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Early phases of complex astrodynamics applications often require broad

searches of large solution spaces. For these studies, mission complexity gen-

erally motivates the use of the coarsest dynamical models with analytical so-

lutions because of the implied lightening of the computational load. In this

context, two-body dynamics are typically employed in practice, but higher-

fidelity models with analytical solutions exist, an attractive prospect for mod-

ern applications that may require or benefit from greater accuracy.

Vinti theory, which prescribes one of the many alternative described

models known as intermediaries, is revisited because it leads to a direct gen-

eralization of two-body dynamics, naturally incorporating the dominant effect

of oblateness and optionally the top/bottom-heavy characteristic of a celestial

body without recourse to perturbation methods. Prior to the innovations in-

troduced in this dissertation, Vinti theory and associated solutions possessed

many singularities in popular orbital regimes. The theory has received limited
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use. The goals of this dissertation are to assess Vinti theory’s effectiveness

in a modern application and remove its long-standing disincentives. These

objectives inform the two main contributions, respectively: 1) Vinti theory is

applied to the relative motion problem through the development of a state

transition matrix (STM), enabled by improvements to the existing theory; 2)

a new nonsingular element set is introduced.

The relative motion application leverages Vinti’s approximate analyt-

ical solution with J3. An analytical relative motion model is derived and

subsequently reformulated so that Vinti’s solution is piecewise differentiable,

developed alongside boosts in accuracy and removal of singularities in polar

and nearly circular or equatorial orbits. Some of these singularities reside in

the solution, others in the partials. Solving the problem in oblate spheroidal

elements leads to large linear regions of validity. The new STM is compared

with side-by-side simulations of a benchmark STM obtained from perturbation

methods and is shown to offer improved accuracy over a broad design space.

To defray the costs of software development, robust code is provided online.

The second major thrust area is the introduction of a nonsingular el-

ement set that is at once novel and familiar. Vinti theory suffers from other

well-known singularities, strictly artifacts of classical elements that are detri-

mental to many applications. To mitigate these singularities, the standard

(spherical) equinoctial elements are chosen to inform in a natural way their

generalization to a new nonsingular element set: the oblate spheroidal equinoc-

tial orbital elements. The new elements are derived without J3 and concise

algorithms presented for common coordinate transformations. The transfor-
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mations are valid away from the nearly rectilinear orbital regime and are exact

except near the poles. When near the poles, the transformations match the

accuracy of the approximate analytical solution. As a result, the singularity

on the poles is completely eliminated for the first time. Analytical state prop-

agation of the new elements in time for bounded orbits completes their formal

introduction. Benefits of the new elements are identified.

The dissertation is organized as follows. To convey Vinti theory’s

broader context, extensive background on intermediaries and related topics

is provided in Chapter 1. General enhancements that grew out of the main

efforts, including the removal of some singularities, are consolidated in Chap-

ter 2 along with mathematical preliminaries. Relative motion is explored as

the selected application in Chapter 3 and the major deficiencies of Vinti the-

ory are removed in Chapter 4 with the introduction of the new element set.

Analytical orbit propagation in the new set is developed in Chapter 5.
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Chapter 1

Introduction

A seemingly boundless capability surrounds the modern world of com-

puter simulation and numerical methods. With such extensive resources, it

is perhaps a wonder, looking in from outside, that analytical methods persist

in the field of astrodynamics. The landscape now is certainly different from

that of the 1960s during the space race, when researchers aggressively pursued

analytical models for describing satellite motion. The trend toward numerical

methods is clear. And yet analytical methods persist. They persist largely

because numerical methods have some shortcomings in certain applications.

In these instances, analytical methods may be sufficient or the marriage of the

two approaches may perform better than either could do alone. Some of their

benefits are innate while others are synergetic. Consider the following possible

uses for analytical methods:

1. they can offer geometrical and physical insight to broad solution spaces;

2. they can deliver inputs to numerical methods, such as those that require

good initial guesses;

3. they enable a variety of analytical and numerical perturbation methods,

which require an analytical reference solution;
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4. they are faster than numerical integration for long flight times in the

context of orbit prediction;

5. they enable attractive numerical techniques for computation of various-

order partial derivatives, which are required or useful in numerous appli-

cations, including spacecraft guidance, navigation, and relative motion

modeling;

6. they can act as components of hybrid, semi-analytical theories;

7. they can validate numerical methods and vice versa.

At the AAS/AIAA Spaceflight Mechanics Meeting on February 6, 2017,

Felix Hoots presented some compelling, sobering arguments for how analytical

methods in astrodynamics continue to shape modern research and the state of

the art. An analytical method is not always the right method, and there is a

fundamental question to ask to assess its use for any application. To this end,

Hoots quoted Garfinkel, who summarized this problem quite eloquently with

the following question:

Do you want an exact solution to an approximate problem? Or an

approximate solution to an exact problem?

Analytical solutions often correspond to these so-called approximate prob-

lems, like the Vinti problem. They may be indispensable for obtaining a good

initial guess needed as part of a more accurate technique and can serve as

excellent guidelines for numerical work [140]. In the context of orbit propa-

gation, if maximum accuracy is desired, then an analytical solution would be

2



insufficient where numerical integration of a high-fidelity dynamical model (an

approximate solution to an exact problem) would meet the objective. Even

for numerical integration, though, analytical solutions can be exploited for

performance gains.

It is with these ideas in mind that the nature and nuances of Vinti the-

ory are explored in this dissertation. Alongside a nearly exhaustive exposition

of the history and evolution of Vinti theory, the following sections expound

broadly on topics pertaining to Vinti theory, focusing initially on intermedi-

aries and how Vinti’s intermediary fits into the category. A more rigorous

definition is given later, but intermediaries are essentially intermediate force

models with analytical solutions, specifically surpassing the accuracy of the

Kepler problem without recourse to perturbation methods. Vinti’s intermedi-

ary is then related to various orbit prediction techniques, including analytical

(general perturbations), numerical (special perturbations), and semianalyti-

cal methods for context. By association, other intermediaries are compared

as well. A discussion of motivational problems follows, with an emphasis on

the spacecraft relative motion problem, the main application of Vinti theory

demonstrated in this dissertation. To facilitate making connections and asso-

ciations, Vinti theory is not confined to one section. Instead, sections address

more general concepts. If a facet of Vinti theory is relevant to one of those con-

cepts then that facet is included in the relevant section and discussed in that

context. This approach has the effect of introducing various aspects of Vinti

theory at a slow pace, hopefully making the material not only digestible, but

also clearer. The chapter concludes with an explanation of the organization of

3



the dissertation and a summary of the main contributions.

1.1 Integrable Problems

The context here primarily concerns mathematical modeling of dynami-

cal systems. The number of known problems with analytical solutions in astro-

dynamics is limited. These integrable problems can be treated as unperturbed

problems in the context of high-level goals seeking realism in dynamics mod-

els, where these goals are often accomplished through perturbation methods.

For spacecraft orbit prediction, the subset of complete problems, referring to

those that consider all three spatial degrees of freedom of a spacecraft, is even

more limited1. For example, the equatorial problem with oblateness included

is still integrable, but the model’s validity does not extend to motion outside

the equatorial plane. The goal of this section is to touch on two primary un-

perturbed problems of interest in addition to a few others in the literature, at

a high level, and to elaborate on their potential uses. Mathematical details

are reserved for later chapters.

1.1.1 Terminology

Some stricter-than-usual terminology is adopted in this dissertation.

Most of the choices will be explained in Section 2.1.2, but it is helpful to discuss

terminology associated with perturbations up front. To describe the motion of

1An integrable problem also exists in rigid-body attitude dynamics called the Euler-
Poinsot problem, but attitude dynamics are outside the scope of this dissertation. The
problem specifically describes the torque-free motion of a triaxial rigid body.
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an Earth-orbiting satellite, for example, traditional, physics-based techniques

would regard all but one of the acting physical forces as perturbations. The

one exception is associated with a gravitational field generated by a point

mass, in which a satellite’s motion is described exactly by a conic section.

Since all other forces are small relative to this force and an exact solution

exists when all other forces are neglected, it is useful to consider the true

satellite motion as following a path that deviates slightly from a conic section.

Visualizing the orbit is easier with this perspective, and having this reference

solution enables a variety of mathematical tools for modeling the perturbative

forces. This reference solution corresponds to the unperturbed problem and

can equivalently be called the unperturbed solution.

The confusion in terminology arises when discussing other unperturbed

problems, because the above described perspective is so pervasive and univer-

sal. For example, consider the problem of including the dominant force due to

a planet’s oblateness, denoted by the J2 coefficient. The J2-perturbed prob-

lem, often called the main problem, has received tremendous attention over

the years. It turns out that an exact solution exists to this problem when the

spacecraft resides in the equatorial plane. Jezewski referred to this problem as

the J2-perturbed equatorial problem, but from a different viewpoint, what he

found is a new unperturbed problem. His solution could be used as a reference

trajectory, different from but analogous to the conic section, and the effects of

other forces on the orbit can be viewed as perturbations to this more accurate

reference orbit.

Seeing as the contributions of this dissertation are entirely focused on
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alternative unperturbed problems, it behooves the reader to keep the above

ideas in mind at all times. Different unperturbed problems incorporating dif-

ferent dynamics may be directly compared and discussed simultaneously. Ad-

ditionally, perturbations may be discussed with respect to various unperturbed

problems, but note that, as in the above example, perturbations to one un-

perturbed problem may be entirely folded into the dynamics of a different

unperturbed problem. Effort is made throughout the dissertation to be abun-

dantly clear about what reference orbits are associated with various analytical

solutions, which may or may not include perturbations.

1.1.2 The Kepler Problem

While a strong understanding of the Kepler problem is assumed, a

brief review is offered for the purposes of drawing analogies and facilitating

comparison to other unperturbed problems. The Kepler problem is the initial

value problem associated with the simplest dynamical model for propagating

an orbit, specifically the relative two-body problem or one-center problem [13,

50]. A spherically symmetric primary body generates a central force field that

is equivalent to that generated by a point mass. For a spacecraft traveling

through such a field, its motion is completely described by a conic section.

The conic is constrained to an invariant plane, which is oriented orthogonal to

the spacecraft’s angular momentum vector. The mathematical representation

can be viewed as a constant three-dimensional rotation with respect to the

equatorial plane plus the evolution in time governed by the equation for a

conic in polar coordinates.
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Another property of Keplerian dynamics is that all of the various de-

scriptions of the motion are directly tied to spherical geometry. While the

solution can be derived in multiple ways, when representing the dynamics

in spherical coordinates, the above result can be derived blind to any geo-

metrical insight [50]. In this way, there is an implicit choice of coordinates

associated with the Kepler problem. The classical angular orbital elements

describe arcs on the celestial sphere, and they can be directly related to longi-

tude and latitude through spherical trigonometry. While perhaps less obvious,

the semimajor axis and eccentricity are also tied to spherical geometry. To see

how, consider the conic equation, which describes the radial distance from the

origin, r, of a spacecraft as a function of its true anomaly. The level surfaces

of r are concentric spheres. At an instant in time, the sphere r = rk associated

with the time t = tk is tangent to the spacecraft, so that, for an elliptical orbit,

this tangent sphere expands and contracts over time as it follows the space-

craft around the orbit. But the expansions and contractions are in sync with

the orbit, expanding monotonically from periapsis to apoapsis and contracting

monotonically from apoapsis to periapsis. At the extrema of the orbit, corre-

sponding to periapsis and apoapsis, the tangent sphere is at its minimum and

maximum size, respectively. The semimajor axis is simply the arithmetic aver-

age of these minimum and maximum radial distances. Eccentricity is similarly

tied to spherical geometry.

There are several takeaways from this discussion. Certainly the choice

of spherical coordinates leads to a connection between the dynamical descrip-

tion and spherical geometry, and the connection is retained under perturba-
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tions. It follows that the connection to spherical geometry is not a necessity

because other coordinate systems may have been used instead. A valid gravi-

tational potential must satisfy Laplace’s equation outside the body, and there

are 11 coordinate systems, 10 of which are degenerate forms of ellipsoidal co-

ordinates, that may lead to separability [119, 50]. Among these 10 degenerate

coordinate systems are rectangular coordinates, spherical coordinates, oblate

spheroidal coordinates, and parabolic coordinates. The Kepler problem is a

consequence of separability using spherical coordinates. The next integrable

problem also results from separability, but instead made possible by the use

of oblate spheroidal coordinates.

1.1.3 The Vinti Problem: Vinti’s Intermediary

Vinti theory constructs orbits on an oblate spheroidal geometry. The

Vinti problem is the simplest initial value problem associated with Vinti theory.

Inspired by the oblate spheroidal shape of the Earth, Vinti sought a solution

in oblate spheroidal (OS) coordinates to capture the gravitational effects of

the Earth’s oblateness in addition to the spherical contribution. Saving the

details for later, suffice it to say, that the gravitational potential he derived in

OS coordinates has a simple form, similar to that for a central force field, and,

just as in the Kepler problem, this potential simultaneously solves Laplace’s

equation (as expected from the earlier discussion) and leads to separability of

the Hamilton-Jacobi equation [152]. Such is an intermediary: an intermediate

force model that should capture, in a qualitative sense, at least the first-order

secular and periodic effects in the main problem of artificial satellite theory [59]
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(nuances are discussed in the next section). By this definition, Vinti’s potential

qualifies as an intermediary, but those of the Kepler problem and J2-perturbed

equatorial problem do not. Other intermediaries are discussed in the next

section.

Limiting the discussion to coordinates for the time being, it should be

apparent that transitioning from spherical to OS coordinates introduces a free

parameter into the coordinate system. In OS coordinates, two of the three axes

of the ellipsoid are equal and larger than the other axis, which is the semiminor

axis. But how much larger? Indeed, the free parameter is associated with the

flattening of the coordinate system, and there are apparently many options

and possibilities as to what can be done with it. Details are given later for

the particular path Vinti decided to take, but he essentially tuned the free

parameter of the OS coordinate system to capture the J2 contribution for the

Earth application. Clearly, the approach generalizes to oblate bodies other

than Earth.

Without discussing the dynamical model, one can already anticipate the

existence of some sort of analogous set of orbital elements associated with the

Vinti problem. Consider again the expanding and contracting sphere of radius

r described for the Kepler problem. Transitioning to OS coordinates, this

sphere flattens into an expanding and contracting oblate spheroid of semiminor

axis ρ, still tangent to the spacecraft at each instant in time. The level surfaces

of ρ are confocal oblate spheroids. Considering J2 as a perturbation to the

two-body problem, it is not surprising that behavior similar to that described

earlier for the Kepler problem would occur under the Vinti potential. Defining
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periapsis and apoapsis respectively as the minimum and maximum semiminor

axis of the tangent oblate spheroid (ρ1 and ρ2), analogous to the sphere in

the Kepler problem, then the expansions and contractions of the spheroid are

in sync with the orbit, expanding monotonically from periapsis to apoapsis

and contracting monotonically from apoapsis to periapsis. At the extrema of

the orbit, the tangent spheroid is at its minimum and maximum size. The

arithmetic average of these minimum and maximum semiminor axes is exactly

analogous to the semimajor axis of the Kepler problem. Be careful not to

confuse the semimajor axes of the tangent spheroid with the “semimajor axis”

of the trajectory. An analogous eccentricity can also be defined that is similarly

tied to the underlying oblate spheroidal geometry, in addition to four others

associated with the usual angles. Perhaps not surprisingly, the evolution of ρ is

also governed by the equation for a conic, except in terms of these alternative

elements, so that the actual trajectory generally looks nothing like a conic.

While a Vinti trajectory applied at the Earth would look like a perturbed

conic, the trajectory would look less and less like a conic as the magnitude of

J2 increases.

Due to these striking analogies, it is convenient, if not incredibly help-

ful and logical, to call these alternative elements oblate spheroidal orbital

elements, as coined by Lang [104] in 1968. In the text, they may also be re-

ferred to as spheroidal elements for short or just OS elements, or if there is

no ambiguity the qualifier may be dropped all together. The word “oblate” is

considered safe to omit for readability because prolate spheroids are not inves-

tigated. It is worth pointing out that the spheroidal semimajor axis does not
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possess some of the geometrical interpretations of its spherical counterpart.

For example, consider an elliptical orbit. The spherical semimajor axis is the

distance from the center of the ellipse to the location of spherical periapsis

or apoapsis on the ellipse. However, under the Vinti potential, a bounded

spacecraft trajectory is not necessarily (usually not) a closed curve. In gen-

eral, there is no single spheroidal periapsis or apoapsis location in space, even

though the notion of minimum and maximum ρ still holds and the trajectory

oscillates between the “periapse spheroid” and “apoapse spheroid”.

These concepts are illustrated in animations included as supplementary

files in the MP4 video format. Each example considers polar orbits so that all

motion is constrained to one plane, the same plane that is viewed head-on in

the animations. The sphere_KeplerTraj_2D.mp4 file corresponds to the Ke-

plerian case described in Section 1.1.2, where the trajectory is drawn in green,

the current spacecraft location is drawn as a large red dot, and the tangent

sphere is drawn in magenta. The analogy to oblate spheroidal geometry is con-

veyed through three other files that can be viewed sequentially. Each of these

three files shows the same Vinti trajectory represented side by side in the two

different coordinate systems, assuming a large J2 on the order of 0.1 to exagger-

ate the effects. The color schemes used are the same as in the Keplerian exam-

ple, except that a yellow dashed osculating ellipse is also drawn for the repre-

sentation in spherical coordinates on the left and the tangent spheroid is drawn

in red on the right. In the graph on the bottom, a spheroidal classical element

is plotted in red and the osculating spherical counterpart is plotted in magenta.

The compare_coords_VintiTraj_2D_a_J2....mp4 file shows the effect on
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the semimajor axis and the compare_coords_VintiTraj_2D_e_J2....mp4 file

shows the effect on eccentricity for an unperturbed Vinti problem. While the

osculating spherical eccentricity varies between 0 and nearly 0.9, the spheroidal

eccentricity is constant and just under 0.2. The trajectory is not even close

to being unbounded, and this important qualitative characteristic is reflected

clearly in the spheroidal eccentricity. The spherical eccentricity is not as easily

interpreted in this sense. The compare_coords_VintiTrajP_2D_a_J2....mp4

file shows the effect on the semimajor axis for a perturbed Vinti problem, so

that both spherical and spheroidal elements are now osculating. As expected,

the osculating spheroidal semimajor axis is no longer constant, but its vari-

ations in this example are notably an order of magnitude smaller than the

variations in the spherical semimajor axis.

With an emphasis on visualizing coordinates, the Vinti problem in a

way has been framed as a natural generalization of the Kepler problem to

motion around an oblate body. Given the connection to spherical geometry,

the appearance of trigonometric functions in the solution may be expected

in the Kepler problem. The appearance of (Jacobi or Weierstrass) elliptic

functions in the solution of the Vinti problem may be anticipated from the

analogy that connects trigonometric functions to the unit circle similarly to

how elliptic functions are connected to the unit ellipse. The unit circle is

connected to spherical geometry as the unit ellipse is connected to oblate

spheroidal geometry.

Note also that Vinti theory is not the only instance of uncommon co-

ordinate systems finding their way into astrodynamics. Drawing on analogies
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between atoms and planets, the Stark problem, which concerns two-body mo-

tion plus a constant inertial force, is separable in parabolic coordinates with

an analytical solution in terms of Jacobi [105] or Weierstrass [19] elliptic func-

tions. It is also separable in Kustaanheimo-Stiefel (KS) variables [99], which

regularize the two-body problem2. The Stark problem is named after Johannes

Stark, a Physics Nobel Prize laureate (and outspoken antisemite) who discov-

ered the Stark effect [138]. The Stark problem has been the focus of several

recent studies [105, 124, 71, 19] and has applications to modeling forces like

solar radiation pressure (SRP), third body effects, and low thrust [126]. Inci-

dentally, Vinti himself obtained an approximate solution to the Stark problem

using parabolic Delaunay variables [157].

1.1.4 Other Intermediaries

Astronomer Johan August Hugo Gyldén coined the term “intermedi-

ary” in 1885 for a lunar theory, originally in German as “intermediäre” [70].

But he did not invent the idea. The notion of an intermediary may be traced

back to Peter Hansen’s work in lunar theory [58]. English mathematician and

astronomer Ernest Brown writes that Gyldén’s definition of an intermediary,

where he superposed the dominant secular motions of the Moon on a Keple-

rian ellipse, differs slightly from that adopted by later authors [30]. In 1896,

Brown developed his own intermediary. Beginning with a secularly precess-

ing ellipse, Brown’s intermediary also aimed to approximate the true path

2KS variables are comprised of eight, not six, fully nonsingular elements that emulate a
quaternion and transform the two-body problem to a harmonic oscillator. One tradeoff is
that they lack a clear physical interpretation.
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of the Moon [30] (pp. 45–47). In 19573, Sterne devised what appears to be

the first intermediary to tackle the main problem [139]. (The concept was

previously used for natural satellites, not artificial ones.) He used spherical

coordinates and, similar to Izsak [85] and eventually Vinti [154], expressed the

solution in terms of some orbital elements he identified as analogous to the

Keplerian ones. Sterne [139] ultimately reduced the problem to four elliptic

integrals. Many intermediaries followed, and the following list is not exhaus-

tive. For the present discussion, a background in Hamiltonian mechanics and

Hamilton-Jacobi theory [50], perturbation methods [120] as applied to astro-

dynamics [50], and the use of spherical harmonics to represent a gravitational

potential [149] is assumed, although some of these concepts are given greater

attention in later sections.

Garfinkel proposed his first intermediary in 1958 [56] and continued to

modify it over the following years [57, 58]. In 1964, Garfinkel [58] identified a

four-parameter family of intermediaries that include his earlier intermediary

and Sterne’s. By choosing to zero a different parameter compared to Sterne’s

choice, Garfinkel minimized the number of elliptic integrals. While a first-

order theory for the family of intermediaries is manageable, a second-order

theory was considered prohibitively complex, or at least it was considered as

much by 1970 standards [59]. Nevertheless, Aksnes found a way through,

opening a path to a second-order theory in 1965 by carefully choosing one of

the parameters to fold in first-order secular perturbations [4]. Aksnes’ result

3Sterne’s work was published in 1958, but the work was presented well before then.
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is remarkable because it enabled a second-order theory via a Hori-Lie pertur-

bation method [82] in Hill variables [74] that includes J3 and J4 [5, 6]. His

result is free of singularities except at the critical inclination [6], as typically

seen when invoking series expansions in powers of J2.

While all intermediaries discussed thus far make use of elliptic func-

tions in their solutions, they are not unavoidable. In 1969, Cid and Lahulla

deviated from most of the earlier approaches, not just by developing their in-

termediary in polar-nodal variables instead of spherical coordinates, but by

reimagining how an intermediary could be obtained [35]. An intermediary

in earlier research was defined as a separable Hamiltonian, where the pertur-

bation is simply the remainder, obtained by subtracting the separable part

from the main problem’s Hamiltonian. Cid and Lahulla, on the other hand,

applied a canonical transformation to the main problem to obtain an inter-

mediary [46]. Deprit formalized this new notion of “natural intermediaries”

roughly 11 years later [45] and observed that each of the existing intermediaries

in the sense of Garfinkel or Sterne could be considered a natural intermediary

because each is the result of a particular contact transformation4. It turns

out that Cid and Lahulla’s intermediary is part of a family of what Deprit

termed the “radial intermediaries”, which are a family of natural intermedi-

aries in polar coordinates [45]. While the original intermediary was developed

by Cid and Lahulla, it is typically referred to as Cid’s intermediary in the

literature for some reason. Cid’s intermediary does invoke elliptic functions,

4The term “contact transformation” is an older term synonymous with “canonical trans-
formation”.
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but Deprit’s radial intermediary does not. Deprit and Richardson [47] actu-

ally revisited Aksnes’ intermediary in 1982, offering some improvements and

drawing connections to the radial intermediary.

The topic of intermediaries is seen to represent a rich branch of litera-

ture that departs from traditional perturbation techniques based on averaging,

to be discussed in later sections. Intermediaries of any kind did not garner sus-

tained interest. Vinti theory was steadily developed until around 1970, with

some literary staccatos in the 1970s and 1980s. Of the other intermediaries, the

radial intermediaries have received the most sustained interest. Progressively

simpler intermediaries were devised by successive canonical transformations.

The work of Alfriend and Coffey begins with Deprit’s elimination of the paral-

lax [45] and then introduces elimination of the perigee [7] as the next canonical

transformation in the sequence. Cid’s intermediary employs elimination of the

latitude [35, 36]. More recently, in 2014, Gurfil and Lara investigated the util-

ity of Deprit’s radial intermediary for onboard orbit propagation [69]. When

juxtaposed with tradition, it is a spirit of mapping favored over one of averag-

ing that sets the philosophies apart, or, put more precisely, the former philoso-

phy advocates that mapping should be thoroughly explored before averaging.

It is the author’s belief that the notion of natural intermediaries should exist in

spheroidal-type coordinates as well, though the merging of Vinti theory with

the natural intermediary toolbox has never been investigated in any way.
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1.1.5 Possible Uses

Applications discussed here generally refer to any of the above unper-

turbed problems. The most obvious use for these analytical solutions is orbit

prediction. For some application, one of these analytical solutions may meet

the desired model fidelity, and a satellite’s orbit may be predicted to some arbi-

trary time, past or future, without numerical integration. For sufficiently long

times of flight, the analytical solution is faster. Analytical or numerical par-

tial derivatives may also be obtained for a variety of applications, including

orbit determination and trajectory optimization. There are, however, other

implications.

The previous applications are subject to limitations on the model fi-

delity, but techniques based on analytical solutions exist that generalize the

dynamics to arbitrary force models. One popular and powerful technique is

variation of parameters (VOP) [149, 50], which lends itself to analytical or

numerical analyses. Equations of motion (EOMs) can be derived in terms

of any set of orbital elements, and these equations can be numerically inte-

grated. The power of this method originates in the choice of coordinates. The

most basic numerical integration scheme would act on Cartesian or rectangu-

lar coordinates, but the dynamics are highly nonlinear and rapidly changing

in these coordinates, implying that a numerical integrator must take small

time steps to achieve some desired accuracy. In contrast, the dynamics are

generally better behaved in orbital elements. Five of the six elements change

slowly over time and only one changes rapidly. As a result, to achieve some

desired accuracy, a numerical integrator may be able to take much larger time
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steps if the dynamics or EOMs are represented in orbital elements instead of

Cartesian coordinates. More importantly, the fast variable can alternatively

be removed. Larger time steps mean faster compute times.

The VOP approach, in this context, utilizes the conic reference solu-

tion of the Kepler problem by design, but suppose that Vinti’s intermediary

is adopted instead as the reference solution and new EOMs are accordingly

derived. Because Vinti theory embeds oblateness in the coordinates, the dy-

namics should be better behaved in these alternative orbital elements, lacking

short-periodic variations, and an integrator should be able to take even larger

time steps relative to a basic application of VOP.

Detail has been given in this section on applications of Vinti theory in

general, but the focus of this body of work is on Vinti’s analytical solution.

The next section focuses and elaborates on two particularly relevant analytical

orbit propagators in detail. More motivational problems are given in later

sections.

1.2 Analytical Orbit Propagators

With the advent of not only computers, but the power and widespread

availability of modern computing, analytical orbit propagators may be consid-

ered less popular as they often take a back seat. The growth in computing

power stemmed not just from increases in processor speed, but also from the

use of sophisticated parallel architectures found in high-performance comput-

ing (HPC) facilities. Nonetheless, analytical solutions have seen a resurgence
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in the field of formation flying, typically in the form of linear models that

are desirable for onboard guidance, navigation, and control algorithms [143].

A new relative motion model based on Vinti theory is a main contribution

of this dissertation. One of the existing perturbed models, a state transition

matrix (STM) developed by Gim and Alfriend [64], relies heavily on Brouwer’s

work [27], warranting a brief juxtaposition of the two theories.

1.2.1 Vinti and Brouwer Theories

In 1959, the same time that Brouwer [27] published his seminal and

celebrated work, Vinti [152] was pioneering a different theory, also referred

to as the spheroidal method, that he and others continued to develop over

more than a decade [85, 154, 155, 156, 158, 160, 104, 62]. Both approaches

rest on Hamilton-Jacobi theory and lend themselves to canonical perturbation

methods. However, the choice of coordinates makes them fundamentally differ-

ent. Brouwer began with spherical coordinates, for which the Hamilton-Jacobi

equation is separable under Keplerian dynamics. A perturbation method is

then required to model small effects not included in the reference solution, and

he chose to develop his solution in Delaunay variables using the von Zeipel

method of averaging [120]. In sharp contrast, Vinti used oblate spheroidal

coordinates [119], for which the Hamilton-Jacobi equation is separable for a

general form of the potential. Remarkably, such a potential can simultane-

ously satisfy Laplace’s equation outside the planet, leading to a special form

of the potential valid for a gravitational theory that naturally accounts for a

planet’s oblateness. To put his result in terms of traditional potential theory,
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Vinti expands the potential in spherical harmonics and fits it exactly to the

zeroth and second zonal harmonics of the traditional expansion. The solution

of his original theory [85, 154] to higher order would effectively be exact for a

perfect oblate spheroid where J4 = −J2
2 , J6 = +J3

2 , etc., but, in the case of the

Earth and other bodies, an exact Vinti reference solution notionally includes

the contributions of J2 + εJ4 + ε2J6 + · · · , where ε represents a small error. At

this juncture, it is clear that solving Vinti’s Hamilton-Jacobi equation would

produce a more accurate reference solution than Brouwer’s: Brouwer’s refer-

ence solution models spacecraft motion around a spherical planet, while Vinti’s

reference solution models that around a spheroidal planet.

A number of improvements were made to Vinti’s theory over the fol-

lowing years. The first advancement extended the solution to model equatorial

orbits by removing the singularity there [155]. Vinti [156] then applied von

Zeipel’s method to incorporate J3 and correct J4 effects. However, in his later

work, Vinti [159, 158] devised a way to include the third zonal harmonic in

the potential by shifting the origin of the oblate spheroidal frame by the cor-

rect distance and direction along the polar axis of the body. This idea makes

sense, as J3 is associated with the top-heavy or bottom-heavy characteristic

of the central body. The newer potential fits the J3 harmonic exactly and, in

that sense, is an improvement over invoking von Zeipel’s method to model J3.

Vinti [160] also removed the singularities in his solution5 that are associated

5The “solution” is traditionally distinguished from the initialization process of converting
position and velocity vectors to orbital elements. With this publication, Vinti [160] did not
address singularities remaining in the initial conversion process. Methods for completely
removing these singularities are a main contribution of this dissertation.
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with polar orbits, rendering his solution nonsingular for bounded orbits in all

inclinations. The same cannot be said of Brouwer’s solution and its variants,

which fail near the critical inclinations of approximately 63.4◦ and 116.6◦. It

is emphasized that this special angle is still a critical inclination in Vinti’s so-

lution in the sense that there is still zero drift of periapsis to first order. Lang

[104] subsequently extended the solution to include unbounded orbits, and

Getchell [62] unified the solutions for bounded and unbounded orbits via uni-

versal variables. Note that Lang [104] solved the “parabolic” and “hyperbolic”

cases separately and also developed explicit equations for the asymptotes and

hyperbolic excess velocity vectors. This collection of work arguably establishes

the fundamentals of the theory and associated solutions, and a good exposi-

tion and resource on these ideas is offered by Der and Bonavito [50], editors

for Vinti’s book, which is compiled from his lecture notes. Note that Izsak’s

report of 1960 [85] was formally published in 1963 [87], and one reference may

be easier to find than the other. Further notes and commentary on Vinti

theory appear in other books as well, including in Chapter 8 of Geyling and

Westerman [63].

Assuming the symmetric form of the Vinti potential, notable alterna-

tive representations include a recent numerical solution by Wiesel [166] in the

Earth-centered rotating frame in terms of action-angle variables and two an-

alytical solutions: the extended phase space formulation of Alfriend et al. [8]

and the Lagrangian solution of Mathúna [115] utilizing Jacobi elliptic func-
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tions6. The work of Alfriend et al. [8] is the only instance in the Vinti theory

literature of an attempt made to alleviate usual concerns associated with an-

gle ambiguities in classical elements when eccentricities and inclinations are

small. Their approach is unique to the extended phase space. It does not

involve equinoctial-type elements and does not address singularities in polar

orbits. With respect to Vinti theory, Mathúna’s book seems to elaborate on

two of his earlier works [113, 114] (his book is also notable for reasons discussed

in Section 1.2.2.1).

In the pursuit of analytical solutions, both Vinti and Brouwer theories

had to make extensive use of series expansions in various orders of J2, but for

different reasons. The expansions show up in Brouwer’s solution because von

Zeipel’s method expresses the perturbed Hamiltonian and generating function

as power series in a small parameter; higher order solutions, such as Kozai’s

(1962), are difficult to obtain because the terms of the generating function are

determined recursively by solving a sequence of partial differential equations.

In contrast, Vinti invokes series expansions for two main purposes: factoring

a quartic and solving elliptic and other integrals. He also solves a general-

ized form of Kepler’s equation by successive approximation to obtain periodic

terms. Including higher order terms in Vinti’s solution would arguably not be

as difficult. Both methods address the main problem to differing degrees of

accuracy as well as higher order geopotential terms. Specifically, Brouwer’s

solution considered secular terms through O(J2
2 ) and periodic terms through

6Mathúna transliterates his name in different ways, using the spelling “O’Mathuna” in
his earlier work.
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O(J2) (both short- and long-period terms), followed by secular and long-period

contributions of J3, J4, and J5 (assuming they are O(J2
2 ) as for the Earth);

Vinti’s later solution, which is employed in this paper, considered secular terms

through O(J3
2 ) and periodic terms through O(J2

2 ), in addition to J3 and ap-

proximately 72% of J4 [158]. The portion of J4 included can be larger or

smaller depending on the central body, i.e. −J2
2/J4 ≈ 72% for the Earth.

While the higher-order geopotential terms of Brouwer’s solution are noted,

they will be ignored in comparisons in Chapter 3 because the Brouwer-based

STM used in this dissertation neglects them [64]. Since the appearance of the

original Gim-Alfriend (GA) STM, however, some higher order terms have been

added via Brouwer theory [171, 174].

1.2.2 Advancements in Vinti Theory

With a brief history of Vinti theory fresh in the reader’s mind, it is

convenient to next explore some of the advancements and inspired directions

of research, in addition to some important parallel studies. First, as a quick

anecdote, the reader may be interested to know that the use of a J to denote

the zonal harmonic coefficients can actually be traced back to Vinti, noted at

the end of Brouwer’s paper [27].

1.2.2.1 Equivalence between Vinti Theory and the Problem of Two
Fixed Centers

Euler established the integrability of the problem of two fixed centers

in the 1760s [115, 28]. Legendre, Lagrange, and Jacobi subsequently observed
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that the solution could be expressed in terms of elliptic functions [20]. The

equivalence between the Vinti potential and the problem of two fixed centers

(PTFC) has been known since 1961 [2, 28]. As Brouwer and Clemence point

out on pages 573–574, the potential function of the PTFC is appropriate for

a special type of prolate spheroid, in which case the respective gravitational

fields are equivalent assuming equal masses. To make the PTFC valid for

a special type of oblate spheroid, the masses need only be separated by an

imaginary distance instead of a real distance. For this reason, the PTFC is

often said to be useful for modeling motion around rotationally symmetric

bodies. The problem is also known as Euler’s three-body problem, the Euler-

Jacobi problem, and the two-center Kepler problem [20]. Note that Aksenov

et al. [2] also discussed the equivalence in 1961 in a USSR publication, Beletsky

[15] claiming that the Russians did it first. However, based on a thorough

search, it appears that Aksenov et al. first published the Russian version of

their work in the third quarter of 1961. Evidence suggests that Brouwer and

Clemence published their book in January 1961.

Mathúna [115] offers a very detailed history and exposition on the

PTFC, which he calls the Euler problem. He limits his analysis to bounded

orbits, remarking that the results generalize to unbounded orbits by follow-

ing the same techniques customary in the Kepler problem. Biscani and Izzo

[20] explicitly generalize the solution to encompass with the same equations

bounded and unbounded orbits as well as repulsive forces. Notably, in 1901,

Darboux [43] was the first to generalize the PTFC in a way that has clear

connections to the Vinti problem. Darboux’s generalization showed that the
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problem is still integrable with complex masses and complex distances. Ak-

senov et al. [1] used this fact to enable the exact fitting of a gravitational

potential to J2 and J3. This result should sound similar to the 1966 potential

of Vinti, who was influenced by this very paper. A key difference is that Vinti

[158] shifted the origin of the OS reference frame while Aksenov et al. [1] did

not, an important detail referenced again in Chapter 4.

1.2.2.2 Russian Literature on the Vinti Problem

Referring to a paper by Kislik [100], a Russian book by Beletsky [15],

which has been translated to English, claims that the Russians were the first

to model satellite motion around an oblate Earth using an integrable problem.

Kislik’s work was published in 1960 in Russian and translated to English in

1961. Vinti’s seminal work was published in October 1959 [152], with a gener-

ous preview given in July 1959 in the Physical Review Letters [151]. Beletsky

believes that Kislik’s work began in 1958, citing only Kislik’s 1960 paper, but

arguably Vinti’s work may well have begun in 1958. Which author conceived

of the idea first may be up for debate, but the literature shows that Vinti

published his work first, and therefore the problem is still called the Vinti

problem. In any case, the work of the two authors appears to be independent.

Subsequent Russian authors, Aksenov et al.7, cited both Vinti and Kislik in

their work [2, 3] and found Kislik’s potential to be a special case of the Vinti

potential [1]. Lavrik [107] later investigated the boundary value problem under

7Note that in these publications, Aksenov and Grebenikov transliterate their first names
with the initial “Ye.”, though they also transliterate the initial as “E.” in other work [1, 67],
possibly making it difficult to find.
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the Vinti potential.

1.2.2.3 Other Studies Based on Vinti’s Work

While Vinti’s intermediary has remained relatively lesser-known, a num-

ber of researchers have developed his theory further over the years. Spies [137]

presented a solution to the Vinti problem for polar orbits in 1961 (printed

in 1963), and connected the work to the PTFC using prolate spheroidal co-

ordinates. Vinti theory with atmospheric drag has also been investigated on

occasion, first in Sherrill’s doctoral work [133] in 1966 and then almost 10

years later by Watson et al. [165]. Both approaches are analytical, but the

latter method uses a heuristic to properly combine a drag-free Vinti solution

with a drag-perturbed Kepler solution. In 2016, Wright [168] also proposed an

analytical solution to account for drag in action-angle variables, though he did

not cite or compare his solution to those of earlier authors mentioned above.

Once the perturbative effects are obtained, he proposed to apply a linear co-

ordinate transformation from action-angle variables to Cartesian coordinates

before adding the perturbations to Vinti’s solution. It is not clear why this is

preferred over adding the effects in the action-angle space and then performing

a nonlinear coordinate transformation. Note that Wright’s ultimate goal was

to perform orbit determination with Vinti theory in some follow-on work to

Wiesel’s approach. To work in an inertial frame, he set the Earth rotation rate

to zero, since Wiesel’s solution includes the rotation. The study of perturba-

tions under the Vinti potential were not limited to drag, however. A follow-on

paper to the extended phase space study of Alfriend et al. [8] incorporated
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luni-solar perturbations [96].

A quick search will reveal that Izsak’s second-order solution initiated

its own branch of literature, often referred to as the Izsak-Borcher’s solution

after the appearance of Borcher’s technical report [23] in 1963, which offered a

complete computational procedure for Izsak’s solution. Note that this poten-

tial corresponds to Vinti’s symmetric potential from 1959. Subsequent papers

developed a differential corrections procedure [10] and used it to model per-

turbative effects of J3 and J22 [11], where J22 =
√
C2

22 + S2
22 is the amplitude

as used in the gravity phase angle representation of the sectoral and tesseral

terms. Allen [9] later developed the earlier work of Allen and Knolle [11] for

application to some different problems. Interestingly, in the latter reference,

Allen [9] was apparently affiliated with the U.S. Department of Agriculture in

1969, citing a burgeoning interest in remote sensing for assessing the footprint

and health of crops and detecting diseases.

Other authors investigated separability in other coordinate systems. In

an exhaustive survey in 1966, Cook [39] explored all 11 coordinate systems

for which the Hamilton-Jacobi equation and Laplace’s equation are separa-

ble, deriving valid gravitational potentials if they were proven to exist. Cook

apparently made an error in the last coordinate system he investigated, the

triaxially ellipsoidal coordinates, claiming that no such potential exists. Mad-

den [92] seems to have subsequently disproved this detail of Cook’s work,

demonstrating that such a potential does in fact exist in ellipsoidal coordi-

nates. Together these papers represent an exhaustive survey of the possible

gravitational potentials permitted by the 11 coordinate systems.
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A body of Chinese literature also emerged in the early 1980s, contain-

ing a number of notable contributions. A consistent feature of the Chinese

literature is the use of Vinti’s 1966 potential and the adoption of sets of secu-

lar orbital elements, for which the angular variables are canonical (Izsak and

Vinti derived these elements, where three are constants of the motion [85]

and the other three vary linearly with time [154, 156, 158, 160]). In 1980,

Wu and Tong [169] developed Vinti’s 1966 solution to the third order and

also obtained the Poisson brackets. Note that Getchell [62] had already ad-

vanced the solution to the third order a decade earlier, his work having the

profound distinction of removing the singularities at zero energy. Later that

year, Tong and Wu [145] derived explicit forms of the Gaussian variational

equations (GVEs) based on Vinti’s work [162], exact for the momenta vari-

ables and accurate to second order for the angular variables. In 1981, based on

the preceding two contributions, Tong and Wu [146] showed how to combine

their earlier results into a semi-analytical third-order perturbation theory. In

the same year, Tong and Chen [144] related Vinti’s 1966 solution to that of

Mathúna [114], using Mathúna’s regularizing change of independent variable

to reduce the problem to two Lindstedt’s equations with constant coefficients.

They first demonstrate a solution technique using a Lie transform and then

apply it to the Vinti problem, thus obtaining a second-order solution to the

Vinti problem using an alternative method.
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1.2.3 General Perturbations, Brouwer and Kozai Theories, and
SGP4

General perturbations (GP) techniques encompass all strictly analyt-

ical approaches to solving a set of differential equations of motion that aim

to describe a satellite’s state. GP generally refers to the orbit propagation

problem, including translational and rotational dynamics. The scope of this

dissertation is limited to the translational dynamics. With respect to ideal-

ized, true/exact EOMs, which do not admit analytical solutions, the EOMs

are simplified, hopefully allowing for exact or approximate solutions to the

simplified, approximate problem that are obtained in closed form. A brief

discussion of general perturbations for the translational dynamics is offered in

the rest of this section.

The theories of Brouwer [27] and Kozai [101] are examples of general

perturbations approaches, Kozai’s article immediately preceding Brouwer’s in

the November 1959 issue of The Astronomical Journal. Their seminal work

together formed the basis of the two operational analytical orbit propagators

operated by the U.S. Navy and U.S. Air Force. These operational models are

currently known respectively as Position and Partials as functions of Time

(PPT3) and Simplified General Perturbations (SGP4) [81]. While averaging

is the cornerstone of both theories, the theories use very different averaging

techniques. Recall from Section 1.2.1 that Brouwer theory uses von Zeipel’s

method of averaging, a canonical approach. Kozai, on the other hand, invoked

the Lagrange planetary equations (LPEs) [149] and then applied an ad hoc

method of averaging. Like Brouwer, he accounted for J2 through J5 zonal
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harmonics and neglected drag, considering J2 as the perturbation and other

zonals as O(J2
2 ). He retained secular terms through O(J2

2 ) and periodic terms

through O(J2), identical to Brouwer theory.

Brouwer’s original theory underwent many modifications and improve-

ments over the years. Brouwer and Hori [29] added drag via a simple spher-

ical exponential model atmosphere. Lyddane [112] removed the singularities

at zero eccentricity and zero inclination by employing what are essentially

Poincaré variables [76, 136]. The incorporation of the more accurate 1969

drag model of Lane and Cranford [103] led to the first operational implemen-

tation of SGP4 in 1970 (an upgrade from SGP), although the implementation

of their drag model was simplified to alleviate computational load [81]. Nearly

a decade later, Hujsak [83, 84] added luni-solar perturbations along with res-

onance effects. Greater historical detail and mathematical documentation is

offered by Hoots et al. [81] and other sources [80, 91]. The documentation

includes a numerical spline to work around issues near the singularity at the

critical inclination, where Brouwer’s theory breaks down when the (double-

primed) inclination is within 1.5 degrees of the critical value. Vallado et al.

[150] developed the most up-to-date non-proprietary version of SGP4 in 2006

(revised in 2007).

Another notable analytical propagator8 is the Hoots Analytic Dynamic

Ephemeris (HANDE) theory, which uses a Jacchia [88] 1970 dynamic at-

8Presumably, HANDE is considered analytical because the propagation is analytical, con-
gruent with the terminology for analytical propagators. While Gauss-Legendre quadrature
is employed to perform the averaging for the drag terms, it is only required for initialization.
Perhaps this is the reason Vallado [149] considers HANDE to be semianalytical.
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mosphere to account for the average solar flux and geomagnetic index [79].

HANDE also boasts an improved implementation of Brouwer-Lyddane the-

ory that requires significantly fewer algebraic and trigonometric computa-

tions [77, 78]. Based on the preceding discussion of Section 1.2, it should

be evident that Vinti theory can also form the basis of a general perturbations

method.

1.3 Hybrid Satellite Theories

Hybrid or semianalytical theories aim to harness the best of analytical

and numerical methods while overcoming the drawbacks of each, GP nominally

lacking in accuracy and SP nominally lacking in speed. A primary example

of such a hybrid theory is the Semianalytic Satellite Theory (SST) [42] con-

ceived by Cefola et al. As a product of the Charles Stark Draper Laboratory,

the theory was originally called the Draper Semi-analytical Satellite Theory

(DSST), developed in the mid-1970s and early 1980s. The works of Cefola

[32], McClain [116, 117], and Danielson et al. [41, 42] comprise thorough expo-

sitions of the mathematical details. The performance gains of SST are seen in

the numerical integration stage, specifically its ability to take large time steps,

typically a half day for Earth-orbiting satellites. SST develops a solution in

spherical equinoctial orbital elements, employing both the Lagrange and Gauss

forms of the variational equations (VOP) [14]. The EOMs are separated into a

singly-averaged part and a short-periodic part. The averaging is performed an-

alytically or numerically, depending on the type of perturbing acceleration [33],

in the process producing Fourier coefficients and mean element rates. In par-
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ticular, SST employs a Gaussian quadrature weighting to numerically average

contributions from atmospheric drag and SRP with eclipsing [42]. Another

important detail is the use of truncation algorithms in eccentricity that can

limit the accuracy of SST for highly eccentric orbits. Techniques that alleviate

this limitation are discussed in the next section. For applications to state es-

timation problems, SST can also simultaneously numerically integrate a mean

element STM while maintaining the capability to take the same large step sizes

for the variational equations. Analytical partials associated with some of the

perturbations have been obtained [42] and the STM capability continues to be

developed [34]. Another notable semianalytical theory is the Semianalytical

Liu Theory (SALT) [109].

Recall from Section 1.1.5 that Vinti theory prescribes its own varia-

tional equations through an application of VOP. As VOP plays a central role

in SST, one can extrapolate the above concepts to the oblate spheroidal ge-

ometry of Vinti theory. Whether a semianalytical theory referenced to the

Vinti problem would be fruitful is an entirely separate question, but the fact

remains that such a theory could be developed.

1.4 Numerical Techniques for Orbit Propagation

A vast number of numerical techniques exist for orbit propagation. A

small selection is discussed here, specifically special perturbations (SP) and

numerical averaging. Neta [121] gives an extensive though not exhaustive list

of GP, SP, and semianalytical orbit propagators.
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1.4.1 Special Perturbations

The methods of special perturbations involve numerical integration of

the EOMs, which can incorporate all desired perturbations. Because perturb-

ing accelerations are added linearly to the EOMs, it is easy in theory for these

mathematical models to attain very high accuracy. Due to the complexity of

the EOMs, they are not amenable to analytical solutions, but the practical

necessity for high levels of accuracy spurred the development of techniques for

solving the EOMs numerically. There are a vast number of numerical integra-

tion methods and it is outside the scope of the dissertation to review them

here. The main takeaways are that they offer approximate solutions to the

EOMs and they are often distinguished by their efficiency and accuracy. A

method suitable to one problem or application may not be suitable to another.

Consult Vallado [149] and the references therein for additional details.

Separate from numerical integration techniques are SP problem formu-

lations. The two main ones are reviewed here. Encke’s method is historically

significant, enabling increased computational precision in numerical integra-

tors at a time when computing power was limited, i.e. before the invention

of modern computers. Generally speaking, Encke’s method first requires the

definition of an osculating orbit, which is customarily Keplerian. Instead of

directly integrating the EOMs, only the perturbation away from the oscu-

lating reference is integrated [149]. The increased precision stems from the

implied small magnitudes of the perturbing accelerations. When the pertur-

bation in position becomes too large relative to the true path, the osculating

orbit is rectified, meaning that it is re-initialized to be tangent to the most
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recent position on the true trajectory. In contrast, Cowell’s formulation and

its variations directly integrate the EOMs [149]. While generally less popular,

Encke’s method continues to find use in certain applications [167].

The generality of these formulations does not free them from limita-

tions. These methods are always limited by the accurate modeling of the un-

derlying physical processes. For example, the modeling of atmospheric drag,

in all its complexity, still falls short of capturing certain details, including

the Sun’s internal processes and the interaction of solar radiation with the

atmosphere [149].

Encke and Cowell formulations may both be referenced to the Vinti

problem instead of the Kepler problem. In other words, the osculating orbit in

Encke’s method could be Vinti’s intermediary instead of a Keplerian ellipse.

The claim is not that this choice will lead to countless benefits, but it is

instructive to consider. One possible deduction and benefit is that rectification

will need to be performed less frequently relative to a Keplerian reference.

Another important detail is that the use of Vinti theory does not bind all

analysis to oblate spheroidal techniques. For example, spherical harmonics

are not rendered useless and the use of Vinti theory does not demand the use

of oblate spheroidal harmonics. In fact, Vinti showed in 1971 how spherical

harmonics could be constructed with respect to the Vinti potential [161]. From

a geophysical perspective, this representation is arguably a more natural way

to view the geopotential. Since the essential shape of the Earth is an oblate

spheroid, such a spherical harmonic expansion would capture asymmetries.
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1.4.2 Numerical Averaging

Numerical methods in orbit propagation often imply the use of strictly

numerical integration, but this is not necessarily the case. Recent work has

gone in the direction of some hybrid theories that average out the short-

periodic dynamics before integrating. In the hybrid approach, much of this

averaging is analytical, but the entirety of the averaging can alternatively be

done numerically. This idea is the focus of recent work by Ely [54, 55], who

applies fast Fourier transforms (FFTs) to determine the Fourier coefficients.

The strength of this approach is its broader utility and application to many

bodies in the solar system. It obviates the need for deriving expansions for

each type of perturbing acceleration, and the absence of series truncation in

eccentricity means the method is valid for highly eccentric orbits.

1.5 Motivational Problems

Vinti theory has now been set in context relative to a non-exhaustive yet

broad array of astrodynamics tools. This dissertation is focused on analytical

methods, and so the present discussion now homes in on some motivational

problems. The advantages of analytical solutions may be leveraged in certain

scenarios. A couple applications are highlighted in this section as examples of

where Vinti’s analytical solution may prove useful. As a main contribution of

this dissertation involves the application of Vinti theory to the relative motion

problem, emphasis is placed on this topic with an extensive literature review.

35



1.5.1 Spacecraft Trajectory Optimization

Spacecraft trajectory optimization represents another area that may

benefit from the Vinti problem. When visiting bodies like Saturn with large J2

perturbations, performing preliminary mission design with two-body dynam-

ics may not be adequate. Specifically, solutions may disappear when adding

perturbations through continuation methods. For capture or orbit insertion

scenarios, it is possible that the issue may be traced to a strongly perturbed

threshold between bounded and unbounded orbits. While the Vinti potential

does not exactly capture Saturn’s gravitational environment, it does capture

the dominant effect of J2 in addition to the point mass contribution. Recall

that Vinti’s solution can be cast in universal variables, just like the Kepler

problem, and so it may be advantageous for other analyses as well near such

bodies.

1.5.2 Space Object Catalog

This topic is largely included because researchers at the Air Force Insti-

tute of Technology (AFIT) have recently expressed strong interest in applying

Vinti theory to the problem [168]9. While the GP catalog is slated to transition

to an SP catalog, current practice employs both. The current number of cata-

loged objects larger than a softball now exceeds 22,000 and only 5% are active

satellites. The SP catalog is used for conjunction analysis, but SGP4 screens

for close approaches. For this reason, the more accurate the tool used for

9The views expressed in Wright’s dissertation do not represent the opinion of the U.S.
Air Force, Department of Defense, or U.S. Government.
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screening the better, since less time may be wasted on false alarms. Wright’s

thesis claims that Vinti theory can fill this role. Since it is not clear when the

GP catalog will be discontinued, it is possible Vinti theory may be beneficial

in this area, even if its use is temporary. Wright [168] assessed the utility of

Wiesel’s solution to the Vinti problem in an orbit determination (OD) frame-

work, also incorporating drag through his own method (see Section 1.2.2.3).

He made extensive comparisons to SGP4, noting several singularities in the

particular solution employed based on the Vinti potential. These singularities

exist for equatorial orbits, nearly circular orbits, and polar orbits. Wright

also cites a strong interest in replacing his numerical STM with an analyti-

cal one for performing OD. The generalized equinoctial elements developed in

this dissertation remove each mentioned singularity. An analytical STM and

many enhancements are also contained herein, and so the contributions of this

dissertation should aid significantly in their work.

1.5.3 The Spacecraft Relative Motion Problem

Missions involving on-orbit inspection of spacecraft and formation fly-

ing are both of great interest and are well-posed as relative motion problems.

The nature of either application may be such that perturbations cannot be

neglected, whether due to long time spans or large separations between con-

stituent spacecraft [128]. In the literature on the relative motion problem, the

reference orbit is generally a Keplerian orbit, where improvements in accuracy

are obtained through perturbation methods. The approach in this disserta-

tion leverages the theory of Vinti [152, 159] that analytically folds the first
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few zonal harmonics into the reference orbit. A major goal of this disser-

tation is to demonstrate how Vinti’s intermediary can be used to obtain an

analytical solution to the relative motion problem and to ultimately assess its

accuracy. Therefore, establishing a context requires a review of the relative

motion problem.

The relative motion problem is concerned with characterizing the dy-

namics of one or more spacecraft with respect to a reference trajectory. The

chief refers to a spacecraft or point in a reference trajectory. The deputy refers

to a spacecraft or object flying in a neighboring trajectory, whose motion rel-

ative to the chief is portrayed in the rotating local-vertical, local-horizontal

(LVLH) reference frame, or Hill’s frame, centered on the chief. For a task

of short duration, such as rendezvous, the popular Hill-Clohessy-Wiltshire

(HCW) equations [73, 37] may suffice for nearly circular orbits and the Law-

den [108], de Vries [44, 94]10, or Tschauner-Hempel [147] equations may serve

well for other orbit regimes. These equations admit exact analytical solutions

for circular [149, 110], elliptical [170, 25], or non-degenerate [31] reference or-

bits, but they are linearizations of the dynamics under spherical gravity. Thus,

in addition to the stated assumptions on the reference orbit’s eccentricity, the

models are limited by two other major assumptions: 1) the deputy is suffi-

ciently close to the chief such that nonlinear terms and perturbing forces are

negligible; 2) the Earth is a point mass. These assumptions are violated for

10Karrenberg [94] noted some corrections to de Vries’ solution (his EOMs are for arbitrary
eccentricity but his solution is limited to small eccentricity) and also generalized his solution,
removing the limitation that the initial position must coincide with the chief’s periapsis.
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the applications of interest in this dissertation.

Consideration of Earth’s gravity perturbations in the relative motion

problem began relatively recently, many neglecting the effects of eccentric-

ity by utilizing circular reference orbits. Schweighart and Sedwick [131] ob-

tained a solution including J2 derived from equations of motion that pos-

sess a similar form to the HCW equations in Cartesian coordinates. Kasdin

et al. [95] approached the HCW equations from the perspective of Hamilto-

nian mechanics, establishing the so-called epicyclic orbital elements through

application of Hamilton-Jacobi theory. They then applied variation of param-

eters to obtain solutions for J2-perturbed circular equatorial orbits as well as

for circular inclined orbits. More recently, Omran and Newman [123] pro-

posed a nonlinear Cartesian formulation that applies Volterra series theory to

the case of a circular reference orbit subjected to the J2 perturbation. This

approach, for both perturbed and unperturbed models, has seen continued

developments [141, 142, 122], though has still only been applied to a circular

reference orbit.

Some models have considered eccentricity in addition to the J2 pertur-

bation. Kechichian’s exact representation uses a frame also subjected to drag,

but it requires numerical integration to propagate the orbit [97]. In the process,

Kechichian also derived a transformation from Earth-centered inertial (ECI) to

LVLH Cartesian coordinates in an arbitrarily perturbed environment. An ap-

proach by D’Amico and Montenbruck [40] adapts the eccentricity/inclination

vector separation concept, initially designed and customarily used for colo-

cated geostationary spacecraft, to describe relative motion of satellites in low
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Earth orbit. Their linearized model assumes small eccentricities, or nearly

circular orbits, for each spacecraft and accounts for certain effects of J2 and

differential drag. Schaub and Alfriend [130] used Brouwer’s mean orbital el-

ements to establish J2-invariant relative orbits, essentially by matching the

spacecraft drift rates. Resulting spacecraft formations appear fixed in an aver-

aged sense for a variety of geometries. The Cid intermediary [35, 46] has also

been applied to the relative motion problem [106], approximating the effects

of J2 and establishing periodicity conditions.

The use of analytical STMs to model relative motion has a long history

and includes the solution to the HCW equations. As stated, the incorporation

of perturbations into relative motion models, including eccentricity, started

relatively recently, but STMs have broader applications. The earliest such

STM known to the author is one developed in 1970. Specifically, the first

analytical STM to consider J2 and eccentricity together was apparently de-

veloped by Born and Kirkpatrick [24] and has been overlooked in the relative

motion literature. While they omitted analytical expressions for the STM,

they did provide explicit methods and numerical results. Using classical or-

bital elements, they define one STM that propagates the relative Brouwer

mean elements to O(J2
2 ) and a second that propagates the relative osculat-

ing elements to O(J2
2 ) for the secular terms and O(J2) for the periodic terms.

The method uses the Jacobian of the Brouwer transformation and optionally

another to convert the STM to ECI coordinates. The underlying approach

bears a strong resemblance to Gim and Alfriend’s development [64], but with

some notable differences. In Gim and Alfriend’s work, the fundamental STM

40



propagates the relative state in Brouwer’s mean element space to O(J2) using

quasi-nonsingular elements. Depending on the desired inputs, the STM can

be transformed to the Keplerian osculating element space to O(J2) using the

Jacobian of the Brouwer transformation, or, through an additional Jacobian,

further transformed to a type of spherical curvilinear coordinates in the LVLH

frame, following closely the geometric method of Garrison et al. [61]. This lin-

ear model has seen continued developments. The quasi-nonsingular elements

are defined for circular orbits but not for equatorial orbits, a problem reme-

died in a later study that re-expresses the STM in equinoctial elements [65].

Sengupta et al. [132] supplemented the original STM with a second-order state

transition tensor, enlarging the region of validity via a nonlinear (quadratic)

propagation theory. However, the model still suffers from the singularity at the

critical inclination. Another quadratic relative model was proposed by Russell

and Lantoine [127] that instead requires a single numerical propagation for

the chief while allowing for arbitrary perturbations. This CURVE model was

applied at Deimos, where gravity and third-body perturbations are extremely

large.

Considerable attention has additionally been given to alternative coor-

dinates in the rotating reference frame and even in the choice of rotating frame.

In at least one instance, the adopted rotating reference frame is nonorthog-

onal, decomposing the in-plane motion into the chief position and velocity

directions while the out-of-plane motion is still referenced to the angular mo-

mentum direction [98]. The cluster orbits with perturbations of Keplerian

elements (COWPOKE) equations [129] and the unit sphere model [148] both
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relate classical orbital elements to curvilinear LVLH coordinates, the former

based on the direct application of spherical trigonometry and the latter de-

rived from direction cosine matrices. This component is purely kinematic,

where the unit sphere technique is exact and the COWPOKE equations pro-

pose to approximate the exact spherical trigonometry relations to first order

in the element differences (the radial component is still exact). Using mean

elements, the idea is that perturbations can be added to either model. True

anomaly is related to time through expansions in eccentricity. The COW-

POKE equations have found use in relative orbit determination for satellite

clusters [75], in this case borrowing the along-track equation from the unit

sphere approach for increased accuracy. Yan et al. [172] later developed an

STM based on the unit sphere method.

Gleaning physical and geometrical insight is a priority as well when

possible. To that end, the relative orbit element parameterization proposed

by Lovell et al. [111] and advanced by Lovell and Spencer [110] converts the

Cartesian representation of the HCW equations to six new parameters, each

having unique geometrical insight into the linearized relative motion. Five of

the six parameters describe the constant shape of the relative orbit and the

sixth describes the orbit’s linear drift, making the relative trajectory easy to vi-

sualize. The relative elements are directly related to the epicyclic elements [95]

described earlier. Healy and Henshaw [72] tweaked the definitions to be exact

geometric analogues to the classical Keplerian elements for relative motion,
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calling them “geometric relative orbital elements”11. The preceding element

sets of this paragraph are only valid for circular reference orbits. The eccen-

tricity/inclination vector formulation mentioned earlier is also quite useful,

having the distinct advantage of being valid for eccentric reference orbits.

1.6 Road Map

This dissertation is structured to set off distinct contributions as op-

posed to adhering to the structure of published content. Each major thrust

of the research entailed a number of important but ancillary enhancements to

Vinti theory itself that were essential to that particular topic or application.

At the conclusion of this work, the number of enhancements had accumulated

to a point where they could comprise an entire chapter. These miscellaneous

improvements are contained in Chapter 2, which begins with some mathemati-

cal preliminaries for Vinti theory. The application to relative motion modeling

may logically fit better toward the end of the dissertation, but the remaining

chapters are instead organized chronologically, with good reason. The relative

motion model presented in Chapter 3 is developed in terms of the classical

spheroidal orbital elements, which are closely tied to Vinti’s original work and

the vast majority of enhancements. At this juncture, the research could have

gone in many different directions. One could argue that there is no point in

developing Vinti theory unless it is proven to be viable and competitive for

11Healy and Henshaw [72] also define so-called “apocentral” coordinates, the analogue of
perifocal coordinates. They describe guidance schemes leveraging periodic relative orbits
with respect to these parameterizations.
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one or more important applications. On the other hand, one could argue that

Vinti theory will never be taken seriously unless convenient, wholly nonsingu-

lar formulations are proven to exist for all orbit types. Of particular interest

is validity for circular equatorial orbits, which are the “bread and butter” of

astrodynamics in practice. Ideally, the contributions would rebut both argu-

ments. As it stands, the relative motion model addresses the first argument,

but greater effort is concentrated on developing a nonsingular theory. To that

end, Chapters 4 and 5 focus on OS equinoctial orbital elements. Chapter 4 de-

velops the coordinate transformations and Chapter 5 addresses analytical orbit

propagation. The interfacing of equinoctial elements with universal variables

is discussed in Chapter 2. Chapter 6 offers reflections on the main conclusions

of the dissertation and identifies directions for future work.

1.7 Summary of Contributions

• A large number of enhancements to Vinti’s analytical solution to the

Vinti problem are introduced, all generally increasing the accuracy and

precision, but in different ways. All enhancements are developed for the

1966 potential that includes J3, which means that they also apply to the

case when J3 = 0 (Chapter 2).

– New equations are developed that avoid catastrophic loss of preci-

sion.

– Algorithms are identified to handle multiple revolution scenarios.

– Singularities and indeterminate computations are removed for nearly
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equatorial orbits.

– A new equation is established for the element that Vinti introduced

to resolve the polar orbit problem, enabling its computation in the

initialization phase when converting from ECI coordinates to ele-

ments.

– Several singularities associated with the zero-energy regime are re-

moved, specifically associated with the anomalistic angles. The

original equations were indeterminate in this regime, even though

the quantities are physically well-defined.

– An equation for the third fundamental frequency is derived for the

first time. Subsequently, a new expression is derived for the secular

motion of the ascending node that does not become indeterminate

for polar orbits.

– Several issues associated with universal variable implementations

are resolved, generally encountered near the zero-energy threshold.

Some solutions are proposed.

– Practical issues in orbit design using classical OS elements are dis-

cussed and algorithms are presented that mitigate those issues.

• Vinti theory is successfully applied to the spacecraft relative motion

problem. An analytical STM is derived in the orbital element space,

and the linear transformations to rectangular coordinates are also in-

cluded for both the inertial and rotating frames. New partial derivatives

are obtained, some tied to the element that resolves some polar orbit
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singularities, while other partials remove singularities contained in the

original partials (Chapter 3).

• Casting the solution in a piecewise differentiable form enables the com-

plete removal of the remaining singularities in the partial derivatives

associated with polar and nearly equatorial orbits (Chapter 3).

• The Vinti-based STM is evaluated by comparison against a benchmark

Brouwer-based STM and a numerically integrated solution. Over a range

of eccentricity, inclination, and spacecraft separation distance, including

the critical inclination, the Vinti-based model is shown to be more accu-

rate than the other model (Chapter 3).

• A robust implementation of state propagation with STM computation

(Chapters 2 and 3) has been released online as an open-source tool for

Vinti-based relative motion modeling.

• Oblate spheroidal equinoctial orbital elements are introduced for the

first time and derived. They are the generalization of the traditional,

spherical equinoctial elements to an oblate spheroidal geometry. Concise

algorithms for converting between inertial rectangular coordinates and

the generalized equinoctial elements are presented. The transformations

are exact except near the poles, where it is as accurate as the analytical

solution (Chapter 4).

• As presented, the OS equinoctial elements completely remove all singu-

larities except the nearly rectilinear orbit case. The singularities on the
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poles are resolved for the first time in a robust fashion. Limitations on

the maximum magnitude of J2 are also relaxed with the development of

an exact expression for the time derivative of the right ascension of the

ascending node (Chapter 4).

• Analytical state propagation in Vinti’s solution is recast and derived in

OS equinoctial orbital elements. New elements are introduced and the

equinoctial form of the generalized Kepler’s equation is solved. Proper-

ties of OS equinoctial elements are established by comparison to their

spherical counterparts (Chapter 5).

• With a view to universal analytical state propagation, an alternative

quasi-nonsingular element set is proposed that is a very slight modifi-

cation of the OS equinoctial set derived in Chapter 4. When properly

coupled with the OS equinoctial set, the resulting piecewise element set

forms the basis of a wholly nonsingular Vinti theory (Chapter 2).
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Chapter 2

Enhancements to Vinti Theory: Relaxing

Assumptions, Increasing Accuracy and

Precision, and Removing Singularities

The overarching contribution of this chapter is a broadened applica-

bility of Vinti theory achieved by better handling if not complete removal of

known and newly discovered deficiencies. Accuracy and precision is improved

and certain singularities are removed. Methods for dealing with some practical

issues of orbit design are also presented. Each section and sub-section of this

chapter represents or contains a new contribution to Vinti theory.

2.1 Revisiting Vinti’s Solution

Vinti’s analytical solution can be expressed as a nonlinear function f of

the initial state xi:

xI = f(t,xI
i) (2.1)

where the superscript denotes the coordinates used to represent the state and

the state vector is defined as

x> =
[

r> v>
]

(2.2)

so that in ECI coordinates, xI = [X, Y, Z, Ẋ, Ẏ , Ż]> = [X, Y, Z, vx, vy, vz]
>.

Because the model in Chapter 3 is largely derived from Bonavito’s computa-
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tional procedure [21], the discussion of modifications and issues is often with

respect to that particular reference. First, some nuances of factoring the quar-

tics are discussed and improvements are suggested. Also to be addressed are

some of the singularities punctuating the basic initialization process, defined

as the steps required to convert initial ECI coordinates to a set of constant

osculating spheroidal orbital elements or Vinti orbital elements (VOEs). The

entire algorithm for the modified Vinti orbit propagator is depicted in the

flow chart in Fig. 2.1. The main differences are the use of Ω′ in the algorithm.

Initialization: 
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Inputs: x
i
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i
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Figure 2.1: Flow chart for the modified bounded Vinti orbit propagator using
the element Ω′.

While Vinti [160] formally defined the element Ω′, its definition in terms of ini-
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tial conditions given in ECI coordinates had remained elusive until now. The

identification of appropriate methods of factoring the quartics for the bounded

case, including those intended for universal formulations, is also new.

2.1.1 Oblate Spheroidal Coordinates

Vinti’s method uses oblate spheroidal coordinates of the hybrid variety.

Assuming that the ECI and OS frames share an origin at the Earth’s center

of mass, as in Vinti’s original potential, ECI coordinates can be expressed in

terms of OS coordinates as

X =
√

(ρ2 + c2)(1− η2) cosφ

Y =
√

(ρ2 + c2)(1− η2) sinφ

Z = ρη

(2.3)

where ρ is the semiminor axis of the oblate spheroid tangent to the spacecraft,

η is the sine of a latitude-like angle, φ is the right ascension, and c is the

radius of the spheroid’s focal circle in the spheroidal equatorial plane (the focal

separation is 2c). The geometry of the coordinate system is depicted in Fig. 2.2.

The notion of hybrid OS coordinates refers to the fact that the set retains one

angle and eliminates the other. Notably, constant values of ρ specify confocal

oblate spheroids, those of η specify confocal hyperboloids of one sheet 1, and

those of φ specify meridional planes. The spheroids and hyperboloids share the

same foci. In orbital mechanics applications, i.e. because the motion occurs

1There are two types of hyperboloids: one-sheet and two-sheet. Two-sheet hyperboloids
of revolution are revolved around the axis passing through the foci, forming two separate
surfaces. One-sheet hyperboloids of revolution are revolved around an axis perpendicular
to the other that passes through the origin, forming one single surface.
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Figure 2.2: Geometry of oblate spheroidal coordinates: cross-section of the
XZ-plane (the η = 0 line marks the equatorial plane) zoomed in to an equa-
torial radius of approximately 451 km.

outside the Earth, ρ is approximately the magnitude of the position vector

and the latitude-like angle can be regarded approximately as the declination

θ, where η ≈ sin θ. The ranges on the coordinates are ρ > 0, −1 ≤ η ≤ 1,

and 0 ≤ φ < 2π, where ρ = 0 defines the focal circle and the surface η = 0

is the portion of the equatorial plane outside the focal circle. The focal circle

is actually a forbidden zone [104, 50]. Trajectories hypothetically passing

through the forbidden zone are rare but still physically realizable, as for rockets

or meteors having a near-unity eccentricity, representing a special case for

which an analytical Vinti trajectory does not exist. Such trajectories must be

handled numerically.

Sherrill [133] points out that the oblate spheroids of the coordinate
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system as fitted above are not confocal with the oblate spheroid that approx-

imates the shape of the Earth’s figure. For the Earth, while c ≈ 210 km for

the fitted coordinate system, Sherrill finds the semi-focal separation of the

approximating spheroid to be roughly 2.5 times greater at 520 km.

The present study uses the 1966 Vinti potential [158] given by

V = −µ ρ+ ηzδ
ρ2 + c2η2

(2.4)

where µ is the gravitational parameter and zδ is a parameter for capturing J3

by shifting the origin of the OS frame along the Z axis. Thus, c and zδ are

parameters to be fitted to the primary body, chosen as

c2 = R2
eJ2

(
1− J2

3

4J3
2

)
; zδ = −ReJ3

2J2

where Re is the primary body’s equatorial radius. For the Earth, c ≈ 210 km

and zδ ≈ 7 km. If the magnitude of J3 approaches or exceeds J2, then it is

possible to find c2 < 0 and an analytical Vinti trajectory does not exist in this

case either. The specific condition for model validity is

J2
3 < 4J3

2 (2.5)

Also notice that these parameters reduce to the expected values if J3 is to be

neglected.

2.1.2 Orbital Element Sets

The proposed relative motion model makes use of multiple spheroidal

orbital element sets. The VOEs, denoted as œV , are obtained from initial
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conditions mostly following Bonavito’s mechanization [21]. This procedure

can furnish the element set [a, e, S, β1, β2, β3], where a is the semimajor axis,

e is the eccentricity, notionally S ≈ sin2 I, I is the inclination, and the βj

are Jacobi constants derived from the kinematic equations. An alternative

interpretation of the same set is given by [a, e, S,−τ, ω,Ω], where the βj are

replaced with the familiar symbols of τ for time of periapsis passage, ω for ar-

gument of periapsis, and Ω for right ascension of the ascending node (RAAN).

While not mentioned in the literature, the theory appears to be valid if the

equality S = sin2 I is enforced and I is adopted as an element instead of S,

but only if the inclination is allowed to extend into the complex plane. Alter-

natively, a different inclination could be defined from Q = sin I ′, as suggested

by Getchell [62], where I ′ remains real (the connection between S and Q is

discussed later in Eq. (2.11)). Of the elements [a, e, S,−τ, ω,Ω], those written

without subscripts refer to the Vinti or spheroidal orbital elements. Lang [104],

who apparently coined the term spheroidal elements, uses the phrase to dis-

tinguish between Vinti elements and Keplerian elements, which are spherical.

As motivation for coining the term, consider that an orbit having e = 0 is cir-

cular for spherical elements (constrained to the surface of a sphere), while for

spheroidal elements, the orbit could be circular or elliptical [159], or otherwise

constrained to the surface of a spheroid. These spheroidal orbital elements

are constants of the motion. They are analogous to, but different from, the

osculating Keplerian elements (and are completely different from Brouwer’s

mean elements).

The spheroidal element set just described is useful for drawing connec-

53



tions to the Kepler problem, but it is less favorable for a perturbation theory.

A better element set is what Vinti calls the new Delaunay set [156]. Garfinkel

et al. [60] refer to these as “natural” Delaunay elements. In this chapter, the

VOEs are based on this Delaunay set such that œV = [a, e, S, l0, g0, β3]
>, which

results from several canonical transformations that Vinti partly attributes to

Izsak [86]. Vinti used the subscript “0” to denote that these quantities are

initial conditions, but they actually reference the time of spheroidal periap-

sis passage. The subscript “i” will be used instead to denote actual initial

conditions to be consistent with the notation in this dissertation and Vinti’s

notation. The notation adopted for these alternative elements is λ1 = l0 and

λ2 = g0. From another canonical transformation, Vinti also derived a relation

for the third spheroidal Delaunay element, λ3 = h0, but suggested that λ3 = β3

is a better choice. The quantity h0 will become necessary in Chapter 5. To

summarize, the notation adopted here is related to Vinti’s notation as

œV =


a
e
S
λ1
λ2
λ3

 =


a
e
S
l0
g0
β3

 (2.6)

except that to remove singularities in the partials, which is discussed later, S

is replaced with other related quantities. The element l0 is analogous to M0

in the Kepler problem, except that l0 is the initial value of only the secular

part of M(t). The mean anomaly in the Kepler problem is purely secular,

but in the Vinti problem, the analogue has a periodic part. The element g0

does not have an analogue in the Kepler problem, where g would be equivalent
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to the original Jacobi constant, but its mathematical form follows that of l0.

One could consider the secular evolution of the argument of periapsis in the

equivalently perturbed Kepler problem as being related to the variable g in

the Vinti problem.

The particular element set in Eq. (2.6) leads to some simplifications

in the partial derivatives (see Appendix C.3). However, VOEs are actually

not the primary set used in the current work. Instead, they serve more

as an intermediate set. As Tong and Wu [145] did in their perturbation

work, the λj are replaced with time-varying angles for the application to

relative state propagation. A distinct difference is that the present study

adopts an element set that includes the secular and periodic contributions to

the angular variations, whereas Tong and Wu only considered secular effects.

An appealing state representation is also one for which all the time-varying

quantities in the nonlinear transformation to ECI coordinates appear in the

state. Thus, the chosen spheroidal element set is œS = [a, e, S, f, ψ,Ω′]>,

where f is the true anomaly, ψ is the true argument of latitude, and Ω′ is

a slowly varying angle similar to RAAN, originally suggested by Izsak [85].

Vinti [160] developed the last element to remove singularities for polar or-

bits, which are discussed in detail in later sections. It is convenient at this

time to also establish the other orbital element sets used in the GA STM.

In particular, the quasi-nonsingular Keplerian osculating element set is de-

fined as œK = [aK , ψK , IK , qK1 , qK2 ,ΩK ]> and the associated Brouwer mean

element set is defined as œK = [āK , ψ̄K , ĪK , q̄K1 , q̄K2 , Ω̄K ]>. In these sets,

ψK = fK + ωK is the Keplerian true argument of latitude, qK1 = eK cosωK
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and qK2 = eK sinωK are components of the Keplerian eccentricity vector, and

ωK is the Keplerian argument of periapsis. Interestingly, Kozai’s justification

for not using Vinti’s solution as an intermediary orbit is that the VOEs are

too different in value from the mean values of standard elements [102]. He was

reluctant to adopt a new definition of orbital elements.

2.2 General Enhancements in Accuracy and Precision

General improvements to Vinti theory are associated with factoring

the quartics, handling multiple-revolution scenarios for bounded orbits, and

avoiding catastrophic cancellation in computations. Note that the section on

the quartics includes a discussion relevant to a singularity-free factorization

for bounded orbits, in addition to unbounded orbits and trajectories having

nearly zero specific energy.

2.2.1 Factoring the Quartics

Factoring the quartics F (ρ) and G(η) is an important step in Vinti’s

solution because the first three orbital elements are expressed in terms of their

roots. In notable integrable problems in celestial mechanics, periapsis and

apoapsis distances can be obtained from the roots of a characteristic poly-

nomial. This polynomial is a quadratic in r in the Kepler problem [50], a

cubic (degenerate quartic) in r in the J2-perturbed equatorial problem [90],

and a general quartic F (ρ) in the Vinti problem23. In the last two cases, the

2The F (ρ) quartic is also degenerate in the equatorial Vinti problem.
3The polynomial in the Stark problem is also a quartic.
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corresponding roots can be thought of as perturbed periapsis and apoapsis

distances. Using these distances with Keplerian relations, it is easy to obtain

quantities analogous to semi-major axis and eccentricity from the Jacobi sep-

aration constants. In the spirit of maintaining an analytical form of solution,

Vinti [154] proposed a method of successive approximations to analytically

factor F (ρ) into the form

F (ρ) = −2α1(ρ− ρ1)(ρ2 − ρ)(ρ2 + Aρ+B) (2.7)

and, for the other quartic [158], an iterative procedure based on analytical

relations truncated to certain orders when necessary, factoring G(η) into the

form

G(η) =
α2
2 − α2

3

S
(S + 2Pη − η2)(1 + C1η − C2η

2) (2.8)

In Eqs. (2.7) and (2.8), αj are the separation constants for j = 1, 2, 3. The a

and e elements are related to two roots of F (ρ) as

a =
1

2
(ρ1 + ρ2) (2.9)

e =
ρ2 − ρ1
ρ2 + ρ1

= 1− ρ1
a

(2.10)

where ρ1 ≤ ρ ≤ ρ2, and the S element is related to two roots of G(η) as

S = −η0η1 = Q2 − P 2 (2.11)

where −1 ≤ η1 ≤ ηi ≤ η0 ≤ 1 and

P =
1

2
(η0 + η1) (2.12)

Q =
1

2
(η0 − η1) (2.13)
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Equation (2.13) is not explicitly given in the literature. Notice that P and Q

are defined in terms of the roots of G(η) in a way analogous to how a and ae

are defined in terms of the roots of F (ρ). In turn, the way P and Q are used

in the equation η(ψ) = P +Q sinψ to propagate η is analogous to how a and

e are used in the equation ρ(E) = a− ae cosE to propagate ρ.

2.2.1.1 Discussion of Methods

A number of researchers have since addressed the question of how to

factor the quartics, but the methods have not been compared systematically

in terms of advantages and disadvantages. For computing S and related quan-

tities, Bonavito [21] closely follows Vinti’s suggestion and lays out an iterative

procedure that converges rapidly. In practice, however, precision suffers signif-

icantly in some cases, and a more robust solution is to use a different numerical

approach. One option, which Wiesel [166] chose for the 1961 potential, is to

obtain the roots as the eigenvalues of the companion matrices [53], but the ap-

proach is prone to precision issues and raises questions on root identification.

A better option is Getchell’s technique [62], which enjoys excellent numerical

properties and a significant speedup. Note that these results assume a small

J2 value like the Earth’s. If J2 is large, e.g. greater than 10−1, then Getchell’s

method will require more iterations to converge, and the eigenvalue approach

may be preferable.

Getchell’s method of factorization iteratively factors both quartics using

four simple equations per quartic [62], typically converging to double precision

in no more than five iterations each. More iterations may be required in some
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cases, such as for nearly parabolic orbits or for large J2. His method does

not appear to suffer from losses in precision that can arise in the eigenvalue

approach, and it is also robust, except as Getchell notes in the case where the

trajectory is characterized by a very small p0, which is similar to semilatus

rectum [62]. Orbits exhibiting such small p0 values are not relevant for the

present study because periapsis for this class of orbits is near the forbidden

zone. While valid for bounded and unbounded orbits, it is straightforward

to adapt Getchell’s algorithm to an overall formulation that avoids universal

variables, as needed in the present study.

In terms of speed, tests in MATLAB for a representative case with

J2 = 1.08 × 10−3 revealed that Getchell’s algorithm, as compared to the

eigenvalue-based approach, is roughly 18 times faster for factoring F (ρ) and

14 times faster for factoring G(η). The chosen example required 7 iterations

for Getchell’s algorithm to factor F (ρ), which is toward the high end for typi-

cal Earth scenarios, and 4 iterations to factor G(η), which is on the low end.

These timings neglect overhead in the eigenvalue-based approach that may be

devoted to handling numerical issues. They also specify a convergence toler-

ance in Getchell’s algorithm that leads to a double precision factorization, so

that the maximum number of iterations is executed. As such, actual speedups

attained with Getchell’s method may be higher in practice. Note that the

implementation of Getchell’s method uses Getchell and Monuki’s technique

for factoring F (ρ), initializing the algorithm at the second iteration by ana-

lytically determining the values output after the first iteration [50]. In the

current study, the author applied a similar technique to factor G(η). If forced
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to execute 7 iterations, factoring G(η) is still roughly 10 times faster than the

eigenvalue method.

2.2.1.2 Connecting Getchell’s Method to Vinti’s Solution for Bounded
Orbits

To adapt Getchell’s method to the present formulation for bounded

orbits, there are a number of notational differences to keep track of and a few

additional quantities to compute after factoring. Der and Bonavito [50] give

some of these relations, not all, and of those that they give, several contain

typographical errors, which are corrected here. For F (ρ), the relations between

Getchell’s notation and Vinti’s, giving Getchell’s first, are A1 = b1 = −A/2,

B1 = B, γ0/γ1 = γ, and γ0 = 2α1/µ = −1/a0, where γ = −p/(ρ1ρ2) =

−2/(ρ1 + ρ2) = −1/a. Note that a0 and p0 are among the so-called “prime

constants” [21]. These two constants are analogues of semimajor axis and

semilatus rectum, having the usual relationships to the separation constants.

The quantities related to semimajor axis are used in Vinti’s solution, but

would never be computed in the universal variables approach. For G(η), the

equivalent quantities in Getchell’s notation are σ = η, P1 = C1, Q1 = C2,

S0/S1 = S, S0 = 1−α2
3/α

2
2; the notation for S, P , and Q is unchanged. After

obtaining C2, Vinti’s derived constant u must also be computed and can be

obtained from

u =
a0p0
c2

C2 (2.14)

which avoids Vinti’s treatment that approximates u as a root of a cubic equa-

tion in 1/u [158]. One obvious issue with Eq. (2.14) is that as c→ 0, i.e. as the
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dynamics become more Keplerian, the computation of u becomes inaccurate

due to the division by zero. This property is undesirable, as the Vinti solution

should smoothly approach the Kepler solution as oblateness decreases to zero.

A better equation for computing u is to use Getchell’s equation for S1 noting

that u = 1/S1. Getchell computes S1 as

S1 =
p0 − c2γ0 − S0p0Q1

(1− 2PP1)p0
(2.15)

2.2.1.3 Connection to Fundamental Frequencies

Factorization of the quartics is also essential to computing accurate

fundamental frequencies. Getchell’s factorization algorithm can enable the

calculation of the mean frequencies to very high accuracy. Effectively, the

only limit on the accuracy of the mean frequencies is imposed by the secular

coefficients B′1, B2, and B3, which are respectively correct to O(J3
2 ), O(J4

2 ),

and O(J4
2 ) (Walden and Watson [164] corrected Vinti’s expressions for these

coefficients). To increase accuracy, these expressions need only be carried to

higher order. Section 2.4 gives a new expression for the third mean frequency

and relates the fundamental frequencies to Wiesel’s [166] equations for the

frequencies.

2.2.2 Avoiding Catastrophic Cancellation

One important caveat to using any of the mentioned procedures to

factor the quartics is that α2 and the difference α2
2−α2

3 must not be computed

blindly. Some formulas for α2 have singularities at the poles and α2
2 − α2

3 is

prone to catastrophic cancellation for nearly equatorial orbits, which is not
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mentioned in the literature. These Jacobi constants are close in value in this

case because α3 is the polar component of angular momentum and α2 is closely

related to the total angular momentum. In general, it is better to use the

singularity-free equation [62]

α2
2 = 2µρi + 2α1ρ

2
i +

c2α2
3 − F (ρi)

ρ2i + c2
(2.16)

to compute α2, but the alternative equation [62]

α2
2 = −2µηizδ − 2α1c

2η2i +
α2
3 +G(ηi)

1− η2i
(2.17)

is useful for nearly equatorial orbits, far from the singularity at ηi = 1, when

trying to compute the difference α2
2 − α2

3. To retain significant digits in the

difference, this quantity should be computed as

α2
2 − α2

3 = −2µηizδ − 2α1c
2η2i +

α2
3η

2
i +G(ηi)

1− η2i
(2.18)

for orbits sufficiently close to equatorial. Using Eqs. (2.16) and (2.18) has

shown to help prevent violations of the various bounds on ηi, η0, and η1 in

the eigenvalue method and generally improves precision in Getchell’s method,

directly affecting the number of correct digits in S0. Obtaining the most pre-

cise estimates of a, e, S, P , and Q is important because these constants are

used directly in equations toward the end of the propagator without further

modification to propagate ρ and η. Errors in the final OS coordinates per-

ceived to be small can grow substantially under the nonlinear transformation

back to ECI coordinates. Without the enhancements of this sub-section, it is

impossible to obtain a reliable analytical solution for nearly equatorial orbits.
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2.2.3 Error Growth under the Nonlinear Coordinate Transforma-
tion

This sub-section explores and expands on the above statement regard-

ing the potential for large error growth under the nonlinear transformation

from OS coordinates back to ECI coordinates. The point is most easily illus-

trated with the Z coordinate, where Z = ρη − zδ. The shift of zδ is dropped

in the following discussion without loss of generality.

Suppose the final, propagated OS coordinates ρ and η are modeled as

having some error ε:

ρ = ρ̄+ ερ (2.19)

η = η̄ + εη (2.20)

The Z coordinate can then be expressed as

Z = ρη = (ρ̄+ ερ)(η̄ + εη) = ρ̄η̄ + ρ̄εη + η̄ερ + ερεη (2.21)

The ρ̄η̄ term represents the exact value of Z. The quadratic error term ερεη

may be neglected because it is O(J6
2 ), assuming a solution correct to O(J2

2 ).

The η̄ερ term does not worsen the accuracy of Z beyond the error already in

ρ because −1 ≤ η ≤ 1. However, the ρ̄εη term could be a real problem that

potentially adds orders of magnitude of error because ρ̄ may be around 104

km and εη may be around 10−6. If catastrophic cancellation has entered into

the εη error for an equatorial case, then the error in Z could be several meters,

for example.
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2.2.4 Handling Multiple Revolutions

Recall from Vinti [158] that the propagation step is solved in three

stages to successively higher order, concluding with second order periodic

terms. If the spacecraft is near spheroidal periapsis, then it is possible during

the propagation step for the anomaly to bounce around the boundary in the

range −ε ≤ v ≤ ε for some small ε. At each stage, the various anomalistic

angles must be consistent. In the Kepler problem, the angles must locate

the spacecraft in the same half of the ellipse, on one side of the apse line,

which when restricted to near periapsis amounts to the angles being in the

same quadrant. In the Vinti problem, then, an equivalent requirement is that

{v, E,M} ∈ [0, π) or {v, E,M} ∈ [π, 2π) in general and at each stage of state

propagation.

Let npj be the number of times the spacecraft passes through periapsis

determined as

npj =

⌊
Mj

2π

⌋
(2.22)

for each stage j, where Mj is the effective mean anomaly and the brackets

denote the floor function, rounding the argument to the nearest integer toward

negative infinity. Note that by this definition, np can be negative, which

has the advantage of allowing the use of the same formulas for forward and

backward propagation. Note also that precision loss would become an issue

after millions of revolutions, but it does not represent a practical issue because

a Vinti trajectory would need to be rectified to improve accuracy well before

such a precision problem arises.
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The following discussion walks through the necessary steps for an al-

gorithm. It begins with stage j = 0, which considers only the incorporation

of zeroth order periodic terms. For stage j = 0, the effective mean anomaly is

M0 = Ms. In other words, the periodic contribution in stage 0, which is the

zeroth order periodic term, is Mp0 = 0. If np0 = 0, then the mean anomaly for

the stage is M0 = Ms with no adjustment for periapsis passes. Otherwise, or

more generally, M0 is determined as

Mmod0 = Ms − 2πnp0 (2.23)

The stage ends with the determination of E0, f0, and ψ0. Note that the no-

tation in this section for these angles indicates the effective or total angle,

whereas Vinti used this notation to denote periodic components of order equal

to the number in the subscript. For clarity in this section, the periodic com-

ponents are instead indicated with an additional subscript “p” as in Ep0 . The

anomalies Emod0 and fmod0 are obtained from solving Kepler’s equation and

applying the anomaly relations. The effective argument of latitude is deter-

mined as ψ0 = ψs + ψp0 , where ψp0 is computed once fp0 is known. These

equations are all available in Vinti [158], although due to typographical errors

it is better to reference Bonavito [21].

Incrementing j, stage j = 1 begins with computing Mp1 from Eq. (5.6)

in Bonavito [21]. Now, the effective mean anomaly is

M1 = Ms +Mp1 (2.24)

Equation (2.22) can be applied to obtain a corrected count np1 for the number
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of passes through periapsis.

Mmod1 = Ms +M1 − 2πnp1 (2.25)

Equations in Bonavito [21] relevant to stage j = 1 are applicable for determin-

ing E1, f1, and ψ1, and the algorithm continues in this fashion to arbitrary

stage/order j. The emerging pattern can be generalized to an arbitrary num-

ber of stages as

Mmodj =

(
Ms +

j∑
k=1

Mpk

)
− 2πnpj (2.26)

or

Mmodj = Mj − 2πnpj (2.27)

where npj is properly corrected at each stage j in the event that successive

higher order corrections push the satellite location alternately beyond and

behind periapsis.

2.3 Removing Singularities

This section discusses how to remove the troublesome singularities that

appear in Vinti’s original work, referring to either of his solutions. Recall that

his 1961 solution [154] is based on the separable problem defined by the 1959

potential [152] (J3 = 0) and his 1966 solution [158] is based on the separable

problem defined by the 1966 potential [159] (J3 6= 0). He summarized these

solutions in 1969 with a modification that introduced spheroidal RAAN as an

orbital element [160] to extend his solution to polar orbits. The singularities

mitigated here are strong singularities, meaning that they are at some point
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associated with a division by zero, whether in theory or implementation. Sin-

gularities associated with nearly zero energy are ignored because neither Vinti’s

nor Lang’s solution was designed to be valid in that orbit regime. Nonethe-

less, nonsingular expressions are derived for the time derivatives of several key

angular elements because of their subsequent use in the equinoctial elements

solution in Chapter 4. Existing expressions for those quantities are singular or

indeterminate when the energy is near zero. The singularities associated with

angle ambiguities in the orbital elements are treated separately in Chapter 4

with the introduction of oblate spheroidal equinoctial orbital elements (J3 = 0

case).

2.3.1 Singularities Associated with Polar Orbits

As for spherical coordinates, the azimuthal angle in oblate spheroidal

coordinates becomes undefined for polar orbits. This problem can be reme-

died by replacing right ascension with the slowly varying angle Ω′, which was

mentioned previously. After incorporating the zδ offset and this alternative

element of Vinti [160], the ECI coordinates satisfy:

X =
√
ρ2 + c2

[
H1 cos Ω′ cosψ − sgn α3

√
1− S
H1

sin Ω′(H2 +H3 sinψ)

]
Y =

√
ρ2 + c2

[
H1 sin Ω′ cosψ + sgn α3

√
1− S
H1

cos Ω′(H2 +H3 sinψ)

]
Z = ρη − zδ

(2.28)

where Hk are constants for k = 1, 2, 3. The signum function sgn (·) is used

throughout this dissertation and should be interpreted without the zero con-

dition so that sgn (0) = 1. While Vinti’s equations address the singularity
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associated with propagation, without the inverse transformation from ECI co-

ordinates to Ω′, Vinti orbit initialization is still poorly defined for nearly polar

orbits and for the pathological case of initializing when a spacecraft is on a

pole. The element β3 must be computed using the nonsingular equation given

by Vinti [160]:

β3 = Ω′i +
α3c

2

(−2α1)
1
2

(
A3vi +

4∑
k=1

A3k sin kvi

)

− α3u
1
2

α2

(
B3ψi −

3

4
C1C2Q cosψi +

3

32
C2Q

2 sin 2ψi

) (2.29)

which requires that Ω′ be computed directly from initial conditions (the sin-

gularity at zero energy is still present). Expressions for the constants Aj A3j,

B3, and Cj are given by Vinti [154, 158]. Such a relationship for Ω′ was never

given, however. In addition to the singularity, the original equation for β3 also

requires evaluating the initial right ascension as φ = atan2 (Y,X), so that near

a pole, whether the orbit is exactly or nearly polar, φ is highly sensitive to

variations in X and Y . After some manipulation of the X and Y equations in

Eq. (2.28), it can be shown that

Ω′ = atan2
[
Y H1 cosψ − sgn α3XH

−1
1

√
1− S(H2 +H3 sinψ),

XH1 cosψ + sgn α3Y H
−1
1

√
1− S(H2 +H3 sinψ)

] (2.30)

Eq. (2.30) is valid for any time, exhibiting improved behavior near the poles

for nearly polar orbits. While not defined exactly at the pole, this situation

can only occur for exactly polar orbits, when Ω′ is equal to the easily com-

puted Keplerian RAAN. When sufficiently far from the e = 0 singularity, an

alternative way to handle the pathological case that would guarantee smooth
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behavior near the poles is to use a differential correction procedure [163], which

generally converges to the VOEs in two to four iterations. Note that this pro-

cedure uses a different element set discussed in a later section, where S is

replaced with S̃. A similar procedure is used in the present study to transform

Keplerian osculating elements to Brouwer mean elements. To obtain mean el-

ements, an iterative procedure is always required, whereas to obtain classical

Vinti elements, it may only be required in rare, pathological cases.

2.3.2 Singularities Associated with Equatorial Orbits: b2

Vinti has an elegant way of expressing the secular coefficients A1, A2,

and A3 with Legendre polynomials. The expressions for these coefficients

contain terms of the form (b2/p)
nPn(b1/b2), where b1 = −A/2, b2 =

√
B,

and p = a(1 − e2). These terms clearly become indeterminate when b2 = 0,

occurring for equatorial orbits under Vinti’s 1959 potential (reminiscent of

the degenerate quartic in the J2-perturbed equatorial problem). For the 1966

potential, when the origin of the OS frame is shifted zδ below the ECI frame,

b2 transitions from real and positive to zero to purely imaginary at a small

inclination greater than equatorial when α2 = α3. This statement is equivalent

to saying that B transitions from positive to negative at the same inclination

because b2 =
√
B. Vinti [155] pointed out this singularity and devised a

way to remove the indeterminacy by using (b1/p)
nRn(b2/b1) instead near the

singularity, where Rn(x) ≡ xn ·Pn(1/x). Note that this alternative form is not

always valid either because b1 approaches zero for nearly polar orbits.

In this study, in which partial derivatives are also required, the b2 singu-

69



larity appears in new places such that a new approach to handle the singularity

is necessary. The Walden and Watson [164] equations for partial derivatives

are useful away from the singularity and can leverage the recursive definition

of Legendre polynomials and their first derivative. However, these equations

suffer from the same singularity, originating from the equation for the partial

of b2:

∂b2
∂σj

=
1

2ab2

[
(ap− c2)

(
b1
a
δ1j −

∂b1
∂σj

)
− b1

(
pδ1j + a

∂p

∂σj

)]
(2.31)

A convenient notation similar to Walden and Watson’s is adopted here, where

σ1 = a, σ2 = e, and σ3 = S, and δjk is the Kronecker delta [164]. Expand-

ing and simplifying all relevant equations of Vinti’s theory [154] and Walden

and Watson’s partials reveals that b2 never appears in the denominator and

∂b2/∂σj is always multiplied by b2 or higher powers of b2. In other words, the

singularity at b2 = 0 is artificial, a product of how the equations are expressed

or computed.

In most cases, the singularity in the partials is easily avoided by directly

computing b2 · ∂b2/∂σj from Eq. (2.31) without dividing by b2. However, the

partials of the Ai coefficients are problematic as presented by Walden and

Watson [164]. First, they imply computing Legendre polynomials separately,

which means Vinti’s remedy must be used near the singularity. But regardless

of whether Vinti’s technique for removing the indeterminacy is used, there

are terms containing ∂b2/∂σj that are not multiplied by b2. For example, in

the equation for ∂A1/∂σj, the term containing ∂/∂σj(b1/b2) can at best be

multiplied by b22, so that the ∂b2/∂σj term within ∂/∂σj(b1/b2) still contains
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the singularity. As long as the condition J2 < 0.17 is satisfied, the Legendre

expansion for the Ai coefficients is valid over all inclinations [50]. Instead of

treating the Legendre polynomials as isolated recursive computations within

the summed terms, the product (b2/p)
nPn(b1/b2) should be multiplied out

before computation to avoid dividing by zero. Because (b2/p)
nPn(b1/b2) and

(b1/p)
nRn(b2/b1) are interchangeable with overlapping regions of validity, it is

justified to expand the expressions in this manner as Vinti did for the analogous

periodic coefficients Aij. The cost is the extra compute effort associated with

explicit (as opposed to recursive) Legendre polynomials. The modified partial

derivatives of these secular coefficients are included in Appendix C.1.

2.3.3 Some Singularities Associated with Zero Energy

Vinti writes ḟ as

ḟ =
a

ρ

[
−2α1(1− e2)

]1/2 (ρ2 − 2b1ρ+ b22)
1/2

ρ2 + c2η2

=
a

ρ

[
µ(1− e2)

a0

]1/2
(ρ2 − 2b1ρ+ b22)

1/2

ρ2 + c2η2

(2.32)

which is indeterminate when e = 1 due to 0·∞ computations. Noting a =
√
a2,

the equation can be rewritten as

ḟ =
1

ρ

[
µ

(
a

a0

)
a(1− e2)

]1/2
(ρ2 − 2b1ρ+ b22)

1/2

ρ2 + c2η2

=
(µγ1p)

1/2

ρ

(ρ2 − 2b1ρ+ b22)
1/2

ρ2 + c2η2
(2.33)

which is always defined for all non-degenerate orbits. Similar manipulations

can be made to expressions for e sin f and e sinE to remove indetermina-

cies. Bonavito [21] arrives at the following expression for the elliptical case for
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e sin f :

e sin f =

√
F (1− e2)1/2

ρ
√

(−2α1)(ρ2 − 2b1ρ+ b22)
(2.34)

A 0/0 computation is observed in Eq. (2.34) for zero-energy orbits, where

(1− e2)1/2 goes to zero in the numerator and α1 goes to zero in the denomina-

tor. With more care, the indeterminacy can be removed with a generalization

to unbounded orbits by multiplying the expression by
√
a/
√
a and performing

manipulations similar to those done to arrive at Eq. (2.33):

e sin f =

√
Fp1/2

ρ [µγ1(ρ2 − 2b1ρ+ b22)]
1/2

= sgn
√
F

[p(γρ2 + 2ρ− p)]1/2

ρ
(2.35)

The second equation in Eq. (2.35) can be obtained by comparison to Eq. (8)

in Getchell [62]. Its counterpart, e cos f , is determined as

e cos f =
p

ρ
− 1 (2.36)

Similarly for e sinE, Bonavito [21] arrives at the following expression:

e sinE =

√
F

a
√

(−2α1)(ρ2 − 2b1ρ+ b22)
(2.37)

which has a 0 · ∞ computation in the denominator for zero-energy orbits. By

again absorbing a factor of
√
a into the radical, this time in the denominator,

the equation can be rewritten as

e sinE =

√
F |γ|1/2

[µγ1(ρ2 − 2b1ρ+ b22)]
1/2

= sgn
√
F |γ|1/2(γρ2 + 2ρ− p)1/2 (2.38)

2.4 Fundamental Frequencies

There are three fundamental frequencies, denoted as either anomalistic,

draconitic, or sidereal. They are defined from a dynamical systems perspective,
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where each is fast and, in general, distinct, having similar values to first order.

The anomalistic frequency is associated with the rate at which a spacecraft

passes through periapsis, tied to anomalistic angles like mean anomaly. The

draconitic frequency is associated with the rate at which a spacecraft passes

through the equatorial plane or ascending node, tied to the argument of lati-

tude. The sidereal frequency is associated with the rate at which a spacecraft

makes a complete orbit relative to the stars, tied to angles like mean longitude

and right ascension. In astrodynamics, practitioners are typically concerned

with three different but related frequencies, one fast and two slow. The fast one

is the same anomalistic frequency described above. The first slow frequency

is tied to the motion of periapsis, associated with the rate at which periapsis

passes through the equatorial plane. The second slow frequency is tied to the

motion of the ascending node, associated with the rate at which the ascending

node makes a complete revolution relative to the stars. Equations (2.47–2.49)

define these last three frequencies in terms of the fast ones. Note that the

orbital period can be defined by the sidereal frequency, i.e. the time deriva-

tive of the secular mean longitude, and that a frozen orbit results when the

anomalistic frequency is commensurate with the draconitic frequency.

With respect to these frequencies, dynamical systems are generally not

degenerate. The Kepler problem is degenerate because the three fast fre-

quencies are not distinct and collapse into one. The Vinti problem is non-

degenerate, wherein all three frequencies take on distinct values that are sim-

ilar to each other for an Earth application. Vinti [153] presents a general

mathematical proof that connects the mean frequencies to the energy and ac-
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tion variables for a special class of separable system of which Vinti theory is a

member. Specifically, each frequency is equal to the partial derivative of the

energy with respect to one of the three action variables. The proof is applica-

ble to any nonpolar orbit in an artificial satellite context. The case of a nearly

or exactly polar orbit is addressed for the first time in this section and actually

utilized to derive a new expression for the secular motion of spheroidal RAAN.

Vinti [158] developed analytical expressions for the first two mean fre-

quencies (anomalistic and draconitic) assuming the 1966 potential (J3 6= 0).

These frequencies are determined as

2πν1 =
(−2α1)

1/2

a+ b1 + A1 + c2A2B′1B
−1
2

(2.39)

2πν2 =
α2u

−1/2

a+ b1 + A1 + c2A2B′1B
−1
2

(2.40)

but a similar analytical expression for the third (sidereal) has not been previ-

ously published and will be derived in the next section.

2.4.1 The Third Fundamental Frequency: 2πν3

For comparison to the results of Wiesel [166], it is useful to have an

analytical expression for the third mean frequency. From Eq. (7.14) in Vinti

[154], the third mean frequency can be expressed as

2πν3 = −ν1j13 − ν2j23 (2.41)

where νm for m = 1, 2, 3 are the mean frequencies associated with ρ, η, and

φ, respectively, and jmn are the partials of the action variable jm with respect
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to αn for n = 1, 2, 3. The expression for j13 is unchanged from Eq. (7.18) in

Vinti [154], given as

j13 = 2πc2α3(−2α1)
− 1

2A3 (2.42)

but j23 under the 1966 Vinti potential is not the same. First, it can be shown

that the generic form for j23 becomes

j23 = −2α3N3(η0) = −2α3N3(ψ = π/2) (2.43)

After much algebra, the expression for j23 reduces to

j23 = −2πα3

√
u

α2

[
B3 +

1√
1− S

(
h1√

1− 2ζ
+

h2√
1 + 2ζ

)]
(2.44)

The mean frequency ν3 is finally obtained by substituting Eqs. (2.42) and

(2.44), along with Eq. (122) from Vinti [158] for ν1 and ν2, into Eq. (2.41).

After simplifying the result into a form similar to the expressions for ν1 and

ν2, ν3 can be determined as

2πν3 =
α3

a0 + A1 + c2A2B′1B
−1
2

×
{
−c2A3 +

A2

B2

[
B3 +

1

S̃

(
h1√

1− 2ζ
+

h2√
1 + 2ζ

)]} (2.45)

The expression for ν3 in Eq. (2.45) is exact. Note that the singularity for polar

orbits is expected here because the right ascension, φ, is discontinuous for

polar orbits. Neglecting the rotation of the Earth, the notational relationship

between the frequencies derived by Wiesel [166], which he denoted as Ωm, and

those of Vinti is

Ωm = 2πνm (2.46)
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2.4.2 Secular Motion

Recalling the coordinates and conjugate momenta of Hamiltonian me-

chanics, the source of secular growth can be traced to the time derivatives

of the coordinates l, g, and h, using Delaunay’s notation. These variables

correspond to mean anomaly, argument of periapsis, and right ascension of

the ascending node, respectively. Vinti [156] derived expressions for analogous

variables that describe the secular drift rates of three analogous spheroidal

elements. Their time derivatives are determined as

l̇ = 2πν1 (2.47)

ġ = 2π(ν2 − ν1) (2.48)

ḣ = 2π(ν3 − ν2sgn α3) (2.49)

where the νj are the fundamental frequencies

Ṁs = 2πν1 =
(−2α1)

1/2

a0 + A1 + c2A2B′1B
−1
2

(2.50)

ψ̇s = 2πν2 =
α2u

−1/2A2B
−1
2

a0 + A1 + c2A2B′1B
−1
2

(2.51)

φ̇s = 2πν3 =
−α3

a0 + A1 + c2A2B′1B
−1
2

×
{
c2A3 −

A2

B2

[
B3 +

1

S̃

(
h1√

1− 2ζ
+

h2√
1 + 2ζ

)]}
(2.52)

M is the spheroidal mean anomaly, ψ is the spheroidal argument of latitude,

φ is the right ascension, and the “s” subscript indicates that the quantity

only contains the secular part. Equations (2.50) and (2.51) are derived by

Vinti [158] and Eq. (2.52) is derived in Section 2.4.1. Note that ν3 is composed

of a linear combination of ν1 and ν2, and is directly related to the secular
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motion of right ascension. Since right ascension is discontinuous for polar

orbits and poorly defined for nearly polar orbits, observable in the division

by S̃, an alternative variable or expression is required to make the theory

uniformly valid. One option is to directly replace h by Ω′s, the secular part of

a slowly-changing variable Ω′ similar to RAAN that tracks a slowly rotating

reference plane [160], obtained by removing the part of φs that varies rapidly

near a pole. Equation (2.49) can be replaced by

Ω̇′s = − α3

a0 + A1 + c2A2B′1B
−1
2

(
c2A3 −

A2

B2

B3

)
(2.53)

This expression agrees with the derivative of Wu and Tong’s formula [169] for

Ω′s. Further justification for removing the fast part is that the ECI coordinates

can be expressed in terms of the elements in such a way that they do not

depend on the fast part, only on Ω′. An alternative approach leading to the

same result begins with an observation: since the present goal is to derive a

formula for ḣ, an alternative expression for φ̇s can be used that does not contain

the singularity. By substituting Eqs. (27), (147), (149.1), and (154) from

Vinti [158] into Eq. (2.45) of this dissertation and manipulating the equations,

it is possible to show that

α3√
1− S

(
h1√

1− 2ζ
+

h2√
1 + 2ζ

)
=

α2√
u

sgn α3 (2.54)

where the
√

1− S in the denominator cancels with the term in α3. Making

this substitution in Eq. (2.45), Eq. (2.49) can be readily applied to arrive at

the expression in Eq. (2.53) for ḣ = Ω̇′s.
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2.4.3 Returning to the Third Fundamental Frequency

By substituting Eq. (2.53) into Eq. (2.49) and moving φ̇s = 2πν3 to the

left-hand side, a nonsingular expression for 2πν3 is obtained as

2πν3 =
1

a0 + A1 + c2A2B′1B
−1
2

[
sgn α3α2u

−1/2A2B
−1
2

− α3

(
c2A3 −

A2

B2

B3

)]
(2.55)

2.5 Spheroidal Universal Variables

Neither Vinti’s solutions [154, 158] (bounded) nor Lang’s solution [104]

(unbounded) is valid when the spacecraft’s specific energy, α1, is near zero.

Getchell [62] went to great lengths to express a solution to the Vinti problem in

universal variables, unifying the existing solutions for bounded and unbounded

orbits. An important neglected detail of his work is the presentation of a

method of computing the universal variable X̂ at the initial time when the

trajectory is near the zero-energy threshold or nearly “parabolic”. The word

“parabolic” is used in quotes because, while many of the orbit parameters

signify what is considered a parabola in the Kepler problem (e = 1 and α1 = 0),

trajectories in the Vinti problem are generally not conic sections, and so the

Vinti “parabola” is not a parabola in a geometric sense. That being said,

a “parabola” still represents the boundary between bounded and unbounded

motion in the Vinti problem. From this point forward, quotes will only be

used on the word “parabola” if necessary, and it should generally be clear

from context whether the word refers to the zero-energy case in the Vinti

problem or the Kepler problem.
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2.5.1 Definition for the Vinti Problem

There are some key differences between the Vinti and Kepler problems

that lead to differences in the definition of the universal variables. In the

Kepler problem, the spacecraft is constrained to move in an invariant plane.

The solution can be expressed in terms of the f and g functions to directly

propagate the position and velocity vectors, without computation of most of

the orbital elements. The problem is solved iteratively with a good initial

guess of the variable X̂K at the final time. There is no need to ever compute

X̂K at the initial time. Consequently, in the Kepler problem, X̂K is associated

with a change in the eccentric-anomaly-like variable, which in the elliptical

case is expressed as

X̂K =
√
aK (EK − EKi) (2.56)

In the Vinti problem, there are a number of complications. The solution

cannot be expressed only in terms of eccentric anomaly as the fast variable

because an invariant plane no longer exists. True anomaly is also required,

as is the true argument of latitude. Additionally, determination of the orbital

elements cannot be avoided. Extra steps are required to obtain the Jacobi

constants, and these constants must be known before propagating the orbit.

As a result, it seems that X̂ must be computed first at the initial time from

known quantities. The familiar process of guessing X̂ at the final time is still

essential but it is done at a later stage, after obtaining the Jacobi constants.

These requirements inform a different definition of the universal variable, which
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is essentially defined by a different form of the spheroidal conic equation [62]:

ρ = ρ1 + eĈ (2.57)

where Ĉ is another universal variable. Equation (2.57) is equivalent to ρ =

a(1 − e cosE). The universal variables X̂, Ĉ, Ŝ, Û are defined in Table 2.1

for the different regimes in terms of the classical orbital elements [125]. Note

that D is the parabolic eccentric anomaly and Eh is the hyperbolic eccentric

anomaly. As a word of caution, these equations should not be used to convert

between the representations when e is near unity, but they are nonetheless very

helpful for understanding what the universal variables represent physically.

The equations in Table 2.1 are also critical for computing X̂ and Û given Ĉ

and Ŝ, as will be seen shortly.

Table 2.1: Spheroidal universal variables in terms of classical spheroidal ele-
ments

Variable
Ellipse Parabola Hyperbola

e < 1 e = 1 e > 1

γ −1/a 0 1/a

X̂ (a)1/2E D (−a)1/2Eh

Ŝ (a)1/2 sinE D (−a)1/2 sinhEh

Ĉ a (1− cosE) 1
2
D2 a (1− coshEh)

Û (a)3/2 (E − sinE) 1
6
D3 (−a)3/2 (sinhEh − Eh)
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2.5.2 Computing Universal Variables at the Initial Time

By defining the auxiliary variable

z = γX̂2 (2.58)

it is possible to define the Stumpff functions [13] in terms of z as

C(z) ≡ 1− cos
√
z

z
=

1− cosh
√
−z

z
=

1

2!
− z

4!
+
z2

6!
− z3

8!
+ · · · (2.59)

U(z) ≡
√
z − sin

√
z√

z3
=

sinh
√
−z −

√
−z√

−z
=

1

3!
− z

5!
+
z2

7!
− z3

9!
+ · · · (2.60)

The series representations of C(z) and U(z) are equivalent to the respective

expressions in terms of circular and hyperbolic trigonometric functions. For

each function, all three representations are equivalent, but the value of z should

dictate which form to use. Any of the expressions involving trigonometric

functions have a potential for catastrophic cancellation due to the subtraction

in the numerators. The loss in precision approximately begins when z is less

than ≈ 0.1 in magnitude, which serves as a good threshold for switching

between each representation of a Stumpff function. In other words, let ε = 0.1

and compute C(z) and U(z) according to the conditions in Table 2.2, retaining

terms up to and including z5. The value of z generally indicates the type of

orbit, where z > 0 signifies an elliptical orbit, z < 0 signifies a hyperbolic

orbit, and z = 0 signifies either a parabolic orbit or that the spacecraft is

at periapsis. The last interpretation here differs from the Kepler problem,

where zK = 0 would indicate a parabolic orbit or that the change in eccentric

anomaly is zero. Note that the function U(z) is traditionally denoted as S(z),
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Table 2.2: Conditions on z for Stumpff function computation

Condition C(z) U(z)

z > ε
1− cos

√
z

z

√
z − sin

√
z√

z3

|z| < ε
1

2!
− z

4!
+
z2

6!
− z3

8!
+ · · · 1

3!
− z

5!
+
z2

7!
− z3

9!
+ · · ·

z < −ε 1− cosh
√
−z

z

sinh
√
−z −

√
−z√

−z

but the author has changed the notation to avoid confusion with Ŝ and to

stress its connection to Û .

It remains to connect the universal variables to the Stumpff functions

in addition to establishing several relations between the universal variables

themselves. Two of the universal variables can be defined as functions of X̂

and γ, or equivalently as functions of X̂ and z [62]:

Ĉ(X̂, γ) = X̂2C(γX̂2) = X̂2C(z) (2.61)

Û(X̂, γ) = X̂3U(γX̂2) = X̂3U(z) (2.62)

where X̂ is the independent variable. The universal variables also obey the
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following relations [125, 62]:

Ŝ(X̂, γ) = X̂ + γÛ(X̂, γ) (2.63)

Ŝ2 = 2Ĉ + γĈ2 (2.64)

Û ′ = Ĉ (2.65)

Ĉ ′ = Ŝ (2.66)

Ŝ ′ = 1 + γĈ (2.67)

The prime symbol as used here indicates differentiation with respect to X̂.

Two of the universal variables, Ĉ and Ŝ, can be computed from initial

conditions given in ECI coordinates. Since X̂ is one of the sought unknowns

and Ĉ is given, Eq. (2.61) suggests a possible path to computing X̂ without

loss of precision as long as an alternative to Eq. (2.58) exists for computing z.

The following shows how to compute z from initial conditions. Since it is not

necessary to divide by e, the quantities are left as eĈ and eŜ. By manipulating

Eq. (2.57), eĈ is determined at the initial time as

eĈi = ρi − ρ1 (2.68)

where

ρ1 =
p

1 + e
(2.69)

It can also be shown that

√
F = eŜ

√
µγ1(ρ2 − 2ρb1 +B) (2.70)

which by rearranging gives eŜ at the initial time as

eŜi =

√
Fi√

µγ1(ρ2i − 2ρib1 +B)
(2.71)
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Equation (2.71) is equivalent to the alternative expression:

eŜi = sgn
(√

Fi

)√
γρ2i + 2ρi − p (2.72)

It is also straightforward to compute eŜ ′i as

eŜ ′i = e+ γeĈi (2.73)

The rest of the derivation is based on the elliptical case, where
√
z = E. From

Table 2.1, Ŝ ′ can be written in terms of elements as

Ŝ ′ = 1 + γ
(1− cosE)

−γ
= 1− 1 + cosE

= cosE (2.74)

which means that eŜ ′ = e cosE. If an equation for e sinE is also available, then

it may be possible to compute Ei. Pointing again to Table 2.1, it is immediately

evident that Ŝ =
√
a sinE may fill this role, but it must be multiplied by a

scaling factor |γ|1/2 to cancel the
√
a coefficient. As a result of the scaling,

however, the (elliptical, parabolic, or hyperbolic) eccentric anomaly is not

actually computed in general because in the equation

√
z = atan2

(
|γ|1/2Ŝ
Ŝ ′

)
(2.75)

the numerator |γ|1/2Ŝ is always zero for a parabola even though sinD is clearly

not always zero for a parabola. This behavior is not an issue, though, because

it agrees with the definition of z, behaving as z is supposed to behave. The

derivation would be similar for parabolic and hyperbolic orbits, but Eq. (2.75)
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would not be applicable for the hyperbolic case. The latter case would require

an inverse hyperbolic trigonometric function, such as the inverse hyperbolic

tangent function. Der and Monuki [50] used Eq. (2.75) to compute
√
z.

What is new up to this point in this section is the documentation,

explanations, comparisons to the Kepler problem, filling in important details

of Getchell’s derivation [62], and the emphasis on taking full advantage of the

Taylor series representation when applying universal variables to Vinti theory.

The next two equations represent the main contribution of this section with

the observation that they retain precision in X̂ and Û . These computations

are required in both the initialization and propagation steps.

Once z is obtained, then X̂ can be computed from

X̂ =

√
Ĉ(X̂, γ)

C(z)
(2.76)

without any loss of precision when z is near zero. Note from Eq. (2.59) that

the denominator is never zero. With X̂ determined, Û can be obtained from

Û(X̂, γ) = X̂3U(z) (2.77)

It is emphasized that the identification and subsequent use of Eqs. (2.76) and

(2.77) to avoid precision loss in this manner is new. They are not used in

the universal formulation of the Kepler problem and have not been used in

the Vinti problem until now. Without this technique, precision loss can be

severe, tending to one correct digit not just for nearly “parabolic” orbits, but

near periapsis as well (z = 0 in both cases), and so this very practical issue

of precision loss can arise for the full range of eccentricity. Recall that in the
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Kepler problem, zK = 0 corresponds to parabolic orbits or a zero change in

anomalistic angle, and as a result generally does not correspond to periapsis.

Therefore, it would be common to encounter z = 0 in the Vinti problem

because the vicinity of periapsis is often targeted for certain maneuvers and

one may often wish to propagate exactly to periapsis or initialize a simulation

in the vicinity of periapsis.

2.5.3 Orbit Propagation with Universal Variables

There is essentially one existing proposed method of Vinti orbit prop-

agation with universal variables. While Getchell [62] regularized the Vinti

problem, a significant accomplishment, he stopped short of recommending a

procedure for obtaining a good initial guess to the universal anomaly X̂ at a

desired time t, where the initial guess feeds into a root-solve routine. Der’s

approach, in the vinti6 computer routine [50], is to use X̂j = X̂i + X̂K for

j = 1, adding the initial value of the spheroidal X̂ to the value obtained from a

universal Kepler propagator [50]. This equation may seem strange, but recall

that X̂K is the change in universal anomaly for the Kepler problem. Viewing

J2 as a perturbation to the Kepler problem, the change in X̂ for the Vinti

problem should be comparable to its change in value for the Kepler problem.

While the idea of exploiting the Kepler problem is attractive and should

work in general, some pitfalls can be anticipated, discussed presently for the

first time. In particular, the cases of nearly parabolic orbits can cause trouble.

Near the zero-energy boundary, a hyperbolic Keplerian trajectory can translate

to a bounded Vinti trajectory. The actual differences in eccentricity depend
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strongly on the magnitude of J2 and the geometry, but it is entirely feasible

to have eK = 1.001 and e = 0.9 or less. The implication for multi-revolution

scenarios in the Vinti problem is that the Kepler-based initial guess can be

very poor, leading to slow convergence or a failure of the algorithm. The

algorithm only makes sense if the Keplerian and Vinti trajectories are in the

same orbital regime, either both bounded or both unbounded.

An approach proposed here is to directly adapt the initial guess formu-

las for the Kepler problem to the Vinti problem. For example, in the Kepler

problem, if dealing with elliptical orbits, the change in universal anomaly is

proportional to the orbital period. Using instead the period for the Vinti

problem associated with the universal anomaly, the same formula will give a

good initial guess for a bounded Vinti trajectory, including the case where the

Keplerian trajectory is unbounded. The approach that leverages a universal

Kepler solution should still be appropriate for low to medium eccentricities,

and similarly for very hyperbolic orbits. However, the technique should be

used with caution within a very wide margin of the zero-energy threshold,

since the syncing of the qualitative behavior of the Kepler and Vinti solutions

depends strongly on the magnitude of J2 and is not known a priori. If a simu-

lated trajectory lies within that margin, an implementation should verify the

syncing of the two solutions before accepting direct assistance from a Kepler

propagator.
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2.5.4 Mitigating Singularities with Universal Variables

While the use of universal variables for Vinti theory removes the singu-

larity at e = 1, contrary to their use in the Kepler problem, angle ambiguities

still exist for small eccentricities and small inclinations, though they are not

discussed in the literature. Even in the universal formulation, Vinti theory still

requires computation of true anomaly, argument of latitude, and, in theory,

RAAN. Note that Getchell [62] used right ascension instead of Ω′ in his solu-

tion, and so his solution still has singularities associated with polar orbits. The

polar singularities would be easy to remove because, arising strictly from the

N integrals, they are decoupled from those associated with small eccentricities

and inclinations.

It would seem a merging of the universal variables formulation with the

equinoctial formulation presented in Chapter 4 is in order, but a unified so-

lution seems inaccessible. Recall that the equinoctial elements require adding

the anomaly to other angles, but the anomaly is imaginary for hyperbolic or-

bits, i.e. the hyperbolic anomaly is associated with an area, not an angle.

As such, it cannot generally be added to other angles. Alternatively, a piece-

wise solution is quite feasible. The equinoctial formulation may be used for

e < 0.9, for example, and the universal variables formulation can be used for

other eccentricities. However, small inclinations may still lead to inaccurate

calculations in the universal formulation, and the representation will lead to

singularities in a variety of applications. For example, linear coordinate trans-

formations (Jacobians) will be singular. Singularities will also appear in the

EOMs resulting from a VOP application. The issue can be remedied with the
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adoption of an element set inspired by the equinoctial set but without using

the eccentricity vector components. The set would include semilatus rectum,

eccentricity, vector components of the ascending node, longitude of periapsis,

and true anomaly. Note that J3 = 0 is required for this approach to work, as

with the equinoctial elements. The results of Chapter 4 would still apply, but

the propagation stage layed out in Chapter 5 would have to be adjusted.

2.6 Practical Considerations

Up to this point, solving the Vinti problem has been viewed as the

combination of converting ECI coordinates to spheroidal elements, propagat-

ing the orbit in element space, and then converting the elements back to ECI

coordinates. In other words, the initial state is assumed to be given as ECI

position and velocity vectors. But orbit design is often performed in the or-

bital element space. A natural question to ask, then, is why not design orbits

using spheroidal orbital elements or VOEs? A variety of momenta elements

can theoretically be used to describe the same geometrical properties, and

the aim in this section is to make clear the implications and consequences of

those choices. Without proper care, a number of practical issues may arise

when using VOEs to design orbits subject to the asymmetric Vinti potential

(J3 6= 0).

2.6.1 Initializing an Orbit with Vinti Elements

As evident from Vinti [158], the elements S and Q are both associated

with spheroidal inclination. More importantly, as will be made clear in this
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section, they are not identical and one is more intuitive and useful than the

other as a starting point for orbit design. The quantity Q behaves as sin I

and its range is well defined as 0 ≤ Q ≤ 1. The quantity S, which was

Vinti’s choice, can be defined as sin2 I ′, where I 6= I ′ in general, but its range

is not well defined for nearly equatorial orbits when S < 0. There is no

obvious lower bound on S other than knowing that its magnitude must be

small. From the perspective of preliminary orbit design, the element S, with

the implicit extension of inclination into the complex plane, leaves the designer

ruminating on the inscrutability of one imaginary degree. If Q is chosen as an

element instead of S to represent inclination, then this issue associated with

S is avoided entirely.

Using Q as an element, a designer can appeal to most of the usual

notions of orbit inclination. The exception to this statement is for nearly

equatorial orbits. When J3 is included in Vinti theory, equatorial orbits do

not strictly exist because gravitational forces from that assymetry would drive

a spacecraft out of the equatorial plane [159]. Choosing I = Q = 0 would

give an orbit parallel to the equatorial plane, but the orbital plane would not

pass through the center of mass of the primary. When J3 is not included in

Vinti theory, then in fact Q = S = sin I and I = I ′, and a zero spheroidal

inclination would prescribe an equatorial orbit.

The remaining question of how to determine S and other quantities

given a, e, and Q is resolved through a procedure similar to the iterative

method summarized in Eqs. (10–17) of Getchell [62]. The idea is to essentially

reverse the process by manipulating the equations, something that Getchell
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vaguely describes. The initial guesses suggested by Getchell are still good

initial guesses in the reverse process. The major difference is that, when going

from VOEs to the prime constants, all eight of those equations are coupled

and the equation for Q must be added to the process. When going from prime

constants to VOEs, however, the eight equations can be decoupled into two

parts so that the iterative processes are carried out separately for each group

of four equations.

The new form of Getchell’s equations are as follows for the iterative

process that computes the prime constants from the VOEs.

S = Q2 − P 2 (2.78)

1

γ1
= 1− γA1 (2.79)

p0
γ1

= p+ c2γ −B1γ + 4A1 (2.80)

B1 =
c2SS1

p

p0
γ1

(2.81)

A1 =
c2/γ1 −B1

p
(2.82)

Q1 = − c2γ

(p0/γ1)S1

(2.83)

P1 =
2zδ/γ1

(p0/γ1)S1

− 2PQ1 (2.84)

2P =
2zδ/γ1

(p0/γ1)S1

− P1S (2.85)

S1 =
p0/γ1 − c2γ − (p0/γ1)SS1Q1

(1− 2PP1)(p0/γ1)
(2.86)

To use Eqs. (2.78–2.86), first compute p = a(1 − e2) and γ = −1/a. Then

begin the iterative process with A1 = B1 = P = 0 and S1 = 1. Note that since

S = Q2 − P 2, the initial estimate of S is Q2, which would be exact if zδ = 0.
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Terminate the process when S1 is correct to within some desired tolerance.

Arbitrarily accurate values for p0, γ0, A1, B1, Q1, P1 P , S, and S1 can be

obtained after a few iterations. In Vinti’s notation, γ0 = −1/a0, A1 = b1,

B1 = B, Q1 = C2, P1 = C1, and S1 = 1/u. Note that, to compute I or cos I,

only the absolute value of cos I is available from Q, i.e. | cos I| =
√

1−Q2.

To obtain the inclination, compute I as

I = sgn α3

√
1−Q2 (2.87)

2.7 Final Remarks

Many enhancements to Vinti’s original solutions have been derived and

presented in this chapter. The improvements are derived for the 1966 potential

that includes J3, but they apply equally well to the 1959 potential for which

J3 = 0. The net result of these enhancements is to enable greater accuracy and

precision for more applications over the full range of practical orbit regimes.

Some of the improvements to Vinti theory offer a substantial increase in ac-

curacy for nearly circular equatorial orbits (Sections 2.2.2 and 2.3.2), while

others address issues encountered in polar orbits (Sections 2.3.1 and 2.4) and

near the zero-energy boundary (Sections 2.3.3 and 2.5). Algorithms are also

presented to handle multiple revolutions (Section 2.2.4) and to alleviate prac-

tical issues that arise when designing orbits with spheroidal elements, enabling

broader use (Section 2.6).

All methods presented in this chapter have been implemented, except

for the contents of Section 2.5.3. As stated in Chapter 1, the open-source code
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contains topics relevant to the relative motion model presented in Chapter 3,

drawing from Sections 2.2.1.2, 2.2.2, 2.3, and 2.2.4. The eigenvalue-based

method for factoring the quartics is separately implemented with heuristics

for root identification. The remedies for zero-energy issues discussed in Sec-

tion 2.3.3 are implemented for the equinoctial formulation, in addition to the

frequencies introduced in Section 2.4. Some of the universal variable methods

are implemented, specifically the remedy for precision loss described in Sec-

tion 2.5.2 and the coordinate transformation described in Section 2.5.4. The

algorithm in Section 2.6 for orbit design is implemented but is not needed in

the orbit propagators and stands alone as a separate tool.
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Chapter 3

A Satellite Relative Motion Model Including

J2 and J3 via Vinti’s Intermediary

The present chapter focuses first on developing a new relative motion

model that leverages Vinti theory and second on evaluating its performance.

The core model consists of an analytical state transition matrix that propa-

gates the relative orbit in the oblate spheroidal orbital element space, where

the elements of the STM are the partial derivatives of Vinti’s solution for

state propagation. The partials are verified against complex-step derivatives

and central differences. Der and Danchick [51] devised an algorithm for ob-

taining a numerical Vinti-based STM, which Der [48] subsequently used in a

study that introduces a universal, analytical Keplerian STM, with comparisons

to several other STMs in ECI and LVLH Cartesian coordinates. However, an

analytical Vinti-based STM has not previously appeared in the literature. Fur-

ther details of the Vinti problem are given as they pertain to the development

of the relative motion model and references are given to the partial derivatives

that are not derived in this dissertation. The Vinti-based STM and a Brouwer-

based STM are then simultaneously compared for accuracy to a higher fidelity

Earth gravity model. The original Brouwer-based STM of Gim and Alfriend

in quasi-nonsingular elements is chosen for this preliminary evaluation because
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it has served as a benchmark in multiple studies. Recall from Chapter 1 that

the Brouwer-based STM is often referred to as the GA STM in the literature.

Each model’s accuracy is assessed over a range of eccentricity, inclination, and

separation distance.

From these two STMs, it is generally not straightforward to draw con-

clusions on the accuracy of Vinti versus Brouwer theories. To do so should

require both STMs to model the same perturbations to the same order of

approximation. Bonavito et al. [22]1 and Gordon et al. [66]2 made good ef-

forts toward that goal for the main problem. Their conclusions that Vinti’s

model performs better served to motivate the application of Vinti theory to

the relative motion problem in the present study, though similar studies are

yet to be done in a relative motion context. Further motivation to apply Vinti

theory to the relative motion problem stems from the idea that the Vinti

STM should possess a larger linear region of validity because spheroidal, as

opposed to spherical, orbital elements naturally fit the shape of the Earth. As

demonstrated by Junkins et al. [93], the accuracy of linear propagation the-

ory is poorest in Cartesian coordinates, significantly improved in cylindrical

coordinates, and further improved in spherical orbital elements. It stands to

reason, then, that accuracy would be further improved in spheroidal orbital el-

ements. Nonetheless, the Brouwer-based STM is certainly a good benchmark,

and advantages of the Vinti-based STM are still discussed as appropriate.

1Bonavito et al. [22] compared two theories: the original Brouwer theory and Vinti theory.
2Gordon et al. [66] compared three theories: Brouwer, Brouwer-Lyddane, and Vinti.
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3.1 Development of the Relative Motion Model

The proposed dynamical model utilizes an STM to describe the rela-

tive motion. It takes into consideration how the choice of coordinates affects

the linear region of validity as well as the distinction between static and dy-

namic nonlinearity [93]. A useful vocabulary and analysis of various types

of static bookend transformations is given by Sinclair et al., distinguishing

between linearized, calibrated [134], and decalibrated [135] solutions. These

transformations arise from the desire to propagate a relative state in some

preferred, likely more accurate, coordinates, followed by the need to transform

the inputs and outputs to coordinates that are different and likely driven by

measurements or constraints. An attractive and common means of state prop-

agation in the vicinity of a reference solution is the STM. The linear bookend

transformation is the familiar similarity transformation applied to the STM,

the decalibrated solution utilizes the exact nonlinear bookend transformations,

and the calibrated solution uses a hybrid of the two transformations. Though

the vocabulary did not exist at the time, the results of Junkins et al. [93] are the

consequence of a decalibrated solution; they also used a linear transformation

to initialize the states.

Note that typical nonlinear transformations suffer from precision loss

due to a subtraction of the chief’s state from the deputy’s. Therefore, nonlinear

bookend transformations should always be used with caution. In fact, a main

purpose of using relative motion models is to avoid the precision loss associated

with subtracting the absolute state simulations of two objects in close vicinity.

The relative motion model proposed here would employ the decalibrated or
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linearized solution, depending on the application. After presenting the STM,

methods of removing singularities in the partial derivatives are discussed. New

partial derivatives are included in Appendix C.

3.1.1 The Vinti-Based Analytical State Transition Matrix

The 6 × 6 STM can be obtained from the first-order Taylor series

expansion of the analytical solution to the Vinti problem as

ΦI(t, ti) =
∂xI

∂xI
i

(3.1)

evaluated at the chief’s state, where Φ denotes an STM. The STM ΦI(t, ti)

propagates the deputy’s relative state from time ti to time t in ECI coordinates,

but propagation can also be done in other coordinates. Using the chain rule,

the partial derivatives can be rewritten in different forms, for example:

∂xI

∂xI
i

=
∂xI

∂œS

∂œS

∂œV

∂œV

∂œV
i

∂œV
i

∂œS
i

∂œS
i

∂xI
i

(3.2)

Observe that the middle partial, ∂œV /∂œV
i , is the identity matrix because the

VOEs are constants of the motion. To simplify the notation, define the 6× 6

transformation matrix BTA as the Jacobian that linearly maps coordinate set

A to coordinate set B at time t, with the shorthand BTAi = BTA(ti). The

propagation could then be effectively captured in the Jacobian that maps

VOEs to the time-varying spheroidal elements:

ΦS(t, ti) = ST V V T Si = ST V (ST Vi )−1 (3.3)

where

ST V ≡ ∂œS

∂œV
(3.4)
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The STM ΦS(t, ti) propagates the relative state in the spheroidal element space

according to the variational equations

δœS = ΦS(t, ti)δœ
S
i (3.5)

Many of the partial derivatives comprising ∂œS/∂œV in Eq. (3.4) were

established in Walden and Watson’s technical report for use in a different

application where the partials of the inverse transformation are not explicitly

required [164]. Although these partials are required in the current study, there

is an easier way to obtain the inverse transformation. Other than directly

obtaining the inverse transformation via partial derivatives, alternative general

techniques require computing a matrix inverse numerically or solving a linear

system of equations. By virtue of the chosen element set, however, a relatively

simple expression for the analytical inverse exists due to the sparsity of ST V :

ST V =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T41 T42 T43 T44 T45 0
T51 T52 T53 T54 T55 0
T61 T62 T63 T64 T65 1

 (3.6)

The inverse maintains the exact same structure and only requires approxi-

mately 70 operations, which is small considering there are 19 nonzero ele-

ments of the matrix. The inverse is simple in the sense of fast computation

and the explicit form is given in Appendix A. A readily accessible companion

code is also provided as an Online Resource3. It is important to note that

3Code updates will be available from this website: http://russell.ae.utexas.edu/

index_files/vinti.html
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the analytical inverse need only be computed once because its value is only

required at the initial time. The process of obtaining ΦS(t, ti) is depicted in

Fig. 3.1, which shows how the procedure interfaces with the initialization and

Initialization 

Compute constant 

partials and 

variables at 

Compute time-

varying partials 

Compute analytical 

inverse: (
S
T
i

V
)
−1

Propagate 

orbit to  

Form 

Jacobian: 

 

 

 

S
T
V
=
∂œ

S

∂œ
V

Form STM: 

 

 
Φ

S
(t, t

i
) =

S
T
V
(
S
T
i

V
)
−1

if t ≠ t
i

if t = t
i

t = t
i

t = t f

Figure 3.1: Flow chart for computing the Vinti-based STM.

propagation steps depicted in Fig. 2.1.

Once the STM ΦS(t, ti) is obtained, a number of options are available

for the transformation to desired coordinates. Desired coordinates could be

ECI coordinates or the standard LVLH Cartesian coordinates common to the

relative motion problem. In principle, the most accurate and straightforward

transformation is the nonlinear one corresponding to a decalibrated solution.

As mentioned earlier, it should be used in practice with caution for applications

to relative motion, specifically for small separation distances, when differencing

two nearly identical state vectors leads to a loss of precision. That being

said, the decalibrated solution presents no such problems for sufficiently large

relative orbits. At the other end of the spectrum, a linearized solution will

be valid for sufficiently small relative orbits and will avoid the precision loss

problem. It is up to the user, then, to ascertain the validity of either solution

and the trade-offs in accuracy and precision for a particular application.
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Due to the complexity of the partial derivatives, the partials are given

in the form of companion code. In the interest of greater versatility, the code

contains the partials for three STMs most likely to be used: ΦS(t, ti) in the

spheroidal orbital element space, ΦI(t, ti) in ECI coordinates, and ΦL(t, ti)

in LVLH Cartesian coordinates. Note that a great loss in accuracy may be

incurred under a linear map from curvilinear to rectangular coordinates, for

which the linear region of validity is smallest. For the relative motion problem,

presumably LVLH Cartesian coordinates are ultimately desired, and of course

both these and ECI coordinates are rectangular. In fact, the transformation

from ECI coordinates to LVLH Cartesian coordinates is linear by nature, i.e.

the transformation is just a rotation. Therefore, the STMs most relevant to the

relative motion problem are ΦS(t, ti) and ΦL(t, ti). The STM ΦI(t, ti) is mainly

provided for other applications, such as estimation or optimization, and also

because its components could be used in a differential correction procedure.

To obtain ΦL(t, ti), the 6 × 6 Jacobians mapping between LVLH Carte-

sian coordinates and ECI coordinates are required. The matrices are given

here for convenience. The transformation matrix that maps LVLH Cartesian

coordinates to ECI coordinates is determined as

ITL =

[
IQL 0
IQLω×

IQL

]
(3.7)

and the inverse transformation matrix is given by

LT I =

[
(IQL)> 0

−ω×(IQL)> (IQL)>

]
(3.8)

where ω is the angular velocity of the LVLH frame with respect to the ECI

frame, ω× is the skew-symmetric matrix representation of the cross product
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applied to ω so that

ω× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (3.9)

and

IQL =
[

r̂ ŝK ŵK

]
(3.10)

is a 3 × 3 rotation matrix. The unit vectors {r̂, ŝK , ŵK} form the basis of

the LVLH frame, where r̂ points along the chief’s position vector, ŵK points

along the chief’s angular momentum vector, and ŝK = ŵK × r̂. The vectors

can be obtained from ECI coordinates using equations given by Vallado [149].

The angular velocity can be obtained via the approach of Kechichian [97] or

others, which all require knowledge of the Vinti inertial acceleration vector

in ECI coordinates. Monuki [118] derived this acceleration in an unpublished

report, and Der and Danchick [52] have briefly explained the method, but the

equation is repeated here for convenience:

r̈I = − µ
r3v

[
X Y Z + zv

]>
(3.11)

where

r3v =
(ρ2 + c2η2)3

ρ3 + 3zδηρ2 − 3c2η2ρ− zδc2η3
(3.12)

and

zv =
η(3ρ2 − c2η2)(c2 + z2δ )

ρ3 + 3zδηρ2 − 3c2η2ρ− zδc2η3
(3.13)

For Kechichian’s approach, the spherical gravity term should be subtracted

from the Vinti acceleration to obtain the “perturbing” acceleration.

101



While extensive use is made of the partials derived by Walden and

Watson [164], the underlying Vinti theory that they used becomes singular

for polar orbits and nearly circular equatorial orbits, and also when a space-

craft is at either of the poles. Distinctions are made between nearly polar

orbits and vicinity to a pole because those issues arise from different terms

in the equations. Some terms in the denominators approach zero when the

spacecraft is anywhere in a nearly polar orbit, and other terms approach zero

when the spacecraft nears a pole. In an effort to circumvent these issues,

partial derivatives were rederived as necessary in this study to be consistent

with Vinti’s nonsingular orbit propagation theory. These partials are given in

Appendices C.3–C.4. However, some singularities persist in the partials, ne-

cessitating the use of two different element sets whose validity depends on the

spheroidal inclination I. These singularities are now addressed in the following

sections.

3.1.2 Singularities Associated with Polar Orbits: S = 1

As alluded to in an earlier section, the partial derivatives with respect

to S are discontinuous for polar orbits, when S = 1. The discontinuity occurs

because of the appearance of
√

1− S or
√

1− S/u terms in a few equations

of the solution, where u also tends to unity for polar orbits. This problem

is alleviated with a change of variables by defining S̃ ≡
√

1− S and then

choosing to use S̃ instead of S as an element or independent variable. The

new functional dependency should be thought of as S = S(S̃) = 1− S̃2. Most

partials, specifically those that do not possess the singularity, can be adjusted
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with a simple application of the chain rule:

∂(·)
∂S̃

=
∂(·)
∂S

∂S

∂S̃
= −2S̃

∂(·)
∂S

(3.14)

Only five partials with respect to S contain the singularity: that of α3 has√
1− S/u in the denominator and those of X, Y , Ẋ, and Ẏ all have

√
1− S

in the denominator. The partial of α3 is given by Walden and Watson [164]

while the other four were developed in the current work. Of course, the last

four partials are only required if seeking the STM in ECI or LVLH Cartesian

coordinates.

The trivial case is for the ECI coordinates, where the
√

1− S terms in

Eq. (2.28) and its time derivatives are readily replaced with S̃. In contrast,

the Jacobi constant α3 is expressed in terms of elements as

α3 = sgn α3α2

(
1− S

u

) 1
2

(3.15)

which in the present form is not amenable to the same substitution and subse-

quent removal of the square root. However, substituting 1/u in Eq. (3.15) with

Vinti’s third order approximation and collecting terms will recover Eq. (148)

in Vinti [158]:

α3 = sgn α3α2

√
1− S

1− c2

a0p0
S −

(
2zδ
p0

)2 (
1− c2

a0p0
S
)

[
1 + c2

a0p0
(1− 2S)

]2S


1
2

(3.16)

Having now isolated the problematic
√

1− S term, it can be replaced with S̃

as done for the ECI coordinates. The other square root term is not an issue

because it never approaches zero. The partials of xI with respect to S̃ are now
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readily obtained. The results of this section suggest that S̃ is a more natural

element compared to S because the solution xI is differentiable with respect

to S̃ over a larger domain.

3.1.3 Singularities Associated with Nearly Equatorial
Orbits: Q = 0

Vinti [158] introduces the derived quantity

Q = Q(a, e, S) ≡
√
P 2 + S (3.17)

as an intermediate parameter of his solution, and its partial derivatives, as

given in Walden and Watson [164], are

∂Q

∂σj
= Q−1

(
P
∂P

∂σj
+

1

2
δ3j

)
(3.18)

A singularity clearly exists in the partial derivative of Q if Q can vanish.

It turns out that Q tends to zero for nearly equatorial orbits, so that the

singularity does indeed exist. Quotes are used on “equatorial” because true

equatorial Vinti orbits do not exist; equatorial, in this context, should be

interpreted in the Keplerian sense, when S < 0. The case Q = 0 is specifically

when the orbit remains at a constant latitude close to the equatorial plane.

This singularity is not mentioned in Walden and Watson [164]. Although

Tong and Wu [145] mention singularities involving Q = 0 in the context of

perturbation equations, their removal is left to future work.

One viable option for removing the singularity in Eq. (3.18) is proposed

here. The basic idea is to replace S with Q in the state vector. This action is

reasonable because both S and Q are constants closely related to inclination
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and are otherwise seemingly arbitrary quantities to select as an element or in-

dependent variable. The choice of S was certainly motivated by the functional

dependencies of the equations that make up Vinti’s solution. It would not

be straightforward to use a direct approach like that of Walden and Watson

[164] to obtain the partials when Q is used instead of S. But an alternative

approach can be used to circumvent the issue: redefine the functional depen-

dencies, adjust the chain rule accordingly, and isolate the desired new partials

in terms of the old partials through algebraic manipulation. The partials of

Q, which contain the singularity at Q = 0, are rendered unnecessary.

The first step is to manipulate Eq. (3.17), which relates S, Q, and P

in a simple way, to redefine S as a function of Q and P :

S = S(Q,P ) ≡ Q2 − P 2 (3.19)

This relationship was also pointed out in Eq. (2.11). In terms of partial deriva-

tives, the redefinition of S results in a circular functional dependence captured

in Table 3.1, which is adapted from Walden and Watson [164]. Note that Ta-

ble 3.1 contains a very small subset of the partial derivatives that comprise the

solution. In the original formulation, the partials of b1 only depend on those

of p, so that the explicit expressions for the partials of P flow directly from

those of b1. In the new formulation, the expressions for the partials of P are

now implicit: 1) partials of b1 depend on those of S; 2) partials of S depend

on those of P ; 3) and partials of P depend directly on those of S and on the

chain of partials that flow from b1 to P .

The key is to observe that the last two lines of Table 3.1 are unique
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Table 3.1: Functional dependence of a subset of the time-independent partial
derivatives

Partial Derivative Functional Dependence on Other Partials

p none
b1 p, S
b2 p, b1
p0 p, b1, b2

(a0p0)
−1 b1, p0

u p0, (a0p0)
−1, S

C2 (a0p0)
−1, u

C1 p0, u, C2, S
P p0, u, C2, S
S P

in that they contain or point to three isolated systems of two equations in

two unknowns. First, let q1 = a, q2 = e, and q3 = Q. Then, each system of

equations is associated with qj for j = 1, 2, 3. In each of the three systems,

one of the unknowns is ∂S/∂qj and the other unknown is ∂P/∂qj. In other

words, the partials of S are obtained from Eq. (3.19) as

∂S

∂qj
= 2Qδ3j − 2P

∂P

∂qj
(3.20)

and the chain rule is used to express the partials of P with respect to qj, in

general, as

∂P

∂qj
= fj

((
∂P

∂qj

)
old

,
∂P

∂S
,
∂S

∂qj

)
(3.21)

where fj is some function to be defined shortly. For each value of j, the pair

of equations represented by Eqs. (3.20) and (3.21) constitute one of the three

systems of equations, which are to be solved for ∂S/∂qj and ∂P/∂qj. As a
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first step, express the partial of P with respect to Q as

∂P

∂Q
= f3

(
∂P

∂S
,
∂S

∂Q

)
=
∂P

∂S

∂S

∂Q
(3.22)

Substituting Eq. (3.20) with j = 3 into Eq. (3.22) gives

∂P

∂Q
=
∂P

∂S

(
2Q− 2P

∂P

∂Q

)
and isolating ∂P/∂Q leads to

∂P

∂Q
=

2Q∂P
∂S

1 + 2P ∂P
∂S

(3.23)

The steps to obtain the partials of P with respect to a and e are slightly

different. The old partials are correct assuming S is an independent variable,

which means that the new partial derivatives are simply the old ones plus a

term accounting for the new functional dependence of S via the chain rule:

∂P

∂q1,2
= f1,2

((
∂P

∂q1,2

)
old

,
∂P

∂S
,
∂S

∂q1,2

)
=

(
∂P

∂q1,2

)
old

+
∂P

∂S

∂S

∂q1,2
(3.24)

Substituting Eq. (3.20) with j = 1, 2 into Eq. (3.24) gives

∂P

∂q1,2
=

(
∂P

∂q1,2

)
old

+
∂P

∂S

(
−2P

∂P

∂q1,2

)
and isolating ∂P/∂q1,2 leads to

∂P

∂q1,2
=

(
∂P
∂q1,2

)
old

1 + 2P ∂P
∂S

(3.25)

The denominator in Eqs. (3.23) and (3.25) may raise concern, but it does not

approach zero because the magnitudes of P and ∂P/∂S are O(J
1/2
2 ).
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After obtaining expressions for ∂P/∂qj, the partials ∂S/∂qj are subse-

quently determined from Eq. (3.20) and, although tedious, it is straightforward

to modify the remaining partials. The modification process mostly follows a

simple rule. If the quantity does not depend on S explicitly, then

∂(·)
∂q1,2

=

(
∂(·)
∂q1,2

)
old

(3.26)

Otherwise,

∂(·)
∂q1,2

=

(
∂(·)
∂q1,2

)
old

+
∂(·)
∂S

∂S

∂q1,2
(3.27)

In either case, for the partials with respect to Q,

∂(·)
∂Q

=
∂(·)
∂S

∂S

∂Q
(3.28)

However, further adjustments are required if there is explicit dependence on

Q. In this case, the partials given in Walden and Watson [164] can still be

used, but with the following modification:

∂Q

∂qj
= δ3j (3.29)

where only the terms without explicit dependence on Q are multiplied by

∂S/∂Q. None of the intermediate quantities depends on both S and Q explic-

itly.

3.2 Model Evaluation

This section contains a quick assessment of the Vinti-based model and

side-by-side comparisons with the GA STM. The Vinti and GA relative motion

models are compared against a more realistic numerically integrated solution
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to assess their accuracy by way of simple absolute position errors. Portions of

the GA model include code provided by Alfriend. The “truth” equations of

motion are represented in ECI coordinates using a gravity field that includes

J2 through J5 zonal harmonics, which is the same fidelity used by Gim and

Alfriend [64]. Both spacecraft states are initially obtained in the ECI frame

in quad precision and then independently propagated with a fourth order,

variable step size Runge-Kutta integrator in double precision over 15 orbits

using an accuracy tolerance of 2.3×10−14. The quad precision is necessary for

the initial states because they will ultimately have to be differenced for use with

either of the STMs, and it is desired to isolate as much as possible the errors in

the model evaluations from artifacts of finite precision arithmetic. This way,

errors in the results will reflect the accuracy of the underlying theory. Note that

the publicly available High Precision Floating-point (HPF) tool4 for MATLAB

will work when the quartics are factored with Getchell’s method [62], but not

with the eigenvalue method. The Multiprecision Computing Toolbox5 is a

third-party MATLAB software package that can compute eigenvalues in quad

precision.

Interest in a precision-preserving error metric guided the analysis to-

ward a set of decalibrated solutions. The need to make the fairest comparison

between the two models further guided the choice of coordinates toward a

direct comparison of the deputy’s ECI state because those are the most acces-

4D’Errico, J., “HPF - A Big Decimal Class,” https://www.mathworks.com/

matlabcentral/fileexchange/36534-hpf-a-big-decimal-class.
5Advanpix, Multiprecision Computing Toolbox, http://www.advanpix.com.
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sible coordinates that the two models share and, for both models, the deputy’s

ECI state can be obtained without differencing. A comparison in the LVLH

Cartesian coordinates would present challenges because the transformation

from LVLH curvilinear to Cartesian coordinates in the GA model requires

differencing of potentially similar values, and the Vinti-based model would re-

quire differencing of the two ECI states. Modeling errors cannot be compared

in the orbital element space either because it is spheroidal in the Vinti model

and spherical in the GA model. The best option, then, is to propagate the

Vinti-based model in the spheroidal element space according to Eq. (3.5) and

the GA model in the Keplerian (spherical) element space. Next, add the re-

sulting deputy relative state to the corresponding chief state, and finally apply

the appropriate nonlinear transformations to recover the deputy’s ECI state.

This transformation is given by Eq. (2.28) for the Vinti-based model and a

straightforward spherical elements to ECI transformation for the GA model.

The fact that both models are propagated in some type of osculating element

space is further indication that the comparison is fair, in terms of the ability

to assess how accurate one model is relative to the other.

Note that each model requires a unique input. For the Vinti-based

STM, the relative state is needed in time-varying, osculating spheroidal or-

bital elements, and so those elements are computed for the chief and deputy

in quad precision and then differenced. For the GA STM, the relative state

is needed in quasi-nonsingular, osculating spherical orbital elements, also re-

quiring the corresponding states of the chief and deputy in quad precision. All

remaining computations are done in double precision. The Vinti-based model
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also requires an analytical Vinti solution for the chief, while the GA model

additionally requires an initial state for the chief in Brouwer mean elements.

A differential correction procedure is implemented using the Jacobian of the

Brouwer transformation that converges from osculating to Brouwer mean el-

ements in several iterations. The Brouwer transformation is defined as the

following nonlinear function fB that transforms Brouwer’s mean elements to

osculating spherical elements as

œK = fB
(
œK
)

(3.30)

The Jacobian of the Brouwer transformation is defined as

D = gB
(
œK
)

=
∂œK

∂œK
(3.31)

The following algorithm can be used to convert from osculating spherical ele-

ments to Brouwer mean elements:

1. Set j = 1, ε = 10−12, and œK
j = œK

0 as an initial guess for the Brouwer

mean elements.

2. Compute œK
j = fB

(
œK
j

)
and Dj = gB

(
œK
j

)
.

3. Compute δœK
j = œK

0 −œK
j .

4. Compute δœK
j = D−1j δœK

j .

5. Compute œK
j+1 = œK

j + δœK
j .

6. If ‖δœK
j ‖ > ε, then increment j → j+1 and return to Step 2. Otherwise,

stop.
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Note, however, that the algorithm fails near the critical inclination and near

equatorial orbits due to known singularities. As stated previously, the equinoc-

tial element version of the GA model solves the equatorial problem, but not

the critical inclination problem [65].

Figures 3.2 and 3.3 present modeling errors on a wide swath of a three-

dimensional parameter space that considers variations in Keplerian eccentricity

eK , inclination IK , and initial separation distance δri. Orbits are initialized

with the parameterization of Biria and Russell [16], which in the absence of

perturbations would lead to relative periodic orbits. The quantities associ-

ated with position are defined in Fig. 3.4(a) while those associated with the

deputy’s velocity vector are defined in Fig. 3.4(b). When applied to a per-

turbed model, those initial conditions can lead to similar relative orbits with

small drift rates. Results in Figs. 3.2 and 3.3 are generated from the initial

conditions in Table 3.2, which are chosen to result in relatively simple drift

rate behavior. Both models completely account for eccentricity, and since

Table 3.2: Parameter sets [16] for error trends in Figs. 3.2–3.3, where the
chief has initial Keplerian elements aK = 12,000 km, IK = 30◦, 63.4◦, or 90◦,
ΩK = 10◦, and ωK = 20◦

Figure eK fKi (◦) φv (◦) δλv (◦) δri (km) α (◦) β (◦)

3.2 [0, 0.4] 0 0 0 0.01 30 30
3.3 0.4 0 0 0 [0.01, 100] 30 30

spacecraft in highly eccentric orbits spend most of their time far away from

the effects of the perturbations considered, it is not as instructive to show the
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Figure 3.2: Comparison of relative motion models characterized by deputy
position absolute error: varying eccentricity and inclination with aK = 12,000
km and δravg ≈ 20 m. The original GA STM is invalid for the IK of Figs. 3.2(a)
and 3.2(c).
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Figure 3.3: Comparison of relative motion models characterized by deputy
position absolute error: varying relative position and inclination with aK =
12,000 km and eK = 0.4. The original GA STM is invalid for the IK of
Figs. 3.3(a) and 3.3(c).
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ŝ
K

Chief’s 

Elliptical Orbit

Perifocal 

Frame

ŵ
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error trends for higher eccentricities. The legends in Figs. 3.2 and 3.3 contain

useful statistics on the average and standard deviation of the deputy’s rela-

tive position, denoted as δravg and σδr, respectively. These statistics help to

ascertain the size of the relative orbit over time, which is directly related to

the validity of the linear approximations.

Granted that the Vinti STM models more perturbations than the GA

STM, the general trends in the errors are not surprising, with oscillations

superimposed on secular growth. Figures 3.2–3.3 show that the accuracy of

the Vinti model can be one to two orders of magnitude higher than that of the

GA model. Notice in Figs. 3.2(c) and 3.3(c) that the proposed Vinti model

has no trouble near the critical inclination. Figure 3.2(a) confirms that the

Vinti model can also handle circular equatorial orbits, and Figs. 3.2(d) and

3.3(d) confirm the same for polar orbits. After 15 orbits, the aK = 12,000

km, IK = 63.4◦, eK = 0.4, δri = 200 km case leads to errors on the order of

1 km. The speed of Vinti versus Brouwer theories has not been documented

in the literature since the work of Bonavito et al. [22] and it has not been

benchmarked in the present investigation. The fairest test would require both

models to include the same perturbations to the same order of approximation

and also implementation in a compiled language such as Fortran. Bonavito

et al. revealed the speeds to be comparable when Brouwer theory was not

extended to include O(J3
2 ) secular terms, and they reasoned that based on the

large number of additional terms required in the higher order solution of Kozai

[102], Vinti’s solution should be faster.

It is worthwhile to explore further the errors observed in Figs. 3.2–3.3
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to try to better assess the root causes. There are at least three error sources.

First, the perturbations included in the two models are different from each

other and from the truth model. The Vinti-based model includes J2, J3, and

72% of J4, the GA model includes J2 only, and the truth model includes J2

through J5. Relative to this truth model, the neglected perturbations lead to

O(J2
2 ) errors. Second, the order of the solutions are different. The Vinti-based

model includes O(J4
2 ) secular and O(J2

2 ) periodic terms, while the GA model

includes O(J2) secular and periodic terms. In other words, the STMs are not

exact with respect to their force models. Third, the solution itself is truncated

to first order, i.e. higher order STMs (state transition tensors) are not used.

If the linearity assumption is violated, then the truncation to a linear theory

would also contribute to the error.

An effort is made in the following to isolate errors. First, a relative

orbit is chosen, as in some of the preceding scenarios, with an average size

of 20 meters, which keeps linear truncation errors small. The first-order GA

STM is compared in Fig. 3.5 to a two-body plus J2 only truth model. Notice

that secular error growth is still present in the GA model. All forces of the

truth model are modeled in the STM, the linear approximation is expected to

be valid, and so the error can be attributed mainly to the approximate nature

of the perturbation theory, lacking second-order and higher terms. The Vinti-

based STM is performing slightly worse because its errors are now O(J2
2 ). A

physical interpretation is that the secular rates are poorly matched between

the truth model and STMs, i.e. only to first-order. One can imagine differ-

ent ways of better matching the secular rates. One option is to simply use a
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Figure 3.5: Errors relative to a J2 truth model.

higher order perturbation theory with the same truth model, such as the ex-

tended GA STM with second-order effects. Comparing the Vinti-based STM

to a Vinti numerically integrated truth is expected to have a similar effect.

Figure 3.6 shows these latter errors, wherein the secular error growth appears

to be substantially mitigated. An alternative option to using a higher order

perturbation theory is to generate an ephemeris from the truth model and

determine initial conditions for the approximate model that lead to a best
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Figure 3.6: Errors of the Vinti-based STM relative to a Vinti truth model.

fit of the ephemeris data. Getchell [62] suggested this idea for his universal

Vinti propagator. More recently, Yan et al. [173] have suggested least squares

algorithms that could be adopted for this purpose.

3.3 Final Remarks

Vinti theory is successfully applied to the relative motion problem, nat-

urally incorporating J2, J3, and a partial J4 into the dynamics. An analytical
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approach is employed that leverages the state transition matrix (STM), which

is derived in the oblate spheroidal orbital element space. The scope of work

includes fixes to singularities in some partials, reformulations to avoid singu-

larities in the partials, and in general the development of a complete analytical

STM. While the STM is singularity-free, not all singularities associated with

the linear transformation from rectangular coordinates to spheroidal elements

are handled, leaving the door open to new ideas addressed in Chapters 4 and

5. The solution is recast in a piecewise differentiable form comprised of two

parts. Companion code is provided online for the Vinti orbit propagator and

associated STM.

The analytical STM derived from Vinti theory is also compared to Gim

and Alfriend’s benchmark STM derived from Brouwer theory. Over the range

of eccentricity, inclination, and spacecraft separation distance considered, the

Vinti-based STM is shown to have greater accuracy, including near the critical

inclination and for circular equatorial orbits, where the underlying Brouwer

solution either loses accuracy or does not exist. Note that the version of the

GA STM implemented only models J2, and improved or extended versions

include other perturbations. The Vinti-based STM is an attractive candidate

for modeling relative motion of widely-distributed spacecraft formations or for

rendezvous in environments strongly perturbed by a central body. The STM

can also be useful in optimization, guidance and control, and other applica-

tions.
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Chapter 4

Equinoctial Elements for Vinti Theory:

Generalizations to an Oblate Spheroidal

Geometry

To remove the linear dependence for all combinations of spheroidal ec-

centricity and inclination, the effort continues presently with the development

of a nonsingular element set. Two choices must be made upfront regarding the

various flavors of nonsingular elements and the two different flavors of Vinti

theory. The equinoctial element variety [12, 26] is chosen over its canonical

counterpart, the Poincaré elements [76], because of their popularity over the

last few decades, particularly with respect to their role in the development

of the Draper Semianalytic Satellite Theory (DSST) [42] and also the Gim-

Alfriend STM [65]. Their geometrical interpretation is also straightforward.

The selected flavor of Vinti theory utilizes the symmetric potential wherein

J3 = 0 so that the origins of the oblate spheroidal (OS) and ECI reference

frames coincide. The reasoning here requires a deeper understanding of the

implications of each potential. When the origins coincide, a single spheroidal

inclination governs a spacecraft’s maximum latitude. If the OS frame is shifted

along the polar axis to capture J3, then the inclination splinters into two incli-

nations that are similar in value and not independent. Due to the dual nature

of the spheroidal inclination, the latter theory presents complications for the
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definition of nonsingular orbital elements. For this reason, the new orbital

elements are developed for the original Vinti potential that prescribes an OS

reference frame whose origin is coincident with that of the inertial frame. That

being said, it may be worth exploring in future work the inclusion of J3 using

the method of Aksenov et al. [1], for which the origin is not shifted, possi-

bly mitigating the described issues in the definition of equinoctial elements

for Vinti’s 1966 potential. But it is considered a reasonable stepping stone

of sufficient complexity to study the original Vinti potential first and leave to

future work the study of Vinti’s latter potential or that of Aksenov et al. [1]

in the same vein.

The nuances of Vinti theory and customary use of equinoctial elements

have thus brought into focus a starting point for linking familiar notions of

nonsingular element sets to a largely unfamiliar theory of orbits. The introduc-

tion of oblate spheroidal equinoctial orbital elements begins by imposing the

standard definition in terms of classical elements and unfolds from there. Their

complete, formal introduction is divided between two chapters. The theory de-

veloped in this chapter enables analytical state propagation with equinoctial

elements, and this latter topic is introduced in Chapter 5. Presently, the point

transformations between ECI coordinates and the elements are derived. The

transformations are completely separate and independent from any solution

method, analytical or numerical, generally representing all the steps required

prior to evaluating the integrals in the kinematic equations. Strong emphasis

is placed on eliminating indeterminate forms and ensuring the transformation

is valid and exact for all orbit regimes. Naturally, the transformations are not
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valid for nearly rectilinear orbits passing through the forbidden zone, when the

spheroidal semi-latus rectum is very small [62]. Otherwise, the transformations

are valid for all orbits. With the exception of performing a transformation near

a pole, where it is as accurate as the analytical solution, the transformations

are also exact.

4.1 Definition of the Oblate Spheroidal Equinoctial El-
ements

The spheroidal equinoctial elements are tied to the Vinti problem in

the same way that the spherical equinoctial elements are tied to the Kepler

problem. Those dynamical problems define the respective element sets and

they cannot be separated from each other. It is therefore understood that any

mention of spherical elements concerns a perturbed or unperturbed Kepler

problem, and any mention of spheroidal elements concerns a perturbed or

unperturbed Vinti problem. Notions of osculating elements can be adopted if

the dynamical problems are perturbed.

The six modified spheroidal equinoctial elements are described as fol-

lows using the notation of Gim and Alfriend [65] for the vector components:

œ1 = p spheroidal semi-latus rectum

œ2 = q1

œ3 = q2

}
components of the spheroidal eccentricity vector

œ4 = p1

œ5 = p2

}
components of the spheroidal ascending node vector

œ6 = L spheroidal true longitude

(4.1)

The standard equinoctial elements use semimajor axis a instead of p and the
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mean longitude λ instead of L. The modified set is chosen because it is non-

singular for the full range of eccentricity and inclination. The spherical and

spheroidal equinoctial reference frames differ from each other in several key

ways. First, notice the repeated use of the word “spheroidal” to emphasize, for

example, that the spheroidal eccentricity vector is not the same as the one in

Keplerian dynamics, which is the spherical eccentricity vector. These notions

of spheroidal vectors are new concepts that have not been discussed before

with respect to Vinti theory. Geometrically, the discrepancy is the result of

stretching the coordinates in the equatorial plane and contracting them along

the polar axis. These notions will be further elaborated later in the deriva-

tion. Another major difference is that the frame rotates in the spheroidal

case, while it is fixed in the spherical case. The rotating trait is a natural

result of transforming from the original Jacobi constants to natural Delaunay

variables, which define the secular motion of the spheroidal frame; its rotation

rate is such that it approximately tracks the averaged motion of the osculat-

ing spherical frame in the equivalently perturbed Kepler problem. The true

rate of the spheroidal frame is the rate of change of the spheroidal ascending

node vector. Note that the angular elements (not the momenta) that define

the spherical equinoctial elements are also Delaunay variables, i.e. the two

equinoctial frames are consistent in that respect.

The representation of the dynamics in terms of fast and slow variables

is also different. First consider the unperturbed problems. In the spheri-

cal case, the first five elements are dynamical constants and the sixth varies

rapidly in time. In the spheroidal case, the first element is a dynamical con-
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stant (no averaging involved), the next four vary slowly in time, and the sixth

varies rapidly (still no explicit averaging). Now consider the perturbed prob-

lems. In both the spherical and spheroidal cases, the first five elements vary

slowly in time and the sixth varies rapidly. The new spheroidal element set

then arguably represents an improvement over the final set recommended by

Vinti [160], who effectively parameterized the solution with three dynamically

constant elements, one slow variable, and two fast variables.

Before proceeding, it is important to review the major contributions to

the formulation of Vinti theory in classical spheroidal orbital elements. Izsak

[85] is credited with the observation that the solution under the original Vinti

potential can be expressed in terms of classical spheroidal elements, especially

with regard to identifying the spheroidal semimajor axis, eccentricity, and in-

clination. Recall from Chapter 1 that Izsak’s solution sprouted a few follow-on

studies and explicit computational procedures that branch off from the track

of Vinti’s solutions; Izsak even foresaw the usefulness of a RAAN-like vari-

able that tracks a slowly rotating reference plane. However, this last variable

was not formally introduced until nearly a decade later in Vinti’s 1968 tech-

nical report, which is very difficult to find. Lang subsequently used it in his

thesis [104] and Vinti thoroughly archived the new element in 1969 for both

potentials [160]. It is the author’s opinion that Vinti’s formulation is easier to

implement. The present work develops the spheroidal equinoctial elements by

building on these early contributions in classical elements.

It follows from the preceding discussion that, when spherical equinoc-

tial elements are generalized to spheroidal elements, the familiar relationships
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between classical and equinoctial elements still apply both to the elements’ sec-

ular components and to the complete elements, which are formed by adding

in the periodic parts. The symbols used to define the spherical equinoctial

elements in terms of classical spherical elements are essentially used to define

the oblate spheroidal equinoctial elements, with the understanding that the

classical elements are now spheroidal. In other words, it is possible to convert

the classical spheroidal elements to spheroidal equinoctial elements using the

following formulas:
p = p

q1 = e cos (ω′ +KΩ′)

q2 = e sin (ω′ +KΩ′)

p1 =

[
tan

(
I

2

)]K
cos Ω′

p2 =

[
tan

(
I

2

)]K
sin Ω′

L = f + ω′ +KΩ′

(4.2)

where e is the spheroidal eccentricity, ω′ is the argument of spheroidal pe-

riapsis, Ω′ is the right ascension of the spheroidal ascending node (RASAN,

but better understood when shortened to spheroidal RAAN), and f is the

spheroidal true anomaly. The notion of complete elements is associated with

the angular variables, Ω′, ω′, and f (and combinations thereof), which are

viewed as the composition of secular and periodic parts, expressed mathemat-
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ically as

Ω′ = Ω′s + Ω′p (4.3)

ω′ = ω′s + ω′p (4.4)

f = Ms + fp (4.5)

The subscript “s” denotes a secular component of the angular variable and the

subscript “p” a periodic component. The ′ symbol serves to distinguish the Ω′

and ω′ elements from the Jacobi constants, i.e. β2 = ω and β3 = Ω. In this

way, the notation for the complete spheroidal RAAN is consistent with Vinti’s

notation [160]. If only the secular components of the elements are considered,

then the equation for spheroidal true longitude is replaced with one for the

secular part of the spheroidal mean longitude, which is determined as

λs = Ms + ω′s +KΩ′s (4.6)

where M is the spheroidal mean anomaly. Usually, I is used to denote the

retrograde factor, but here I denotes the spheroidal inclination. Thus, K is

used instead to refer to the retrograde factor, defined as follows:

K =

{
+1 direct spheroidal equinoctial elements

−1 retrograde spheroidal equinoctial elements
(4.7)

There is one more important longitudinal angle to define, specifically

the spheroidal eccentric longitude, F . It should be clear from context whether

F refers to the spheroidal eccentric longitude or to the F (ρ) quartic. The

spheroidal eccentric longitude has the following relationship to the spheroidal

eccentric anomaly, E:

F = E + ω′ +KΩ′ (4.8)
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4.2 Anomalistic and Draconitic Motion

Vinti theory distinctly prescribes the propagation of the anomalistic

and draconitic components of the motion. Two of the oblate spheroidal coor-

dinates are tied to these motions by way of the spheroidal conic equation and

the spheroidal latitude equation, respectively.

4.2.1 The Spheroidal Conic Equation

The familiar conic equation prescribes a conic section in spherical ge-

ometry. It can be thought of as governing the radial distance r of a spacecraft

or the point where a spacecraft is tangent to a sphere of that radius. When

described in oblate spheroidal geometry, the spheroidal conic equation governs

the point where a spacecraft is tangent to a spheroid of semiminor axis ρ. The

spheroidal conic equation is expressed as

ρ =
p

1 + e cos f
(4.9)

and is identical in form to the spherical conic equation. As such, the equation

generalizes in the familiar way when written in terms of spheroidal equinoctial

elements:

ρ =
p

1 + q1 cosL+ q2 sinL
(4.10)

4.2.2 The Spheroidal Latitude Equation

The spheroidal latitude equation is the analogue of the familiar spheri-

cal trigonometry equation that relates latitude to orbital elements. The spher-
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ical form is given by

sin θ = sin IK sin(ωK + fK) (4.11)

In oblate spheroidal geometry, the equation becomes

η = sin I sin (ω′ + f) = sin I sinψ (4.12)

when J3 = 0 or

η = P +Q sin (ω′ + f) = P +Q sinψ (4.13)

when J3 6= 0. Note that ψ is the argument of spheroidal latitude. Some of

the notation is very different between the solutions of the 1961 and 1966 Vinti

potentials. The notation of the J3 6= 0 theory is used to facilitate referencing

of recent work [17]. The J3 = 0 assumption is then applied, and simplifications

follow, such as P = 0 and Q = sin I. With these assumptions, the form of the

spheroidal latitude equation in spheroidal equinoctial elements becomes

η = (p1 sinL−Kp2 cosL) (1 +K cos I) (4.14)

if the inclination associated with Q is tied to the one in Eq. (4.2). Using

the identity 2 cos2 I/2 = 1 + cos I, Eq. (4.14) can be expressed strictly in

equinoctial elements as

η =
2

1 + p21 + p22
(p1 sinL−Kp2 cosL) (4.15)

but Eq. (4.14) is useful for converting between coordinates.
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4.3 ECI Coordinates in Terms of Spheroidal Equinoc-
tial Elements

The ECI coordinates are expressed in terms of oblate spheroidal ele-

ments as

X =
√
ρ2 + c2 (cos Ω′ cosψ − sin Ω′ cos I sinψ) (4.16)

Y =
√
ρ2 + c2 (sin Ω′ cosψ + cos Ω′ cos I sinψ) (4.17)

Z = ρη (4.18)

After extensive manipulation of Eqs. (4.16–4.18), these equations can be writ-

ten in terms of oblate spheroidal equinoctial elements as

X =

√
ρ2 + c2

1 + p21 + p22

[(
1 + p21 − p22

)
cosL+ 2Kp1p2 sinL

]
(4.19)

Y =

√
ρ2 + c2

1 + p21 + p22

[
2p1p2 cosL+

(
1− p21 + p22

)
K sinL

]
(4.20)

Z =
2ρ

1 + p21 + p22
(−Kp2 cosL+ p1 sinL) (4.21)

Equations (4.19–4.21) can be arranged into matrix form as X
Y
Z

 =
1

1 + p21 + p22
×


√
ρ2 + c2 (1 + p21 − p22)√
ρ2 + c2 2p1p2
−2Kρp2

√
ρ2 + c2 2Kp1p2√
ρ2 + c2 (1− p21 + p22)K

2ρp1

[ cosL
sinL

] (4.22)

but they can also be arranged into the form X ′

Y ′

Z ′

 =
1

1 + p21 + p22

 1 + p21 − p22
2p1p2
−2Kp2︸ ︷︷ ︸

f

2Kp1p2
(1− p21 + p22)K

2p1︸ ︷︷ ︸
g

[ cosL
sinL

]
(4.23)
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where

X ′ =
X√
ρ2 + c2

(4.24)

Y ′ =
Y√
ρ2 + c2

(4.25)

Z ′ =
Z

ρ
(4.26)

Two columns in Eq. (4.23) are identified as very similar to the familiar fK

and gK vectors that define the spherical equinoctial reference frame and are

therefore labeled accordingly. It is emphasized that their directions generally

are not identical to their spherical counterparts because the spheroidal p1 and

p2 are generally different in value from the spherical ones. Similarly, the w

vector, which is aligned with the angular momentum in the Kepler problem,

has a slightly different direction in the Vinti problem. For completeness, the

equation for w is determined as

w =

 2p2
−2p1

(1− p21 − p22)K

 (4.27)

The f , g, and w vectors become unit vectors when divided by the factor

1 + p21 + p22. The direct equinoctial reference frames associated with spherical

and spheroidal geometry are respectively illustrated side by side in Figs. 4.1(a)

and 4.1(b). Notice that the equinoctial frames result after a particular 3-1-3

sequence of rotations from the ECI frame. Specifically, the first rotation is a

counterclockwise rotation by Ω about the Ẑ axis, the second is a counterclock-

wise rotation by I about the node vector, and the third is a clockwise rotation

by Ω about the ŵ vector or axis. In contrast, the analogous rotations to the
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Figure 4.1: Direct equinoctial reference frames for different geometries.
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perifocal frame differ in the third rotation, which instead involves a counter-

clockwise rotation by ω about the ŵ axis. Notice also that the left-hand side

in Eq. (4.23) now contains scaled inertial position coordinates. This detail is

crucial for reasons explored in the next paragraph.

Before moving on, let us spend some time on Eq. (4.22). In the limit as

c→ 0, several things happen: 1) the Vinti problem “approaches” or reduces to

the Kepler problem; 2) the oblate spheroidal coordinates reduce to spherical

coordinates, i.e. ρ → r. As evidenced by an earlier discussion, it is not a

coincidence that these changes happen in concert. The quantity r can be

factored out in this limit, and Eq. (4.22) becomes X
Y
Z

 =
1

1 + p21 + p22

 1 + p21 − p22
2p1p2
−2Kp2

2Kp1p2
(1− p21 + p22)K

2p1

[ r cosL
r sinL

]
(4.28)

where L and the pj are now spherical equinoctial elements, and it is clear that

Eq. (4.22) is a generalization of Eq. (4.28) to an oblate spheroidal geometry.

The reduction of symmetry is manifested as an asymmetric scaling by the

factor
√
ρ2 + c2 in the equatorial plane and the factor ρ along the polar axis.

The scaling agrees with intuition. For example, consider that
√
ρ2 + c2 > r >

ρ, so that relative to a sphere of radius r, the coordinates are stretched in the

equatorial plane and contracted along the polar axis.

4.4 The Spheroidal Eccentricity and Ascending Node
Vectors

The notion of an oblate spheroidal equinoctial reference frame has now

been established, but there are still certain physical quantities that lack a clear
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equivalent in the Vinti problem. For example, the eccentricity vector is a well

defined constant in the Kepler problem easily computed from inertial position

and velocity vectors. While it does not point in a constant direction in the

Vinti problem, the spheroidal eccentricity vector is still defined mathemati-

cally. However, so far, the computation of the vector seems inaccessible. Its

magnitude is easily obtained from factoring the F (ρ) quartic, but its direction

is not obvious. There is a similar issue understanding the direction of the

spheroidal ascending node vector. To answer these questions, equations are

derived connecting the components of these vectors to the initial conditions in

ECI coordinates using only the true longitude as a fast variable.

It is important to note that angles associated with the eccentric anomaly

will not always be well defined over the range of orbit inclinations and ec-

centricities (the variable itself changes definition to parabolic or hyperbolic

eccentric anomaly depending on the respective orbit type). The angles asso-

ciated with the true anomaly, in contrast, will always be defined and their

computation will be free of singularities. The same holds for time derivatives.

These facts were also discussed in Section 2.3.3 with derivations of relevant

equations for the classical spheroidal elements. To access the spheroidal ec-

centricity vector, it must be connected to the spheroidal true longitude since

that is calculable directly from initial conditions, and the expressions for true

anomaly enable this connection.
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4.4.1 Computing the Spheroidal Eccentricity Vector When True
Longitude Is Known

In spherical elements, the eccentricity vector is calculable from a simple

vector equation. A similar statement does not hold in the Vinti problem, and

an alternative approach must be found to obtain the spheroidal eccentricity

vector. Recall Eqs. (2.36) and (2.35) for e cos f and e sin f . Using the defini-

tions in Eq. (4.2), these quantities can be put in terms of true longitude by

applying the angle sum and difference identities of trigonometry:

e cos f = e cos (L− ω′ −KΩ′)

= e cosL cos (ω′ +KΩ′) + e sinL sin (ω′ +KΩ′)

e sin f = e sin (L− ω′ −KΩ′)

= e sinL cos (ω′ +KΩ′)− e cosL sin (ω′ +KΩ′)

Applying the definitions of qj leads to the relations:

e cos f = q1 cosL+ q2 sinL (4.29)

e sin f = q1 sinL− q2 cosL (4.30)

and substituting into the left-hand side of Eqs. (4.29) and (4.30) and rearrang-

ing gives

q1 cosL+ q2 sinL =
p

ρ
− 1 (4.31)

q1 sinL− q2 cosL =

√
Fp1/2

ρ [µγ1(ρ2 − 2b1ρ+ b22)]
1/2

(4.32)
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Equations (4.31) and (4.32) can be combined into a compact matrix form as

[
cosL sinL
sinL − cosL

] [
q1
q2

]
=


p

ρ
− 1

√
Fp1/2

ρ (µγ1)
1/2 (ρ2 − 2b1ρ+ b22)

1/2


If L is known, then q1 and q2 can be determined as

[
q1
q2

]
=

[
cosL sinL
sinL − cosL

]
p

ρ
− 1

√
Fp1/2

ρ (µγ1)
1/2 (ρ2 − 2b1ρ+ b22)

1/2

 (4.33)

Equation (4.33) is exact and accurately gives q1 and q2 for any orbit. The

implication is that the spheroidal eccentricity vector is now mathematically

well defined because its components in the spheroidal equinoctial frame are

calculable.

4.4.2 Computing the Spheroidal Ascending Node Vector When
True Longitude Is Known

A similar procedure is necessary for the spheroidal ascending node vec-

tor. When obtaining spherical equinoctial elements from ECI coordinates, the

angular momentum vector is one of the three vectors that define the equinoctial

reference frame. Its normalized components, wK = (wKx , wKy , wKz), readily

define the components of the spherical ascending node vector as

p1K = −
wKy

1 +KwKz
(4.34)

p2K = +
wKx

1 +KwKz
(4.35)

However, in the Vinti problem, the angular momentum vector does not define

the spheroidal equinoctial reference frame, and an alternative approach is nec-
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essary for computing p1 and p2, the components of the spheroidal ascending

node vector.

This time the focus is on Q cosψ and Q sinψ, and the first step is to ex-

press these quantities in terms of initial conditions. A formula for Q sinψ is al-

ready available from the spheroidal latitude equation. Rearranging Eq. (4.13),

which is for the general case when J3 6= 0, the quantity Q sinψ is simply given

by

Q sinψ = η − P (4.36)

The time derivative of Eq. (4.36) gives

Qψ̇ cosψ = η̇ (4.37)

where

η̇ =

√
G

ρ2 + c2η2
(4.38)

and

ψ̇ =
α2 (1 + C1η − C2η

2)
1/2

u1/2 (ρ2 + c2η2)
(4.39)

as given in the literature [50, 160]. Substituting Eqs. (4.38) and (4.39) into

Eq. (4.37) and rearranging gives

Q cosψ =

√
Gu1/2

α2 (1 + C1η − C2η2)
1/2

(4.40)

Now, assume J3 = 0 so that P = C1 = 0, consistent with the 1959 Vinti

potential. Again using the definitions in Eq. (4.2), the quantities Q cosψ and
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Q sinψ can be put in terms of true longitude by applying the same trigono-

metric identities as before:

Q cosψ = Q cos (L−KΩ′)

= Q cosL cos (KΩ′) +Q sinL sin (KΩ′)

= Q cosL cos Ω′ +KQ sinL sin Ω′ (4.41)

Q sinψ = Q sin (L−KΩ′)

= Q sinL cos (KΩ′)−Q cosL sin (KΩ′)

= Q sinL cos Ω′ −KQ cosL sin Ω′ (4.42)

Now, recall that Q = sin I. To apply the definitions of pj in Eq. (4.2), one

additional step is required that makes use of the following identities:

tan

(
I

2

)
=

sin I

1 + cos I
(4.43)

cot

(
I

2

)
=

sin I

1− cos I
(4.44)

which can be combined into one equation using the retrograde factor K:[
tan

(
I

2

)]K
=

sin I

1 +K cos I
(4.45)

After dividing Eqs. (4.41) and (4.42) by 1+K cos I, their right-hand sides can

be simplified to the following forms by applying Eq. (4.45) and the definitions

of p1 and p2 in Eq. (4.2):

Q cosψ

1 +K cos I
= p1 cosL+Kp2 sinL (4.46)

Q sinψ

1 +K cos I
= p1 sinL−Kp2 cosL (4.47)

138



Using Eqs. (4.40) and (4.36) to substitute respectively into the left-hand side

of Eqs. (4.46) and (4.47) for Q cosψ and Q sinψ gives

p1 cosL+Kp2 sinL =

√
Gu1/2

α2 (1− C2η2)
1/2 (1 +K cos I)

(4.48)

p1 sinL−Kp2 cosL =
η

1 +K cos I
(4.49)

It is emphasized that the assumption J3 = 0 was imposed to arrive at these

equations. While not useful for obtaining p1 and p2 from ECI coordinates, it

is still interesting to arrange Eqs. (4.48) and (4.49) in matrix form as

[
cosL K sinL
sinL −K cosL

] [
p1
p2

]
=


√
Gu1/2

α2 (1− C2η2)
1/2 (1 +K cos I)

η

1 +K cos I


Then, as in the derivation of Eq. (4.33), if L is known, p1 and p2 can be

determined as [
p1
p2

]
=

[
cosL sinL

K sinL −K cosL

]

×


√
Gu1/2

α2 (1− C2η2)
1/2 (1 +K cos I)

η

1 +K cos I

 (4.50)

Solving these equations for p1 and p2 implies that L is known. However, L is

not known before the determination of p1 and p2. The following explains how

to obtain p1 and p2 without knowledge of L, and Eqs. (4.48) and (4.49) are

essential to this process.
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4.4.3 Computing the Spheroidal Ascending Node Vector When
True Longitude Is Unknown

The goal in this section is to derive expressions for p1 and p2 that

depend directly on initial conditions and not on L. The derivation begins

with the equations for X and Y given by Eqs. (4.16) and (4.17):

X =
√
ρ2 + c2 (cos Ω′ cosψ − sin Ω′ cos I sinψ)

Y =
√
ρ2 + c2 (sin Ω′ cosψ + cos Ω′ cos I sinψ)

To obtain the first relationship, multiply the X equation by cos Ω′ and the Y

equation by sin Ω′, which gives

X cos Ω′ =
√
ρ2 + c2

(
cos2 Ω′ cosψ − cos Ω′ sin Ω′ cos I sinψ

)
(4.51)

Y sin Ω′ =
√
ρ2 + c2

(
sin2 Ω′ cosψ + cos Ω′ sin Ω′ cos I sinψ

)
(4.52)

Adding Eqs. (4.51) and (4.52) leads to

X cos Ω′ + Y sin Ω′ =
√
ρ2 + c2

(
cos2 Ω′ + sin2 Ω′

)
cosψ

=
√
ρ2 + c2 cosψ (4.53)

where the second term in each equation cancels out. Equation (4.53) can

be written in terms of p1 and p2 through several steps. First, note cosψ =

cos(L−KΩ′) and employ the usual identities:

X cos Ω′ + Y sin Ω′ =
√
ρ2 + c2 cos (L−KΩ′)

=
√
ρ2 + c2 (cosL cos Ω′ +K sinL sin Ω′) (4.54)

Then multiply both sides of Eq. (4.54) by [tan(I/2)]K :[
tan

(
I

2

)]K
·

[
X cos Ω′ + Y sin Ω′√

ρ2 + c2
= (cosL cos Ω′ +K sinL sin Ω′)

]
(4.55)
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From the definition of p1 and p2 in Eq. (4.2), Eq. (4.55) above simplifies to

Xp1 + Y p2 =
√
ρ2 + c2 (p1 cosL+Kp2 sinL) (4.56)

Notice that the right-hand side contains the term found in Eq. (4.48).

A similar process is performed to obtain a relationship connecting X

and Y to Eq. (4.49). To obtain this second relationship, multiply the X

equation by sin Ω′ and the Y equation by cos Ω′, which gives

X sin Ω′ =
√
ρ2 + c2

(
cos Ω′ sin Ω′ cosψ − sin2 Ω′ cos I sinψ

)
(4.57)

Y cos Ω′ =
√
ρ2 + c2

(
cos Ω′ sin Ω′ cosψ + cos2 Ω′ cos I sinψ

)
(4.58)

Subtracting Eq. (4.57) from Eq. (4.58) leads to

Y cos Ω′ −X sin Ω′ =
√
ρ2 + c2

(
cos2 Ω′ + sin2 Ω′

)
cos I sinψ

=
√
ρ2 + c2 cos I sinψ (4.59)

where the second term in each equation cancels out. Equation (4.59) can then

be written in terms of p1 and p2 through several steps, similar to the steps just

carried out to arrive at Eq. (4.56). First, note that sinψ = sin(L−KΩ′) and

employ the usual identities:

Y cos Ω′ −X sin Ω′ =
√
ρ2 + c2 cos I sin (L−KΩ′)

=
√
ρ2 + c2 cos I (sinL cos Ω′ −K cosL sin Ω′) (4.60)

Then multiply both sides of Eq. (4.60) by [tan(I/2)]K :[
tan

(
I

2

)]K
·

[
Y cos Ω′ −X sin Ω′√

ρ2 + c2

= cos I (sinL cos Ω′ −K cosL sin Ω′)

] (4.61)
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From the definition of p1 and p2 in Eq. (4.2), Eq. (4.61) above simplifies to

Y p1 −Xp2 =
√
ρ2 + c2 (p1 sinL−Kp2 cosL) cos I (4.62)

Notice that the right-hand side contains the term found in Eq. (4.49).

Equations (4.56) and (4.62) are in a form in which it is easy to substitute

Eqs. (4.48) and (4.49), respectively. Making these substitutions leads to two

equations:

Xp1 + Y p2 =
√
ρ2 + c2

[ √
Gu1/2

α2 (1− C2η2)
1/2 (1 +K cos I)

]
(4.63)

Y p1 −Xp2 =
√
ρ2 + c2

(
η cos I

1 +K cos I

)
(4.64)

In matrix form, Eqs. (4.63) and (4.64) become

[
X Y
Y −X

] [
p1
p2

]
=


√
ρ2 + c2

√
Gu1/2

α2 (1− C2η2)
1/2 (1 +K cos I)√

ρ2 + c2η cos I

1 +K cos I

 (4.65)

Inverting the matrix equation gives

[
p1
p2

]
=

1

X2 + Y 2

[
X Y
Y −X

]
√
ρ2 + c2

√
Gu1/2

α2 (1− C2η2)
1/2 (1 +K cos I)√

ρ2 + c2η cos I

1 +K cos I

 (4.66)

which expresses p1 and p2 in terms of ECI coordinates instead of the true

longitude L as in Eq. (4.50). The quantities in the column vector on the right-

hand side are well defined for all orbits and can be obtained directly from ECI

coordinates. Note that K = ±1. One obvious issue with Eq. (4.66) is the

singularity associated with computing 0/0 when the spacecraft is on a pole,

and the next section discusses options for handling it.
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4.4.4 Mitigating the Singularity Associated with a Spacecraft Lo-
cated on a Pole

Finally, at the conclusion of the previous section, an equation defining

the spheroidal ascending node vector in terms of ECI coordinates has been

obtained. The only issue with Eq. (4.66) is the division by X2 + Y 2, which

goes to zero when the spacecraft is on a pole. This singularity is only an

issue if converting from ECI coordinates to spheroidal equinoctial elements

when the spacecraft is on a pole, which, as pointed out in Section 2.3.1, is a

pathological case in practice because this conversion may only be done once

for initialization. Nevertheless, if this situation is encountered, it should not

present any real trouble, as there are two options that avoid the singularity.

One option for mitigating the singularity is to appeal to Keplerian

definitions of orbital elements. The spacecraft can only be near a pole when

the orbit is nearly polar. When the orbit is exactly polar, the spheroidal

RAAN is identical to the spherical or Keplerian RAAN, and there is readily

available an equation free of polar-orbit singularities for the Keplerian RAAN.

First, compute the angular momentum from

h = r× v (4.67)

and obtain the unit vector as

ŵK =
h

|h|
=

 wKx
wKy
wKz

 (4.68)

Then, the spherical ascending node vector is

nK =

 −wKywKx
0

 (4.69)
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Finally, the Keplerian RAAN can be computed unambiguously for nearly or

exactly polar orbits as

ΩK = arctan

(
nKy
nKx

)
= arctan

(
wKx
−wKy

)
(4.70)

Note that atan2 should be used in implementation to unambiguously compute

the arctangent of ΩK . The components of the spheroidal ascending node vector

are then approximated well by using the definition of p1 and p2 with the

spheroidal inclination and the spherical RAAN

p1 =

[
tan

(
I

2

)]K
cos ΩK (4.71)

p2 =

[
tan

(
I

2

)]K
sin ΩK (4.72)

These equations would only be used for nearly or exactly polar orbits, and in

particular only when a spacecraft is sufficiently close to a pole and a conversion

from ECI coordinates to spheroidal equinoctial elements is required. However,

in practice, an actual implementation would require a weighting function in

the vicinity of a pole. Due to this inconvenience, this approach is not very

appealing except when the orbit is exactly polar.

A second and arguably much better option is to take the time derivative

of Eq. (4.65). Beginning with the left-hand side,

d

dt
(Xp1 + Y p2) = Ẋp1 +Xṗ1 + Ẏ p2 + Y ṗ2 (4.73)

d

dt
(Y p1 −Xp2) = Ẏ p1 + Y ṗ1 − Ẋp2 −Xṗ2 (4.74)
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Next, observe that the time derivatives of p1 and p2 are determined simply as

ṗ1 =

[
tan

(
I

2

)]K (
−Ω̇′ sin Ω′

)
= −p2Ω̇′ (4.75)

ṗ2 =

[
tan

(
I

2

)]K (
+Ω̇′ cos Ω′

)
= +p1Ω̇

′ (4.76)

Substituting Eqs. (4.75) and (4.76) into the right-hand side of Eqs. (4.73) and

(4.74) gives

d

dt
(Xp1 + Y p2) = Ẋp1 +X

(
−XΩ̇′

)
+ Ẏ p2 + Y

(
Y Ω̇′

)
=
(
Ẋ + Y Ω̇′

)
p1 +

(
Ẏ −XΩ̇′

)
p2 (4.77)

d

dt
(Y p1 −Xp2) = Ẏ p1 + Y

(
−XΩ̇′

)
− Ẋp2 −X

(
Y Ω̇′

)
=
(
Ẏ −XΩ̇′

)
p1 −

(
Ẋ + Y Ω̇′

)
p2 (4.78)

Writing Eqs. (4.77) and (4.78) in matrix form gives the time derivative of the

left-hand side of Eq. (4.65) as

d

dt

{[
X Y
Y −X

] [
p1
p2

]}
=

[
Ẋ + Y Ω̇′ Ẏ −XΩ̇′

Ẏ −XΩ̇′ −Ẋ − Y Ω̇′

] [
p1
p2

]
(4.79)

Equating Eq. (4.79) with the time derivative of the right-hand side of Eq. (4.65)

(equating the left- and right-hand sides) gives[
Ẋ + Y Ω̇′ Ẏ −XΩ̇′

Ẏ −XΩ̇′ −Ẋ − Y Ω̇′

] [
p1
p2

]
=

1

1 +K cos I

×



(
ρρ̇Q cosψ√
ρ2 + c2

− ηψ̇
√
ρ2 + c2

)

cos I

(
Zρ̇√
ρ2 + c2

+ η̇
√
ρ2 + c2

)


(4.80)

As Eq. (4.80) will need to be inverted, note that its determinant is given by

det = −
(
Ẋ + Y Ω̇′

)2
−
(
Ẏ −XΩ̇′

)2
(4.81)
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Inverting Eq. (4.80) determines p1 and p2 as[
p1
p2

]
=

1(
Ẋ + Y Ω̇′

)2
+
(
Ẏ −XΩ̇′

)2 [ Ẋ + Y Ω̇′ Ẏ −XΩ̇′

Ẏ −XΩ̇′ −Ẋ − Y Ω̇′

]

× 1

1 +K cos I



(
ρρ̇Q cosψ√
ρ2 + c2

− ηψ̇
√
ρ2 + c2

)

cos I

(
Zρ̇√
ρ2 + c2

+ η̇
√
ρ2 + c2

)


(4.82)

This equation can lead to computations of 0/0 if the spacecraft is located on

the equator in an exactly polar orbit, but this equation was derived with the

intent of applying it only when the spacecraft is near a pole, not near the

equator. Therefore, the equation is valid in the region of interest.

There are several trade-offs to be aware of between the methods of

determining p1 and p2 that are based on Vinti theory. Equation (4.66) is based

on the inertial position vector and is exact inasmuch as the factoring of the

quartics can be arbitrarily accurate. Equation (4.82) is based on the inertial

position and velocity vectors, but while the equation is exact in form, its

accuracy is actually limited by the accuracy of Ω̇′. Vinti carried the accuracy

of Ω̇′ out to O(J3
2 ) in secular terms and O(J2

2 ) in periodic terms, but it can in

theory be made arbitrarily accurate. As implemented here, the secular terms

are accurate to O(J4
2 ). Note that Ω̇′ is determined to second order as [160]

Ω̇′ = − c2α3

(−2α1)
1/2

(
A3 +

4∑
k=1

kA3k cos kf

)
ḟ

+
α3u

1/2

α2

(
B3 +

2∑
k=1

kB3k
sin
cos

kψ

)
ψ̇

(4.83)
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and to third order as

Ω̇′ = − c2α3

(−2α1)
1/2

(
A3 +

6∑
k=1

kA3k cos kf

)
ḟ

+
α3u

1/2

α2

(
B3 +

4∑
k=1

kB3k
sin
cos

kψ

)
ψ̇

(4.84)

The first term in Eqs. (4.83) and (4.84) indicates that Ω̇′ becomes infinite

as the orbit energy approaches zero, which violates the physics. For nearly

parabolic, parabolic, or hyperbolic orbits, Eqs. (4.83) and (4.84) are invalid.

Getchell’s equations [62] readily handle orbits of arbitrary eccentricity and

they can be used here to compute the first term of Ω̇′ to third order as

Ω̇′ = − c2α3

(µpγ1)
1/2

[
W2 + A1W3 +

(
A2 − c2

)
W4

+
(
A3 − A1c

2
)
W5 +

(
A4 − A2c

2 + c4
)
W6

]
ḟ

+
α3u

1/2

α2

(
B3 +

4∑
k=1

kB3k
sin
cos

kψ

)
ψ̇

(4.85)

where W = f in Getchell’s notation and the Wj and Aj refer to different

quantities from Vinti’s notation. Note that Getchell’s solution does not use

Ω′. Equation (4.85) is new, obtained by combining part of the R3 integral of

Getchell’s solution with the N3 integral of Vinti’s solution.

This approach to mitigating the singularity that invokes pieces of the

analytical solution may seem like a lot of extra computational effort, but almost

all of the quantities in Eqs. (4.83)–(4.85) would have to be computed anyway

if the ultimate goal is analytical state propagation (ρ̇, η̇, ḟ , ψ̇, A3, B3, A3k

for k = 1, . . . , 4, and B32 for Eq. (4.83) and ρ̇, η̇, ḟ , ψ̇, Wj for j = 1, . . . , 6,

B3, Aj for j = 1, . . . , 4, B32 for Eq. (4.85)). The exceptions, i.e. the steps
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not required in the analytical solution, are the determination of ρ̇ and η̇,

which are very simple to calculate [160, 62]. The appearance of f and ψ in

Eqs. (4.83) and (4.85) implies that f and ψ must be calculable to compute

Ω̇′, but this inference can be refuted. Careful examination of the periodic

coefficients reveals that each Ajk contains a factor of ek and each Bjk contains

a factor of Qk. Consequently, the requirement is not knowledge of f and ψ,

but rather knowledge of e cos f , Q sinψ, and Q cosψ, which are obtained from

Eqs. (2.36), (4.36), and (4.40), respectively. Of course, when J3 = 0, the

equations simplify because Bjk = 0 for odd k, and Q cosψ is not required in

this case. Nevertheless, the three quantities can always be determined exactly

from initial conditions, even if f and/or ψ are undefined.

Figure 4.2 assesses how the accuracy of the approximation that patches

the poles affects the precision of the coordinate transformation near the poles.

To carry out such an analysis, a successive forward-backward sequence of trans-

formations is performed, from ECI coordinates to OS equinoctial elements and

back to ECI coordinates. The initial ECI state is therefore known to double

precision and perfect coordinate transformations would give an exactly zero

error between the final and initial ECI states. Exactly zero error is possible

and is represented in Fig. 4.2 as 17 correct digits (even though there are only

16). Otherwise, the number of correct digits plotted corresponds to the true

number of correct digits. If the digits of a quantity are correct to 5 digits

and the 6th digit rounds to the correct digit, then the number of preserved

digits is considered to be 6 and not 5. The co-latitude is plotted in degrees on

the horizontal axis using a log scale, while the number of preserved digits is
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Figure 4.2: The second-order pole patch for an Earth application effectively
removes any precision loss near the poles due to singularities, supported by
recording the number of digits preserved near the poles for each of the four
ECI coordinates affected by the singularity on the poles: X, Y , vx, and vy.
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plotted on the vertical axis. The precision of the exact equations, which are

singular on the poles, is shown in blue filled circles and the precision using the

second-order approximating pole patch is shown in red x’s. As the Z direction

is agnostic to this singularity issue, only the other four ECI states, X, Y , vx,

and vy, are analyzed.

Notice that, due to the singularity, the precision of the exact equations

in X and Y reaches zero for co-latitudes as large as 10−8 degrees for an Earth

application. The precision appears to tend to zero in X and Y for the pole

patch as well, albeit at a much slower rate that diverges from the exact case

around co-latitudes of 10−2 degrees, but this trend is somewhat misleading. As

far as doing what it is designed to do (mitigating singularities on the poles),

the pole patch is in fact retaining double precision for essentially the entire

range of co-latitudes, which is clearly observable in the vx and vy plots. Recall

that these trends in Fig. 4.2 result when applying the second-order patch at the

Earth. The diminishing of precision in X and Y for the pole patch is actually

an artifact of the equinoctial elements themselves. Consider that the final

equation (given later as Eq. (4.108)) that transforms to X and Y coordinates

involves a subtraction of nearly equal numbers when applied near a pole and

precision is preserved up to this point. Essentially the same equation (see

Eq. (B.33) in Appendix B.2.2) is used for the spherical equinoctial elements,

which means that the same trend exists in the spherical case, where precision

is lost on the poles, reaching 1 correct digit for co-latitudes around 10−15

degrees. In this sense, the precision of the coordinate transformations for

the OS equinoctial elements is shown to be, at best, as high as that of the
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analogous spherical coordinate transformations. Note that even though the

equations that transform to vx and vy use the corrupted X and Y values, the

precision in the velocities is still around 16 digits near the poles.

In general, the Keplerian definition of RAAN is never required, but in

some circumstances, it may be preferable to use it. In exactly polar orbits,

computing the spherical RAAN certainly consists of fewer computations and

is greatly simplified relative to the equations of Vinti theory. For this reason, a

programmer may wish to simply compute the spherical RAAN for an arbitrary

polar orbit. However, away from the exactly polar case, the rate of divergence

of the spherical RAAN from the spheroidal RAAN is not clear and certainly

depends on the magnitude of J2. For nearly polar orbits, one of the approxi-

mate approaches based on Vinti theory should be preferred. Alternatively, in

practice, there is also the option of simply not performing the coordinate trans-

formation in the vicinity of the poles, e.g. when the spacecraft’s co-latitude is

less than 10−2 degrees.

Note that a similar singularity has always existed in Vinti theory for

scenarios in which a spacecraft flies over a pole, whether the quantity sought is

right ascension, spheroidal RAAN, or the spheroidal node vector components

p1 and p2. Using right ascension is arguably the worst option because there is

no recourse to Keplerian elements to mitigate the singularity. Using spheroidal

RAAN is an improvement because one can appeal to the Keplerian RAAN near

the singularity. Similarly, the use of spheroidal equinoctial elements allows for

a simple adoption of Keplerian RAAN if necessary, but the new elements also

completely mitigate the singularity, which has until now never been resolved.
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The use of spheroidal equinoctial elements marks a major improvement in

handling a singularity that has persisted in Vinti theory for decades.

4.5 Computing True Longitude from ECI Coordinates
When the Spheroidal Ascending Node Vector Is
Known

The only remaining question regarding how to obtain the spheroidal

equinoctial elements from ECI coordinates is how to determine the true lon-

gitude. Recall Eq. (4.23) derived in Section 4.3 that determines the scaled

position vector in terms of the true longitude and the spheroidal ascending

node vector as X ′

Y ′

Z ′

 =
1

1 + p21 + p22

 1 + p21 − p22
2p1p2
−2Kp2︸ ︷︷ ︸

f

2Kp1p2
(1− p21 + p22)K

2p1︸ ︷︷ ︸
g

[ cosL
sinL

]

The unit vectors f̂ , ĝ, and ŵ associated with f , g, and w are defined as

f̂ =
f

1 + p21 + p22
(4.86)

ĝ =
g

1 + p21 + p22
(4.87)

ŵ =
w

1 + p21 + p22
(4.88)

and so the equation can be written alternatively as

r′ =
[

f̂ ĝ
] [ cosL

sinL

]
or

r′ =
[

f̂ ĝ ŵ
]  cosL

sinL
0

 (4.89)
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where

r′ ≡

 X ′

Y ′

Z ′

 (4.90)

It follows that

cosL = r′ · f̂ (4.91)

sinL = r′ · ĝ (4.92)

because inverting Eq. (4.89) gives

[
f̂ ĝ ŵ

]−1
r′ =

[
f̂ ĝ ŵ

]>
r′ =

 cosL
sinL

0


Finally, an unambiguous equation for L is available after dividing Eq. (4.92)

by Eq. (4.91) and taking the arctangent, so that L is determined as

L = arctan

(
sinL

cosL

)
= arctan

(
r′ · ĝ

r′ · f̂

)
(4.93)

Note that atan2 should be used in implementation to unambiguously compute

the arctangent of L. Its range should be shifted to 0 ≤ L < 2π for an elliptical

orbit.

4.6 Computing ECI Coordinates When Equinoctial El-
ements Are Known

Up to this point, most of the discussion has been in the spirit of how

to convert ECI coordinates to spheroidal equinoctial elements, but the inverse

transformation is also required. With a few exceptions, most of the required

equations have already been stated or derived, some in other chapters. The
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exceptions will be discussed in this section, covering an exact equation for

the spheroidal RAAN, the time derivatives of the spheroidal equinoctial ref-

erence frame basis vectors, and the final transformation to ECI coordinates.

The summary in Section 4.8 ties the seemingly disparate equations together

into a single algorithm for converting spheroidal equinoctial elements to ECI

coordinates.

4.6.1 An Exact Equation for the Time Derivative of Spheroidal
RAAN

An exact expression for Ω̇′ does not exist in the literature. Such an

equation can be found by directly taking the time derivative of the third kine-

matic equation

β3 = φ+ c2α3R3 − α3N3 (4.94)

where

R3 =

∫ ρ

ρ1

± 1

(ρ2 + c2)
√
F
dρ (4.95)

N3 =

∫ η

0

± 1

(1− η2)
√
G
dη (4.96)

and subtracting out the part that varies quickly when a spacecraft is near a

pole. This fast part is contained in the N3 integral, as evident by the division

by zero in that scenario where 1 − η2 → 0 in the denominator. The time

derivative of Eq. (4.94) after re-arranging is

φ̇ = −c2α3Ṙ3 + α3Ṅ3 (4.97)
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Several substitutions later, an expression is obtained for Ω̇′ as

Ω̇′ = α3

[
− c2

(ρ2 + c2) (ρ2 + c2η2)

+
1

(1− η2) (ρ2 + c2η2)
− u1/2ψ̇

α2 (1− η2) (1− C2)
1/2

]
(4.98)

Substituting for ψ̇ and u into Eq. (4.98), Ω̇′ is determined from

Ω̇′ =
1

ρ2 + c2η2

{
− c2α3

ρ2 + c2
+

α3

1− η2

[
1− (1− C2η

2)
1/2

(1− C2)
1/2

]}
(4.99)

as long as a spacecraft is not nearly on a pole (η 6= 1). On a pole, the expression

α3

1− η2

[
1− (1− C2η

2)
1/2

(1− C2)
1/2

]
evaluates to

0

0
· [0]

when it is known that Ω̇′ = 0 for polar orbits. The approximations for Ω̇′ and

corresponding discussion in Section 4.4.4 apply when a spacecraft is near a

pole.

4.6.2 Time Derivatives of the Spheroidal Equinoctial Reference
Frame Basis Vectors

Recall Eqs. (4.86) and (4.87) for the basis vectors f̂ and ĝ in terms of

p1 and p2:

f̂ =
1

1 + p21 + p22

 1 + p21 − p22
2p1p2
−2Kp2


ĝ =

1

1 + p21 + p22

 2Kp1p2
(1− p21 + p22)K

2p1


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Taking the derivative of f̂ and ĝ with respect to time gives

˙̂f =
2

1 + p21 + p22

 p1ṗ1 − p2ṗ2
p1ṗ2 + p2ṗ1
−Kṗ2

 (4.100)

˙̂g =
2

1 + p21 + p22

 (p1ṗ2 + p2ṗ1)K
(p2ṗ2 − p1ṗ1)K

ṗ1

 (4.101)

Recall from Eqs. (4.75) and (4.76) that ṗ1 = −p2Ω̇′ and ṗ2 = p1Ω̇
′, so that

substituting them into Eq. (4.100) and (4.101) gives the simplified form

˙̂f =
2Ω̇′

1 + p21 + p22

 −2p1p2
p21 − p22
−Kp1

 (4.102)

˙̂g =
2Ω̇′

1 + p21 + p22

 (p21 − p22)K
2Kp1p2
−p2

 (4.103)

The time derivatives of the basis vectors are functions only of the spheroidal

ascending node vector and the time derivative of spheroidal RAAN, Ω̇′, which

agrees with intuition.

4.6.3 ECI Coordinates

Expressions for X ′, Y ′, and Z ′ can be written in a compact form as

r′ = cosL f̂ + sinL ĝ (4.104)

From here, a simple rearrangement of Eqs. (4.24–4.26) gives X, Y , and Z as

X =
√
ρ2 + c2X ′ (4.105)

Y =
√
ρ2 + c2Y ′ (4.106)

Z = ρZ ′ (4.107)
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An alternative way to write these equations is to separate the determination

of Z by obtaining its value without using the basis vectors as follows:

r1:2 =
√
ρ2 + c2

(
cosL f̂1:2 + sinL ĝ1:2

)
(4.108)

and Z from

Z = ρη

Taking the derivative of X, Y , and Z with respect to time leads to the following

equations for Ẋ and Ẏ

Ẋ =
ρρ̇

ρ2 + c2
X +

√
ρ2 + c2

1 + p21 + p22

[
−4p1p2Ω̇

′ cosL+ 2
(
p21 − p22

)
KΩ̇′ sinL

−
(
1 + p21 − p22

)
L̇ sinL+ 2Kp1p2L̇ cosL

]
(4.109)

Ẏ =
ρρ̇

ρ2 + c2
Y +

√
ρ2 + c2

1 + p21 + p22

[
2
(
p21 − p22

)
Ω̇′ cosL+ 4Kp1p2Ω̇

′ sinL

− 2p1p2L̇ sinL+
(
1− p21 + p22

)
KL̇ cosL

]
(4.110)

and a simple equation for Ż:

Ż = ρ̇η + ρη̇ (4.111)

These equations for Ẋ and Ẏ are more compactly written as

v1:2 =
ρρ̇

ρ2 + c2
r1:2 +

√
ρ2 + c2

×
[
cosL ˙̂f1:2 + sinL ˙̂g1:2 + L̇

(
− sinL f̂1:2 + cosL ĝ1:2

)]
(4.112)

4.7 Summary: Converting Position and Velocity Vec-
tors to Spheroidal Equinoctial Elements

The process of converting inertial position and velocity vectors to oblate

spheroidal equinoctial orbital elements œ = {p, q1, q2, p1, p2, L} is summarized
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in the following algorithm:

1. Compute c2 = R2
eJ2 and then ρ, η,

√
F , and

√
G from

d = r2 − c2;

ρ =

[
1

2
d+

1

2

(
d2 + 4c2Z2

)1/2]1/2
; η =

Z

ρ
;

rṙ = XẊ + Y Ẏ + ZŻ;

√
F = ρrṙ + c2ηŻ;

√
G = −ηrṙ + ρŻ

2. Compute α1, α2, α3, and K from

α1 =
1

2
v2 − µρ

ρ2 + c2η2

α3 = XẎ − Y Ẋ

α2
2 = 2µρ+ 2α1ρ

2 +
c2α2

3 − F (ρ)

ρ2 + c2

K =

{
+1 α3 ≥ 0

−1 α3 < 0

If the orbit is nearly or exactly equatorial (for example, |η| < 0.1),

compute α2
2 − α2

3 from

α2
2 − α2

3 = −2α1c
2η2 +

α2
3η

2 +G(η)

1− η2

instead of directly differencing the two quantities

3. Factor the F (ρ) and G(η) quartics numerically with zδ = 0 to obtain

p, γ1, e, I, C2, and u using Getchell’s method [62] or an eigenvalue ap-

proach [18], whichever is appropriate. Note that this step is also required

anyway for state propagation.
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4. If a spacecraft is not nearly on a pole (for example, 1−|η| ≥ 10−8), then

compute p1 and p2 from

[
p1
p2

]
=

1

X2 + Y 2

[
X Y
Y −X

]
√
ρ2 + c2

√
Gu1/2

α2 (1− C2η2)
1/2 (1 +K cos I)√

ρ2 + c2η cos I

1 +K cos I


If a spacecraft is nearly or exactly on a pole (for example, 1−|η| < 10−8),

compute ρ̇, η̇, ḟ , ψ̇, A3, B3, A3k for k = 1, . . . , 4, B32, and Ω̇′ first (see

Eq. (4.83) or Eq. (4.85)), and then compute p1 and p2 from[
p1
p2

]
=

1(
Ẋ + Y Ω̇′

)2
+
(
Ẏ −XΩ̇′

)2 [ Ẋ + Y Ω̇′ Ẏ −XΩ̇′

Ẏ −XΩ̇′ −Ẋ − Y Ω̇′

]

× 1

1 +K cos I



(
ρρ̇η̇

ψ̇
√
ρ2 + c2

− ηψ̇
√
ρ2 + c2

)

cos I

(
Zρ̇√
ρ2 + c2

+ η̇
√
ρ2 + c2

)


5. Compute r′ from

r′ =



X√
ρ2 + c2

Y√
ρ2 + c2

Z

ρ


and then compute f̂ and ĝ from

f̂ =

 1 + p21 − p22
2p1p2
−2Kp2

 ; ĝ =

 2Kp1p2
(1− p21 + p22)K

2p1



159



6. Compute L from

L = atan2 (sinL, cosL) = atan2
(
r′ · ĝ, r′ · f̂

)
7. Compute q1 and q2 from

[
q1
q2

]
=

[
cosL sinL
sinL − cosL

]
p

ρ
− 1

√
Fp1/2

ρ (µγ1)
1/2 (ρ2 − 2b1ρ+ b22)

1/2


The preceding algorithm completes the point transformation from inertial po-

sition and velocity vectors such as ECI coordinates to the oblate spheroidal

equinoctial element set œ = {p, q1, q2, p1, p2, L}.

4.8 Summary: Converting Spheroidal Equinoctial Ele-
ments to Position and Velocity Vectors

The process of converting oblate spheroidal equinoctial orbital elements

œ = {p, q1, q2, p1, p2, L} to inertial position and velocity vectors is summarized

in the following algorithm, assuming the only quantities given are the elements

and the retrograde factor, K:

1. Compute c2 = R2
eJ2 and then the basis vectors f̂ and ĝ of the oblate

spheroidal equinoctial reference frame from

f̂ =

 1 + p21 − p22
2p1p2
−2Kp2

 ; ĝ =

 2Kp1p2
(1− p21 + p22)K

2p1


2. Compute e, γ, and I from

e =
√
q21 + q22; γ =

e2 − 1

p
; I = π

(
1−K

2

)
+ 2K arctan

√
p21 + p22
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3. Compute Q = sin I, then use Eqs. (2.78–2.86) with zδ = 0 (not iterative)

to compute the prime constants p0, γ0, γ1, b1, b
2
2, C2, u (when e < 1,

a = −1/γ and a0 = −1/γ0).

Note, this step is unnecessary if a particular application already required

the conversion process summarized in Section 4.7, because all these quan-

tities will have already been computed.

4. Compute the Jacobi constants α1, α2, and α3 from

α1 =
µγ0
2

; α2 =
√
µp0; α3 = α2

(
1− C2Q

2

u

)1/2

cos I

Note that α1 need only be computed if a spacecraft is near a pole and

Eq. (4.83) is used instead of Eq. (4.85) to compute Ω̇′.

5. Compute ρ and η from

ρ =
p

1 + q1 cosL+ q2 sinL
; η =

2

1 + p21 + p22
(p1 sinL−Kp2 cosL)

6. Compute ḟ and ψ̇ from

ḟ =
(µγ1p)

1/2 (ρ2 − 2b1ρ+ b22)
1/2

ρ (ρ2 + c2η2)
; ψ̇ =

α2 (1− C2η
2)

1/2

u1/2 (ρ2 + c2η2)

7. Compute ρ̇ and η̇ from

ρ̇ =
ḟρ2

p
(q1 sinL− q2 cosL) ; η̇ =

2ψ̇

1 + p21 + p22
(p1 cosL+Kp2 sinL)

8. If a spacecraft is not nearly on a pole (1− |η| ≥ 10−8), then compute Ω̇′

from

Ω̇′ =
1

ρ2 + c2η2

{
− c2α3

ρ2 + c2
+

α3

1− η2

[
1− (1− C2η

2)
1/2

(1− C2)
1/2

]}
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If a spacecraft is nearly or exactly on a pole (1 − |η| < 10−8), compute

A3, B3, A3k for k = 1, . . . , 4, B32, and Ω̇′ from Eq. (4.83) or (4.85).

9. Compute L̇ from

L̇ = ψ̇ +KΩ̇′

10. Compute ˙̂f and ˙̂g from

˙̂f =
2Ω̇′

1 + p21 + p22

 −2p1p2
p21 − p22
−Kp1

 ; ˙̂g =
2Ω̇′

1 + p21 + p22

 (p21 − p22)K
2Kp1p2
−p2


11. Compute X and Y from

r1:2 =
√
ρ2 + c2

(
cosL f̂1:2 + sinL ĝ1:2

)
and Z from

Z = ρη

12. Compute Ẋ and Ẏ from

v1:2 =
ρρ̇

ρ2 + c2
r1:2

+
√
ρ2 + c2

[
cosL ˙̂f1:2 + sinL ˙̂g1:2 + L̇

(
− sinL f̂1:2 + cosL ĝ1:2

)]
and Ż from

Ż = ρ̇η + ρη̇

The preceding algorithm completes the point transformation from the oblate

spheroidal equinoctial element set œ = {p, q1, q2, p1, p2, L} to inertial position

and velocity vectors such as ECI coordinates.
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4.9 Final Remarks

The coordinate transformations of Vinti theory are generally separated

from any solution to Vinti’s dynamical problem. However, until now, a set

of orbital elements of the Vinti problem has never been presented as indepen-

dent from and invariant to any particular solution method, let alone presented

as separate from a particular approach. As such, the new oblate spheroidal

equinoctial orbital elements lead to a more natural view to the Vinti problem.

Moreover, with their introduction, the symmetric Vinti theory can now ben-

efit from all the desirable properties that equinoctial elements hold over the

classical ones in the two-body problem. These properties include straight-

forward geometrical interpretation in addition to the complete removal of

non-physical singularities associated with small eccentricities and inclinations.

Consequently, the Jacobian of the transformation will not present singularities

for those orbit regimes.

The particular approach presented leads to a number of other advan-

tages as well. With careful attention to avoiding indeterminate forms, the

transformations are valid for nearly or exactly zero-energy orbits, while gener-

ally maintaining validity for other bounded or unbounded orbit regimes. The

range of valid orbit regimes is limited only by Vinti theory itself, which pre-

scribes a forbidden zone associated with nearly or exactly rectilinear orbits

for which an analytical solution does not exist. When combined with cer-

tain techniques, the spheroidal equinoctial elements also completely remove

the singularity on the poles, a persistent problem in Vinti theory that has

evaded resolution for decades. Specifically, looking to the analytical solution,
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the approximate expression for the time derivative of spheroidal RAAN can

be used when a spacecraft is near a pole. The approximation is accurate to

O(Jn2 ) for an arbitrary order n, but analytical solutions in the literature do

not exceed the third order. An exact expression for spheroidal RAAN is also

derived for the first time so that the coordinate transformations are otherwise

exact. Having developed the mathematical framework of equinoctial elements

for Vinti theory in this chapter, the stage is set for exploring state propagation

in the new element set in the next chapter.
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Chapter 5

Analytical State Propagation in Time Using

Oblate Spheroidal Equinoctial Elements

The complete introduction of the spheroidal equinoctial orbital ele-

ments is divided into two parts. Chapter 4 generalized the standard, spherical

equinoctial orbital elements to an oblate spheroidal geometry congruent with

Vinti theory. The effort focused on developing the point transformations that

map between the equinoctial elements and the inertial position and velocity

vectors, including derivations and algorithms. Their function, as such, is akin

to that of the transformations established for spherical elements, wherein no-

tions of osculating elements can be adopted for a perturbed Vinti problem.

State propagation in time is viewed as a wholly separate problem, and the

analytical treatment is the subject of the present chapter.

The approach to analytical state propagation proceeds in the spirit of

Vinti [154, 160], reducing the inversion of the kinematic equations to suc-

cessive solutions of Kepler’s equation but modified for equinoctial elements.

Other techniques have been suggested for the inversion expressed in classical

elements [169], but the approach here can exploit iterative root-solve algo-

rithms typical for solving Kepler’s equation. The author recommends La-

guerre’s method modified from Conway’s form [38] because of the robustness
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it affords in the form of a free parameter that controls the order of the root-

solve. Der employs this method for the same reason [49]. Other aspects

of the solution include the definition of the spheroidal equinoctial constants

of the motion and their derivation, re-expressing the kinematic equations in

equinoctial elements, and extracting the periodic components of the equinoc-

tial elements. The investigation concludes with a number of examples to test

the analytical Vinti orbit propagator.

5.1 Problem Statement

Recall that Vinti’s analytical solution can be expressed as a nonlinear

function f of the initial state xi:

xI = f(t,xI
i)

The dynamical problem considered in this chapter concerns a spacecraft trav-

eling under the influence of the 1959 Vinti potential [152]

V = − µρ

ρ2 + c2η2
(5.1)

Now, the ECI and OS reference frames share the same origin. It still holds

that constant values of ρ specify confocal oblate spheroids, those of η specify

confocal hyperboloids of one sheet, and those of φ specify meridional planes.

The focal separation is fit to the dominant term of the traditional spherical

harmonic potential as

c2 = R2
eJ2 (5.2)

where Re is the equatorial radius, but zδ = 0. With this fit, the Vinti potential

is exact for a symmetric oblate spheroid, where J4 = −J2
2 , J6 = +J3

2 , . . . , but
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relative to the Earth’s potential, for example, the fit is approximate, notionally

modeling J2 + εJ4 + ε2J6 + · · · for some small ε. In the case of the Earth, the

Vinti potential includes about 72% of J4.

Using the gravitational potential V of Eq. (5.1) and OS coordinates,

Vinti derived the Hamiltonian, H, as

H =
1

2

[
ρ2 + c2

ρ2 + c2η2
p2ρ +

1− η2

ρ2 + c2η2
p2η +

1

(ρ2 + c2) (1− η2)
p2φ

]
− µρ

ρ2 + c2η2
(5.3)

where

p2ρ =
ρ2 + c2η2

ρ2 + c2
ρ̇ (5.4)

p2η =
ρ2 + c2η2

1− η2
η̇ (5.5)

p2φ =
(
ρ2 + c2

) (
1− η2

)
φ̇ (5.6)

are the conjugate momenta. He then solved the dynamical problem by obtain-

ing the Hamilton-Jacobi equation and applying separation of variables [152].

Details on the notation and computation of certain constants and inter-

mediate quantities are available in a number of references [154, 158, 160] and

are not covered in this thesis. Corrections to certain quantities, such as the

Bj and Bjk coefficients, are given in Walden and Watson [164]. The notation

in this chapter continues to follow the notation of Vinti’s 1966 theory [158]

except that J3 is set to zero. Also note the use of the RAAN-like variable Ω′

that Vinti developed in 1969 [160].
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5.2 Kinematic Equations

Following the methods of Hamilton-Jacobi theory, the problem is re-

duced to a set of kinematic equations that define three of the six constants of

the motion. The kinematic equations are generally expressed as

t+ β1 = R1 + c2N1 (5.7)

β2 = −α2R2 + α2N2 (5.8)

β3 = φ+ c2α3R3 − α3N3 (5.9)

where t denotes the time, Rj denotes the ρ-integrals for j = 1, 2, 3 defined as

R1 =

∫ ρ

ρ1

±ρ2F (ρ)−1/2 dρ (5.10)

R2 =

∫ ρ

ρ1

±F (ρ)−1/2 dρ (5.11)

R3 =

∫ ρ

ρ1

±(ρ2 + c2)−1F (ρ)−1/2 dρ (5.12)

Nj denotes the η-integrals for j = 1, 2, 3 defined as

N1 =

∫ η

0

±η2G (η)−1/2 dη (5.13)

N2 =

∫ η

0

±G (η)−1/2 dη (5.14)

N3 =

∫ η

0

±(1− η2)−1G (η)−1/2 dη (5.15)

and αj and βj are the Jacobi constants for j = 1, 2, 3. Specifically, α1 is the

total energy or Hamiltonian, α2 is closely related to the total angular momen-

tum, α3 is the polar component of the angular momentum, τ = −β1 is the time

of spheroidal periapsis passage, β2 = ω is the argument of spheroidal periapsis,
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and β3 = Ω is the right ascension of the spheroidal ascending node (spheroidal

RAAN). These six quantities are canonical constants of the motion analogous

to the Jacobi constants obtained for the two-body problem. The quantities

F (ρ) and G (η) correspond to the quartics that must be factored to obtain a,

e, and I, which are respectively the spheroidal semimajor axis, eccentricity,

and inclination. For readability, the “spheroidal” qualifier is often omitted and

elements should be understood as spheroidal unless noted otherwise.

The derivation of the approximate analytical solution in OS equinoctial

elements begins with Vinti’s solution in classical elements. His classical ele-

ment solution expresses Eqs. (5.7–5.9) correct to O(J3
2 ) in secular terms and

O(J2
2 ) in periodic terms using truncated series as

t+ β1 = (−2α1)
−1/2

[
b1E + a (E − e sinE) + A1f +

2∑
k=1

A1k sin kf

]
+ c2α−12 u1/2 (B′1ψ +B12 sin 2ψ +B14 sin 4ψ) (5.16)

β2 = −α2 (−2α1)
−1/2

[
A2f +

4∑
k=1

A2k sin kf

]
+ u1/2 (B2ψ +B22 sin 2ψ +B24 sin 4ψ) (5.17)

β3 = Ω′ + c2α3 (−2α1)
−1/2

[
A3f +

4∑
k=1

A3k sin kf

]
− α3α

−1
2 u1/2 (B3ψ + +B32 sin 2ψ) (5.18)

Readers can identify the familiar E − e sinE term of the Kepler problem in

Eq. (5.16) and view its appearance here as part of a generalized Kepler’s

equation. The variable f is the spheroidal true anomaly, E is the spheroidal

eccentric anomaly, and ψ is the true argument of spheroidal latitude equal to

f + ω′. The quantities b1, Aj, Ajk, Bj, Bjk, and u are constants.
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5.2.1 Converting to Equinoctial Elements: Secular Terms

Writing the secular components in terms of equinoctial elements re-

quires the definition for eccentric spheroidal longitude, F = E + ω′ + KΩ′

[Eq. (4.8)]. It is also convenient at this time to similarly define the mean

spheroidal longitude as

λ = M + ω′ +KΩ′ (5.19)

which differs from Eq. (4.6) in that it includes the periodic contributions to

λ, whereas Eq. (4.6) only defined the secular component λs. Recall that the ′

symbol distinguishes these variables from the constants of the motion β2 and

β3 and also indicates a closer connection to the spheroidal Delaunay variables

obtained after various canonical transformations. The connection will be made

clear in subsequent sections.

From Eqs. (4.2) and (4.8), observe that certain combinations of angles

must be added to both sides of Eqs.(5.16–5.18) to obtain L and F on the

right-hand side (RHS). First, focus on Eq. (5.16) and consider the term (a +

b1)E. Adding (−2α1)
−1/2 (a + b1)(ω

′ + KΩ′) to both sides will result in a

(a + b1)F term on the RHS and the left-hand side (LHS) can simply absorb

the unknown quantity into the unknown constant β1. The new constants on

the LHS are denoted as β̃j for j = 1, 2, 3. This procedure is generally applied

to the remaining secular terms in Eqs.(5.16–5.18), resulting in the following
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transformed equations:

t+ β̃1 = (−2α1)
−1/2

[
b1F + a (F − e sinE) + A1L+

2∑
k=1

A1k sin kf

]
+ c2α−12 u1/2 (B′1L+B12 sin 2ψ +B14 sin 4ψ) (5.20)

β̃2α
−1
2 = − (−2α1)

−1/2

[
A2L+

4∑
k=1

A2k sin kf

]
+ α−12 u1/2 (B2L+B22 sin 2ψ +B24 sin 4ψ) (5.21)

β̃3 = c2α3 (−2α1)
−1/2

[
A3L+

4∑
k=1

A3k sin kf

]
− α3α

−1
2 u1/2 (B3L+B32 sin 2ψ) (5.22)

where

β̃1 = β1 + (−2α1)
−1/2 (a+ b1 + A1)(ω

′ +KΩ′) + c2α−12 u1/2B′1KΩ′ (5.23)

β̃2α
−1
2 = β2α

−1
2 − (−2α1)

−1/2A2(ω
′ +KΩ′) + α−12 u1/2B2KΩ′ (5.24)

β̃3 = β3 + c2 (−2α1)
−1/2A3(ω

′ +KΩ′)− α−12 u1/2B3KΩ′ − Ω′ (5.25)

Naturally, the transformation is not yet complete because the periodic terms

have not been addressed and still contain f and ψ.

5.2.2 Converting to Equinoctial Elements: Periodic Terms

There are multiple ways to proceed, but the approach here aims to

maintain the form of the periodic terms where the sines contain multiple-

angle arguments of kf or kψ for k = 1, . . . , 4. These trigonometric terms can

be written in terms of equinoctial elements by applying Chebyshev’s recursive

formula and observing that the periodic coefficients Ajk contain a factor ek

and Bjk contain a factor Qk, where j = 1, 2, 3 denotes the kinematic equation
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and k = 1, . . . , 4. Define new periodic coefficients in terms of the old as

Ãjk ≡
Ajk
ek

(5.26)

B̃jk ≡
Bjk

Qk
(5.27)

Of course, the new coefficients should not be computed this way since e and/or

Q can go to zero. To compute Ãjk or B̃jk, simply use the original formulas

with omission of ek and Qk. Now, ek and Qk are instead grouped with the sine

functions, such as e sin f or Q4 sin 4ψ.

The basic conversion process is demonstrated for the e sinE term. It

is straightforward to show from angle sum and difference identities that

e sinE = e sin (F − ω′ −KΩ′)

= e sinF cos (ω′ +KΩ′)− e cosF sin (ω′ +KΩ′) (5.28)

Therefore,

e sinE = q1 sinF − q2 cosF (5.29)

Applying similar identities for e cosE gives

e cosE = q1 cosF + q2 sinF (5.30)

This process can be applied recursively for any argument x and for all terms

of higher frequency using Chebyshev’s formula:

sinnx = 2 cos x sin (n− 1)x− sin (n− 2)x (5.31)

for a positive integer n ≥ 2. For example, with n = 2, e2 sin 2f = 2e2 cos f sin f

can be grouped in terms of lower-frequency quantities as 2 (e cos f) (e sin f).
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Carrying out the process to the fourth term gives the following relations for

periodic functions of kf in terms of periodic functions of kL:

q̃1 (q1, q2, L) ≡ e sin f = q1 sinL− q2 cosL (5.32)

q̃2 (q1, q2, L) ≡ e2 sin 2f =
(
q21 − q22

)
sin 2L− 2q1q2 cos 2L (5.33)

q̃3 (q1, q2, L) ≡ e3 sin 3f =
(
q31 − q1q22

)
sin 3L+

(
q32 − q21q2

)
cos 3L (5.34)

q̃4 (q1, q2, L) ≡ e4 sin 4f =
(
q41 − 6q21q

2
2 + q42

)
sin 4L

+ 4
(
q1q

3
2 − q31q2

)
cos 4L (5.35)

The periodic functions of kψ in terms of periodic functions of kL are

slightly more complicated to derive. The form of these relations is identical to

that of the relations for kf except that there is now a coefficient (1 +K cos I)k.

The relations are stated as

p̃2 (p1, p2, L) ≡ Q2 sin 2ψ = (1 +K cos I)2

×
[(
p21 − p22

)
sin 2L− 2p1p2 cos 2L

]
(5.36)

p̃4 (p1, p2, L) ≡ Q4 sin 4ψ = (1 +K cos I)4
[(
p41 − 6p21p

2
2 + p42

)
sin 4L

+ 4
(
p1p

3
2 − p31p2

)
cos 4L

]
(5.37)

These equations can be written strictly in terms of p1 and p2 by observing that

(1 +K cos I)2 =
4

4
(1 +K cos I)2

= 4

(
1 +K cos I

2

)2

=

{
4 cos4

(
I
2

)
, if K = +1

4 sin4
(
I
2

)
, if K = −1

(5.38)
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It follows that

(1 +K cos I)2 =
4

(1 + p21 + p22)
2 (5.39)

for either value of K. Equation (5.39) can be substituted into Eq. (5.36).

Squaring Eq. (5.39) gives

(1 +K cos I)4 =
16

(1 + p21 + p22)
4 (5.40)

which can be substituted into Eq. (5.37). After the substitutions, Eqs. (5.36)

and (5.37) become

Q2 sin 2ψ =
4

(1 + p21 + p22)
2

×
[(
p21 − p22

)
sin 2L− 2p1p2 cos 2L

]
(5.41)

Q4 sin 4ψ =
16

(1 + p21 + p22)
4

×
[(
p41 − 6p21p

2
2 + p42

)
sin 4L+ 4

(
p1p

3
2 − p31p2

)
cos 4L

]
(5.42)

5.2.3 Converting to Equinoctial Elements: Final Kinematic Equa-
tions

Finally, having represented the secular and periodic terms with equinoc-

tial elements, the kinematic equations can be expressed strictly in terms of
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these nonsingular orbital elements to second order as

t+ β̃1 = (−2α1)
−1/2

[
b1F + a (F − q1 sinF + q2 cosF )

+ A1L+
2∑

k=1

Ã1kq̃k
(
q1j , q2j , Lj

)]

+ c2α−12 u1/2

[
B′1L+

2∑
k=1

B̃1(2k)p̃2k
(
p1j , p2j , Lj

)]
(5.43)

β̃2α
−1
2 = − (−2α1)

−1/2

[
A2L+

4∑
k=1

Ã2kq̃k
(
q1j , q2j , Lj

)]

+ α−12 u1/2

[
B2L+

2∑
k=1

B̃2(2k)p̃2k
(
p1j , p2j , Lj

)]
(5.44)

β̃3 = c2α3 (−2α1)
−1/2

[
A3L+

4∑
k=1

Ã3kq̃k
(
q1j , q2j , Lj

)]

− α3α
−1
2 u1/2

[
B3L+

1∑
k=1

B̃3(2k)p̃2k
(
p1j , p2j , Lj

)]
(5.45)

Note that Eqs. (5.32–5.35) and (5.41–5.42) need not be substituted for the

periodic terms in ek sin kf and Qk sin kψ depending on the intended use. For
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example, if the equations are left in the form

t+ β̃1 = (−2α1)
−1/2

[
b1F + a (F − q1 sinF + q2 cosF )

+ A1L+
2∑

k=1

Ã1ke
k sin kf

]

+ c2α−12 u1/2

(
B′1L+

2∑
k=1

B̃1(2k)Q
2k sin 2kψ

)
(5.46)

β̃2α
−1
2 = − (−2α1)

−1/2

[
A2L+

4∑
k=1

Ã2ke
k sin kf

]

+ α−12 u1/2

(
B2L+

2∑
k=1

B̃2(2k)Q
2k sin 2kψ

)
(5.47)

β̃3 = c2α3 (−2α1)
−1/2

[
A3L+

4∑
k=1

Ã3ke
k sin kf

]

− α3α
−1
2 u1/2

(
B3L+

1∑
k=1

B̃3(2k)Q
2k sin 2kψ

)
(5.48)

then these equations are still useful for initialization. The substitution is

essential for the propagation step, but not for the present coordinate transfor-

mation. The reason is that, while sin f and sinψ are undefined for the singular

cases, nonsingular expressions do exist for e sin f and Q sinψ. For this particu-

lar coordinate transformation, it is more computationally efficient to combine

these latter expressions with Chebyshev’s formula in Eq. (5.31) than to use

the more complicated equinoctial form. When computing the elements from

initial conditions in ECI coordinates at an initial time ti, the right-hand sides

of Eqs. (5.43–5.45) are calculable.
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For arbitrary order O(Jn2 ), the kinematic equations can be written as

t+ β̃1 = (−2α1)
−1/2

[
b1F + a (F − q1 sinF + q2 cosF )

+ A1L+

2(n−1)∑
k=1

Ã1kq̃k
(
q1j , q2j , Lj

)
+ c2α−12 u1/2

[
B′1L+

n∑
k=1

B̃1(2k)p̃2k
(
p1j , p2j , Lj

)]
(5.49)

β̃2α
−1
2 = − (−2α1)

−1/2

[
A2L+

2n∑
k=1

Ã2kq̃k
(
q1j , q2j , Lj

)]

+ α−12 u1/2

[
B2L+

n∑
k=1

B̃2(2k)p̃2k
(
p1j , p2j , Lj

)]
(5.50)

β̃3 = c2α3 (−2α1)
−1/2

[
A3L+

2n∑
k=1

Ã3kq̃k
(
q1j , q2j , Lj

)]

− α3α
−1
2 u1/2

[
B3L+

n−1∑
k=1

B̃3(2k)p̃2k
(
p1j , p2j , Lj

)]
(5.51)

where the secular coefficients Aj and Bj are correspondingly carried out to

O(Jn2 ).

5.3 Constants of the Motion and Spheroidal Delaunay
Variables

It is instructive to first give a motivation of why oblate spheroidal

equinoctial constants of the motion are desired and a road map of how to

obtain them. As emphasized in Chapter 4, there is a notion of complete

elements associated with the angular variables, Ω′, ω′, and f (and combinations

thereof), which are viewed as the composition of secular and periodic parts,
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expressed mathematically as

Ω′ = Ω′s + Ω′p

ω′ = ω′s + ω′p

f = Ms + fp

If the initial values of the secular parts of the spheroidal equinoctial elements

are available, then their linear dependence on time facilitates their propa-

gation. The periodic parts can be added later in concert with solving the

generalized Kepler’s equation. These initial values may be given somehow,

but if they must be obtained from initial ECI coordinates, then the following

discussion and derivations apply.

The analysis of Chapter 4 demonstrated how to obtain the complete

equinoctial elements {p, q1, q2, p1, p2, L} from ECI coordinates. Applying angle

sum identities to the definitions of q1 and q2 in Eq. (4.2) after separating the

angles into secular and periodic parts as

q1 = e cos (ω′ +KΩ′) = e cos
(
ω′s +KΩ′s + ω′p +KΩ′p

)
(5.52)

q2 = e sin (ω′ +KΩ′) = e sin
(
ω′s +KΩ′s + ω′p +KΩ′p

)
(5.53)

gives

q1 = q1s cos
(
ω′p +KΩ′p

)
− q2s sin

(
ω′p +KΩ′p

)
(5.54)

q2 = q1s sin
(
ω′p +KΩ′p

)
+ q2s cos

(
ω′p +KΩ′p

)
(5.55)

and inverting the equations to solve for qjs gives[
q1s
q2s

]
=

[
cos
(
ω′p +KΩ′p

)
sin
(
ω′p +KΩ′p

)
− sin

(
ω′p +KΩ′p

)
cos
(
ω′p +KΩ′p

) ] [ q1
q2

]
(5.56)
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Equation (5.56) indicates that the secular parts of q1 and q2 are calculable as

long as the periodic parts of ω′ and Ω′ are known. Similarly, the elements pjs

are determined as [
p1s
p2s

]
=

[
cos Ω′p sin Ω′p
− sin Ω′p cos Ω′p

] [
p1
p2

]
(5.57)

Lastly, the secular part of the true longitude, Ls = Ms + ω′s + KΩ′s, is also

desired. Note that Ls is equivalent to the secular part of the mean longitude,

λs. As shown in the following, it turns out that λs can be obtained directly.

Therefore, the unknowns to be solved for in the following derivation are ω′p,

Ω′p, and λs.

The oblate spheroidal equinoctial constants of the motion are obtained

from the spheroidal Delaunay elements that Vinti employed for his pertur-

bation work [156]. This particular set of natural Delaunay elements may

be contrasted to the familiar spherical Delaunay elements reviewed in Ap-

pendix B.2.3. Vinti partly attributes these elements to Izsak [86]. The oblate

spheroidal Delaunay elements describe the secular evolution of a Vinti trajec-

tory and are the result of several canonical transformations. They are given

in terms of the original canonical elements as

l0 = 2πν1
(
β1 − c2β2α−12 B′1B

−1
2

)
(5.58)

l0 + g0 = 2πν2
[
β1 + β2α

−1
2 (a+ b1 + A1)A

−1
2

]
(5.59)

h0 = β3 − c2α3 (−2α1)
−1/2A3l0 + α3α

−1
2 u1/2B3 (l0 + g0) (5.60)

Naturally, these relations still hold, as the dynamical problem is unchanged.

These Delaunay elements are not calculable when seeking nonsingular elements
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because the βj are unknown, but Eqs. (5.58–5.60) will still be of great use.

To see how, notice that the β̃j are known and Eqs. (5.23–5.25) can be used

to substitute for βj in Eqs. (5.58–5.60). Note that while Vinti preferred to

maintain β3 as an element in his classical element solution, this luxury is no

longer available because the third kinematic equation is no longer decoupled

from the others in an equinoctial element solution. The spheroidal Delaunay

element h0 must then be used instead of β3, as will be seen shortly.

Substituting Eqs. (5.23–5.25) for βj in Eqs. (5.58–5.60) and simplifying

leads to the following simple equations

l0 + ω′i +KΩ′i = 2πν1

(
β̃1 − c2β̃2α−12 B′1B

−1
2

)
(5.61)

l0 + g0 +KΩ′i = 2πν2

[
β̃1 + β̃2α

−1
2 (a+ b1 + A1)A

−1
2

]
(5.62)

h0 − Ω′i = β̃3 − c2α3 (−2α1)
−1/2A3 (l0 + ω′i +KΩ′i)

+ α3α
−1
2 u1/2B3 (l0 + g0 +KΩ′i) (5.63)

The right-hand sides of Eqs. (5.61–5.63) are identical in form to Eqs. (5.58–

5.60), but βj is replaced by β̃j, making the right-hand sides calculable. Notice

on the left-hand sides of Eqs. (5.61–5.63) that the elements are referenced

to different epochs. The spheroidal Delaunay elements reference the time

of spheroidal periapsis passage, denoted by subscript “0”, while the classical

spheroidal elements reference some given initial time, denoted by subscript

“i”.

To reconcile these differences in epoch, the Delaunay elements are ad-

justed to reference the same given initial time. Vinti wrote the secular evolu-

tion of these elements referenced to the time of spheroidal periapsis passage
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as

l = l0 + 2πν1t (5.64)

l + g = l0 + g0 + 2πν2t (5.65)

h = h0 + 2π (ν3 − ν2sgn α3) t (5.66)

but these dynamics can be equivalently referenced to a given initial time (or

arbitrary time) as

l = li + 2πν1 (t− ti) (5.67)

l + g = li + gi + 2πν2 (t− ti) (5.68)

h = hi + 2π (ν3 − ν2sgn α3) (t− ti) (5.69)

where

li = l0 + 2πν1ti (5.70)

li + gi = l0 + g0 + 2πν2ti (5.71)

hi = h0 + 2π (ν3 − ν2sgn α3) ti (5.72)

Note that the secular components of certain spheroidal orbital elements are

equivalent to the Delaunay elements. Using the subscript “s” to indicate that

the quantity only contains the secular part, the relations are given by

Ms = l (5.73)

ψs = l + g (5.74)

Ω′s = h (5.75)
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Adopting Delaunay’s notation serves as a helpful reminder that these are

canonical elements. However, it is emphasized that the elements M , ψ, and

Ω′ are not canonical when the periodic components are included. This feature

is distinctly different from the two-body problem, wherein the mean anomaly

is canonical and simply varies linearly with time. Interestingly, the relation

Ω′s = h was not pointed out until 1980 [169]. The νj are the constant funda-

mental frequencies discussed in Chapter 2 and their definitions in Eqs. (2.39),

(2.40), and (2.45) are repeated here for convenience:

Ṁs = 2πν1 =
(−2α1)

1/2

a0 + A1 + c2A2B′1B
−1
2

ψ̇s = 2πν2 =
α2u

−1/2A2B
−1
2

a0 + A1 + c2A2B′1B
−1
2

φ̇s = 2πν3 =
−α3

a0 + A1 + c2A2B′1B
−1
2

×
{
c2A3 −

A2

B2

[
B3 +

1

S̃

(
h1√

1− 2ζ
+

h2√
1 + 2ζ

)]}
where S̃ =

√
1− S, and S = sin2 I, h1, h2, and ζ are constants from Vinti’s

1966 solution [158]. Also recall from Eq. (2.53) that

ḣ = Ω̇′s = − α3

a0 + A1 + c2A2B′1B
−1
2

(
c2A3 −

A2

B2

B3

)
is available and presents no singularities. It is essential for the present analysis

to have this uniformly valid equation.

Finally, Eqs. (5.61–5.63) can be referenced to a consistent epoch (the

given initial time) and the singularity associated with polar orbits can be
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removed. The final result is

li + ω′i +KΩ′i = 2πν1

(
ti + β̃1 − c2β̃2α−12 B′1B

−1
2

)
(5.76)

li + gi +KΩ′i = 2πν2

[
ti + β̃1 + β̃2α

−1
2 (a+ b1 + A1)A

−1
2

]
(5.77)

hi − Ω′i = β̃3 + ḣti

− c2α3 (−2α1)
−1/2A3 (2πν1)

(
β̃1 − c2β̃2α−12 B′1B

−1
2

)
+ α3α

−1
2 u1/2B3 (2πν2)

[
β̃1 + β̃2α

−1
2 (a+ b1 + A1)A

−1
2

]
(5.78)

Equations (5.76–5.78) may now be used to obtain expressions for the three

unknowns: ω′p, Ω′p, and λs. From the definitions in Eq. (4.3–4.4), it is seen

that subtracting Eq. (5.77) from Eq. (5.76) gives ω′pi as

ω′pi = 2πν1

(
ti + β̃1 − c2β̃2α−12 B′1B

−1
2

)
− 2πν2

[
ti + β̃1 + β̃2α

−1
2 (a+ b1 + A1)A

−1
2

] (5.79)

Equation (5.78) already gives the negative of Ω′p so that Ω′pi is determined as

Ω′pi = −
(
β̃3 + ḣti

)
+ c2α3 (−2α1)

−1/2A3 (2πν1)
(
β̃1 − c2β̃2α−12 B′1B

−1
2

)
− α3α

−1
2 u1/2B3 (2πν2)

[
β̃1 + β̃2α

−1
2 (a+ b1 + A1)A

−1
2

] (5.80)

Lastly, adding Eq. (5.77) to K times Eq. (5.78) gives λsi as

λsi = Kβ̃3 +
(

2πν2 +Kḣ
)
ti

−Kc2 α3

(−2α1)
1/2
A3 (2πν1)

(
β̃1 − c2β̃2α−12 B′1B

−1
2

)
+
(
1 +Kα3α

−1
2 u1/2B3

)
(2πν2)

[
β̃1 + β̃2α

−1
2 (a+ b1 + A1)A

−1
2

] (5.81)

Equations (5.79) and (5.80) enable the computation of q1s , q2s , p1s , and p2s

at time ti through Eqs. (5.56) and (5.57) and λsi is determined by Eq. (5.81).
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The spheroidal semi-latus rectum p is already known because it is a constant

of the motion in both classical and equinoctial elements; it is obtained from

factoring the F (ρ) quartic.

5.4 Propagating the Secular Parts of the Spheroidal
Equinoctial Elements

It is now assumed that the secular oblate spheroidal equinoctial ele-

ment set, which is defined as œs = {p, q1s , q2s , p1s , p2s , Ls}, has been obtained

somehow, either as given quantities or as a result of a transformation from ECI

coordinates as described in the preceding sections. These secular elements are

either constant or evolve with time according to the following formulas:

p (t) = p (5.82)

[
q1s (t)
q2s (t)

]
=

 cos
[(
ġ +Kḣ

)
(t− ti)

]
− sin

[(
ġ +Kḣ

)
(t− ti)

]
sin
[(
ġ +Kḣ

)
(t− ti)

]
cos
[(
ġ +Kḣ

)
(t− ti)

] 
×
[
q1s (ti)
q2s (ti)

] (5.83)

[
p1s (t)
p2s (t)

]
=

 cos
[
ḣ (t− ti)

]
− sin

[
ḣ (t− ti)

]
sin
[
ḣ (t− ti)

]
cos
[
ḣ (t− ti)

] [ p1s (ti)
p2s (ti)

]
(5.84)

λs (t) = λs (ti) +
(
l̇ + ġ +Kḣ

)
(t− ti) (5.85)

5.5 Solving the Generalized Kepler’s Equation

The selected approach to solving the generalized Kepler’s equation fol-

lows that of other authors, such as Getchell [62], where periodic terms are
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neglected in the first iteration. The complication is that the use of equinoctial

elements means that all three kinematic equations are coupled.

For iteration j = 0, set λj = λs, q1j = q1s , q2j = q2s , p1j = p1s , and

p2j = p2s and choose Fj = λj as an initial guess. Then solve the equinoctial

form of Kepler’s equation for Vinti theory

λj = Fj − e′′q1j sinFj + e′′q2j cosFj (5.86)

where

e′′ =
a

a0
=

a

a+ b1
≤ 1 (5.87)

using a desired root-solving routine. The author recommends employing La-

guerre’s method to solve Eq. (5.86). Once converged on a value for Fj, obtain

Lj by first computing the sine and cosine as

sinLj =

(
1− q21jbj

)
sinFj + q1jq2jbj cosFj − q2j

1− q1j cosFj − q2j sinFj
(5.88)

cosLj =

(
1− q22jbj

)
cosFj + q1jq2jbj sinFj − q1j

1− q1j cosFj − q2j sinFj
(5.89)

where

bj =
1

1 +
√

1− q21j − q
2
2j

(5.90)

and then use the arctangent to compute Lj as

Lj = atan2 (sinLj, cosLj) (5.91)

Next, it is necessary to perform an update step to incorporate the periodic

terms that were neglected earlier. These periodic components are ω′pj , Ω′pj ,
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and λpj , and they are calculable from the available quantities, which consist

of some variables but mostly constants. First, compute lj + ω′j +KΩ′j as

lj + ω′j +KΩ′j = 2πν1

{
(−2α1)

−1/2

[
b1Fj

+ a
(
Fj − q1j sinFj + q2j cosFj

)
+ A1Lj +

2∑
k=1

Ã1kq̃k
(
q1j , q2j , Lj

)]

+ c2
u1/2

α2

[
B′1Lj +

2∑
k=1

B̃1(2k)p̃2k
(
p1j , p2j , Lj

)]

+
c2B′1

B2 (−2α1)
1/2

[
A2Lj +

4∑
k=1

Ã2kq̃k
(
q1j , q2j , Lj

)]

− c2B′1B
−1
2

u1/2

α2

[
B2Lj +

2∑
k=1

B̃2(2k)p̃2k
(
p1j , p2j , Lj

)]}

(5.92)

which is analogous to Eq. (5.76), and then compute lj + gj +KΩ′j as

lj + gj +KΩ′j = 2πν2

{
(−2α1)

−1/2

[
b1Fj

+ a
(
Fj − q1j sinFj + q2j cosFj

)
+ A1Lj +

2∑
k=1

Ã1kq̃k
(
q1j , q2j , Lj

)]

+ c2
u1/2

α2

[
B′1Lj +

2∑
k=1

B̃1(2k)p̃2k
(
p1j , p2j , Lj

)]

− (a+ b1 + A1)

A2 (−2α1)
1/2

[
A2Lj +

4∑
k=1

Ã2kq̃k
(
q1j , q2j , Lj

)]

+
u1/2 (a+ b1 + A1)

α2A2

×

[
B2Lj +

2∑
k=1

B̃2(2k)p̃2k
(
p1j , p2j , Lj

)]}

(5.93)
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which is analogous to Eq. (5.77). It follows that ω′pj can be determined as

ω′pj =
(
lj + ω′j +KΩ′j

)
−
(
lj + gj +KΩ′j

)
(5.94)

Ω′pj as

Ω′pj = − c2α3 (−2α1)
−1/2

[
A3Lj +

4∑
k=1

Ã3kq̃k
(
q1j , q2j , Lj

)]

+ α3α
−1
2 u1/2

[
B3Lj +

1∑
k=1

B̃3(2k)p̃2k
(
p1j , p2j , Lj

)]
+ c2α3 (−2α1)

−1/2A3

(
lj + ω′j +KΩ′j

)
− α3α

−1
2 u1/2B3

(
lj + gj +KΩ′j

)
(5.95)

and λpj as

λpj =
a+ b1 + A1

a+ b1

(
ω′pj +KΩ′pj

)
+ c2

(−2α1)
1/2 u1/2

α2 (a+ b1)
B′1KΩ′pj

− 1

a+ b1

[
A1 (Lj − λs) +

2∑
k=1

Ã1kq̃k
(
q1j , q2j , Lj

)]

− c2 (−2α1)
1/2 u1/2

α2 (a+ b1)

[
B′1 (Lj − λs) +

2∑
k=1

B̃1(2k)p̃2k
(
p1j , p2j , Lj

)]
(5.96)

Then q1j and q2j can be updated with the inverse of Eq. (5.56) and p1j and

p2j can be updated with the inverse of Eq. (5.57). The whole process is then

repeated until converged by returning to Eq. (5.86), setting j = j + 1, λj =

λs + λpj , and choosing Fj = λj as an initial guess. The algorithm concludes

when convergence is achieved to a desired tolerance.

5.6 Examples

Figure 5.1 shows how the equinoctial elements evolve over approxi-

mately 18 orbits for a nominally circular equatorial LEO case with an initial
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periapsis radius of rp = 7, 000 km. To better spotlight the disparity between

the spheroidal and spherical elements, oblateness is exaggerated an order of
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(a) Complete spheroidal elements
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(b) Osculating spherical elements

Figure 5.1: Side-by-side comparison of spheroidal and spherical equinoctial el-
ements for a nominally circular equatorial Vinti problem evolving over roughly
18 orbits with J2 = 5.08× 10−2.

magnitude above Earth’s by setting J2 = 5.08 × 10−2. Figure 5.1(a) shows

the spheroidal elements and Figure 5.1(b) the spherical elements. These plots

are overlaid in Fig. 5.2 to emphasize the short-periodic averaging effect. The

spherical elements are obtained by numerically integrating the equations of
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motion under the Vinti potential and transforming from ECI coordinates to

osculating spherical elements. Thus, with this comparison, it is possible to
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Figure 5.2: Complete spheroidal equinoctial elements overlaid on the osculat-
ing spherical elements for the scenario in Fig. 5.1.

interpret a geometric relationship between spheroidal and spherical elements.

The last three elements appear almost indistinguishable from each other, but

the first three are remarkably different. While the spherical p has variations
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centered around 7, 000 km, the spheroidal p is strictly a constant of the mo-

tion and notably almost 700 km smaller. Note the long-periodic effects evident

in the spheroidal q1 and q2 agree with those of their spherical counterparts.

The short-periodic effects in the spherical q’s are a consequence of the short-

periodic variations in spherical eccentricity. These short-periodic effects do not

appear in the spheroidal q’s because, like the spheroidal semi-latus rectum, the

spheroidal eccentricity is a constant of the motion. The spheroidal q’s appear

to track the short-periodic average of the spherical q’s, but this is an artifact

of the spheroidal coordinate transformation. Solving the Vinti problem does

not invoke any averaging techniques, as the spheroidal p is clearly not an av-

erage of the spherical p. The effective averaging of short-periodic variations

generally applies to p1, p2, and L as well, but the effects are not visible for

the particular example in Figure 5.1. Even if the orbit were inclined in this

example, the amplitude of the short-periodic variations would be on a much

smaller scale than the amplitude of the long-periodic variations for these three

elements; the averaging effect would still not be apparent in a comparison sim-

ilar to Figure 5.1. Figure 5.3 illustrates the associated Vinti trajectory in the

ECI frame.

The next example looks at Saturn orbit insertion using the Vinti poten-

tial, where Figure 5.4 illustrates the associated Vinti trajectory in the Saturn-

centered inertial frame. Gravity field data is taken from Jacobson et al. [89],

where J2 ≈ 1.6291 × 10−2 and J4 ≈ 9.36 × 10−4. Recall that the Vinti

potential captures approximately 72% of J4 for the Earth. At Saturn, the

Vinti potential captures roughly 28% of J4. Other parameter values used are
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Figure 5.3: Vinti trajectory in the ECI frame for a nominally circular equato-
rial orbit.

µ = 3.7931× 107 km3/s2 and Re = 60, 330 km. Initial osculating spherical or-

bit parameters are chosen as rp = 61, 330 km, eK = 0.99, IK = 10◦, ΩK = 30◦,

ωK = 11◦, fK = 6◦. The subscript “K” denotes Keplerian as opposed to

spheroidal orbital elements. The simulation is carried out for a little over a

year (≈ 10 revolutions) to visualize the long-term effects on the orbit. A com-

parison of spheroidal and spherical elements is shown in Figure 5.5. While the

short-periodic averaging effects still exist, at this scale, they are not apparent

and the last five spheroidal and spherical elements have similar values. Again,

the semi-latus rectum is seen to be distinctly different between the spheroidal

and spherical elements. Note that after one year, the effect of neglecting 72%

of J4 will manifest itself as a sizable phase error. For the much shorter duration

of orbit insertion, however, the phase error will not accumulate significantly

and the Vinti trajectory would offer a good approximation.
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Figure 5.4: Vinti trajectory in the Saturn-centered inertial frame for a Saturn
orbit insertion scenario.

5.7 Final Remarks

A nonsingular analytical solution to the unperturbed Vinti problem is

presented for bounded orbits. The method avoids the angle ambiguities of

classical orbital elements by solving the problem in oblate spheroidal equinoc-

tial orbital elements, the generalization of traditional equinoctial elements to

an oblate spheroidal geometry. The analytical solution does not invoke any

formal averaging, but, innate to the geometrical description in these coordi-

nates, five of the oblate spheroidal equinoctial elements appear to naturally

track the singly averaged value of the spherical equinoctial elements. The

constant element is the spheroidal semilatus rectum, which in general is not

the average of its spherical counterpart. Such an analytical solution may be

useful in preliminary orbit design as a more accurate starting point relative

to a two-body-based solution, offering increased accuracy for bounded orbits,

including in the vicinity of the critical inclination. This solution also enables
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future work on the study of perturbations through the variational equations,

and, being nonsingular for bounded orbits, prescribes an analytical state tran-

sition matrix that is nonsingular in regimes where the analytical ECI state

transition matrix in Chapter 3 is singular.
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Figure 5.5: Comparison of spheroidal and spherical equinoctial elements for a
Saturn orbit insertion scenario, propagated over roughly 10 revolutions.
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Chapter 6

Conclusions

The innovations to Vinti theory introduced in this dissertation are a

springboard for many intriguing and potentially impactful research directions.

In this chapter, the broader context and main contributions are reviewed and

avenues of further study are proposed.

6.1 Vinti Theory Context and Overview

Vinti theory, and, by association, intermediaries in general, are seen to

be many things. They are analytical solutions to integrable dynamical prob-

lems, and analytical solutions are the low-level, tier-one mainstays that enable

the attainment of various high-level mission goals, but that does not preclude

their application to numerical methods. In fact, as mentioned in Chapter 1,

intermediaries hold promise for improving numerical methods that disconnect

certain analytical solutions from their inherent limitations in accuracy.

While these benefits are attractive, it is known that analytical theories

exceeding the accuracy of the Kepler problem are notoriously complex, which

is a deterrent for widespread use. The development of complex models is

prone to human error, making validation expensive. The incorporation of

Brouwer theory into critical operational processes may have sealed its fate,
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but it cannot be denied that Brouwer theory has benefited tremendously from

the public release of open-source code in the form of SGP4. In contrast, Vinti

orbit propagators remained closely guarded until the release of a handful of

implementations in 1998 (roughly 35 years after publication). Indeed, open-

source software is a good way to combat the apprehensions and misgivings

that arise when practitioners are confronted with complex analytical models,

where the release of validated code effectively creates lower risk for end-users.

As pointed out in Chapter 1, the state of Vinti theory up to now was

pinned in the awkward position of simultaneously failing to gain traction, at

least operationally, and having the presence of many singularities in popular

orbital regimes. One can imagine a sort of feedback loop, where the multitude

of singularities may have encouraged the lack of use, in turn discouraging the

investment of work required to resolve the singularities, especially considering

these singularities are avoided in other theories. The contributions of this

dissertation address both concerns.

The application in Chapter 3 of the classical element formulation of

Vinti’s solution to the relative motion problem serves several important pur-

poses. In addition to contributing a handful of fundamental advances to Vinti

theory collected in Chapter 2, including the removal of some singularities in

Vinti’s solution, the new linear, analytical relative motion model is shown to

be competitive with a benchmark model, engendering confidence that Vinti

theory may be competitive elsewhere. Some particularly resilient singularities

in the partial derivatives are also removed in the process by various careful

changes of variables, leading to a piecewise differentiable solution to the Vinti
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problem with J3 that did not previously exist. The new analytical STM also

has applications to optimization and orbit determination, enabling the devel-

opment of an analytical or numerical second-order STM that may be required

in a quadratic model.

Considering the abundance of singularities, the elimination of all re-

movable singularities in Vinti theory for the first time with the introduction

of spheroidal equinoctial elements in Chapter 4 and other enhancements in

Chapter 2 represents a true milestone. These singularities have greatly ham-

pered Vinti theory’s applicability to different areas, and so their removal can

open many doors. That Vinti theory remains invalid for nearly rectilinear

orbits should not greatly limit its practical use, as all other singularities are

mitigated. The transformation of Vinti’s classical solution to an equinoctial

solution in Chapter 5 enables the future development of an analytical STM

that is also nonsingular in rectangular coordinates. In the process of devel-

oping the solution, the removal of short-periodic effects due to oblateness is

revealed and clearly identified as a convenient artifact of oblate spheroidal

geometry, implying faster numerical integration of GVEs as compared to the

basic Keplerian GVEs.

As a generalization of two-body dynamics, Vinti theory is accordingly

more complex. Indeed, Vinti theory is no stranger to the inescapable paradigm

of complexity increasing with model fidelity, but a number of steps have been

taken to counter this disincentive. First, code is provided online to stimulate

interest in the Vinti method for both direct application and further research.

Secondly, the delineation between coordinate transformation and solution is
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revisited and scrutinized. The coordinate transformations of Vinti theory are

historically entangled in a particular solution method, especially with respect

to orbital elements. A different perspective is presented in Chapters 4 and 5

that encourages distinct divisions between the coordinate transformations and

the desired solution process. Alongside offering clearer insight to Vinti theory,

the overall complexity is distilled while simultaneously creating versatility,

where the new equinoctial elements may conceivably be applied to analytical

or numerical solutions to the Vinti problem.

6.2 Future Work

With the preceding ideas in mind, some potential research directions

are discussed next. First, the following covers a variety of possible short-term

efforts:

• The new equinoctial element set can replace the set used in the Vinti-

based relative motion model, mitigating singularities in the Jacobians

that map to rectangular coordinates. This effort entails deriving new

analytical partial derivatives. To facilitate the addition of perturbations,

the STM can be developed in terms of the elements tied to the natural

Delaunay elements and the bookend Jacobians can be applied if desired.

• The piecewise nonsingular element set establishes a nonsingular Vinti

theory, but the corresponding analytical solution for the nearly parabolic

and hyperbolic orbit regimes has not been investigated. It is anticipated

that the methodology for that regime will be similar to material in Chap-
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ter 5 but with some modifications that utilize the element set described

in Section 2.5.4. The work should include and test algorithms for obtain-

ing a good initial guess in universal variables. Analytical partials may

then also be obtained for these orbit regimes.

• Gauss’ variational equations for Vinti theory can be derived for the new

equinoctial elements, either the complete elements or the secular ones.

These equations stand in contrast to the existing GVEs for Vinti theory,

which were developed for the secular classical elements to leverage canon-

ical transformations. Follow-on work can compare timings of numerically

integrating Keplerian GVEs versus Vinti-based GVEs and explore the

sensitivity of results to J2. So-called secular GVEs may be preferred as

they would be closely tied to mean GVEs should perturbations be added

in this manner. These equations are directly applicable to Monte Carlo

analyses.

• As sun-synchronous, repeat ground track, and other specialized orbits

are common, it would be useful to have algorithms for designing such

orbits with Vinti theory. These techniques can be developed with further

study.

• With the development of partial derivatives and application to relative

motion, a logical next step is to use the natural Delaunay variables to

devise linear constraints for invariant orbits under the Vinti potential.

When using perturbation methods, notions of osculating elements are

often adopted, but they represent a choice of zero gauge velocity, where
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in general the gauge velocity can take on different values. This choice

constrains the mean element design space. Viewing the Vinti problem as

an unperturbed problem, notions of “gauge freedom” do not come into

play, so that resulting invariant orbits must necessarily span the entire

design space. In contrast, invariant orbits designed with Brouwer’s mean

elements, for example, span a subset of the design space [68].

A number of more ambitious goals can also be identified:

• Very little work has looked at the boundary value problem for Vinti the-

ory and it would be worthwhile to revisit and test Lavrik’s algorithm.

Any deficiencies should be identified and improved upon. The successful

development of such an algorithm would enable the application of Vinti

theory to a variety of mission design problems, such as the optimal debris

clean-up problem of GTOC9 that considered oblateness1. The concept of

“patched Vinti trajectories” may prove useful for certain interplanetary

work, particularly near Jupiter and Saturn, where including insertion

requires the universal approach described in the short-term goals. To-

gether, the ability and suitability of Vinti theory to replace Keplerian

dynamics in preliminary mission design can be assessed.

• The general incorporation of other perturbations can be further inves-

tigated, either with Vinti theory or other intermediaries. One option

is to push the limits of how many perturbations can be incorporated

1GTOC9 refers to the 9th Global Trajectory Optimization Competition.
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without perturbation methods. The question of how to fit the free pa-

rameter of Vinti theory to a gravitational potential should be revisited.

One interesting option is to make the free parameter a function of or-

bit inclination to increase the accuracy of a Vinti trajectory, but other

formulations may be devised. There may be various ways to determine

the functional relationship, but one option involves a least squares fit

process. Fitting directly to J2 as Vinti did may not be ideal. The effect

is dominant, but it seems a least squares fit could better capture some

of the qualitative details induced by a gravitational potential that result

from the interaction of different harmonics. The procedure can be viewed

as a type of pre-fit process. Note that the partials of the nonsingular

solution enable this work. The utility of some of the other coordinate

systems merit further investigation as well, and follow-on work can look

at the triaxial ellipsoidal coordinates, where the larger number of free

parameters implies the ability to fit the coordinate system to different

perturbations simultaneously.

• Because Vinti theory can be viewed as a general perturbations method,

Vinti’s solution and the associated STM can also be augmented with

other perturbations using the same techniques, such as Lie transforms

or von Zeipel’s method. Drag perturbations have been given the most

attention in the literature, but differential drag has not been investigated.

The incorporation of low-order sectoral and tesseral terms along with

other zonal harmonics are also of interest.
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• The space object catalog was mentioned earlier as a temporary GP ap-

plication for Vinti theory. Vinti theory may find a more permanent role

in initial orbit determination, which is presently performed with Keple-

rian dynamics. Vinti-based admissible region concepts can be explored,

with a goal of generally assessing the utility of Vinti theory for initial

orbit determination.

• Revisiting the potential of Aksenov et al. [1] may prove promising. One

issue encountered in this dissertation is that Vinti’s potential with J3 is

not amenable to the definition of equinoctial elements due to the shift of

the origin. It is unfortunate because the solution process with or without

J3 is nearly identical, so that the effects of J3 are almost obtained for free

relative to the lower-fidelity Vinti potential. By using complex masses,

the potential of Aksenov et al. [1] can capture J3 without shifting the

origin, implying that it should be possible to use similar techniques to

those introduced in Chapter 4 to define equinoctial elements with respect

to this potential. The development of an associated analytical solution

should follow.

6.3 Concluding Remarks

The development of an analytical, Vinti-based STM and the elimination

of singularities in Vinti theory is seen to enable a variety of research directions

that can have direct impacts in several important areas of astrodynamics in

practice. The common thread is that, despite consistent hardware advances,
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these applications continue to leverage analytical solutions while managing to

push the boundaries of hardware, typically using Keplerian dynamics. Since

these dynamics can be viewed as a special case contained exactly within Vinti

theory, it is a small step to consider an upgrade to Vinti dynamics. Ultimately,

timing analyses need to be performed on both the results of this dissertation

and any future modifications. Nonetheless, the fundamental work in Vinti

theory presented in this dissertation has established a firm, broad platform

for future work. The absence of singularities and availability of a convenient,

familiar nonsingular orbital element set may inspire a renewed interest in Vinti

theory, and even intermediaries in general. Intermediaries may be able to

fulfill the continued need for analytical solutions in modern astrodynamics

applications while injecting a boost in accuracy or speed into existing high-

level software tools.
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Appendix A

Analytical Matrix Inverse for Obtaining the

Vinti-based STM in the Spheroidal Element

Space

Equation (3.6) establishes the structure of the Jacobian mapping VOEs

to the time-varying elements. The analytical inverse transformation is defined

in this Appendix. The first three rows of ST V are equal to the first three

rows of (ST V )−1 and the sixth column of ST V is equal to the sixth column

of (ST V )−1. Thus, similar to Eq. (3.6), the inverse transformation can be

expressed as

(ST V )−1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T−141 T−142 T−143 T−144 T−145 0
T−151 T−152 T−153 T−154 T−155 0
T−161 T−162 T−163 T−164 T−165 1

 (A.1)

The 15 elements of the remaining three rows of (ST V )−1 are determined as

follows. First, define the common denominator D used in the elements of the

inverse as

D = T55T44 − T45T54

Then, the elements of the matrix inverse can be expressed as

T−141 =
T45T51 − T41T55

D
; T−142 =

T45T52 − T42T55
D

; T−143 =
T45T53 − T43T55

D
;
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T−144 =
T55
D

; T−145 = −T45
D

;

T−151 =
T54T41 − T44T51

D
; T−152 =

T54T42 − T44T52
D

; T−153 =
T54T43 − T44T53

D
;

T−154 = −T54
D

; T−155 =
T44
D

;

T−161 =
(T41T55 − T45T51)T64 − (T54T41 − T44T51)T65

D
− T61;

T−162 =
(T42T55 − T45T52)T64 − (T54T42 − T44T52)T65

D
− T62;

T−163 =
(T43T55 − T45T53)T64 − (T54T43 − T44T53)T65

D
− T63;

T−164 =
T54T65 − T55T64

D
; T−165 = −T44T65 − T45T64

D
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Appendix B

Basis Vectors and Coordinates

This Appendix is intended to provide supplementary background ma-

terial on topics related to Vinti theory. Some of the concepts are not found

elsewhere, such as pertain to oblate spheroidal coordinates. Additionally, a re-

view of coordinate transformations is presented to facilitate drawing analogies

between Vinti theory and the two-body problem. Readers can easily compare

and contrast various spherical and oblate spheroidal orbital elements, including

classical, quasi-nonsingular, and equinoctial elements. Delaunay variables are

presented as well. The reader is referred to Vinti’s papers for comprehensive

details of the essentials of Vinti theory and Vinti’s analytical solution.

B.1 Properties of Oblate Spheroidal Coordinates with
Descriptions of Position and Velocity

The oblate spheroidal coordinates implicitly define a unique rotating

reference frame analogous to how spherical coordinates are associated with

a different rotating reference frame. In orbital mechanics applications, these

frames essentially track the spacecraft position, i.e. the frame’s rotation is

connected to the spacecraft motion. For a right-handed coordinate system, the

order of the orthogonal OS basis vectors is {ρ̂, φ̂, η̂}, where ρ̂ is the normal to
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the tangent spheroid’s surface at the tangent point, φ̂ is tangent to the tangent

spheroid’s surface at the tangent point and parallel to the XY or equatorial

plane, and η̂ = ρ̂ × φ̂ completes the triad. Note that η̂ is also tangent to

the tangent spheroid’s surface, pointing in a slightly different direction from

the latitudinal unit vector. The φ̂ vector is identical to the longitudinal unit

vector.

B.1.1 OS Basis Vectors

The unit vectors of the OS reference frame are defined in terms of those

of the inertial frame as

ρ̂ =
ρ
√

1− η2 cosφ√
ρ2 + c2η2

X̂ +
ρ
√

1− η2 sinφ√
ρ2 + c2η2

Ŷ +
η
√
ρ2 + c2√

ρ2 + c2η2
Ẑ (B.1)

φ̂ = − sinφX̂ + cosφŶ (B.2)

η̂ = −η
√
ρ2 + c2 cosφ√
ρ2 + c2η2

X̂− η
√
ρ2 + c2 sinφ√
ρ2 + c2η2

Ŷ +
ρ
√

1− η2√
ρ2 + c2η2

Ẑ (B.3)

The definition can be written compactly in matrix form as

 ρ̂φ̂
η̂

 =



ρ
√

1− η2 cosφ√
ρ2 + c2η2

ρ
√

1− η2 sinφ√
ρ2 + c2η2

η
√
ρ2 + c2√

ρ2 + c2η2

− sinφ cosφ 0

−η
√
ρ2 + c2 cosφ√
ρ2 + c2η2

−η
√
ρ2 + c2 sinφ√
ρ2 + c2η2

ρ
√

1− η2√
ρ2 + c2η2


 X̂

Ŷ

Ẑ


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B.1.2 Time Derivatives of the OS Basis Vectors

Naturally, the time derivatives of the OS basis vectors possess singu-

larities at the poles. Nevertheless, they are presented for completeness.

˙̂ρ =
ρφ̇
√

1− η2√
ρ2 + c2η2

φ̂+
1

ρ2 + c2η2

(
ρη̇
√
ρ2 + c2√

1− η2
− c2ηρ̇

√
1− η2√

ρ2 + c2

)
η̂ (B.4)

˙̂
φ = − ρφ̇

√
1− η2√

ρ2 + c2η2
ρ̂+

ηφ̇
√
ρ2 + c2√

ρ2 + c2η2
η̂ (B.5)

˙̂η = − 1

ρ2 + c2η2

(
ρη̇
√
ρ2 + c2√

1− η2
− c2ηρ̇

√
1− η2√

ρ2 + c2

)
ρ̂− ρφ̇

√
1− η2√

ρ2 + c2η2
φ̂ (B.6)

The author is not aware of existing literature containing these equations.

B.1.3 Spacecraft Position and Velocity

The expressions for spacecraft position and body-fixed velocity in terms

of OS coordinates are presented here for the first time, along with a new deriva-

tion of the inertial velocity in OS coordinates. With the above definitions, the

position and velocity can be described entirely in terms of the OS basis vec-

tors, where the shift zδ is now relevant if J3 6= 0. The spacecraft position in

the rotating OS frame can be expressed as

rOS =

OS

(ρ− ηzδ)
√
ρ2 + c2√

ρ2 + c2η2

0

−(c2η − ρzδ)
√

1− η2√
ρ2 + c2η2


(B.7)
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which has no singularities. The position magnitude or radial distance can be

obtained as

‖rOS‖ =
√
ρ2 + c2 (1− η2) + zδ (zδ − 2ρη) (B.8)

The expressions for velocity have singularities on the poles, but are nonetheless

defined as follows. The body-fixed velocity (in the rotating OS frame) is given

by

RvOS =

OS

(ρ̇− η̇zδ) (ρ2 + c2)
1/2

(ρ2 + c2η2)1/2

−c
2 (ρ− ηzδ) [ρρ̇ (1− η2) + ηη̇ (ρ2 + c2)]

(ρ2 + c2)1/2 (ρ2 + c2η2)3/2

0

−(c2η̇ − ρ̇zδ) (1− η2)1/2

(ρ2 + c2η2)1/2

+
(c2η − ρzδ) [ρρ̇ (1− η2) + ηη̇ (ρ2 + c2)]

(1− η2)1/2 (ρ2 + c2η2)3/2



(B.9)

The inertial velocity represented in the OS basis vectors can be derived from

the product rule

NvOS = RvOS + rρ ˙̂ρ+ rη ˙̂η (B.10)

and is given by

NvOS = N ṙOS =

OS

ρ̇
√
ρ2 + c2η2√
ρ2 + c2

φ̇
√

(ρ2 + c2) (1− η2)

η̇
√
ρ2 + c2η2√
1− η2


(B.11)

Notice that the inertial velocity is independent of zδ, the translation of the

origin of the OS frame along the Z axis.
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B.2 Coordinate Transformations

A number of coordinate transformations used in or relevant to this

dissertation are presented in this section for convenience. The focus is on

mappings between ECI coordinates and various spherical orbital element sets.

The element sets considered include the equinoctial set and spherical Delaunay

variables.

B.2.1 Converting ECI Coordinates to Spherical Equinoctial Or-
bital Elements

The algorithms in the next two sections mostly follow those presented

by Danielson et al. [42], but with extra commentary that compares these pro-

cesses to the oblate spheroidal elements. The six modified spherical equinoctial

orbital elements are described as follows using the notation of Gim and Al-

friend [65] for the vector components:

œK1 = pK spherical semi-latus rectum

œK2 = qK1

œK3 = qK2

}
components of the spherical eccentricity vector

œK4 = pK1

œK5 = pK2

}
components of the spherical ascending
node vector

œK6 = LK spherical true longitude

(B.12)
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The spherical equinoctial elements are defined in terms of the spherical classical

elements as
pK = pK

qK1 = eK cos (ωK +KΩK)

qK2 = eK sin (ωK +KΩK)

pK1 =

[
tan

(
IK
2

)]K
cos ΩK

pK2 =

[
tan

(
IK
2

)]K
sin ΩK

LK = fK + ωK +KΩK

(B.13)

where K is a retrograde factor defined as

K =

{
+1 direct spherical equinoctial elements

−1 retrograde spherical equinoctial elements
(B.14)

As before, and throughout the dissertation, when K is used as a subscript, it

denotes Keplerian or spherical orbital elements of any variety.

Suppose now that ECI coordinates are given as position vector r and

velocity vector v. The first step in the conversion process is to compute the

angular momentum h as

h = r× v (B.15)

With h = ‖h‖, the semi-latus rectum is computed as

pK =
h2

µ
(B.16)

The semimajor axis could be computed instead as

aK =
1

2

r
− v2

µ

(B.17)
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where r = ‖r‖ and v = ‖v‖, but aK is not well-behaved for all orbits, tending

to infinity for parabolic orbits when the energy, or half the denominator in

Eq. (B.17), goes to zero.

Next, compute the basis vectors {f̂K , ĝK , ŵK} of the spherical equinoc-

tial reference frame. The ŵK vector points along the direction of the angular

momentum vector and is obtained simply by normalizing h as

ŵK =
h

h
(B.18)

The elements pK1 and pK2 are determined from the components of ŵK as

pK1 = −
wKy

1 +KwKz

pK2 = +
wKx

1 +KwKz

(B.19)

The components of the ascending node vector are now obtained, but the other

basis vectors, f̂K and ĝK , are required for computing the true longitude and

the components of the eccentricity vector. Those basis vectors are given by

f̂K =
1

1 + p2K1
+ p2K2

 1 + p2K1
− p2K2

2pK1pK2

−2KpK2


ĝK =

1

1 + p2K1
+ p2K2

 2KpK1pK2(
1− p2K1

+ p2K2

)
K

−2pK1

 (B.20)

The third step is to compute the components of the eccentricity vector.

First obtain the eccentricity vector as

eK =
v × h

µ
− r

r
(B.21)
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Its components are then computed from a simple dot product as

qK1 = eK · f̂K

qK2 = eK · ĝK

(B.22)

The fourth and final step is to compute the spherical true longitude

LK . An instructive and simplifying interpretation of the spherical equinoctial

elements is that the position coordinates of a spacecraft in the equinoctial

reference frame are given by

XK = r · f̂K

YK = r · ĝK

(B.23)

where ZK is obviously zero because all motion occurs in an invariant plane.

The true longitude is then determined as

LK = arctan

(
YK
XK

)
(B.24)

The coordinate transformation is now complete, and this particular set

is free from singularities for any conic. If desired or required, additional steps

can be taken to compute the eccentric longitude FK and the mean longitude

λK , but these quantities are not well-defined for nearly parabolic orbits. For

closed orbits, compute the eccentric longitude from

cosFK = qK1 +

(
1− q2K1

bK
)
YK − qK1qK2bKXK

aK
√

1− e2K

sinFK = qK2 +

(
1− q2K2

bK
)
XK − qK1qK2bKYK

aK
√

1− e2K

(B.25)

where eK = ‖eK‖ is the Keplerian eccentricity and

bK =
1

1 +
√

1− e2K
(B.26)
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The mean longitude is then determined from the equinoctial form of Kepler’s

equation as

λK = FK − qK1 sinFK + qK2 cosFK (B.27)

B.2.2 Converting Spherical Equinoctial Orbital Elements to ECI
Coordinates

The first step is to apply Eq. (B.20) to compute f̂K and ĝK from pK1

and pK2 . If mean longitude is given, the next step is to iteratively solve

the equinoctial form of Kepler’s equation, given earlier as Eq. (B.27), by any

desired method. Examples include the Newton-Raphson method, Laguerre’s

method, and Halley’s method. Once the eccentric longitude is obtained, the

true longitude can be computed from

cosLK =

(
1− q2K2

bK
)

cosFK + qK1qK2bK sinFK − qK1

1− qK1 cosFK − qK2 sinFK

sinLK =

(
1− q2K1

bK
)

sinFK + qK1qK2bK cosFK − qK2

1− qK1 cosFK − qK2 sinFK

(B.28)

The third step is to determine the spacecraft’s position and velocity

coordinates in the spherical equinoctial reference frame. Compute the space-

craft’s radial distance as

r =
pK

1 + qK1 cosLK + qK2 sinLK
= aK (1− qK1 cosFK − qK2 sinFK) (B.29)

Then obtain the position coordinates as

XK = r cosLK = aK
[(

1− q2K2
bK
)

cosFK + qK1qK2bK sinFK − qK1

]
YK = r sinLK = aK

[(
1− q2K1

bK
)

sinFK + qK1qK2bK cosFK − qK2

] (B.30)
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and the velocity coordinates as

ẊK = −
√

µ

pK
(qK2 + sinLK)

=
nKa

2
K

r

[
−
(
1− q2K2

bK
)

sinFK + qK1qK2bK cosFK
]

ẎK = +

√
µ

pK
(qK1 + cosLK)

=
nKa

2
K

r

[(
1− q2K1

bK
)

cosFK − qK1qK2bK sinFK
]

(B.31)

where

nK =

√
µ

a3K
(B.32)

is the Keplerian mean motion. Again, the components in the ZK direction are

clearly zero.

The fourth and final step is to determine the position and velocity

vectors. Compared to oblate spheroidal equinoctial elements, the equations

for this step are especially simple:

r = XK f̂K + YK ĝK

v = ẊK f̂K + ẎK ĝK

(B.33)

B.2.3 Spherical Delaunay Variables

The derivation and transformation presented in this section mostly fol-

lows the approach taken by Der and Bonavito [50], but with some extra com-

mentary that compares these processes to those required for oblate spheroidal

elements. The spherical Delaunay variables result from a particular canonical

transformation applied to the Jacobi constants (α’s and β’s) of the two-body

problem. As such, it is not necessary to have conversion algorithms that
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map between rectangular coordinates and Delaunay variables. The canonical

transformation itself is of primary interest along with the mapping between

spherical Delaunay variables and the classical spherical orbital elements. For

a Keplerian reference, it is not necessary to derive them from action and angle

variables as Vinti did for the spheroidal method.

Beginning with generalized coordinates q and conjugate (generalized)

momenta p in Cartesian or spherical coordinates, an application of Hamilton-

Jacobi theory to a Keplerian reference Hamiltonian yields new canonical vari-

ables P = α as the new momenta and Q = β as the new coordinates. If the

α’s and β’s are adopted as the canonical variables on which a perturbation

theory is constructed, then nonphysical Poisson terms appear in the solution.

Nonphysical terms do not appear if Delaunay variables are adopted instead,

hence their common use. Let the Hamiltonian of the perturbed problem be

expressed as

H = H0 + H1 (B.34)

where H0 = H0 (Q,P) is the reference, unperturbed Hamiltonian and H1 =

H1 (Q,P, t) is the perturbing Hamiltonian. Since H0 is independent of time,

H0 = α1. The α’s and β’s are canonical with respect to the new Hamiltonian

K = 0 for the unperturbed problem or

K = H1 (B.35)

for the perturbed problem. Alternatively, with a sign reversal,

F = −K = −H1 = F1 (B.36)
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and the equations of motion reduce to the following simple form:

α̇> = −∂K
∂β

= −∂H1

∂β
= +

∂F1

∂β
(B.37)

β̇> = +
∂K

∂α
= +

∂H1

∂α
= −∂F1

∂α
(B.38)

Note the adoption of Delaunay’s convention

F = −K (B.39)

that reverses the sign of the new Hamiltonian. The only real effect of the

sign reversal is that the mathematical interpretation of the α’s and β’s are

swapped. While the α’s and β’s are now mathematically “coordinates” and

“momenta”, respectively, they are physically still momenta and coordinates.

The generating function has the particular form S ′ = S ′ (Q,P′, t) =

S ′ (α,β′, t), noting the mathematical swapping between coordinates and mo-

menta, and is given by

S ′ = −α1t+ µ (−2α1)
−1/2 β′1 + α2β

′
2 + α3β

′
3 (B.40)

where, in general, µ = G (m1 +m2) and G is the universal constant of gravi-

tation. Equation (B.40) can be found in many references [156]. The canonical

transformation associated with this generating function is given by the map-

ping

P> = β> =
∂S ′

∂α
=
∂S ′

∂Q
(B.41)

Q′
>

= α′
>

=
∂S ′

∂β′
=
∂S ′

∂P′
(B.42)
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where Q′ and P′ are canonical with respect to the new Hamiltonian K′ = α1

for the unperturbed problem or

K′ = K− ∂S ′

∂t
= H1 + α1 (B.43)

for the perturbed problem, so that

F′ = −K′ = −K +
∂S ′

∂t
= F +

∂S ′

∂t
= F1 +

∂S ′

∂t
= F1 − α1 (B.44)

The Delaunay Hamiltonian for the perturbed problem is

F′ = F1 +
∂S ′

∂t
= F1 − α1 (B.45)

The new α’s and β’s (with prime symbols) have the following relationships to

the old α’s and β’s:

β1 = −t+ µ (−2α1)
−3/2 β′1 α′1 = µ (−2α1)

−1/2

β2 = β′2 α′2 = α2

β3 = β′3 α′3 = α3

(B.46)

Equation (B.46) can be rewritten in Delaunay’s notation as

LK = α′1 =
√
µaK `K = β′1 = nK (t+ β1)

GK = α′2 =
√
µaK (1− e2K) gK = β′2 = ωK

HK = α′3 =
√
µaK (1− e2K) cos IK hK = β′3 = ΩK

(B.47)

where

nK =

√
µ

a3K
(B.48)

is the Keplerian mean motion. The K subscripts are added to distinguish these

elements from the spheroidal elements employed throughout the dissertation.

The Delaunay Hamiltonian becomes

F′ =
µ2

2L2
K

+ F1 (B.49)
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Appendix C

New Nonsingular Partial Derivatives

This Appendix gives explicit expressions for all new nonsingular partial

derivatives of Vinti’s solution to the Vinti problem. The partials are based on

the 1966 potential, which shifts the origin of the OS reference frame to capture

J3 effects.

C.1 Nonsingular Partials Related to the Constant b2

The following relation for b2 · ∂b2/∂σj should be used in all partial

derivative expressions where it appears:

b2
∂b2
∂σj

=
1

2a

[
(ap− c2)

(
b1
a
δ1j −

∂b1
∂σj

)
− b1

(
pδ1j + a

∂p

∂σj

)]
(C.1)

The term appears in equations for partials of p0, Lm, Ajk, ρ̇, and ḟ . The expres-

sions containing ∂/∂σj(b2/p) and ∂/∂σj(b1/b2) in the equations for ∂Ak/∂σj

are replaced with the following. First, define

Lm ≡
(
b2
p

)m
Pm

(
b1
b2

)
=

1

(2p)m

[m/2]∑
k=0

(−1)k(2m− 2k)!

k!(m− k)!(m− 2k)!
bm−2k1 b2k2 (C.2)

where

[m/2] =

{
m/2, if m even

(m− 1)/2, if m odd
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For j = 1, 2, 3, the partials of Lm can be expressed as

∂Lm
∂σj

= −mLm
p

∂p

∂σj
+

1

(2p)m

[m/2]∑
k=0

(−1)k(2m− 2k)!

k!(m− k)!(m− 2k)!

×
[
(m− 2k)bm−2k−11 b2k2

∂b1
∂σj

+ (2k)bm−2k1 b2k−12

∂b2
∂σj

] (C.3)

Then, for m > 0, define

L̂m ≡
1

(2p)m

[m/2]∑
k=0

(−1)k(2m− 2k)!

k!(m− k)!(m− 2k − 1)!
bm−2k−11 b2k2 (C.4)

With this definition, it can be shown that the recursive relationship

∂Lm
∂σj

= −mLm
p

∂p

∂σj
+ L̂m

∂b1
∂σj
− L̂m−1b2

∂b2
∂σj

(C.5)

is equivalent to Eq. (C.3), with L̂0 = 0. Accordingly, the new expressions for

∂Ak/∂σj are now presented. For j = 1, 2, 3,

∂A1

∂σj
=
A1

p

∂p

∂σj
− δ2jA1

e

1− e2
+ p(1− e2)

1
2

∞∑
n=2

∂Ln
∂σj

Rn−2

[
(1− e2)

1
2

]
+ δ2jpe

{
(1− e2)−1

∞∑
n=3

[
(1− e2)

1
2

]n−2
LnP

′
n−2

[
(1− e2)−

1
2

]
− (1− e2)−

1
2

∞∑
n=3

(n− 2)LnRn−2

[
(1− e2)−

1
2

]}
(C.6)

∂A2

∂σj
= −A2

p

∂p

∂σj
− δ2jA2

e

1− e2
+

(1− e2) 1
2

p

∞∑
n=1

∂Ln
∂σj

Rn

[
(1− e2)

1
2

]
+ δ2j

e

p

{
(1− e2)−1

∞∑
n=1

[
(1− e2)

1
2

]n
LnP

′
n

[
(1− e2)−

1
2

]
− (1− e2)−

1
2

∞∑
n=1

nLnRn

[
(1− e2)−

1
2

]}
(C.7)
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∂A3

∂σj
= −3A3

p

∂p

∂σj
− δ2jA3

e

1− e2

+
(1− e2) 1

2

p3

∞∑
n=1

∂Dn

∂σj
Rn+2

[
(1− e2)

1
2

]
+ δ2j

e

p3

{
(1− e2)−1

∞∑
n=0

[
(1− e2)

1
2

]n+2

DnP
′
n+2

[
(1− e2)−

1
2

]
− (1− e2)−

1
2

∞∑
n=0

(n+ 2)DnRn+2

[
(1− e2)−

1
2

]}
(C.8)

where P ′m(x) is the derivative of the Legendre polynomial with respect to the

argument and

Dn =

D2k =
∑k

m=0(−1)k−m
(
c
p

)2(k−m)

L2m if m even

D2k+1 =
∑k

m=0(−1)k−m
(
c
p

)2(k−m)

L2m+1 if m odd
(C.9)

A recursive option for computing the derivative of P ′m+1(x) is given by

P ′m+1(x) = (m+ 1)Pm(x) + xP ′m(x) (C.10)

Notice that in the third line of each of Eqs. (C.6), (C.7), and (C.8), the expres-

sion has been simplified from its original form through the use of the Rm(x)

function. The new partials of Dn, for j = 1, 2, 3, become

∂Dn

∂σj
=
∂D2k

∂σj
= −2

[
1

p

k∑
m=0

(−1)k−m(k −m)

(
c

p

)2(k−m)

L2m

]

× ∂p

∂σj
+

k∑
m=0

(−1)k−m
(
c

p

)2(k−m)
∂L2m

∂σj

(C.11)

for even n and

∂Dn

∂σj
=
∂D2k+1

∂σj
= −2

[
1

p

k∑
m=0

(−1)k−m(k −m)

(
c

p

)2(k−m)

L2m+1

]

× ∂p

∂σj
+

k∑
m=0

(−1)k−m
(
c

p

)2(k−m)
∂L2m+1

∂σj

(C.12)

for odd n.
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C.2 Removing Artificial Singularities in the Partials of
True Anomaly

The partial derivatives that Walden and Watson [164] derived for the

periodic terms of the true anomaly, f0, f1, and f2, contain singularities when

the associated true anomaly, f ′, f ′′, or f , is 0 or π. New partial derivatives

are presented here that avoid the singularity of dividing the sine of eccentric

anomaly by the sine of true anomaly.

The partials of the zeroth order term, for j = 1, 2, 3, are determined as

∂f0
∂σj

=

√
1− e2

1− e cosE ′
∂E ′

∂σj
+ δ2j

sin f ′

1− e2
− ∂Ms

∂σj
(C.13)

and for j = 1, 2,

∂f0
∂λj

=

√
1− e2

1− e cosE ′
∂E ′

∂λj
− ∂Ms

∂λj
(C.14)

where

E ′ = Ms + E0 (C.15)

Next, the partials of the first order term, for j = 1, 2, 3, are computed as

∂f1
∂σj

=

√
1− e2

1− e cosE ′′
∂E ′′

∂σj
+ δ2j

sin f ′′

1− e2
− ∂f ′

∂σj
(C.16)

and for j = 1, 2,

∂f1
∂λj

=

√
1− e2

1− e cosE ′′
∂E ′′

∂λj
− ∂f ′

∂λj
(C.17)

where

E ′′ = Ms + E0 + E1 (C.18)

Finally, the partials of the second order term, for j = 1, 2, 3, are determined

as

∂f2
∂σj

=

√
1− e2

1− e cosE

∂E

∂σj
+ δ2j

sin f

1− e2
−
(
∂f ′

∂σj
+
∂f1
∂σj

)
(C.19)
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and for j = 1, 2,

∂f2
∂λj

=

√
1− e2

1− e cosE

∂E

∂λj
−
(
∂f ′

∂λj
+
∂f1
∂λj

)
(C.20)

where

E = Ms + E0 + E1 + E2 (C.21)

The partials of f0, f1, and f2 with respect to β3 vanish.

C.3 Other Partials Required for the Spheroidal Ele-
ment Solution

Walden and Watson developed partial derivatives using the singular

oblate spheroidal coordinates [164, 163] They took partials of equations that

suffer from singularities for polar orbits. Vinti [160] developed a new transfor-

mation from oblate spheroidal orbital elements to Cartesian coordinates that

avoids the singularities associated with polar orbits by introducing a slowly-

varying element, Ω′.

If the STM is desired in the spheroidal element space, then the only

additional partials required to propagate a relative Vinti trajectory are those

of Ω′. The partials of Ω′ are obtained from Eq. (51d) in Vinti [160] as follows.
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For j = 1, 2, 3,

∂Ω′

∂σj
= −c2

[
(−2α1)

− 1
2
∂α3

∂σj
+ α3(−2α1)

− 3
2
∂α1

∂σj

]
×

(
A3f +

4∑
k=1

A3k sin kf

)
− c2α3(−2α1)

− 1
2

[
f
∂A3

∂σj

+
4∑

k=1

sin kf
∂A3k

∂σj
+

(
A3 +

4∑
k=1

kA3k cos kf

)
∂v

∂σj

]

+
u

1
2

α2

(
∂α3

∂σj
− α3

α2

∂α2

∂σj
+
α3

2u

∂u

∂σj

)
×
(
B3ψ −

3

4
C1C2Q cosψ +

3

32
C2

2Q
2 sin 2ψ

)
+
α3u

1
2

α2

[
ψ
∂B3

∂σj
− 3

4

(
C2Q

∂C1

∂σj
+ C1Q

∂C2

∂σj
+ C1C2

∂Q

∂σj

)
cosψ

+
3

16
C2Q

(
Q
∂C2

∂σj
+ C2

∂Q

∂σj

)
sin 2ψ

+

(
B3 +

3

4
C1C2Q sinψ +

3

16
C2

2Q
2 cos 2ψ

)
∂ψ

∂σj

]

(C.22)

Then, for j = 1, 2,

∂Ω′

∂λj
= −c2α3(−2α1)

− 1
2

(
A3 +

4∑
k=1

kA3k cos kf

)
∂v

∂λj

+
α3u

1
2

α2

(
B3 +

3

4
C1C2Q sinψ +

3

16
C2

2Q
2 cos 2ψ

)
∂ψ

∂λj

(C.23)

and

∂Ω′

∂β3
= 1 (C.24)

However, in the current investigation, the partial derivatives of three other

quantities are also modified. First, the partials of the polar component of an-

gular momentum, α3, are modified to remove singularities. Next, the partials

of Ms and ψs are modified to convert all the partials to be with respect to the

spheroidal Delaunay elements, λj, instead of the Jacobi constants βj.
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Beginning with the partials of α3, if near the equatorial singularity

such that the element set containing Q is used, then the only changes are that

Eqs. (3.27) and (3.28) must be applied to the existing partials with respect

to qj from Walden and Watson [164]. Recall that qj is defined differently in

this paper, where q1 = a, q2 = e, and q3 = Q. To avoid the polar orbit

singularity, the partials of α3 with respect to σj must be completely rederived

from Eq. (3.16) and taken with respect to σ̃j, where σ̃1 = a, σ̃2 = e, σ̃3 = S̃.

The partials are determined as

∂α3

∂σ̃j
= sgn α3

(
S̃uα

∂α2

∂σ̃j
− δ3jα2uα +

1

2

α2S̃

uα

∂uα
∂σ̃j

)
(C.25)

where

uα ≡

1− c2

a0p0
S −

(
2zδ
p0

)2 (
1− c2

a0p0
S
)

[
1 + c2

a0p0
(1− 2S)

]2S


1
2

(C.26)

from Eq. (3.16) and, for j = 1, 2,

∂uα
∂σ̃j

= S

−c2 ∂

∂σ̃j
(a0p0)

−1

+

(
2zδ
p0

)2 [
2
p0

(
1− c2

a0p0
S
)
∂p0
∂σ̃j

+ c2S ∂
∂σ̃j

(a0p0)
−1
]

[
1 + c2

a0p0
(1− 2S)

]2
+

2c2
(

2zδ
p0

)2
(1− 2S)

(
1− c2

a0p0
S
)

[
1 + c2

a0p0
(1− 2S)

]3 ∂

∂σ̃j
(a0p0)

−1



(C.27)
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For j = 3 (with respect to S̃),

∂uα

∂S̃
=

−c2
(
S
∂

∂S
(a0p0)

−1 +
1

a0p0

)
+

(
2zδ
p0

)2

×

(
1− c2

a0p0
S
)(
−1 + 2S

p0

∂p0
∂S

)
+ c2S

(
S ∂
∂S

(a0p0)
−1 + 1

a0p0

)
[
1 + c2

a0p0
(1− 2S)

]2
+

2c2
(

2zδ
p0

)2
S
(

1− c2

a0p0
S
) [

(1− 2S) ∂
∂S

(a0p0)
−1 − 2

a0p0

]
[
1 + c2

a0p0
(1− 2S)

]3
 ∂S

∂S̃

(C.28)

Notice the strong similarities between these partials of uα and those of u

located in Walden and Watson [164].

Next, all the partial derivatives can be converted to be with respect to

the spheroidal Delaunay elements. The partials of Walden and Watson [164]

with respect to βj can be decomposed as

∂(·)
∂βj

=
∂(·)
∂λj

∂λj
∂βj

(C.29)

By inspection, β1 and β2 only appear explicitly in the expressions for l0 and

l0 + g0. Therefore, to obtain the desired partial ∂(·)/∂λj for an arbitrary

quantity, one option is to simply not perform the final step of the chain rule in

the existing partials. In other words, the partial derivative ∂λj/∂βj should not

be computed. This goal is accomplished by simply computing ∂Ms/∂λj and

∂ψs/∂λj and otherwise building up the partials in the same way as in Walden

and Watson [164], except that ∂βj is replaced by ∂λj in all the equations.

None of the other partial derivatives need to be modified when changing the

independent variables to spheroidal Delaunay elements. The specific partials

227



to be modified are as follows. For j = 1, 2, 3, the new partials of Ms are

determined as

∂Ms

∂λj
= δ1j (C.30)

and those of ψs are given by

∂ψs
∂l0

=
∂ψs
∂g0

= 1;
∂ψs
∂β3

= 0 (C.31)

The simple partials of Ms and ψs given in Eqs. (C.30) and (C.31) replace the

complicated expressions for their partials with respect to the Jacobi constants.

C.4 Partials of Vinti’s Nonsingular Transformation to
ECI Coordinates

When the linear transformation from oblate spheroidal orbital elements

to ECI coordinates is desired, the partials of Vinti’s nonsingular transformation

must be computed. These partials have not been published previously and are

given here.

The partials of position and velocity require the partials of several con-

stants associated with the nonsingular transformation. Beginning with con-

stant quantities, the nonsingular equation for ζ is used, given by

ζ =
C1

2(1− C2)
(C.32)

where C2 � 1. The equation for ζ given in Eq. (C.32) is Eq. (154) in Vinti

[158], but Walden and Watson [164] used the singular form ζ = P/(1 − S).

The nonsingular partial derivatives of ζ, for j = 1, 2, 3, are determined as

∂ζ

∂σj
=

1

2(1− C2)

(
∂C1

∂σj
+ 2ζ

∂C2

∂σj

)
(C.33)
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The remaining constants are unique to the nonsingular transformation. First,

note from Vinti [160] the constants Hk and C3 determined as

H1 =

√
1 + S + (1− S)

√
1− C2

3z
2
δ

2
(C.34a)

H2 =
1

2
Q
[√

1− C3zδ −
√

1 + C3zδ

]
(C.34b)

H3 =
1

2

[
(1 + P )

√
1− C3zδ + (1− P )

√
1 + C3zδ

]
(C.34c)

and

C3 =
2u

p0(1− C2S)
=

2ζ

zδ
(C.35)

Vinti [160] denoted C3 as r, but r is avoided here to alleviate confusion between

this quantity and the magnitude of a position vector. From Eq. (C.35), the

partials of C3 are determined as

∂C3

∂σj
=

2

p20(1− C2S)2

{
p0(1− C2S)

∂u

∂σj

− u

[
(1− C2S)

∂p0
∂σj
− p0

(
δ3jC2 + S

∂C2

∂σj

)]} (C.36)

for j = 1, 2, 3, or more simply as

∂C3

∂σj
=

2

zδ

∂ζ

∂σj
(C.37)

For j = 1, 2, 3, the partials of Hk are obtained from Eq. (C.34) as

∂H1

∂σj
=

1

4H1

{
δ3j

[
1− (1− 4ζ2)

1
2

]
− (1− S)4ζ

(1− 4ζ2)
1
2

∂ζ

∂σj

}
(C.38)

∂H2

∂σj
=

1

2

[
(1− 2ζ)

1
2 − (1 + 2ζ)

1
2

] ∂Q
∂σj

− 1

2
Q
[
(1− 2ζ)−

1
2 + (1 + 2ζ)−

1
2

] ∂ζ
∂σj

(C.39)
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∂H3

∂σj
=

1

2

[
(1− 2ζ)

1
2 − (1 + 2ζ)

1
2

] ∂P
∂σj

− 1

2

[
1 + P

(1− 2ζ)
1
2

− 1− P
(1 + 2ζ)

1
2

]
∂ζ

∂σj

(C.40)

To propagate a relative Vinti trajectory in ECI coordinates using an STM,

the partials for Ω̇′, ψ̇, and ḟ are required in addition to those of position and

velocity. From Eq. (55) for Ω̇′ in Vinti [160], for j = 1, 2, 3,

∂Ω̇′

∂σj
= −c2

[
∂α3

∂σj
(−2α1)

− 1
2 + α3(−2α1)

− 3
2
∂α1

∂σj

]
×

(
A3 +

4∑
k=1

kA3k cos kf

)
ḟ − c2α3

(−2α1)
1
2

{[
∂A3

∂σj

+
4∑

k=1

k cos kf
∂A3k

∂σj
−

(
4∑

k=1

k2A3k sin kf

)
∂v

∂σj

]
ḟ

+

(
A3 +

4∑
k=1

kA3k cos kf

)
∂ḟ

∂σj

}
+
u

1
2

α2

(
∂α3

∂σj
− α3

α2

∂α2

∂σj

+
α3

2u

∂u

∂σj

)(
B3 +

3

4
C1C2Q sinψ +

3

16
C2

2Q
2 cos 2ψ

)
ψ̇

+
α3u

1
2

α2

{[
∂B3

∂σj
+

3

4

(
C2Q

∂C1

∂σj
+ C1Q

∂C2

∂σj
+ C1C2

∂Q

∂σj

)
sinψ

+
3

8
C2Q

(
Q
∂C2

∂σj
+ C2

∂Q

∂σj

)
cos 2ψ

+

(
3

4
C1C2Q cosψ − 3

8
C2

2Q
2 sin 2ψ

)
∂ψ

∂σj

]
ψ̇

+

(
B3 +

3

4
C1C2Q sinψ +

3

16
C2

2Q
2 cos 2ψ

)
∂ψ̇

∂σj

}

(C.41)
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Also, for j = 1, 2,

∂Ω̇′

∂λj
= − c2α3

(−2α1)
1
2

[
−

(
4∑

k=1

k2A3k sin kf

)
∂v

∂λj
ḟ

+

(
A3 +

4∑
k=1

kA3k cos kf

)
∂ḟ

∂λj

]

+
α3u

1
2

α2

[(
3

4
C1C2Q cosψ − 3

8
C2

2Q
2 sin 2ψ

)
ψ̇
∂ψ

∂λj

+

(
B3 +

3

4
C1C2Q sinψ +

3

16
C2

2Q
2 cos 2ψ

)
∂ψ̇

∂λj

]
(C.42)

From Eq. (23) for ḟ in Vinti [160] with −2α1 = µ/a0, for j = 1, 2, 3,

∂ḟ

∂σj
=

[(−2α1)(ρ
2 − 2b1ρ+ b22)]

1
2

ρ(ρ2 + c2η2)

[
δ1j(1− e2)

1
2 − δ2j

ae

(1− e2) 1
2

]

+ ḟ

[
−1

ρ

∂ρ

∂σj
+

1

2α1

∂α1

∂σj
− 2

(
ρ
∂ρ

∂σj
+ c2η

∂η

∂σj

)
(ρ2 + c2η2)−1

]
− 2aα1(1− e2)

1
2
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1
2

×
[
(ρ− b1)

∂ρ

∂σj
− ρ ∂b1

∂σj
+ b2

∂b2
∂σj

]
(C.43)

Also, for j = 1, 2,

∂ḟ

∂λj
= ḟ

[
−1

ρ

∂ρ

∂λj
+

1

2α1

∂α1

∂λj
− 2

(
ρ
∂ρ

∂λj
+ c2η

∂η

∂λj

)
(ρ2 + c2η2)−1

]
− 2aα1(1− e2)

1
2

ρ(ρ2 + c2η2)[(−2α1)(ρ2 − 2b1ρ+ b22)]
1
2

(ρ− b1)
∂ρ

∂λj

(C.44)
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From Eq. (57) for ψ̇ in Vinti [160] with α2 =
√
µp0, for j = 1, 2, 3,

∂ψ̇

∂σj
=

{
(1 + C1η − C2η

2)
1
2
∂α2

∂σj
+
α2

2
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+ η
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]
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2)−
1
2

}
[u

1
2 (ρ2 + c2η2)]−1

− α2(1 + C1η − C2η
2)

1
2

ρ2 + c2η2

[
1

2u
3
2

∂u
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+
2

u
1
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(
ρ
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∂σj
+ c2η

∂η

∂σj

)]
(C.45)

which simplifies to

∂ψ̇

∂σj
= ψ̇

{
1

α2

∂α2

∂σj
+

1

2(1 + C1η − C2η2)

[
(C1 − 2C2η)

∂η

∂σj

+ η
∂C1
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− η2∂C2

∂σj

]
− 1

2u

∂u

∂σj
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(
ρ
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∂σj
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∂η
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)} (C.46)

Also, for j = 1, 2,

∂ψ̇

∂λj
=

α2 (C1 − 2C2η)

2u
1
2 (ρ2 + c2η2)(1 + C1η − C2η2)

1
2

∂η

∂λj

− 2α2(1 + C1η − C2η
2)

1
2

u
1
2 (ρ2 + c2η2)2

(
ρ
∂ρ

∂λj
+ c2η

∂η

∂λj

) (C.47)

The partials of Ω̇′, ψ̇, and ḟ with respect to β3 vanish. Now, the new partials

of the ECI state can be obtained in terms of the preceding partials and those

of Walden and Watson [164] and Walden [163]. Note that Eqs. (C.50), (C.53),

(C.56), and (C.60) each contain a Kronecker delta, δ3j, in one of the terms.

These small terms are slightly different depending on whether the partials are

taken with respect to S̃ or Q. Each of these four equations expresses the

partials with respect to S̃. To obtain the partials with respect to Q, simply

make the following changes:

δ3j
H1

−→ − δ3j

2H1S̃

∂S

∂Q
(C.48)
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and

∂(·)
∂σ̃j
−→ ∂(·)

∂qj
(C.49)

Now, beginning with positions, for j = 1, 2, 3,

∂X
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1
2
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(C.50)

Also, for j = 1, 2,
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∂λj
=
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1
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]} (C.51)

and
∂X

∂β3
= (ρ2 + c2)

1
2

[
−H1 sin Ω′ cosψ

− sgn α3
S̃

H1

cos Ω′(H2 +H3 sinψ)

] (C.52)
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Next, for j = 1, 2, 3,
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(C.53)

Also, for j = 1, 2,
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]} (C.54)

and
∂Y

∂β3
= (ρ2 + c2)

1
2

[
H1 cos Ω′ cosψ

− sgn α3
S̃

H1

sin Ω′(H2 +H3 sinψ)

] (C.55)
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Considering the velocities, for j = 1, 2, 3,
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(C.56)

where

GX ≡ −H1 cos Ω′ sinψ − sgn α3
S̃

H1

H3 sin Ω′ cosψ (C.57)

Also, for j = 1, 2,
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(C.58)
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and
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Next, for j = 1, 2, 3,
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(C.60)

where

GY ≡ −H1 sin Ω′ sinψ + sgn α3
S̃

H1

H3 cos Ω′ cosψ (C.61)
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Also, for j = 1, 2,
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(C.62)

and
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[16] Ashley Darius Biria and Ryan Paul Russell. Periodic orbits in the ellip-

tical relative motion problem with space surveillance applications. Jour-

nal of Guidance, Control, and Dynamics, 38(8):1452–1467, August 2015.

doi:10.2514/1.G000622.

[17] Ashley Darius Biria and Ryan Paul Russell. A satellite relative motion

240

http://dx.doi.org/10.1086/109705
http://dx.doi.org/10.2514/3.5597
http://dx.doi.org/10.2514/1.G000622


model including J2 and J3 via Vinti’s intermediary. Celestial Mechanics

and Dynamical Astronomy, 2016. submitted December 2016.

[18] Ashley Darius Biria and Ryan Paul Russell. A satellite relative motion

model including J2 and J3 via Vinti’s intermediary. In AAS/AIAA Space

Flight Mechanics Meeting, Vol. 158 of Advances in the Astronautical

Sciences, pp. 3475–3494, San Diego, CA, February 2016. Univelt, Inc.

Paper AAS 16-537.

[19] Francesco Biscani and Dario Izzo. The Stark problem in the Weier-

strassian formalism. Monthly Notices of the Royal Astronomical Society,

439(1):810–822, March 2014. doi:10.1093/mnras/stt2501.

[20] Francesco Biscani and Dario Izzo. A complete and explicit solution to

the three-dimensional problem of two fixed centres. Monthly Notices

of the Royal Astronomical Society, 455(4):3480–3493, February 2016.

doi:10.1093/mnras/stv2512.

[21] Nino L. Bonavito. Computational procedure for Vinti’s accurate refer-

ence orbit with inclusion of the third zonal harmonic. Technical Report

TN D-3562, National Aeronautics and Space Administration, Washing-

ton, DC, August 1966.

[22] Nino L. Bonavito, Stan Watson, and Harvey Walden. An accuracy and

speed comparison of the Vinti and Brouwer orbit prediction methods.

Technical Report TN D-5203, National Aeronautics and Space Admin-

istration, Washington, DC, May 1969.

241

http://dx.doi.org/10.1093/mnras/stt2501
http://dx.doi.org/10.1093/mnras/stv2512


[23] Raymond V. Borchers. A satellite orbit computation program for Izsak’s

second-order solution of Vinti’s dynamical problem. Technical Report

TN D-1539, National Aeronautics and Space Administration, Washing-

ton, DC, February 1963.

[24] George H. Born and James C. Kirkpatrick. Application of Brouwer’s

artificial-satellite theory to computation of the state transition matrix.

Technical Report TN D-5934, National Aeronautics and Space Admin-

istration, Washington, DC, August 1970.

[25] Roger A. Broucke. Solution of the elliptic rendezvous problem with

the time as independent variable. Journal of Guidance, Control, and

Dynamics, 26(4):615–621, July–August 2003. doi:10.2514/2.5089.

[26] Roger A. Broucke and Paul J. Cefola. On the equinoctial orbit elements.

Celestial Mechanics, 5(3):303–310, May 1972. doi:10.1007/BF01228432.

[27] Dirk Brouwer. Solution of the problem of artificial satellite theory with-

out drag. The Astronomical Journal, 64(9):378–397, November 1959.

doi:10.1086/107958.

[28] Dirk Brouwer and Gerald M. Clemence. Methods of Celestial Mechan-

ics. Academic Press, Inc., New York, NY, January 1 1961. https:

//www.elsevier.com/books/methods-of-celestial-mechanics/

brouwer/978-1-4832-0075-0, accessed May 28, 2017.

[29] Dirk Brouwer and Gen-Ichiro Hori. Theoretical evaluation of atmo-

242

http://dx.doi.org/10.2514/2.5089
http://dx.doi.org/10.1007/BF01228432
http://dx.doi.org/10.1086/107958
https://www.elsevier.com/books/methods-of-celestial-mechanics/brouwer/978-1-4832-0075-0
https://www.elsevier.com/books/methods-of-celestial-mechanics/brouwer/978-1-4832-0075-0
https://www.elsevier.com/books/methods-of-celestial-mechanics/brouwer/978-1-4832-0075-0


spheric drag effects in the motion of an artificial satellite. The Astro-

nomical Journal, 66(5):193–225, June 1961. doi:10.1086/108399.

[30] Ernest William Brown. An Introductory Treatise on the Lunar Theory.

Cambridge University Press, London, 1896.

[31] Thomas E. Carter. State transition matrices for terminal ren-

dezvous studies: Brief survey and new example. Journal of Guid-

ance, Control, and Dynamics, 21(1):148–155, January–February 1998.

doi:10.2514/2.4211.

[32] Paul J. Cefola. Equinoctial orbit elements - Application to artificial

satellite orbits. In AIAA/AAS Astrodynamics Conference, pp. 1–13,

Reston, VA, 1972. American Institute of Aeronautics and Astronautics,

Inc. AIAA Paper 72-937, doi:10.2514/6.1972-937.

[33] Paul J. Cefola, Anne C. Long, and G. Holloway Jr. The long-term pre-

diction of artificial satellite orbits. In Proceedings of the AIAA 12th

Aerospace Sciences Meeting, pp. 1–32, Reston, VA, 1974. American

Institute of Aeronautics and Astronautics, Inc. AIAA Paper 74-170,

doi:10.2514/6.1974-170.

[34] Paul J. Cefola, Chris Sabol, Keric Hill, and Daron Nishimoto. Demon-

stration of the DSST state transition matrix time-update properties us-

ing the linux GTDS program. In Advanced Maui Optical and Space

Surveillance Technologies (AMOS) Conference, Maui, HI, September

2011.

243

http://dx.doi.org/10.1086/108399
http://dx.doi.org/10.2514/2.4211
http://dx.doi.org/10.2514/6.1972-937
http://dx.doi.org/10.2514/6.1974-170
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