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... 

... Introduction 

Physiologic or pathologic measurements often are made as a function of 

time. In statistical terms, such data constitute time series. Among the 

characteristic features of physiologic time series are certain roughly repetitive 

events, the so-called rhythms. The ensemble of physiologic rhythms constitutes 

a broad spectrum of nearly periodic phenomena (1-2). The periods involved vary 

from short ones, such as some of those encountered in the electrocardiogram 

or electroencephalogram, to longer ones, such as those of about one day (circadian; 

from L. circa=about and~· dies=day) (3-4), one month (menstrual), or yet longer 

duration. 

Study of circadian rhythms prompted the presentation of this paper. 

These rhythms are readily synchronized with some environmental 24-hour cycles, 

such as the lighting regimen or social routine, in mice and men, respectively. 

If so synchronized, these rhythms show a predictable external timing (5). 

Thus, on a given specified environmental regimen, called the synchronizer (6), 

Zeitgeber (7) or entraining agent (3), the clock hour at which a given peak 

value is found represents an adaptive characteristic of the organism under study. 

Locating such peaks in biologic data is of considerable interest, especially 

to the experimental pathologist, since the organism undergoes along a 24-hour 

scale substantial changes in susceptibility to injury. The effect of a variety 

of potentially harmful agents depends indeed critically upon the physiologic 

state of the organism at the time of their administration. Thus a given agent 

and organism can be characterized by a cir€adian susceptibility rhythm. The 

net effect of such rhythms may be ~s drastic as the difference balween death 

and survival, following a mammal's exposure to agents varying from noise (8-10) 

or drugs (11-15) to bacterial (16) and other (17) poisons. 

Data on.manuna.lian susceptibility rhythws, revealing as they do dramatic 

differences under controlled conditions, must be viewed as statistical entities. 



Thus, apart from a given rhythm under study, physiopathologic time series 

usually are complicated by other effects, ranging from rhythms with periods 

longer (18) or shorter than that under study to random effects. The latter 

may obscure the former or may altogether mask a given rhythm, unless ex­

perimental animals or subjects of study are appropriately homogeneous and 

environmental conditions as well as sampling procedures sufficiently controlled. 

Consequently, the problem of locating in physiopathologic time series a 

suspected peak, e.g., in the susceptibility of a mammal to some harmful agent, 

usually constitutes a statistical problem, i.e., the need arises to test the 

significance of a given peak. A quick procedure for this purpose discussed 

in this note serves to introduce certain pertinent statistical considerations 

to students of physiologic rhythms. The method is applicable if (a) the 

location of a peak in a time series or other observations can already be 

suspected from data obtained earlier and if (b) the number of observations 

available for verifying the location of the peak is reasonably.large. 

1. Procedure for Validating a Suspected Peak in a Time Series 

Observations are made on several individuals at each of k time points. 

The property observed depends, of course, upon the objective of a given set 

of studies, but the following kinds of data may serve as illustrative examples: 

ao The proportion of individuals showing a pathologic response, such as 

death, as a function of the time when a given potentially harnttul agent is 

administered. 

b. The proportion of animals at different times with a physiologic 

measurement, such as a respiratory rate above a specified level. 

The types of data cited above have in connnon that they represent propor­

tions. Such proportions, computed from a sample, constitute a "statistic", 

unless one is able to test all organisms of a given kind in a specified test 
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situation, and thus to derive a proportion from a population as a whole. In 

a statistical sense the latter proportion constitutes a "parameter". Usually, 

we confront the task to estimate a parameter from a statistic. Conventionally, 

the statistician employs Greek letters to denote parameters--derived from 

populations--and Roman letters to denote statistics--based upon sample 

characteristics. 

The analysis of the types of data here under discussion becomes more 

manageable when the sequence of observations can be regarded as serially 

independent. Serial independence for these.kinds of experiments is intended 

to mean that the procedures and data obtained at a given time do not in­

fluence results obtain,:!d at other times. 

Let us visualize an experimental situation in which the same organism is 

repeatedly studied. In this case, we can assume serial independence, if we 

know that the possession of a specified property at a given time and the 

procedures necessary for observing this property, in particular, do not 

affect the possibility of having the same characteristic at any other time. 

Even more pertinent to the types of observations discussed in this paper, 

however, is the serial independence of observations ma.de on separate but 

comparable organisms used at each of several time points. In this case it 

would appear at first that the condition of serial independence is fully 

satisfied. A more thorough analysis .of certain experimental situations may 

reveal, .however, that it is solely the assumption of serial independence as 

to animals that holds without qualification. 

The disturbances associated with a set of measurements on one group of 

mice can affect another group kept in the same room, although the latter 

group has not been previously used for sampling (19). These effects can be 

highly significant statistically when conditions are standardized for 

periodicity analysis. 
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In such an experimental situation we are thus confronted with some degree 

of serial dependence derived from our manipulation of the experimental environ­

ment. Apart from such serial dependence "among time-periods" (or "time-points") 

demonstrated for a 4-hourly sampling schedule on separate group~ of mice kept 

in the same room, there is probably "within-time-period" (within-time-point) 

serial dependence as well, derived from the effect exerted by our sampling 

from the first animal at a given time-point upon the immediately following 

observations on other animals in the same series. Hence, serial independence 

applies only as a first approximation to results from separate groups of 

animals removed at fixed intervals from the same mouse room at each of 

several times. 

Let n., for i = l, ••• ,k, be the number of experimental animals studied 
1. 

at the ith time-point. We note that we have selected our sample of animals 

to be what empirically is denoted as 'representative' of the conceptual 

population n. of all possibly available animals of a given kind that could 
l. 

be studied at the ith time-point for some specified property. Let 7ri, i = 1, 

2, ••• ,k, denote the proportion of all experimental animals constituting the 

population n. that possess a specified property. 1r. is a constant and con-
1. 1. 

stitutes a parameter for the population n. in the statistical sense. This 
1. 

parameter is not known for obvious reasons, but it can be estimated on the 

bas is of sample proportion p. = r ./n., i = 1, ••. ,k whe:ee::J:'. :~ .. is·::ilhe::nuinberc:'5f 
1. 1. 1. .. 1. 

animals found to possess the specified property in the sample of n. animals 
1. 

at the ith time-point. It is to be noted that the p. 's are .not constants, 
1. 

having different values in separate experiments. We may call them "estimates". 

In the situation under discussion, it is suspected, from previous data 

or otherwise, that the largest of the 1r. is at a given time-point I. The 
1. 

purpose of inquiry, based on a given experiment, is to verify the validity 
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of this supposition. If the supposition is incorrect, 1r
1 

is not the largest. 

As an alternative, it might be near the average of the other values of 1r •• 
l. 

The procedure about to be proposed will actually test the so-called null 

hypothesis that the suspected 1r
1 

is equal to th~ average of the other values, 

against the alternative hypothesis that the suspected 1r
1 

is larger than this 

average. Reject!ion of the null hypothesis supports the original assumption 

that 'I' is a peak-time with the following qualification. The test of the 

data might indeed strongly suggest that 1r
1 

is larger than the average of the 

other 7f. 's, the latter to be denoted as 11*, yet there can be a particular 7f., 
1 l. 

say 1r
1

,, such that 1r
1

, > 1r
1

• This circumstance must be kept in mind when 

inferences are made from the test outlined below, irrespective of whether 

the 1r
1

, is located at one of the studied time-points and detected. This 

qualification, however, does not render the test useless. The procedure to 

be introduced allows us to describe a time-point, such as I, as one associated 

with a proportion that is significantly above the average value for the 

response-parameter investigated. A time-point thus defined will be called a 

"peak" for our present purpose and it is not necessarily associated with the 

largest proportion. 

It must be emphasized that prior information on a suspected peak is 

required if the technique discussed in this section is to be applied. Thus 

the time-point 'I' must be selected on the basis of previous data or other 

pertinent information. Techniques discussed below (cf. Section 5) differing 

from that discussed in this section, have to be used when, in the absence of 

prior information, the time-point of the peak proportion is chosen on the 

basis of no more than the experiment being analyzed. 

The testing procedure is formulated below: 
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Null hypothesis: 

Alternative hypothesis: 

where 

H 
0 

pi= ri/ni, i=l, ••• ,k. 

Let P* = (pl+ ••• +pI-l+pI+l+ ••• +,pk)/(k-1) 

Define qi= 1-pi, d1 = p1 -p*, V~ = p1q1 /n1 + E'piqi/[ni(k-1)2
] 

In the above E' stands for the sum in which the term i=I is omitted. I:6. ..... 

the null hypothesis.'11"
1 

= 11* is true, we expect that the difference of the 

estimates, i.e., d
1 

will be fairly small. In repeated sampling the value of 

d
1 

will fluctuate around zero value. A large deviation of d
1 

from the zero 

value in the positive direction, as we are dealing with the one-sided 

alternative 7r1 >~will reject the null hypothesis and will support the 

alternative hypothesis. How large a deviation of d
1 

from the zero value 

arising due to sampling fluctuations can be considered insignificant (favoring 

null hypothesis 7r1 = 11*) depends on the distribution of the statistic d
1

• 

In following this procedure, two kinds of errors can arise. The first 

kind of error is that of rejecting the null hypothesis when in fact it is 

true--by observing a 'large' deviation of d1 from the zero value. The second 

kind of error is that of accepting the null hypothesis when in fact the 

alternative is true--by observing a 'small' deviation of d
1 

from the zero 

value. The usual practice for obtaining the largest deviation allowable in 

favor of the null hypothesis is to hold the error of the first kind at a 

specified level and to minimize the error of the second kind. 

It is found that for reasonably large value of ni, and under the null 
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hypothesis ,r
1 

= 11*, the quantity d1 is nearly normally distributed with a mean 

of zero and variance V~. This statement holds for.the variance if all the 

animals studied are kept in such a way that there is no effect of any one of 

them upon the other.fl :.i~e, , there is S:~t:ia."1 independence. The quantity dI /V k 

will have a variance of one. Thus z
1 

= d1/Vk can be used as a standard normal 

variable, i.e., a normal variable whose mean is zero and variance is unity if 

the ni are reasonably large (e.g., 25 or more). 

A normal variable has a bell-shaped distribution symmetrical about the 

mean with frequency tapering off rather quickly to zero as we move away from 

the mean in either direction. Thus, an interval equal to six times the 

standard deviation centered at the mean covers about 99% of the entire 

population. 

If the magnitude of the error of the first kind is fixed at .05 (a 5~ 

one-sided test)![ it is found that rejecting the null hypothesis if z
1 

> 1.64 

minimizes the magnitude of the error of the second kind. For preliminary 

work, samples with n=lO may be satisfactory, but for the application here 

suggested one may require conservatively that then in each sample be at 

least 25. 

2. Confidence Limits 

Associated with a two-sided test at a probability level of significance 

1/ Since interest is concentrated on the question as to whether 1TI is larger 

than 11*, and there is no particular concern if it should be smaller, there.is 

a one-sided testing situation. If one were only concerned with whether or not 

,rI differed from 11*, then either large or small (large negative) values of z1 

would be of interest and a two-sided test should be used. If so, one rejects 

the null hypothesis if z
1 

is either less than -l.96 or greater than +1.96. 
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denoted as a there is a two-sided confidence interval, with a confidence cop 

efficient equal to 1-a. Such an interval, based on the observations, has 

probability equal to (1-a) of including the true value of the parameter of 

interest, e.g., 1r1 - 1T* of ~;Se"C.t;i'~~-i. 1. The larger the value of ( 1-a), the 

more confident the experimenter will feel that the interval includes the true 

parameter value. Choosing (1-a) large, however, will make the interval long, 

i.e., t~e confidence interval will not sharply delineate the reasonable values 

of the parameter. Collecting more data, on the other hand, will tend to de­

crease the length of the interval. 

Corresponding to the discuss ion of ·_.S.ecJ~J:a~· 1, if the ni are assumed to 

be reasonable large, the (1-a) level confidence limits for the population 

difference 1r
1 

- 1T* can be stated as follows: 

<2) (p1-P*) - Aa/2vk < 1r1-11* < (pr-p*) + Aa/2vk • 

Aa/2 is the lOQa/2 percent point of the standard normal distribution. 

For instance, if a 95% confidence interval is desired, Aa/2 = A.
025 

= +1.96. 

This means that in repeated sampling, on an average, the interval 

((p1-p*) - 1.96 Vk, (p1 -p*) + 1.96 Vk) will cover the population difference, 

1r1 - 1T*, i::~ '9!) :otlh .of:.ifi6 .experimental applications. 

3. Several Peaks in a Time S~ries (k > 2) 

The above test may be insensitive when one suspects more than a single 

peak in the data. If so, the following modification is indicated. Let one 

of two suspected peaks be at the Ith time-point and another at some subsequent 

Jth time-point. Then the hypotheses are: 

vs. 

H02 : 1TJ = 1T**' vs. Hl2 7rJ > 7T** 

where 77** = (1rl+ ••• +1TI-l + 71"1+1+. • .+1TJ-l + 1rJ+l+. • .+1rk)/(k-2 ) • 
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Procedures similar to that in Section 1 may be adopted for testing these 

hypotheses. Define, 

v~k = piq/nI + 1:"p jq/[n/k-1)
2

] 

V~k = pJqJ/nJ + 1:"pjq/[n/k-1)
2

] 

in which 1:" stands for the sum with j:~I and j:#J. Then let 

z
1 

and zJ can be used as standard normal variables if the ni are reasonably 

large (cf., e.g., Section 1). 

4. Illustrative Examples: 

The convulsive response to noise was tested by methods described else­

where (8-10), in two groups of inbred mice, here identified merely as the 

Ce and D groups, since the main purp~se of this section is the presentation 

of a statistical procedure. The purpose of the tests, however, was to 

evaluate the significance of a suspected peak in susceptibility to audio­

genie convulsions at 20 hours (8 p.m.), predicted on the basis of several 

earlier reports (8-10). ~hese experiments were done in the laboratory 

of the Cambridge State School and Hospital and were analyzed in the De­

partment of Pathology at the University of Minnesota. The data analyzed 

are given in Tables I and Ilo 

Table I: Ce group susceptibility to fatal audiogenic convulsion 

Clock hour 12 16 20 24 04 08 
n. (No. tested) 47 48 49 48 45 48 

l. 

r. (No. of deaths) 10 10 13 12 8 5 
l. 

[Tables I and II are from mice standardized in light from 06 to 18, alternating 

with darkness (cf. 19) . ] 
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Table II : D group susceptibility to fa tal audi ogenic convuls i on 

Clock hour 12 16 20 24 04 08 

n. 
i 

(No . tested) 30 30 29 28 28 28 

r . (No. of deaths) 1 
i 

1 8 6 5 1 

For the Ce group, the peak i s suspected a t 20 hours. The computations for 

2/ 
formula [ l ] are gi ven as fol l ows- : p20 = . 265 , p* = . 191, n20 = 49 , q20 = 

Hence z
20 

= d
20

/vk = 1 .10 significant only a t t he 13 . 5% level . 

Instead of p
20

, next p
24 

was tested ignoring p
20 

and it was not found 

to be signi ficant. However , the presence of a large proportion at 24 hours 

might have rendered the test insensitive. Hence, using formula [2) above, 

( I = 20 , J = 24) , the corresponding t es t was carr ied out . The computations 

are as fo llows: p
20 

= . 265 , p** = . 176 , V~O,k = . 00474 or, v20 ,k = .0688 , 

d
20 

= . 0895, z
20 

= d
20

/v
20

, k = 1 . 30 s i gnificant only at the 9 . 7% l evel . A 

s i milar t est for p
24 

also indicated non-significance. Thus the data on 

Ce mice in Table I do not suffice to demonstrate the suspected occurrence 

of peaksJ1. 

2/ The subscripts in this examp le ar e the time- points expressed as clock hours. 

3/ The ana l ysis performed on the Ce group data does no t ru l e out the occur ­

rence of a rhythm in susceptibility to convul sions, i n the individua l Ce 

mice t es ted. Such rhy thms may have been free-running in i ndividual Ce mice 

and, if so, they were not identifiabl e by the experimental procedure employed . 

The physiopathol og i c data are presented sole l y for illustrating the statistical 

procedures. 
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The evidence for the D group, however, is different. A peak at 20 hours 

is suspected. The computations are as follows: p20 = .276, p* = .0990, 

d /Vk = 2.05 which is significant at the 2% level. 20 

The 95% confidence interval in this case (i.e., for ~20 - 11*) is found 

to be (.008, .346). 

5. Additional Remarks 

Information on rhythms in physiopathologic time series serves, inter 

alia, for the choice of an appropriate experimental zero-time. In any 

bioassay, the stage of a susceptibility rhythms in which a given test is 

made must be specifietl as are other characteristics of a given organism 

studied, such as genetic background, sex or age. It must be remembered, 

howeve:r, that from a physiopathologic viewpoint, peak susceptibility to 

different agents might not be the same. Thus, the peak susceptibility of 

certain inbred mice to oual·ain differs from that to other agents such as 

ethanol {1\~;12, 17; cf. also 4,5). 

Circadian rhythms in susceptibility to agents acting upon the s:ame 

physiologic substrate, in turn, are likely to have a similar timing~. 

Pertinent in this connection are changes in convulsive susceptibility with 

time, in response to electro-shock, as compared to auditory stimulation. 

Thus, Woolley and Timiras tested rats for their electro-shock thresholds 

and found that 71~ of all rat~ tested between 2100 and 2300 at a current 

strength of 22 ma or at a lower strength showed convulsions, whereas only 

13% of the animals tested between 1300 and 1500 convulsed at the same stimulus 

intensities (18). These tests served primarily for investigating changes in 

convulsive susceptibility during the estrus cycle. Accordingly the authors 
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demonstrated statistically significant differences, the threshold for minimal 

seizu~es being highest during diestrus and lowest during estrus. A circadian 

rhythm in threshold also was apparent at all stages of estrus cycle from 

spot-checks restricted to two time-points along the 24-hour scale. Moreover, 

the differences recorded as a function of circadian system-phase were sub­

stantially larger than the changes related to the stage of estrus cycle. 

The important study by Woolley and Timiras demonstrates for the same 

physiopathologic function, convulsive susceptibility, the operation of two 

periodic components, circadian and estral. Finally, as far as spot-checks 

at only two time-points permit (18), the data of Woolley and Timiras agree 

well with the results on peak convulsive susceptibility documented herein and 

earlier (8-10) for the D group of mice rather than rats and in response to 

auditory stimulation rather than electro-shock. 

From a statistical point of view it must be emphasized that the method 

here suggested for evaluating a suspected peak in a series of observations 

made as a function of time is applicable to data other than time series as 

well. This method applies to any analysis of the behavior of several groups 

of individuals if one suspects that one of these groups has a larger pro­

portion of responses than the others. 

There may not be previous information concerning I, i.e., the experi­

menter cannot predict or suspect.which of a given set of proportions to be 

obtained experimentally might be .larger than others. One may proceed as 

follows: The largest of the observed proportions will be denoted asp • 
max 

A statistic like z
1 

is formed but the pmax plays the role of p
1

• Tests of 

significance and confidence intervals can then be formed, again with the 

restraint of using moderately large samples. Now, however, one must not 

use the ordinary tables of the normal distribution. Instead, one turns to 
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a table of standardized extreme deviates, such as Table 25 of H. 0. Hartley 

and E. S. Pearson (20). By this procedure, one can test whether or not the 

most discrepant proportion is different from the average of the others, and we 

can do so without assuming beforehand that one knows which proportion is 

largest. Naturally, since one is not using prior knowledge, the critical 

values and the confidence intervals will be larger than those for the case 

of a suspected peak, discussed above in detail. 

If one has no prior information on whether any one proportion is larger 

than others and one cannot even assume that there will be a particularly 

large p. one can analyze the difference between the largest and smallest 
i 

Proportions, denoted asp and p For this "contrast" procedure .one max min· 

forms the following statistic: 

1 

[ -1 -1 ]2 n + n . max min 

+ 
Pmin(l-pmin) 

n. min 

The appropriate critical values of the above statistic can be found in Table 

29 of Hartley and Pearson (20). The interested reader should examine the 

introduction to these tables (pp. 52-53) prior to their use. Significant 

results obtained on this basis would indicate that not all of the population 

proportions are equal, and thus for future experiments the proportion 

associated with pmax or pmin could be suspected to be the largest or the 

smallest proportion, respectively. 

In the cases discussed above and, in particular, for the original problem, 

revolving around the verification of a suspected peak in a time series, one 

should note the "diluting effect" exerted by high values other than the peak. 

Values adjoining a peak, for instance, can be expected to be larger than 

others. Nonetheless, such values raise the overall average of the mean 
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computed by excluding the suspected peak and the effectiveness of the procedure 

is thus reduced. An effort to eliminate this effect is made in the illustra­

tive example given above. 

Circadian susceptibility rhythms are broad in scope, in plants (e.g., 21) 

as well as animals (4, cf. also 19). Recently, and what seems important, 

under controlled conditions Davis has extended indirect periodicity analysis 

on rodents to pharmacodynamic problems (15), with a particular view of inter­

actions among synchronizers (22). Cancer research along similar lines has 

also begun (23). The above statistical procedures serve as useful and quick 

tests for analyzing such a variety of findings, if these are available from 

data that, as a first approximation, may be regarded as serially independent. 

Finally, analogous procedures can be found for the case of quantitative 

measurements, but they remain beyond the scope of this paper. 

Sunnnary 

A simply applied statistical procedure for testing a suspected peak in 

a time series is presented and applied to data on circadian periodic aspects 

of audiogenic physiopathology in certain inbred miceo Also discussed are 

methods for locating unsuspected peaks, and for locating either peaks or 

troughs in sets of responses obtained from several groups of individuals. 

These methods are applicable when the data consist of proportions. 
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