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In randomized clinical trials, medical researchers are interested to de-

termine the effectiveness of a new treatment not only in the overall population

but also to some subgroups with possible enhanced treatment effects. How-

ever, subgroup analysis may become problematic due to the issue of multi-

plicities, data dredging etc. Accounting for these issue, we summarized some

guidelines on the use and interpretation of subgroup analysis. We reviewed

three approaches to subgroup analysis,a tranditional Bayesian regression with

interaction terms, the ’Virtual Twins’ methods and a Bayesian model selec-

tion approach. The advantage and disadvantage of these three approaches are

discussed.
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Chapter 1

Introduction

In randomized clinical trials, medical researchers are interested to in-

vestigate the effectiveness of a new treatment. Ideally, a clinical trials are

designed to determine the effectiveness of the treatment respect to the overall

population. However, the patient populations is often heterogeneous. The

subjects of a clinical trial may vary by age, sex,severity and duration of the

diseases. It is plausible that the new treatment is especially effective for some

subgroups of the population. It is also likely that the new treatment is not

effective or not effective in certain subgroups. In clinical trials, the subjects

are often recruited based on a number of covariates or baseline variables, such

as age or gender. The question arises as to find the subgroups defined by

the covariates if they exist. This kind of analysis is referred to as subgroup

analyses.

A subgrouping is a partition of the set of all patients into subgroups.

It is usually determined by a measurable covariate. However, analyzing many

subgroups can greatly increase Type I error rates, which may lead to invalid

conclusion. There is an extensive literature about the dangers of subgroup

analyses.
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Berry (1990) defines two approaches for related problems. Type I ap-

proaches adjust significance levels to account for multiple analyses. Type II

approach calculate nominal or unadjusted significance levels.

Berry points out two related Type I concerns about subgroup analyses:

multiplicities and unplanned analyses (or data dredging). Multiplicities refer

to the effect of examining many subgroups, that is testing multiple subgroups

condition on the hypothesis of no subgroup effects. If there is no overall ef-

fect observed,there are always some subgroups that show significance just by

chance when conducting multiple usual statistical test. Adjusting significance

levels for multiple tests helps alleviate the multiplicity problems. Adjusting

significance levels has the same effects as shrinking observations towards com-

mon mean in Bayesian methods. Both approaches make it harder to reject the

null hypothesis of the mean treatment effect. However, adjusting significance

levels for multiple tests may be inconsistent with the likelihood principle and

the scientific method. Data dredging refers to a process where the subgroups

or covariates are not specified before the initial analysis. People with differ-

ent prior knowledge may draw completely different conclusion from the same

observed data. There is a trade off between prior knowledge and the level of

statistical significance. Some with strong prior information may only require

moderate statistical significance. Whereas, one with weak prior information

require stronger significance. Some statisticians insist that one should not test

any hypothesis that is not pre-planned. However, it is hard for a scientist to

proceed with any research without briefly taking a look at the data in reality.
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In summary, there is no easy solution that accounts for all the issues related

to subgroup analysis.

In order to avoid misuse and misunderstanding of subgroup analysis,

some guidelines are introduced on the use and interpretation of subgroup anal-

ysis. Most of guidelines are covering the following points. Subgroups should be

pre-specified, supported by biological resasoning or previous studies’ result or

base on pre-randomization characteristics; Analysis should be only applied to

a small number of important subgroups; Significant level must be adjusted for

multiple testing; all subgroups must be reported separating the prior planned

group from the post hoc groups explicitly.

In this paper, we will introduce a simulation study set up and dis-

cuss evaluation criteria in Chapter 2. In Chapter 3-5, we will discuss three

approaches for subgroup analysis. The traditional Bayesian regression with

treatment and subgroup interaction will be introduced in Chapter 3. In Chap-

ter 4, we will introduce the Virtual Twins methods for searching for enhanced

treatment effect in subgroups. In Chapter 5, we will introduce a Bayesian

model selection approach to identify and report subgroups. In Chapter 6, we

discuss the advantages and disadvantages of the three approaches and conclude

the discussion about subgroup analysis.
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Chapter 2

Simulation Example

2.1 Simulated Data

In order to better demonstrate the difference between models, a sim-

ulation study is designed with linear combination of possible main treatment

effects and subgroup effects. Let n = 100 denote the number of patients in the

study, i = 1...n. Let p = 3 denote the total number of candidate covariates.

Let xk be a covariate, k = 1, . . . , 10. Assume xik is binary, that is, xik ∈ 0, 1.

coavariate values xik were generate by p(xik = 1) = 0.5. Let Ti ∈ {0, 1} de-

note the binary treatment indicator with probability p(Ti = 1) = 0.5, which

represents a randomized study). The Outcome was modeled with a linear

combination of treatment covariate and candidate covariates as following:

yi = x′iβ + tiα + xix
′
iγ + εi

εi ∼ N(0, 1)

β is not of particular interest in the subgroup analysis problem. Here

we restrict β = (1, 1,−1)

We design 6 different scenarios of assumptions of γ and α.
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1. Scenario : α = 0, γ = 0

H0 is true, no treatment effect

2. Scenario : α = 1, γ = 0

H1 is true, a strong overall effect

3. Scenario : α = 0, γ = (1, 0, 0)

One winning subgroup; no overall effect

4. Scenario : α = 0.25, γ = (1, 0, 0)

A small overall effect and a strong subgroup effect

5. Scenario : α = 0, γ = (0.25, 1, 0)

A moderate and a strong subgroup effect

6. Scenario : α = 0.25, γ = (0.25, 0, 0)

A small overall effect and a strong subgroup effect

2.2 Evaluation Criteria

Statistical estimation approximates the unknown parameters based on

measured data. Point estimation of an unknown parameter is calculated based

on the sample data and serves the purpose of an best guess. In frequentist

inference, the bias of an estimator is a crucial criteria to evaluate the optimality

of an estimator. The bias of an estimator is the expected value of the difference

between the estimator and the true value of the parameter. An true value of the

parameter was implicitly assumed when considering the bias of an estimator.
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An estimator with zero bias is called unbiased estimator.

E[(µ̂(y)− µ)] = 0

In Bayesian statistics, there is no single truth about an unknown parameter.

The truth of a parameter is expressed in terms of degrees of belief or a prob-

ability distribution. The posterior distribution of the unknown parameter is

calculated after updating the belief using observed data. The posterior mean

or posterior median are robust point estimators of the unknown parameter.

In clinical trials, estimating an unknown quantity is not the only in-

terest. Scientist also want to test the correctness of an assumption about a

population parameter based on the observed data. Statistical hypothesis test-

ing is also a major area in statistical inference. A test is called statistically

significant if the null hypothesis is proven to be unlikely given the observed

data. The process of testing null hypothesis and alternative hypothesis are

closely related to two types of errors type 1 error and type 2 error. Type 1

error is that null hypothesis is rejected based on the rejection criteria when

the null hypothesis is true. Type 2 error is that null hypothesis fails to be

rejected based on the rejection criteria when null hypothesis is false. Type 1

and type 2 error also refer to the terms as false positives and false negatives in

binary classification in medical testing. In simple hypothesis testing case, the

type 1 error usually equal to the significance level of a test α. Type 2 error

denoted by β is closed related to the the power of a test, explicitly 1− β.

In subgroup analysis setting, we assume the null hypothesis (H0) is that
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there is no overall treatment effects and the alternative hypothesis (Ha) is that

there is an overall treatment effects. As an result, the subgroup effects (Hi)

lays in between null hypothesis and alternative hypothesis. We can define the

following error rates as the operating characteristics.

TIE: Type I Error = P (H0|H0)

FNR: False Negative Rate = P (H0|Ha)

FSR: False Subgroup Rate = P (Hi, i 6= 0, i 6= a|Ha)

TSR: True Subgroup Rate =P (Hi|Hi, i 6= 0, i 6= a)

FPR: False Positive Rate = P (Ha|Hi, i 6= 0, i 6= a)

Here P (A|B) denotes the probability under repeat experimentation of report-

ing A where B is the simulated truth. We will use these operating character-

istics to evaluate the models that we will introduce in the later chapters.

In Bayesian statistics, Bayes factor can be used as an alternative to

frequentist hypothesis testing. Bayes factor is often used in multiple testing to

determine which model is more reflected by the observed data. It is calculated

as the ratio of the marginal likelihood of the data given the models, which

represent the possibility that the observed data are produced under given

model.

B =
p(y|M1)

p(y|M2)
=

∫
p(y|θ,M1)p(θ|M1)∫
p(y|θ,M2)p(θ|M2)

However, Bayes factor in general are hard to calculated and the marginal

likelihood of the data under model has to be proper.
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Chapter 3

Traditional Bayesian

3.1 Bayesian Model Construction

Dixon and Simon(1991) introduced a Bayesian method to exam treat-

ment effects based on the levels of covariates that define subset. Two treatment

and binary covariates was used for illustration purpose. We will demonstrate

the method using a linear model as following:

yi = tiα + xiβ + γtixi + εi

εi ∼ N(0, σ2)

This linear model includes overall treatment effects tiα, covariate based effects

xiβ and the treatment and covariates interaction term γtixi representing sub-

group effects. Let θ denote a 2p + 1 a linear combination of (α, β, γ), which

are the parameters corresponding to (t, x, tx).

Dixon and Simon(1990) assume that γ ∼ N(0, ξ2I) and imposed a

modified Jeffreys prior for variance parameter ξ2. A flat informative prior for

α and β was used. To simplify the model, we use a multivariate normal prior

for the vector γ. Define θ̂ an estimate of θ obtained by the maximum partial

likelihood method. Then, the model can be described using the following

assumption:
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1. The maximum likelihood estimate θ has approximately normal distribu-

tion. θ̂ ∼ N(θ, C) where C is a known covariance matrix.

2. A prior for θ follows a multivariate normal distribution

with above assumptions, the posterior distribution of θ is also normal:

θ|θ̂ ∼ N(Bb,B) (3.1)

where B−1 = C−1 +D−1 and b = C−1θ̂

With flat prior for α and β, D−1 becomes a diagonal matrix with main

diagonal as

(
1

σ2
α

,
1

σ2
β1

,
1

σ2
β2

, ...,
1

σ2
βp

,
1

d1
,

1

d2
, ...,

1

dp
)

=(0p+1,
1

d1
,

1

d2
, ...,

1

dp
)

where p is the number of covariates, 0p+1 is a vector of p + 1 zeros. di cor-

responds to the prior variance of the ith treatment-by-covariate interaction

effect.

Donate a 2p+1 vector W as linear combined vector of (t, x, tx). matrix

C was derived from maximum partial likelihood as C = (W TW )−1σ2.

3.2 Summarizing Results

It is controversial on how to choose a quantity to summarize results in

Bayesian inference problems. Dixon and Simon use the marginal 95% highest
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posterior density interval. The 95% highest posterior density joint region is

also a reasonable quantity to use. The idea of searching for a region with

high joint probability help to avoid multiplicity effects. In our case, the target

posterior distribution follows a multivariate normal distribution. Thus the

marginal variance of the parameter of interest lay on the diagonal of posterior

covariance matrix.
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Chapter 4

Virtual Twins method

The traditional Bayesian method is not very efficient when the dimen-

sion of X gets larger. Foster, Taylor and Ruberg developed a standard, prede-

termined strategy, referred to as ’Virtual Twins’, to find subgroups enhanced

treatment effect. The method is particularly applicable for two situation: (1)

a new treatment is shown overall slightly better than the standard treatment

but there is not enough strong evidence to be widely adopted and (2) in some

situation, the new treatment may appear better, and the new treatment might

be especially effective to some subgroups of patients.

4.1 Virtual Twins Strategy

The same problem set up and the same notations follows from the last

chapter. The method is aimed to partition the covariate space into two regions,

a small subset of Xs A and complementary set Ac. Enhanced treatment effect

was identified in region A comparing to region Ac. This approach assume

there are two possible outcomes for each patient (one under treatment and

one under control group). We are interested in the difference between these

two outcome.
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4.1.1 Step 1: Apply random forests to data

A random forest is an ensemble predictor constructed by multiple re-

gression or classification trees. The random forest can be view as a black box

predictor that take covariate values as and gives desired estimators as output

for that input. For our purpose, the input covariate values are xi, ti and pos-

sible terms such as xiI(ti = 0) and xiI(ti = 1). The output is an estimator

of yi. If the subject i is in actual treatment group j, let Ŷ j
i denote the out-

of-bag estimate from the random forest, whereas let Ŷ 1−j
i denote the estimate

applying the random forest with the other treatment group 1 − j. Define

Zi = Ŷ 1
i − Ŷ 0

i , which is a measurement of the treatment effects of subject i.

R function randomForest was used to fitting the random forest.

4.1.2 Step 2: Estimate a Regression or Classification Tree

Now, a regression or classification tree can be used to find a small

number of covariates that strongly correlate with Z. A threshold c is set for

Zi,which we can use to define A.

Virtual Twins regression tree was estimated using Z as the response

variable and X as covariates. Intuitively, if predicted Zi for subject i is greater

than threshold c, subjects i should be grouped into Â. Thus,Â can be defined

by the paths along with tree to the end node such that predicted Zi is greater

than c. If no predicted Zi is greater than c, Â is empty. Figure 4.1.2 illustrates

the Virtual Twins regression tree in Simulation Study Scenario 3 setting. If

We set c equals to 1.158, Then subgroup defined by x1 < 0.5 and x3 < 0.5 are

12



the preferred subgroup.

|
X1< 0.5

X2< 0.5 X3< 0.5
X2< 0.50.03914

n=19
0.3011
n=29 1.158

n=27
1.391
n=13

1.639
n=12

Figure 4.1: Virtual Twins Regression Tree in Simulation Study Scenario 3

To apply Virtual Twins classification tree, we design a new binary

outcome measure Z∗ defined as Z∗i = 1ifZi > c and Z∗i = 0ifZi < c. Z∗ is

used as outcome in fitting the classification tree. Different from regression

tree, all nodes of covariates Xs in the classification tree defined set Â. If the

classification tree has no splits, Â is empty.

4.2 Evaluating subgroup regions

In order to get a quantitative measurement on the enhanced treatment

effect on a particular covariates region A with the average treatment effect on

13



the overall population, define

Q(A) =

∑
X∈A(Y 1

i − Y 0
i )

NA

−
∑

(Y 1
i − Y 0

i )

N

where NA is the number of subjects in region A and N is the total number of

subjects.Q(A) is defined as 0 if A is a empty set. Q(Â) quantifies the effective-

ness of the recommended region Â in defining a region of enhanced treatment

effects. The larger Q(Â) is, the more useful the region Â is. In simulation

study, Q(A) can be used to compare the efficiency of different subgroups.
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Chapter 5

Bayesian Model Selection

Sivaganesan, Laud and Muller developed a Bayesian model selection

approach to identify and report subgroup effects. The overall null hypothe-

ses is that the treatment is not effective among all the study population. The

overall alternative hypotheses is that the treatment is effective. The subgroups

of interest are defined by covariates such as gender, age and biomarkers. Each

subgroup effect model is only concern about one single covariate in this set-

ting. The overall hypotheses was tested at first. The overall effect model

is compared with all the subgroup effect models. The overall effect model

is selected when a strong overall treatment effect is observed than any other

subgroup effect. If the overall effect model is not selected at this stage, a

Bayesian model selection procedure will be conduct to search for prevailing

subgroups continued. The posterior probability of subgroups effects models

are computed for each single covariates. Fixed thresholds are set before the

procedure to determine whether to select a subgroup model. The thresholds

is set to match the desired operating characteristics. Bayesian models with

subjective prior was used in defining the overall and subgroup models. The

authors use a zero-enriched Polya Urn scheme to define the prior probability

distribution for model space. We will use a simplified prior distribution for
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model space for the purpose of illustrating the concepts of Bayesian model

selection.

5.1 Bayesian Models Construction for Overall and Sub-
group Effects

First overall effects model is defined in usual regulatory setup to de-

termine whether treatment effects is effective among overall study population.

Assume M00 is the overall null hypothesis that there is no treatment effect,

whereas M01 is the overall alternative hypothesis that there is a overall treat-

ment effect.

M00 : δ = µ1 − µ0 = 0 M01 : δ = µ1 − µ0 6= 0

We define the null model space as

M0 = {M00,M01}

The null hypothesis can be set to quantity other than 0, for example, an

interval or an point null with reasonable effect sizes. The method will remain

equally valid. We will use the point null hypothesis for simplicity purpose.

Then we discuss the construction and indexing of subgroup models here.

We will follow the problem setup in simulation study of chapter 2 for the rest

of discussion. We have total K = 3 candidate binary covariates. Consider

a single covariate x with two possible value s with s ∈ {0, 1}. Let µ0s , µ1s

denote the mean outcome under control and treatment respectively. Define

16



the treatment effect in subgroup s as

δs = µ1s − µ0s for s = 1, 0

The goal is to identify the subgroups with no treatment effects and the sub-

groups with enhanced treatment effects. Moreover, we want to evaluate the

size of enhanced treatment effects among different subgroups. Thus we are

interested in testing whether δs is equal to 0. If δs is not equal to 0 mean-

ing there is a subgroup treatment effect, we want test if there is a different

treatment effect in δs for s = 1, 0. Let Mx denote the all subgroup models

for the covariate x. We use the all the possible combination of δs to define

the subgroup model in Mx. It’s clear that there are total 5 subgroup models

in our problem setting, which are M0 : δ1 = δ0 = 0, M1 : δ1 6= 0, δ0 = 0,

M2 : δ1 = 0, δ0 6= 0, M3 : δ1 6= δ0 6= 0 ,and M4 : δ1 = δ0 6= 0. In order to keep

consistency with simulation study setup, we match 5 subgroup models above

into linear likelihood probability models with normality assumption imposed.

Linear models setup make sure that the derivation of the posterior distribu-

tion can be done analytically. The detail of this mapping listed in table 5.1.

Thus the sampling distributions of subgroup models can be summarized into

independent normal distributions. we assign non-informative normal conju-

gate prior distribution for θ and σ2, which assign a inverse gamma prior for

σ2 and multivariate normal prior for θ|σ2

yi ∼N(Xiθ, σ
2)

σ2 ∼ Inv −Gamma(a0, b0) θ|σ2 ∼ N(µ0,Σ)

17



Table 5.1: Subgroup models in Model space Mx

Model P (yi|θ)
M0 : δ1 = δ0 = 0 yi = β0 + εi
M1 : δ1 6= 0, δ0 = 0 yi = β0 + xiβ + εi
M2 : δ1 = 0, δ0 6= 0 yi = β0 + γtixi + εi
M3 : δ1 6= δ0 6= 0 yi = β0 + xiβ1 + γtixi + εi
M4 : δ1 = δ0 6= 0 yi = tiα + xiβ + γtixi + εi

As a result, the posterior distribution of the parameters θ and σ2 given a spe-

cific subgroup model M can be derived analytically. The posterior distribution

for θ follows a multivariate normal distribution and the posterior distribution

for σ2 follows a inverse-gamma distribution.

P (θ, σ2|y,M) =
P (y|θ, σ2,M)P (θ, σ2|M)∫

θ

∫
σ2 P (y|θ, σ2,M)P (θ, σ2|M)dθdσ2

5.2 Probability Distribution for Models

Given a specific covariate x, we have 5 subgroup models associated with

it as we discussed in last section. Each subgroup models determined whether

a subgroup effects is zero or not. The authors assign probabilities for models

using the Polya Urn methods. Here we design a simplified version to be consist

with our simulation study set-up. We assign a probability to each model in

model space Mx listed in table 5.2.

To be noted that M0 in model space Mx corresponding to the overall

null model and M1 in model space Mx corresponding to the overall alternative

model. Overall models was assigned a total p probability and the rest of

18



Table 5.2: Probabilities for Models in Model space Mx

Model P (Mi|p)
M0 : δ1 = δ0 = 0 p

2

M1 : δ1 6= 0, δ0 = 0 1−p
3

M2 : δ1 = 0, δ0 6= 0 1−p
3

M3 : δ1 6= δ0 6= 0 1−p
3

M4 : δ1 = δ0 6= 0 p
2

probability assigned evenly to each subgroup models in model space Mx.

All the probabilities for models in model space Mx have to add up to

1. Thus parameter p is restricted in between 0 and 1. Thus we use Beta prior

for the parameter p.

p ∼ Beta(p; a, b)

Consider the combined sample data y, P (y|M, p) = P (y|M) enforced by con-

ditional independence. Then we have the posterior probability of a model Mi

in model space Mx as

P (M |y) =
P (y|M)P (M)∑

M ′∈Mx
P (y|M ′)P (M ′)

In above, we have

P (M) =

∫
P (M |p)P (p)dp

P (y|M) =

∫ ∫
P (y|M, θ, σ2)P (θ, σ2|M)dθdσ2
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Consider the cases where there are more than 1 covariate of interest.

First, we have the overall null model M00 and overall alternative model M01,

which constitute the null space M0. Suppose we have I covariates of interest

x1, . . . , xi. We define a model space for each covariate, for example, MxiMi

for covariate xi. In our problem set-up, we have 3 covariates of interest and

there are H = 5 models in each of the covariate space for the corresponding

3 covariates. We index the model in a covariate spaces based on the order in

table 5.2.

Suppose we are interested in calculating the posterior distribution for

model M ∈ Mi. Let Pi(M) ≡ P (M |Mi) denote the prior probabilities of M .

LetPi(M) ≡ P (M |y,Mi) denote the prior probabilities of M conditional on

model space Mi. For a specific model M∗ ∈Mi

P̄ (M∗|y) =
P (y|M∗)Pi(M

∗)∑
M ′∈Mi

P (y|M ′)P (M ′)

5.3 Bayesian Model Selection Procedure

We get the posterior distributions for models in multiple model spaces.

Here we will introduce the Bayesian model selection procedure to search for the

target models. The goal of this procedure is to compare overall effect model

and to select the subgroup models if there exist a strong subgroup enhanced

treatment effects. The algorithm for the stepwise procedure are as following:
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• Step 0: Choose M01 and stop, if

P̄0(M01)/P̄0(M00) > c0 and,

P̄i(Mih)/P̄i(MiH) < c1 for 1 < i < I and 0 < h < H,

Else continue to next step.

• Step i : for i = 1, . . . , I Choose Mih for 0 < h < H, if

P̄i(Mih) = max
0<h′<H

P̄i(Mih′) and

P̄i(Mih)/P̄i(Mi0) > c0 and

P̄i(Mih)/P̄i(MiH) > c1

Continue to next step.

• Step I + 1: Choose M00 if no subgroup effect model is selected in the

previous steps.

The first step of the procedure compare the overall null model and overall

effect model. If the overall effect model is preferred,then overall effect model

continue comparing with subgroup effect models. If there is no subgroup

model is preferred over the overall effect model, the procedure stops and the

overall effect model is selected. Otherwise, the procedure continues to search

through the subgroup models in the model space Mi for i = 1, . . . , I. One or

more subgroup may be selected if they surpass the overall null model and the

overall effect model to some extend. Specifically, we use two thresholds c0 and

c1 for posterior odds. c0 represents the threshold for the posterior odds of the
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overall or a subgroup effect model against the null model, and c1 represents the

threshold for the posterior odds of a subgroup effect model against the overall

effect model. If no subgroup effect model is selected during step 1, . . . , I, the

overall null effect model is selected at last. Thus, the final outcome of the

procedure has three possibilities: the overall effect model M01 selected in step

0, one or more subgroup effects model Mih selected in step 1, . . . , I or the

overall null model M00 selected in step I + 1.
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Chapter 6

Discussion

We present three approaches for doing subgroup analysis, a traditional

Bayesian methods with treatment-covariate interaction, the Virtual Twins

method and a Bayesian model selection approach. The traditional Bayesian

with treatment-covariate interaction has the important feature that the esti-

mates of the subgroup treatment effects is weight between the overall treat-

ment effects and within-subgroup differences. Scientists can also specify a

prior belief on the strength of the interaction. This method is generally easy

to understand and implement. Many developments of this method extend the

idea to a variety of models such as generalized linear models or proportional

hazards models. The Virtual Twins method is developed for identifying the

subgroups with possible enhanced treatment effects. It predicts the response

outcome for treatment and control for each subject. The classification tree

or regression tree is applied to the response outcome to determine the poten-

tial related subgroups. The Virtual Twins methods appears to be reasonably

good in identify the magnitude of the enhanced treatment effect. However,

it is not adept at identifying the correct covariates. It tends to identify more

subgroups than it should. Many variations of this method may be studied

in the future such as using other non-parametric regression methods instead
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of the random forest in the first step of the procedure. The Bayesian model

selection approach represents the treatment-subgroup interaction by subgroup

models and calculated the posterior probability for overall models and the sub-

group models. The determination of overall treatment effects or the subgroup

treatment effect is made by comparing the ratios of the posterior probability

of the models with some pre-determined thresholds. These threshold can be

set to achieve a specific overall Type-I error rate. Appropriate thresholds can

help to deal with multiplicity issues. The Bayesian model selection approach

presented here can only account for subgroups that are defined by one covari-

ate. If multiple covariates are needed to define the subgroups, some additional

covariates can be created using the combination of the existing covariates. A

similar approach can be extended to those cases. In general, identifying and

estimating subgroups effects is hard and usually require large sample size or

strong subgroup treatment effects.
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