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Abstract 

 

Feature-Based Clustering of Stomach Cancer Gene Expression Data 

 

Matthew David Bramble, M.S.Stat. 

The University of Texas at Austin, 2018 

 

Supervisor:  Peter Mueller 

 

This report presents the results of using a probabilistic clustering technique in the 

analysis of microRNAseq and RNAseq data from gastric cancer tumor samples deposited 

at TCGA (The Cancer Genome Atlas).  Using the method of Hoff, who has proposed a 

Dirichlet process unsupervised clustering framework with feature selection, it is possible 

to reveal interesting structure in gastric cancer gene expression data that relates to Epstein-

Barr virus (EBV) microRNA levels.  This structure is not as readily identified by a typical 

hierarchical clustering method, and the results of this analysis contribute to an 

understanding of the role of EBV viral microRNAs in gastric cancer tumors. 
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1. Introduction 

1.1 BACKGROUND 

The National Cancer Institute’s estimate for new gastric cancer diagnoses in the 

U.S. for 2018 is 26,240 patients, and the estimated number of deaths from gastric cancer 

for 2018 is 10,800.  Only 31% of gastric cancer patients will survive past 5 years.1  The 

rate of occurrence of Epstein-Barr virus (EBV) association among all gastric cancers is 

roughly 10% worldwide, ranging from about 17% in the US to 4-5% in China.2  EBV is 

a ubiquitous herpes virus that is transmitted orally, establishes a lifelong latent infection, 

and is thought to play a role in the oncogenesis and development of gastric cancer.  EBV 

also is one of a small number human viruses to express microRNAs (44 identified mature 

microRNA transcripts) that act analogous to human host microRNAs.3  Herpes viruses 

account for most known viral microRNAs, and these microRNAs aid the viruses in 

maintaining their hallmark latency through increasing the longevity of infected cells and 

allowing immune response evasion, among other effects.4  With respect to the genesis or 

development of epithelial cancers such as gastric adenocarcinoma, additional effects relate 

to cell proliferation, transformation, and other wide ranging effects that aid in the 

development and persistence of tumors.5,6,7  Potential effects also, of course, include the 

broad range of cancer-related effects that have been found in relation to human 

microRNAs.4,8 

MicroRNAs, both human and viral, are typically short RNA sequences of roughly 

22 nucleotides that bind with the RNA induced silencing complex (RISC) in the cytoplasm, 

thereby allowing regulation of messenger RNA levels through complementary binding, 

typically in the 3’ untranslated region of messenger RNA transcripts.  In humans, the 

canonical microRNA processing system involves transcription of a primary microRNA 
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sequence of hundreds to thousands of nucleotides in length, processing by the RNase III 

enzyme Drosha and the dsRNA binding protein DGCR8 in the nucleus to produce a stem-

loop structure of about 70 base pairs, transfer to the cytoplasm via the nuclear export factor 

Exportin 5, and processing in the cytoplasm by a second RNase III enzyme, Dicer, to create 

two 22-nucleotide mature microRNA sequences in a duplex intermediate.  The resultant 

miRNA duplex then interacts with Argonaute 2, and one strand is incorporated into RISC, 

while the second RNA strand is degraded.9  The mature microRNA guides binding to 

complementary sequences, typically found in the 3′ UTRs of target mRNAs, thereby 

repressing translation and/or degrading the target. The nucleotides at positions 2–7 on the 

5’-end of the mature miRNA, referred to as the “seed” region, are important for sequence-

based targeting, although other regions of the microRNA sequence can contribute to target 

recognition.  The overall structure of the RISC-microRNA complex also is not well 

characterized, and this overall structure influences which regions of the sequence are 

available for target binding, thereby adding further complexity to the interaction.10 

1.2 TARGET IDENTIFICATION 

In terms of microRNA-target interaction, it is well accepted that a single microRNA 

typically targets tens, and potentially over one hundred, of different mRNA transcripts and 

that a single mRNA may be targeted by multiple microRNAs at a plurality of mRNA 

binding sites.11  Considering the number of microRNAs that have been discovered, along 

with the number of potential messenger RNA targets, the combinatoric complexity 

between even a small set of microRNAs and their targets is extremely high.  Furthermore, 

the interaction between each RISC-associated microRNA and its target site is complex and 

not fully understood.  It is therefore not surprising that the sensitivity and specificity of 

current sequence-based prediction methods are not sufficient to provide a useful 
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characterization of targetome interaction networks.  For example, although two well-

established prediction tools, TargetScan and miRanda-mirSVR, provide specificities 

(ability to correctly identify non-targets) in the high nineties, their sensitivities (ability to 

correctly identify true targets) are low, at .52 and .62 respectively.12  In light of this 

insufficiency with sequence based target prediction, methods that do not rely on sequence 

homology to predict targets are still needed to advance research into the targetome network 

of microRNAs, as discussed below.   

On the other hand, there are a number of laboratory techniques for definitively 

determining specific microRNA-target interactions, which include genome editing of 

predicted binding sites; reporter gene assays; gene-expression after miRNA modulation; 

degradome sequencing; cross-linked immuno-precipitation; and biotin-linked 

chromatography.13  Although such methods are good at determining whether a microRNA 

binds a specific target, they are unable to give direct information about how the various 

target inhibition effects of a set of microRNAs influence protein levels in vivo.  This 

places the question of microRNA cellular effects back within a complicated network of 

cellular protein interaction pathways.14,15 

Although the number of EBV microRNAs (44) is small relative to the number of 

human host microRNAs (>2000), the combinatoric complexity of EBV microRNA 

interactions with their target mRNAs is still formidable for the reasons described above, 

and defining the EBV microRNA targetome is in its infancy.  For this reason, various 

analytical techniques such as differential microRNA expression analysis that probe protein 

network effects of microRNAs are useful.15,16  There are multiple recent studies that 

attempt to find a correlation between microRNA expression levels and mRNA expression 

levels in omic datasets and to thereby directly probe network-level cellular effects of 

microRNAs based on microRNA expression levels and gene expression levels.17,18,19 
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This reports details the use of a particular probabilistic clustering technique in 

support of such network-level analyses.  A Dirichlet process Gaussian model was used in 

order to perform cluster analysis on RNAseq datasets from gastric cancer tumors that have 

been deposited with the Cancer Genome Atlas (TCGA) project.  Interesting structure 

within the RNAseq data was discovered when this analysis was carried out on this data in 

conjunction with microRNAseq data.  
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2. Clustering With Feature Selection 

2.1 SETUP 

The clustering approach described by Hoff20 was selected for its advantages related 

to unsupervised clustering based on subsets of attributes in a probabilistic model that allows 

identification of salient features defining each cluster.  There are a variety of unsupervised 

clustering methods that are commonly used in the analysis of correlations in omic datasets.  

Many of these, such as hierarchical clustering, require that the number of end clusters be 

determined visually and somewhat arbitrarily by slicing a dendogram.  Other algorithms 

such as k-means require a determination of cluster number in advance and also require the 

choice of a distance metric, which itself can determine the way objects cluster, particularly 

in high-dimensional spaces.21  The method of Hoff, on the other hand, utilizes a Dirichlet 

process Gibbs sampling procedure in which the number of clusters is determined in an 

unsupervised manner and can be potentially infinite.  Determination of the number of 

clusters is therefore guided by the data.  In addition, the metric that is used for 

differentiating clusters relates to the likelihood of the data, given a probability model (in 

this case, a mixture of Gaussians).  Therefore, if the data is generally Gaussian, then the 

metric of the clustering method is appropriate, and no external determination of metrics 

need be applied. 

The method of Hoff also has the advantage that the model allows inference 

concerning which attributes of each object contribute most to defining the clusters in which 

objects are grouped.  For example, assuming four features in a given data set, then three 

distinct clusters might be formed in which features 1 and 2 contribute most to defining the 

first cluster, feature 1 alone contributes most to the second cluster, and features 2 and 4 

contribute most to the third cluster.  In high-dimension spaces, such a model also is 



 6 

particularly advantageous, because the data model can be specified to include all features 

in the initial model, without resorting to a priori reductions in dimensionality.  This 

contrasts with methods for dimensionality reduction such as principal component analysis 

which can collapse, as it were, important structure that is present in the data.    

In our case, the objects to be clustered are 26 EBV+ tumor samples and 100 EBV- 

tumor samples, where the features of each sample comprise RNAseq counts for specific 

genes.  The motivation for this analysis in relation to investigating microRNA-target 

networks is as follows.  If it were possible to carry out a clustering method that could 

cluster EBV+ tumors based on the expression levels of genes (which function as features in 

our model), and if it were therefore possible to identify the genes that contributed most to 

any clustering structure that is found in the data, then this would allow inference regarding 

the relationship between such genes and the microRNAs deriving from EBV.  The 

resultant genes identified as most responsible for a clustering could then be inferred as 

having been directly or indirectly (via gene interaction networks) influenced by the EBV 

microRNAs.   

2.2 MODEL 

In the feature subset clustering method of Hoff, the model is produced by 

parameterizing cluster membership in terms of the cluster K and m-dimensional means 

1, . . ., K for each cluster, where k =  + rk  δk, rk  {0 , 1}m, and δk  m.  The vector 

rk  δk constitutes a vector of mean shifts for group k and may be non-zero for those features 

that contribute to defining the cluster.  As indicated above, the r vector is a binary vector 

belonging to each cluster that determines whether a feature will contribute to defining that 

cluster.  Each tumor vector yi comprises log2 RNAseq counts and is defined as: yi =  + ri 

 δi + i.  The distribution of (ri, δi) is modeled by the Polyá urn scheme.  This model and 
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the code developed by Hoff were used with modifications in the analysis of the GC data 

described above. 

 A summary of the probability model is presented below. 

 

 

 

2.3 POSTERIOR MCMC 

In accordance with the Dirichlet distribution, objects that are assigned to clusters 

are assigned in an exchangeable sequence.  Therefore, in the Polyá urn Dirichlet process, 

draws from a Dirichlet distribution of cluster assignments are created for the n (i = 1:N) 

tumors by simply removing each tumor vector from its cluster assignment, updating the 

cluster parameters of its former cluster, and then re-assigning the tumor to either an existing 

cluster with a probability that is dependent on the number of members in the existing cluster, 

or a new cluster with a probability that is dependent on the updated Dirichlet parameter , 

as discussed below. 

 

 

 

 



 8 

 

Each weight is the ratio of the probability of the data for a cluster including the 

reassigned ith sample to the probability of the data for the cluster not including the 

reassigned ith sample.  Therefore weights increase or decrease in proportion to the 

probabilities of the data under the new cluster assignments, and draws from that probability 

distribution will be successively updated, with assignments being guided by the data as the 

clustering space is explored. 

The probability that a removed element is assigned to an existing cluster is 

proportional to the number of members in the cluster and the data in the cluster, 

parameterized in terms of j which is the prior log-odds that the mean of attribute j in a 

cluster k differs from the mean of the attribute for the other clusters. 

Updates to the other parameters of the probability model, {r(k),δ(k)}, , , 2, are 

made using the full conditionals of the parameters.   

The following is a description concerning actual sampling of the parameters. 
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Sampling {r(k),δ(k)}: Sampled as follows given the prior distribution: 

 

r(k)1, . . . r(k)m is sampled from {0,1} with log-odds j +  ̂j(k) after updating according 

to the formula below: 

 ̂j(k)  , 

conditional on the data, parameters , 2, and , which represents the value  

of yi,j – j, averaged over samples i assigned to group k.  When r(k),j = 1, then δ(k),j  is 

sampled N(δ̂j, ̂j 2), with and .   

If r(k),j = 1, then δ(k),j N(0, j
2). 

 

Sampling  : In the sampling method of Hoff,  is reparamaterized to π, where  

π = /( + 1)  (0,1).  The full conditional of  thus becomes:  

 

 

Sampling from this probability distribution is not computationally straightforward.  

However, because /( + 1)  (0,1) and p(π) is a function only of K and n, if the value of 

the log of the function is calculated at a series of equidistant points between 0 and 1, then 

samples of alpha from the full conditional can be obtained by sampling from this grid of 

points in accordance with the assigned probabilities. 

 

Sampling : The mean  of parameter j j is sampled as follows: 

. , 

and  is a parameter of the prior for j.  
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Sampling 2
j: The precision 1/2

j is sampled from the full conditional as follows: 

 , 

where 1, and 2 are parameters of the prior for the precision. 

 

Sequential updating of the parameters as described above provides convergence on 

estimates for the parameters c, r, , , 2, which can be obtained by averaging samples 

taken over a suitable range of iterations of the algorithm.  In our case, the algorithm was 

run for 10,000 iterations, and the final 1000 iterations were used as samples for cluster 

assignment mode determination. 
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3. Data Analysis 

3.1 DATA 

MicroRNAseq data and RNAseq data were obtained from TCGA through the GDC 

data portal.22  the complete microRNAseq raw counts dataset consisting of roughly 400 

gastric cancer tumor samples was downloaded, and alignment of the microRNAseq reads 

to EBV stem-loop sequences registered at miRBase was carried out using Bowtie2 

(Version 2.3.4).  The count data was represented as counts per million of the transcripts 

mapped to human stem-loop and EBV stem-loop sequences for microRNA data.  In the 

RNAseq expression datasets obtained from TCGA, the data was expressed in counts per 

kilobase (transcript length) per million transcripts mapped to human RNA sequences 

(TPKM).  The latter datasets are preprocessed data made available by TCGA, and no 

further pre-processing was carried out on the data.   

Alignment of microRNAseq reads to EBV microRNA stem-loop sequences yielded 

a range of counts for each of the 44 EBV microRNAs across all of the tumors, and a 

histogram of count values (normalized with respect to total human microRNA level) was 

constructed in order to identify which of the roughly 400 tumors was EBV+.  As can be 

seen from the histogram data in Fig. 1 and in Fig. 2 which shows an expanded count region 

from Fig. 1, the number of tumors having normalized total EBV microRNA counts of 0.00 

to < 0.02 portrays a discernible stochastic tail attributable to random mappings of 

transcripts to the EBV stem-loop sequences, with the tail falling off rapidly to zero at 

around 0.001.  It can be inferred that random mappings are responsible for the counts in 

this tail region.  Based on these results, an EBV microRNA/human microRNA ratio of 

0.02 was taken as the cutoff in the determination of whether significant EBV microRNA 

load exists.  This yielded 26 tumor samples with significant EBV load (referred to below 
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as EBV+ tumors).  This EBV+ tumor count of 26 is supported by the conclusions of others 

in the field who have analyzed the same TCGA gastric cancer data.23  All of these 26 

EBV+ tumors, along with 100 of the EBV- tumors selected at random from the remainder 

of the tumors, were used in subsequent analysis, giving 126 objects to be clustered.  These 

objects were clustered based on features comprising 95 experimentally-verified EBV 

microRNA targets, as will be described below. 
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Fig. 1. Distribution of EBV microRNA Loads Fig. 2. Expanded Region from Fig. 1 

Regarding the RNAseq gene expression data obtained from TCGA, ENSG gene 

names were first converted to standard gene names using the BIOMART R package.  In 

order to run a limited dataset to test the practicality of the clustering algorithm, clustering 

was carried out on a set of features (genes) know to be targeted by EBV microRNA.  The 

curated genes were found through a literature search of EBV microRNA gene targets that 

have been experimentally confirmed by various methods, including HITS-CLIP, PAR-

CLIP, and luciferase reporter knockdown.2,3,7,24,25  In addition, because there were roughly 

400 EBV- tumors, making clustering with this algorithm intractable due to running time, 

100 tumors were selected at random among the EBV- tumors.  Therefore, the final data 

included a total of 126 tumors, each having 96 features (gene expression counts).  No 

gene feature had more than 10% missing values, and missing values were replaced using 
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the mean value of the feature determined for those tumors for which the feature was not 

missing (using the respective means within the EBV+ and EBV- groups for missing values 

within those groups). 

The amenability of the data to clustering using the proposed Dirichlet Gaussian 

mixture model depends on the features being normally distributed.  A log2 transformation 

of the data resulted in surprisingly strong normality, as can be seen in the histograms for 

the features shown in Fig. 3.  The y-axis represents the number of tumor samples, and the 

x-axis represents the log2 values of the RNAseq count data for the feature (FPKM; 

frequency per kilobase of transcript per million mapped reads). 



 15 

 

Fig. 2 Distributions for Curated Gene Features 
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3.2 CLUSTERING WITH FEATURE SELECTION 

Clustering of the data matrix was carried out using code adapted from the R and C 

code produced by Hoff.20  To aid in visual inspection of the resulting cluster assignment 

vector, the tumor vector supplied to the clustering algorithm was arranged with the EBV+ 

tumors placed as the first 26 elements, arranged from increasing to decreasing total EBV 

microRNA load, with the remaining 100 EBV- tumors arranged randomly.  The vector of 

cluster assignments shown in Fig. 3 was obtained, indicating cluster assignments for each 

of the 126 tumors in the above arrangement.  The upper row of each section of the figure 

denotes the index of each tumor, and the lower row indicates the cluster assignment.  As 

can be seen from the figure, among the EBV+ tumors (orange or green indices), there is a 

striking clustering in lower EBV microRNA loads (indices 11-26), where 12 of the 16 

tumor samples are assigned to cluster 2.   
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

5 5 16 10 5 10 1 5 10 5 2 2 2 10 5 10 2 2 2 2 

 

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

2 2 2 2 2 4 3 3 11 1 3 3 4 1 4 12 6 2 8 4 

 

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

12 1 13 14 6 14 1 11 2 7 1 5 8 3 7 9 6 7 3 9 

 

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

9 14 1 3 17 5 3 7 1 9 3 1 13 7 1 12 15 13 8 6 

 

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

4 8 7 7 6 4 11 16 1 6 6 15 9 8 13 4 11 1 1 1 

 

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 

7 15 9 5 3 3 3 4 4 6 1 11 12 4 12 8 

 

116 117 118 119 120 121 122 123 124 125 126 

7 4 3 13 2 1 18 5 6 8 8 

Fig. 3. Complete Cluster Assignments 

The ordering of the EBV+ tumors (indices 1-26) was set based on the ratio of total 

mapped EBV microRNA load to total mapped microRNA load (total mapped EBV 

microRNA load + total mapped human microRNA load).  Given that this ordering 

revealed an interesting grouping within the lower EBV microRNA loads, the clusterings 

were investigated under different tumor orderings.  The two other parameters available 

for reordering the tumors were mapped EBV microRNA load/library size ratio and mapped 

human microRNA load/library size ratio.  The cluster assignments of the EBV+ tumors 

corresponding to indices 1-26 are shown below under these alternate orderings.  
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EBV/Human Human/Library EBV/Library 

5 4 2 

5 2 10 

16 2 1 

10 2 5 

5 2 5 

10 2 5 

1 2 10 

5 2 10 

10 2 16 

5 2 5 

2 2 5 

2 2 2 

2 10 2 

10 5 2 

5 5 2 

10 10 10 

2 1 10 

2 10 2 

2 2 5 

2 10 2 

2 5 2 

2 10 2 

2 5 2 

2 5 2 

2 16 4 

4 5 2 

Table 1. Comparison of Clusters Under Different Orderings 

In Table 1, when the EBV+ tumors were first ordered by the ratio of EBV 

microRNA load to human microRNA load (EBV/Human ratio; left column), a strong 

clustering was initially obtained.  This ratio was used in order to normalize the EBV 

microRNA counts with respect to variation in sample preparation, thus allowing 
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comparison across microRNAseq libraries.  Fig. 4 below shows the correlation between 

EBV microRNA levels and human microRNA levels.  It is clear that human microRNA 

levels increase with increasing EBV microRNA levels, as would be expected because the 

two together make up the total number of fragments in each microRNA library.  Indeed, 

when the tumors are ordered by human microRNA load (center column), the detected 

cluster association shifts to the higher human microRNA loads.  The simple correlation 

referred to above explains the differing clustering orientations in the three columns in Table 

4.  However, it could still be the case that human microRNA levels are the main cause, or 

a partial cause, of the structure found in the data.  An additional test that could be carried 

out would be to normalize with respect to tumor purity estimated based on RNAseq data, 

or even to simply normalize based on RNAseq library size.  It is clear that the 

normalization method that is used here is not transparent and could potentially influence 

the results.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Correlation Between Human and EBV microRNA Levels 
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Clustering was also carried out using the standard HCLUST R package in order to 

determine whether a typical hierarchical clustering method could also find this structure in 

the data.  Given that the data expresses the degree of normality shown above, the standard 

squared Euclidean distance and centroid linkage method of HCLUST was used.  The 

results are shown in Fig 5.  As shown in the figure, clustering of the low-EBV-load tumors 

is portrayed in the dendogram and the circularized dendogram.  Although a relative clear 

clustering can be seen in the circularized dendogram, the clustering is not nearly as 

pronounced as that seen with the probabilistic clustering method.  Furthermore, if the 

traditional horizontal dendogram is inspected in the attempt to fix a cut point for the 

dendogram to obtain the best grouping of all of the more clustered EBV+ objects (e.g., 

those with the lower EBV loads), it is not at all clear where to place the vertical cut line.  

Moreover, the method is not able to provide any information regarding which of the 

features are more significant than others in defining the clusters.   
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 Fig. 5 Hierarchical Clustering of Gastric Cancer Data 
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Fig. 5 Hierarchical Clustering of Gastric Cancer Data 
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3.3 ANALYSIS OF RELEVANCE 

In determining the relevance of particular features, the parameters of each of the 

clusters were sampled in the same manner as described above using the clustering 

algorithm, but with the cluster assignment fixed for each object.  A relevance matrix was 

thereby obtained by summing the rk vector at each MCMC iteration and dividing by the 

total number of samples.  In the above model of 0, a beta(a,b) prior is placed on the 

reparamaterized form of : e/(1 + e): 

 

 

A beta(1,1) prior was used by default in the analysis, and a scatter plot of relevance 

and feature number is shown for the beta(1,1) prior in upper part of Fig. 6 below.  As can 

be seen, there are roughly 45 features that have a relevance of greater than .95, and at the 

point when relevance begins to drop off appreciably, the number of features increases to 

over 60.  This does not help much in identifying a small set of features that contribute to 

the clustering, although it does provide a clue about which features do not contribute 

significantly to clustering.  With the aim of gaining a more restrictive test for relevant 

features, the parameters of the beta prior were switched to values that provide sampling 

close to zero and close to one.  With a beta(.01,100) prior shown in the bottom right plot, 

a more restrictive relevance test was obtained at the cutoff of .95 insofar as the number of 

relevant features was decreased to 25.  However as is seen in the plot, this success is not 

exactly functional, as there are still many features with very similar relevance values in the 

neighborhood of the cutoff, and the critical point is therefore somewhat arbitrary.  Given 

the seeming arbitrariness of determining a cutoff, one might simply select the top n features, 

provided they achieve a certain degree of relevance (e.g., 0.95).  The features with the top 

ten relevance values are therefore listed below. 
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Fig. 6. Results of Testing Different Beta Prior Parameters 

The following is a list and brief description of the top ten features identified by 

feature selection obtained from the UniProt database.26 

CLEC7A  

Lectin that functions as pattern receptor specific for beta-1,3-linked and beta-1,6-

linked glucans, such as cell wall constituents from pathogenic bacteria and fungi. 

Necessary for the TLR2-mediated inflammatory response and for TLR2-mediated 

activation of NF-kappa-B. Enhances cytokine production in macrophages and dendritic 



 25 

cells. Mediates production of reactive oxygen species in the cell. Mediates phagocytosis of 

C.albicans conidia. Binds T-cells in a way that does not involve their surface glycans and 

plays a role in T-cell activation. Stimulates T-cell proliferation (By similarity). 

CXCL11 

Chemotactic for interleukin-activated T-cells but not unstimulated T-cells, 

neutrophils or monocytes. Induces calcium release in activated T-cells. Binds to CXCR3. 

May play an important role in CNS diseases which involve T-cell recruitment. May play a 

role in skin immune responses. 

PDCD1LG2 

Involved in the costimulatory signal, essential for T-cell proliferation and IFNG 

production in a PDCD1-independent manner. Interaction with PDCD1 inhibits T-cell 

proliferation by blocking cell cycle progression and cytokine production (By similarity). 

CMKLR1 

Receptor for the chemoattractant adipokine chemerin/RARRES2 and for the 

omega-3 fatty acid derived molecule resolvin E1. Interaction with RARRES2 induces 

activation of intracellular signaling molecules, such as SKY, MAPK1/3 (ERK1/2), 

MAPK14/P38MAPK and PI3K leading to multifunctional effects, like, reduction of 

immune responses, enhancing of adipogenesis and angionesis. Resolvin E1 down-regulates 

cytokine production in macrophages by reducing the activation of MAPK1/3 (ERK1/2) 

and NF-kappa-B. Positively regulates adipogenesis and adipocyte metabolism. Acts as a 

coreceptor for several SIV strains (SIVMAC316, SIVMAC239, SIVMACL7E-FR and 

SIVSM62A), as well as a primary HIV-1 strain (92UG024-2). 
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CCR2 

Receptor for the CCL2, CCL7 and CCL13 chemokines (PubMed:23408426). 

Receptor for the beta-defensin DEFB106A/DEFB106B (PubMed:23938203). Transduces 

a signal by increasing intracellular calcium ion levels (By similarity). Upon CCL2 ligation, 

mediates chemotaxis and migration induction through the activation of the PI3K cascade, 

the small G protein Rac and lamellipodium protrusion (Probable). 

CLEC2D 

Receptor for KLRB1 that protects target cells against natural killer cell-mediated 

lysis (PubMed:20843815, PubMed:16339513). Inhibits osteoclast formation 

(PubMed:14753741, PubMed:15123656). Inhibits bone resorption (PubMed:14753741). 

Modulates the release of interferon-gamma (PubMed:15104121). Binds high molecular 

weight sulfated glycosaminoglycans (PubMed:15123656). 

CD200R1 

Inhibitory receptor for the CD200/OX2 cell surface glycoprotein. Limits 

inflammation by inhibiting the expression of proinflammatory molecules including TNF-

alpha, interferons, and inducible nitric oxide synthase (iNOS) in response to selected 

stimuli. Also binds to HHV-8 K14 viral CD200 homolog with identical affinity and 

kinetics as the host CD200 

CARD8 

Inhibits NF-kappa-B activation. May participate in a regulatory mechanism that 

coordinates cellular responses controlled by NF-kappa-B transcription factor. May be a 

component of the inflammasome, a protein complex which also includes PYCARD, 

NALP2 and CASP1 and whose function would be the activation of proinflammatory 

caspases. 

  

http://www.uniprot.org/citations/23408426
http://www.uniprot.org/citations/23938203
http://www.uniprot.org/citations/20843815
http://www.uniprot.org/citations/16339513
http://www.uniprot.org/citations/14753741
http://www.uniprot.org/citations/15123656
http://www.uniprot.org/citations/14753741
http://www.uniprot.org/citations/15104121
http://www.uniprot.org/citations/15123656
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CXCL16 

Acts as a scavenger receptor on macrophages, which specifically binds to OxLDL 

(oxidized low density lipoprotein), suggesting that it may be involved in pathophysiology 

such as atherogenesis (By similarity). Induces a strong chemotactic response. Induces 

calcium mobilization. Binds to CXCR6/Bonzo. 

SH2B3 

Links T-cell receptor activation signal to phospholipase C-gamma-1, GRB2 and 

phosphatidylinositol 3-kinase. 

 

Considering that many of these features seem to be involved in immune response, 

and that it is likely that a major function of EBV microRNAs relates to immune system 

avoidance and inhibition of T-cell recognition, the analytical tool CIBERSORT was used 

in order to determine whether there is any difference in immune cell ratios both between 

EBV+ and EBV- tumors, and between the low-load EBV+ tumors and high-load EBV+ 

tumors.  CIBERSORT uses RNAseq expression levels for a subset of roughly 500 genes 

in order to estimate relative and absolute proportions of infiltrating immune cells in a cell 

sample.  An RNAseq expression matrix for the TCGA gastric cancer tumor samples used 

above was subsetted using the 500 genes, and the data matrix was submitted online to 

Cibersort.  The result shown in Fig. 7 was obtained.  The same ordering of tumor 

samples was used as in the previous analysis (upper 26 rows: EBV+, ordered from higher 

to lower EBV microRNA loads).  The data obtained for the EBV+ and EBV- tumor 

samples was roughly normal, and so the results were compared using simple T-tests.  

With regard to differences between EBV+ and EBV- tumors, significant differences 

between the two groups were obtained for T cells CD8+, T cells CD4 memory resting, T 

cells CD4 memory activated, Macrophages M0, and Macrophages M1, as shown in Table 
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7.  The same test was carried out for the high-microRNA load and low-microRNA load 

EBV+ groups, but significant results were not obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 7 Partial Cibersort Output  
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Immune Cell Type 

P Value EBV+ 

vs. EBV- 

P value, EBV+ low-load vs. 

EBV+ high-load 

B cells memory 0.004167 -0.01796 

T cells CD8 1.07  10-7 0.109585 

T cells CD4 memory resting 5.58  10 -08 -0.09971 

T cells CD4 memory activated 2.49  10-05 0.075827 

Macrophages M0 3.01  10-05 -0.0637 

Macrophages M1 1.22  10-07 0.047537 

Table 2. T-Test Results of EBV+ vs. EBV- Tumors and EBV+ High-Load and Low-Load 

Tumors 
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4. Conclusion 

The feature subset clustering method of Hoff was used in order to analyze gastric 

cancer data in the hope of revealing structure among tumors in relation to EBV status.  

Insofar as the clustering method of Hoff provides information regarding relevant features 

responsible for clustering, while also allowing these relevant features to vary among 

clusters, the method was considered as a potential method for revealing targets of EBV 

microRNAs that does not rely on sequence-based prediction.  The results show that the 

method allowed easier interpretation of clustering data in comparison to a standard 

hierarchical clustering method, which ultimately did not afford an obvious way to identify 

relevant clusters.  The probabilistic clustering method provided more obvious cluster 

assignments, and indeed a striking clustering was observed that corresponded to the level 

of EBV microRNA load within the EBV+ tumors.  With regard to determination of feature 

relevance, the method was less fruitful than had been hoped.  While the method provided 

relevance probabilities, a large number of features (two-thirds) had probabilities in the 90% 

or greater range, with probabilities falling off dramatically in only roughly one-third of the 

features.  From a practical standpoint, this still leaves a great many features to investigate 

as potentially significant drivers of the clustering.  Even when placing an extremely 

stringent prior on the  parameter in the model, the number of features having high 

significance could not be reduced from a practical standpoint.  That being said, it is 

probably the case that selection of confirmed EBV microRNA target genes likely 

contributed to this high proportion of relevant genes.  Also, considering current 

understanding of microRNA biology, it may be the case that the results are an accurate 

reflection of the diffuse and complex manner in which microRNAs cooperate to influence 

expression of a large number of genes at once.  Future analysis would benefit from a more 
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detailed investigation of the specific EBV microRNAs that correlate with the cluster that 

was found.  Also, using a more random selection of genes that are implicated in aspects 

of cancer development, not just those that are confirmed microRNA targets, may lead to 

new discovery of genes or sets of genes that are influenced by EBV microRNAs. 
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