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PREFACE 

The set of notes which follows is a revision and extension of lecture notes 

which I prepared during the summer of 1960 at Purdue University, with partial 

support from the Purdue Research Foundation. The present version derives from 

lectures given to a staff seminar at the University of Minnesota during the 

winter quarter 1962. I.t contains a proof which follows the essential outline 

of the original as given by Wald and Wolfowitz (first three sections) and which 

was contained in somewhat cruder form in the original notes. Section 4 is new 

and is an expansion of the proof due to Le Cam that the sequential probability 

ratio test (viewed as a Bayes rule) has the invariance properties which lead to 

its optimality. ( See E. L. Lehman's book "Tes ting Statistical Hypotheses" 

pp. 107-109.) Section 4 may be substituted for section 3 with no loss in 

continuity for the overall proof. The alternative proof of lemma 1.6, p. 23, 

is also taken from the optimality proof as it appears in Lehman's book. 

It was not my original object, nor is it my object in the present notes, 

to find an essentially new or shorter way of proving the optimality of the 

sequential probability ratio test, but rather to make clear in a rigorous way 

the essential mechanisms (somewhat modified in this treatment) of the original 

authors. The introduction of section 4 and the alternative proof of lemma 1.6 

provides the reader with a comparison of techniques. A discussion of the recent 

papers by Burkholder & Wijsman, and by Mathes, both in the Annals of Mathematical 

Statistics Volume 34, March 1963, is not included in these notes since their 

appearance followed the completion of this work. However, with reference to 

techniques employed in the latter paper, the reader who is interested should 

also see lemma 3.4 and theorem 3.1, p. 343 of a paper by the undersigned in the 

Annals of Mathematical Statistics Volum~ 31, June 1960. 

(i) 
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It is apropos here to discuss certain omissions in the original paper with L, 

which others besides myself may have had difficulty. In lemma 1 of the original, 

a Bayes solution to the two-decision problem is exhibitedo Lemma 2 (essentially) ~ 

shows that the rule advanced in lemma 1 is a sequential probability ratio test. 

The proof as it is given rests upon its Bayes property. Now a rigorous proof 

that the rule advanced in lemma 1 is a Bayes solution requires that it be shown 

to terminate with probability one under each hypothesiso The fact that this 

test is a sequential probability ratio test (which may be slur#ll by considerations 

not innnediately involved to have finite expected sample size) may~ be invoked 

to·. prove this, since as presented, that fact rests upon its being a Bayes 

solution. In the notes which follow, this difficulty is circumventedo Moreover, 

the class of rules in which the optimality of the sequential probability ratio 

test holds is shown to be unrestrictedo We remark that the proof which we employ 

to show the existence of and exhibit a Bayes solution (Theorem B, Po 36 of 

these notes) is based upon the corresponding proof of a more general result 

that is sketched in "Bayes Solutions to Sequential Decision Problems", by Wald 

& Wolfowitz, Annals of Mathematical Statistics, Volume 21 (1950) PPo 82-990 

Lemma 2.5 of these notes derives from the same sourceo 

Lemma. 8 of the original paper makes no use of the second limit derived in 

lemma 7o Such an omission requires that a sequential probability ratio test of 

one density against another have positive probability of choosing the first 

density when the second density is trueo This in turn requires that the second 

I ... 

density be less than the first density on a set of positive probability according 1.1 

to the second densityo Nd' assumptions concerning the two densities were ma.de 

in the original paper except that they were distincto In these notes, the 

second limit of lemma 7 (corollary 3o5 in the notes) is employed in the proof 

of lemma 8 (lemma. 3.6 in the uot-es) and the above mentioned restriction is not 

(ii) 
'· i 
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' { required. A proposition, (2.13), p. 31, is proved concerning the error 

probabilities of sequential probability ratio tests which is required for 

the proof of lemma 8, but which does not appear in the original paper. 

The notation here used is considerably changed from that of the original 

paper, although some of the forms in the original are maintained. In particular, 

it should be noted that the terminal decision function of these notes is one 

minus that of the original. New notation as it is ifitroduced is marked by a 

number in square brackets at the extreme left of the page on the line in which 

it occurs. Round brackets containing formula numbers are used in the usual 

way. As an aid in keeping track of notation, an index of notation is given 

on the last page of these notes. 

(iii) 

Morris Skibinsky 
Statistics Department 
University of Minnesota 
June 17, 1963 
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NOTES ON THE OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO TEST 

BY A. WALD AND J. WOLFOWITZ> A. M. s. VOL. 19 (1948) pp. 326-339 

Prepared by MGrris Skibinsky 

1. Introduction 

We are given a sequence of independent random variables 

with a connnon distribution function knawn a priori to be one of two specified 

distributi~n functions. We shall suppose that the probability measures which 

correspond to these distribution functions are both absolutely continuous with 

respect to Lebesgue measure or else that both are absolutely continuous with 

respect to counting measure (aur notati0n will conform to the fgrmer case) 

and denote by 

corresponding probability densitieso In addition, to avoid trivialities, we 

assume that these probability measures assign positive probability to the set 

on which the two densities are positive and unequal. Let 

(X, '3-) 

be the measurable space determined by the space I of infinite sequences 

( we suppQs ~ ,for convenience that this is the range space of X) > and the 

smallest a-field,"]-, of its subsets which contains the cylinder sets with 

bases which are finite dimensional Bgrel sets. (See pp. 59-62, M. Loeve 

"Probability Theory".) 

Let 

denote, respectively, the unique probability measures on (Y.:f-) induced by 
I 

the probability measures that determine £
0

, £1 , and consistent with these 

-1-



[5] 

[6] 

measures in the precise manner indicated in Theorem B, Po 157, Paul Halmos' t 

"Measure Theory" (which proves their existence)o See also PPo 90-94 M Loeve 

"Probability Theory". Let 

denote the expectation operator relative to a probability measure Pon (~1)o 

When there is no possibility of confusion we shall write 

for ~ . 
i 

E. 
l. 

C. 

[7] A (non-randomized) sample size function (sos.£.) is any measureable function 

[8] 

n on :X: to the non-negative integers and 00 such that 

(i) n is the zero function or n is identically positive 

(ii) {x: n(x) ~ j} are cylinder sets whose respective bases are B0rel sets 

in j dim spo and form a partition thereof, j~l,2, •• o • 

xeZ 
Define c

0
(x) = :X: and for j=l,2, eo o and each xe..X:. define 

C . ( X) = { Z E Y : Z l=X 
1

,. o o o , Z • =X .• } 
J J J 

Then observe that for any sample size function n, we have 

n(x} = j ~ n(y} = j, ally € c.(x)o 
J 

[9] A (non-randomized) terminal decisian function (todofo) for a sample size 

[10] 

[ 11] 

function n, is any measureable indicator function~ on Ywhose value at any 
n 

point x of Y depends only on the first n(x) components Of Xo i.e., 

~ (x} = i ~ ~n(y) = i, ally e Cn(x)(x), i=O,l n .. 

A (non-randomized) rule (for deciding between f
0 

and f
1

) is a pair (n, ~n) 

consisting of a sample size function n and a terminal decision function~ for n. 
n 

..., 

Associated with each rule (n, ~) we have the four constants, E.n~ i=O,l and L_, 
n I. -

Q. ( ~ ) = P. {~ =1-i} 
1. n ~1. n 

-2-
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[12] 

Let 

G = (g=(go, 81): 80+81=1, go, 81 ~ 01 

Go= (g e G: g0 , g1 > o} 

o >..o 
/\ = {>..=(~ 0 .): >..O, >..l > O) 

1 

A criterion of the goodness of any rule (n, ~) relative toge G and>.. 6 A is 
n 

Let CR be a class of rules; g e G, >.. E /\ • 

[13] A Bayes rule in Cl/. relative to the pair g, >.. (a Bayes g, >.. rule in (R} is a 

ru.le ( n* • ~*) e (R such that 

[14] 

Let 

inf 
(n, ~ ) E (fl 

n ., 

Remark 
C,9.1 

Clearly, any rule in (a whose average (g, >..) riskAcan attain to this infimum 

will be Bayes g, >.. in (P and if no such rule exists, there is no Bayes {g, >..) 

rule in (fl • 

We will as convenience dictates sometimes denotea rule (np ~) by a single 
n 

letter, says. e.g., 

(:' ( g, >.. I a> ) = inf R ( g , >.. I S ) • 
s € (fl 

There are three main classes of rules with which we shall be concerned 

_j = (rules (n, -~n): Pi (n < co} = l} 

.JO = {{n, ~n) e ,3: n is identically positive} 

_10 == ((n, ~n): n(x) = O} 

-3-



[15) 

[ 16] 

[ 17] 

[ 18] 

[19] 

We shall write 

The easiest of the above infima to evaluate is of course p
0

(g, ~) for ...Jo 
contains precisely two rules s0 and s

1
, say with todofo's identically O and 

identically 1, respectivelyo 

so that 

In addition observe that trivially 

We define the operation o between two vectors 

of non-negative components by 

so that aob is defined so long as aob + Oo Note that always aob e GQ 

We shall take 

Let 

9 i=O,l 

l 

Observe that 
C-) . 

go£ J (x) = gof(x1)of(x2 }ooo•••of(xj) 9 j=0,1 9 2 9 • 0 00 

= (gOfOj(x), glflj(x))/[gOfOj(x) + glflj(x)] 

-4-
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:- and that this is simply the vector of "a pesteriori probabilities" which for 

j=0,1,2,.oo is of ·course always an element of G. 

Let 

th This is the normalized likelihood vectQr at the j- step. Observe that 

(lo3) gof(j) (x) -a gor(x I j), 

[20] 

where the equivilence holds for all g E G, for j=0,1,2, ••• o and far all 

x EX such that beth sides are definedo 

Let 

g E G 

Note -that for each g e G, P is a probability measure on (~ g.). 
g 

Lemma 1.1 

Let g € G, i\ e /\ be arbitrary, fixed. Then for any t.d.£. ~ for a SoSofo 
n 

such that P1 {n < ~} = 1, i=O,l, we have that 

= ~ R(goin), >..!Sep ) 
g n 

= ~ [(gof(n))l i\l ] 
g -<pn -cpn 

. An iunnediate eonsequence of this lennna is the following 

Corollary 1 .11 

Let g e G, i\ e /\ 

we have that 

be arbitrary, fixedo 

-5-

Then for any rule (n 0 ~) e -JJ 
n 



[21] 

Proof of Lemma 1.1 

I~ n(x) s O, the lennna is trivially true. For in this case_, either 

cp (x) = O so that Qi(cp ) = .i or cp (x) = I so that Qi(cp ) = 1-i. n n . n . n 

Now let us suppose that n is a positive SoSofo o 

By hypothesis, Pi (n < 00} = 1, i=O,lo Hence 

00 1 
X = L L {n=j, cp =1-k} + N, 

j=l k=O n 

£ 

i 
~ 

} 

where N is null according to both P0 and P
1

, and hence according te P
8

, fer all g e G. 

Thus 

(n) 
~ [ (go£ )1-1) Al ... ] 

g n n 
= 

...; 

-.ii 

lillfl 

LC!t T j denGte for each positive integer j the projectioa ·map Gil Z tlefinei 1,y ..; 

Tj(x) = (x1,x2,ooo,xj) = .!j~ say. 

Then, by definition of Pi on (Y,g.), the fact that (gof(j))k depends only upon 

the first j coordinates of its argument, and that (n=j, cp =1-k} n 

subset of X° whose base is a j dimensional Borel set 

J (gof(j)) dP 
k g 

(n=j, cp =1-k} n 

= 

is a cylinder 

where the integrand on the right hand side is to be regarded as a function on 

j-dimensional Euclidean space, rather than on.X, andµ. is j dimensional Lebesgue 
J 

(or counting} measure. But then, by [16] and [19], this right hand side may 

be written 

= ~ J dPk 
(n=j s, cp el-k) 

n 

-6-
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•. Hence 

= 

1 
= i!o &tc A.k Qk(cpn) 0 

Corollary 1 .12 

Let cpn be an arbitrary t.d-_,f;. for any s.-s •. f. n such that Pi{~< oo)~ i=O,lo 

Let~ denote the class of all rules which have the particular·s.sof. n. Then 
n 

for arbitrary g E G, A. e /\., the following statements are equivalent outside of 

a Pg null set. 

(n,cp*) is a Bayes g, A. rule in 19- o n· n 
· (i) 

(ii) 
{ ) . ( ) 

(gof n )1-<p* A.1-cp* m Po(gof n, A-) 
. n n 

(iii) cp*(x) = n { 1, ~ "'o fon(xi(x) < gl Al fln(x)(x) 

o, .> 

(iv) cp*(x) e: n 

1, r 1 (x)n(x)) > 
So A-0 

{ go A.o + gl >.-1 • o, < 

• 

For each g e G, ~ E /\ and each sos_.f. n such that Pi {n < oo} = _ l, i=O,l, 

we define 

= 

By the two preceding corollaries, we then have 

Corollary 1.13 

Let (n, cp ) be an arbitrary rule in .J, and let; q>* denote any t.·d.f. for n 
n n 

which satisfies either (iii) or -{iv) of corollary 1,.12,. then for arbitrary 

g E G, >.. e /\, we have that 



[23] 

[24] 

Corollary lol4 

For each g e G, >,.. el\ 

_1) ( g, >,..) = inf R ( g, >,.. In) , 
n 

p*(g, >,..) = inf R(g, >,..In) , 
n>O 

where inf is taken to denote the infimum over all s.sofo's such that 
n 

i=O,l, and inf, to denote the infimum over all positive 
n>O 

We shall adopt the following notationo For each v e: Z. , we shall take 

x.v 
-J 

{ (x1 ,x2 , ••• ,xj,v1 ,v2 •••• ) , 

V 

j=l,2~0000 

j=O 

For each g e G., >,.. € I\ , each non-negative integer j, and each s Qs of., n such 

that P.{n < ~) = 1, i=0,1, we define the function R.(g, >,..In, 0
) at each point 

1 J 

in X: outside of a P_g f!~q .s~_t b,1 

= 
n(x. 0 ) 

p
0

(gof -J (x. 
-J •), >-)] G 

We shall assume some arbitrary but fixed constant as the definition for this 

function on the P null set for which the right hand side above is undefined 0 g 

Observe that 

(lo4) K(g, >-..Jn) o 

When j is a positive integer we have 

-8-
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' t' Lemma 1.2 

For each g E G, i\ el\ , for each positive integer j, and for each s.s.fo n 

such that P1{n < ~} = 1, i=O,l, the function Rj(g,i\ln, •) is a version of the 

conditional probability 

Proof 

R.(g, i\ln, •) is clearly measureable with respect to the sub-a-field 
J 

of I] given by 

{ -1 !j [A]: A is a j-dimensional Borel set) = {AxZ : A is a j-dimensic;mal Borel set) o 

Thus, we need enly shgw that if A is an arbitrarily given j-dimensienal Borel 

set, then 

(1.5) 

(1.7) 

J R/g• >..f n, • )dP g 
AXX: 

Observe first that by the definition of s.s.f. [7], 

Hence 

J 
AX,X./l (n ~ j} 

R.{g, i\ln, 0 )dP = 
J g 

j [n + p
0
(go/n), A) ]dP g 

AXJ:fl(n ~ j} 

On the other hand, by the definitiOR ef ·lion cr,'1-), the fact that Rj(g, i\ln, x} 

depends only on the first j coordinates c;,f x, aud that AX :X: () (n > j) is a 

-9-



cylinder subset of X whose base is a j-dimensignal Borel set, we have that 

(1.8) J R/g, Aln, 0 )dP g = 

A xY () (n > j} 

where the integrand 9n the right hand side is to be regarded as a function on 

j-dimensional Euclidean space, rather than amX, and µ. is, again, j-dimensional 
J --

Lebesgue (or counting) measureo 

Now 

i (go/j) (x)~)k Pk c: . -~ gkfk. (x} Pk/ ~ gif .. (x) 
k=O 16:0 J i:a:O 1.J . 

Thus, by [24) 

1 
Rj(g, ~In, x) _E g1£1j(x) 

J.::;0 

= 

Now observe that to each x E X such that n(x) > j, there corresponds a 

partition of I, namely 

.Y = 
00 

E 
ms:j+l 

( v e X a n{x. v) == m) + N 
-J X 

where Nx is null according to both PO and P
1

• Hence, for each x E Y such that _, 

n(x) > j, the right hand side of (lo9) may be written 

-10-
I 
I J 
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By arguments strictly analogous to those used for (1.8), the integrals in the 

. above expression may be respectively replaced by 

[m + p (gof(m)(x. •) i\)]f clµ 
0 -J ' k,m-j m-j 

m}] 

where the integrand is to be regarded as a function on m-j dimensional Euclidean 

space rather than on.X:. Thus, the right hand side of (1.8) may be written 

; J [m + p
0

(gof (m), A.)] 

m::j+l AX X j fl T [n=-m] 
m- m 

1 
I: gkfk dµ 

k=O m m 

where the integrand for index mis to be regarded as a function on in-dimensional 

Euclidean space, and X . is taken to denote m-j dimensional Euclidean space. 
m-J 

It now follows by a reversal in application gf the arguments used for (1.8} 

that the right hand side of (108) may be written 

and this in turn is just 

J [n + p
0

(gof(n), A.) ]dP g • 

A xz () (n > j} 

~ Together with (1.7) this now implies the desired result, (lo5)o 

Remark 

As an extension to (106) in the above proof, we observe that by the 

definition of s.s.f. [7] and by (24], 

-11-



(1.10) 

[25] 

[26] 

For each non-negative integer j and for each x e,Z, we define the 

class of s.sof.'s 

~(x) = {n: n(x) > j, P1{n < ~} = 1, i=O,l} , 

and for each g E Ch 'l\. EA , take 

v.(x)g, 'l\.) 
J 

It is intuitively evident that the sign of this quantity indicates the existence 

or non-existence of a s.s.f. relative to which it is "worth while" with respect 

to the particular pair g, A. to continue observing components of X past Xj, when 

the realization of Xk has been~ for k=l,o •• ,jo 

Observe that by [18], [19] 

so that by (1.4) and corollary 1.14, we have for each g e G. 'l\. e/\ , that 

(1.11) 

[27] 

Lemma 1.3 

Let g E G, A. E /\ 

and x only through 

be arbitrary, fixed. Then v.(x)g, A.) depends upon j 
J 

r(x)j) = 
( £0/x), fl/x)) 

f 0j(x) + £1j(x) • 

i.e. To each he G such that g 0 h:f=o and such that the set 

-12-
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-
(1.!2) {(k, y): r(yfk) = h} 

t 
is non-empty, there corresponds a number, call it 

[28] r(hlg, A.), 

such that 

V .(xlg, A-) = r(hlg, A.) 
J 

for each pair (j, x) in the set (1.12). 

Proof 

Let ( j, x), (k,~ y} be two arbitrarily given pairs such that 

(1.13) 

To prove the lemil\a, it will be sufficient to show that 

(1.14) 

Suppose that 

(1.15) 

By [26] and the definition of supremum, there exists a s.s.£., n', say, in 

.J. (x) with the property that 
J 

for otherwise, (1.15) could not hold. 

Below, we shall produce a s 0 s.fo 

with the property that 

-13-



But this, in view of (lo16) will contradict the definition of vk(yfg, A) 

and hence imply that 

Considerations of symmetry then show that the opposite inequality must also 

hold so that (1.14) will hold and the lemma be proved. 

We make the following remarks which are essentially notational and easily 

verified. We have for any given non-negative integers sand t and arbitrary 

{lo18) 

(1.19) 

Hence by (1.13) 

r{z vfs+t) -s 

= gor{zfs) 

r(zjs} o r(vJ t) • 

gof(j) (x) = goik) (y) = goh • 

It follows that to· satisfy (lo17) we need only find a s.s.f. n" e J k(y) such that 

R. ( g, A J n", y) - k = R. ( g, A In' , x) - j • -1c . J 

Let us choose n" to be any s .s .f o whose definition on Ck {y) is given by 

(1.20) n" ( y-1_ v) = n ' (x . v) + k - j , 
~ -J • 

But then since n' e -i/x), it follows that n" E .Jk(y}o In addition~ by' (1.18)._ 

! I 

(lo19), (1.20), we have for all v eZ., ~ 

so that 

n"{y v) n '{x v) 
gof -k (Iic v) = gof -j (,!j v) 

n '(x. o) 
= ¾, [n'(~j •) - j + p0 (gof -J (~j •), A)] 

goh 

This completes the proof. 

-14-
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Let H denote the set of_ all points h E G such that 

{(k, y)t r(ylk) = h} + , 
By [28] (with the possible exceptio~when g f G) of a point h such that g•h=O), 

H is for each g e G • )I. • I\ , the domain of definition for r( • Jg• ;...) " Observe 
I • . . . 

that since r(x Io> = u~; .\h ie fo'tto~s ehtiic 

(1.21; 

,;8-nd hence by (1~11)~ for each g e G• A e /\, 

(lo22) 

LeIIDDa 1.4 

Let g e G, A. E /\ be arbitrary, fixedo Then for all h e H such that 

g•b.:f=O, we have that 

Proof 

We note at the outset that the right hand side above is defined for all 

h e G such that g•h:f=O and hence that it is defined for all h such::that the left 

hand side is defined, namely all he H such that goh+o. 

Leth be an arbitrary, fixed point in H such that g•h+o. By [29], there 

exists a pair (j, x) such that 

and by the previous lemma 

In addition 

-15-



and 

n(x.v) 
go£ -J (x.v) 

-J 

Hence by [26] and then [24] 

n(x.v)-j 
= gohof -J (v), all n e ~.(x) • 

J 

( 1.23) r(hlg, ~) = Po(goh, ~) - inf [Rj(g, ~In, x) - j] 
n e ..J.(x) 

J 

> 

{ 
(. 

..; 

n(x. • )-j 
= p

0
(goh, ~) - inf 8p [n(x. •)-j+p0(gohof -J ,~)] • 

n e ...J.(x) goh -J 
J 

Now let M denote the mapping 

M: 

defined by 

where 

(1.24) 

~.(x) ~ {n: n > O, P.{n < ~} = 1, i=0,1} 
J 1. 

M(n} = n( • In), 

n(vln) = 

n e ..J.(x) 
J 

n(x.v) - j, 
-J 

VEX' o 

Mis an onto mapo i.eo 

(1.25) {n( ·In): n e _ _Jj(x)} = (n: n > o, Pi{n < oo} = 1, i=O,l} • 

By (1.24), the second term on the right hand side of (L23) may be written 

inf Ep [n( • In) + Po(gohofn(. In), ~)] 
n € ..<f. { x) go h 

J 

By (1.25), [22] and corollary 1.14, this is just p*(goh, ~). But by (1.22), 

this proves the lemma. 

-16-
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[30] 

, A 
As a notational convenience we now define the function r on G X A by 

r( g, A) = Po ( g, A) - P*( g ~ A) , g E G, A E A • 

We may use this to summarize the results of lemmas 1 o3 an.d 1 o4 as follows. For 

each g E G, A E I\ , for each non-negative integer j, and for each x E I. , we 

have that 

(1.26) 

For convenient reference in the proofs which follow, observe that we 

may write 

(1~27) = , 

and hence for any rule (n, ~),we have by [12] that for each}.. E /\, n 

Lemma 1.5 

Let ~ E /\ be arbitrary, fixed. If 

(lo29) {g E G: r(g, A)> 0) 

is non~empty, then it is an intervaVsubset of GO which contains the point 

(1.30) 

'· If it is not the degenerate interval consisting of this point alone,, it is a 

-17-



non-degenerate intetv.alo r(• , A) is monotonic on the interval to each side 

of this point and is maximum there. 

Proof 

It is first of all easily verified that 

(1.31) r((0,1), A) = r((l,O), A) = -1, 

from which it follows that (1.29} is of necessity a subset of Go. Conceivably, 

(1.29) might consist of the single point (lo30)o In this case, the lemma would 

be trivially true. Now suppose that (lo29) does not consist of the single 

point (1.30). Since by hypothesis (l.~9) is non-empty there exists a point 

g* = 

and such that 

(1.32) y-(g*, A) > O. 

Now either 

(1.33) or 

Suppose the first of these inequalities to hold. Wje will prove below that if 

0 g is any point in G such that 

(1.34) 

then 

r< g , A ) ~ r< g*, A ) • 

Supposing the second inequality of (1.33) to hold, a strictly analogous 

argument (not repeated) leads to the result that 

-18-
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.... _.' 

~-

.... I ,. 
But in .view of f1p32), the abcwe reaulta preve the lemma,. 

Thus, suppose the fint ineqaal4y ef (1.33) ~ llold. I.et 

0 _< E < T( g*, ~) 

By [30]. and corollary 1.14, we have tut 
. . 

r(g*, ~) ~ · sup (19
0
(&*, >..) - R(I*. ~f.a_}-] , 

n>I 

where sup is ·taken to dfanc,te the supremum ever all positive sos of~ 's such 
n>O 

-. that_. Pi {n < oo} -= l~· ~,lo Hence there exists a positive .•o••f P it·', say, 

such that 
._,._. 

'-' ... 
.· ... 

-

0 < y-(g*, A)-E < p
0

(g*, A) - ·R(g*, >-.j.n') .• 

By corQllary 1.13 ani (1.28) and our assumption that 'the fir_at ine11ualit7· of· 

(~o33)' liolds,. th~ right hand side ef the above iµef{uality may be written 

Where <1>!1 'l is QJ t.cl.f. fer D. I lfhia.11 Uti.ati ... (iii) •r (iv} Of CKOllary 
n ,8~ 

1.12 o By ( 1. 35-) , th• above expt'eBS ion is pea itivao But. 

•1111 ~ .. -~ Al Ql ''=' ,C*.l-) < 0 , 

. . 0 . 
_, · alnce n' 1a a poaitive a .,a .f. Moreever g* · c c· o It follows that · 

-~ 

-~·.·:_J,: 
: ~-? .... --.:...· ... 

.. 

. -E0n' + ~(L-Q0(,:, ,l*J\.)l > o o 

It now becomes clear tihat if g · is any point el. r:.° whieh aa&::l.af~es (lo)lt.), we 

must have that 

-l9-· 
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by 

Since c > O may be m:bit.rar11y emall 9 the desired reaul~ fallam4' 

Lee ~ « /\ he cln~rary 9 f:lzed-o 1.'hen T( 0 , ).) is conl::lnvous on G (a.me 

sidedly at the emdpolnta of G) o 

Preof 

Per :L::091. let slf. ·denote the rule (u~ q,
11

) defiaed. by 

·n(z) -~.. fP. (xl.=· ~ all; a e-X .., 
11 

!baa for all g es. 

R.(g.f) "-1811) = l+gl-~l-i ~ 

SC that for all g C·C. 

(1~36) 

n dnsm fcllcaB that:: 

all g E Go 

Sf.nee p0(g 9 i\) l:enda t:c zero as g t-ends to either endpoint of G• we have by 

the above inequality and "(1~31) .that r( • ~ A) is one sidedly ceri.tinucus at ·tlaa 

end.points of Gp 

5c,w recall again that by defiuitiml. [30] and camllar.y. lol.48 

(l.,38) 

-
! 

'-' 
~ .., 

\ 
I 

I 

\al 

i ' 

I I 

f I 



where sup denotes suprennun over all positive s.s.£.'s such that P1{n < ~) = 1, 
n >·o 

i=O,l. In addition, we observe for later reference, using (1.28) and corollary 

1.13, that if n is any given s.s.f. in the above class and if g', g" are any 

two points in G such that either 

(1.39) 

then the following inequality holds. 

(1.40) 

or g ' g" 
1' 1 

0 Let g* be an arbitrary, fixed point in G such that 

We will show that r(•, A) is continuous at g*. It will then remain only to show 

that r(•, A) is continuous at (A1 , A0)/(A0+A1), for the lenma to be proved. 

Let Ebe an arbitrarily given positive number. To show that r(•, A) is 

continuous at g*, we need only show that there exists a number 8 > O, with the 
E 

property that if g', g" are arbitrary points in the neighborhood 

(1.41) 

then 

( 1.42) lrCs', ~) - r(g", A) 1 < e. 

0 By corollary 1.14, we have that corresponding to each g E G, there exists 

a positive s.s.f. n, say, such that 
g 

( 1.43) R(g, Aln) < p*(g, A)+ e/2, 
g 

i.e., by [30], such that 

(1.44) 

-21-

0 all g E G , 



By [12] and corollary lol3 

and by (1036) 

so that by (1.43) 

Hence 

0 g E G , 

0 
g E G , 

0 g E G • 

0 
g e G • 

0 If we now restrict our consideration to just. those points g e G, for which 

we then have for all such g, that 

= K , say. 
E 

Let 

., 

Note that with this definition of 8., the neighborhood N(g*) given by (1.41) 
E 

0 is an interval subset of G which does~ contain the point (A1, A0)/().0+x1). 

In addition, each of its points satisfies (la45) and hence (1.46). Finally, if 

g', g" are arbitrary points in N(g*) 

(L47) ~ 28 ~ e/2K • 
E E 

Since (1.39) must hold for g', g", we have by (1.40), taking n=n , , that 
g 

C. 

Po(g', A)-R(g', Alng,)-[po(g", >.)-R(g", >.Ing,)] ~ (>.o+).1+Eong,+Elng,)lgi-gil 0 

-22-
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Byi(l.46) and (1.47), the right hand side of the above inequality is< e/2. 

Hence 

By (1.44) and (1.38), we then have that 

r(g',}...) < r(g",}...)+e. 

But g', g" were arbitrarily chosen from N(g*). Hence the above inequality with 

g' and g" interchanged must also hold. But then the two inequalities taken 

together yield (1.42) which is the desired result. 

Continuity at (}...1 , }...0 )/(}...
0

+}...
1

) may be proved by showing one sided continuity 

for each side separately using devices strictly analogous to those used above. 

This completes the proof. 

An alternative proof of lennna 1.6 is to be found in E. L. Lehman's book, 

"Testing Statistical Hypotheses", page 105, as part of a proof for the Optimality 

Theorem which is given there. This proof makes use of the proposition that 

a function defined, concave, and bounded below on an open interval is continuous 

there. A more general statement and proof of the above proposition, put in 

terms of convex functions bounded above, is to be found in Hardy, Littlewood, 

and Polya's book, "Inequalities", proposition III, section 3.18, page 91. 

Lemma 1.6 (alternative proof). 

Let}... e A be arbitrary, fixed. Then r(•, A) is continuous on G (one 

sidedly at the endpoints of G). 

Proof 

Proof of one sided continuity at the endpoints of G is trivial._ (See 

previous proof.) 
0 We show that p*(•, }...) is continuous on G • Since p0( •, A) 

is continuous there, this will suffice for the result. Clearly, by corollary 

1.14 and [22] 

-23-



(1.48) P* ( g , :>,..) i@!; 0 , 0 all g e G • 

0 To show that p*( •, :>,..) is concave on G , let h, g', g" be arbitrary, fixed 

points in GO and write 

for any fixed g. We need only show that 

(1.49) 

[31] 

The left hand side of this inequality is by [15] and the definitions on the 

bottom of page 3 

By [12] and (1.48), this may be written 

But this infimim is bounded below by the right hand side of (1.49). In view 

of the proposition to which reference has already been made, this proves the 

lemma. 

Let 

b: /\~ G, a: A ~ G 

denote mappings defined as follows. Take 

bl(:>,..) = sup{gl: 0 ~ gl ~ :>,..0/(:>,..0+:>,..1), y(g~ :>,..) ~ O} 

a1(:>-..) = inf{g1: :>,..0 /(:>-..0+:>,..1) ~ gl ~ 1, y(g, :>,..) ~ O} 

-24-
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-,; Concerning these mappings, we are now in a position to state the following 

theorem. 

Theorem A 

Let A e /\ be arbitrarily given. Then 

(1.50) 

{ 
y(g, A) ~ O, all g E G 

> 0 ~ 

Proof 

The proof follows immediately from the lemmas which·precede. 

0 For each g € G and each >,. E /\ ·r let 

[32] A(g, A) 

Corollary Al 

The following three statements are equivalent 

(i) r(gof(j)(x), >,.) > o. 

If we take j=O in the above porollary, we get 

-25-



Corollary A2 

The following three statements are equivalento 

(i) r(g, A)> O. 

(iii) B(g, A)< 1 < A(g, A). 

Corollary A3 

Proof 

This follows from (1.51) and (1.37). Otherwise, we may observe that 

g e G, A E /\ • 

The desired result now follows from (1.37)0 

2:· •. __ ·Bayes g, A Rules 

We define below a family of s.s.f.'s 

[33] 

indexed by points in G xA • First, we define 

(2.1) n*(xlg, A) = 0, whenever y(g, A) ~ O. 

For g, A such that 

(2.2) y(g, A)> O, 

we take 

-26-
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... 

(2.3) n*(xlg, ~) 

Observe that for arbi~~ary $, ~ w~ifh s~tisfy (2.2), the complement of the set 

on which the abpve de~J~itlon has meantng 11 a ~ubset of 

(2.4) {x el; : £0/x)+fi/x) = o, for so~ positive integer j} , 

which is null u~d,~ ~9~h PO Jn~ P1• W~ ~~al~ a~su~ some arbitrary definition 

of n*(·lg, ~) o~ thip ~~mpl~me~t c9~•iat~n~ vith the fact that it must be a 

s.s.f •• We ~,mark tha~ ea~h mell\l>~~ of ~qe abpye family does in fact satisfy 

(2.5) all g E G. 

In addition, we nqte fof la~er refe~,noe the (apt that 

(2.6) n*(xlg, >,.) < 00 ==;> r(gafq.*(xlg, ~)' >-.) ~ o. 

Now define 

[34] 

to be for each g e G, ~ e A 1 a ~.d.t. for n*(•lg, >-.) which satisfies 
80>-.o 

1, rl(~ln*(xlg, >-.)) > g >-. +g >-. 
q>*(~lg, >,,) = { 0 0 1 1 

o, < 

By (2.1), [27]~ 4n~-[\8], w~ then hay~ th~t 

{ q>*(xl~, >,,) := 1, 

q>*(xls~ A,)~ b, 

..,27~ 

>-.0 
g > -----1 A0+>-.1 

< 



[ 35] 

[36] 

To complete the definition for those g, >,.. such that n*(xlg, >,..) e O, we define ' 

(as a matter of later convenience) 

(>,..1, >,..o) _ 
m4(xl---- '\.) 0 whenever ~-- A, +>,.. , f\o = , 

0 1 

For g, >,.. which satisfy (2o2), the formula (2o7) leaves <p*(xlg, >,..) undefined 

for somei .x in the set (2 o4) and for all x such that n*(x I g, >,..) = 00 o We shall 

assume some arbitrary definition of <p*(xlg, >,..) for these x's consistent. with 

the fact that <p*( 0lg, >,..) must be a tod~f. for n*( 0 lg, >,..) and·will show later 

that the set of all such x's is null ·under both P
0 

and P1 for ·each pair g, A 

which satisfies (2.2). 

We show now that 

and hence that (2o7) defines <p*( 0lg, >,..) uniquely on the complement of the above 

mentioned set, for each pair g, >,.. which satisfies (2o2)o But the left hand 

side of (2.9) implies, by (1.51), (206), an4 corollary Al that 

and some slight manipulation shows this to be equivalent to the inequa~ity on 

the right hand side of (2o9)o 

Finally, we take as a short hand notation 

The family of Sequential Probability Ratio Tests. 

We define below a family of sos.f.'s 

-28-
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[37] 

indexed by t~e set o~ all number pairs (u, v) which satisfy the inequality 

0 < u < v. 

For j=l,2, •••• ~ take 

µ(xlu, v) = j , 

whenever 

u < £1k{x)/f0k(x) < v, k=l,2, ••• ,j-1, 

( treat this con4i~ion as va:uo,us for j=l), and either 

or 

£
0
/~) > O and the inequality u < f 1/x)/f0/x) < v is:.violated. 

Take 

i(xlu, v) = ~, 

whenever 

u < f 1k(x)/f0k(x) < v, k=l,2, ••••• 

We remark that each member of the family [36] is now uniquely defined on .X.. and 

satisfies the definition [7]. 

Now define 

for O < u < v, by taking 

whenever 

~(xlu, v) = 0, 

£1ic~1~, v)(x)/f~(xlu, v)(x) ~- u, 

-29-



[38] 

[39] 

and otherwise, take 

$(xlu, v) = 1 

It is easy to verify, according to [9], that $( 0 lu, v) is a tod.f. for rt(·lu, v). 

Now take 

A 

s ( U, V) = {rt( • I u' V), $( e I u' V)) 0 

These rules will be called sequential probability ratio tests. 

For notational convenience in use below, we take 

Lemma 2.1 

For each number pair u, v such that O < u < v, we have that 

Pi{x: rt(xlu, v) < oo} = 1, i=O, 1 o 

In fact, the stronger result holds that 

i=O,l 

Remarks on proof 

Proof of the above lemma rests upon the assumption that the densities 

f
0 

and f
1 

are positive and unequal on a set of positive probability under both 

hypotheses, and on the assumption that x
1

,x
2

,.ooQ are independent. A readable 

proof is given in "A Note on Cumulative Sums" by Charles Stein, Ao Mo So 

volume 17 (1946) PPo 498-4990 

Lemma 2.2 

0 Let g e G , A e A be arbitrary, fixed such that 

y(g, A) > 0 • 

Then outside of a subset of .X which is null according to both P
0 

and P
1 

we 

-30-
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,-
-. have that 

" S*(g, A) = ·S(B(g, A), A(g, A)) , 

where B(g, A), A(g, A) are defined by [32] and 

(2.10) 0 < B(g, A)< 1 < A(g, A). 

Proof 

By corollary Al, (2.3) and [36] 

n*(xfg, A) = n(xlB(g, A)) 

for all x outside a set which is null according to both P
0 

and P
1

• Thus, 

by lemma 2.1, 

Pi(x: n*(xlg, A)< oo} = 1, i=O,l. 

But this means that the right hand side of (2.6) must hold for all x outside of 

a set which is null under both P
0 

and P
1

• Hence by corollary Al, (2.7), [37], 

~*(xlg, A) = ~(xlB(g, A), A(g, A)) 

for all x outside such a set. The inequality (2.10) follows from CQrollary A2. 

Lemma 2.3 

Let u, v be an arbitrarily given pair of numbers such that 

Then 

(2.11) 

(2.12) 

(2.13) 

O<u<l<v. 

Ql ( u, V) ~ U. 

0 < ul < u ==;> Ql ( ul, v) ~ Ql ( u, v) , v l ~ v ~ ~o ( u, v l) ~ ~o ( u, v). 

" ( ' ') ' 1 < ' Ql U , V = 0, 0 < U < . V 

Q1 (u, v) = 0 ~ { ,.. 
Qo(u', v) = Qo(u, v) > o, 0 < u' < 1. 
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QQ ( U' , V' ) = 0, 0 < U' < 1 < V' 

= 0 =a> { 
Q1(u, v') = Q1(u, v) > O, v' > 1 

Proof 

The proofs for (2all), (2o12) are standard and straightforward and will 

not be given hereo We shall prove (2013). The proof of (2ol4) is strictly 

analogouso 

We first show that 

= o. 

For suppose that the right hand side equality holdso Then 

But for arbitrary u', v' such th~t O < u' < 1 < v' and for each positive integer 

, 

• 

I ·. 

~ 

I 

~ 

j, we have that ~ 

P
1

{x: 'n(xlu', v') = j, cp(xlu', v') = O} 

and hence that 

00 

~ P
1

{x: 'n(xlu', v') = j, cp(xlu', v') = O} 
j=l 

= Oo 

On the other hand, suppose that the right hand side equality in (2ol5) 

does not hold, ioe., that 

-32-
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-

... 

• 
Now 

where we interpret 

1 
0 u = o. 

Since the P1 probability of this disjoint union is positive, P1 must a,Qtgn 

positive probability to at least one set in the union. Th$t is, tn~fe ~ust 

exist a positive integer Nanda positive number 8 such that 

But then, because the sequence x1 ,x
2

, •••• was taken to be in4epen4ent, 

k=l,2, ••• ,N) = 8N 

But 

k=l,2, ••• ,N ~ k=l ,2,, •• ,N , 

k=l,2, ••• ,N-1, and 

Hence 

This proves (2.15) and with it the first half of our result. 

Next observe that 
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The proof of this is analogous to that of (2.15). Thus by (2.15), (2.16), 

(2.18), (2.19) and by (2.17), the proof is complete. 

We shall have occasion· .(lemma 3.5) to U$e the fol~owing pall't.icuia.ri~at:ion 

of a more general inequality. 

Lemma 2.4 

Let u, v be an arbitrarily given pair of numbers such that O <·~ < 1 ~ v. 

Then 

(l-Q0(u, v)) log U + Q0(u, v)(~og V + n) 

Ea log(fll/£01) ' . ' 

where~ is a non-negative constant which is independ~nt of u a,nd v. 

Remarks on proof 

_, The above inequality is a special case of A:78, page 172 of A. Wald's 

"Sequential Analysis". ~ (denoted ~e in that text) :f_s a •pecial qase of A:73. 

- 0 

-
-

The proof of the inequality is given in the above refe»enc~ and will not b~ 

repeated here. 

We remark that 

(2.20) 

This follows, since clearly, 

and because the expected value of a non-negative random va~iable (which i~ not 

constant with probability 1) is less than the log of its expected value. 

£11/£01 can obviously not be equal to a const~nt larger tha~ l wtt~ P0 

probability 1. In addition it cannot be equal to O or to 1 with P0 prob~btlity 

1 since we have assumed that our two densiti~s are positive··:and un,qual on a 



set of positive probability under both hypotheses. Finally f 11/f01 may 

conceivably be equal, with P
0 

probability 1, to a positive constant less than 

1, but·in this case (2.20) holds·trivially. 

For use in the proof of theorem B given below, we remark now that by 

(2.3), (1.26), and [26], when 

r(g, A.)> o 

we have for any positive integer j that 

n*( x I g, A.) ·= · j ~ , 

Theorem B 

Let g e G, A. el\ be a~bitrary, fixedo Then S*(g, A.) is a Bayes g, A. 

rule in 

_J = { ( n, cp ) : P. {n < co} = 1, i=O, 1} n l. 

and hence it is a Bayes g, A. rule in the class of all rules. 

Proof ·' 

Observe first that by lennnas 2.2 and 2.1, 

(2.22) S*(g, A-) E ._J. 

Hence by (2.7), corollary 1~12 and 1.13, 

Thus, to show that S*(g, A.) is a Bayes ru~e in ..J, we must by corollary 1.14, 

-36-

~ 

~ 

• I 

-' 

' i 



i 

·--1 

-
-
-

~ 

show that 

· R(g, "-fn*(g, Al)= ,n{g, >.)o 

Suppose that 

But then also by (2ol), 

n*(xf g, A) _ 0 

se that by [22) 

IC follow~. fr~m tl,;e ~\>PV~ ~r~~~t ~h.~~ the ~li~9~~iA j.~ e;taf4fsheij f~r all 

g, ~ such that °t(g, A)~ Oo 

Now suppose that 

ioeo, that 'r(g, ~) > Oo Then by (lu2) 

'"" By {2o22), 

p(g, A)= P*(g, A) 

P {xi n*(xfg, >-) = •) = Oo g 

Thus, using 

n* = n*( of g, ~) 

.. ' .. 

as a notational convenience which we shall continue for the remainder of this 

proof, we may write 

-37• 
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. ~ . 

. . ~ 

• I• I • • • -!, '• 

!He shall now suppe;,se·- that. S*(g, .X.} is ~-: a ... Bayea g., '). rule.· ill: . ..J ~ aha 
... :durt_-··this ·1eada· ta a centraaictt~·o If .S*(~. X) ~ -~t a· B9es_ g. A. nil:a·.in .J.> · . . . . . .. . . 

there ·mu.s 1: in vi.aw ef {2 o.23)., exist a ·-p.Gs:itiv.e S 0 S 0 £ 0 n
1

,. S~y, in. _J , .s.uch. ·that 

By lemma lo2, 11& have 

R:( g,~ J..ln1) = 8p Rl ( g. ). l nl' • ) i!< I Rl (-s. "'rt,.. •)dP g. 

& [n.*=l} 

Now 

{n*=l} = (s*=l, n1=ll + · (u:*=1, ~ > 1} o 

But by [24], 

In addition, it is cl~r that 

Hence 

By (2o25), (2o26), (2.27), (2o28), it follows that 

J [l+~o(g,.t<
1
), A)]dPg ~ R(g, Aini) < B.(g; Aj:n*) 

{n*=l) · 
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• Let 

and write 

(2.30) 

By (2.21) 

K = {x: n*(x) > 1, n1(x) = 1) 

R(g, Ain1) = ( J + J ) R1 (g, Alii1 , • )clP
8

, 

K · X..-K 

But then by (2 .27) ,' 

(2.31) 

(2.31) implies that there exists a s.s.f. n2 , say, ,up~ th~t· 

n
2 

e (I ~
1

(x) 
XE K . 

and such that 

and which in addition may be arbitrarily defi~ed (co~is~ent wi~h its be~ng 

a s • s • f. ) on X -K. In particular we shall takJ 

all x ~ X ..-K, 

• so that we have 

(2.33) 

Thus by (2.29), (2.30), (2,31), (2.32), (2.33), and lemma 1.2, 
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To obtain a lower bound for R(g, Aln2 ) analogous to that obtained for 

R(g, Aln1) in (2.29), we proceed as follows. By lennna lo2 

Now we may interpret (n*=l) as a ~ylinder subset of J[ having either a one

dimensional Borel set as base or a two-dimensional Borel set as base. Hence 

by lemma 1. 2, 

Now (n*=l) C X-K and hence by (2.33), (2.28), (2.27) 

n*(x) = 1 ~ R1 (g, Aln
2

, x) ~ l+p
0

(gof(l)(x), A) o 

In addition, since 

all x e X, 

we may write 

{n*=2} = {n*=2, n2=2} + (n*=2, n2 > 2}. 

By [24] 

(2.37) 

Also by (2 .21), 

n*(x) = 2 ~ inf R2(g, Aln, x) ~ 2+p0(gof(2)(x), A), 
n e ,..JJ

2
(x) 

so that 

-4o-
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-

-

Thus , by ( 2. 34) , ( 2 • 35) , ( 2 • 36) , ( 2 • 37) , and ( 2. 38) , we have · 

We may now, proceeding in the same mann~r, establish by induction the 

existence of a s~quence n1 ,n2 ,n
3

, •• ~. of s.s.£.'s (the first two members as 

given above) such that for each positive integer~ 

But then, taking th~ limit of the sum at the left as j ~ m we a~rive, 

by (2.24) at a contradiction. 

Lemma 2.5 

Proof 

p*(g, ~) _ 1 + ¾, p(gof(l), A), 
g 

g E G, 1-. EA. 

Consider first, for each x E :X: , th~ mapping 

defined by 

M : {n: n > O} ~ {n: n ~ 0) 
X 

M (n) = n(•ln, x), n > 0, X ~,X, 
X 

where (see definition (23]) 

(2.39) n(vln, x) = n(xlv) - 1, all v eX, 

and observe that for each x E .X. , M is an onto map. 1. e. , 
- X -

(2.40) {n(•ln, x): n > 0) = {n: n ~ 0), for each XE%. 

~41-



Let g e G, A e (\ be arbitrary, fixed. By definition [24] and (2.39),.we have' ~ 

for each x eY and each positive s.s.f. n such that Pi{n < 00} = 1, i=0,1, that 

(2.41) R
1

(g, Ajn, x) = 1 + R(gof(l)(x), Ajn(•jn, x)) 

By (2o40), this means that 

(2.42) inf R
1 

(g, A In, x) = 1 + p(go/ l) (x), A), 
n>O 

all x eX, 

where inf is taken to denote infimum overall positive s .s .,f. 's n such that 
n>O 

Pi{n < 00} = 1, i=0,1. It then follows that 

( 1) . 
1 + Ep p(gof , A). 

g 

Let n1 be an arbitrarily given positive s.s.f •• By lemma 1.2, 

Hence 

(2.44) p*(g, A) ~ ~ inf R1(g, Aln, •). 
g n > 0 

inf R1(g, Aln, •). 
n>O 

On the other hand, let E > 0 be an arbitrarily given positive number. 

We can find corresponding to each real number x1, a s.s.f. n , say, such 
x1,e 

that 

(2.45) all x eZ. 

Now define the positive s.s.f. n(e), by 

all real x 1, V er• 
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• 

[4o] 

a 

By (2.39) 

Hence, using (2.41), (2.45), and (2.42), in that order, we have that 

< 1 + p(gof(l)(x), A)+ e = inf R1(g, Aln, x) + e. 
n>O 

But then integrating the extreme left and right hand sides above over Y with 

respect to P , we have by lemma 1.2, 
g 

Since 

and e > 0 is arbitrary we have 

· inf R1 ( g, A In, • )" + E 
n>O 

But this together with {2.44) and (2.43) prove~ the lemma. 

We now define a family of positive s.s.f.'s 

n( ·Is, >-) 

indexed by points in G X A, by taking \.-. 

(2.46) 

for all real x1 and each v Er. No~e that· the right hand side above depends 

on x only through its first coordinate x1 so that this is in fact a valid definition. 
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[42] 

If we use the definition [33], it is immediately seen that n(xlg, A) is 

defined by the right hand side of (2.3) for all x EX and for all g E G, A EI\ 

without restriction. Thus, in particular, we have that 

ii(xlg, A) = n*(xlg, A), ·all X EX, <whenever. r{g, A) > o, 

and by (1.51) 

Define 

for each g E G, A E /\ by 

for all real x1 and each VE 'X. It is easily shown, using the definition [34] 

that ~(•jg, A) is for each g E G, A E /\, a t.d.f. for n( 0 lg, A) which is 

optimal with respect tog, A in the sense of corollary 1.12. Moreover 

i(xJg, A) = (f)*(xJg, A)' all X e X, whenever, r(g, A) > o. 

Let 

_, 
~ 

• I I 

~ 

: / 

I 

~ 

I I 

Lemma 2.6 ._. 

Let g e c0 , A e/\ be arbitrary, fixed, the-latter such that 

Then outside of a subset of Zwhich is null according to ~oth ~O and P
1 
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- A . 

S(g, A) = S(B(g, A), A(g, A)), 

where B(g, A), A(g, A) are defined by [321 and 

(2.50) 0 < B(g, A)< A(g, A). 

Proof 

By (2.47), (2.48), 

S(g, A) = S*(g, A), whenever.r(g, A)> o. 

Hence for such g, A the proof is imme~iate, following from lemma 2.2. On the 

other hand, in view of the re11U1rks which follow definitions [40] and [41], the 

proof for .any g e GO and-A e /\ satisfying (2.49) is strictly analogous to that 

for lemma 2.2. The inequality (2.50) follows from the last implication of (1.51), 

the definitions [32] and the fact that g E Go. 

Lemma 2.7 

R(g, Aln(•lg, A)) = P*(g, A), for all g e G, A e/\. 

Hence we may write 

r(g, A) = p0(g, A) - R(g, Aln(•lg, A)), for all g e G, A e /\. 

Proof 

Let g e G, A el\ be arbitr$ry, fixed. If we use the notation (2.39) of 

lemma 2.5, we have by (2.46) that for each x e Z and each v eZ, 

and hence by (2.41) that 

By theorem B, we then have that 
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If we now integrate both sides above over X with respect to P and use lemmas g 

1.2 and 2o5, we get the desired result. 

Corollary 2.7 

y(g, 0 ) is uniformly continuous on/\, uniformly for all g E G. 

Proof 

Let e be an arbitrarily given positive number. 

points in /\ such that 

(2.51) 

Let i\.' , i\." be arbitrary 

Then for an arbitrary g e G we have by (1.28), corollary 1.13, and the above 

lemma, that 

r(g, i\.') < Po(g, i\.") - R(g, i\."fii(ofg, i\.')) + e:. 

But by (1038) 

Hence 

.r(g, i\.') <r(g, i\.") + e:. 

But X.', i\." were arbitrarily chosen to satisfy (2.51). Hence the above inequality 

holds also with i\.', i\.11 interchanged. This yields the desired result. 

Theorem C 

(i) 

(2 .52) 

Let i\. e /\ be arbitrary, fixed. 

If 
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i' 
then 

(ii) If 

(2.53) 

r(g, >,..) < o. 

then r(·, >,..) is non-negative and strictly monotone on the interval 

(2.54) 

Proof 

Note that to: prove part (ii), we need, in view of theor~ A an4 lennna 1.5, 

prove only the strict monotonicity. 

We will prove below th~t if g', g" are any two distinct points in G such 

that 

(2.55) r< g • , >- ) ~ o 

and either 

(2.56) 

then 

(2.57) r< g" , A> > r< g, , A > • 

But then both parts of the theorem will follow. For by corollary A2., if (2.52) 

holds, then 

r(g, >,..} ~ o. 

Now suppose that (2.52) holds and y-(g, >,..) = O. Choose g 1=g so that (2.55) is 
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satisfied and take g"=b(>-) or a(>-), according as g1 < b1 (>-) or g1 > a1 (>-), 

so that (2o56) is satisfiedo But then (2.57) holds and hence either 

which contradicts theorem A. On the other hand, if (2.53) holds and g', g" 

.. 

are distinct points of (2.54) which satisfy (2.56), then (2.55) must hold by 

theorem A and corollary A2. But then (2.57) holds which is the desired result. 

We now prove that (2.55) together with (2.56) implies (2.57). Suppose 

the first condition of (2.56) to hold. By (1.28), Corollary 1~13 and lemma 2.7, 

we have, taking 

that 

Since n(•lg', >-) is a positive s.s.f. 

But then by (2.55) and the fltct that this implies that g' e Go, 

Hence again using (1.28) and since the first condition of (2.56) is being taken 

to hold 

But by (1.38) the right hand side above is bounded above by. r(g" ~ >-). Hence 

(2.57) holds. A strictly analogous argument yields the identical result 

under the second condition of (2.56). This completes the proof. 

-48-

·t 

'--1 

~ 

!' 

~ 

I I 

~ 

\ I 

'-' 

\ I 

I I 

I I 



-

-'' 

i 3. Invariance and Optimality Property of the Sequential Probability Ratio Test. 

Lemma 3.1 

The functions a and b (defined by [31]) are continuous on/\. 

Proof 

We shall first suppose that~ is an arbitrary fixed point in/\ such that 

and show that a and bare continuous at~. By theorem A, the above inequality 

implies that 

Let e be an arbitrarily given positive number and choose g •, g" to be any two 

0 fixed points in G such that 

By theorem C, it then follows that 

. r< s • , ~) < o, r< s" , ~) < o. 

By corollary 2.7 and the continuity in A of the ratio A0!(A0+A1), there exists 

a positive number 8 such that whenever 
E 

then 

But then by theorem A we must have that 
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Thus 

Now suppose that ~ E /\ is arbitrary, fixed such that 

We shall prove that a
1 

and hence a is continuous at ~. A strictly analogous 

argument, not repeated, holds for continuity of bat~. By theorem A, the 

above inequality implies that 

Let e be an arbitrarily given positive number and choose g', g" to be any two 

fixed points in GO such that 

By corollary A2 and theorem c, it then follows that 

. r< g , , ~) > o, r< g" 1> t) < o. 

By corollary 2.7, there then exists a positive number 8 such that whenever 
E 

then 

. r(g', Ao) > o,. r(g", A) < o, 

so that by theorem A, corollary A2,. and the fact that g1 < g1, 

Thus 
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Hereafter, as notational convenience dictates, we shall regard each 2 x 2 

._ matrix >-.. e A , simply as the two-vector (>-..
0

, >-..1 ) of its positive components. 

-
Lemma 3.2 

Let )...l be ~n arbitrary, fixed positive number. Then 

( i) 

(ii) a1(•, >-..1) is strictly increasing on (0, ~). 

Proof 

By corollary A3 and theorem A, 

and this yields the first limit. in (i). The second limit of (i) is also 

immediate since by theorem A 

To prove (ii) we first observe that by (1.28), corollary 1.13 and leJDma 

2. 7, we have, taking 

that 

Let >-..0, >-..~ be arbitrary, fixed numbers such that 

(3.2) 

and let 
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First suppose that 

Now either 

r( a ( A ' ) , >.." ) ~ 0 

or 

r( a ( >.. ' ) , >.." ) > 0 o 

If the former inequality holds, then by (3.2), (3.3) and theorem A, 

On the other hand, if (3.4) holds, then by corollary A2, we have again that 

(3.5) 

Now suppose that 

By theorem A, this means that 

r( a(i\ f), A I) = 0 

By (3.1) and the fact that 

this in turn implies that 

But by (3.2) and an already familiar argument this means that 

0 = r(a(_>..'), >..') < p0 (a(i\'), >..")-R(a(i\'), i\"lii( •la(>..'), >..")) ~. y-(a(>..'), >..") 

.. WI 
_,,.._ 

,,. 

~ 

\ I 

la.; 

\ I 

I..J 

I .i 

I I 

: I 

I I 

But then (3.4) holds which means that (3.5) again follows. This completes the proof. I..) 

I 
I I 
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" Corollary 3.2 

There sxists a function 

A~: (0, ~) X (0, 1) ~ (0, ~) 

such that 

(i) 

(ii) For arbitrary, fixed Al> O, A~(A1, •) is a strictly increasing, 

continuous, unbounded function on (0, 1) and 

lim At(A1, 8) = 0 • 
8~0 . 

Lemma 3.3 

Let 8 be arbitrary, fixed, 0 < 8 < 1. Then A~(•, 8) is continuous on {O, ~). 

Proof 

Let Al > 0 be arbitrary, fixed. Take 

(3.6) 

to be any sequence of positive numbers such that 

To prove continuity of A~(·, 8) at Al it suffices to show that 

By corollary 3.2 and_ theorem A, we have for each positive intejer j 

It follows that 

(3.10) 
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is a bounded sequence of positive numberso For if it were not, in view of 

(3.7), the left hand side of (3.9) would tend to 1 as j ~ co~ which is 

impossible. Hence the sequence (3.10) mnst have at least one limit pointo 

Let t
1

, t
2 

be limit points of (3.10). There must then exist subsequences 

of (3.6) such that 

By corollary 3.2, we have for each positive integer j 

( 3., 12) 

Now both t 1 and t
2 

must be positive numbers. For suppose, for example that 

t 1 = O. Then by (3.11), corollary A3, and theorem A, there exists N such that 
. A.~(Es ~ 8) 

j > N ==a> o < Ag(E8 j, B) < 1 ==> a1(Ag(E8 j, B), E8 j) = Xg(Esj' d) + Esj 

But then in view of (3.7) 

and this is impossible by (3.12). Since t 1 and t
2 

are positive, it follows 

from lemma 3.1, that a1 is continuous at each of the points, 

But then by (3.12) and by (3.7) and (3.11), 

By lemma 3. 2 and its corollary, we then have 
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It 

a This shows that (3.8) must hold and hence completes the proofo 

Lemma 3.4 

For all A. e /\ which satisfy the inequality 

we have that 

Proof 

Observe first that 

By ( 1. 37) , ( 1. 27) , we have for g e G, A. e _,1 , that 

The desired result now follows from theorem Ao 

Lemma 3.5 

Let AO> 0 be arbitrary, fixed. Then 

Proof 

lim a1 (A.) = 1, 
A.l ~ 0 

lim a
1 

().) = Oo 
A.l ~ 00 

If A.O ~ 1, the lemma is immediate. For by corollary A3 and theorem A, 

we have that 

(3.13) 
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Thus, suppose that AO> 1. In this case, corollary A3 and theorem A imply , 

that (3.13) holds whenever O <Al~ 1. 

limit to be proved holds true. 

But this means that again the first 

It now remains only to prove the second limit for arbitrarily given 

(3.14) 

be any sequence of numbers such that 

(3.15) j=l,2, ••• , and lim fj = oo. 
j ~ 00 

To prove that the second limit of the lemma holds, it suffices to show that 

Because AO> 1, (3.15) implies that for each positive integer j, 

and hence, by lemma 3o4, that for each positive integer j 

It follows that the sequence 

( 3 .. 18) 

has at least one limit point in [O, (A
0
-l)/~

0
] and that every limit point of 

this sequence must lie in this interval. 

Suppose that the above sequence has a limit point t such that 

We will show in what follows, that this supposition leads to a contradiction. 

But then.as a consequence it will follow that (3.16) must hold and hence the 
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lenuna will be proved. 

Let 

Since tis a limit point of (3.18), there must exist a subsequence of (3o14), 

{ft}, say, such that 
j 

Now let v be an arbitrarily given number such that 

V > 1. 

Define 

then 

(3 .. 20) 

Thus, by (3o15), (3.17), (3.19), and by theorem A, there exists a positive 

integer N such that if j is any integer~ N, 

If we now take 

then by (3o20), (3.21), whenever j is an integer.: ~ N, 

(3.,22) 

Let 

o < Bj < q0A0/q1ft. < 1 < v < Aj < q0 (A0-1)/q1 • 
J 

A ( j) = (" t ) 
""o' st. 

J 
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By (3o21) and corollary A2, it is clear that for each integer j ~ N, 

r(q, >-- (j)) > o. 

Hence by lemma 2.2 and theorem B, we have that for each integer j ~ N, 

S(Bj. Aj) = S*(q. A(j)) 

is a Bayes q, >.. ( j) rule in the class of all rulesi. 

Now 

( 3 .. 23) 

/ 

In addition, for each integer j ~ N, we have by lennna 2o4, taking 

that 

A A 

( 1-QOj) log.Bj + Q0/ lo~tT}0) 

Eolog(fll/fol) 

where Tlo is a non-negative constant independent of j and the denominator on 

the right hand side is negative. By (2oll) and ~3o22), for each j ~ N, 

log Bj < 0, 

and hence 

Thus, again using (3.22), we find that the numerator on the right hand side of 

(3o24) is bounded above by 

[(v-1) log(4oA0/q1) + log(4o(A0-l)/q1) + ~0 - (v-1) log ftj]/v. 

By (3.23), it follows that 

j ~ N, 
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,;\, 

where K is a constant independent of j. But then by (3o15), (2.20), 

( 3.25) 

0n the other hand, if S1 denotes the rule whose SoSofo and todofo are 

respectively identically O and identically 1, then for each positive integer j, 

In view of (3.25), it follows that there exists an integer N1 ~ N such that 

for each integer j ~ N1, 

A. 

But this contradicts the conclusion reached above that for each j ~ N1 , S(Bj, Aj) 

is a Bayes q, A(j) rule. This completes the proof. 

Corollary 3.5 

Let 8 be arbitrary, fixed, 0 < 8 < 1. Then 

Lemma 3.6 

lim At(A1, 8) = O, 
Al~ 0 -

lim At(Al' 8) = 00 • 

Al~ 00 -

Let 8 be arbitrary, fixed, 0 < 8 < 1. Then 

Proof 

By corollary A3,- theorem A, and corollary 3o2 

so that the first limit holds. 
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Let 

be any sequence of positive numbers such that 

(3027) lim ~- = 000 

j """7 00 J 

To prove that the second limit holds, it suffices to show that 

By theorem A and corollary 3.2, we have for each positive integer j that 

( 3o29) 
~ A.5( s jl, 8) 

o < b1(h~(ej' 8), ej) - h~(ej' 8) + ej ~ 8 < 1. 

It follows that the sequence 

(3 .. 30) 

'-' 
~ 

• 
~ 

I i 
I._) 

..,J __ 

... i 

has at least one limit point in [O, 8] and that every limit point of the sequence __, 

must lie in this interval. Suppose that it has a limit point t, say such that 

(3.31) 0 < t ~ 8. 

We will show in what follows that this supposition leads to a contradiction., 

But then as a consequence, it will follow that (3.,28) must hold and hence the 

lemma will be proved., 

Let 

Since tis a limit point of (3.30), there must exist a subsequence {ft}, say, 
j 

of (3.26) such that, taking 

(3.32) j=l,2,oooo 
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11. 
we have 

lim blj = 2'Bl' 
j ~ co 

Now let v be an arbitrarily given number such that 

1 1 < V < 1 + 1_8 o 

Define 

8 
41 = 8+(1-8)v ' 

By (3.29), (3.31), and (3.34), 

qo8 
ql{l-8J = V • 

Take 

We sh-all have repeated occasion, below, to make use of the following remarks. 

Let u be an arbitrarily given number such that 

O<u<l. 

Consider the sequential probability ratio test, S(u, 1/u)o By lennna 2.1, 

E(n(•lu, 1/u)<co, i=O,l. 

In addition, by (2.11), 

Q. (u, 1/u) ~ u , i=O,l • 
1 

Hence for each positive integer j, we have 

(3.39) 
A A 

4oA~(st, 8) Q0(u, 1/u) + qlft. Q1(u, 1/u) ~ 
. j J 

By (3.29) and (3.36) 

j=l,2,ooooo 
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and hence it follows that for each positive integer j 

( 3.40) 

We shall now show that there exists a positive integer N1, say, such that 

( 3.41) 

For suppose this were not true. Then 

fQr infinitely many positive integers jo But recalling the definitions (3.32) 

and (3o37), we have by [35], corollary A2, (2.1), and the remark which follows 

(2o7), that this fact implies that 

for infinitely many positive integers j, where s
0 

is the rule with SoSofo and 

t.d.fo both identically zero. But this further implies that 

( 3 .42) 

for infinitely many positive integers, jo 

On the other hand, if we choose u to be any fixed number such that 

1 
O < u < 2(1+v) 

then by (3.40), for each positive integer j, 

In addition, by (3038) and (3.27), there exists an integer N
2

, say,~ N
1 

such 

that for each integer j ~ N2 , 
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'-, By ( 3.42) it now follows that for infinitely many positive integers j, 

But this contradicts theorem Band hence (3.41) must holda 

Thus by (3.41), (3.33), and (3.36), there exists an integer N3, say,~ N1 such 

that for each integer j ~ N
3 

0 < "Bl < blj < ql < 8 < 1 • 

Let 

B = 

By corollary A2 and (3.43) 

r(q, A(j)) > 0, 

Hence by lemma. 2Q3 and (3.36) 

( 3.44) S*(q, A(j)) = S(Bj, v) , j ~ N
3
• 

By (3.43) and (3.36) 

O<B<B.<l<v, 
J 

j=l,2, •••• 

Now consider the sequential probability ratio test, S(B, v). It is clear 

that either 

or 

We shall develop our contradiction by demonstrating both alternatives to be 

impossible. It will follow that (3.31) cannot hold and the lemma will be proved. 

By ( 3.44), 

(3.46) 
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But 

In addition, by (2ol2) and (3045) 

Hence 

Now suppose that 

(3048) 
A 

Q1(B, v) > O, 

and choose u to be any fixed number such that 

A 

0 < u < Q1(B, v)/2(l+v). 

By (3040), we then have for each positive integer j that 

In addition, by (3038), (3.27), there exists an integer N4 ~ N
3 

such that for 

each integer j ~ N4 

By (3.47), it follows that 

This contradicts theorem Band hence (3.48) cannot holdo 

Now suppose that 
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By (2a13) and (3.45) this implies that 

By (3.46) and the above we may write 

(3.50) R(q, A(j)ls*(q, A(j))) ~ 4oA~(st, 8) Q0(B, v), 
j 

By (3.32), (3.29), (3.43), 

Hence 

(3.51) 

Now choose u to be any fixed number such that 

B A 

o < u < 2(B+l) Qo(B, v). 

By (3.39), (3.51), we then have that 

By corollary 3.5 and (3.27), there exists an integer N
5 
~ N

3 
such that for each 

integer j ~ N
5

, 

By (3.50) it now follows that 

But this again contradicts theorem B, so that (3.49) cannot hold. This 

establishes a contradiction and the lemma is proved. 
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Theorem D ., 

There exists a mapping 

~: {(g, u, v): g EGO, 0 < u < 1 < v) ~ /\ 

such that identically on its domain 

B(g, ~(g, u, v)) = u, A(g, ~(g, u, v)) = v o 

Proof 

Let (g, u, v) be an arbitrary fixed point in the hypothesised domain of ~Q 

Take 

By corollary 3.2 we then have, identically for Al> O, that 

Now 

0 < 8(g, u} < 8(g, v) o 

By lennna 3.1, bis continuous on/\. By lemma 3.3, A~(·, 6(g, v)) is continuous 

on (0, ~). Hence by lennna 3.6 there exists a positive value of A1, call it ~1(g, u, v) 

such that taking 

we get 

h1~(g, u, v)) = B(g, u) o 

But then it follows that 

B(g, ~(g, u, v)) = g08(g, u)/g1(1-8(g, u)) = u o 

Since (3o52) is an identity for Al> O, we have in addition that 
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A{g, ~(g, u, v)) = v o 

This proves the theorem. 

Optimality Theorem 

Let u, v be arbitrary, fixed numbers such that 

O<u<l<v 

and let {n, ~) be any rule such that 
n 

i=O, 1 o 

Then 

i=O, 1 o 

Proof 

By corollary A2.., lemma 2o2, and theorem D 

S*(g, ~{g, u,· v)) s{u, v) , 

0 where the identity holds for all g e G and for all u, v such that O < u < 1 < Vo 

Hence by theorem B, 

R(g, >=(g, u, v)IS(u, v)) ~ R(g, ~(g, u, v)fn, ~n) 

where this inequality holds identically over the same domaino Rewriting this 

inequality we have, again identically, 

1 
E gi[Ei~( 0 lu, v) - E.n] ~ 

i=O 1 

By (3.53), the right hand side is identically non-positive. It follows that for 

each u, v, 0 < u < 1 < v and for each g1 such that O < g1 < 1, 

But now taking limits as g1 ~ 0 and g1 ~ 1, we achieve the desired result. 
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4o Alternative Proof of Invariance Property 

The following is an alternative proof of theorem Din section 3 which is 

due to Le Cam and appears in E. Lo Lehman's book, "Testing Statistical Hypotheses". 

(See the discussion which precedes the alternative proof of lennna 1.6 which also 

applies here.) The present section may be substituted for section 3 with no loss 

in continuity for the overall proofo 

We now relate Le Cam's proof notationally to that which precedes. We first 

set up a one to one correspondence between points in A and those in the cross 

0 product G X (0, co) as follows. Let 

then 

A= W/c 

0 Thus to each A e /\ there corresponds a unique (W, c) e G X (0, co) and precisely 

one such A gives rise to this point. In the following, we shall refer inter

changeably·, as convenience dictates to points (W, c) and their correspondents, A. 

We define a new average risk for a rule (n, ~) relative toge G and n 

(W, c) EGO X (0, co) by 

R(g, W, cln, ~) = n 

1 
~ gi [cEin + WiQi (~n)] ., 

i=O 

p(g, W, c) = inf R( g, W, c In, ~ ) , 
n>O n 

= inf R(g, W, cln, ~) n n=O 

It is immediate that 
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(Note that this is independent of c), and using lennna 2.7, that 

(4.1) p ( g , w, c ) = P* ( g , ;.. ) / ( >-.
0 

+>-.
1

) = ii ( g , w, c I s ( g , w / c)} o 

Let 

[47] r(g, w, c) = "p
0

(g, w, c) - 'p(g, w, c) 

and observe that 

(4.2) r(g, w, c) ; 0 ~ r(g, ;..) ; o. 

Lennna 4.1 
0 0 -Let g e G, We G be arbitrary, fixed. Then p(g, W, •) is 

(i) concave on (0, oo) and hence continuous there. 

(ii) strictly increasing on (0, oo). 

(iii) lim p( g, W, C) = 0 • 
C ~ 0 

Proof 

Let h E GO, O < c
0 

< c
1 

be arbitrary, fixed. We have 

1 
= inf E h1R(g, W, ci In, cp ) 

n > 0 i=O n 

1 
!!: E h.p(g, W, c1) o 

i=O i 

But this proves (i). Again, take c0 , c
1 

to be arbitrary fixed numbers such 

that O < c0 < c1• By (4.1) and definitions [45], [46], we have that 

p(g, W, c1) > R(g, W, c0 ls(g, W/c)) ~ p(g, W, c0 ) , 
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[48] 

and this proves (ii). Now let e be an arbitrarily given positive number. Let -~ 

(n, cp) be a fixed sample size rule with 
n 

n(x) = N 
E 

and N so large that 
E 

i=O, 1 • 

Such a rule can always be found. Then for arbitrary c > 0, we have that 

p(g, W, c) ~ R(g, W, cln, cpn) < cNE + €./2. 

It follows that 

0 < c < e/2N ~ p(g, w, c) < e • 
E 

This completes the proof of the lemma. 

0 To each W = (w
0

, w
1

) e G there corresponds a positive number 

c(W) 

such that 

c ~ c(W) :( ) bl (W/c) = w0 = a1 (W/c) • 

Proof 

By lemma 4.1, there corresponds to each pair of points g, We GO a positive 

number ~(g, W), say, such that 

c ; "e(g·, w) ~ p(g, w, c) ~ p(g, w) 

The result follows from (4.2), the definitions [44] - [47] and theorem A, if we 
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take g = (w1, w0) in the above equivalence and define 

Lenuna 4.3 
0 Let W = (w0 , w1) e G be arbitrary, fixedo Then 

(i) bl (W/ •) is strictly increasing and continuous on (0, c(W}°)' i.rid 

lim b1(w/c) = O, 
C.~ 0 

(ii) a1(W/•) is strictly decr~ing and continuous on (0, c{W)) and 

Proof 

lim a1{W/c) = 1, 
C ~ 0 

The proof follows immediately from lenunas 

Define functions~ and T) on /\ by 

s(A) 
a0 (A) b1 (A) 

TJ(A) = a1 {A) b0 (A) ' 

then 

b1 (A) 1 a1 (A) = l+fl(A} ' = 

Lemma 4.4 

4.1 and 4.2. 

b0 (A) 
= bl (A) ' 

1 
l+HA) T)(A) 

0 Let W = (w0 , w1) e G be arbitrary, fixed. Then 

. 

(i) s(W/•) is strictly increasing and continuous on (0, c(W)) and 

lim s(W/c) = O, 
c-,? 0 

lim g(W/c) = 1. 
c ~ c(W) 

-71-



[50] 

(ii) ~(W/ 0 ) is strictly decreasing and continuous on (0, c(W)) and 

lim ~(W/c) = 00, 

C ~ 0 

Proof 

The proof follows immediately from definition [49] and lemma 4.3. 

Lemma 4o5 

There exists a mapping 

c*: GO X' (0, 1) ~ (o, co) 

such that 

0 < c*(W, u) < c(W), 0 WeG, O<u<l, 

and such that 

E(W/c*(W, u)) 0 u , W E G , 0 < u < 1 o 

Proof 

The proof follows innnediately from lenuna 4.4. 

Corollary 4o5 

s(W/c*(W, u)) ~(W/c*(W, u)) 

Lennna 406 

There exists a unique mapping W* 

a
0

(w/c*(W, u)) 

a1 (W/c*(W, u)) ' 

W*: (0, 1) X (o, 00) ~ Go 

such that 

0 WE G, 0 < u < lo 

~(W*(u, z)/c*(W*(u, z), u)) = z, O < u < 1, O < z < 00 0 

-72-



·--i 
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Proof 

Observe first of all that by lemma 4o2, definitions [44] - ,D47], (4o2) 

0 and corollary A2, we have for each W E G 

(4.3) 0 < c <c(W) ( ;: y((W1, W
0
), W, c) > 0 o 

0 Hence by lemma 2.6 and (4.2) we have for each WE G that 

(4.4) 0 < c < c(W) ~ S(g, W/c) = S(B(g, W/c}, A(g, W/c)), 0 all g E G , 

where the equality on the right hand s'i4e holds in each case outside a subset 

of X which is null under both P
O 

and P 
1

• Since the above implication is for 

all g e Go, it holds in particular for g = b(W/c) and g = a(W/c). Note Further 

that by definitions [32] and [49], 

B(a(W/c), W/c) = E(W/c), 

B(b(W/c), W/c) = 1 

A(a(W/c), W/c) = 1 

A(b(W/c), W/c) = 1/f(W/c) o 

. 0 
By (4.4) and lemma 4.5, we now have for each W E G and each number u, 0 < u < 1, 

that outside a subset of X which is null under both P0 and P1, 

S(b(W/c*(W, u)), W/c*(W, u)) = S(l, 1/u) 

S(a(W/c*(W, u)), W/c*(W, u)) = S(u, 1) 

By (4.1) this means that for each We GO and each u e (0, 1), 

(4.5) 
p(b(W/c*(W, u)), W, c*(W, u)) = R(b(W/c*(W, u)), W, c*(W, u)ls(l, 1/u)) 

p(a(W/c*(W, u)), W, c*(W, u)) = R(a(W/c*(W, u)), W, c*(W, u)(s(u, 1)) • 

On the other hand, by (4.3), (4.2) and theorem A, 

0 < c < c(W) ~~, ~(b(W/c), W, c) = 0 = ~(a(W/c), W, c) o 

0 In particular, by-lemma 4.5, we have for each WE G and each u E (o, 1), that. 

(4.6) r(b(W/c*(W, u)), W, c*(W, u)) = 0 = r(a(W/c*(W, u)), W, c*(W, u)) • 
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By definition [47], (406), (4.5), and by lemma 4.2, we now have for each 

we GO and each u e (o, 1) that 

R(b(W/c*(W, u)), W, c*(W, u)js(l, 1/u)) - w1b1(W/c*(W, u)) = 0 

R(a(W/c*(W, u)), W, c*(W, u)js(u, 1)) - w0a0(W/c*(W, u)) = 0. 

( 

If we divide the first equation by b
1

(w/c*(W, u)), the second by a1{w/c*{W, u)), 

we obtain, using definition [45] and lemma 4o5 and its corollary, after some 

minor rearrangement, the equations 

where we have adopted the following abreviated notation: 

li0
) = Ein( 0 j 1, 1/u), Q(O) 

i = Qi(l, 1/u), i=0,1 

c (1) 
i = Ein( 0 ju,. _1), Q(l) 

i = Qi ( u, 1), i=O,l 

c* = c*(W, u), Tl* = T}(W/c*{W, u)) • 

If we eliminate c* between these two equations,. we get 

(4.7) 

Now let z be an arbitrary, fixed positive number and set 

~* = ~(W/c*{W, u)) = z o 

If we substitute this into (4o7), we get an equation which is linear in w1 

(;ecall that w0 = l-W1) and which may be easily solved. Denote the solution 

by Wt(u, z). Let W~{u, z) = 1-Wf{u, z) and take 
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O_ 

W*(u, z) = (W~(u, z), Wf(u, z)) • 

Thus 

~(W/c*(W, u)) = z ==9- W = W*(u, z) • 

On the other hand, if we set 

and regard this as an equation in z, we get a quadratic with coefficient of 

z2 positive and constant term negative. But this implies the existence of a 

unique positive root. In view of (4.7), this root must be the number 

~(W/c*(W, u)). Thus 

W = W*(u, z) ~ ~(W/c*(W, u)) = z. 

This completes the proof. 

Theorem D (alternative proof) 

There exists a mapping 

~= {(g, u, V): 0 
g E G , 0 < u < 1 < v} ~ /\ 

such that identically on its domain 

B(g;·t(g, u, v)) = u, A(g, ~(g, u, v)) = v o 

Prdof 

Let (g, u, v) be an arbitrary, fixed point in the hypothesized domain of I. 
0 By lemma 4. 5 we have identically for all W e G that 

~(W/c*(W, u/v)) = u/v. 

By lennna. 4 .. 6 
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The conclusion now follows from definitions [32] and [49] if we take 

">:(g, u, v) = 
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-~ INDEX OF NOTATION - _, .. , • ·Number Symbol Page Number Symbol Page 

1 X 1 25 ~(x) 12 

2 £0, fl 1 26 V/x)g, >-.) 12 

3 cz,g.) 1 27 r(xl j) 12 

4 PO, pl 1 28 r(hl g, >--) 13 

5 1\, 2 29 H 15 

6 Ei 2 30 r(g, >--) 17 

7 s.s.f. n 2 31 b(A), a(A.) 24 

8 C/x) 2 32 B(g, )..) , A(~, >-.) 25 

9 t.d.f. q> 2 33 n*(. I g, A.) 26 n 

10 rule (n, q> ) 2 34 q>*(. I g, >--) 27 n 

11 Qi (q>n) 2 35 S*(g, >..) 28 
0 

G, G , /\ 3 36 "a(• lu, v) 28 

12 R(g, A.In, q>n) 3 37 ,( 0 Ju, v) 29 

13 Bayes g,).. rule 3 38 s(u, v) 30 

14 p(g, >--1 a ) 3 39 Qi (u, v) 30 

.,J, -lo, ~ 0 3 40 ii(•fg, >..) 43 

15 p(g, >..), P*(g, >-.), p
0
(g, X) 4 41 qi( 0 f g, A.) 44 

16 · aob 4 42 s(g, A.) 44 

17 f(xj) 4 43 >--* 0 53 

18 fi/x) 4 44 c, w
0

~ wp w 68 

19 f( j \x) 4 45 R(g, W, cln, f) 68 n 

20 p 5 46 p(g, 1(, c), p0(g, w, c) 68 g 

21 T/x) 6 47 r(g, w, c) 69 

22 R(g, ).. In) 7 48 c(W) 70 

23 !_jV 8 49 !(>--), Tl(A.) 71 

24 R/g, A. f n, x) 8 50 c* 72 
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