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Abstract

The tumor microenvironment is emerging as an important therapeutic target. Most studies, however, are focused on
the protein components, and relatively little is known of how the microenvironmental metabolome might influence
tumor survival. In this study, we examined the metabolic profiles of paired bone marrow (BM) and peripheral blood
(PB) samples from 10 children with acute lymphoblastic leukemia (ALL). BM and PB samples from the same patient
were collected at the time of diagnosis and after 29 days of induction therapy, at which point all patients were in
remission. We employed two analytical platforms, high-resolution magnetic resonance spectroscopy and gas
chromatography-mass spectrometry, to identify and quantify 102 metabolites in the BM and PB. Standard ALL
therapy, which includes l-asparaginase, completely removed circulating asparagine, but not glutamine. Statistical
analyses of metabolite correlations and network reconstructions showed that the untreated BM microenvironment
was characterized by a significant network-level signature: a cluster of highly correlated lipids and metabolites
involved in lipid metabolism (p<0.006). In contrast, the strongest correlations in the BM upon remission were
observed among amino acid metabolites and derivatives (p<9.2×10-10). This study provides evidence that metabolic
characterization of the cancer niche could generate new hypotheses for the development of cancer therapies.
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Introduction

Cancer is the leading cause of disease-related death in
children, and the most common pediatric cancer is acute
lymphoblastic leukemia (ALL)[1]. ALL is an aggressive disease
characterized by the accumulation of immature lymphoid cells
in the bone marrow (BM) and peripheral blood (PB). Despite
marked improvement in treatment, a substantial number of
children with ALL die of the disease[2–5]. Moreover, even
children who achieve a cure must undergo a long treatment
course accompanied by major discomfort and potentially
severe side effects[6].

It is now well-established that cancer development,
progression, and response to therapy are strongly influenced
by the stromal cells, matrix proteins, and secreted molecules
that make up the tumor microenvironment[7–9]. Many studies
have focused on the protein components of the
microenvironment, but relatively little is known of how the local

metabolome might influence the course of disease and the
tumor response to therapy. Because a unique shift in metabolic
phenotype is one of the hallmarks of cancer[10–12], metabolic
profiling represents a powerful, and now technically feasible,
method to monitor dynamic changes in tumor metabolism over
the course of the disease and in response to therapy.
Moreover, fluctuations in local metabolite concentrations,
especially glucose, fatty acids, and amino acids, have been
shown to influence the efficacy of chemotherapy in human
cancers[13,14]. Interestingly, ALL cells display a particular
dependence on exogenous asparagine for replication, a fact
that has been exploited in designing drug treatment regimens.
Thus, L-asparaginase, which deaminates circulating
asparagine, and, to a lesser extent, glutamine, is a component
of the standard chemotherapeutic regimen to treat pediatric
ALL[15–19]. Metabolomics could therefore be used to
determine whether individual cancers are dependent on
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particular metabolic pathways, which could then be exploited in
designing more targeted cancer therapies [20].

Another area in which metabolic profiling of tumors has
become increasingly important is in the identification of
biomarkers for personalized treatment strategies. Several
recent studies have highlighted the diagnostic and the
prognostic potential of metabolite profiling in a range of human
diseases[20–24], including hematological malignancies such as
multiple myeloma[25] and chronic lymphocytic leukemia[26].
Although metabolite analysis is often performed on PB,
circulating metabolite concentrations reflect whole body
responses to disease and/or therapy. Thus, it is important to
recognize that analysis of biofluids at the specific tumor niche
is likely to yield more accurate and clinically useful information
about the metabolic demands of tumors and could identify
novel pharmacodynamic biomarkers to assess the tumor
response to therapy.

In this study, we sought to examine the BM and PB
metabolomes of 10 children with pediatric ALL. Paired PB and
BM samples were collected from patients at the time of
diagnosis and again after 4 weeks of induction therapy, at
which point all patients were in disease remission. We
analyzed the absolute levels of metabolites and differences
between the BM and PB compartments within the same
patient, which allowed us to accurately assess the effects of
tumor burden and induction therapy on the respective
metabolomes. Because the BM of ALL patients is almost
completely invaded with cancer cells at the time of diagnosis,
and numerous organs contribute to the metabolic content of
PB, analysis of BM samples may provide critical information
not captured by analysis of plasma samples. In this regard, the
leukemic BM and PB microenvironments show many metabolic
differences[27,28], including lower oxygen tension in the BM.

We employed two analytical platforms, high-resolution
magnetic resonance spectroscopy (MRS) and gas
chromatography-mass spectrometry (GC-MS), to generate a
large metabolomics dataset profiling the cancer niche and PB
before therapy and after remission. We used multivariate
statistical analysis techniques to compare metabolomic profiles
and univariate analysis to compare changes in individual
metabolites. We identified and quantified 102 metabolites that
reveal a clear switch in the balance between lipid and amino
acid metabolism in tumor-burdened versus tumor-free BM.

Obtaining metabolomic samples of the cancer niche and
peripheral blood from the same patient before therapy and after
remission is a novel approach for ALL and for cancer
metabolism in general. The datasets generated in this study
represent a unique clinical resource that complements other
experimental approaches to cancer metabolism.

Methods

Declaration of ethical approval
All clinical investigations were conducted according to

Declaration of Helsinki principles. All human studies were
approved by the UCSD Human Research Protections
Programs IRB. Written informed consent was received from
participants prior to inclusion in the study. Written informed

consent and parental permission were obtained in accordance
with Institutional Review Board guidelines.

Patient characteristics and sample collection
Paired BM and PB specimens from 10 children diagnosed

with B-ALL were collected at the Rady Children’s Hospital (San
Diego, CA). Written informed consent and parental permission
were obtained in accordance with Institutional Review Board
guidelines. Patient characteristics are given in Table S1 in File
S1. Patients were treated according to a standard protocol with
PEG-l-asparaginase, vincristine, and a glucocorticoid
(prednisolone/prednisone or dexamethasone for children <10
or >10 years of age, respectively). The patients were
hospitalized at the beginning of induction therapy (day 0) and
released on day 8 of treatment. BM specimens were obtained
on day 0 and at the end of induction therapy (day 29). PB
specimens were collected on days 0, 8, and 29. Complete
details of the induction therapy protocol are provided in Table
S12 in File S1.

Sample preparation for metabolomic analysis
A total of 50 samples were analyzed using MRS and GC-MS

analytical platforms. Within 6 h of collection, the heparinized
BM and PB specimens were centrifuged at 400 g for 20 min at
18°C. Aliquots of the supernatants (500 μL) were removed,
immediately snap frozen in liquid nitrogen, and then stored at
-80°C. The BM and PB biofluids were processed as previously
described[29]. In brief, the frozen biofluids were thawed on ice
and then deproteinized by ultrafiltration (Nanosep 3K OMEGA,
Pall Corporation, MI) at 4°C. The filtrate polar fraction was
prepared for MRS analysis as described in SI. Components
remaining on the filter (mostly proteins and lipids) were
recovered by washing with 1 mL 0.9% saline solution and
prepared for analysis of the apolar fraction by GC-MS and
MRS (details in SI).

Preparation of polar fraction for MRS analysis
An aliquot of 160 μL of filtered biofluid was placed in a 3 mm

MRS tube (Norell, Landisville, NJ, USA) containing 40 μL
deuterated (3-(trimethylsilyl)-2,2',3,3'-tetradeuteropropionic acid
(TMSP-d4, final concentration 0.5 mM; Cambridge Isotope
Laboratories), 0.75% (w/v) sodium azide, phosphate buffer
(final concentration 100 mM, pH 7.0) and 10% D2O (Cambridge
Isotope Laboratories). Samples were analyzed immediately.

Preparation of free fatty acid (FFA) extracts for GC-MS
analysis

Three 25 μL aliquots of the recovered apolar fraction were
prepared for GC-MS analysis of essential FFAs. Each aliquot
was mixed with 475 μL saline, 500 μL methanol, 800 μL
isooctane, 100 μL ethanol containing 25 ng of 98% myristic
acid-d3 (Cambridge Isotope Laboratories), and 25 μL 1 N HCl.
The solution was vortexed and the phases were separated by
centrifugation. The upper isooctane layer was removed and
dried with a vacuum evaporator for subsequent derivatization,
as described [30]. In brief, the dried FFA fraction was
redissolved in 25 μL 1% diisopropylethylamine in acetonitrile in
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capped glass tubes and derivatized by the addition of 25 μL 1%
pentafluorobenzyl bromide (PFBB) in acetonitrile for 20 min at
RT. The sample was dried and the residue was dissolved in
100 μL isooctane. For standard curves (1–500 ng), a mixture of
arachidonic, palmitoleic, heptanoic, linolenic (all Sigma-
Aldrich), palmitic, myristic, stearic, linoleic, oleic (all Fluka), and
eicosadienoic (Cayman Chemical Co.) acids were PFBB-
derivatized as described above. All solutions included 25 ng of
myristic acid-d3.

Preparation of apolar fraction for MRS analysis
Recovered apolar metabolites (925 μL) in glass vials were

extracted by the addition of 75 μL saline, 1 mL methanol, and 2
mL chloroform followed by vortexing for 30 s [31]. The
emulsion was centrifuged at 5000 g for 10 min at 4°C and the
layers were allowed to separate by standing for 10 min. The
non-polar chloroform layer was removed and dried, and the
residue was redissolved in CDCl3 containing 0.03%
trimethylsilane. Samples were analyzed immediately.

GC-MS analysis
GC-MS analysis was performed on a Shimadzu QP2010

Plus GC-MS (Shimadzu Corp, Kyoto, Japan) equipped with an
autosampler. Samples of 1 μL derivatized FFAs in isooctane
were injected in pulsed splitless injection mode onto 15 m ×
0.25 mm × 0.25 μm SHRXI-5ms column (Shimadzu). The GC
oven temperature was set to ramp from 150°C to 240°C at
10°C/min, from 240°C to 270°C at 40°C/min, and then to hold
at 270°C for 1 min. The injector and transfer line were kept at
250°C and 280°C, respectively. Methane was used as the
ionization gas with a source temperature of 150°C. Data were
acquired in the selected ion monitoring (SIM) mode, monitoring
the [M-H]- anions of FAs. Selected masses were arranged into
eight SIM groups according to elution times. Calibration curves
of saturated and unsaturated FFAs were generated by linear
regression analysis of the individual lipid standards. For
quantification of the remaining FFAs, the FFA standards with
the closest chemical features were used.

MRS experiments and data processing
MR spectra were acquired at 14.1 T (600 MHz) and 16.4 T

(700 MHz) on Bruker Avance spectrometers (Bruker BioSpin
Corp., Billerica, MA, USA) equipped with a TCI cryoprobe and
autosampler at 30°C. Each sample was allowed to equilibrate
for 10 min inside the probe before starting data acquisition.

For the polar fraction, 1D 1H-MRS pulse sequence was
implemented with excitation sculpting to suppress the water
signal. 1D 1H-MRS spectra were acquired as specified by
Chenomx NMR Suite (version 6.0; Chenomx Inc., Edmonton,
Canada) for absolute metabolite quantification. For
quantification of metabolites not present in the Chenomx
library, an array of 1D MRS experiments was performed on
representative samples under fully relaxed conditions (60 s
recycle delay).

For the lipid fraction, Carr-Purcell-Meiboom-Gill (CPMG) 1H
spectra were recorded using a spin-spin relaxation delay of 100
ms to facilitate detection of low molecular weight metabolites.
For absolute quantification of lipid signals, nuclear Overhauser

effect spectroscopy (NOESY) spectra were recorded with a
mixing time of 10 ms.

For all samples, 1D 1H-MRS spectra were acquired using at
least 512 scans and 8 dummy scans, 32000 data points, and a
spectral width of 6 kHz.

To facilitate metabolite identification, 1H-13C heteronuclear
single-quantum coherence (HSQC) spectra were acquired on
representative samples. For HSQC experiments, a total of 256
FIDs were recorded for each of 512 increments with a
relaxation delay of 1.8 s.

All the MRS datasets were processed using MetaboLab [32]
in the MATLAB programming environment (MathWorks, Inc.,
Natick, MA). Post-processing of 1D MRS spectra for the
multivariate analysis included scaling according to the
probabilistic quotient method, alignment, exclusion of selected
signals arising from solvents and TMSP, binning at 0.005 ppm,
and application of a generalized log transformation. MRS
resonances were assigned and the metabolites quantified
using the Chenomx NMR Suite and other available libraries
[22,30,33].

Statistical analysis
Multivariate paired data analyses, mPCA and mPLS-DA,

were performed on the entire MRS spectra using PLS-Toolbox
(Version 6.5; Eigenvector Research, Manson, WA) in MATLAB.
The absolute concentrations of selected metabolites are
reported as mean values ± SEM. Statistical comparison of
metabolite concentrations in different biofluids was performed
using nonparametric WRST. The results were then FDR-
corrected [34] to a significance level of 10%. Pearson’s
correlation coefficients of metabolite concentrations were
calculated and the highest correlations (r| > 0.75) were
displayed in heat maps. P-values for the Pearson’s correlation
coefficients were also calculated. Unsupervised hierarchical
clustering analysis was performed using city-block distance
and average linkage clustering methods on the Pearson’s
correlation coefficients of all the identified metabolites.

Network analysis
The relevance network was obtained by calculating the

mutual information and p-values of Pearson’s correlations
among all pairs of metabolites with at least five nonzero values.
Given the small sample size (10), we used a continuous
method to estimate the mutual information (Spearman’s
estimator [35]). As a criterion for relevance, we used an FDR-
based cut-off (FDR <50%, corresponding to a cut-off in p-value
of 0.063 for B0-P0 and 0.080 for B29-P29). Gaussian kernel
smoothing restricted to positive values was used to generate
smooth histograms, and the classification of the metabolites in
the three groups (i-iii) was obtained from the Human
Metabolome Database (http://www.hmdb.ca). The statistical
analysis for significance (Mann-Whitney) was obtained using
the Hypothesis Tests utilities of Mathematica (Wolfram
Research, Inc.). The ARACNE network was calculated using
the minet R/Bioconductor package [35] and plotted with Graphs
and Networks utilities of Mathematica. Here, we also used a
continuous variable estimator for the mutual information
(Pearson’s estimator, default method in minet). Then, on each
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triplet of nodes (i,j,k), the edge corresponding to the smaller
mutual information, for example (ij), was removed if its mutual
information was below min{(ik),(jk)} [36]. The threshold for
removing edges was set to zero, meaning that all triangular
patterns have been removed from the graph. To further
visualize regions of the networks with higher-than-average
correlation, we removed edges corresponding to FDR <1%
(calculated on all edges remaining after applying ARACNE).
The resulting networks consist of the three connected
components with more than three nodes. The three largest
connected components in the B0-P0 network are characterized
by the following properties: (a) 32 nodes; 33 edges;
<R2> = 0.79, <p-value> = 0.001, <MI> = 0.84. (b) 8 nodes; 7
edges; <R2> = 0.79, <p-value> = 0.001, <MI> = 0.84. (c) 8
nodes; 7 edges; <R2> = 0.77, <p-value> = 0.001, <MI> = 0.74.
The second connected component consists uniquely of type (i)
edges. For the B29-P29 network, the three largest connected
components are characterized by the following properties: (a)
19 nodes 19 edges; <R2> = 0.84, <p-value> = 0.0005,
MI> = 0.95. (b) 6 nodes; 5 edges; <R2> = 0.76, <p-
value> = 0.001, <MI> = 0.73. (c) 4 nodes; 3 edges;
<R2> = 0.76, <p-value> = 0.001, <MI> = 0.72. The average < >
is taken over the edges of the cluster and MI is the mutual
information of the edges.

Results

Patient characteristics and sample collection
The study population was 10 patients (M:F ratio = 6:4)

diagnosed with B-lineage ALL (Table S1 in File S1). The
median age at diagnosis was 3 years (range, 1–14 years). BM
and PB samples were obtained at diagnosis (day 0) and
patients were started on L-asparaginase, vincristine, and
glucocorticoid induction therapy on the same day. PB samples
were taken on day 8, and both BM and PB samples were
collected again on day 29, at the end of induction therapy. At
the time of diagnosis, the median BM blast count was 86%
(range, 45–93%) and the median PB blast count was 29.5%
(range, 0–84%). All patients responded rapidly to therapy and
the median PB blast count on day 8 was 0% (range, 0–12%).
Only two patients had positive blast counts on day 8 (B005, 1%
and B007, 12%), which corresponded to the minimal residual
disease (MRD)-based risk group classification
(0.1%≤ MRD<1%; additional information in SI). By day 29, all
BM and PB blast counts were 0% except for one patient who
had a BM blast count of 1%. All analytical samples were BM
extracellular fluid (designated B0 and B29) or plasma (P0, P8,
and P29).

Outline of metabolomic datasets and analytical
approach

We used an untargeted approach to analyze metabolites in a
range of metabolic pathways. Polar, whole lipid, and
derivatized free fatty acid (FFA) fractions were prepared from a
total of 50 biofluid samples (B0, B29, P0, P8, P29 for each of
10 patients) and analyzed by MRS (polar and apolar fractions)
or GC-MS (FFAs). We detected and quantified a total of 102
metabolites: a summary of all results is shown in Table 1 and

Table S4 in File S2. More detailed comparisons are shown in
Tables S5, S6, S7, S8, S9, S10, S11 in File S2. Our analytical
approach was designed to identify a metabolic profile that
reflected cancer metabolism directly (B0), but comparisons with
metabolites in the PB sample are useful to estimate the
contribution of other factors affecting the cancer
microenvironment in the same patient. For example, a
comparison of P0 and B0 provides information about plasma
metabolites before and after the blood enters the bone marrow,
whereas a comparison of B0 and B29 provides information
about metabolites in the BM niche in the presence and
absence of cancer cells, with the caveat that metabolites in
B29 samples might be affected by therapy.

We used univariate analyses to assess changes in individual
metabolites and multivariate statistical analysis to compare
metabolomic profiles. Correlations among different metabolites
in the 10 patients have also been reported because they might
indicate compounds linked by metabolic pathways relevant to
the cancer bone marrow microenvironment. The caveat here is
that different cell types might contribute to the pathways.

Metabolic differences between the BM and PB
environments at diagnosis

We first aimed to characterize the metabolome of BM and
PB biofluids at the time of ALL diagnosis, when cancer cells
almost completely fill the BM niche. The polar fraction of each
biofluid was first characterized using one-dimensional (1D)
MRS (Figure 1A), and the spectra were analyzed by an
untargeted multilevel principal component analysis (mPCA) to
identify metabolites that differed between BM and PB (Figure
2A). The scores plot showed an outstanding separation
(47.82% of variance captured by the first principal component;
Figure 2A) and revealed important metabolic differences
between BM and PB biofluids, as shown by the loadings plot
(Figure 2B). Notably, levels of valine, lactate, glutamate,
aspartate, 2-oxoglutarate, choline, uridine, and hypoxanthine
were elevated in the BM compared to the PB from the same

Table 1. Metabolite concentrations in bone marrow and
peripheral blood before and after induction therapy.

Metabolites B0 (μM) P0 (μM)
B0-P0
(μM)  B29 (μM)  P29 (μM)

B29-P29
(μM)

Lactate 3418.6 2378.42 1040.27 3648.98 4067.95 -418.96
Urea 5018.23 4464.38 553.85 8532.33 9175.15 -642.82
Glutamate 459.979 156.271 303.71 205.69 231.334 -25.64
Triacylglyceride 2299.07 2051.74 247.33 1488.55 1527.89 -39.34
Glycine 450.072 354.293 95.78 405.158 388.339 16.82
Glucose 5375.17 6066.73 -691.57 3764.65 4392.07 -627.42
Glycerol 450.072 354.293 -210.14 405.158 388.339 112.27
Cholesterol
esters

3352.81 3545.79 -192.99 4085.96 4050.43 35.54

Glutamine 352.78 442.421 -89.64 380.068 372.481 7.59
3-
Hydroxybutyrate

147.16 236.31 -89.15 41.72 62.46 -20.74

doi: 10.1371/journal.pone.0082859.t001
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patients, whereas levels of 2-hydroxybutyrate, 3-
hydroxybutyrate, acetone, acetate, acetoacetate, lysine,
glutamine, and glucose were reduced.

We next analyzed the whole lipid fractions of the biofluids by
MRS (Figure 1B) and conducted untargeted mPCA on the
processed data. The mPCA score plot revealed a clear
separation (16.78% PC2) between the BM and PB lipid
fractions (Figure 3A), albeit not as striking as that observed for
the polar fraction of the same samples (Figure 2A). To identify
the functional groups that best discriminate between the BM
and PB samples, we performed a point-by-point nonparametric
Wilcoxon Rank Sum Test (WRST; p <0.05) analysis on the
MRS spectra, and found that the most significant changes were
mainly associated with FFAs, as highlighted on the loadings
plot (Figure 3B). Therefore, we isolated the FFA fraction from
total lipids and performed a more in-depth analysis using GC-
MS (Figure 1C).

In total, the polar, apolar, and FFA analyses identified 102
metabolites from the B0 and P0 samples of ALL patients
(Figure 4A; Table S2 in File S1). Selected metabolites that
were not detected in all patients were omitted from the
subsequent analysis (e.g., adipate and allantoin). Differences
in the absolute metabolite concentrations in B0 and P0 were
assessed for statistical significance using a nonparametric two-
sided WRST test and corrected using the false discovery rate
(FDR). We identified 27 metabolites with p-values <0.05; which
was reduced to 22 with corrected pFDR<10% and 14 with
pFDR<5% (Figure 4A). The metabolites with higher
significance (pFDR<5%) included 2-oxoglutarate, aspartate,
choline, glutamate, glycine, hypoxanthine, and methionine,
which were present at higher levels in BM than in PB, and
acetoacetate, acetone, pyroglutamate, glycerol, myristic, cis-9-
palmitoleic, and palmitic acids, which were present at higher
levels in PB. Metabolites with lower significance
(5%<pFDR<10%) were alanine, glycero-3-phosphocholine,
myo-inositol, phenylalanine, threonate, and uridine, all of which
were present at higher levels in BM.

We next created a correlation matrix between pairs of
metabolites for each biofluid (Tables S4 and S5 in File S2),
and the subsequent hierarchical clustering analysis (HCA)
revealed that several metabolites were highly correlated
(Figures S2 and S3 in File S1). In the BM (B0), we found 179
metabolite pairs having absolute Pearson’s correlation |r|>0.75
(p<0.01), 53 with |r|>0.85 (p<0.001), and 22 with |r|>0.93
(p<0.0001; Table S4 in File S2). In the PB (P0), we identified
151 correlations with |r|>0.75 (p<0.01), 44 with |r|>0.85
(p<0.001), and 18 with |r|>0.93 (p<0.0001; Table S5 in File
S2). A strong correlation was found between the ketone bodies
3-hydroxybutyrate and acetoacetate in both microenvironments
(in BM r=0.99, p=1.53×10-08; in PB r=0.97, p=4×10-06). To allow
a simpler visualization of the differences between the two
biofluids, we calculated the correlations as differences between
the metabolite concentrations in BM and PB (Table S6 in File
S2); the correlation values for all pairs of metabolites were then
hierarchically classified using city-block distance and average
linkage clustering methods (Figure S4 in File S2). In total, we
found 161 pairwise correlations between metabolites having
absolute Pearson’s correlation |r|>0.75 (p<0.01), 40 with |r|

>0.85 (p<0.01), and 11 with |r|>0.93 (p<0.001). Remarkable
correlations were found for several metabolite pairs that also
clustered closely; for example, one cluster included fumarate
with lactate (r=0.96, p=7×10-06), choline with tyrosine (r=0.96,
p=1×10-05), and glutamate with choline (r=0.91, p=3×10-04), and
a second cluster included cis-palmitoleic acid with acetone
(r=0.97, p=4×10-06) cis-palmitoleic acid with myristic acid
(r=0.94, p=4×10-05), and acetone with myristic acid (r=0.89,
p=6×10-04).

Metabolic differences between the BM and PB
environments after induction therapy

After 29 days of induction therapy, both BM and PB were
largely tumor-free (Table S1 in File S1). The mPCA score plot
for the polar metabolites (Figure 2C) revealed good separation
between the two biofluids (43.80% PC 1); however, the
distribution of samples in the score plot did not show a clear
separation, in contrast to the samples collected at day 0
(Figure 2A). The loadings plot revealed that choline, glycerol-3-
phosphocholine, glycerol, uridine, hypoxanthine, and formate
were increased in BM relative to PB, whereas resonances from
lactate, 2-hydroxybutyrate, 3-hydroxybutyrate, pyruvate,
acetoacetate, acetone, and 2-oxoglutarate were reduced
(Figure 2D).

Multilevel chemometric analysis was next performed on MRS
spectra acquired on the lipid fractions of biofluids collected at
day 29. Using an unsupervised approach (mPCA), there was
no clear separation between the groups (Figure S5A in File
S1). The multilevel Partial Least Squares-Discriminant Analysis
(mPLS-DA) model was then built on the same data using two
classes and two latent variables (LVs), and 22.70% of variance
was captured by LV1; Figure S5B in File S1). Validation using
permutation tests determined that the model had significant
predictive ability (Wilcoxon p ~0.01), thereby validating the
need for a more detailed analysis of the data. Sensitivity and
specificity values calculated for cross-validated mPLS-DA
using Receiver Operating Characteristic (ROC) curve analysis
were both 100%. However, a point-by-point nonparametric
WRST (p<0.05) analysis on the MRS spectra (except
plasmalogen) did not identify significant differences in the
lipidomic profiles of the two biofluids after drug treatment
(Figure S5C in File S1).

Nonparametric WRST analysis of the polar, total lipid, and
FFA fractions identified 18 metabolites with p-values <0.05,
which was reduced to only 4 with pFDR<10% (3-
hydroxybutyrate, acetoacetate, acetone, and hypoxanthine;
Figure 3B). Pearson’s correlation analyses for pairs of
metabolites quantified in individual biofluids (Tables
S9 and S10 in File S2) revealed particularly close affinity for
pairs of amino acids and intermediate or byproducts of amino
acid synthesis (Figures S5, S6, S7 and S8 in File S1). In
addition, the heat map organized by HCA and obtained by
subtracting the metabolite concentrations in PB from those in
BM (Figure S10 in File S1) highlights the significant Pearson’s
correlations of amino acids, including alanine and threonine
(r=0.93, p=9×10-05), alanine and valine (r=0.96, p=8×10-06),
isoleucine and methionine (r=0.94, p=3.9×10-05), betaine and
dimethylglycine (r=0.98, p=1×10-06), isoleucine and
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Figure 1.  1H-MRS and GC-MS metabolic profiles of bone marrow and peripheral blood samples at the time of ALL
diagnosis.  Representative spectra of BM (blue line) and PB (red line) specimens. Spectra were acquired from (A) 1H-MRS
analysis of filtered polar fractions, (B) 1H-MRS analysis of recovered whole lipid fractions, and (C) GC-MS analysis of FFA extracts.
Metabolites with the greatest difference between BM and PB are labeled and include alanine (Ala), free cholesterol (CHOL),
cholesterol esters (CHOLest), choline (Cho), formate (For), glucose (Glc), glutamate (Glu), glutamine (Gln), lactate (Lac), histidine
(His), hypoxanthine (Hpx), palmitic acid, oleic acid, triacylglyceride (TAG), and uridine (Ur). Other abbreviations used are: (2HB), 2-
hydroxybutyrate; (3HB), 3-hydroxybutyrate; (2Og), 2oxo-glutarate; (2Oic), 2oxo-isocaproate; (BAA), branched amino acids; (Car),
carnitine; (Cho), choline; (CHOL), free cholesterol, (CHOLest), cholesterol esters; (For), formate; (Fum), fumarate; (Glyc), glycerol;
(GPCho), glycero-3-phosphocholine; (Hpx), hypoxanthine; (Lac), lactate; (Niac), niacinamide; (Pglu), pyroglutamate; (Pyr), pyruvate;
(Ur), uridine; (Pdx), pyridoxine; (TAG), triacylglyceride; (T-Chol), total cholesterol.
doi: 10.1371/journal.pone.0082859.g001
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phenylalanine (r=0.93, p=0.0001), and sarcosine and threonine
(r=0.93, p=8×10-05; Table S11 in File S2). A comparison of
bone marrow metabolites at day 0 and at day 29 is shown in
Figure S13 in File S1 and further comparisons are shown in
Figures S8 and S12 in File S1.

Longitudinal metabolite profiling of PB in response to
chemotherapy

Blood samples were also collected on day 8 of therapy,
which allowed us to further investigate the metabolic response
of patients over the course of treatment by comparing the
profiles of PB at days 0, 8, and 29. Notably, the median PB
blast count at day 8 was 0% (range, 0–12%), indicating that all
patients had a rapid response to therapy. Using mPCA on all of
the MRS spectra acquired on the PB polar fractions, we
obtained a very strong separation between PB from untreated
and treated patients (Figures S9A and S9B in File S1). To
maximize the information contained in each group and to
identify the metabolites that are most affected by the
chemotherapy regimen, we compared PB at day 0 versus day
8 (P0 vs P8; 49.63% on PC1), day 0 versus day 29 (P0 vs P29;

50.85% on PC1), and day 8 versus day 29 (P8 vs P29; 38.14%
on PC1; Figures 5A and 5B). For analysis of the lipid fraction,
mPLS-DA models were built on the MRS data from the same
samples and the significance of their predictivity was assessed
by permutation testing (Figure S10 in File S1). The analyses
indicated that drug therapy induced significant alterations in
lipids, particularly after 8 days of treatment, as indicated by the
resonances assigned to free cholesterol, cholesterol esters,
triacylglyceride, plasmalogen, and saturated and unsaturated
FFAs (Figures S10A and S10B in File S1). After 29 days, the
differences in free cholesterol, cholesterol esters, and FFAs
were still evident but were reduced in magnitude compared
with the day 8 samples.

The significance of the changes observed in the loadings plot
was determined using WRST on the absolute metabolite
concentrations. Comparing PB at days 0 and 8, 32 metabolites
had p-values p<0.05, which was reduced to 25 metabolites with
pFDR<10% and 16 with pFDR<5% (Figure S11A in File S1).
Comparing PB at diagnosis and after induction therapy, 34
metabolites had p-values p<0.05, 30 of which had pFDR<10%
and 22 had pFDR<5% (Figure S11B in File S1). Finally,
comparing PB during (P8) and at the end (P29) of treatment,

Figure 2.  Untargeted multilevel principal component analysis of 1H-MRS spectra acquired on polar fractions of bone
marrow and peripheral blood samples.  (A, C) Scores plots obtained from mPCA performed on 1H MRS spectra of BM and PB
samples collected at diagnosis (A, day 0) or after induction therapy (C, day 29). (B, D) Loadings plots for the first principal
component depicts the most relevant discriminatory metabolites from BM (positive loadings) and PB (negative loadings) samples
collected at diagnosis (B) and after induction therapy (D). Metabolites are defined in the Abbreviations section.
doi: 10.1371/journal.pone.0082859.g002

Metabolomics of the Leukemia Microenvironment

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e82859



24 metabolites had p-values p<0.05, which was reduced to 18
metabolites with pFDR <10% and 15 with pFDR<5% (Figure
S11C in File S1). For the majority of the identified metabolites,
the treatment-induced metabolic alterations observed at day 8
were maintained and remained significant at day 29. The most
pronounced metabolic changes included alanine, asparagine,
formate, fumarate, glutamate, lactate, sarcosine, and urea.
However, there were also metabolites that showed different
trends between day 0 to day 8 and day 8 to day 29. For
example, glutamine, which would be expected to be strongly
affected by L-asparaginase, a component of the drug treatment,
showed a highly significant decrease after the first week of
treatment (Tables S4 and S5 in File S2, Figure S11 in File S1;
PB day 0 versus day 8; pFDR=0.0122), but increased by the
end of therapy (PB day 8 versus day 29; pFDR=0.0133) almost
to the same concentration measured at diagnosis (PB day 0
versus day 29; pFDR=0.1750). Untargeted mPLS-DA
performed on 1H-MRS spectra acquired on the whole lipid
fraction did also clearly separate bone marrow samples
collected at day 0 and at day 29 (Figure S12 in File S1).

A network analysis of the ALL cancer metabolome
Our quantitative MRS and GC-MS analysis indicated

substantial changes in BM and PB metabolite levels between
disease diagnosis and remission. We performed a network
analysis of metabolites in the tumor microenvironment before
(B0-P0) and after (B29-P29) induction therapy. Analysis of the
datasets indicated that in the presence of cancer, correlation
was strongest among metabolites involved in lipid metabolism
(B0-P0; Figure 6A), whereas correlation among amino acids
(and analogues and derivatives) dominated after remission
(B29-P29; Figure 6B). We first used a relevance method to
build a network of metabolites with pairwise correlation above a

given threshold (see Methods). Edges were then classified into
three groups: (i) edges between metabolites involved in lipid
metabolism, (ii) edges between amino acids, derivatives, and
analogues, and (iii) all other edges. We quantified the strength
of the correlation by associating a p-value to each edge.
Figures 6A and 6B show the normalized distributions of the
edge p-values (x-axis; p) for the B0-P0 and B29-P29 relevance
networks, respectively. Note the presence of peaks at small p-
values in the lipid metabolite distribution in Figure 6A and in the
amino acid distribution in Figure 6B. A nonparametric Mann-
Whitney test confirmed the enrichment of correlation among
lipid metabolites (p<0.006) in B0-P0 and among amino acids
(p<10-9) in B29‑P29. Using the same test, we also observed a
significant difference (p=0.006) in the distributions of lipid
metabolites in B0-P0 and in B29-P29, confirming an
enrichment of correlation among lipid metabolites in the
presence of cancer.

To visualize the specific pathways associated with strong
correlation, we used the ARACNE algorithm[36–38], which
eliminates redundant edges derived from indirect correlations.
Figures 7A and 7B show the largest connected component of
the B0-P0 and B29-P29 networks, respectively. The
prevalence of interaction among lipid metabolites (indicated in
blue) in the tumor environment at diagnosis is evident in the
sub-network of FFAs on the right side of the figure, and two of
the highest degree nodes, choline and acetylcarnitine, are key
compounds in lipid metabolism (Figure 7A). On the other hand,
the switch in metabolism in the tumor-free environment is
illustrated by the prevalence of interaction among amino acids,
derivatives, and analogues at day 29 (indicated in green in
Figure 7B). Thus, the disappearance of lipid metabolism nodes
on the B29-P29 network indicates that altered lipid metabolism
is a specific signature of the cancer state in pediatric ALL.

Figure 3.  Untargeted multilevel principal component analysis performed on 1H-MRS spectra acquired on the whole lipid
fraction of bone marrow and peripheral blood samples at the time of diagnosis.  (A) mPCA scores plot shows a clear
separation on the second principal component (PC2) between BM and PB specimens. (B) Loadings plot for the second principal
component depicts the most relevant discriminatory functional groups from BM (negative loadings) and PB (positive loadings)
collected at diagnosis. Red areas in (B) indicate significantly different regions of the MRS spectra according to a point-by-point
nonparametric Wilcoxon Rank Sum Test (p < 0.05).
doi: 10.1371/journal.pone.0082859.g003
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Figure 4.  Targeted metabolic analysis of bone marrow and peripheral blood samples at diagnosis and after induction
therapy.  Shown are the mean fold differences in metabolite concentrations in BM and PB samples collected (A) at the time of
diagnosis and (B) after induction therapy (mean ± SEM, n = 10 patients). Statistical significance was assessed based on absolute
metabolite concentrations (SI, Table S1) using the nonparametric two-sided Wilcoxon Rank Sum Test (WRST) and p-values were
corrected using false discovery rate (FDR). The bar plot is color coded according to p-values (pFDR < 10%). At day 0 (A), 22
metabolites were significantly different between BM and PB with pFDR <10%, 14 of which had pFDR <5%. In contrast, only 4 of 110
identified metabolites were found to be significantly different between BM and PB at day 29 (B). Both bar plots also show the
differences in the ratios of glutamate to glutamine, aspartate to asparagine, choline to creatine, unsaturated to saturated fatty acids,
and the sum of glutamine plus pyroglutamate.
doi: 10.1371/journal.pone.0082859.g004

Metabolomics of the Leukemia Microenvironment

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e82859



Tables S2 and S3 in File S1 show more detailed pathway
information for the metabolites of Figure 7.

Discussion

Pretreatment diagnosis of drug sensitivity would help
therapeutic decisions and avoid unnecessary exposure of the
patient to ineffective treatment and potentially life-threatening
drug toxicity. One of the key challenges for personalized
cancer therapy is to identify defined microenvironments that
allow clinically relevant chemosensitivity testing of patients’
cells in vitro. Although some promising results have been
reported[39], individualized chemosensitivity testing has never
reached the level of acceptance of antibiotic sensitivity testing
for bacterial pathogens[40]. However, achieving consistent
clinical benefit for antibiotic testing required careful
standardization of chemically defined media and testing
conditions[41]. Our work might contribute to this important
effort, especially in conjunction with measurements of
cytokines and inorganic components of the cancer niche, which
are now technically feasible[8],[42]. Current methods of tumor
sensitivity testing rely on incompletely defined cell culture
media that were developed decades ago simply to maximize
cell growth for experimental convenience[43] but we now have
suitable technologies to develop more realistic alternatives.
Characterization of the tumor microenvironment may assist in
the development of cell culture media that recapitulate in vivo
conditions more closely and thus provide a more accurate
prediction of the patient drug response, especially using
primary cancer cells. Figure S1 in File S1 shows a comparison
of the patient bone marrow metabolic profile at day 0 with the
commonly used cell culture medium RPMI. Our results show
that, at the time of diagnosis, the BM ALL microenvironment
has a metabolic signature clearly distinct from that of PB (22
metabolites with FDR<10%). This is most likely due to the very
high accumulation of cancer cells in the BM at this stage of the

Figure 6.  Statistical analysis of pairwise correlations of
amino acids, lipid metabolites, and other
metabolites.  Plots show the probability distribution function
(PDF) of the p-values of edges in a relevance network of
metabolites with strong correlation in B0-P0 (A) and B29-P29
(B). Edges are classified in three groups (lipid metabolism,
amino acids, and others). Note the presence of the high peak
at small p-values in the lipid metabolite distribution in (A) and in
the amino acid (including derivatives and analogues)
distribution in (B), indicating enriched correlation among lipid
metabolites at day 0 and amino acids at day 29, respectively.
doi: 10.1371/journal.pone.0082859.g006

Figure 5.  Multivariate analysis of peripheral blood polar fractions in response to drug therapy.  Untargeted mPCA was
performed on 1H-MRS spectra acquired on the polar fractions of PB (A, B). (A) mPCA scores plot shows a clear separation
between PB samples collected on day 0 versus day 8 (49.63% on PC1), on day 0 versus day 29 (50.85% on PC1), and on day 8
versus day 29 (38.14% on PC1). (B) Loadings plot for the first principal components depicts the most relevant discriminatory
metabolites for BM before therapy (negative loadings) and during or after therapy (positive loadings).
doi: 10.1371/journal.pone.0082859.g005
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disease. After therapy, the metabolic profiles of the BM niche
and PB are very similar (4 metabolites with FDR<10%).

Glutamate was significantly more abundant in BM than in PB
before diagnosis, and was present at much higher levels than
other amino acids. This difference cannot be attributed to an
efflux of glutamate derived from glutamine. Our finding of a
statistically significant correlation with the net glucose deficit is
consistent with a study showing incorporation of glucose-
derived carbons in glutamate molecules in an in vitro cancer
model[44]. This partial oxidation of glucose is analogous to the
well-known production of lactate in cancer cells[45,46]. We did
indeed observe lower glucose levels and higher lactate levels
in BM than in PB before therapy, consistent with many
reports[10,47,48]. Metabolites present at significantly lower
levels in BM before therapy might point to metabolic
requirements of cancer cells that could be targeted for
therapeutic purposes. As expected, concentrations of glucose
and glutamine were much lower in BM than in PB at diagnosis,

Figure 7.  Network representation of correlations between
metabolite pairs.  Plots represent the largest connected
component of the networks obtained with the ARACNE
algorithm for B0-P0 (A) and B29-P29 (B). Blue nodes indicate
metabolites relevant to lipid metabolism; green nodes indicate
amino acids, including derivatives and analogues; red edges
indicate anti-correlation; and light green edges indicate
correlation. Shorter edges denote smaller p-values (higher R2).
Note the presence of a community of lipid metabolites on the
right side in (A) and the predominance of amino acids in (B).
doi: 10.1371/journal.pone.0082859.g007

and the beneficial effect of asparaginase in ALL might be due,
at least in part, to the deamination of circulating glutamine. It
should be noted that a large number of the metabolites present
at lower levels in BM before treatment are lipids and molecules
involved in lipid metabolism. For example, lower concentrations
of myristic, palmitic, and palmitoleic acids were found in the BM
aspirates compared to the PB, suggesting a higher
consumption of these FFAs by malignant lymphoblasts.
Similarly, the significant accumulation of choline and glycero-3-
phosphocholine in the BM reflect the abnormal metabolism of
choline associated with oncogenesis[11]. We also report a
trend towards increased consumption of cholesterol esters,
which is small in percentage but large in terms of absolute
consumption. The network analysis confirms the role of lipid
metabolism in the cancer microenvironment of ALL patients.
This analysis focused on pairwise correlation among
metabolites rather than increases or decreases of single
metabolites, and suggests the presence of a system-level
cooperative behavior of lipid metabolites in the cancer state. A
metabolic signature can be used to characterize the bone
marrow cancer microenvironment, and, for example, could be
used to monitor the microenvironment response to anticancer
therapy. Correlation measures have also been used to infer the
structure of biological networks that are relevant for a particular
biological condition[49]. Similar network analyses based on
correlation or mutual information in gene expression[37] have
provided new insights into cancer biology and have been
experimentally validated[37,38]. The findings of our network
analysis are consistent with previously reported alterations of
lipid metabolism in cancer[11,50]. A recent very large
epidemiological study[51] reported an association between
statin use and reduced cancer mortality, which confirmed data
previous from in vitro studies[50] and suggested a possible
relevant therapeutic intervention.

L-asparaginase is a component of chemotherapeutic
regimens for pediatric ALL. Although it is generally thought that
the sensitivity of leukemic lymphoblasts to this agent is due to
their relatively low expression of asparagine
synthetase[15–19], other studies suggest that glutamine
depletion may be of therapeutic importance[52]. Asparaginase-
induced depletion of circulating asparagine and glutamine
might ultimately induce cell death by affecting both tumor
energy metabolism and macromolecular biosynthesis[16,19].
We found that asparagine was entirely depleted in both BM
and PB from day 8 to the end of induction therapy, consistent
with previous reports[53,54]. In contrast, glutamine levels in PB
were depleted during the first week of treatment, but recovered
considerably by the end of therapy. It remains to be seen
whether a more pronounced and prolonged depletion of
glutamine might be beneficial in drug-resistant patients.

Metabolic concentration of normal pediatric plasma
metabolites levels exported from the human metabolome
database (HMDB)[33] has been included in Figure S14 in File
S1. From this data it appears that several metabolites are
altered in ALL patients plasma, including most amino acids (but
not the branched ones), carnitine, choline, creatine, creatinine,
glycerol and palmitic acid. The same figure would suggest that
some metabolites do in fact return towards more “normal”
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levels at the end of the induction therapy. However, due to the
fact that patients are still experiencing the effect of therapy at
the end induction, the return of plasma metabolites to normal
levels is not necessarily to be expected.

Limitations and Conclusions

This work has several limitations, some of which were, for
technical or ethical reasons, unavoidable. One of the limitations
is that we could not measure metabolites from individual
cellular components of the bone marrow and peripheral blood.
We also did not obtain bone marrow samples from normal
children. Other limitations are due to clinical variability and are
common to all clinical metabolomics studies, but are at least in
part addressed by our experimental design, in which
comparisons are made between samples collected in the same
patient.

Other approaches to the study of cancer metabolism are also
limited and are often less comprehensive. For example, in vitro
studies cannot replicate the complexity of the in vivo
microenvironment. It is therefore clear that to advance our
understanding of cancer metabolism we should integrate
information from different in vivo and in vitro studies.

With these caveats, we conclude that the observed
metabolic characteristics of the bone marrow cancer niche,
including changes in lipid metabolism, might suggest new
hypotheses for therapeutic targeting and optimization of
existing leukemia therapies.
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