
DISCLAIMER:	

This	 document	 does	 not	 meet	 the
current	 format	 guidelines	 of

the Graduate	 School	 at	 	
The	 University	 of	 Texas	 at	 Austin.	

It	 has	 been	 published	 for	
informational	 use	 only.	

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211347159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright

by

Daniel Gregory Krawisz

2017

The Report Committee for Daniel Gregory Krawisz
Certifies that this is the approved version of the following report:

Anonymity in Bitcoin and Bitmessage

APPROVED BY
SUPERVISING COMMITTEE:

Vijay Garg

William Bard

Supervisor:

Anonymity in Bitcoin and Bitmessage

by

Daniel Gregory Krawisz, B.A.;M.A.

Report
Presented to the Faculty of the Graduate School of

The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
May 2017

 Dedication

Dedicated to my cat, Lemon.

Acknowledgements

I thank Adnan Aziz, my first supervisor, for putting up with me. I thank Vijay

Garg and William Bard for supervising this project. I thank the people at Monetas and

Stash, who supported my work on bmd, and the people at Mycelium, who supported my

work on Shufflepuff. I thank my mother, Jane Kennedy, for her help and support.

v
ththth

Abstract

Anonymity in Bitcoin and Bitmessage

Daniel Gregory Krawisz, M.S.E.
The University of Texas at Austin, 2017

Supervisor: Vijay Garg

This report describes two projects created by the author which are based on ideas

which originate from the Bitcoin community. The first, bmd, is a re-implementation of

the Bitmessage protocol in go. Bitmessage is an anonymous and secure messaging system

invented by Jonathan Warren, who was inspired by the design of Bitcoin's p2p network.

[WARR1] The second is Shufflepuff, an implementation of a protocol called

CoinShuffle[RUFF1] which allows several people to construct a Bitcoin transaction with

an input and an output for each participant without any participant knowing who owns

which output. CoinShuffle was invented by Tim Ruffing et al, and it is an upgrade of a

protocol called CoinJoin, invented by Gregory Maxwell. This paper discusses the

background, properties, applications, and design of bmd and Shufflepuff. There is also a

report of a performance analysis on bmd.

vi
ththth

Table of Contents

List of Figures...ix

Chapter 1 Fundamental Concepts...1

Anonymity..1

Proof-of-Work...2

Chapter 2 Prior Work..6

Comparison to PGP..6

Comparison to Freenet..7

Comparison to Bitcoin..8

Chapter 3 Justification...10

Uses of Bitmessage...10

Digital Cash and Open Transactions...11

Open Transaction Voting Pools...11

Chapter 4 Engineering..15

The Bitmessage Protocol..15

Bitmessage and IMAP..16

Design of bmd...17

bmd and btcd...18

Chapter 5 Performance Analysis of bmd..19

Chapter 6 Shuflepuff...22

Anonymity in Bitcoin..22

vii
ththth

Bitcoin Tumblers...23

Join Transactions in Bitcoin..24

Description of CoinShuffle...25

The Taker/Maker Model...26

Theoretical Contributions...27

Chapter 7 Artificial Intelligence and Privacy..29

Conclusion...31

References..32

viii
ththth

List of Tables

Table 1: Memory Usage of bmd...26

ix
ththth

Chapter 1: Fundamental Concepts

ANONYMITY

In computer networking, anonymity means that it is infeasible for a passive

attacker to link any two messages together as a single identity. Anonymity is a subject

which is both poorly-understood and difficult to provide properly. The reason it is so

difficult is that no one can hide in a vaccuum; one must hide among other people.

Anonymity as a service must therefore be provided by many people to one another, all of

whom wish to be anonymous. It is inherently a social phenomenon, and therefore it is

inherently complicated.[DIAZ, SERJ]

The first person to publish academic papers on anonymity in a computer

networking context was David Chaum[CH1, CH2]. His two classic papers are very

different from one another and together they provide a good conceptual overview of

anonymity.

His first paper, “The Dining Cryptographers Problem”, showed that a network

could provide a maximal level of anonymity with a synchronized protocol that allowed

one bit to be transmitted anonymously per round. He showed that it was possible for one

member in a group to broadcast a message without leaking any information about who it

was. For an outside observer, the sender cannot be distinguished among n people, and for

a participating observer, the sender is hidden among n-1 people (because he knows if he

is the sender). This is the maximum degree of anonymity that could be achieved with n

people.

Because this protocol is synchronized, it is not practical for real-world networks.

This is unfortunate because the author doubts that it is possible for a non-synchronized

1

network to avoid leaking some information. Thus, for larger networks, the problem

becomes one of leaking the least amount possible rather than leaking none in a way that is

provable beforehand.

Thus, real-world anonymity to serve many people appears to be much more about

engineering than mathematics. The general strategy of any anonymity network is to

spread any information enough that no node is likely to be able to reconstruct the

behavior of any identity on the network. Chaum’s other paper[CH2] was about a much

more practical system that could provide anonymity allowing a lot of nodes to randomly

mix signals. It contained no mathematics; it simply argued that if a message is routed

through a random set of a large number of servers, the message ought to be very difficult

to trace. This is the basis for the Tor network, which is a large non-synchronized

anonymity network, except that Tor routes IP connections rather than email only.[DING]

This paper is about two projects created by the author which are designed to

provide anonymity. One of them, Shufflepuff, exists to provide anonymity in Bitcoin

transactions. It uses a synchronized protocol called CoinShuffle, which means that it can

provide strong guarantees of anonymity, but is limited to networks with fewer people. The

second of these, bmd, implements a messaging protocol called Bitmessage[WARR1].

Bitmessage is not a synchronized protocol, so it is capable of serving a much larger

network.

PROOF-OF-WORK

Most of the ideas in this paper grew out of ideas originally proposed by the

Cypherpunks, a mailing list which was active from the late 1980s to the early 2000s. The

Cypherpunks were individualists who wanted to evade government oversight. David

Chaum is considered to be their progenitor. Proof-of-work was an idea originally

2

proposed on the Cypherpunk mailing list by Adam Back.[BACK1] The idea of proof-of-

work is to show an expended cost in a cryptographically secure way.

A cost function is a function that takes a cost parameter x and a message m and

produces a message m’ that has a verifiable expected cost c(x) to create from m. For

example, suppose that H is some cryptographic hash function and m’ n+m, where n is a≅

nonce which is chosen so that H(m’) is less than a given value x. This is the simplest way

to implement a cost function. Because a cryptographic hash function is supposed to act

like a one-way function whose output is indistinguishable from a random string, a

computer that receives message m’ can conclude that it could not have been produced

without trying nonces until one was found that produced a valid hash value. By adjusting

the cost parameter, one can make a valid nonce more or less difficult to find.

The application originally proposed for cost functions was as a spam filter. A

given email address would have a certain difficulty associated with it, and any email

which did not have a sufficiently difficult proof-of-work attached would be automatically

discarded without being read. A sender who was not sufficiently interested in attracting

the attention of the recipient to evaluate the work function would simply not send an

email in the first place.

A spammer depends on being able to send large numbers of emails cheaply in

order to benefit from the small fraction of people who read them. A tiny individualized

per-message cost would affect him a lot more than it would affect someone who only

wanted to send personalized messages.

A proof-of-work filter is an application of the handicap principle[ZA1], which is

an idea that comes out of evolutionary theory. It says that a believable message must

come at a verifiable cost to the sender. This idea has been tested mainly in mating

3

displays, though its theoretical applications are potentially much greater. There are game-

theoretic models that show this to be a stable strategy under certain circumstances.

[GRAF1]

Bitmessage uses proof-of-work for spam prevention. Because anonymity and

confidentiality are design goals of Bitmessage, the nodes must communicate without

knowing much about one another and therefore cannot automatically expect reliable

information from one another. A bitmessage node must be able to limit the computational

power it expends to the messages most likely to be meaningful, but it cannot look at the

content of the majority of the messages. Therefore, Bitmessage nodes transmit the

messages they receive based on the proof-of-work string attached to them. Only those

messages worth the cost to the senders are sent into the network. The use of proof-of-

work can help enable anonymous agents to cooperate by mitigating the free-rider

problem.

A criticism that has been made of the proof-of-work spam filter is that such a filter

would allow some spam in, if it was worthwhile to the spammer to bear the cost.

[LAURIE] However, all that the filter does is put the responsibility on the sender to prove

that a message is worth reading. This might well be worth it to a spammer, but the costs

of sending messages would require him to consider the demographics of the addresses he

has available in order to maximize the likelihood of a response. He would have to do

better than to just mass email everybody. Therefore, advertisements that passed the proof-

of-work filter would be more likely to be of interest to the receivers.

Spam was originally defined specifically as unsolicited email advertisements, but

more recently the definition has been generalized to refer to any kind of message that a

person does not want to receive. It is this more modern definition of spam that is most

4

relevant to a proof-of-work filter because such a filter requires the sender to be able to

maximize the odds that he will produce a message to which the receiver will respond

favorably.

A message that someone paid to create is more likely to be meaningful. If

everyone had to compete for my attention and had to expend effort just to convince me to

look at a message, then they would have an incentive to learn to produce messages that

are worth reading to me. Otherwise their effort would be wasted. Therefore, if someone

wishes to send an unsolicited advertisement and is willing to expend the required cost for

the recipient to look at it, then it is more likely to be something that is actually worth his

time. In other words, if proof-of-work does not function exactly as a more "intelligent"

spam filter, then we would be better served to generalize our definition of spam to be

more in accordance with the filter.

5

Chapter 2: Prior Work

COMPARISON WITH PGP

Although they are both secure messaging systems, PGP and Bitmessage have

different goals in mind. An important part of the design goals of PGP is to provide a web

of trust that can be used for authentication without relying on a trusted third party. As

such, a person's public key may be publicly associated with him on a directory like MIT's

PGP server, complete with digital signatures from his contacts to prove that the

association of his key with his identity is correct. Thus, PGP does not provide anonymity

or prevent traffic analysis—in fact, part of its security depends on a huge public graph of

the connections of all PGP users.

An anonymous messaging protocol cannot on its own provide for authentication

or it wouldn't be anonymous. However, the PGP web of trust can fruitfully be combined

with Bitmessage. One can attach a public Bitmessage address to one’s public PGP key, for

example. One can also use a PGP digital signature to verify one’s identity to a specific

recipient over Bitmessage without revealing any information to someone watching the

network.

There are considerable problems with using encryption of any kind with email.

Despite the protection promised to American citizens under the 4th amendment against

unwarranted searches, United States jurisprudence has evolved to establish the concept of

"metadata", the contents of which may be looked at without violating the 4th amendment.

For example, email headers (which include the subject line) are considered to be

metadata, whereas the body of the email is not. Non-US citizens are not considered to

have any rights to privacy at all by the US government and any data they send through the

US is considered to be fair game for collection.
6

Encryption alone cannot thwart the collection of metadata, but an anonymous

system can. Thus, both Bitmessage and PGP are potentially of value in a world where

secrecy matters.

COMPARISON TO FREENET

Freenet is a venue for publishing documents online that is anonymous in the sense

that it separates content from publisher. When browsing through Freenet, it is difficult to

know which computer hosts a given document and who originally made it.[CL1, SAND1]

In Freenet, files on the network survive according to whether the nodes find them

interesting enough on their own merits to be preserved. On the Bitmessage network, all

messages are sent out with a specified, objective timeout period. The creator of the

message can create a longer- or shorter-lived message by attaching a stronger or weaker

proof-of-work to it. The creator's evident willingness to expend resources on the message

is accepted by the network as an indication of the importance of the information it

contains.

The fact that it is possible to encrypt any signal means that a society cannot easily

act on the contents of encrypted messages and it cannot exert pressure on the specific

people who send messages that are not socially acceptable. To attempt to smear an

anonymity network by associating it with child pornography is nothing but a distraction.

The only real question is whether we want to live in a world in which anonymity and

confidentiality are available to everyone, or in a world in which they are denied to

everyone.

However, it would be reasonable to suspect that people have at least one interest

that they would like to keep private. If this is true, then most people could potentially

benefit from an anonymity network. Since anonymity inherently requires a group of

7

people all to hide among one another, everyone who wants it can benefit from cooperating

with one another, even if they should all find one another mutually socially unacceptable.

COMPARISON TO BITCOIN

Bitcoin[NAKA1] was the first form of digital cash to develop a value on its own in

a market setting. One of the design goals of Bitcoin is to be a decentralized solution to the

double-spending problem, which is an issue that must be resolved in all versions of digital

cash[FINN1]. Unlike gold or physical paper bank notes, which cannot be easily

reproduced, anyone can mass-produce messages on a network. A digital cash, therefore,

must resolve the double-spending problem, which refers to the fact that a node in the

network can send two messages which both spend the same sum of digital cash. Any

distributed system which is to allow for some form of digital cash must have some means

of ensuring eventually one and only one such message to be accepted as valid.

Bitcoin relies on a process called mining, in which some node attaches proof-of-

work to a set of consistent transactions. The data structure which includes the sets of

transactions is called a block. If there are competing blocks, the one with the higher

proof-of-work is accepted as the preferred one by the network. The minimum allowable

proof-of-work is adjusted to ensure that one block is accepted by the network on average

every 10 minutes.

There is nothing corresponding to the double-spending problem in anonymous

communication, but Bitcoin's p2p network incidentally supports anonymous mining and

was therefore easily adaptable into an anonymous messaging system. Since Bitcoin is a

distributed system, anyone can produce a block that will be accepted eventually by the

whole network. In order to achieve the highest certainty that a given transaction will be

accepted by the network, therefore, a node should want as many other nodes as possible

8

to know about it. In order to enable all users to participate in the creation of Bitcoin's

objective history, a user must receive all the messages.

Thus, Nakamoto developed a peer-to-peer protocol to manage the distribution of

messages. When a new node joins the network, other nodes send it inventory messages,

which are lists of hashes of the transactions and blocks known to that node. The peer then

responds with a request for everything it does not already have. Everyone on the Bitcoin

network, therefore, eventually gets all the transactions that have been sent into it.

An incidental property of such a system is that of greatly reducing the information

that a passive attacker could obtain from traffic analysis. Because messages tend to

propagate to all nodes, it is difficult to determine which computer originally produced any

given message. The Bitmessage protocol was modeled off the Bitcoin peer-to-peer

protocol to serve this alternative purpose. Bitmessage is like Bitcoin without the

blockchain. It tries to connect to many peers and to distribute all messages across the

entire network. However, there is no need in Bitmessage for the peers to agree upon a

consistent history or to remember messages after they have expired. It then becomes a

protocol for transferring messages rather than for transferring value.

9

Chapter 3: Justification

USES OF BITMESSAGE

Bitmessage[WARR1] is a protocol designed to provide secure online messaging.

Bitmessage messages work according to the basic principle of public-key cryptography. A

public key is distributed for sending messages and a private key is kept secret for

decrypting them. In practice users distribute addresses, which are hashes of public keys.

The actual public key is requested and sent encrypted over the Bitmessage network.

Bitmessage also has the concept of a broadcast. Since all messages are distributed

to everyone on the network, it is possible to make an address into something like a

subscription service. A Bitmessage broadcast is encrypted with a private key that is

generated from the address of the sender. Anyone who knows the address can decrypt the

message. Since only the person who generated the address can produce a valid signature,

no one who subscribes to the broadcast address can forge a message on a broadcast

channel.

An interesting feature of Bitmessage broadcasts is that, because they are

transmitted in a way that anonymizes both sender and recipient, it must be the case that

all subscribers of a particular broadcast must receive the same message. If not, then there

must be a way for a sender to treat two recipients differently, which would be impossible

if they were anonymous. Therefore, to the extent that Bitmessage is successful as an

anonymous messaging system, it also prevents a publisher from sending different

messages to different subscribers. This is the feature that makes Bitcoin interesting as a

component of Open Transactions voting pools.

10

DIGITAL CASH AND OPEN TRANSACTIONS

The original idea for digital cash was devised by Chaum as a means protecting a

person's privacy when they spent money using a bank as an intermediary. He did not

invent a new currency. His idea was for a digital bank note. It would operate like cash

denominated in an existing currency. Later, ideas about what digital cash should be like

were developed by Nick Szabo and others on the Cypherpunk mailing list into a form that

was more like what we now know of as Bitcoin.

On the other hand, Open Transactions (OT) is a protocol which is closer to

Chaum's earlier idea[ODOM1]. OT allows for digital receipts for the exchange of goods

which are signed by both sender and receiver. OT has options for digital blinding, like

that invented by Chaum to protect users' privacy.

An application of such a system is an untrusted bank. By relying on a set of signed

receipts for all withdrawals and deposits, the bank and the user can both prove what the

balance of the account should be. If the bank attempts to appropriate funds, this is

provable by the user. The bank still needs to be audited in order to prove that it actually

has the funds corresponding to its customers' balances.

These two ideas can be combined. OT can be used on top of Bitcoin. This allows

for security to be provided for certain uses of Bitcoin to which it is not well-adapted on its

own.

OPEN TRANSACTIONS VOTING POOLS

A problem which has affected Bitcoin as soon as it first began to attract

investment was that although Bitcoin mostly eliminates the need for banks, for those

services which still required an agent to store funds on behalf of a client, it was wildly

insecure. In fact, it was much less secure than any currency which had existed previously,

11

and for the same reason it was so wonderfully secure under other circumstances: whoever

controlled the private key had absolute control. A digital signature, and only a digital

signature, was required to make a valid payment. Thus, because users could store their

funds in cryptographic private keys, a user was capable of securing his funds against

misappropriation to an extent that had been impossible with previous currencies, as long

as that user controlled the private key.

Usually this was possible because most monetary services for which we use

agents today could be done automatically with cryptography or by the Bitcoin network's

peer to peer protocol. But when this was not the case, the agents on whom one had to rely

could misappropriate funds more easily than any previous embezzler could with other

people’s dollars. Therefore, such embezzlement occurred at a rate which was laughable.

[SCAM1]

Although this has improved in recent years, it has not improved as a result of a

sufficient improvement in our use of cryptography, but rather because businesses have

begun to achieve a sufficient value in their brand as to make the value of misappropriated

funds less, not worth the requisite destruction of the brand. The consumer preference for

brand name recognition therefore forces potential competitors to demonstrate a similar

level of honesty.

While the economic value of honest branding is not to be dismissed, a form of

security that comes with a mathematical proof is preferable if possible. Open

Transactions aims to provide a cryptographic solution using what its designer has called

voting pools. A voting pool consists of several computers, each of which provides some

services as a Bitcoin agent, which all jointly control a single wallet containing the total of

all the bitcoins they hold as agents. The wallet is multisig type, which means that a

12

certain minimum number of signatures is required to spend Bitcoins from it. Therefore,

the numbers of the voting pool must agree, up to a certain number of them, to allow for

balances to be redeemed, and none of them can act on its own to misappropriate them.

Because the Bitcoin blockchain is public, it is possible for the voting pool to prove

that it controls a certain sum of Bitcoins. However, there is still a problem proving that

the amount of bitcoins in the voting pool is the amount that ought to be there.

A well-known trick in accountancy is to make two sets of books, one which is

shown to an auditor and another which records the real state of the finances of a company.

The analogous trick with a Bitcoin bank is to send two sets of messages which give a

different impression about how many Bitcoins should be in the bank. One set of messages

is sent to the bank's customers, and another to the auditor. Each voting pool must be

capable of cooperating with an auditing service which proves or affirms as to the

correspondence between a set of transactions in the blockchain and a provably complete

record of deposit and withdrawal orders authorizing the set of transactions. The provably

complete part is where Bitmessage comes in.

The solution is to use a public channel that cannot be easily be censored, and this

is exactly what a Bitmessage broadcast channel accomplishes. Once a message is

broadcast, anyone with the key can read it, and since anyone can be a Bitmessage node,

the recipients of a broadcast cannot be controlled, once the message is sent out. An

auditor, therefore, can be assured to receive the same messages as those received by the

customers.

If the users of the voting pool broadcast their deposit and withdrawal orders over a

Bitmessage channel, then anyone listening to this channel can be certain that he has a

copy of every message sent over the channel. This means that the auditor can be certain to

13

have seen every relevant message. Otherwise, it would be possible for a member of a

voting pool to show different records to its auditor than it does to its clients when they

withdraw. This would allow a member to create fake customers and make fake deposit

orders that cover up real customers. Then when the customers withdrew their bitcoins, the

voting pool member could make fake withdrawal requests that would funnel bitcoins into

his own account.

14

Chapter 4: Engineering

THE BITMESSAGE PROTOCOL

I now discuss some of details of the Bitmessage p2p protocol. Bitmessage

assumes that its nodes communicate over a channel. Most likely this would be over TCP

or Tor. When two bitmessage nodes first connect, they engage in an initial handshake. The

handshake consists of a version and a verack from each of them. The Bitmessage protocol

has changed in minor ways in the past, so the version message is useful for checking

whether and how two nodes can communicate. The verack is an empty message.

After the initial handshake, the nodes send inv and address messages to one

another. These messages tell each other about the objects and IP addresses they each

know about on the network. As new messages appear on the network, the nodes can

update each other as to the new information.

Each node requests the objects that they do not have using the getobject message.

This message is simply a list of hashes, just like inv. The node which received the

getobject responds with a series of object messages.

A bitmessage object contains an int value which specifies the type of object. Any

value is allowed and any type of object will traverse the network, but only four are defined

in the Bitmessage protocol so far.

• msgGetPubkey: A request for a public key corresponding to a given Bitmessage

address. The request is encrypted to the requestor's public key. Without some

other means of interacting with a recipient, the public key must be requested in

order to be received.

• msgPubkey: The public key that was requested. Can only be decrypted by the

sender of the request.
15

• msgMsg: A Bitmessage message. Bitmessage has a strange way of using the word

message. The whole idea of Bitmessage is that it is a messaging protocol, but it

relies on a protocol which requires instances of it to send packets to one another

which are also called messages, even though they may not contain the messages

that users of Bitmessage send to one another. Why not call this specific kind of

message a bitmessage? That is sometimes how people speak informally, as in “I’ll

send you an email.” There is, furthermore, a concept of the formatting of the

contents of the message object. It can be divided into subject and message.

• msgBroadcast: a broadcast.

BITMESSAGE AND IMAP

In the case of Bitmessage, there are potential benefits to be derived by connecting

the Bitmessage network to one that is already huge, namely those people using email. If a

Bitmessage node were also an IMAP server, any IMAP client would be able to interface

with the Bitmessage network instantly, via the same interface by which they use email.

This would greatly ease the transition to Bitmessage.

It furthermore allows the use of Bitmessage to expand into smart phones, which is

important given the prevalence of mobile devices on the Internet. Those whose only

connection to the Internet is through a phone cannot rely on Bitmessage without

connecting to a server because an Internet connection through a phone is not cheap or fast

enough to satisfy the demands of the bitmessage network.

Someone who did this would have to allow a server to manage his cryptographic

keys, but he could maintain confidential communication by combining Bitmessage with

PGP. This would compromise the user's anonymity to accommodate his bandwidth

requirements but he would still be anonymous from the standpoint of an observer of the

16

Bitmessage network, and someone watching his own connection would only see that he is

connecting to a standard server.

Unfortunately, the standard implementation of Bitmessage, PyBitmessage, was

designed as a standalone application designed with a GUI to be used directly by a human.

As important as a GUI might be, no decision made about it nor any amount of time

thinking about it is likely to have consequences as fateful or prolonged as the

corresponding effort upon the core protocol. Furthermore, if the program acted as an

IMAP server then the GUI problem is already solved by Thunderbird and Apple Mail.

My company needs something to be used primarily by other programs rather than

directly by humans. This need is the motivation to fund a reimplementation of the

protocol. The most effective distribution of programmers in a large enough project would

save those with the rarest skill or potential to make only the most momentous decisions.

Such a distribution restricts the potential consequences of every decision according to its

expected value, predisposing the good of the resulting product to predominate over the

bad.

DESIGN OF BMD

bmd is separated into two applications, which communicate with one another over

an RPC interface. One of them is a network node, and its job is to interact with the

Bitmessage network and manage the set of pending objects. The other is an IMAP server,

and its job is to decrypt and encrypt messages and to interact with a user through the

IMAP interface.

This design allows for a separation between the cryptographic keys and the

Internet connection, as well as a separation of function by intensiveness of computational

resources. The network node will tend to be much more demanding of system resources

17

than the user interface, except for users who are constantly sending messages. Several

users can have their own instance of the IMAP server that connects to a single network

node. Someone who wanted to use Bitmessage for his personal communication could run

the IMAP server on a phone, and someone who needed to send messages all the time

could have a dedicated computer optimized for proof-of-work computations which runs

the IMAP server.

Lite clients could connect to the IMAP server remotely. If the user did not own the

computer running the IMAP server, this would be a security risk because he would not

control his own keys. He could still use PGP to prevent the server from reading his

messages, but he would still be trusting the server with information that could

compromise his anonymity. This would be a reasonable compromise under certain

circumstances.

BMD AND BTCD

Bmd was designed with the intention of re-using much of the code from btcd, a

Bitcoin full node developed by Conformal. Because Bitmessage was designed from the

Bitcoin protocol, there was a significant possibility of adapting existing work.

The btcd team has developed a very useful foundation that could readily be

adapted to any peer-to-peer program. It manages peers and it has a well-designed abstract

system. It was very easy to adapt. The team had also developed a library for ECDSA

cryptographic operations, which are the same in Bitcoin and Bitmessage.

As bmd came together, it became easier to develop some of the recycled material

in our own way rather than try to keep up with the btcd team. Different timing and

priority constraints required us to work independently in ways that might have allowed for

more adaptation otherwise.

18

Chapter 5: Performance Analysis of bmd

bmd is separated into two parts, an IMAP server and a Bitmessage network node,

and they each have different performance requirements. The IMAP server was analyzed

to find out how many messages a user could send and how quickly they were received.

The network node was analyzed to get an idea of how much more traffic the network as a

whole could support before it became prohibitive on system resources. All tests were

done on a computer with 8 cores running at 2.60 GHz.

There is a limit to the number of messages and amount of data that can be sent

over the network at once, due to the proof-of-work requirements on valid messages. The

limit should adjust itself slowly as the network becomes more congested because people

will begin to create more addresses with higher proof-of-work requirements. Therefore,

the result is only meaningful in the network’s current state. Several short (1500 bytes)

messages were sent and the time required to run proof-of-work and for them to be

received was recorded. The mean time taken to run proof-of-work was found to be 7.4 ±

4.8 seconds.

There is no need to narrow this number down any further because proof-of-work

is inherently probabilistic. The number is sufficiently accurate to prove that a user who

wants to use Bitmessage like his personal email can send at least one message every 10

seconds.

How long does it take a message to arrive once it is sent? To answer this question,

two instances of Bitmessage were run on the same computer and messages were sent at

random times over the course of a day. The Bitmessage network is continually changing

as nodes come off- and online. So once again, the real answer is probabilistic but it is

19

possible to confirm that messages will arrive in a reasonable amount of time. The mean

time for a message to be received was 250. ± 180 seconds.

Theoretically, it should not make a big difference if the sender and recipient are

near to one another, or even the same computer. Bitmessage nodes connect to one another

randomly and they do not attempt to optimize. Messages should generally tend to travel

along faster routes, but two computers in the same location would not pass messages

instantaneously unless they randomly happened to be connected to one another. It would

be nice to test this with computers on opposite ends of the world.

As to the network node, the big performance issue is the amount of data that

needs to be processed. The network node must handle all messages passing through the

Bitmessage network. The network node has to do it fast enough and it has to have enough

memory. Therefore, the network node was examined to see how quickly it would run out

of time or memory.

When bmd is first turned on, it has to catch up with the rest of the network and

download all the messages currently circulating in the Bitmessage network. During this

time, it is working as fast as it can.

It is possible to test how fast bmd is by checking how much information it

processes normally compared to the amount it processes when it is getting up-to-date

with the rest of the network. While bmd is catching up with the rest of the network, it is

processing messages as fast as it can until it has the same messages as the other nodes.

This can be used as a baseline to determine the maximum data processing capacity of

bmd. Several times over the course of a week, bmd was restarted and its database was

deleted. All Bitmessage objects that it processed were logged by time and size in bytes for

several hours thereafter.

20

When bmd was catching up with the rest of the network, it processed Bitmessage

objects at a rate of 66 kb / second. After it had caught up, it processed objects at a rate of

only 138 bytes / second. Clearly there is lots of room for the Bitmessage network to grow

before bmd needs to be optimized further.

The memory usage of the program was observed once a minute for a 24-hour

period of normal operation. During this time, there was an initial rapid rise as the

program caught up with the rest of the network, whereupon the memory usage stayed

within about 250 mb to 350 mb. There was a jump upward about four hours in whose

cause is unknown to the author, but after that there was a very gradual downward trend.

bmd’s memory usage is not prohibitive for modern computers.

Figure 1: Memory Usage of bmd

21

Chapter 6: Shufflepuf

ANONYMITY IN BITCOIN

Although mining in Bitcoin is anonymous, spending is not. Because Bitcoin was

built with the requirement that there should be no trusted party, the correctness of the

blockchain needs to be publicly verifiable. Consequently, a Bitcoin transaction leaves a lot

of public information from which much more than simply the validity of the blockchain

can be learned.

Anonymity in Bitcoin means two different things: it means that a given transaction

cannot easily be linked to an identity outside of the Bitcoin network, and that any two

transactions in the blockchain cannot easily be concluded definitively to belong to the

same identity or to different identities. The second problem is the only one that will be

addressed in this report.

Bitcoin’s blockchain can be thought of as a weighted directed acyclic graph in

which transactions are nodes, and inputs and outputs are respectively the incoming and

outgoing ends of the edges. The weights of the graph are the amounts in Bitcoin which

are transferred along each input/output pair. A requirement of a valid Bitcoin transaction

is that the sum of the outgoing weights should be less than or equal to the sum of the

incoming—otherwise this would mean someone has spent more than he owns! All of this

information is public, and barring the development of some amazing new zero-knowledge

constructions, it is likely to stay public as Bitcoin evolves.

Because it is possible to track the movement of funds from one address to the

next, it is possible to track individual identities in the blockchain. The technique, known

as taint analysis, is not perfectly accurate, but it is possible to link a series of transactions

22

as belonging to a single identity with a high degree of confidence. Anonymity in Bitcoin

is a significant challenge because the block chain must remain publicly auditable.

Unfortunately, a major problem with Bitcoin anonymity is the lack of publicly

available tools for breaking it. This means that people are not very aware of how

anonymous they are or what they are revealing to an attacker scanning the blockchain

with the eye of a detective. Although my project does not specifically address this issue,

the author believes it very important that people should be able to see what can be

inferred about them from the information in the blockchain. This will make them want

anonymity a lot more. Furthermore, it will make things a lot more fair, insofar as we

know that there are private tools for taint analysis.

For example, suppose there were some sort of transaction which could, in

principle, serve a variety of purposes but which, in practice, is understood to be produced

by one software package that serves a particular purpose. Then that transaction would, in

fact, reveal a more information than one might expect. Therefore, the information

revealed by a given transaction is as much about its context than itself.

It is unlikely that any widespread and public taint-analytics system would match

the sophistication of one used in secret by people with power and an interest in de-

anonymizing Bitcoin. An organization like the National Security Administration would be

capable of putting an extraordinary effort into developing the most nuanced classification

of Bitcoin transactions in order to extract the most information from them.

BITCOIN TUMBLERS

There is most likely no general means of securing anonymity in Bitcoin. Instead,

Bitcoin anonymity is best addressed by following several approaches. The two basic

approaches to Bitcoin anonymity are tumblers and join transactions.

23

Tumblers and join transactions are to one another like Chaum's original email

routing protocols and the dining cryptographers. A tumbler mixes many people over an

extended period of time whereas join transactions are instantaneous from the standpoint

of a blockchain observer.

The way a tumbler works is that someone sends his bitcoins to the tumbler. The

tumbler holds his bitcoins for a period of time and receives bitcoins from many other

customers. The coins are then gradually released such that the transactions by which they

entered are disconnected from those by which they leave. The user's coins have effectively

been mixed with all those that have gone through the tumbler while they were in the

tumbler's possession.

The disadvantage of a tumbler is that the tumbler controls its customers’ funds for

a period of time. This means that the tumbler can perpetrate an exit scam and disappear

with all the money.

JOIN TRANSACTIONS IN BITCOIN

Another possibility is the use of join transactions. A join transaction is created by

N Bitcoin users who construct a single transaction with inputs and outputs for each of

them. The transaction is constructed so that a blockchain observer cannot determine

which of the outputs corresponds to any given input.

An advantage of join transactions over tumblers is that each participant maintains

complete control over his bitcoins. A stringent constraint on creation of a successful join

transaction is that all participants must spend the same number of coins. If this were not

the case, it would be possible to connect inputs to outputs in the join transaction by

comparing the amounts.

24

A more flexible join transaction is possible if participants are allowed to send

coins to one another at the same time. Because a blockchain observer does not know who

transferred funds to whom in the join transaction, it should be possible for any input to

correspond to any output as long as the people corresponding to those inputs have

transferred funds, or if there is a connected sequence of transferred funds between people

which includes those two. The author does not know of this possibility having been

explored in much detail.

DESCRIPTION OF COINSHUFFLE

CoinJoin was the first join transaction to be described in detail. Secure protocols

for card-shuffling have long been a part of cryptographic lore. CoinJoin is essentially a

secure card-shuffling protocol with Bitcoin addresses instead of cards.

CoinJoin begins with a set of N users wishing to construct a join transaction. The

users are numbered from 1 to N. Each of them has a public encryption and private

decryption key to use in the protocol. Player 1 begins by successively encrypting his new

address in which his anonymous coins are to be deposited with the keys of players 2 to N

in decreasing order. He then passes this information to player 2. Player 2 can decrypt first

address with his key, but it is still encrypted with the keys of players 3 to N. He then

encrypts his new address with the keys of players 3 to N and passes both addresses,

randomly ordered, to player 3. Players 3 through N follow the same procedure, each

adding in their own address and reshuffling until the final player ends up with the final list

of addresses. The list of addresses will be randomly ordered, and no player knows which

address belongs to any other player.

A later invention is called CoinShuffle, and this is the protocol that Shufflepuff

implements. CoinShuffle improves upon CoinJoin by making its users provide enough

25

information to one another to enable them to identify and exclude malicious participants.

A CoinJoin player can disrupt the protocol in a way that prevents users from identifying

the miscreant, which means that the group as a whole can no longer work together to

produce a join transaction. This is a serious problem because it allows trolls to disrupt the

entire process.

CoinShuffle resolves this issue by defining an elaborate blame phase to the

protocol which begins once any problem is detected. Players then send earlier messages to

one another, enabling them all to determine who misbehaved. They can then exclude the

troll and start over.

CoinShuffle assumes that N people are already in communication with one

another and are ready to produce a join transaction. Their ability to find one another and

agree to begin the protocol is assumed, but it is actually a difficult problem in its own

right.

THE TAKER/MAKER MODEL

There are two other projects known to the author which are able to construct join

transactions. One of them is called Dark Wallet, and the other is JoinMarket. Both of

them rely on what is called a taker/maker model to collect participants for a join

transaction.

In the taker/maker model, one participant acts as the taker and others act as

makers. The taker signals that he wants to make a join transaction for a given amount and

waits until enough makers sign on to it, whereupon the protocol begins. The taker may

have to pay the makers to construct the join transaction with him.

In the taker/maker model, the takers pay the makers for being immediately

available to make a join transaction. They are not paying the makers for successfully

26

providing anonymity. A maker could well construct the transaction and then immediately

destroy all anonymity by merging his output with another one that isn't anonymous.

Someone who wishes to construct a join transaction has the need to determine whether

the people he wishes to join with will provide for his anonymity, which is a more

fundamental problem than whether they are immediately available to do so.

Furthermore, the taker/maker model is only of use to people who have an

immediate need to make join transactions. There is no reason that people should have this

need in general, and therefore there is no reason that anyone should necessarily want to be

either a taker or a maker. The primary concern is the provision of anonymity itself, and

this concern should be addressed before worrying about providing it within a narrow time

frame.

THEORETICAL CONTRIBUTIONS

I believe that the taker/maker model solves a less fundamental problem before

more fundamental problems have been sufficiently addressed. A concern which, in my

opinion, is mismanaged and which has hampered the development of good join

transaction platforms until now is a desire for all parties to be anonymous throughout the

entire process. This is not necessary. It is much more important to ensure that the

information in the blockchain is obscure than to ensure that all information everywhere is

obscure. The information in the blockchain is permanent and public. Thus, even if all

participants are not anonymous in an absolute sense, they are doing a lot to protect

themselves simply by keeping information out of the block chain.

Insofar as an anonymous peer can avoid consequences for bad behavior, it is very

difficult for anonymous peers to cooperate with one another. A set of anonymous peers

attempting to form a group so as to construct a join transaction should be able to provide

27

some assurance to one another that they are serious about constructing it. This can be

done in two ways that the author is aware of: if the peers wish to remain anonymous, then

they should be able to prove that they are invested (handicap principle); otherwise, they

can choose not to be anonymous to one another and show that they have a history of

successfully constructing join transactions.

There is no reason that people who are anonymous from the standpoint of a

blockchain observer should necessarily be anonymous to one another. Therefore, the

author proposed a design in which a server acts as an open platform in which people meet

and register to participate in join transactions which are scheduled to occur at some time

in the future.

The server can provide the service of assuring peers that they can reasonably

expect most of the people they meet through the platform will treat one another

responsibly. It can do this in two ways: by observing a player's previous behavior or by

collecting fees. If a player is able to prove to a server that he has participated in previous

join transactions without having compromised his anonymity or those of the other

players, then that is a sign that he will continue to be responsible in the future. If a player

pays a fee to take part in a join, then that shows they are invested and therefore likely to be

responsible. (This is another application of the Handicap Principle).

Some combination of these two options is able to provide a reasonable assurance

to the players in a join protocol that most of them are most likely going to behave

responsibly. There could even be different levels of assurance to provide for people with

different levels of paranoia.

28

Chapter 7: Artificial Intelligence and Privacy

The more people you have experience with, the more finely they can be classified

and the more nuanced can our reactions be to them. If you are a salesman, for example,

you will gradually learn many reasons that a person might be interested in your product

and tailor your pitch to address those specific reasons depending on the type of customer.

The same idea applies if you are a con artist, propagandist, or provocateur.

This principle extends beyond our own human intelligences. As the number of

people within a data set increases, more correlations can be found among them. Finding

these correlations is not necessarily an easy problem, but it is one for which heuristic

solutions can be generated automatically. In other words, it is a problem for artificial

intelligence.

Large organizations that interact with many people at a time therefore have the

incentive to develop an individualized interaction for each customer so as to maximize the

value of the interaction. Such an organization is capable of personalizing its interactions

to a degree far beyond what is possible for ordinary humans.

The application of artificial intelligence to the problem means that these

correlations will become known and acted upon automatically, without necessarily having

to be reviewed by a human. Ultimately the organization will be able to extract all possible

meaning from its interactions.

We can expect, therefore, that any information we reveal to large organizations

reveals much more about ourselves than we know. The organization has the knowledge

which makes it meaningful, and we do not. In effect, this gives these organizations the

ability to manipulate people en masse by tailoring their experiences to their individual

vulnerabilities.
29

It is known, for example, that Facebook has conducted experiments upon its users

which show that it can cause people to become depressed or affect the outcome of

elections.[KRAM, BOND] People willingly allow Facebook to present them information

filtered by its algorithm, and it is quite difficult to know whether such an experiment has

been performed unless Facebook reveals it.

The problem, obviously, is much bigger than exploitation by companies.

Companies just want your money but governments want a lot more, and they have access

to enormous amounts of data on people’s behavior as well. The government of China has

developed a game that encourages people to interact with it.[OSB] The game also rewards

people for being good citizens, but to me the really sinister aspect of it is the fact that the

constant interaction is the perfect form of data collection.

Someone who believes he has nothing to hide cannot test this belief because he

does not know what his information means to those to whom he reveals it. He might well

have something that he would want to hide! In fact, he very likely does because he can be

almost certain that he is being watched by people who know a lot more than he does.

Thus, anonymity is a service of general applicability. It is not only for those who

are considered nefarious by social consensus, but rather for anyone capable of being

manipulated. This group naturally includes everybody. Anonymity is an essential tool for

remaining autonomous in a world dominated by vast intelligences. If people were more

aware of the risks of revealing their information, they would be more inclined to want

anonymity for themselves.

30

Conclusion

The projects discussed in this report, bmd and Shufflepuff, were built by the

author to provide anonymity. bmd has the potential to become an important part of the

infrastructure that preserves our anonymity and free speech. It has properties which make

it useful for certain purposes which cannot easily be reproduced with other secure

messaging services. It has the potential to be more than merely an anonymous version of

email. Shufflepuff is much more limited in its application, but it has the potential to be

very useful to some Bitcoiners.

31

References

[BACK1] Back, A. (2002). Hashcash - A Denial of Service Counter-Measure. [pdf]

Available at: http://www.hashcash.org/papers/hashcash.pdf. SHA-256:

fb8b1a6a3f8cdf48b189e77c0355e0f2ffb0f9d6d51d7f1d8c2b29f61c0d33bc.

[BOND] Bond, R., Fariss, C., Jones, J., Kramer, A., Marlow, C., Settle, J., Fowler, J.

(2012). A 61-million-person experiment in social influence and political

mobilization. Nature, 489 (7415), 295–298.

[CH1] Chaum, D. (1988). The dining cryptographers problem: Unconditional sender

and recipient untraceability. J. Cryptology, 1 (1), 65-75. [online] Available at:

http://www.cise.ufl.edu/~nemo/anonymity/papers/chaum-dc.pdf. SHA-256:

538c00dc46a0d340fad90282cdeeb3f5a25d7eb7a4f8cb28406e72140cf7a357.

[CH2] Chaum, D. (1981). Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, February, 24, (2), 84-90. [online]

Available at: http://nakamotoinstitute.org/static/docs/untraceable-electronic-

mail.pdf. SHA-256:

f7996dbb8496c100a67db1f627342d0187a1f6625afc021f24610520adc7e1c6.

[CL1] Clarke, I. (1999). A Distributed Decentralised Information Storage and Retrieval

System. Undergraduate. Division of Informatics, University of Edinburgh.

[online] Available at: https://freenetproject.org/assets/papers/ddisrs.pdf. SHA-

32

256:

bf0881a19f165af74808c87b5a4f70d7d9cb5eb8fb1ddf8e45769ff7f68a4b75.

[DIAZ] Diaz, C., Stefaan, S., Claessens, J., Preneel, B. (2002). Towards Measuring

Anonymity. In: Proceedings of PET 2002 [online] San Francisco: Semantic

Scholar Website. Available at:

https://pdfs.semanticscholar.org/8db1/4b49ee49f606d4123144154f38f9406af7d

b.pdf. SHA-256:

a2f25654ba297242b291e8bc44de1f906bdd888a58bbcce07a9ff42a8720935d.

[DING] Dingledine, R., Mathewson, N., Syverson, P. (2004). Tor: The Second

Generation Onion Router. [pdf] Tor Project Website. Available at:

https://svn.torproject.org/svn/projects/design-paper/tor-design.pdf. SHA-256:

03e42dd79d92a17366ce786ddd00ddd5d6be7629331eeea062753d243930853c.

[FINN1] Finney, H. (1996). Detecting Double Spending. [online] Nakamoto Institute

Website. Available at http://nakamotoinstitute.org/detecting-double-spending/.

SHA-256:

fe1bfb4d2bf2ec2009421afab2650aceeff81cd1024de4c0e944663ff6618223.

[GRAF1] Grafen, A. (1990). Biological signals as handicaps. Journal of Theoretical

Biology, 144 (4), 517-546.

33

[KRAM] Kramer, A., Guillory, J., Hancock, J. (2014). Experimental evidence of massive-

scale emotional contagion through social networks. Proceedings of the National

Academy of Sciences, 111 (24), 8788-8790.

[LAURIE] Laurie, B., Clayton, R. (2004). 'Proof of Work' Proves Not to Work. [pdf]

Cambridge, United Kingdom: Cambridge University Computer Laboratory

Website. Available at: https://www.cl.cam.ac.uk/~rnc1/proofwork.pdf SHA-

256:

37e914a82c7f706b9292beea094d85f4824a7401020cca344876f6cda9d769d9.

[NAKA1] Nakamoto, S. (2008) Bitcoin: A Peer-to-peer Electronic Cash System. [pdf]

bitcoin Website. Available at: https://bitcoin.org/bitcoin.pdf SHA-256:

b1674191a88ec5cdd733e4240a81803105dc412d6c6708d53ab94fc248f4f553.

[ODOM1] Odom, C. (2015). Open Transactions: Secure Contracts between Untrusted

Parties. [online] open transactions Website. [pdf] Available at:

http://www.opentransactions.org/open-transactions.pdf. SHA-256:

21c52ceb84ee084e03edcd405264331a6636c675b592712f82f1002480d1f603.

[OSB] Osborne, S. (2015). China has made obedience to the State a game. The

Independent, 22 December. [online] Available at:

http://www.independent.co.uk/news/world/asia/china-has-made-obedience-to-

the-state-a-game-a6783841.html

34

[RUFF1] Ruffing, T., Moreno-Sanchez, P., Kate, A. (2014). Coin Shuffle: Practical

Decentralized Coin Mixing for Bitcoin [online] petsymposium Website. [online]

Available at: https://petsymposium.org/2014/papers/Ruffing.pdf. SHA-256:

607ac3ae7891a3336fcc3049ee8bf37c4dda4a2a615eeb120cf1e48b89a9a848.

[SAND1] Sandberg, O. (2005). Searching in a Small World. PhD. Division of

Mathematical Statistics, Chalmers University of Technology and Goteborg

University, Goteborg, Sweden. [online] Available at

https://freenetproject.org/assets/papers/lic.pdf. SHA-256

286090c52c6af7817715660390d7b46b07fb061f4bb5881e4bd0a3d9dddf02c3.

[SCAM1] dree12. (2014). List of Major Bitcoin Heists, Thefts, Hacks, Scams, and Losses.

[forum post] Bitcoin Talk. Available at: https://bitcointalk.org/index.php?

topic=83794.0 [Accessed 18 October 2016].

[SERJ] Serjantov, A., Danezis, G. (2003). Towards an Information Theoretic Metric for

Anonymity. In: Dingledine R., Syverson P. (eds) Privacy Enhancing

Technologies. PET 2002. Lecture Notes in Computer Science, vol 2482.

Springer, Berlin, Heidelberg. Available at:

https://www.cs.ucsb.edu/~ravenben/classes/595n-s07/papers/anon-serj.pdf.

SHA-256:

6e89d41eaaf7ca2381817df3a51453742fd4eea573f8eed0e620c23acd075dba.

35

[WARR1] Warren, J. (2012). Bitmessage: A Peer-to-Peer Message Authentication and

Delivery System. [online] bitmessage website. Available at:

https://bitmessage.org/bitmessage.pdf, SHA-256:

090392868656cd87bcf08f2abe6b59832a9a4f8a9757b329957b37db2f90313e.

[ZA1] Zahavi, A., Zahavi, A. (1999). The Handicap Principle: A Missing Piece of

Darwin's Puzzle. New York: Oxford University Press.

36

	List of Tables
	Chapter 1: Fundamental Concepts
	Anonymity
	Proof-of-Work

	Chapter 2: Prior Work
	Comparison with PGP
	Comparison to Freenet
	Comparison to Bitcoin

	Chapter 3: Justification
	Uses of Bitmessage
	Digital Cash and Open Transactions
	Open Transactions Voting Pools

	Chapter 4: Engineering
	The Bitmessage Protocol
	Bitmessage and IMAP
	Design of bmd
	bmd and btcd

	Chapter 5: Performance Analysis of bmd
	Figure 1: Memory Usage of bmd

	Chapter 6: Shufflepuff
	Anonymity in Bitcoin
	Bitcoin Tumblers
	Join Transactions in Bitcoin
	Description of CoinShuffle
	The Taker/Maker Model
	Theoretical Contributions

	Chapter 7: Artificial Intelligence and Privacy
	Conclusion
	References

