficient

dynamic programming routine.

3.3.2 Trail decomposition

Tansey and Scott [2015] proposed two approaches for the trail decomposition sum-

marized as follow – for a broader explanation see Tansey and Scott [2015]:

1. Create k “pseudoedges” connecting the 2k odd-degree vertices, and then find

an Eulerian tour on the surgically altered graph. To decompose the graph

into trails, we then walk along the tour (which by construction enumerates

19



every edge in the original graph exactly once). Every time a pseudo-edge is

encountered, we mark the start of a new trail.

2. Iteratively choose a pair of odd-degree vertices and remove a shortest path

connecting them. Any component that is disconnected from the graph then

has an Eulerian tour and can be appended onto the trail at the point of

disconnection.
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Chapter 4

Methodology

This section describes the methodology used for the analysis of the ride-sourcing

trips. The first part presents a description of the data used, including the mining

process and the variable definition. The second part explains the graph-fussed lasso

(GFL) total variation (TV) denoising process applied to the specific set of data.

4.1 Data

In this study, we used the data that a non-profit Austin-based TNC – known as

Ride Austin – made available in early 20171. The dataset consisted of 1,494,125

rides between June 2nd, 2016 and April 13th, 2017. Each trip corresponds to a

row in the database. Also, the dataset provides a description of the trip, rider, and

driver (anonymized), payment, cost, and weather.

Since the demand during the first month was limited, we focused our analysis

on data from September 1st, 2016 to April 13th, 2017. We selected rides with

the origin and destination coordinates within the traffic analysis zones (TAZs) 2.

Besides, our analysis only includes regular car category trips; we omitted trips by

1Available through the website https://data.world/ride-austin
2Defined by the Capital Area Metropolitan Planning Organization (CAMPO)
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sport-utility vehicles (SUV), premium, and luxury categories because the fare rate

is different in each case. Similarly, we only analyzed flat-rated trips, i.e., trips that

do not include any surge price. The total number of rides examined based on the

previous restrictions is 1,117,943 rides, with approximately 5,000 average daily trips.

Figure 4.1 provides a summary description of the evaluated trips including the total

daily trips, the average daily trips per week day, and the average hourly trips during

weekdays and weekends. We can observe that the majority of trips are concentrated

on weekends, mainly during the morning hours.

(a) Total daily trips (b) Average daily trips

(c) Average hourly trips during weekdays (d) Average hourly trips during weekends

Figure 4.1: Description of evaluated trips
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4.1.1 Space Discretization

The space discretization consists of summarizing the trip variables within the origin

or destination TAZ using the average value. We matched the trips pick-up (origin)

and drop-off (destination) longitude and latitude coordinates with the corresponding

TAZ location. Figure 4.2 (a) presents the TAZs in the Austin area and provides the

location of the TAZs corresponding to the Austin-Bergstrom International Airport

(ABIA) area. Also, as a specific case study, we selected trips with origin within the

central business district (CBD), located in Austin downtown, using the area type

TAZ classification. CBD trips correspond to a total of 176,219 trips, approximately

16% of the total evaluated rides. Figure 4.2 (b) provides a spatial description of the

area types in Austin, and Figure 4.2 (c) presents a detailed view of the downtown

area.

4.1.2 Time Discretization

The time discretization is based on the system peak hours because these correspond

to higher travel time and delays. We used four different time classifications. First,

we divided the trips into weekdays and weekend trips. Then, the weekday trips were

divided into AM-peak (from 6 to 9 AM), PM-peak (from 4 to 7 PM), and off-peak

hours. Table 4.1 provides the number of rides per each time classification. Figure

4.3 presents the total trip count per TAZ for each of the time frames evaluated based

on both origin and destination.
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(a) TAZs in Austin (airport TAZs shaded) (b) Area types TAZs

(c) Area types TAZs - Downtown

Figure 4.2: Description of TAZs
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Table 4.1: Number of trips evaluated

Time discretization CBD-origin System-wide

Weekday
AM-peak 16,371 49,430
PM-peak 15,661 122,653
off-peak 69,748 480,900

Weekend 74,439 464,960

Total 176,219 1,117,943

4.1.3 Description of Variables

We selected different measures as indicators of driver productivity. Specifically, we

focused on operational variables such as the trip fare, trip distance, waiting or idle

time, and reaching time. Additionally, we estimated three different productivity

variables based on trip fare and driver time.

Operational Variables

Among the operational variables, we selected the trip fare, corresponding to the

total passenger cost except for the tip, roundup amount3, and other operational

fees, such as booking and airport fees. The trip fare consists of the sum of base fare,

time rate, and distance rate, and the minimum fare is $4 (see Equation 4.1), based

on a regular car category.

faretrip = max(base fare+ distance rate+ time rate, 4) (4.1)

3Ride Austin allows riders to round up the total fare to the nearest dollar and designate it to a
local charity.
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(a) Origin (AM-peak) (b) Dest. (AM-peak) (c) Dest. (AM-peak) CBD

(d) Origin (PM-peak) (e) Dest. (PM-peak) (f) Dest. (PM-peak) CBD

(g) Origin (off-peak) (h) Dest. (off-peak) (i) Dest. (off-peak) CBD

(j) Origin (weekend) (k) Dest. (weekend) (l) Dest. (weekend) CBD

Figure 4.3: Total count number of trips per TAZ origin and destination
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The trip distance used represents the distance from the pick-up to the drop-

off location, in kilometers, provided in the database. The reach time corresponds to

the time it took the driver to reach the rider since the trip was assigned to him, also

provided in the database. In addition, the idle time was estimated based on the

driver unique identification information. This time correspond to the time it took

the driver from the previous trip drop-off time to the next trip pick-up time. We

only considered idle time lower than 60 minutes in the analysis. Figure 4.4 provides

a driver time diagram with a graphical representation of these variables. From the

figure we can describe the driver time values as follow:

• t0 : time trip1 started at the pick-up location

• t1 : time trip1 finished at the drop-off location

• t2 : time trip2 is assigned to the driver

• t3 : time trip2 started at the pick-up location

• t4 : time trip2 finished at the drop-off location

Figure 4.4: Driver time diagram

.
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Using the previous driver time description, we can estimate the idle time and

the reach time using Equations 4.3 and 4.2, receptively.

reachtime = t3 − t2 (4.2)

idletime = t3 − t1 (4.3)

Productivity Variables

We estimated three different productivity variables based on the driver time di-

agram. Productivity A corresponds to the throughput of the trip1 in dollars per

hour, estimated using Equation 4.4. Productivity B refers to the productivity of

the trip1 including the idle time after finishing that trip, estimated using Equation

4.5. Finally, Productivity C corresponds to the productivity of two consecutive trips

including the idle time between them, as an indirect measure of the continuation

payoff, it was estimated using Equation 4.6. The main objective of estimating these

variables is to analyze the impact of the trip destination on the driver productivity.

Productivity A only captures the revenue of a trip divided by its duration,

so it is not expected to capture the effect that ending a trip on a region of low

density may have. Productivity B is adding the idle time after the end trip to the

formula; in this way, penalizing for traveling to low-demand zones. Productivity

C also includes the revenue and duration of the following trip, seeking to capture

further spatial dynamics for ending in a specific region.

Table 4.2 provides summary statistics of the seven variables described in this

section.

Productivity A =
faretrip1

t1
(4.4)
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Productivity B =
faretrip1

t3
(4.5)

Productivity C =
faretrip1 + faretrip2

t4
(4.6)

Table 4.2: Summary statistics of the analyzed variables

Variable Min. Max. Mean Median Std. Dev.

Operational

Trip fare ($) 4.0 57.9 10.4 8.3 6.5

Trip distance (km) 0.1 50.0 9.0 6.2 7.8

Idle time (min) 1.0 60.0 18.0 13.3 13.7

Reach time (min) 1.0 20.0 6.3 5.6 3.5

Productivity

Productivity A ($/hr) 15.7 100.0 48.2 46.7 11.0

Productivity B ($/hr) 1.0 60.0 17.9 17.7 10.5

Productivity C ($/hr) 1.1 60.0 24.8 25.8 11.5

4.2 GFL TV Denoising

We used the GFL for TV denoising of the variables described previously. This

section describes the method used in the current dataset.

4.2.1 Penalized Weighted Least Squares

We selected a penalized weighted least square loss function (Equation 4.7) to take

into account the differences in the number of observations with each zone. Let us

denote by ηi the count of trips observed within the i-th TAZ, then the objective

function takes the form:

minimize
x∈Rn

n∑
i=1

ηi
2

(yi − xi)2 + λ
∑

(r,s)∈E

|xr − xs| (4.7)
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The justification for this set of weights is the following. If (yi,1..., yi,ηi) are the

observations in the i-th TAZ, (xi,1..., xi,ηi) the predicted values, then the squared

error of the full model would be:

1

2

n∑
i=1

ηi∑
j=1

(yij − xij)2

And if in the above formula we replace all the yij and xij with their means yi and

xi, then we recover the squared error term of (4.7).

4.2.2 Graph Definition

The edges for joining the TAZ nodes where chosen according to a k-nearest neighbors

principle. The location of a TAZ was computed as the mean longitude and latitude

of all the points observed in that region. The exact assigned location differed slightly

depending on whether the data were being classified by start or end location. Once

the node locations were calculated, then for each node r, an edge (r, s) was added

for all s within its k-nearest neighbors. We used k = 4 so that the graph represented

spatial adjacency. We remark that there was little variation in the final results for

other close values of k.

4.2.3 Choosing the Regularization Parameter

The optimal regularization parameter λ depended on each variable and was selected

by splitting the data in a training and test set. The metric used is the root mean

square error (RMSE) at the individual level, shown in Equation 4.8. Figure 4.5

presents an example of the RMSE obtained using different λ values, the optimal λ

is the value that minimizes the RMSE.

R̂MSE =

 1∑n
i=1 ηi

n∑
i=1

ηi∑
j=1

(yij − x̂i)2
1/2

, (4.8)

30



where n and ηi are the number of TAZ regions and counts for the i-th taz from the

test set, and x̂i is the prediction for the i-th TAZ obtained from the training data.

Figure 4.5: RMSE to find the optimal regularization parameter
.

4.2.4 GFL TV Denoising Examples

We provide examples of the application of the GFL TV denoising to the variables of

interest in Figure 4.6. The first image presents the raw data points. The next image

provides the information summarized per TAZ. Finally, the third image presents the

denoised graph.

The denoised image allows a better interpretation of the spatial distribution

of the variables. Also, we can observe a clear example of the `1 penalty benefits in

the airport area of Figure 4.6 (i), corresponded to the idle time variable. The GFL is

able to preserve the high contrast of the values in this area and keep it independent

of the surrounding area values.
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(a) Trip fare data points (b) Trip fare data in TAZs (c) Trip fare GFL denoised

(d) Distance data points (e) Distance data in TAZs (f) Distance GFL denoised

(g) Idle time data points (h) Idle time data in TAZs (i) Idle time GFL denoised

(j) Reach time data points (k) Reach time data in TAZs (l) Reach time GFL denoised

Figure 4.6: GFL TV denoising examples (system-wide weekend origin trips)
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Chapter 5

Results and Discussion

This section presents the results of the total variation (TV) denoising process using

the graph-fussed lasso (GFL) for the variables described in the methodology section.

We analyze and discuss significant findings based on the denoised results.

5.1 Operational Variables

The operational variables are analyzed based on the origin (pick-up) traffic analysis

zone (TAZ) of the trips. The results are shown in Figure 5.1.

5.1.1 Distance

The resulting maps of trip distance spatial distribution show that the majority of

short trips are concentrated in the central area, while longer trips are originated

from the urban sectors. Additionally, trip distances do not show significant changes

across the time frames analyzed. The main difference is found during the morning

peak hour. We observed areas with a trip length lower than 5 km in the downtown

sector, while the airport presented long trips. Thus, it is possible that users prefer to

use ride-sourcing trips for commute inside the central area and airport trips during
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the critical morning hours.

5.1.2 Idle Time

The idle time provides an indirect measure of the trip supply and demand relation.

It is based on the driver time between the end of a trip and the beginning of the

next one (see Figure 4.4). In this case, the results are shown based on the origin of

the trips and correspond to the idle time prior to the rider pick-up at that specific

location. Downtown trips present lower driver idle time than the periphery-area

trips. Short idle time means that the ratio supply-demand is near to one (the

demand is similar to the supply). High idle time can be related to low rides’ demand

or high drivers’ supply, thus a supply-demand ratio higher than one.

The results showed a marked difference between the airport trips and the

other TAZs trips, and this difference is constant over the time. Specifically, rides

beginning at the airport showed higher idle time prior to the rider pick-up. This

result suggests that there could be an excessive driver supply in the area, which

causes drivers to wait longer until the next trip. However, the airport-area presented

a high number of trips. Thus it is possible that drivers are aware of this and prefer

drive there to warranty trips.

We observed a high contrast of idle time at the AM and PM-peaks. Weekday

evening rides tend to have a greater idle time compared to weekday mornings. This

result suggests that the supply and demand interaction of these hour frames is

different. PM-peak trips present higher supply-demand ratio compared to AM-Peak.

The number of rides during weekday evenings is significantly higher to morning trips.

Thus, we can conclude that there is a considerably higher supply of drivers during

the PM-Peak compared to AM-Peak.
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5.1.3 Reach Time

The reach time consists of the driver time since the trip is assigned until the pick-up

moment, as shown in Figure 4.4. This variable is an indirect measure of the driver

supply in the area. Low reach-time regions have more drivers available nearby

than high reach-time zones. However, it is also affected by the driving speed and

accessibility. In general, the reaching time is less than 10 min for most of the central

area, including the airport zone.

The results present a notable difference between north-south and east-west

reaching time, which can be related to the accessibility provided by the main north-

south corridors including the Interstate Highway (IH) 35, State Highway Loop 1,

and other Arterial corridors (e.g., Lamar and Guadalupe). Among the time dis-

cretization, the morning peak-hour shows the higher variation. The north-south

pattern is lesser than other time slots and the low reaching-times are limited to the

center of the city. This result suggests that the during AM-peak hours the accessi-

bility to the north and south areas is limited, probably caused by the delays due to

rush hour.
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(a) Distance AM-peak (b) Idle time AM-peak (c) Reach time AM-peak

(d) Distance PM-peak (e) Idle time PM-peak (f) Reach time PM-peak

(g) Distance off-peak (h) Idle time off-peak (i) Reach time off-peak

(j) Distance weekend (k) Idle time weekend (l) Reach time weekend

Figure 5.1: Operational variables comparison for system-wide trips (trip origin)
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5.2 Productivity Variables

The productivity variables are analyzed based on the destination (drop-off) TAZ of

the trips, which allows us to investigate the impact of the trip destination on the

drivers’ productivity. We provide a natural experiment where we select only trips

with origin in the central business district (CBD)– refer to Figure 4.2 for more details

– these trips represent 16% of the total rides evaluated. We estimated three different

productivity measures to capture the main variables influencing drivers’ effective

profit. Productivity A measures the throughput of the first trip. Productivity B

includes the idle time to take into account the trade-off between trip benefit (profit)

and ending zone operational condition. Finally, Productivity C provides a measure

of the continuation payoff by taking into account also the following trip profit.

5.2.1 Trips with CBD Origin

Productivity A results show an interesting relation between very short (less than

0.8 km) and long trips (more than 25 km). For instance, based on the AM-peak

outputs, we can observe a small area of high throughput ($60/hr-$80/hr) within the

downtown zone, given by short rides. Longer trips provide lower measures in the

range of $45/hr to $55/hr, but as trips become further away from the CBD, the pro-

ductivity raises again to high values. This “donut-like” effect is also present for the

PM-peak, off-peak, and weekend rides, but with less contrast than AM-peak results.

This result can be related to the base fare, which warranties a minimum fix amount

for very short trips. Thus, the driver productivity for a single journey is comparable

between trips lower than 0.8 km and trip longer than 25 km, approximately.

Using the measure of Productivity B, we want to capture the effect of the

ending-zone idle time in the driver productivity. The results show an interesting

spatio-temporal dynamic. First, the spatial contrast is lesser. For instance, AM
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peak shows a result variation of only $10/hr (from $15/hr to $25/hr). Also, the

central area tends to show lower values than the periphery area. Second, the time

effect is significant. For example, we can observe that Productivity B values variate

significantly from the AM-Peak to the PM-peak and weekend results. This result

suggests that it is a spatial influence in the driver productivity but the time effect

has a more significant impact.

Productivity C provides insights on the productivity of two consecutive trips

and takes into account the ending-zone idle time between them. In this case, results

showed a lower spatial impact compared to Productivity B. Mainly for off-peak

and weekend trips where the majority of the area present similar results. Am-peak

presented the most favorable productivity measure located in the central region.

In general, AM-peak rides results indicate that drivers that stayed in the central

area ended their second trip with higher productivity compared to those who made

longer trips. Regarding the time effect, weekend trips are more favorable for drivers.

5.2.2 System-Wide Trips

The system wide results provide a generalization of the CBD rides. The results

are presented in Figure 5.3. In this case we want to generalize the idea of the trip

destination effect on the drivers’ equity. Productivity A show that the revenue for

a single ride is higher in the periphery area of the city, meaning that trips ending

in zones distant from the city provide higher revenue in general. The AM-peak

presents greater productivity values than other time frames. The idle time of the

ending zone provides measures of Productivity B with low spatial contrast. However

we can observe that PM-peak trips present lower values compared to other times of

the day.

Productivity C during weekday peak hours provides valuable information.

Rides ending in downtown result with higher productivity compared to those ending
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in the peripheral area. Specifically, AM-peak rides present the highest value in

downtown and airport zones. During off-peak and weekend hours we still have the

central area as the most desirable. However, we can observe that this area not only

comprises the central zone but also south-west area, corresponding to suburban

developments. This result is contra-intuitive, because the area does not present

high intensity of trip demand. The main reason of this result can be related with

the higher uncertainty of the data points in the zone, the amount of data is more

limited and the underlying spatial adjacencies provide a GFL best guest estimate

comparable with the downtown area. Figure 5.4 presents the trip count and the

Productivity C before and after the GFL denoising process. We can confirm that

the south-west area presents low trip count and high variability on the productivity

values.
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(a) Productivity A AM-peak (b) Productivity B AM-peak (c) Productivity C AM-peak

(d) Productivity A PM-peak (e) Productivity B PM-peak (f) Productivity C PM-peak

(g) Productivity A off-peak (h) Productivity B off-peak (i) Productivity C off-peak

(j) Productivity A weekend (k) Productivity B weekend (l) Productivity C weekend

Figure 5.2: Productivity comparison for CBD trips (trip destination)
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(a) Productivity A AM-peak (b) Productivity B AM-peak (c) Productivity C AM-peak

(d) Productivity A PM-peak (e) Productivity B PM-peak (f) Productivity C PM-peak

(g) Productivity A off-peak (h) Productivity B off-peak (i) Productivity C off-peak

(j) Productivity A weekend (k) Productivity B weekend (l) Productivity C weekend

Figure 5.3: Productivity comparison for system-wide trips (trip destination)
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(a) Trip count in destination (b) Productivity C original (c) Productivity C denoised

Figure 5.4: Productivity C comparison for weekend trips (destination)
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Chapter 6

Conclusions

This study explored the spatial pricing discrimination of ride-sourcing trips using

empirical data. We used information from more than 1.1 million rides in the Austin

area, provided by a non-profit TNC from a period where the leading companies were

out of the city. We based our analysis on operational variables such as the waiting

or idle time between trips and reaching time. Also, we estimated three different

productivity measures to evaluate the impact of the trip destination on the driver

continuation payoff.

The analysis of the operational variables provided insights about the ride-

sourcing travel patterns and the balance between supply and demand across space

and time. We found that during weekday AM-peak hours (from 6 to 9 AM), riders

within the central area prefer shorter trips, compared to the other time frames.

Additionally, PM-peak hours (from 4 to 7 PM) tend to have significantly higher

driver supply which causes a greater supply-demand ratio, compared to AM-peak.

Also, Airport-area trips showed a marked difference compared to other Austin areas

in term of operational variables, including a significantly higher amount of origin and

destination rides. The results suggest that drivers prefer to drive there to warranty

rides.
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Furthermore, the evaluation of different productivity variables allowed the

investigation of the effect of the trip destination on driver productivity. Based on the

results, the productivity of a single trip for rides shorter than 0.8 km is comparable

to rides longer than 25 km, approximately. Regarding spatial effects, drivers with

rides ending in the central area presented favorable spatial differences in productivity

when including the revenue of two consecutive trips for AM-peak rides. However,

the other time slots evaluated did not show significant differences. The time effect

was more contrasting than the spatial effect. Weekend rides tend to provide better

driver productivity measures.

The results and methods provided in this study can serve multiple purposes.

First, from a driver and operator point of view, we identified the spatial and temporal

distribution of the principal operational and productivity variables, which can lead

to a more efficient driver supply method. Second, from the planners and engineers’

perspective, we provided insights on the ride-sourcing travel patterns in the Austin

area that can help to understand the main characteristics of this type of service.

Third, we provide empirical evidence of the driver productivity inequality due to

spatial and temporal factors. This evaluation can lead to policies that warranty fair

driver-earning conditions. Finally, our results may also have relevance in the field of

transportation research. We provide an application of spatial smoothing approaches

to a transportation problem. Furthermore, we specifically focused on a method that

can be solved with a highly efficient and scalable algorithm that can be used with

evaluations that include big-data.
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