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PREFACE

The set of notes which follows is a revision and extension of lecture notes
which I prepared during the summer of 1960 at Purdue University, with partial
support from the Purdue Research Founddtion. The present version derives from
lectures given to a staff seminar at the University of Minnesota during the
winter quarter 1962, 1t contains a proof which follows the essential outline
of the original as given by Wald and Wolfowitz (first three sections) and which
was contained in somewhat cruder form in the original notes. Section 4 is new
and is an expansion of the proof due to Le Cam that the sequential probability
ratio test (viewed as a Bayes rule) has the invariance properties which lead to
its optimality. (See E. L. Lehman's book "Testing Statistical Hypotheses"
pp. 107-109.) Section 4 may be substituted for section 3 with no loss in
continuity for the overall proof. The alternative proof of lemma 1.6, p. 23,
is also taken from the optimality proof as it appears in Lehman's book.

It was not my original object, nor is it my object in the present notes,
to find an essentially new or shorter way of proving the optimality of the
sequential probability ratio test, but rather to make clear in a rigorous way
the essential mechanisms (somewhat modified in this treatment) of the original
authors., The introduction of section 4 and the alternative proof of lemma 1.6
provides the reader with a comparison of techniques. A discussion of the recent
papers by Burkholder & Wijsman, and by Mathes, both in the Annals of Mathematical
Statistics Volume 34, March 1963, is not included in these notes since their
appearance followed the completion of this work. However, with reference to
techniques employed in the latter paper, the reader who is interested should
also see lemma 3.4 and theorem 3.1, p. 343 of a paper by the undersigned in the

Annals of Mathematical Statistics Volume 31, June 1960.
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It is apropos here to discuss certain omissions in the original paper with
which others besides myself may have had difficulty, In lemma 1 of the original,
a Bayes solution to the two-decision problem is exhibited., Lemma 2 (essentially)
shows that the rule advanced in lemma 1 is a sequential probability ratio test,
The proof as it is given rests upon its Bayes property. Now a rigorous proof
that the rule advanced in lemma 1 is a Bayes solution requires that it be shown
to terminate with probability one under each hypothesis. The fact that this
test is a sequential probability ratio test (which may be shown by considerations
not immediately involved to have finite expected sample size) may not be invoked
to. prove this, since as presented, that fact rests upon its being a Bayes
solution. In the notes which follow, this difficulty is circumvented., Moreover,
the class of rules in which the optimality of the sequential probability ratio
test holds is shown to be unrestricted. We remark that the proof which we employ
to show the existence of and exhibit a Bayes solution (Theorem B, p. 36 of
these notes) is based upon the corresponding proof of a more gerneral result
that is sketched in "Bayes Solutions to Sequential Decision Problems', by Wald
& Wolfowitz, Annals of Mathematical Statistics, Volume 21 (1950) pp..82-99.
Lemma 2.5 of these notes derives from the same source,

Lemma 8 of the original paper makes no use of the second limit derived in
lemma 7. Such an omission requires that a sequential probdbility ratio test of
one density against another have positive probability of choosing the first
density when the second density is true. This in turn requires that the second
density be less than the first density on a set of positive probability according
to the second density., N& assumptions concerning the two densities were made
in the original paper except that they were distinct. In these notes, the
second limit of lemma 7 (corollary 3.5 in the notes) is employed iﬁ the proof

of lemma 8 (lemma 3.6 in the motes) and the above mentioned restriction is not

(11)
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required., A proposition, (2.13), p. 31, is proved concerning the error
probabilities of sequential probability ratio tests which is required for
the proof of lemma 8, but which does not appear in the original paper.

The notation here used is considerably changed from that of the original
paper, although some of the forms in the original are maintained. Imn particular,
it should be noted that the terminal decision function of these notes is one
minus that of the original., New notationvas it is introduced is marked by a
number in square brackets at the extreme left of the page on the line in which
it occurs. Round brackets containing formula numbers are used in the usual
way. As an aid in keeping track of notation, an index of notation i; given

on the last page of these notes.

Morris Skibinsky
Statistics Department
University of Minnesota
June 17, 1963
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NOTES ON THE OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO TEST
BY A, WALD AND J. WOLFOWITZ, A, M, S, VOL, 19 (1948) pp. 326-339

Prepared by Merris Skibinsky

1, Introduction

We are given a sequence of independent random variables
X = (xl,xa,....)

with a common distribution function knewn a priori to be one of two specified
distributien functions. We shall suppose that the probability measures which
correspond to these distribution functions are both absolutely continuous with
respect to Lebesgue measure or else that both are absolutely continuous with
respect to counting measure (our notation will conform to the former case)
and denote by

£f., £

0’ "1
corresponding probability densities., In addition, to avoid trivialities, we
assume that these probability measures assign positive probability te the set
on which the two densities are positive and unequal, Let

X, %)
be the measurable space determined by the space X of infinite sequences
(we suppese for convenience that this is the range space of X), and the
smallest c-fieid, ‘F , of its subsets which contains the cylinder sets with
bases which are finite dimensional Borel sets. (See pp. 59-62, M. Loeve
"Probability Theory".)

Let

'Po, P

1
denote, respectively, the unique probability measures on (]CEP) inducead by

the probability measures that determine £ fl’ and consistent with these

O’
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measures in the precise manner indicated in Theorem B, p. 157, Paul Halmos' !
"Measure Theory" (which proves their existence). See also pp. 90-94% M Loeve

"Probability Theory". Let

(5] Ep

denote the expectation operator relative to a probability measure P on (I;?),

When there is no possibility of confusion we shall write

(6] E;
for .
o] EPi

[7] A (non-randomized) sample size function (s.s.f.) is any measureable function

n on X to the non-negative integers and « such that
(i) n is the zero function or n is identically positive
(ii) {x: n(x) % j} are cylinder sets whose respective bases are Borel sets
in j dim sp. and form a partition thereof, 3}=1,2,... &
[8] Define Co(x) xgxx and for j=1,2,... and each xeX define

Cj(x) = (ze X s zl=x1,v,,,,zj=xj]
Then observe that for any sample size function n, we have

n(x) = j =2 n(y)=j, allye Cj(x)e

[9] A (non-randomized) terminal decision function (t.d.f.,) for a sample size

function n, is any measureable indicator function cpn on Y whose value at any
point x of X depends only on the first n(x) components of x. i.e.,
(Pn(X) =1 =5 q)n(Y) =1i, allye Cn(x)(x), i=0,1
[10] A (non-randomized) rule (for deciding between £, and fl) is a pair (m, cpn)
consisting of a sample size function n and a terminal decision function ?, for n,

Associated with each rule (n, cpn) we have the four constants, Ein, i=0,1 and

[11] Q;(9,) =2, (o =1-i]
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. Let

G

(e=(gy» 8): 8yt8=1s gg» 8; 2 0)

G0

(g € G: 8y> 81 > 0}

A

0
O.). No» Ny > 0)

0
A = D‘”‘xl 1

A criterion of the goodness of any rule (n, q)n) relative to g € G and A e A is

Let & be a class of rules; geG, A €A,
[13] A Bayes rule in (@ relative to the pair g, A (a Bayes g, A\ rule in (@) is a

rule (n¥, qJ'r’:*) € (@ such that
R(gv kln*o (Pg*) s R(gs Kln’ an)v all (na an) € Qo

Let

[14] (g, M| @) =  inf R(g, Mn, @)
n, @) e

-

Remark

183
Clearly, any rule in (@ whose average (g, \) riskjcan attain te this infimum

will be Bayes g, A in (P and if no such rule exists, there is no Bayes (g, N\)
rule in @ .

We will as convenience dictates sometimes denotea rule (n, Qn) by a single‘
letter, say S. €.8.,

C (g, N|@) = 1inf R(g, A|S).
Se®@ '

There are three main classes of rules with which we shall be concerned

S

{rules (n,.(Pn): Pi[n < w} =1}

s
(@)
|

= {(n, @) ¢ J: n is identically positive}

AY(; {(ns (Pn): n(x) = 0}



We shall write 1

[15] p(gs A) = p(gs M.J)s (g5 A) = p(gs MEp)e poles N) = pl8s M| L)

The easiest of the above infima to evaluate is of course po(g, A) for 496

contains precisely two rules S and Sl’ say with t.d.f.'s identically O and

0]
identically 1, respectively,
R(gs MS;) = 8 My

so that

St ]

In addition observe that trivially
(1.2) p(g, A} = min[p, (8, N, p*(g, N)]
We.define the operation o between two vectors
a= (ao, al), b = (bo, bl)
of non-negative components by

[16] aob = (aobo, albl)/(a'b), asb = a b +a b,

so that aocb is defined so long as a¢b + 0. Note that always aob € G,
We shall take

(aob)i = aibi/a°b

Let
[17] £(x;) = (£5(x5)s £1€x,))s  5=15250000
3
[18] £, (x) ={ O £(n)s 3o1e2ec. o
1 s JmwO _
[19] £ x) - (£95(x)s £14(x)) 0 £y (x) = £(m(x)) iy

Observe that

gof(j)(X)

gof(xl)of(xz)OODODOOf(xj)g j=o’192°oooo

= (gof05(x)s 81F; 4 (x))/[gyEy,(x) + g £, ,(x)]

=l

C

IR SR SRR G

L
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v and that this is simply the vector of "a pesteriori probabilities" which for
j=0,1,2,400 i8 of course always an element of G,
Let
x(x]1) = (1, DerD(x),
This is the normalized likelihood vector at the j=® step. Observe that
(1.3) gof(j)(X) = gor(x]i),
where the equivilence holds for all g € G, for j=0,1,2,440., and for all
x € X such that both sides are defined,
Let
[20] ' P, = 8Py * 8P;» B EE
Note that for each g € G, Pg is a probability measure on (X, F).

Lemma 1,1

Llet g e G, N € A be arbitrary, fixed. Then for any t.d,.f. @n for a s.s.f,

such that Pi[n <w} =1, i=0,1, we have that

1
5 824(0,) - EPgR<g»f(“). s )

S B, [(gof™). A )
Epg 19 Mg
. An immediate eonsequence of this lemma is the following

Corollary 1,11

Let g € G, A €/1 be arbitrary, fixed, Then for any rule (n, ¢n) e 4,

we have that

R(g, A|n, @ ) = E, [n+ (gmf(“))l_cp M ]
_ g n n



“

Proof of Lemma 1,1

If n(x) & 0, the lemma is trivially true, For in this case, either
q)n(x) = 0 so that Qi(tpn) =1 or q)n(x) = 1 so that Qi(cpn) = 1l-1,
Now let us suppose that n is a positive s.s.f, .

By hypothesis, Pi{n <o} =1, i=0,1, Hence

. ) 1
X = z z  {n=j, tpn=1-k] + N,
j=1 k=0
where N is null according to both Po and 1’1, and hence according te Pg, foer all g € G.
Thus
_ « 1
[(gaf(n)) A ] = % z f (gof(‘j)) dp
El’g 14, 1o, j=1 k=0 kk kg

[nf:j » @n.:'.l“k)

Let T j denote for each positive integer j the projection map on X defined by

[21] Tj(x) = (xl’x2’°°°’xj) = Xy, 84y,
Then, by definition of P, on (X‘J?), the fact that (gc,f.(j))k depends only upon
the first j coordinates of its argument, and that {n=j, ('pn=1-k] is a cylinder

subset of X whose base is a j dimensional Borel set

(gotli)) @ - f (ot ( 3 g £
. Bot T Fg Bof2 )y ( BBy £yy) g
{n=3, ¢ =1-k) T,(n=], @ =1-k]
where the integrand on the right hand side is to be regarded as a function on
j-dimensional Euclidean space, rather than onX, and ”'j is j dimensional Lebesgue

(or counting) measure, But then, by [16] and [19], this right hand side may

be written

By Py

T,[n=j, @ =1-k] (n=i, @_=1-k)

[«
=4
(2N
i
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v Henc.e
I - ‘
[( g(n) ) A1 = é A z f dp
-EP & 1o, 14, ) %k M jél k
8 (nej, @_=1-k)

<

= z NoQ (P ) o
k=ng k k’'n

Corollary 1.12

Let q)n be an arbitrary t.d«f, for any s.s¢f. n such that Pi{-n < e}, 1=0,1.
Let o@vn denote the class of all rules which have the particular.s.s,f. n, Then
for arbitrary g € G, A € A., the following statements are equivalent outside of

a Pg null set,

(1) (n,(p:) is a Bayes g, A rule in oC9‘n.

(i1) (g"f(n))l;(p* h]_..cp* = po(g"f(n)’ A

{ Ly gy 2y fOn(x)(x) S g M fln(x)(x)

(111)  o*(x)
. 0, >

2 Mo

ot &M

n

©

' 1, r.(x|n(x)) >
1 A
() = %
0, <
For each g € G, A € /| and each s.s8,f, n such that Pi{n <w} =1, 1=0,1,

we define

[22] R(g, AJn) = Epg[“ + po(gof(ﬁ), Al

By the two preceding corollaries, we then have

Corollary 1.13

Let (n, @ ) be an arbitrary rule in .4/, and let ¢* denote any t.d.f. for n
which satisfies either (iii) or (iv) of corollary 1,12, then for arbitrary

g € G, A €/\ , we have that

R(g, Mn, @) 2 R(g; An,0%) = R(g, A|n).

T



(23]

[2u]

Corollary 1,14 {

For each g € G, N €A

P (g’ h) = inf R(g: Kln)a p*(g, >‘~) = inf R(g’ Xln) »
n n>0

where inf is taken to denote the infimum over all se¢s.f.'s such that
n

Pi{n < w} =1, i=0,1, and inf , to denote the infimum over all positive
n>0

s.8.f,'s such that Pi{n <o} =1, i=0,1,

We shall adopt the following notation, For each v ¢ X , we shall take

(xlsxg’ODOsxj’V13V2~osd) ’ J=1,250000

I
J v , j=0

For each g € G, A €/A , each non-negative integer j, and each s.s.f, n such
that Pi(n <w} =1, i=0,1, we define the function Rj(g, A|n, °) at each point

in X outside of a .1’.g null set by

R.(g, N|n, x) = E afx, °) + p,(gef T (x, +), N o
] P ot (1) (x) (J 0 . )

We shall assume sdme arbitrary but fixed constant as the definition for this

function on the Pg null set for which the right hand side abcve is undefined,

Observe that

(1.4) Ro(g, An, x) Z— R(g, A|n) .

When j is a positive integer we have

=8

|
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N 7 Lemma 1.2
For each g ¢ G, A ¢ A , for each positive integer j, and for each s.s.f. n
such that Pi[n € w} =1, i=0,1, the function Rj(g,kln, +) is a version of the

conditional probability

EPg[n + po(g"f(n)’ A)I?j} °

Proof

Rj(g, )s.|n, *) is elearly measureable with respect to the sub-g-field

of F given by

{I'l[A]: A is a j-dimensional Borel set} = {AXX ¢ A 48 a j-dimensienal Borel set].
23

Thus, we need enly sheow that if A is an arbitrarily given j-dimensienal Borel.

set, then

(1.5) f Rj(g, afn, °)d:eg = f [+ po(gof(n), %.)]dPg .
A XX A XX

Observe first that by the definition of s.s.f. [T],
(1.6) nx) 2 j =¢R§(g, Mg, 2% = w{z) + f—"otg"tn(x)(x)s A) e
Hence

(1.7) Ri(g, An, *)ap, = f [n + po(gof(“). A)lde,
AXXN{ns j} Axyn{n = j}

On the other hand, by the definition ¢f P, on (X,”¥), the fact that Rj(g, AMn, x)

depends only on the first j coordinates of x, and that AX X N{n > j} is a

=O-
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cylinder subset of X whose base is a j-dimensioenal Borel set, we have that 2

1
(1°8) f Rj(g’ kln’ °)dPg = f Rj(gb )'In’ o) iiogifij dlij
AXTN o> j) ANTyln > ]

where the integrand en the right hand side is to be regarded as a function on
j-dimensional Euclidean space, rather than enX , and uj is, again, j-dimensional

Lebesgue (or counting) measure,

Now
SN ¢) . !
Pgof(j)(x) = kio(gOf (x)’)k Pk = éogkfkj(x) Pk iiogifij(x)'
Thus, by [24]
(1.9} ( ) 1 (x)
1.9 R s AN, z £
3 ® |n * i=0gi 13 *
1 n(x, °)
_ . | R
- I gk [ Gy ) v eglaer () ), M,

X

Now observe that to each x € X such that n(x) > j, there corresponds a

partition of X , namely

X = z {(veX ¢t n{x, v) = m} +N
m= j+1 =3 X

where Nx is null according to both Po and Pl. Hence, for each x € X such that

n(x) > j, the right hand side of (1,9) may be written

1 w
(m})
et 2 / [m + polget™ (x, ), M) le,
{vs n(ij v) = m}

- 10-
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By arguments strictly analogous to those used for (1,8), the integrals in the

_above expression may be respectively replaced by

[m + po(gof(m)(zgj Yo NI g g
Tm_j[[v: n(ij v) = m}]

where the integrand is to be regarded as a function on m-j dimensional Euclidean

space rather than on X, Thus, the right hand side of (1,.8) may be written

- (m) :
z " f [m+ po(gof » M) Z_:.ogkfkm dum
™=IP AXX . NT [ns=m] k=

m- j m

where the integrand for index m is to be regarded as a function on me~dimensional
Euclidean space, and IZ; j is taken to denote m-j dimensional Euclidean space,
It now follows by a reversal in application of the arguments used for (1.8)

that the right hand side of (1.8) may be written

-]

p) [m+ po(gof(m), x)]dpg .
m= j+1 AXX N {nem)

and this in turn is just
[n + oo(gef(“), )lae, .
AXZX Nn > j}

Together with (1,7) this now implies the desired result, (1.5).

Remark

As an extension to (1.,6) in the above proof, we observe that by the

definition of s.s.f. [7] and by [24],

«ll-



(1.10) n(x) = j == Rj(g, An, x) = 3+ po(gaf(j)(x), A) 4

For each non-negative integer j and for each x e:Z , we define the

class of s.s.f.'s

[25] @) = o>, Pa<e) =1, =0,1),

and for each g € Gy A € A , take

[26] vj(x|g, N = sup [+ po(gof(j)(x), A) - Rj(g, An, x)] .
ne Jj(x)
It is intuitively evident that the sign of this quantityvindicateé the existence
or non-existence of a s.s.f. relative to which it is "worth while" with respect
to the particular pair g, A to continue observing components of X past Xj, when
the realization of X, has been X for k=1l,c04,]0

k
Observe that by [18], [19]

gof(o)(x) = g allxeX ,g66G,
so that by (1.4) and corollary 1,14, we have for each g € G. A €/A , that

(1.11) Volxles N) = pgles M) - o*(e, 1)

Lemma 1,3

let g € G, A €¢/A be arbitrary, fixed, Then vj(xlg, A) depends upon j

and x only through

By () * £,(0)

(27] r(x]j) =

i.e. To each h € G such that geh{O and such that the set

-12—
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< (L.12) {(k, y)t r(y|k) = n}
T
is non-empty, there corresponds a number, call it

[28] r(h|g, N),

such that

vilxlgs A) = rln]e, 2)

for each pair (j, x) in the set (1.12),

Proof

Let (j, x), (k, y) be two arbitrarily given pairs such that

(1.13) r(x|j) = r(y|k) = he
To prove the lemma, it will be sufficient to show that

(1.14) vilxles M) = v (v|e. Mo

Suppose that

(L.15) vi(xlgs 2) > v (v[g, M) &

By [26] and the definition of supremum, there exists a s.s.f,, n', say, in

,J}(x) with the property that
(1.16) 3+ poleot ), ) = Ry(g, Ma's 1) > Vlrle, M)

for otherwise, (1,15) could not hold,

Below, we shall produce a s.s,f.

" € <ﬂk(y)
with the property that

(1a7) 1+ ep(8ee "N 3), A) - mes ety ) = 3+ eyl f (), A) - R (e A, ).

-13-



But this, in view of (1.16) will contradict the definition of vk(ylg, Ay ot

and hence imply that

vilxle, 2) s v (vle, A .

Considerations of symmetry then show that the opposite inequality must also
hold so that (1,14) will hold and the lemma be proved,
We make the following remarks which are essentially notational and easily

verified, We have for any given non-negative integers s and t and arbitrary

z eX ,
(1.18) 20£®)(z) = gor(als)
(Lag) ez, vlsst) T x(ale)or(vle) .
Hence by (1.13)
gt = gt®y) = g,

It follows that to-satisfy (1l.17) we need only find a s.s.f. n'" € Jk(y) such that
R (s AMn", y) -k = Ry(g, Aln', x) - § .
Let us choose n" to be any s.s.f. whose definition on Ck(y) is given by

(1.20) n"(_glk v) = n'(;zij v) +k - j, veX .

But then since n' ¢ Jj(x), it follows that n" € Jk(y), In addition, by (1,18),

(1.19), (1.20), we have for all v ¢ X ,

n"(y, v) n'(x, v)
gof k (Zk v) = gof =] (E-j v)
so that

Rk(g, hln"» y) -k

n'(x, °)

EPgoh[n'(Ej ) - 1+ py(gef I (§j *)s N1

Rj(gs Kln's x) -3

This completes the proof,
-1l
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v[29] Let H denote the set of all points h € G such that

{(k, y)t (ylk) =hn) 4 @

By [28] (with the possible exception when g § G, of a point h such that g-h=0),
H is for each g € G, A € A , the domain of definition for (e Ig, A). Observe
that since r(x|0) = E%; %}; it foilbﬁs-éhéf

{1.21) (%, %) eH,

Aand hence by (l.11), for each g € G A € A,

(L.22) r((% ¥)|eg, ) = pyles A) - o¥(g, M) .

Lemma 1.4

Let g € G, A € A be arbitrary, fixed, Then for all h € H such that

g-h%O, we have that

r(h|g, N) = r((% %)|goh, A)

Proof

We note at the outset that the right hand side above is defined for all
h € G such that geh$0 and hence that it is defined for all h such:that the left
hand side is defined, namely all h € H such that gehfO,
Let h be an arbitrary, fixed point in H such that gehdO. By [29], there
exists a pair (j, x) such that
r(x|j) =h

and by the previous lemma

r(h|gs ) = }Vj(XIg, A) .

In addition

-15-



gof(j)(X) = gor(x|j) = soh R
and
V. (x,v)-3
gofn(EJV)(ijv) = gohmfn =5 (v), all n € Jj(x) .
Hence by [26] and then [2}]
(1.23) r(h|g, N) = p,(8oh, N) - inf  [R.(g, M|n, x) - j]
0 n € AX j
j
n(x, *)-j
= poleoh, A) - dmf By [n(x; *)-itpgleehef 0 M.

n e j(x) goh

Now let M denote the mapping

M: .<?J.(x) —> (n: 0> 0, P {n<®) = 1, i=0,1]

defined by
M(n) = n(-|n), ne A’j(x)
where
(1.24) a(v|n) = n(Ejv) - i, veX .

M is an onto map. i.e.

(1.25) {n(-

n): n e_aég(x)} = {n:n>0, Pi[n<< ) = 1, i=0,1} .
By (1.24), the second term on the right hand side of (1.23) may be written

. - . n( °|n)
nf EP n n) + p.(gohof s A
n efé}(x) goh (=l I ) ( ]

By (1.25), [22] and corollary 1l.14, this is just p*(geh, A). But by (1.22),

this proves the lemma,

-16-
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* As a notational convenience we now define the function ¥ on G XA by

[30] T8 M) = py(es A) - p¥(8 M) » BE€G, AeA.

We may use this to summarize the results of lemmas 1.3 and 1.4 as follows. For
each g € G, A €A , for each non-negative integer j, and for each x € ¥ , we

have that

(1.26) vi(xlg, ) = rGIDlE N = HeetW ), ).

For convenient reference in the proofs which follow, observe that we

may write
M
Bho» By 2 Ay
(2 e = { . aeA,
' BiMs  F

and hence for any rule (n, an), we have by [12] that for each A € A ,

(1.28) po(gs A) - R(gs hlna (Pn)

A
go[ “'Eon"')"o( 1'Q0(¢n) ) ] + gl[ -Eln~7~1Q1(tPn) ] > gl Z h0+;o"1

Lemma 1.5

Let A € A be arbitrary, fixed. If

(1.29) (s € 6: (g, \) >0}
is non-empty, then it is an interval.:subset of GO which contains the point

(1.30) —_— .
)\.0+7\1
)

If it is not the degenerate interval consisting of this point alone, it is a

-17-



non-degenerate interval. %(¢ , N) is monotonic on the interval to each side

of this point and is maximum there.

Proof

It is first of all easily verified that
(]-'31) ?'((0:1)’ )") = ?((1’0): )") = -1,

from which it follows that (1,299'is of necessity a subset of GO. Conceivably,
(1.29) might consist of the single point (1.30). In this case, the lemma would
be trivially true. Now suppose that (1.29) does not consist of the single

point (1.30). Since by hypothesis (1.29) is non-empty there exists a point

(g5 Ng)
1° 70
* = * ————
g = (gg: 81) + NN
01
and such that
(1.32) (g%, \) > 0.
Now either
KO KO
* > — ¥ &
(1.33) 5 > o, S e

Suppose the first of these inequalities to hold. We will prove below that if

g 1s any point in GO such that

KO
(1.34) W £ g < 8"1‘

then

(e, ) 2 F(e*, M) .

Supposing the second inequality of (1.33) to hold, a strictly analogous

argument (not repeated) leads to the result that

-18-
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et

. :AO / . o ' ‘ .
g < ‘.31_5..%—43; ’7" T8, A) 2 g%, N} .
But i view of (1.32), the above results preve the lemma,
Thus, suppose the fizst inequalu:y of (1.33) to hold. hat

0<e<r(g*, )

- By [30] and corollary 1.1, we have that;

Te*, A) = swp [po(s*, h) - x(g*, lln)] -
n>0 ‘

where sup 1is taken to dgmote the supremum ever all positive s.s.f,'s such
~ n>0 A .

that Pi{n <w}el, 150,1, ‘Hence there exists a pésitive 8.8.F, a', say,

such that

 .~(‘1».35)‘ | ©O<HE M)-e < (et M) - (s, Aa') .

By corollary 1, 13 and ( 1.28) and our assumption that the first: 1nequa11ty of ..
© {1.33) holds, the right hand side of the above inequality may be writte.n '

: "‘ . . " " 5 N . ' “ : - ' ) \
(1-8})[-Bga' + xofleqo(vg.,g* .,,\))1 + z{[-ﬂlé x_lql(vg..,s* ,x.’.-} >
where qu, e is agy t.d. f. for n' which sa:iafies (111) er (1v) of eo:ollary

1.12, By (1.35), the above expresa:l.on is ponitiva. But

0

. 'aim:‘.e n' 1s a positive s.s.f. Moresver g¥ « G, It follows ‘that

' . . ‘
-Egn' Ao (1-Qu(9%e 3D > 0. |
It now becomes clear that if g is any peoint ef Go which satisftes {1.34), we

must have that

Pole*s A) - R(s*. xln') < 90(8, A) - R(s, Nnts @% 63) -

-19-
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By corollary 1.13 the right havd side ef the above inequality is bounded above

by

90(80 A} - R(g, Mn') ,

and this in turn is bounded above by F{g, A). Thus, by (1.35) we have that
et 2)-e < Heon) .

Since € > O may be a:ﬁit.mrny small, the desired result follows.

Lemma 1.6 ‘ ) ,
Let A ¢ A be arbitrary, fized. Then F{(-, A) iscon&innmsmc'(m

sidedly at the endpoints of G).

Proof
For i=0,1, let S,, denote the rule {n, 9, ) defined by
n(x} =3, vn(x)‘.’é:--»ig allxeX.
Then for all g e G,
Blgo MSy,) = Mg, Ao,
so that for all g € €,
(1.36) 1= p*(go ) s min R(g, Asyy) = 1epy(es A).
A »1
It then follows thae

(137) -1 2 (g, M) s -l+p (g, M), allge6.

Sinee p‘o(g, A) tends to zero as g tends te either endpoint of G, we have by
the above inequality and (1.31) that .?'(o, A) is one sidedly centinuous at tha
endpoints of G,

Now recall again that by definition [30) snd cerollary L.lh,

(1.38) He. 2) = sz lpglss 1) - R{g, Am)], allgss,
n

~80w



where sup denotes supremum over all positive s.s.f.'s such that Pi[n <w} =1,
n>0

i=0,1. In addition, we observe for later reference, using (1.28) and corollary

1.13, that if n is any given s.s.f. in the above class and if g', g" are amy

two points in G such that either
(1.39) 81> 8] S xol(xo+x1) or g, 8] = AN S
then the following inequality holds.

(1.50)  |ey(g's A)-R(g's A|n)-[py(8"s N)-R(g", N[n)]] = (Aj#\ +E n+E.n)|g;-g}] .

Let g¥* be an arbitrary, fixed point in Go such that
g% 4 (Mg Ag)/(AgHhy)

We will show that 3(°*, A) is continuous at g*., It will then remain only to show
that (¢, A) is continuous at (> ko)/(ko+x1), for the lemma to be proved,

Let € be an arbitrarily given positive number. To show that %(-, A) is
continuous at g¥*, we need only show that there exists a number Se > 0, with the

property that if g', g" are arbitrary points in the neighborhood

(1.41) (g € Gozlgl-gfl <81 = N(g*), say,
€
then
(1.42) #(s's A) - F(g", V)] < e.

By corollary 1.1k, we have that corresponding to each g € Go, there exists

a positive s.s.f. ng, say, such that

(1.43) R(s, klng) < p*(g, A) + €/2, allgec®,
i.e., by [30], such that
(1.44) P(g, M) - €/2 < py(g, A) - R(g, Mny); - allg e c° .
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By [12] and corollary 1.13

goEong+g1E1ng £ R(g, k|ng), g € Go, ?
and by (1,36)

p*(g, N) = 1+po(g, A) < 1+, , g € GO,
so that by (1.43)

BF P B 1R < 1 f Mtel2, se ¢”.
Hence

Eong+E1ng < (1+x1+e/2)/gog1, g € GO.

If we now restrict our consideration to just. those points g ¢ GO, for which
(1.45) gf/2 = g = (+g})/2,

we then have for all such g, that

(1.46) xo+x1+EOn.g+E1ng

=
< ho+h1+h(1+k1+e/2)/gggf K , say.
Let

€

5 = %min[e/2K_, gg, gf, [gi-xq/fxo+xl)ll .

Note that with this definition of 5, the neighborhood N(g*) given by (1.41)
is an interval subset of GO which does not contain the point (hl, N )/(x 1)

In addition, each of its points satisfies (1.45) and hence (1.46). Finally, if

g', g" are arbitrary points in N(g¥)

(1.%7) lgj-gyl s 25, s e/X_ .

Since (1.39) must hold for g', g", we have by (1.40), taking n=n_, that

po(8's M)-R(g"s Anyi)-leg(e"s M-R(g" Mn )] s (Agrnj+Eq, +E;n ng+)|e;-¢]l

=22
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s

By *(1.46) and (1.47), the right hand side of the above inequality is < €/2,

Hence
Po(8's M)-R(g's Mnyi) < (e, M)-R(g", Anyi)+e/2 .
By (1.44) and (1.38), we then have that

T(g's N) < F(g", AM)+e .

But g', g" were arbitrarily chosen from N(g*). Hence the above inequality with
g' and g" interchanged must also hold. But‘then the two inequalities taken
together yield (1.42) which is the desired result.

Continuity at (hl, xo)/(k0+hl) may be proved by showing one sided continuity
for each side separately using devices strictly analogous to those used above,
This completes the proof,

An alternative proof of lemma 1.6 is to be found in E, L. Lehman's book,
"Testing Statistical Hypotheses", page 105, as part of a proof for the Optimality
Theorem which is given there, This proof makes use of the pfoposition that

a function defined, concave, and bounded below on an open interval is continuous

there, A more general statement and proof of the above proposition, put in

terms of convex functions bounded above, is to be found in Hardy, Littlewood,

and Polya's book, "Inequalities', proposition III, section 3.18, page 91.

Lemma 1.6 (alternative proof).
Let A € /A be arbitrary, fixed. Then 7(*, A) is continuous on G (one

sidedly at the endpoints of G).

Proof

Proof of one sided continuity at the endpoints of G is trivial. (See
previous proof.) We show that p*(°*, A) is continuous on c®. since po(-, A)
is continuous there, this will suffice for the result, Clearly, by corollary

1.14 and [22]
-23-



(1.48) o*(g, \) 2 0, allge .

To show that p*(*, A) is concave on Go, let h, g', g" be arbitrary, fixed

points in GO and write
hig = (h;gy, hygy), 1=0,1,
for any fixed g, We need only show that
(1.k9) p*(hyg'+h.g", A) 2 hop*(g', A)+h p*(g", A).
The left hand side of this inequality is by [15] and the definitions on the
bottom of page 3

] 7"
inf y R(hog +h,g", An, ¢n) .
(n’ (Pn) € o

By [12] and (1.48), this may be written

inf [hR(g's N|n, @) + hR(g", A|n, @ )] .
(n, 0) e.d,

But this infimim is bounded below by the right hand side of (1.49). 1In view
of the proposition to which reference has already been made, this proves the

lemma,

Let
[31] b: A= G, atA > G

denote mappings defined as follows. Take

bl(%.) = sup{glz Osg, s )"O/O"Oﬂ"l)’ ?(g, A) =0},
al(}\) = inf{glz "o/("o+"1) =g =1, T(g, \) = 0} ,
o) = 1-by (), ag(h) = 1-a;(n)

b(A) = (by(A), b, (N)),  a(d) = (ay(A), ;M) .

=2l



Concerning these mappings, we are now in a position to state the following

theorem,

Theorem A

Let A € A be arbitrarily given. Then

(1.50) 0 <b,(A) £ a,/(NgN,) 5 85(N) <1,

(g, A) s 0, all g e G

50 —» {
(M) = (hys M) (Ng#ny) = a(r)
(N Ap)
(1.51) ¥ 55— *o+*1 N 20 = F(b(A), &) = 0 =F(alr), A)
>0 =—> 0<b (x) <A /(x ) < al(h) <1
N
Proof

The proof follows immediately from the lemmas which precede.

-

For each g ¢ 6 and each A € A ;- let

R 8Py (M) 83, (M)
[32] B(g, A) = W A(g, N) = Ela_o(ﬂ .

Corollary Al

The following three statements are equivalent

(1) et (x), 1) > 0.

(1) b, (V) < (goe P (x)) < a,(0).
(111) B(g, M) < £),(x)/£,,(x) < Alg, ).

If we take j=0 in the above corollary, we get
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Corollary A2

The following three statements are equivalent,
(1) 7(s, A) > 0.

(i1) bl(x) <g < al(x).
(ii1) B(g, A) < 1 < A(g, A).

Corollary A3

MM

Ko+k1

AeA, s1 =—>%(g, N\) =0, allgedg@G.

Proof

This follows from (1.51) and (1.37). Otherwise, we may observe that

(N> NS) AN
1 (0] 0’1
po(gs A) s Do( —XB;XI—— s N) = XB;XI s B8€G, NeA .

The desired result now follows from (1.37).

2.. Bayes g, A Rules

We define below a family of s.s.f.'s
n*(*|g, \)
indexed by points in G XA . First, we define
(2.1) n*(x|g, \) = 0, whenever ¥(g, A) s O.
For g, A such that

(2.2) ¥(g, N\) >0,

we take
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T e 1> ?(gof(\")(x), A) >0, k=1,2,...,3-1,

(2.3) n*(x|g, \) = ‘ﬁ(gof(j)(x), A) 50, 3=1,2,....

©, ’f(g,f(‘é)(x), A) >0, k=1,2,,.... .

Observe that for arbitrary g, A which satisfy (2.2), the complement of the set

on which the abpve definition has meaning is a subset of

(2.%4) xeX: foj(x)+£u(x) = 0, for some positive integer j} ,
which is null upder heth PO and Pl. We ghall assume some arbitrary definition
of n*(*|g, M) on thig complement conasistgnt with the fact that it must be a

s.s.f. . We rvemark that each member of the abpve family does in fact satisfy

the conditions of definitiqn [7].

By corollary A3 and (2,1), we pbserve that

(2.5) AeA, — sl ==> n*¥(x|g, A\) =0, allgegG.
B ;017\1 IO}Y

In addition, we nqte for later reference the ‘fact that

(2.6) w*(x]g, A) <o =—> e EIE N 5y <o,
Now define
[34] o*(*|g, N)
to be for each g € G, A € A , a t.d.f. for n¥*(+|g, N) which satisfies
8o
1, rl(;cln*(xlg, A) > W
(2.7) o*(x|g, M) = { .
0, < .
By (2.1), [27], and [18], we then have that
A

(0]
fP*(XIg, N) =L, 81 >ﬁ;\-1'
(0]

?(gs }‘-) £0 = .
(P*(xlga ») 3 0, <
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To complete the definition for those g, A such that n*(x|g, A) = 0, we define *

(as a matter of later convenience)

CSTRSY. (M )
—_— 2 = _ <0,
(2.8) o*(x | X0+K1 , N) = 0, whenever r( ko+kl ,AN)=0

For g, A which satisfy (2.2), the formula (2.7) leaves @*(x|g, A\) undefined

for some: x in the set (2.4) and for all x such that n*(x|g, A\) = ». We shall
assume some arbitrary definition of @*(x|g, A) for these x's consistent with
the fact that @*(°|g, A) must be a t.d.f. for n*(-|g, \) and will show later

that the set of all such x's is null under both P. and P, for ‘each pair g, A

0 1
which satisfies (2.2). h
We show now that
T(g, N) >0 , .

[35]

[36]

and hence that (2.7) defines @*(-|g, A\) uniquely on the complement of the above
mentioned set, for each pair g, A which satisfies (2.2). But the left hand
side of (2.9) implies, by (1.51), (2.6)? and corollary Al that

fn*(xlg, K)(x))l Mo

(go s
Aoty

and some slight manipulation shows this to be equivalent to the inequality on
the right hand side of (2.9).

Finally, we take as a short hand notation B

s*(g, N) = (n*(-|g, N), 9*(-|g, \)).

The family of Sequential Probability Ratio Tests.

We define below a family of s.s.f.'s

ﬁ( ° |u: V)
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[37]

indexed by the set of all number pairs (u, v) which satisfy the inequality
0<u<v.
For 3=1,2,...., take
A(xfu, v) = 3,
whenever
u< flk(x)/fOk(x) <v, k=1,2,...,j-1,
(treat this condition as vacwous for j=1),-and either

foj(x) = 0,

or
ij(f‘) > 0 and the inequality u < flj(x)/ij(x) < v is.violated,
Take
i(x|u, v) = o,
whenever

u <'f1k(x)/f0k(x) <v, g=1,2,.... .

We remark that each member of the family [36] is now uniquely defined on X and
satisfies the definition [7].

Now define

&("|u, v)

for 0 < u < v, by taking

$(xfu, v) = 0,
whenever

flﬁ(xlu, v)(x)/foﬁ(xlu, v)(x) sTu,
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[38]

[39]

and otherwise, take

B(x|u, v) = 1.

It is easy to verify, according to [9], that §(-|u, v) is a t.d.f. for a(e|u, v).

Now take
S(u, v) = (8(-|u, v), $(-|u, v)) .

These rules will be called sequential probability ratio tests.

For notational convenience in use below, we take

Q(u, v) = Q®B(-]u, v))

Lemma 2.1

For each number pair u, v such that 0 < u < v, we have that

Pi[x: A(x|u, v) <} = 1, i=0,1 .

In fact, the stronger result holds that

Ein('lu, v) <o, i=0,1 .,

Remarks on proof

Proof of the above lemma rests upon the assumption that the densities
fo and f1 are positive and unequal on a set of positive probability unger both
hypotheses, and on the assumption that Xl,Xe,.eoo are independent. A readable
proof is given in "A Note on Cumulative Sums'" by Charles Stein, A. M. S.

volume 17 (1946) pp. 498-499.

Lemma 2.2

Let g ¢ GO, A € A be arbitrary, fixed such that

(g, N) > 0.

Then outside of a subset of X which is null according to both P0 and P1 we
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" have that
~N
S*(g, }") = 'S(B(Sa 9P A(g, A) o,
where B(g, A), A(g, A\) are defined by [32] and

(2.10) 0<B(g, \) <1<a(g, \).

Proof

By corollary Al, (2.3) and [36]
n*(xlgs >\) = 'ﬁ(x]B(g, >\-))

for all x outside a set which is null according to both PO and Pl. Thus,

by lemma 2.1,
Pi(x: n*(x|g, A) < =} - 1, 1i=0,1.

But this means that the right hand side of (2.6) must hold for all x outside of

a set which is null under both Py and P,. Hence by cofollary Al, (2.7), [37],

o*(x|g, A) = B(x|B(g, 1), Alg, N))

for all x outside such a set. The inequality (2.10) follows from corollary A2,

Lemma 2,3

Let u, v be an arbitrarily given pair of numbers such that

OK<uxl<Kuv,

Then
(2.11) ao(u, v) s 1l/v, ﬁl(u, v) S u.
(2.12) 0<u <u = 31(“1’ v) s al(u, v), v,z v = Qo(u, vl) s ﬁo(u, v).
'dl(u', v')=0, 0<u'<1<v'
1) G v-o = {

ao(u', v) = ao(u, v) >0, 0<u'<1,
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Qo(u', v')=0, O<u' <i<v'

) G w-0 = { A
Ql(us V') = Ql(u’ V) >0, vi>1

The proofs for (2.11), (2.12) are standard and straightforward and will
not be given here. We shall prove (2.13). The proof of (2.1k4) is strictly
analogous.

We first show that

il
o

(2.15) qy(u, v) = 0 <= P (x: £,(x)) > £ (x;) > 0)

For suppose that the right hand side equality holds. Then

fl(xl)

Pl(x: 0 s W < 1] = 0,

But for arbitrary u', v' such that 0 < u' < 1 < v' and for each positive integer

j, we have that

Pl[x: A(x|u', v') = 5, B(x|u', v') = 0}

flj(x) o fl(xl)
Pl[x: 0= W<u'} = jf Pl[x: 0 § -fT)Til—)_< 1},

A

and hence that
N o0
Ql(u', v') = jZl Pl{x: a(x|u', v') = i, ®(x|u', v') =0} = o.

On the other hand, suppose that the right hand side equality in (2.15)

does not held, i.e., that

P, {x: fo(x1) > fl(xl) > 0} > 0.
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Now

£ (x,) " L @)
(2 0 < £(x;) < £(x,)} = bxz O <?;Ti'17< 1) = j}il(x; Wl < ;"1 s ul L

where we interpret

Since the P1 probability of this dis joint union is positive, P1 must agsign
positive probability to at least one set in the union. That is, there must

exist a positive integer N and a positive number & such that

1 1
T (%) §

Pl{x: u < ?arizy s=u ] =8,

But then, because the sequence Xl,Xa,.... was taken to be independent,

ORI N
Pl{x: u <m§ u ’ k=1’2’.¢0’N] = 8

0''k
But
1 1 k
uﬁ:T < fl(xk) = uﬁ k=1,2 N = N-1 < flk(x) s u§ k=1>2 N
= > =Lyl yesey Y = s 15 y0eey
Eo(xy) ey
_ £1,(%) £, (%)
u<-f—5-k—(;y<v, k=1,2,...,N-1’ and W§ Ue
Hence

al(u, v) 2 P, {x: f(x|u, v) = N, (x|u, v) =0) 2 8" > 0.

This proves (2.15) and with it the first half of our result,

Next observe that
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(2.20) E. log(f

The proof of this is analogous to that of (2.15). Thus by (2.15), (2.16),
(2.18), (2.19) and by (2.17), the proof is complete.
We shall have occasion (lemma 3.5) to use the following particularization

of a more general inequality.

Lemma 2.4

Let u, v be an arbitrarily given pair of numbers such that 0 <y <1< v,

Then

(1-Q,(u, v)) log u + (v, v)(log v + n)
E log(f11/f01) i ?

Edﬁ(-lu, v) =z

where 7 is a non-negative constant which is independent of u and v,

Remarks on proof

The above inequality is a special case of A:78, page 172 of A. Wald's
"Sequential Analysis", 1 (denoted ne in that text) is a gpecial case of A:T3.
The proof of the inequality is given in the above reference and will not be

repeated here,

We remark that

) <o.

0] 11 01

This follows, since clearly,

Eo(fll/fOI) s1,

and because the expected value of a non-negative random variable (which is not
congtant with probability 1) is less than the log of its expected value.
f11/f01 can obviously not be equal to a constant larger than 1 with PO
probability 1, 1In addition it cannot be equal to 6 or to 1 with PO probability

1 since we have assumed that our two densities are positive-and ungqual omn a
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set of positive probability under both hypotheses, Finally‘fll/f01 may
conceivably be equal, with Po probability 1, to a positive constant less than

1, but in this case (2.20) holds trivially.
For use in the proof of theorem B given below, we remarkrnow that by
(2.3), (1.26), and [26], when
?‘(33 A) >0
we have for any positive integer j that

(2.21)  ox(x|g, A) = ] <= |

K
”k+p0:(gof( .)(x),‘x) 2,_1.1 ehjk(x) R (8, A|n, x)

ﬁ%@duhw,Msnemfk)%w,mmx>
7

Theorem B

Let g € G, A ¢ A be arbitrary, fixed. Then S*(g, A) is a Bayes g, A

rule in

4 = {(n, ¢ ): P, {n<w) =1, i=0,1}
and hence it is a Bayes g, A rule in the class of‘all rules,

Proof

Observe first that by lemmas 2.2 and 2.1,
(2.22) - S¥(g, N) e 4.
Hence by (2.7), corollary 1,12 and 1.13,
R, Ms¥(s, 1) = R(s, Mlak(e, 1))

Thus, to show that S*(g, N) is a Bayes rule in d, we must by corollary 1.1k,
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show that

" R(g, Nn*(g, A)) = a{s, Mo

Suppose that

po(gs A) s p*(ga.)\)s

A

i.e., that ¥(g, A) s 0. By (1.2)

8(8, A) = By(8s M)

lIBuI:.t:hen also by (2,1),'
n*(x|g, A) = 0
so thaﬁ by [22]
R(g, M|n*(g, A)) = o,(8, M)o
It follows from the above argument that the thédrem ib ehtapijshed for aIl

g, A such that P(g, A) = 0.

Now suppose that
Poles A) > p*(g, M),
i;evn, that ¥(g, A) > 0, Then by (1.2)
(2,23) o(gs 1) = p*(g, M)
By (2.22),
| Pg{xs 'n'!;(x[g. A) = ®} = 0,
Thus, t;sing
o* = n*(o|g, &)

as a notational convenience which we shall continue for the remainder of this

proof, we may write



(2.24) - R(g, M[a*) = 1im = f , [ka:po(zof(k.), \)lae,
. j = o k=1 (k) .

Weé shall now suppose that: s*(g, A) is not:a Bayes gs A rule im’ .J a.nd ghow

‘that this leads te a cmntradinttm, If. S*(g, x) is. not a Bayes g, A rule in ,J’, -

there must in view of '(2,23), exist a pmsitive 8.8.f, n n, sa_.y, in f ?.Aunh that -

(2.25) e 1) < R(g, xlnl) < R(s, Jn*)

By lemma 1.2, we have

(2026) R'(g*’_l)“l‘nl) = EP R]_(g.» Llnl_: °) 2 f R‘-l(‘&t'vk'n.-li' o)ano-
8 {a=1) |

Now
(%=1} = {mwt1, m=1) + (n%1, n, > 1}, -
| But by [24], |
(2.27) n(x) =1 => R (g, Maj, =) . 1+p,(2o£ 0 (x), 2).
By (2.21)

n%(x)ﬁe:: 1 => . G‘injl(x) Rl(g, }.In, x) z 1+p (guf( )(x) L)

In addition, it is clear that

0 (x)>1 = R(g, A, x).2  inf Ri(s, A|n,x).
ne X : ‘
1
Hence
(2.28) . n*(x) =1, n (x) >1 = Rl(g, }‘lnl’ x) 2 1+po(gof(1)(x), A

By (2. 25) (2.26), (2 27), (2028), it follows that

(2.29) f [»1+90(89f(1), A)lee, < R(s, xlni) < R(g, A|u*)
(m*=1} '
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g Let
K= {x: n¥x) > 1, nl(x) = 1)}

and write

2300 Rl = [+ [ ) ry(e Al e,

K - X-K
By (2.21)
n*(x) > 1 =s inf R (g, Mn, x) < 1+po(sof(1)(x), »)
ne€ 4yl(x)
But then by (2.27),
(2.31) x ek => inf R,(g, Mn, %) <R (8, A|n;, %)
n € ‘?l(x)

(2.31) implies that there exists a s.s.f. n,, say, such that

ny e [ .,Jl(x'}

®x €K
‘and such that
(2.32) R,(g; Mny, x) <R(g, Mny, %), allx ek
and which in addition may be arbitrarily defined (consistent with its being
as.s.f.) onY-K, In pafticular we shall take

ne(x) = nl(x), all x ¢ X -K,

so that we have

(2.33) R, (g, Mny, x) = Ry(g; Mny, %),  allxe XK.
Thus by (2029)s (2'30)9 (2031): (2'32)3 (2033): and lemma 1.2,
(2.34) R(g, Mny) s R(g, A|ny) <R(g, A|n¥).
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To obtain a lower bound for R(g, h|n2) analogous to that obtained for

R(g, x|n1) in (2.29), we proceed as follows. By lemma 1.2
2
(2.35) R(g, M|n,) = E; R (g, Mn,, *) 2 = R (g, M|n,, )dP_.
2 2 2 g
8 =" {n*=k)

Now we may interpret {n*=1} as a éylinder subset of X having either a one-
dimensional Borel set as base or a two-dimensional Borel set as base. Hence

by lemma 1.2,

RQ(g’ Kln ’ ')dPg = Jf Rl(g, Kln ’ ')dPg
{n*=1} {n*=1}

Now {n*=1} C ¥X-K and hence by (2.33), (2.28), (2.27)
(2.36) n*(x) = 1 => Rl(g, x|n2, x) 2 1+po(gof(1)(x), Ao
In addition, since
ne(x) z 2, allx e X,

we may write

{n*=2} = {nfe:z, n2=2} + {n').‘=2, n, > 2}.
By [24]
(230 nyx) =2 = By(s, Mg, %) = 2angleet D), ).

Also by (2.21),

(2)
n*¥(x) = 2 inf R, s Aln, x) =2 2 of X), s
(x) = AR (8 Mn, x) 2 2+p (8o £/ (x), )
so that
(2.38)  ni(x) = 2, my(x) >2 = Ry(8, Alny, %) 2 2ep,(eet (P (x), 1).
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Tt:us, by (é.3h), (2./35), (2.36), (2.37), and (2.38), we have
2 _ . |
z f [k+po(gof(k), N)lae_ = R(s, Mny) = R(g, A|n;) <R(g, A|n¥)
=1 (ki)
n

We may now, proceeding in the same ‘manner, establish by induction the
existence of a sequence L YL PRI of s.s.f.'s (the first two members as

given above) such that for each positive integer b

J ‘ : .

z f [k+po(8°f(k): }‘-)]dps S R(g: hlnj) s R(g, )"|n1) < R(g, }"In*)-
k=1 {n*=k} . ‘

But then, taking the limit of the sum at the left as j —> = we arrive,

by (2.24) at a contradiction.

Lemma 2.5

p*(g, N) = 1+ Ej p(sof(l). N), 8eG heA.
: g

Proof

Consider first, for each x ¢ X, the mapping

M {n: n>0} > (n: n2z 0)

defined by

Mx(n)=;('|na x): n>0,x¢X,

where (see definition [23])
(2.39) n(v|n, x) = n(xlv) -1, allveX,
and observe that for each x ¢ X, M_1is an onto map. i.e.,

(2.40) (a(*|n, x): n >0} = {(n:nz 0}, for each x ¢ X.
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Let g € G, A € A be arbitrary, fixed. By definition [2k] and (2.39), we have ’

for each x € X and each positive s.s.f. n suéh that Pi{n < »} = 1, i=0,1, that

(2.51)  Ry(g Alm ) = 1+ R(gotM (), AR(-|n, %)
By (2.40), this means that

(2.42) inf Rl(g, AMn, x) = 1+ §(gof(1)(x), N allx ¢eX ,
n>0 :

where inf is taken to denote infimum overall positive s.s.f.'s n such that
n>0 ; :

Pi(n <} =1, i=0,1. It then follows that

(2.43) Ep ' inf R,(g, A[n, x) = 1+ E, p(g.f(l), A).
g n>0 g

Let ny be an arbitrarily given positive s.s.f. . By lemma 1.2,

R(g, AMny) = E, Ri(g, A|ny, ») 2 E;  inf R, (g, Aln, o).
g g n>0

Hence

(2.1k) p*(g, A) 2 E,  inf R,(g, Aln, -).
g n>0

On the other hand, let € > O be an arbitrarily given positive number.

We can find corresponding to each real number x., a s.s.f. n , 8ay, such
1 Xq,€

1°
that
(2.45) R(gaf(l)(x), x|nx1,.€) < p(g0f(1)(x), \) + €, all x e X .
Now define the positive s.s.f. n(e), by
n(e)(xlv) = 1+ nxl’e(v), al}‘real x,, veX.

=ho-
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* By (2.%9)
(6)’ x).

%€ a(*|a

Hence, using (2.41), (2.45), and (2.42), in that order, we have that

(€) .g(1)
R (g, An*®/, =) = 1+ R(gof "(x), "l"xl,e)
(1)
< 1+ p(gef'"’(x), N\) + e = inf R,(g, A|n, x) + e.
. . n>0
But then integrating the extreme left and right hand sides above over X with

respect to Pg, we have by lemma 1.2,

R n(be) < -inf R.(g, n., <)
R(g, A[n'®’) E1>8 inf (8 N[m, ¢) + e

Since
o*(g, A) 5 R(g, A|al®)
and € > 0 is arbitrary we have

p*(g, N) s inf R,(g, A|n, ).
EPg n>0 1 ’

But this together with (2.4k4) and (2.43) proves the lemma.

We now define a family of positive 8.s.f.'s

[40] ﬁ("go 7\)
indexed by points in G X A , by taking «
(2.46) ‘ﬁ(xlvlg, A) = 1+ u*(v|gof(1)(x), a)

for all real x, and each v ¢ X'. Note that the right hand side above depends

on x only through its first coordinate %, 80 that this is in fact a valid definition.
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If we use the definition [33], it is immediately seen that ﬁ(xlg, A) is
defined by the right hand side of (2.3) for all x ¢ X and for all g € G, A\ e/
without restriction. Thus, in particular, we have that

(2.47) fi(x|g, A) = n*(x|g, \), all x ¢ X , whenever ¥(g, A) > 0,

and by (1.51)

KO+A1

s N)s0 =—> fi(x|g,N\) = 1, allxeX, g €G.

Define

[41] $(-|g, A)

for each g € G, A € A by
$(x1v|g, A) = CP*(Vlgof(l)(x): )

for all real Xy and each v € X . It is easily shown, using the definition [34]

that $(+|g, A) is for each g € G, A € A, a t.d.f. for fi(-|g, A) which is

optimal with respect to g, A in the sense of corollary 1.12. Moreover

(2.48) o(x|g, A) = o*(x|g, X), all x.e_x , whenever $(g, ) > 0.
Let
[k2] S(g, A) = (8(-|g N), 3(<]gsA))s g8€G AeEA.
Lemma 2.6

Let g € GO, A €A be arbitrary, fixed, the latter such that

(N N)

A o+>~ 1

(2.49) - , N) > 0.

Then outside of a subset of X which is null according to both P-O and P1
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)

§(s, ) = S(B(g, 1), Alg, A)),
where B(g, \), A(g, \) are defined by [32] and

(2.50) 0 < B(g, A) < A(g, N).

Proof

By (2.47), (2.48),

g(g, A) = 8%(g, A), whenever T(g, A) > O.

Hence for such g, A the proof is immediate, following from lemma 2.2. On the
other hand, in view of the remarks which follow definitions [4O] and [41], the
proof for any g € G0 and A ¢ A satisfying (2.49) is strictly analogous to that

for lemma 2.2, The inequality (2.50) follows from the last implication of (1.51),

the definitions [32] and the fact that g ¢ GO.

Lemma 2.7
R(g, M(<|gs N)) = p*(g, \), forallgeG, AeA.
Hence we may write

(g, N) = pygs ) - R(g, A|H(+[g, A)), forallgeG,AeA.

Proof

let g € G, A € A be arbitrary, fixed. If we use the notation (2.39) of

lemma 2.5, we have by (2.46) that for each x ¢ X and each v ¢ X,

]| A), x) = n¥(v]gettP(x), )

and hence by (2.41) that

Ry(8, MA(+|g, ), %) = 1+ R(getl(x), A[né( |0 M (x), 1)),

By theorem B, we then have that
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R (g, AR(-|g. M), 3) = 1+ p(gesP(x), ).

If we now integrate both sides above over X with respect to Pg and use lemmas

1.2 and 2.5, we get the desired result.

Corollary 2.7

(g, +) 18 uniformly continuous on A , uniformly for all g € G.

Proof

Let € be an arbitrarily given positive number., Let A', A" be arbitrary

points in A such that

1 1
(2.51) ‘Ixé-xgl <3€ I"i""i' <ze .

Then for an arbitrary g € G we have by (1.28), corollary 1.13, and the above

lemma, that
T(g, M') < py(gs N") - R(g, N"[6(<[g, ') + e
But by (1.38)

Po(8s A") = R(g, N"[H(<[g, A')) = T(s, A").

Hence
,?(g’ >‘-') <.?(g, 7\") + €,

But A', A" were arbitrarily chosen to satisfy (2.51). Hence the above inequality

holds also with A', A" interchanged. This yields the desired result,

Theorem C
Let A € A be arbitrary, fixed.
(1) 1f

(2.52) 0sg < bl(k) or al(h) <g s1,
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%
then

7(g, M) <O,

(i) 1f
o Moo M)
(2.53) 7( W s N) >0,

then 3(*, A) is non-negative and strictly monotone on the interval
(2.54) (g € G: bl(h) sg s al(x)}

to either side of a maximum at the interior point (kl, ho)/(ko+h1).

Proof

Note that to prove part (ii), we need, in view of theorem A and lemma 1.5,
prove only the strict monotonicity.

We will prove below that if g', g" are any two distinct points in G such

that

(2.55) Hg'sA)z 0
and either

(2.56) M/(gthg) s 8] <8 or 8] <g] s A /(Ag),
then

(2.57) ", N) > (', M)

But then both parts of the theorem will follow. For by corollary A2, if (2,52)

holds, then

?‘(g: )\) £ 0.

Now suppose that (2.52) holds and 7(g, A) = O. Choose g'=g so that (2.55) is
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satisfied and take g"=b(A) or a(\), according as g < bl(h) or g, > al(h),

so that (2.56) is satisfied. But then (2.57) holds and hence either
(), A) >0 or F(a(A), A) >0

which contradicts theorem A. On the other hand, if (2.53) holds and g', g"

are distinct points of (2.54) which satisfy (2.56), then (2.55) must hold by

theorem A and corollary A2, But then (2.57) holds which is the desired result,
We now prove that (2.55) together with (2.56) implies (2.57). Suppose

the first condition of (2.56) to hold. By (1.28), Corollary 1.13 and lemma 2.7,

we have, taking
Qi(gs )‘*) = Qi(&;('lg’ }‘-): i=0,1,

that

T(g's N) = gl-Em(-|g", A) + A (1Q4(8", M) + gy [-Ef(-]g', &) - AQ (8", M)].

Since fi(+|g', A) 1s a positive s.s.f.
-EA([g', A) - AQ (8", A) < 0.

But then by (2.55) and the féct that this implies that g' € G,
EH(«[g"s M) + A (1-Qy(g"s A)) > 0.

Hence again using (1.28) and since the first condition of (2.56) is being taken

to hold
¥(g's N) <py(e"s N) - R(g", N[B(*[g", N)).

But by (1.38) the right hand side above is bounded above by 7(g", \). Hence
(2.57) holds. A strictly analogous argument yields the identical result

under the second condition of (2.56). This completes the proof.
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3. Invariance and Optimality Property of the Sequential Probability Ratio Test.

Lemma 3,1

The functions a and b (defined by [31]) are continuous on A.

Proof

We shall first suppose that X is an arbitrary fixed point in A such that
N
r((ﬁl, Xo)/(XO+X1), &) = o

and show that a and b are continuous at \. By theorem A, the above inequality

implies that
0<b(R) = R/(Rgky) = a®) < 1.
Let ¢ be an arbitrarily given positive number and choose g', g" to be any two
fixed points in Go such that
gi < Xo/(x°+x1) < g']'. and g']'.-gi < e.
By theorem C, it then follows that
Fg's N) <0, F(g", R)<o.

By corollary 2.7 and the continuity in A of the ratiorxo/(ho+h1), there exists

a positive number Se such that whenever

Ing=Rol <8, 5 INRi| <58,

then

T(g's N) <0, T(g", A) <O and g] <A J/(AyN) <g] .

But then by theorem A we must have that

L "
g s b1(>~.) s al(x) sg] .
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Thus

IRy | < B 10,1 => |a;(M)-a;(R)], [b;(N)-b,(R)| < e.

Now suppose that A € /A is arbitrary, fixed such that

?((xls xo)/(xo"‘xl), X) > 0.

We shall prove that ay and hence a is continuous at K. A strictly analogous
argument, not repeated, holds for continuity of b at . By theorem A, the

above inequality implies that

0< b1($‘.) < al(it) <1,
Let € be an arbitrarily given positive number and choose g', g" to be any two
fixed points in G0 such that

bl(X) < gi < al(ﬁ) < gg and g;-gi < €.
By corollary A2 and theorem C, it then follows that

se's R) >0, ¥g", X) <o.
By corollary 2.7, there then exists a positive number Se such that whenever

In Rl <8, 1=0,1,
then

¥(g's A) >0, 7(g", ) <O,
so that by theorem A, corollary A2, and the fact that gi'< g;,
] n
b, (M) <g <a;(\) <sg] .

Thus

|xi-’):i| <8, , 1=0,1 —> |a1(x)-a1($:)| <e,

-50=
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! Hereafter, as notational convenience dictates, we shall regard each 2 x 2

£

matrix A € A, simply as the two-vector (xo, xl) of its positive components.

Lemma 3.2
Let xl be an arbitrary, fixed positive number, Then
(1) lim a.(A,, A\;) = O, lim  a, (M., N,) =1
A >0 1Y°0’ 71 A —> o 1Vo’ 1
0 0
(ii) al(-, hl) is strictly increasing on (0, =).
Proof

By corollary A3 and theorem A,
A
A 21 = T((A\, A/ (AgA), A) 50 => a (A) = xol(xo+x1)

and this yields the first limit in (i). The second limit of (i) is also

immediate since by theorem A

"o/("o”’d) s 31(7%) <1, allx,>o0.

To prove (ii) we first observe that by (1.28), corollary 1.13 and lemma

2.7, we have, taking

E M) = EE(-|aln), A),  §(A) = q(B(-|a(r), 1)), i=0,1,

that

(3.1)  $(alr), &) = ag(A) - E M (LRLAT - a (W E; (M7 (V)]

Let A\, hg be arbitrary, fixed numbers such that

1 11)
(3.2) 0 <Ay <A
and let

A= (N, xl), A" = (xg, "1) .
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First suppose that
(3.3) '7“(()»1, xc',)/(x(')+x1), A)so0.
Now either
TFa(r'), ") =0
or
(3.4) F(alx'), N") >0 .
If the former inequality holds, then by (3.2), (3.3) and theorem A,
al(h') = x(')/(x(')+x1) < xg/(xg+xi) s al(x") .
On the other hand, if (3.%4) holds, then by corallary A2, we have again that
(3.5) a, (M) <a, (") .
Now suppose that
F((hps NIINGA) S A1) >0
By theorem A, this means that |
T(a(r'), A') =0
By (3.1) and the fact that
)=z 1, i=0,1,
this in turn implies that
1-’60(x') z 1INy > 0.

But by (3.2) and an already familiar argument this means that
0= F(a(h'), A') < pyla(h'), A)-R(a(n"), A"[E(-[a(A'), A™)) = F(a(n'), A")

But then (3.4) holds which means that (3.5) again follows. This completes the proof.
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Céiollary 3.2

There éxists a function

[43] Ng: (0, ®) x (0, 1) —> (0, =)
such that
(15 al(xg(xl, 5), >‘1) = 8, 0<\ <w, 0<5<1.
(i1) For arbitrary, fixed A, >0, Lg(xl, <) is a strictly increasing,

continuous, unbounded function on (0, 1) and

1im xg(xl, 8) = 0.
5 —>0

Lemma 3.3

Let & be arbitrary, fixed, 0 < 3 < 1, Then Kg(', 3) is continuous on (0, ),

Proof

Let A, > O be arbitrary, fixed, Take

1

(3.6) 15 Bpseees
to be any sequence of positive numbers such that

(3-7) j}f:ng = >‘1

To prove continuity of Ag(-, 3) at A it suffices to show that

(308) j li::oo Kg(ﬁj: 5) = ):6()-1: 8) .

By corollary 3.2 and theorem A, we have for each positive intejer j

| (g4 B) e <1
(3'9) h.)o(.(gj’ 8) + gj = al(ho(gj, 8)’ gj) =8 L
It follows that :
(3'10) N())(-(gl’ 8)’ )\.)Oe(§23 8))00--0
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is a bounded sequence of positive numbers. For if it were not, in view of
(3.7), the left hand side of (3.9) would tend to 1 as j —> =, which is
impossible. Hence the sequence (3.10) must have at least one limit point.

Let ¢ be limit points of (3.10). There must then exist subsequences

1’ %

(¢ ), {¢,_1, say,
55

of (3.6) such that

(3.11) 1im 7‘5(55 , B) = %1, lim xg(gt ,8)=1¢

j—> o 3 j—>w 3 2"

By corollary 3.2, we have for each positive integer j

(3-'12) al(Kg(gsj’ 8)’ Esj) =8 = al(hg(gtj’ 5), gtj) .

Now both 31 and $2 must be positive numbers. For suppose, for example that
31 = O. Then by (3.11), corollary A3, and theorem A, there exists N such that
| Ag(Eg » B)
* =
j>N=>0< Xg(gs > 8) <1l=> al(ko(gs ’ 5): gs ) x*(g ,JS_) ¥ E °
h| : h| h| 0 sj sj

But then in view of (3.7)

lim a (h*(g > 8)3 3 ) =0,
j —> o 1V7°0 Sj sj

and this is impossible by (3.12). Since ¢, and ¢, are positive, it follows

from lemma 3.1, that a, is continuous at each of the points.

1

(&1’ xl)’ (Le’ x2) °

But then by (3.12) and by (3.7) and (3.11),



This shows that (3.8) must hold and hence completes the proof,

Lemma 3.k

For all A € /\ which satisfy the inequality

xoxl/(xo+x1) =1,

we have that

Proof

Observe first that

xoxl/(xo+x1) 21 =—> 1/x1 < xol(xo+x1) s (xo—l)/xo .
By (1.37), (1.27), we have for g € G, A € /A , that

Ag -1 , 8 % xo/(xo+x1)

R 181
T(g, A) =

—x +}.o" 1 ’ g °

081

The desired result now follows from theorem A.

Lemma 3.5
Let KO > 0 be arbitrary, fixed. Then
lim a,(A) = 1, 1im a,(A) = O.
1 1
hl —> 0 hl —> ®

Proof

1f KO = 1, the lemma is immediate. For by corollary A3 and theorem A,
we have that
(3.13) a;(N) = A/ s

for 211 xl > 0.
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Thus, suppose that xo > 1, In this case, corollary A3 and theorem A imply
that (3.13) holds whenever O < hl £ 1, But this means that again the first

limit to be proved holds true,
It now remains only to prove the second limit for arbitrarily given

ko > 1. Let

(3.18) s bpreees

be any sequence of numbers such that

(3.15) E. =2 N /(0n,), §=1,2,..., and  lim E, = o .,
h| 0 Y01 > w j

To prove that the second limit of the lemma holds, it suffices to show that

(3.16) lim a,(A., £,) = 0.
jo> o 1707

Because Ny > 1, (3.15) implies that for each positive integer j,
xogj/(xo+gj) z 1
and hence, by lemma 3.4, that for each positive integer j
(3.17) 0 < b (A, gj) s xo/(xo+gj) s a; (N> gj) s (Ag-1)/Ay < 1.
It follows that the sequence

(3.18) a (s §1)s 3,005 B)seeens

has at least one limit point in [O, (ko-l)/ho] and that every limit point of
this sequence must lie in this interval.

Suppose that the above sequence has a limit point ¢ such that

o< ts (xo-l)/xo .

We will show in what follows, that this supposition leads to a contradiction.

But thenas a consequence it will follow that (3.16) must hold and hence the
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5
lemma will be proved. -

Let

hl = %&, ho = 1-h1 e

Since ¢ is a limit point of (3.18), there must exist a subsequence of (3.14),

(e, }, say, such that
j

(3.19) lim a.(A., &, ) = 2h..
J o> 1*"o £ 1

Now let v be an arbitrarily given number such that

v>1.
Define
q; = hy/(hyv+hy), qy = 1-q;5 a= (g4 q4) »
then
(3.20) 0<gq, <h and qoh,/q.hy = V.

Thus, by (3.15), (3.17), (3.19), and by theorem A, there exists a positive

integer N such that if j is any integer = N,

(3.21) 0< bl(xo, gtj) < "o/("o*“gtj) < ql' <h, < ”‘1("0’ 5ch < ("0'1)/"0 <1,

If we now take

then by (3.20), (3.21), whenever j is an integer ' = N,

(3.22) 0 < Bj < qo"o/qlgt <1<v< Aj < qo(ho-l)/ql .

j
Let

W2, te)
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By (3.21) and corollary A2, it is clear that for each integer j 2 N,
#a, 2y > 0,
Hence by lemma 2.2 and theorem B, we have that for each integer j 2z N,
§(Bj, A) = Sf(q, (1))
is a Bayes q, h(j) rule in the class of all rules.
Now

(3.23) R(q, x(j)lﬁ(aj, A,)

A
o 2
) = goEon( [Bj, Aj), all j z N,
In addition, for each integer j 2 N, we have by lemma 2.4, taking
A A
on = QO(Bj’ Aj) ’

that

i (1-/(50 ) logB, + Q .(logA +1)
~rL N i j__0j 4 0
(3.24) Egh(+[By» &) 2 B Tog(E,,/t,,) ’

where no is a non-negative constant independent of j and the denominator on

the right hand side is negative, By (2.11) and (3.22), for each j 2 N,

and hence

9 o < ¥-1
. (l-QOj) 1og.Bj — log Bj°

Thus, again using (3.22), we find that the numerator on the right hand side of

(3.24) is bounded above by

[(v-1) log(qpny/q,) + log(qy(r=1)/q;) + 0y - (v-1) log ¢ 1/v .
» 3
By (3.23), it follows that

qo(v"l)
onlog(flll

R(q, x(j)lﬁ(sj, A)) = K logt, ., JzN,

£o1) I
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3
where K is a constant independent of j. But themn by (3.15), (2.20),

(3.25) lim  R(q, (3)|s(3 A)) ==
>

On the other hand, if S. denotes the rule whose s.s.f. and t.d.f. are

1

respectively identically O and identically 1, then for each positive integer j,

R(a, s = agy

In view of (3.25), it follows that there exists an integer Ny
for each integer j = Nl’

R(q, x(j)|§(3j, 4,) > R(q, x(j)|sl).

But this contradicts the conclusion reached above that for each j =

(1)

is a Bayes q, A rule, This completes the proof.

Corollary 3.5

Let § be arbitrary, fixed, 0 < 3 < 1. Then

lim x*(xl, 5) =0, lim xg(xl, 5) =

7\.1—90 - }\1—-—900

Lemma 3.6

Let & be arbitrary, fixed, 0 < 8§ < 1. Then

1im b (A%(N,, &), N,) = B, lim b (A%(A,, 8), A,) = O,
}\1_>01q1 1 }\1__>m101 1

Proof

By corollary A3, theorem A, and corollary 3.2

0<N, <1 = bl(xg(xl, 3), "1) = a1("?§("1’ 5), "1) = 5,

1

so that the first limit holds.

2 N such that

88, 4,

)



Let

(3.26) Bys Epseeces

be any sequence of positive numbers such that

(3.27) lim gj = o,
j>-

To prove that the second limit holds, it suffices to show that

(3.28) lim b (M%(g,, 8), £.) = O.
, > 1073 ]

By theorem A and corollary 3.2, we have for each positive integer j that

Ng(e 4> B)
(3.29) 0 < b (As(e,, B), ) = RE(E;: 8) 7

=£5<1.

It follows that the sequence
*
(3.30) (b, (A3(e 45 35 €4))
has at least one limit point in [0, 3] and that every limit point of the sequence
must lie in this interval. Suppose that it has a limit point £, say such that
(3.31) 0<?{ =35,

We will show in what follows that this supposition leads to a contradiction,
But then as a consequence, it will follow that (3.28) must hold and hence the
lemma will be proved.

Let

31 = %, SO = 1431 .

Since ¢ is a limit point of (3.30), there must exist a subsequence {gt }, say,

of (3.26) such that, taking

(3-32) blj = bl(ks(gtj’ 8): gtj)’ j=1’29°°°° ’

=60=



w.
we have

(3"33) jlgw blj = 2%1 0

Now let v be an arbitrarily given number such that

1
(3.3)4-) 1<V<1+T:'5o
Define
(3°35) q]. = 5+ 18_5 v ° qo = 1"'q1 ) q= (qo, ql) °

By (3.29), (3.31), and (3,34),

460
(3.36) 0<B =®<q <5, (15 v .
Take
(3.37) A e, L) 1) 1L
> 3

We shall have repeated occasion, below, to make use of the following remarks.

Let u be an arbitrarily given number such that
0<u<1l.
Consider the sequential probability ratio test, §(u, 1/u). By lemma 2.1,

(3.38) ER("|u, 1/u) <=, 1=0,1,

In addition, by (2.11),

A

Qi(u, 1/u) S u, i=0,1 .
Hence for each positive integer j, we have

(3.39) qoxg(gtj, 8) Qyu, 1/u) + q1€tj Q(u, 1/u) s (qohg(gtj, 8) + q1§tj)u,

By (3.29) and (3.36)

Wt 8) = R
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and hence it follows that for each positive integer j

(3.10) qoxg(gtj, 8) Qu(u, 1/u) + ‘11§tj Q(u, 1/0) s (1+§r)uc11z-.tj .

We shall now show that there exists a positive integer Nl’ say, such that

(3.41) b

lj < ql s j=N1, Nl'!‘il,oooo °

For suppose this were not true. Then
9 s blj

for infinitely many positive integers j. But recalling the definitions (3.32)
and (3.37), we have by [35], corollary A2, (2.1), and the remark which follows

(2.7), that this fact implies that

s#(q, A3y = s

for infinitely many positive integers j, where S0 is the rule with s.s.f. and

t.d.f. both identically zero. But this further implies that

(3.52) R(q, AP [sx(q, a))) - i,

for infinitely many positive integers, j.
On the other hand, if we choose u to be any fixed number such that

1
O<u<m

then by (3.40), for each positive integer j,

qohz?e(gtj’ 5) ao(us 1/“) + q]‘gtj al(u’ I/u) < %qlgtj °

In addition, by (3.38) and (3.27), there exists an integer N,, say, z Ny such

that for each integer j = N2 s

1
£ qER(c|u, 1/u) < %q.¢, .
o 11 ltj

b2

[



By (3.42) it now follows that for infinitely many positive integers j,

(e, A3 [S(u, 1/0)) < R(q, A(D)|sx(q, A(I)y).

But this contradicts theorem B and hence (3.41) must hold.
Thus by (3.41), (3.33), and (3.36), there exists an integer N3, say, z N, such

that for each integer j2 N

3
(3.43) 0 <"B1 < b1j <gq <8<1.
Let
b b
B = gfgiv , B, = §$E§§ , 3=1,2,....
By corollary A2 and (3.43)
e, Ay > o, iz N,
Hence by lemma 2.3 and (3.36)
(3.44) s¥(q, A3y - Sp v, gz
By (3.43) and (3.36)
(3.45) 0<B< Bj <1<v, jz N3.

Now consider the sequential probability ratio test, §(B, v). It is clear

that either
A N
Ql(B, v) > 0 or QI(B, v) = 0,

We shall develop our contradiction by demonstrating both alternatives to be

impossible. It will follow that (3.31) cannot hold and the lemma will be proved.

By (3.44),

v

(3.16) rR(q, A [sx(q, A3))) - wr(q, x(j)lﬁ(Bj, v)), =z N

3°
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But

r(a, "Bz, 0)) = te, CHCIOREEEES

In addition, by (2.12) and (3.k5)

v
P~

QB v) 2 QB V),
Hence

(3.47) R(q, x(j)ISf(q, A3)y) 2 qlgtj Q(8, v), iz N

Now suppose that

(3.48) Q, (8, v) > o,

and choose u to be any fixed number such that

0 < u < Q(B, v)/2(1+v).
By (3.40), we then have for each positive integer j that
qokg(gtj, 8) Qy(u, 1/u) + qlﬁtj Q(u, 1/u) < %qlgtj (B, v).

In addition, by (3.38), (3.27), there exists an integer N, 2 N3 such that for

each integer j = Nh

1
£ qES(e|u, L/u) < kg8 Q, (B, v).
1=0 ii 1 tj 1

By (3.47), it follows that

R(e, NV [88, v)) < R(q, A |sx(q, 2(3)y), g2

This contradicts theorem B and hence (3.48) cannot hold.

Now suppose that

(3.9) (3, v) = o.

=6l



) By (2.13) and (3.45) this implies that
By (3.46) and the above we may write

(350w, MIseq, A9y CORDR R LN

By (3.32), (3.29), (3.43),

£, /xs(gt , 8) = bOj/blj < B8, 32 N..

] ]
Hence
qlgtj "
+
(3.51) vgwE,e <3 0 1FYs

Now choose u to be any fixed number such that

B A
O<u<5(-§—+—1—)- QO(B, V).

By (3.39), (3.51), we then have that

qoxg;(gtj, 8) Qo(u, L/u) + Ut Q,(u, 1/u) < %qoxg(gtj, 8) (B, v), 3z N,.
By corollary 3.5 and (3.27), there exists an integer N5 z N3 such that fof each
integer j 2 N5’
1 A
2 qEA(c[u, L) < Hgpg(E, 5 8) Qy(B, V).
i=0 S |

By (3.50) it now follows that

R(g, A\ B(u, 10) < ra, AP jsn(e, Ay, gz w
But this again contradicts theorem B, so that (3.49) cannot hold. This

establishes a contradiction and the lemma is proved.
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Theorem D .
There exists a mapping

x (g, u, v): ge6, 0<u<l<v) —> A

such that identically on its domain

B(g’ X(g, u, V)) = u, A(g: x(g, u, V)) =V

Proof

Let (g, u, v) be an arbitrary fixed point in the hypothesised domain of .

Take
5(g, v) = g;v/(gy+g V).
By corollary 3.2 we then have, identically for xl > 0, that
(3.52) A(g, Ag(N5 B8y v))s N) = g (s, Vv)/g(18(s, V) = v .
Now
0 <8(g, u) <8(g, v) «

By lemma 3.1, b is continuous on A . By lemma 3.3, xg(-, 5(g, v)) is continuous
on (0, »). Hence by lemma 3.6 there exists a positive value of A » call it Kl(g, u, v)

such that taking
X(g, u, V) = ( }‘-'6(.7‘-1(&3 u, V)s g(g, v)), -7:1(8: u, V)})’
we get

bl(x(g’ u, v)) = g(g’ u) .

But then it follows that
B(g, Mg, u, v)) = gB(e, u)/g (1-8(g, uw)) = u.

Since (3.52) is an identity for Ay > 0, we have in addition that
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A(g: X(g, u, V)) = V o

This proves the theorem.

Optimality Theorem

Let u, v be arbitrary, fixed numbers such that
O0<u<l<v
and let (n, Qn) be any rule such that

(3053) Qi(q’n) £ .’Q\i(us V) ’ i=0,1

Then

E;n 2 ‘Eiﬁ(°|u, v), i=0,1 ,

Proof

By corollary A2, lemma 2.2, and theorem D

s*(g, X(g, u, v)) = S(u, v) ,
where the identity holds for all g € G0 and for all u, v such that 0 < u<1<v,
Hen¢e by theorem B,
-— LA -—
R(g> 7\-(8, u, v)IS(u, V)) s R(g9 7\-(3, u, V)In’ q)n)

where this inequality holds identically over the same domain. Rewriting this

inequality we have, again identically,

1 1
A ° — N
z gi[Ein( lu) V) - Ein] s z gihi(g’ u, v)[Qi(q’n)"Qi(us V)] o
1:0 i=0
By (3.53), the right hand side is identically non-positive, It follows that for

each u, v, 0<u<1<v and for each g1 such that 0 < 81 <1,
A N A -
Eon(-lu, v) - Eon + [(Eln('|u, v) - Eln) - (Eon(-lu, v) ',Eon)]g1¥§5°‘J*
But now taking limits as g —> 0 and g, > 1, we achieve the desired result,
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(4]

[45]

[u6]

., Alternative Proof of Invariance Property

The following is an alternative proof of theorem D in section 3 which is

due to Le Cam and appears in E. L. Lehman's book, "Testing Statistical Hypotheses".

(See the discussion which precedes the alternative proof of lemma 1.6 which also

applies here,) The present section may be substituted for section 3 with no loss
in continuity for the overall proof.

We now relate Le Cam's proof notationally to that which precedes. We first
set up a one to one correspondence between points in A and those in the cross

product e x (0, ») as follows., Let

c = 1/(xo+x1), Wy = xol(xo+x1), W= 10, W= (WO, Wl),

then

A =We

0 % (0, w) and precisely

Thus to each A € /\ there corresponds a unique (W, c) eG
one such A gives rise to this point. In the following, we shall refer inter-
changeably, as convenience dictates to points (W, ¢) and their correspondents, X.

We define a new average risk for a rule (n, Qn) relative to g € G and

(W, ¢) € 6° x (0, =) by
_ 1
R(g, W, ¢|n, @) = = g [eEn+ W0 (0)] .

i=0

By [12] this is just R(g, A|n, cpn)/(xo+x1)° Let

B(g’ W, c) = inf Ti(g’ W, cln, an)’ Bo(g: W) = inf -ﬁ(g: W, cln, q)n)

n>0 n=0

It is immediate that
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A

N (Note that this is independent of c¢), and using lemma 2.7, that
(,'"-1) E(g’ W, c) = p*(g, 7‘)/(7\0'*'%'1) = E(g: W, clg(g, w/cv).)‘o
Let

(471 ?(83 W, c) Bo(g: W, c) - E(g’ W, c)'

and observe that

<
0 <= s A 5 O

VIA

(4.2) (g, W, ¢)

Lemma 4.1
let g € GO, W e 60 be arbitrary, fixed, Then p(g, W, ) is
(i) concave on (0, ») and hence continuous there.

(ii) strictly increasing on (0, ).

(1i1) lim p(g, W, ¢) = O.
c—=>0
Proof
Let h ¢ Go, 0< <, < ¢y be arbitrary, fixed. We have
olg, W, hoco+h1c1) = inf R(g, W, hoc0+h1c1|n, cpn)
n>0
: |
= 1inf X hR(g, W, ¢ ,|n, @)
n>0 1=0 I 17
1
2 T h,p(g, W, c,).
j=0 I i
But this proves (i). Again, take Cqs ©1 to be arbitrary fixed numbers such
that 0 < ey <e¢,. By (4.1) and definitions [45], [46], we have that

o(g, W, ¢;) > R(g, W, c,|5(g, W/e)) =z blg, W, c) ,
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[48]

and this proves (ii). Now let € be an arbitrarily given positive number. Let

(n, Qn) be a fixed sample size rule with

n(x) = N,

and Ne so large that
Qe ) < e/2, 1i=0,1.

Such a rule can always be found. Then for arbitrary ¢ > O, we have that
o(g, Wy ¢) = R(g, W, cln: an) < CNG + el2 .

It follows that

0<ec< e/ane => plg,W,c)<e.

This completes the proof of the lemma.

Lemma 4,2

To each W = (WO, Wl) € Go there corresponds a positive number

c(w)
such that
0<ec<c(W) & 0< bl(W/c) <W, < al(W/c) <1.
cz c(W) = bl(W/c) =W, = a,(W/e) .
Proof

By lemma 4.1, there corresponds to each pair of points g, W ¢ Go a positive

number ¢(g, W), say, such that

— < -
e(gb W) T 9(83 W, c) s p(g, W)

o
VIA

The result follows from (4.2), the definitions [44] — [47] and theorem A, if we
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A

ﬂtake g = (Wl, Wo) in the above equivalence and define

E(W) = e((wl’ WO)’ W) .

Lemma 4.3
Let W = (Wo, Wl) ¢ c° be arbitrary, fixed. Then

MEATE)

(1) bl(W/-) is strictly increasing and continuous on (O, E(w)) and

lim b, (W/e) = O, lim b (W/e) = .Wo )
c~>»0 c = ¢(W)
(ii) al(W/-) is strictly decreasing and continuous on (0, ¢(W)) and

lim al(w/c) =1, lim al(W/c) =W

c=>0 c = c(W) 0

Proof

The proof follows immediately from lemmas 4.1 and 4.2,

Define functions ¢ and 11 on A by

ao(x) bl()\.) bo(x)
[49] E(N) = W s 1(\) = -b—l-(ﬂ' )
then
bo(A) = —— a,(\) = L .
1 1+q(n) ° 1 1+E(N) (N)
Lemma 4.k

Let W = (Wo, Wl) ¢ ¢° be arbitrary, fixed. Then

(1) e(W/.) is strictly increasing and continuous on (0, ¢(W)) and

lim ¢(W/e) = O, lim g(We) = 1 .‘
c->0 c —=> c(W)
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(50]

(11) 7(Ww/) 1is strictly decreasing and continuous on (O, c(W)) and

lim  n(W/e) = « , Um  n(W/e) = W /W, .
c—=>0 » c = c(W) .

Proof

The proof follows immediately from definition [49] and lemma 4.3.

Lemma 4,5
There exists a mapping
o ..
c*¥: G x (0, 1) —> (0, w)
such that
0 < e*¥(W, u) <c(W), WeGO, 0<u<1,

and such that

E(W/e*(Wy u)) = u, WeG, O0<u<l,

Proof

The proof follows immediately from lemma k4.k.

Corollary 4.5

a,(W/c*(W, u))

=72

' 0
* * =
g(w/c.(w, u)) 'q(W/c.(W, u)) = al(W/c*(W, 277 WeG, 0<u<l,
Lemma 4,6
There exists a unique mapping W¥

wx: (0, 1) x (0, ®») —> °
such that

n(W*(u, z)/e*(W*(u, z), u)) = z, O0<u<l, 0<z<w.



()
Proof

Observe first of all that by lemma 4.2, definitioms [Mh] — [k7], (Lk.2)

and corollary A2, we have for each W € Go

(4.3) 0<c<cW) e=—> ?((Wl, Wo), W, ¢c)>0.

Hence by lemma 2.6 and (4.2) we have for each W ¢ ¢° that

(k) 0<c<cW) == 3(g, We) = 8(8(g, We), Ag, W/e)), allg ec,

where the equality on the right hand side helds in each case outside a subset

of ¥ which is null under both P, and P,.
(0]

all g € G, it holds in particular for g = b(W/c) and g = a(W/c). Note Further

Since the above implication is for

that by definitions [32] and [49],

L
=

B(a(W/c), W/e) g(W/e) , A(a(W/e), W/e)

1]
pay

B(b(W/c), W/e) R A(b(W/e), W/e) 1/e(W/e) .

By (4.4) and lemma 4.5, we now have for each W e ¢° and each number u, 0<u<l,

that outside a subset of X which is null under both P and P

0 12
§(b(W/c*(W, u)), W/e*(W, u)) = §(1’ 1/u)
= S(u, 1) .

S(a(W/e*(W, u)), Wex(W, u))

0

By (4.1) this means that for each W € G~ and each u ¢ (0, 1),

E(b(W/c*(W, u))’ W, c*(W, u)) E(b(W/C*(W, u))’ W, c*(W, u)lg(l’ 1/u))

(4.5)

Ba(W/c*(W, u)), W, c*(W, u)) = R(a(W/e*(W, u)), W, c*(W, u)[S(u, 1)) .
On the other hand, by (4.3), (4.2) and theorem A,
0<c<cW) == T7v(bMWe), W, ec) = 0 = v(a(W/e), W, c) .

In particular, by lemma 4,5, we have for each W ¢ ¢° and each u € (0, 1), that

(4.6) T(b(W/e*(W, u)), W, c*(W, u)) = 0 = T(a(W/c*(W, u)), W, e*(W, u)) .



By definition [47], (4.6), (4.5), and by lemma 4.2, we now have for each

W e c° and each u e (0, 1) that
R(b(W/e*(W, u)), W, c*(W, u)l§(19 1/u)) - Wlbl(W/C*(W, u)) = 0

R(a(W/ex(W, u)), W, c*(W, u)[8(u, 1)) = Wa (We*(W, u)) = O.

If we divide the first equation by bl(W/c*(W, u)), the second by al(W/c*(W, u)),

we obtain, using definition [45] and lemma 4.5 and its corollary, after some

minor rearrangement, the equations

(€80 + € 1ex + u QP - w (1000 - o,

[u Ec()l)n* + ((:g.l)]c* + Wng.l) - Wou(l"le))ﬂ% - o,

where we have adopted the following abreviated notation:

£ - raC|L, 1w, o? = {1, 1w, 10,1
6;_1) = Eiﬁ("luz 1), Qg_l) = ai(u’ 1), i=0,1
c* = c*(W, u), % = n(W/ex(W, u)) .

If we eliminate c* between these two equations, we get

(47) [u E(()l)n* + Cgl)][woczéo)n* - w1(1~Q§°))]

+ [(SC()O)T]*+ gg_O)][wou(l“Q(()l))ﬂ*—Wng.l)] A

Now let z be an arbitrary, fixed positive number and set
n* = n(Wex(W, u)) = z .

If we substitute this into (4.7), we get an equation which is linear in Wy
(recall that WO = 1-W1) and which may be easily solved. Denote the solution

by Wf(u, z). Let Wg(u, z) = 1-Wf(u, z) and take

T



W*(u, Z) = (W')o('(ua z)’ wi('(ua z)) o

Thus
n(W/e*(W, u)) = 2 = W= W¥(u, z) .
On the other hand, if we set

W, = Wf(u, z)

and regard this as an equation in z, we get a quadratic with coefficient of
z® positive and constant term negative. But this implies the existence of a
unique positive root. 1In view of (4.7), this root must be the number

n(W/c*(W, u)). Thus
W= W*(u’ Z) = "](W/c*(W, u)) = Z.

This completes the proof.

Theorem D (alternative proof)
There exists a mapping
e (g, u, v): geGO, 0<u<1l<vi —> A

such that identically on its domain

B(g, n(g, u, v)) = u, A(g, N(g, u, v)) = v .

Prdof

Let (g, u, v) be an arbitrary, fixed point in the hypothesized domain of N\.

By lemma 4.5 we have identically for all W € Go that

t(Wex(W, u/v)) = u/v.

By lemma 4.6



E::J_ -

1 (w*(u/v, go/glu)/ c*(Wk(u/v, g,/g u)s u/v)) = gylgu . . =

The conclusion now follows from definitions [32] and [49] if we take

-

wk(u/v, gy /gu)
e*(Wx{u/v, gy/gu), u/v)

©°

X(g, u, v)

.
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