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Abstract

Anonymity in Bitcoin and Bitmessage

Daniel Gregory Krawisz, M.S.E.
The University of Texas at Austin, 2017

Supervisor:  Vijay Garg

This report describes two projects created by the author which are based on ideas

which originate from the Bitcoin community. The first, bmd, is a re-implementation of

the Bitmessage protocol in go. Bitmessage is an anonymous and secure messaging system

invented by Jonathan Warren, who was inspired by the design of Bitcoin's p2p network.

[WARR1]  The  second  is  Shufflepuff,  an  implementation  of  a  protocol  called

CoinShuffle[RUFF1] which allows several people to construct a Bitcoin transaction with

an input and an output for each participant without any participant knowing who owns

which output. CoinShuffle was invented by Tim Ruffing et al, and it is an upgrade of a

protocol  called  CoinJoin,   invented  by  Gregory  Maxwell.  This  paper  discusses  the

background, properties, applications, and design of bmd and Shufflepuff. There is also a

report of a performance analysis on bmd.
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Chapter 1:  Fundamental Concepts

ANONYMITY

In  computer  networking,  anonymity means  that  it  is  infeasible  for  a  passive

attacker to link any two messages together as a single identity. Anonymity is a subject

which is  both poorly-understood and difficult  to provide properly.  The reason it  is  so

difficult  is  that  no  one  can  hide  in  a  vaccuum;  one  must  hide  among  other  people.

Anonymity as a service must therefore be provided by many people to one another, all of

whom wish to be anonymous. It is inherently a social phenomenon, and therefore it is

inherently complicated.[DIAZ, SERJ] 

The  first  person  to  publish  academic  papers  on  anonymity  in  a  computer

networking  context  was  David  Chaum[CH1,  CH2].  His  two  classic  papers  are  very

different  from one another  and together  they  provide  a  good conceptual  overview of

anonymity. 

His first  paper,  “The Dining Cryptographers Problem”,  showed that a  network

could provide a maximal level of anonymity with a synchronized protocol that allowed

one bit to be transmitted anonymously per round. He showed that it was possible for one

member in a group to broadcast a message without leaking any information about who it

was. For an outside observer, the sender cannot be distinguished among n people, and for

a participating observer, the sender is hidden among n-1 people (because he knows if he

is the sender). This is the maximum degree of anonymity that could be achieved with n

people.

Because this protocol is synchronized, it is not practical for real-world networks.

This is unfortunate because the author doubts that it is possible for a non-synchronized
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network  to  avoid  leaking  some information.  Thus,  for  larger  networks,  the  problem

becomes one of leaking the least amount possible rather than leaking none in a way that is

provable beforehand.  

Thus, real-world anonymity to serve many people appears to be much more about

engineering  than  mathematics.  The  general  strategy  of  any  anonymity  network  is  to

spread  any  information  enough  that  no  node  is  likely  to  be  able  to  reconstruct  the

behavior of any identity on the network. Chaum’s other paper[CH2] was about a much

more practical system that could provide anonymity allowing a lot of nodes to randomly

mix signals. It contained no mathematics; it simply argued that if a message is routed

through a random set of a large number of servers, the message ought to be very difficult

to  trace.  This  is  the  basis  for  the  Tor  network,  which  is  a  large  non-synchronized

anonymity network, except that Tor routes IP connections rather than email only.[DING]

This  paper  is  about  two projects  created by the author  which are  designed to

provide  anonymity.  One  of  them,  Shufflepuff,  exists  to  provide  anonymity  in  Bitcoin

transactions. It uses a synchronized protocol called CoinShuffle, which means that it can

provide strong guarantees of anonymity, but is limited to networks with fewer people. The

second of  these,  bmd,  implements  a  messaging protocol  called  Bitmessage[WARR1].

Bitmessage is  not  a  synchronized protocol,  so it  is  capable of serving a much larger

network. 

PROOF-OF-WORK

Most  of  the  ideas  in  this  paper  grew out  of  ideas  originally  proposed by the

Cypherpunks, a mailing list which was active from the late 1980s to the early 2000s. The

Cypherpunks  were  individualists  who  wanted  to  evade  government  oversight.  David

Chaum  is  considered  to  be  their  progenitor.  Proof-of-work  was  an  idea  originally
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proposed on the Cypherpunk mailing list by Adam Back.[BACK1] The idea of proof-of-

work is to show an expended cost in a cryptographically secure way. 

A cost function is a function that takes a cost parameter x and a message m and

produces a message m’ that has a verifiable expected cost c(x) to create from m. For

example, suppose that H is some cryptographic hash function and m’  n+m, where n is a≅

nonce which is chosen so that H(m’) is less than a given value x. This is the simplest way

to implement a cost function. Because a cryptographic hash function is supposed to act

like  a  one-way  function  whose  output  is  indistinguishable  from  a  random  string,  a

computer that receives message m’ can conclude that it could not have been produced

without trying nonces until one was found that produced a valid hash value. By adjusting

the cost parameter, one can make a valid nonce more or less difficult to find.

The application originally proposed for cost functions was as a  spam filter.  A

given email  address  would have a certain difficulty associated with it,  and any email

which did not have a sufficiently difficult proof-of-work attached would be automatically

discarded without being read. A sender who was not sufficiently interested in attracting

the attention of the recipient to evaluate the work function would simply not send an

email in the first place.

A spammer depends on being able to send large numbers of emails cheaply in

order to benefit from the small fraction of people who read them. A tiny individualized

per-message cost would affect him a lot more than it would affect someone who only

wanted to send personalized messages.

A proof-of-work filter is an application of the handicap principle[ZA1], which is

an idea that comes out of evolutionary theory.  It says that a believable message must

come at  a  verifiable  cost  to  the  sender.  This  idea  has  been  tested  mainly  in  mating
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displays, though its theoretical applications are potentially much greater. There are game-

theoretic  models  that  show  this  to  be  a  stable  strategy  under  certain  circumstances.

[GRAF1]

Bitmessage  uses  proof-of-work  for  spam  prevention.  Because  anonymity  and

confidentiality  are  design  goals  of  Bitmessage,  the  nodes  must  communicate  without

knowing  much  about  one  another  and  therefore  cannot  automatically  expect  reliable

information from one another. A bitmessage node must be able to limit the computational

power it expends to the messages most likely to be meaningful, but it cannot look at the

content  of  the  majority  of  the  messages.  Therefore,  Bitmessage  nodes  transmit  the

messages they receive based on the proof-of-work string attached to them. Only those

messages worth the cost to the senders are sent into the network. The use of proof-of-

work  can  help  enable  anonymous  agents  to  cooperate  by  mitigating  the  free-rider

problem. 

A criticism that has been made of the proof-of-work spam filter is that such a filter

would  allow  some  spam  in,  if  it  was  worthwhile  to  the  spammer  to  bear  the  cost.

[LAURIE] However, all that the filter does is put the responsibility on the sender to prove

that a message is worth reading. This might well be worth it to a spammer, but the costs

of sending messages would require him to consider the demographics of the addresses he

has available in order to maximize the likelihood of a response. He would have to do

better than to just mass email everybody. Therefore, advertisements that passed the proof-

of-work filter would be more likely to be of interest to the receivers.

Spam was originally defined specifically as unsolicited email advertisements, but

more recently the definition has been generalized to refer to any kind of message that a

person does not want to receive. It is this more modern definition of spam that is most
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relevant to a proof-of-work filter because such a filter requires the sender to be able to

maximize the odds that he will produce a message to which the receiver will respond

favorably.

A  message  that  someone  paid  to  create  is  more  likely  to  be  meaningful.  If

everyone had to compete for my attention and had to expend effort just to convince me to

look at a message, then they would have an incentive to learn to produce messages that

are worth reading to me. Otherwise their effort would be wasted. Therefore, if someone

wishes to send an unsolicited advertisement and is willing to expend the required cost for

the recipient to look at it, then it is more likely to be something that is actually worth his

time. In other words, if proof-of-work does not function exactly as a more "intelligent"

spam filter, then we would be better served to generalize our definition of spam to be

more in accordance with the filter.
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Chapter 2:  Prior Work

COMPARISON WITH PGP

Although they are  both  secure  messaging  systems,  PGP and Bitmessage have

different goals in mind. An important part of the design goals of PGP is to provide a web

of trust that can be used for authentication without relying on a trusted third party. As

such, a person's public key may be publicly associated with him on a directory like MIT's

PGP  server,  complete  with  digital  signatures  from  his  contacts  to  prove  that  the

association of his key with his identity is correct. Thus, PGP does not provide anonymity

or prevent traffic analysis—in fact, part of its security depends on a huge public graph of

the connections of all PGP users.

An anonymous messaging protocol cannot on its own provide for authentication

or it wouldn't be anonymous. However, the PGP web of trust can fruitfully be combined

with Bitmessage. One can attach a public Bitmessage address to one’s public PGP key, for

example. One can also use a PGP digital signature to verify one’s identity to a specific

recipient over Bitmessage without revealing any information to someone watching the

network.

There are considerable problems with using encryption of any kind with email.

Despite the protection promised to American citizens under the 4th amendment against

unwarranted searches, United States jurisprudence has evolved to establish the concept of

"metadata", the contents of which may be looked at without violating the 4th amendment.

For  example,  email  headers  (which  include  the  subject  line)  are  considered  to  be

metadata, whereas the body of the email is not. Non-US citizens are not considered to

have any rights to privacy at all by the US government and any data they send through the

US is considered to be fair game for collection.
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Encryption alone cannot  thwart  the collection of  metadata,  but  an anonymous

system can. Thus, both Bitmessage and PGP are potentially of value in a world where

secrecy matters.

COMPARISON TO FREENET

Freenet is a venue for publishing documents online that is anonymous in the sense

that it separates content from publisher. When browsing through Freenet, it is difficult to

know which computer hosts a given document and who originally made it.[CL1, SAND1]

In Freenet, files on the network survive according to whether the nodes find them

interesting enough on their own merits to be preserved. On the Bitmessage network, all

messages  are  sent  out  with  a  specified,  objective  timeout  period.  The  creator  of  the

message can create a longer- or shorter-lived message by attaching a stronger or weaker

proof-of-work to it. The creator's evident willingness to expend resources on the message

is  accepted  by  the  network  as  an  indication  of  the  importance  of  the  information  it

contains.

The fact that it is possible to encrypt any signal means that a society cannot easily

act on the contents of encrypted messages and it cannot exert pressure on the specific

people  who  send  messages  that  are  not  socially  acceptable.  To  attempt  to  smear  an

anonymity network by associating it with child pornography is nothing but a distraction.

The only real question is whether we want to live in a world in which anonymity and

confidentiality  are  available  to  everyone,  or  in  a  world  in  which  they  are  denied  to

everyone.

However, it would be reasonable to suspect that people have at least one interest

that they would like to keep private. If this is true, then most people could potentially

benefit  from an  anonymity  network.  Since  anonymity  inherently  requires  a  group  of
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people all to hide among one another, everyone who wants it can benefit from cooperating

with one another, even if they should all find one another mutually socially unacceptable.

COMPARISON TO BITCOIN

Bitcoin[NAKA1] was the first form of digital cash to develop a value on its own in

a market setting. One of the design goals of Bitcoin is to be a decentralized solution to the

double-spending problem, which is an issue that must be resolved in all versions of digital

cash[FINN1].  Unlike  gold  or  physical  paper  bank  notes,  which  cannot  be  easily

reproduced, anyone can mass-produce messages on a network. A digital cash, therefore,

must resolve the double-spending problem, which refers to the fact that a node in the

network can send two messages which both spend the same sum of digital cash. Any

distributed system which is to allow for some form of digital cash must have some means

of ensuring eventually one and only one such message to be accepted as valid.

Bitcoin relies on a process called mining, in which some node attaches proof-of-

work to a set of consistent transactions. The data structure which includes the sets of

transactions is  called a  block.  If  there are competing blocks,  the one with the higher

proof-of-work is accepted as the preferred one by the network. The minimum allowable

proof-of-work is adjusted to ensure that one block is accepted by the network on average

every 10 minutes.

There is nothing corresponding to the double-spending problem in anonymous

communication, but Bitcoin's p2p network incidentally supports anonymous mining and

was therefore easily adaptable into an anonymous messaging system. Since Bitcoin is a

distributed system, anyone can produce a block that will be accepted eventually by the

whole network. In order to achieve the highest certainty that a given transaction will be

accepted by the network, therefore, a node should want as many other nodes as possible
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to know about it. In order to enable all users to participate in the creation of Bitcoin's

objective history, a user must receive all the messages.

Thus, Nakamoto developed a peer-to-peer protocol to manage the distribution of

messages. When a new node joins the network, other nodes send it inventory messages,

which are lists of hashes of the transactions and blocks known to that node. The peer then

responds with a request for everything it does not already have. Everyone on the Bitcoin

network, therefore, eventually gets all the transactions that have been sent into it.

An incidental property of such a system is that of greatly reducing the information

that  a  passive  attacker  could  obtain  from  traffic  analysis.  Because  messages  tend  to

propagate to all nodes, it is difficult to determine which computer originally produced any

given  message.  The  Bitmessage  protocol  was  modeled  off  the  Bitcoin  peer-to-peer

protocol  to  serve  this  alternative  purpose.  Bitmessage  is  like  Bitcoin  without  the

blockchain. It tries to connect to many peers and to distribute all messages across the

entire network. However, there is no need in Bitmessage for the peers to agree upon a

consistent history or to remember messages after they have expired. It then becomes a

protocol for transferring messages rather than for transferring value.
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Chapter 3:  Justification

USES OF BITMESSAGE

Bitmessage[WARR1] is a protocol designed to provide secure online messaging.

Bitmessage messages work according to the basic principle of public-key cryptography. A

public  key  is  distributed  for  sending  messages  and  a  private  key  is  kept  secret  for

decrypting them. In practice users distribute addresses, which are hashes of public keys.

The actual public key is requested and sent encrypted over the Bitmessage network.

Bitmessage also has the concept of a broadcast. Since all messages are distributed

to  everyone on the  network,  it  is  possible  to  make an  address  into  something like  a

subscription  service.  A Bitmessage broadcast  is  encrypted  with  a  private  key that  is

generated from the address of the sender. Anyone who knows the address can decrypt the

message. Since only the person who generated the address can produce a valid signature,

no one who subscribes  to  the broadcast  address  can forge a  message on a broadcast

channel.

An  interesting  feature  of  Bitmessage  broadcasts  is  that,  because  they  are

transmitted in a way that anonymizes both sender and recipient, it must be the case that

all subscribers of a particular broadcast must receive the same message. If not, then there

must be a way for a sender to treat two recipients differently, which would be impossible

if  they were anonymous.  Therefore,  to  the extent  that  Bitmessage is  successful  as  an

anonymous  messaging  system,  it  also  prevents  a  publisher  from  sending  different

messages to different subscribers. This is the feature that makes Bitcoin interesting as a

component of Open Transactions voting pools.
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DIGITAL CASH AND OPEN TRANSACTIONS

The original idea for digital cash was devised by Chaum as a means protecting a

person's privacy when they spent money using a bank as an intermediary. He did not

invent a new currency. His idea was for a digital bank note. It would operate like cash

denominated in an existing currency. Later, ideas about what digital cash should be like

were developed by Nick Szabo and others on the Cypherpunk mailing list into a form that

was more like what we now know of as Bitcoin.

On  the  other  hand,  Open  Transactions  (OT)  is  a  protocol  which  is  closer  to

Chaum's earlier idea[ODOM1]. OT allows for digital receipts for the exchange of goods

which are signed by both sender and receiver. OT has options for digital blinding, like

that invented by Chaum to protect users' privacy.

An application of such a system is an untrusted bank. By relying on a set of signed

receipts for all withdrawals and deposits, the bank and the user can both prove what the

balance  of  the  account  should  be.  If  the  bank  attempts  to  appropriate  funds,  this  is

provable by the user. The bank still needs to be audited in order to prove that it actually

has the funds corresponding to its customers' balances.

These two ideas can be combined. OT can be used on top of Bitcoin. This allows

for security to be provided for certain uses of Bitcoin to which it is not well-adapted on its

own.

OPEN TRANSACTIONS VOTING POOLS

A  problem  which  has  affected  Bitcoin  as  soon  as  it  first  began  to  attract

investment  was that  although Bitcoin mostly eliminates  the need for banks,  for those

services which still required an agent to store funds on behalf of a client, it was wildly

insecure. In fact, it was much less secure than any currency which had existed previously,
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and for the same reason it was so wonderfully secure under other circumstances: whoever

controlled the private key had absolute control. A digital signature, and only a digital

signature, was required to make a valid payment. Thus, because users could store their

funds in cryptographic private keys,  a user was capable of securing his funds against

misappropriation to an extent that had been impossible with previous currencies, as long

as that user controlled the private key.

Usually  this  was  possible  because  most  monetary  services  for  which  we  use

agents today could be done automatically with cryptography or by the Bitcoin network's

peer to peer protocol. But when this was not the case, the agents on whom one had to rely

could misappropriate funds more easily than any previous embezzler could with other

people’s dollars. Therefore, such embezzlement occurred at a rate which was laughable.

[SCAM1]

Although this has improved in recent years, it has not improved as a result of a

sufficient improvement in our use of cryptography, but rather because businesses have

begun to achieve a sufficient value in their brand as to make the value of misappropriated

funds less, not worth the requisite destruction of the brand. The consumer preference for

brand name recognition therefore forces potential competitors to demonstrate a similar

level of honesty.

While the economic value of honest branding is not to be dismissed, a form of

security  that  comes  with  a  mathematical  proof  is  preferable  if  possible.  Open

Transactions aims to provide a cryptographic solution using what its designer has called

voting pools. A voting pool consists of several computers, each of which provides some

services as a Bitcoin agent, which all jointly control a single wallet containing the total of

all  the bitcoins  they hold as agents.  The wallet  is  multisig  type,  which means that  a
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certain minimum number of signatures is required to spend Bitcoins from it. Therefore,

the numbers of the voting pool must agree, up to a certain number of them, to allow for

balances to be redeemed, and none of them can act on its own to misappropriate them.

Because the Bitcoin blockchain is public, it is possible for the voting pool to prove

that it controls a certain sum of Bitcoins. However, there is still a problem proving that

the amount of bitcoins in the voting pool is the amount that ought to be there.

A well-known trick in accountancy is to make two sets of books, one which is

shown to an auditor and another which records the real state of the finances of a company.

The analogous trick with a Bitcoin bank is to send two sets of messages which give a

different impression about how many Bitcoins should be in the bank. One set of messages

is sent to the bank's customers, and another to the auditor. Each voting pool must be

capable  of  cooperating  with  an  auditing  service  which  proves  or  affirms  as  to  the

correspondence between a set of transactions in the blockchain and a provably complete

record of deposit and withdrawal orders authorizing the set of transactions. The provably

complete part is where Bitmessage comes in.

The solution is to use a public channel that cannot be easily be censored, and this

is  exactly  what  a  Bitmessage  broadcast  channel  accomplishes.  Once  a  message  is

broadcast, anyone with the key can read it, and since anyone can be a Bitmessage node,

the recipients  of  a  broadcast  cannot  be controlled,  once the message is  sent  out.  An

auditor, therefore, can be assured to receive the same messages as those received by the

customers.

If the users of the voting pool broadcast their deposit and withdrawal orders over a

Bitmessage channel, then anyone listening to this channel can be certain that he has a

copy of every message sent over the channel. This means that the auditor can be certain to
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have seen every relevant message. Otherwise, it would be possible for a member of a

voting pool to show different records to its auditor than it does to its clients when they

withdraw. This would allow a member to create fake customers and make fake deposit

orders that cover up real customers. Then when the customers withdrew their bitcoins, the

voting pool member could make fake withdrawal requests that would funnel bitcoins into

his own account.
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Chapter 4:  Engineering

THE BITMESSAGE PROTOCOL

I  now  discuss  some  of  details  of  the  Bitmessage  p2p  protocol.  Bitmessage

assumes that its nodes communicate over a channel. Most likely this would be over TCP

or Tor. When two bitmessage nodes first connect, they engage in an initial handshake. The

handshake consists of a version and a verack from each of them. The Bitmessage protocol

has changed in minor ways in the past, so the version message is useful for checking

whether and how two nodes can communicate. The verack is an empty message.

After  the  initial  handshake,  the  nodes  send  inv  and  address  messages  to  one

another.  These messages tell  each other about the objects and IP addresses they each

know about  on the network.  As new messages appear  on the network,  the nodes can

update each other as to the new information.

Each node requests the objects that they do not have using the getobject message.

This  message  is  simply  a  list  of  hashes,  just  like  inv.  The  node  which  received  the

getobject responds with a series of object messages.

A bitmessage object contains an int value which specifies the type of object. Any

value is allowed and any type of object will traverse the network, but only four are defined

in the Bitmessage protocol so far.

• msgGetPubkey: A request for a public key corresponding to a given Bitmessage

address.  The request  is  encrypted to  the  requestor's  public  key.  Without  some

other means of interacting with a recipient, the public key must be requested in

order to be received.

• msgPubkey: The public key that was requested.  Can only be decrypted by the

sender of the request.
15



• msgMsg: A Bitmessage message. Bitmessage has a strange way of using the word

message. The whole idea of Bitmessage is that it is a messaging protocol, but it

relies on a protocol which requires instances of it to send packets to one another

which are also called messages, even though they may not contain the messages

that users of Bitmessage send to one another. Why not call this specific kind of

message a bitmessage? That is sometimes how people speak informally, as in “I’ll

send you an email.” There is,  furthermore,  a  concept of the formatting of the

contents of the message object. It can be divided into subject and message.

• msgBroadcast: a broadcast.

BITMESSAGE AND IMAP

In the case of Bitmessage, there are potential benefits to be derived by connecting

the Bitmessage network to one that is already huge, namely those people using email. If a

Bitmessage node were also an IMAP server, any IMAP client would be able to interface

with the Bitmessage network instantly, via the same interface by which they use email.

This would greatly ease the transition to Bitmessage.

It furthermore allows the use of Bitmessage to expand into smart phones, which is

important  given the prevalence of  mobile  devices  on the Internet.  Those whose only

connection  to  the  Internet  is  through  a  phone  cannot  rely  on  Bitmessage  without

connecting to a server because an Internet connection through a phone is not cheap or fast

enough to satisfy the demands of the bitmessage network.

Someone who did this would have to allow a server to manage his cryptographic

keys, but he could maintain confidential communication by combining Bitmessage with

PGP.  This  would  compromise  the  user's  anonymity  to  accommodate  his  bandwidth

requirements but he would still be anonymous from the standpoint of an observer of the
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Bitmessage network, and someone watching his own connection would only see that he is

connecting to a standard server.

Unfortunately,  the  standard  implementation  of  Bitmessage,  PyBitmessage,  was

designed as a standalone application designed with a GUI to be used directly by a human.

As important as a GUI might be, no decision made about it  nor any amount of time

thinking  about  it  is  likely  to  have  consequences  as  fateful  or  prolonged  as  the

corresponding effort upon the core protocol.  Furthermore,  if  the program acted as an

IMAP server then the GUI problem is already solved by Thunderbird and Apple Mail.

My company needs something to be used primarily by other programs rather than

directly  by  humans.  This  need  is  the  motivation  to  fund  a  reimplementation  of  the

protocol. The most effective distribution of programmers in a large enough project would

save those with the rarest skill or potential to make only the most momentous decisions.

Such a distribution restricts the potential consequences of every decision according to its

expected value, predisposing the good of the resulting product to predominate over the

bad.

DESIGN OF BMD

bmd is separated into two applications, which communicate with one another over

an RPC interface.  One of them is a network node,  and its job is  to interact with the

Bitmessage network and manage the set of pending objects. The other is an IMAP server,

and its job is to decrypt and encrypt messages and to interact with a user through the

IMAP interface. 

This  design  allows  for  a  separation  between  the  cryptographic  keys  and  the

Internet connection, as well as a separation of function by intensiveness of computational

resources. The network node will tend to be much more demanding of system resources
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than the user interface, except for users who are constantly sending messages. Several

users can have their own instance of the IMAP server that connects to a single network

node. Someone who wanted to use Bitmessage for his personal communication could run

the IMAP server on a phone, and someone who needed to send messages all the time

could have a dedicated computer optimized for proof-of-work computations which runs

the IMAP server. 

Lite clients could connect to the IMAP server remotely. If the user did not own the

computer running the IMAP server, this would be a security risk because he would not

control  his  own keys.  He could still  use  PGP to prevent  the server  from reading his

messages,  but  he  would  still  be  trusting  the  server  with  information  that  could

compromise  his  anonymity.  This  would  be  a  reasonable  compromise  under  certain

circumstances. 

BMD AND BTCD

Bmd was designed with the intention of re-using much of the code from btcd, a

Bitcoin full node developed by Conformal. Because Bitmessage was designed from the

Bitcoin protocol, there was a significant possibility of adapting existing work.

The  btcd  team has  developed  a  very  useful  foundation  that  could  readily  be

adapted to any peer-to-peer program. It manages peers and it has a well-designed abstract

system. It was very easy to adapt. The team had also developed a library for ECDSA

cryptographic operations, which are the same in Bitcoin and Bitmessage. 

As bmd came together, it became easier to develop some of the recycled material

in  our  own way rather  than try  to  keep up with  the btcd  team.  Different  timing and

priority constraints required us to work independently in ways that might have allowed for

more adaptation otherwise.
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Chapter 5:  Performance Analysis of bmd

bmd is separated into two parts, an IMAP server and a Bitmessage network node,

and they each have different performance requirements. The IMAP server was analyzed

to find out how many messages a user could send and how quickly they were received.

The network node was analyzed to get an idea of how much more traffic the network as a

whole could support before it  became prohibitive on system resources.  All  tests were

done on a computer with 8 cores running at 2.60 GHz. 

There is a limit to the number of messages and amount of data that can be sent

over the network at once, due to the proof-of-work requirements on valid messages. The

limit should adjust itself slowly as the network becomes more congested because people

will begin to create more addresses with higher proof-of-work requirements. Therefore,

the result is only meaningful in the network’s current state. Several short (1500 bytes)

messages  were  sent  and  the  time  required  to  run  proof-of-work  and  for  them to  be

received was recorded. The mean time taken to run proof-of-work was found to be 7.4 ±

4.8 seconds. 

There is no need to narrow this number down any further because proof-of-work

is inherently probabilistic. The number is sufficiently accurate to prove that a user who

wants to use Bitmessage like his personal email can send at least one message every 10

seconds. 

How long does it take a message to arrive once it is sent? To answer this question,

two instances of Bitmessage were run on the same computer and messages were sent at

random times over the course of a day. The Bitmessage network is continually changing

as nodes come off- and online. So once again, the real answer is probabilistic but it is
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possible to confirm that messages will arrive in a reasonable amount of time. The mean

time for a message to be received was 250. ± 180 seconds. 

Theoretically, it should not make a big difference if the sender and recipient are

near to one another, or even the same computer. Bitmessage nodes connect to one another

randomly and they do not attempt to optimize. Messages should generally tend to travel

along faster routes, but two computers in the same location would not pass messages

instantaneously unless they randomly happened to be connected to one another. It would

be nice to test this with computers on opposite ends of the world. 

As to the network node,  the big performance issue is the amount of data that

needs to be processed. The network node must handle all messages passing through the

Bitmessage network. The network node has to do it fast enough and it has to have enough

memory. Therefore, the network node was examined to see how quickly it would run out

of time or memory. 

When bmd is first turned on, it has to catch up with the rest of the network and

download all the messages currently circulating in the Bitmessage network. During this

time, it is working as fast as it can. 

It  is  possible  to  test  how  fast  bmd  is  by  checking  how  much  information  it

processes normally compared to the amount it processes when it is getting up-to-date

with the rest of the network. While bmd is catching up with the rest of the network, it is

processing messages as fast as it can until it has the same messages as the other nodes.

This can be used as a baseline to determine the maximum data processing capacity of

bmd. Several times over the course of a week, bmd was restarted and its database was

deleted. All Bitmessage objects that it processed were logged by time and size in bytes for

several hours thereafter. 
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When bmd was catching up with the rest of the network, it processed Bitmessage

objects at a rate of 66 kb / second. After it had caught up, it processed objects at a rate of

only 138 bytes / second. Clearly there is lots of room for the Bitmessage network to grow

before bmd needs to be optimized further. 

The memory usage of the program was observed once a minute for a 24-hour

period  of  normal  operation.  During  this  time,  there  was  an  initial  rapid  rise  as  the

program caught up with the rest of the network, whereupon the memory usage stayed

within about 250 mb to 350 mb. There was a jump upward about four hours in whose

cause is unknown to the author, but after that there was a very gradual downward trend.

bmd’s memory usage is not prohibitive for modern computers. 

Figure 1: Memory Usage of bmd
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Chapter 6:  Shufflepuf

ANONYMITY IN BITCOIN

Although mining in Bitcoin is anonymous, spending is not. Because Bitcoin was

built with the requirement that there should be no trusted party, the correctness of the

blockchain needs to be publicly verifiable. Consequently, a Bitcoin transaction leaves a lot

of public information from which much more than simply the validity of the blockchain

can be learned.

Anonymity in Bitcoin means two different things: it means that a given transaction

cannot easily be linked to an identity outside of the Bitcoin network, and that any two

transactions in the blockchain cannot easily be concluded definitively to belong to the

same identity or to different identities. The second problem is the only one that will be

addressed in this report.

Bitcoin’s blockchain can be thought of as a weighted directed acyclic graph in

which transactions are nodes, and inputs and outputs are respectively the incoming and

outgoing ends of the edges. The weights of the graph are the amounts in Bitcoin which

are transferred along each input/output pair. A requirement of a valid Bitcoin transaction

is that the sum of the outgoing weights should be less than or equal to the sum of the

incoming—otherwise this would mean someone has spent more than he owns! All of this

information is public, and barring the development of some amazing new zero-knowledge

constructions, it is likely to stay public as Bitcoin evolves.

Because it is possible to track the movement of funds from one address to the

next, it is possible to track individual identities in the blockchain. The technique, known

as taint analysis, is not perfectly accurate, but it is possible to link a series of transactions
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as belonging to a single identity with a high degree of confidence. Anonymity in Bitcoin

is a significant challenge because the block chain must remain publicly auditable.

Unfortunately,  a major problem with Bitcoin anonymity is the lack of publicly

available  tools  for  breaking  it.  This  means  that  people  are  not  very  aware  of  how

anonymous they are or what they are revealing to an attacker scanning the blockchain

with the eye of a detective. Although my project does not specifically address this issue,

the  author  believes  it  very  important  that  people  should  be  able  to  see  what  can  be

inferred about them from the information in the blockchain. This will make them want

anonymity a lot more. Furthermore, it will make things a lot more fair, insofar as we

know that there are private tools for taint analysis.

For  example,  suppose  there  were  some  sort  of  transaction  which  could,  in

principle, serve a variety of purposes but which, in practice, is understood to be produced

by one software package that serves a particular purpose. Then that transaction would, in

fact,  reveal  a  more  information  than  one  might  expect.  Therefore,  the  information

revealed by a given transaction is as much about its context than itself. 

It is unlikely that any widespread and public taint-analytics system would match

the sophistication of  one used in  secret  by  people with  power  and an interest  in  de-

anonymizing Bitcoin. An organization like the National Security Administration would be

capable of putting an extraordinary effort into developing the most nuanced classification

of Bitcoin transactions in order to extract the most information from them.

BITCOIN TUMBLERS

There is most likely no general means of securing anonymity in Bitcoin. Instead,

Bitcoin  anonymity  is  best  addressed  by  following  several  approaches.  The  two  basic

approaches to Bitcoin anonymity are tumblers and join transactions.
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Tumblers and join transactions are to one another like Chaum's original email

routing protocols and the dining cryptographers. A tumbler mixes many people over an

extended period of time whereas join transactions are instantaneous from the standpoint

of a blockchain observer.

The way a tumbler works is that someone sends his bitcoins to the tumbler. The

tumbler holds his bitcoins for a period of time and receives bitcoins from many other

customers. The coins are then gradually released such that the transactions by which they

entered are disconnected from those by which they leave. The user's coins have effectively

been mixed with all those that have gone through the tumbler while they were in the

tumbler's possession.

The disadvantage of a tumbler is that the tumbler controls its customers’ funds for

a period of time. This means that the tumbler can perpetrate an exit scam and disappear

with all the money. 

JOIN TRANSACTIONS IN BITCOIN

Another possibility is the use of join transactions. A join transaction is created by

N Bitcoin users who construct a single transaction with inputs and outputs for each of

them.  The  transaction  is  constructed  so  that  a  blockchain  observer  cannot  determine

which of the outputs corresponds to any given input.

An advantage of join transactions over tumblers is that each participant maintains

complete control over his bitcoins. A stringent constraint on creation of a successful join

transaction is that all participants must spend the same number of coins. If this were not

the case,  it  would be possible to connect  inputs  to outputs in the join transaction by

comparing the amounts.
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A more flexible join transaction is possible if  participants are allowed to send

coins to one another at the same time. Because a blockchain observer does not know who

transferred funds to whom in the join transaction, it should be possible for any input to

correspond  to  any  output  as  long  as  the  people  corresponding  to  those  inputs  have

transferred funds, or if there is a connected sequence of transferred funds between people

which  includes  those  two.  The author  does  not  know of  this  possibility  having been

explored in much detail.

DESCRIPTION OF COINSHUFFLE

CoinJoin was the first join transaction to be described in detail. Secure protocols

for card-shuffling have long been a part of cryptographic lore. CoinJoin is essentially a

secure card-shuffling protocol with Bitcoin addresses instead of cards.

CoinJoin begins with a set of N users wishing to construct a join transaction. The

users  are  numbered from 1  to  N.  Each of  them has  a  public  encryption  and private

decryption key to use in the protocol. Player 1 begins by successively encrypting his new

address in which his anonymous coins are to be deposited with the keys of players 2 to N

in decreasing order. He then passes this information to player 2. Player 2 can decrypt first

address with his key, but it is still encrypted with the keys of players 3 to N. He then

encrypts  his  new address with the keys of players 3 to N and passes both addresses,

randomly ordered,  to  player  3.  Players  3 through N follow the same procedure,  each

adding in their own address and reshuffling until the final player ends up with the final list

of addresses. The list of addresses will be randomly ordered, and no player knows which

address belongs to any other player.

A later invention is called CoinShuffle, and this is the protocol that Shufflepuff

implements. CoinShuffle improves upon CoinJoin by making its users provide enough
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information to one another to enable them to identify and exclude malicious participants.

A CoinJoin player can disrupt the protocol in a way that prevents users from identifying

the miscreant, which means that the group as a whole can no longer work together to

produce a join transaction. This is a serious problem because it allows trolls to disrupt the

entire process.

CoinShuffle  resolves  this  issue  by  defining  an  elaborate  blame  phase  to  the

protocol which begins once any problem is detected. Players then send earlier messages to

one another, enabling them all to determine who misbehaved. They can then exclude the

troll and start over.

CoinShuffle  assumes  that  N  people  are  already  in  communication  with  one

another and are ready to produce a join transaction. Their ability to find one another and

agree to begin the protocol is assumed, but it is actually a difficult problem in its own

right. 

THE TAKER/MAKER MODEL

There are two other projects known to the author which are able to construct join

transactions. One of them is called Dark Wallet, and the other is JoinMarket. Both of

them  rely  on  what  is  called  a  taker/maker  model  to  collect  participants  for  a  join

transaction.

In  the  taker/maker  model,  one  participant  acts  as  the  taker  and  others  act  as

makers. The taker signals that he wants to make a join transaction for a given amount and

waits until enough makers sign on to it, whereupon the protocol begins. The taker may

have to pay the makers to construct the join transaction with him.

In  the  taker/maker  model,  the  takers  pay  the  makers  for  being  immediately

available to make a join transaction.  They are not paying the makers for successfully
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providing anonymity. A maker could well construct the transaction and then immediately

destroy  all  anonymity  by  merging his  output  with  another  one  that  isn't  anonymous.

Someone who wishes to construct a join transaction has the need to determine whether

the  people  he  wishes  to  join  with  will  provide  for  his  anonymity,  which  is  a  more

fundamental problem than whether they are immediately available to do so.

Furthermore,  the  taker/maker  model  is  only  of  use  to  people  who  have  an

immediate need to make join transactions. There is no reason that people should have this

need in general, and therefore there is no reason that anyone should necessarily want to be

either a taker or a maker. The primary concern is the provision of anonymity itself, and

this concern should be addressed before worrying about providing it within a narrow time

frame.

THEORETICAL CONTRIBUTIONS

I believe that the taker/maker model solves a less fundamental problem before

more fundamental problems have been sufficiently addressed. A concern which, in my

opinion,  is  mismanaged  and  which  has  hampered  the  development  of  good  join

transaction platforms until now is a desire for all parties to be anonymous throughout the

entire  process.  This  is  not  necessary.  It  is  much  more  important  to  ensure  that  the

information in the blockchain is obscure than to ensure that all information everywhere is

obscure. The information in the blockchain is permanent and public. Thus, even if all

participants  are  not  anonymous  in  an  absolute  sense,  they  are  doing a  lot  to  protect

themselves simply by keeping information out of the block chain.

Insofar as an anonymous peer can avoid consequences for bad behavior, it is very

difficult for anonymous peers to cooperate with one another. A set of anonymous peers

attempting to form a group so as to construct a join transaction should be able to provide
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some assurance to one another that they are serious about constructing it. This can be

done in two ways that the author is aware of: if the peers wish to remain anonymous, then

they should be able to prove that they are invested (handicap principle); otherwise, they

can choose not to be anonymous to one another and show that they have a history of

successfully constructing join transactions.

There  is  no  reason that  people  who are  anonymous  from the  standpoint  of  a

blockchain  observer  should  necessarily  be  anonymous  to  one  another.  Therefore,  the

author proposed a design in which a server acts as an open platform in which people meet

and register to participate in join transactions which are scheduled to occur at some time

in the future. 

The server  can provide the service of  assuring peers  that  they can reasonably

expect  most  of  the  people  they  meet  through  the  platform  will  treat  one  another

responsibly. It can do this in two ways: by observing a player's previous behavior or by

collecting fees. If a player is able to prove to a server that he has participated in previous

join  transactions  without  having  compromised  his  anonymity  or  those  of  the  other

players, then that is a sign that he will continue to be responsible in the future. If a player

pays a fee to take part in a join, then that shows they are invested and therefore likely to be

responsible. (This is another application of the Handicap Principle).

Some combination of these two options is able to provide a reasonable assurance

to  the  players  in  a  join  protocol  that  most  of  them are  most  likely  going to  behave

responsibly. There could even be different levels of assurance to provide for people with

different levels of paranoia.
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Chapter 7:  Artificial Intelligence and Privacy

The more people you have experience with, the more finely they can be classified

and the more nuanced can our reactions be to them. If you are a salesman, for example,

you will gradually learn many reasons that a person might be interested in your product

and tailor your pitch to address those specific reasons depending on the type of customer.

The same idea applies if you are a con artist, propagandist, or provocateur.

This principle extends beyond our own human intelligences. As the number of

people within a data set increases, more correlations can be found among them. Finding

these correlations is not necessarily an easy problem, but it is one for which heuristic

solutions can be generated automatically.  In other words,  it  is  a problem for artificial

intelligence.

Large organizations that interact with many people at a time therefore have the

incentive to develop an individualized interaction for each customer so as to maximize the

value of the interaction. Such an organization is capable of personalizing its interactions

to a degree far beyond what is possible for ordinary humans.

The  application  of  artificial  intelligence  to  the  problem  means  that  these

correlations will become known and acted upon automatically, without necessarily having

to be reviewed by a human. Ultimately the organization will be able to extract all possible

meaning from its interactions.

We can expect, therefore, that any information we reveal to large organizations

reveals much more about ourselves than we know. The organization has the knowledge

which makes it meaningful, and we do not. In effect, this gives these organizations the

ability to manipulate people en masse by tailoring their experiences to their individual

vulnerabilities.
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It is known, for example, that Facebook has conducted experiments upon its users

which  show that  it  can  cause  people  to  become depressed  or  affect  the  outcome  of

elections.[KRAM, BOND] People willingly allow Facebook to present them information

filtered by its algorithm, and it is quite difficult to know whether such an experiment has

been performed unless Facebook reveals it.

The  problem,  obviously,  is  much  bigger  than  exploitation  by  companies.

Companies just want your money but governments want a lot more, and they have access

to enormous amounts of data on people’s behavior as well. The government of China has

developed a game that encourages people to interact with it.[OSB] The game also rewards

people for being good citizens, but to me the really sinister aspect of it is the fact that the

constant interaction is the perfect form of data collection.

Someone who believes he has nothing to hide cannot test this belief because he

does not know what his information means to those to whom he reveals it. He might well

have something that he would want to hide! In fact, he very likely does because he can be

almost certain that he is being watched by people who know a lot more than he does.

Thus, anonymity is a service of general applicability. It is not only for those who

are considered  nefarious  by  social  consensus,  but  rather  for  anyone capable of  being

manipulated. This group naturally includes everybody. Anonymity is an essential tool for

remaining autonomous in a world dominated by vast intelligences. If people were more

aware of the risks of revealing their information, they would be more inclined to want

anonymity for themselves. 
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Conclusion

The  projects  discussed  in  this  report,  bmd and Shufflepuff,  were  built  by  the

author to provide anonymity. bmd has the potential to become an important part of the

infrastructure that preserves our anonymity and free speech. It has properties which make

it  useful  for  certain  purposes  which  cannot  easily  be  reproduced  with  other  secure

messaging services. It has the potential to be more than merely an anonymous version of

email. Shufflepuff is much more limited in its application, but it has the potential to be

very useful to some Bitcoiners. 
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