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Aspects of Class-S Theories

Fei Yan, Ph.D.
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Andrew Neitzke

This dissertation discusses certain aspects of class-S theories [1,2]. First

we give an overview of class-S theories. Then we report on the study of prod-

uct SCFTs in class-S theories. We first describe an algorithm to determine

whether an isolated 4d N = 2 SCFT is a product of two (or more) theories

and apply this algorithm to a large subset of class-S theories that have been

catalogued. This part is based on joint work with Jacques Distler and Behzat

Ergun [3]. Afterwards we report on some preliminary studies of the supersym-

metric vacuum moduli space of product SCFTs. Finally we turn our attention

to supersymmetric (half) line defects in 4d N = 2 theories. In particular we

describe a close relation between the Schur index in the presence of a super-

symmetric (half) line defect and the vacuum expectation value of such line

defect in U(1)r-invariant vacua of the theory compactified on a circle. We

explicitly check such relation in some special class-S theories: the Argyres-

Douglas theories of type (A1, A2), (A1, A4), (A1, A6), (A1, D3) and (A1, D5).

This part is based on joint work with Andrew Neitzke [4].
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Chapter 1

Introduction

Supersymmetric quantum field theories have been playing an important

role in theoretical physics. The existence of supersymmetry keeps quantum

corrections under control and makes many physical quantities exactly calcu-

lable. A particularly nice class of supersymmetric quantum field theories are

those with N = 2 supersymmetry in four dimensions. In general there are

mainly three ways to construct large classes of 4d N = 2 theories. The first

way is to use a Lagrangian description, though there are a lot of 4d N = 2

theories that don’t admit any Lagrangian description. The second way is the

so-called “geometric engineering” [5, 6], where 4d N = 2 theories are realized

as the field theory limit of string compactifications on Calabi-Yau singularities.

The third way is the class-S construction [1, 2], where 4d N = 2 theories are

obtained by twisted compactifications of 6d (2, 0) SCFTs on a Riemann sur-

face. This thesis studies 4d N = 2 theories arising from the third construction.

These theories are often also called theories of class-S.

This dissertation is organized as follows. In sections 1.1 - 1.3 we give a

brief review of class-S theories. In chapter 2, we first talk about an algorithm to

determine whether an isolated 4d N = 2 SCFT is a product of two (or more)
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theories and apply this algorithm to a large subset of class-S theories that

have been catalogued so-far. This is based on joint work with Jacques Distler

and Behzat Ergun [3]. Then we talk about some preliminary studies of the

supersymmetric vacuum moduli space of product SCFTs, based on some past

work with Anderson Trimm and ongoing work with Jacques Distler, Behzat

Ergun, Qianyu Hao and Andrew Neitzke. In chapter 3 we turn our attention

to supersymmetric (half) line defects in 4d N = 2 theories. In particular,

we describe a close relation between the Schur index in the presence of a

supersymmetric (half) line defect and the vacuum expectation value of such

line defect in U(1)r-invariant vacua of the theory compactified on a circle. We

explicitly check such relation in some special class-S theories: the Argyres-

Douglas theories of type (A1, A2), (A1, A4), (A1, A6), (A1, D3) and (A1, D5).

Chapter 3 is joint work with Andrew Neitzke [4].

1.1 A brief overview of theories of class-S

In this section we give a brief overview of class-S theories. This part is

mainly based on [1, 2, 7].

A 4d N = 2 theory of class-S, originating from compactification of a

6d (2, 0) theory on a Riemann surface with a partial twist, is specified by the

following data:

• A choice of a 6d (2, 0) theory of type g, where g 2 {An, Dn, E6, E7, E8}.

• A choice of a genus-g n-punctured Riemann surface Cg,n.
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• A decoration of the punctures of Cg,n by codimension-two defect opera-

tors of the 6d (2, 0) theory.

Properties of class-S theories are closed tied to the internal Riemann

surface Cg,n:

• In absence of twisted punctures (as introduced in e.g. [8,9]), the moduli

space of exactly-marginal deformations of the SCFT is identified with

the complex structure moduli space of Cg,n [2]. Di↵erent pairs-of-pants

decompositions of Cg,n (in the degeneration limit) correspond to di↵erent

weakly coupled descriptions of the same SCFT which are related to each

other by the generalized S-duality. With twisted punctures the conformal

manifold is modified to be a branched cover of the complex structure

moduli space [10–12].

• Putting a class-S theory on S4, the partition function corresponds to

the n-point correlation function in Liouville/Toda theory on the corre-

sponding Riemann surface [13–17].

• The superconformal index of a class-S theory is interpreted as the n-

point correlation function of a 2d topological quantum field theory living

on the corresponding Riemann surface [18]. This interpretation is very

powerful such that it allows one to bootstrap the superconformal index

of class-S theories given some input from class-S theories that do have

a Lagrangian description [19,20].
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• Class-S theories are closely related to Hitchin systems. Compactify-

ing to three dimensions on a circle, at low energies the e↵ective three-

dimensional theory is a N = 4 sigma model with a hyperkähler tar-

get space M, which is identified to be the moduli space of solutions to

Hitchin’s equations [21] with prescribed boundary conditions on punc-

tures of Cg,n [1]. In this picture new algorithms have been developed to

compute the spectrum of BPS states of class-S theories [1, 22–25].

1.2 Compactifying the 6d (2, 0) theory

In this section we review general aspects of the compactification of 6d

(2, 0) theory on a Riemann surface C with a partial topological twist. This

part is following [1].

The (2, 0) superconformal theories in six dimensions have osp(6, 2|4)

as their superconformal algebra. They could be constructed by taking a low-

energy decoupling limit of type IIB string theory on R1,5⇥C2/�, where � is a

discrete subgroup of SU(2) of the type A, D or E. There exists a basis opera-

tors labeled by Casimir operators of j = A,D or E and transforming in short

representations of osp(6, 2|4). Within the k-th short multiplet the subspace of

operators Vk with lowest conformal weight is an irreducible representation of

the so(5) R-symmetry. The conformal weight is twice the exponent dk of j. The

vacuum expectation values of these chiral operators parametrize the Coulomb

branch of the six-dimensional theory, which is isomorphic to (R5)rank(j)/Wj,

where Wj is the Weyl group of j.
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To compactify a 6d (2, 0) theory on a Riemann surface C while pre-

serving 4d N = 2 supersymmetry, a partial twisting must be performed. The

super Poincaré subalgebra of osp(6, 2|4) has bosonic part so(5, 1)� so(5). The

Poincaré supercharges transform in the (C4 ⌦ C4)+ of so(5, 1)� so(5), where

+ indicates a symplectic Majorana reality constraint. Compactifying on C

breaks so(5, 1) � so(5) to so(3, 1) � so(2)C � so(3) � so(2)R under which the

supercharges transform as

⇣⇣
(2, 1)1/2 � (1, 2)�1/2

⌘
⌦
⇣
21/2 � 2�1/2

⌘⌘

+

. (1.1)

The twisting identifies the diagonal so(2) of so(2)C�so(2)R with the holonomy

algebra of C. After the twisting the supercharges transform under so(3, 1) �

so(3)� so(2)
0
C
as

(2, 1; 2)1 � (2, 1; 2)0 � (1, 2; 2)0 � (1, 2; 2)�1. (1.2)

The middle two summands are uncharged under so(2)
0
C

and become well-

defined N = 2 supercharges in four dimensions. We denote them as Q↵A and

Q̄↵̇A.

The moduli space of the 4d theory could be obtained via dimensional

reduction from the Coulomb branch of the 6d (2, 0) theory. Concretely choose

a Cartan subalgebra so(2)R � so(2) ⇢ so(5) and denote the operator in Vk

with weight (dk, 0) as Ok. In the k-th short multiplet Ok has the largest

so(2)R charge, therefore Ok is annihilated by supercharges with positive so(2)R

charges such as Q̄↵̇A. The vacuum expectation values of this type of chiral op-

erators parametrize the Coulomb branch B of the four-dimensional theory.
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Note that after the partial twist Ok becomes a section of K⌦dk over C, more-

over its vacuum expectation value hOki is annihilated by @̄. Therefore the 4d

Coulomb branch is given by

B =
rank(j)M

k=1

H0(C,K⌦dk). (1.3)

The 6d (2, 0) theory of type AN�1 could be realized as the low-energy

worldvolume theory ofN coincidentM5-branes. In this picture B has a nice ge-

ometric interpretation. The four-dimensional theory is obtained by wrapping

the N M5-branes on a holomorphic cycle C inside a hyperkähler four-manifold

Q. Going to the Coulomb branch corresponds to separating the M5-branes

such that they wrap some other cycle ⌃ ⇢ Q, where ⌃ is a connected divisor.

One could identify a neighborhood of C with T ⇤C by viewing Q as a holo-

morphic symplectic manifold and choosing holomorphic Darboux coordinates

(x, z). A point in B corresponds to a set of coe�cients uk 2 H0(C,K⌦k) for

the following equation:

xN +
NX

k=2

uk(z)x
N�k = 0. (1.4)

This equation defines ⌃ ⇢ T ⇤C. ⌃ is identified with the Seiberg-Witten curve

of the low energy four-dimensional theory. And the canonical one-form

� = xdz (1.5)

restricted to ⌃ is identified with the Seiberg-Witten di↵erential.

For 6d (2, 0) theories of type D or E the story is very similar. How-

ever, the coe�cients in the defining equation for ⌃ are in general, polynomial
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expressions when expressed in terms of the natural linear coordinates at the

origin of the Coulomb branch. Concretely there are polynomial constraints on

the coe�cients of the k-di↵erentials which need to be solved before one sees

the natural linear structure. Moveover the Coulomb branch could have graded

components of degrees other than the exponents dk. In general the Coulomb

branch takes the form [26]:

B ⇢ V =
M

k

H0(C,K⌦dk)�
M

k

Wk, (1.6)

where Wk are vector spaces of degree k and B is the subvariety satisfying the

collection of polynomial constraints, which are linear in at least one variable

and of homogeneous degree.

1.3 Relation to Hitchin systems

In this section we briefly review the relation of class-S theories to

Hitchin systems following [1].

To do so we consider the theory obtained by further dimensional reduc-

tion from 4d to 3d on S1. At low energies the 3d e↵ective theory is an N = 4

sigma model into a hyperkähler target space M fibered over the 4d Coulomb

branch B with generic fiber being a compact torus [27, 28].

To study M the logic is to reverse the order of compactifications. Due

to the partial topological twist, the BPS-protected quantities are insensitive

to the conformal scale of the metric on C, therefore no phase transition in the

low energy physics is expected when one exchanges the relative length scales
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of C and S1. By first compactifying the (2, 0) theory on S1 with radius R, one

obtains at low energies five-dimensional N = 2 supersymmetric Yang-Mills

theory. The next step is to compactify this five-dimensional theory further

on the Riemann surface C with an appropriate topological twist. The moduli

space of the resulting 3d theory is then the space of 5d BPS configurations

that are Poincaré invariant in R3. Denote the five adjoint scalars of the 5d

N = 2 super Yang-Mills theory by �I , I = 1, . . . , 5 such that

� :=
1

2
(�1 + i�2) (1.7)

has so(2)R charge +1. (�3,4,5 have charge zero.) In the twisted theory �

becomes a (1, 0) form on C. The BPS equations are the Hitchin equations for

the gauge field A = Azdz + Az̄dz̄ cotangent to C and the adjoint scalar �:

FA +R2[�, �̄] = 0,

@̄A� := dz̄(@z̄�+ [Az̄,�]) = 0,

@A�̄ := dz(@z�̄+ [Az, �̄]) = 0.

(1.8)

M is therefore identified with the moduli space of solutions to Hitchin’s equa-

tions on C. M is hyperkähler and in one distinguished complex structure M

is a fibration over the 4d Coulomb branch B. The projection from M to B is

given by:

(A,�) ! {Casimirs of �}. (1.9)

This map is the well-known Hitchin fibration [21] with generic fiber being an

abelian variety. The Seiberg-Witten curve ⌃ ⇢ T ⇤C is identified with the

spectral curve determined by �:

det(�� �) = 0, (1.10)
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where � = xdz. Namely the positions xi of various sheets of ⌃ in the cotangent

directions are interpreted as the eigenvalues of the matrix-valued 1-form field

�.

For most of the class-S theories that we study, the Riemann surface

C has finitely many marked points with half-BPS codimension-2 defects of

the 6d (2,0) theories living at those points. The presence of such defects give

rise to various boundary conditions for (A,�). A systematic study of such

codimension-2 defects has been carried out in [9].

9



Chapter 2

Product SCFTs in class S1

2.1 Introduction

The class-S construction [1,2] has yielded a wealth of information about

4DN = 2 supersymmetric field theories and their superconformal fixed points.

Generically, N = 2 SCFTs come in families, where the exactly-marginal de-

formation corresponds to varying a complex gauge coupling (whose �-function

vanishes). If we turn o↵ the gauge coupling(s), these theories decompose into a

product of free vector multiplets with an isolated SCFT, a subgroup of whose

global symmetry we had previously gauged.

So, to classify such theories, it su�ces to classify the isolated theories

and their possible gauging. In class-S, the isolated theories further decompose

into products of SCFTs associated to 3-punctured spheres (“fixtures”), on

which one performs a partially-twisted compactification of a 6d (2, 0) theory.

The fixtures fall2 into three broad types: free hypermultiplets, an isolated

1§2.1-§2.6 has appeared as J. Distler, B. Ergun, and F. Yan, “Product SCFTs in Class-S”,
arXiv: 1711.04727[hep-th] [3]. In collaboration with Jacques Distler and Behzat Ergun, I
contributed to formulating the algorithm to identify product SCFTs, applying the algorithm
to some examples, and writing part of the preprint.

2This is not quite true in the twisted compactifications of the (2, 0) theories with outer-
automorphisms. There [10–12, 29], one encounters a fourth type of fixture, with a hidden
marginal deformation, which we called a “gauge theory fixture.” Some of these also turn
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interacting SCFT, or a mixture of both.

For any given (2, 0) theory, the list of fixtures is finite, permitting a

complete classification of the resulting 4D SCFTs [9–12, 26, 29–35]. It turns

out that the same isolated 4D SCFT can have many di↵erent realizations

as fixtures in (di↵erent) (2, 0) theories. That redundancy is not too di�cult

to keep track of. More serious is the possibility that some (many? most?)

fixtures could themselves correspond to product SCFTs, introducing a further

(unexpected) level of redundancy.

This has already been noted, in examples, in [10, 12, 26, 32, 35], where

the fact that one has a product SCFT can be seen by doing some gauging and

then using S-duality (see, e.g., the discussion in §7 of [12]). But how prevalent

the phenomenon – of a fixture corresponding to a product SCFT – is, was

unknown.

Our purpose here is to develop a technique for deciding the issue, and

applying it to a large (but far from exhaustive) subset of the class-S theories

which have been catalogued so-far. The technique will involve using (certain

limits of) the superconformal index to compute the number of N = 2 stress

tensor multiplets (after suitably removing the contribution to the index from

any free hypermultiplets that might be present).

For the AN�1 and DN (2, 0) theories (at least for low N), the number of

known product theories is very small. We verify that these are indeed product

out to be product theories, as we shall see below.
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theories and that there are no additional ones.

We then turn our attention to the E6 (2, 0) theory. In the untwisted the-

ory [32], there were 10 fixtures which were known to be products. We checked

all 881 fixtures and found no additional product theories. In the twisted sector

of the E6 (2, 0) theory [12], the fixtures were known to include 12 corresponding

to product SCFTs. We checked that these were, indeed, product theories and

found that there is only one additional previously unknown product theory

among the 2078 fixtures in the twisted sector of E6.

From this large, but admittedly still limited sample, we seem to be led

to two conclusions.

• Fixtures that are product SCFTs are relatively rare (at most, a few

percent of the total).

• In all of the examples we have found, whenever you do find a product

SCFT, one of the factors in the product is always a (rank-k) Minahan-

Nemeschansky theory [36, 37] (the SCFT whose Higgs branch is the k-

instanton moduli space of E6,7,8). This phenomenon becomes under-

standable using the unitarity bound criterion, which is an alternative

way to identify product theories [38, 39].
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2.2 Counting stress tensors

The unrefined superconformal index of a 4d N = 2 SCFT is defined

as [19, 40]:

I(p, q, t) = TrH(�1)Fp
1

2
(�+2j1�2R�r)q

1

2
(��2j1�2R�r)tR+r. (2.1)

Here p, q, t are the three superconformal fugacities, � is the dilatation gen-

erator (conformal Hamiltonian), j1 and j2 are the Cartan generators of the

SU(2)1 ⇥ SU(2)2, R and r are the Cartan generators of the SU(2)R ⇥ U(1)r

R-symmetry. The trace is taken over the Hilbert space H on S3 in radial

quantization. We will be interested in two specializations of the superconfor-

mal index: the Schur index, defined as

ISchur = TrHp
��R(�1)F (2.2)

and the Hall-Littlewood index,

IHL = TrHHL
⌧ 2(��R)(�1)F (2.3)

whereHHL is the subspace of H defined by ��2R�r = j1 = 0. The supercon-

formal index does not receive contributions from generic long multiplets of the

4d N = 2 superconformal algebra (or from combinations of short multiplets

that can recombine into long multiplets).

In the notation of [41], the Hall-Littlewood index receives contributions

from the short multiplets B̂R (whose superconformal primary contributes ⌧ 2R)

andDR(0,j2)
(whose first superconformal descendent contributes ⌧ 2(R+j2+1)(�1)1+2j2).
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The Schur index receives contributions from ĈR(j1,j2)
, B̂R, DR,(0,j2)

andDR(j1,0)
.

The contribution from each of these short multiplets is listed in the table be-

low.

Short Multiplet ISchur(p) IHL(⌧)

ĈR(j1,j2)
(�1)2(j1+j2) p

R+j1+j2+2

1�p
0

B̂R

p
R

1�p
⌧ 2R

DR(0,j2)
(�1)2j2+1 p

R+j2+1

1�p
(�1)2j2+1⌧ 2(R+j2+1)

D̄R(j1,0)
(�1)2j1+1 p

R+j1+1

1�p
0

The representation B̂1/2 is the free half-hypermultiplet. D0(0,0)+D0(0,0)

is the free vector multiplet. We assume that there are no free vector multiplets.

If there are free hypermultiplets present, we want to remove their contribution

by hand. n free half-hypermultiplets contribute a factor of

ISchur =

✓
PE


p1/2

1� p

�◆n

=
1Y

k=0

✓
1

1� pk+1/2

◆n

IHL = (PE[⌧ ])n =
1

(1� ⌧)n

(2.4)

to the index.

After removing the free hypers, we have an isolated interacting SCFT.

As such, there should be no higher-spin conserved currents in the spectrum.

Various DR,(0,j2)
and DR(j1,0)

multiplets contain such higher spin currents and

hence must be absent from the spectrum. In particular,

#D1/2(0,1/2) = #D1/2(1/2,0) = #D0(0,1) = #D0(1,0) = #D1/2(0,0)

= #D1/2(0,0) = #D0(0,1/2) = #D0(1/2,0) = 0

The remaining contributions to the Schur and Hall-Littlewood indices can be
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written as follows

ISchur = 1 + s1p+ s3/2p
3/2 + s2p

2 + . . .

IHL = 1 + h1⌧
2 + h3/2⌧

3 + h2⌧
4 + . . .

(2.5)

where

h1 = s1 = #B̂1

h3/2 = s3/2 = #B̂3/2

h2 = #B̂2 �#D1(0,0)

s2 = #B̂1 +#B̂2 �#D1(0,0) �#D1(0,0) +#Ĉ0(0,0)

(2.6)

Rearranging these, we obtain

#Ĉ0(0,0) = s2 � h1 � h2 +#D1(0,0) (2.7)

In general, this gives us only a lower bound

#Ĉ0(0,0) � s2 � h1 � h2 (2.8)

Because of the recombination formula,

Ĉ0(0,0) +D1(0,0) +D1(0,0) + B̂2 = long multiplet

the superconformal index cannot do better than this lower bound. We need

some dynamical information. The key point is that D1(0,0) + D1(0,0) is the

multiplet containing an (N = 1)-preserving (but (N = 2)-breaking) marginal

perturbation (exactly-marginal, if it’s a flavour singlet [42]). If such an opera-

tor is present in our product theory, then one of the factors in the product is

actually a special point of enhancedN = 2 superconformal symmetry in a fam-

ily of N = 1 superconformal theories. While this is certainly possible, it seems
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unlikely in the cases at hand. So we will simply assume that #D1(0,0) = 0 and

(2.8) is an equality. Ĉ0(0,0) is the N = 2 stress tensor multiplet and computing

the RHS of (2.8) allows us to count them.

2.3 Superconformal Index for Class-S Theories

In this section, we’ll recall some facts about class-S theories and their

superconformal indices. A class-S theory of type j is obtained by a partially-

twisted compactification of a 6d (2, 0) theory of type j, where j is a simply-laced

Lie algebra, on a genus-g, n-punctured Riemann surface Cg,n. The punctures

are the locations of codimension-two defects in the 6d (2, 0) theory. In the

untwisted sector, the punctures are labelled by nilpotent orbits in j or, equiv-

alently, embeddings ⇢ : su(2) ! j up to conjugation. The global symmetry

associated to a puncture is then the centralizer f of ⇢(su(2)) ✓ j [9].

For a fixture, i.e. a 3-punctured sphere, the Schur and Hall-Littlewood

limits of the unrefined superconformal indices have the following form [19,20]

ISchur(p) =
X

⇤

Q
3

i=1
KS(ai)�⇤(ai)

KS({p})�⇤({p})

�����
ai!1

(2.9)

IHL(⌧) =
X

⇤

Q
3

i=1
KHL(ai)P⇤(ai)

KHL({⌧})P⇤({⌧})

�����
ai!1

(2.10)

where

1. The sum is over highest weights ⇤ labeling the finite dimensional irre-

ducible representations of j.
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2. Flavor fugacities ai associated to the ith puncture are determined by

decomposition of the fundamental representation of j under ⇢i(su(2))⇥fi.

{p} and {⌧} are the fugacities for the trivial puncture.

3. The K-factor associated to the ith puncture is determined by the decom-

position of the adjoint representation adj of j under ⇢i(su(2))⇥ fi:

adj =
M

n

Vn ⌦Rn,i (2.11)

where Vn is the n-dimensional irreducible representation of su(2) and

Rn,i is the corresponding representation of fi, possibly reducible. Upon

this decomposition, the K-factors are

KS(ai) = PE

"
X

n

p
n+1

2

1� p
�fi
Rn,i

(ai)

#
(2.12)

KHL(ai) = (1� ⌧ 2)
rank(j)

2 PE

"
X

n

⌧n+1�fi
Rn,i

(ai)

#
(2.13)

4. The polynomials appearing in the index �⇤ and P⇤ are characters and

Hall-Littlewood polynomials for the corresponding representation labeled

by ⇤. The HL polynomial is defined as:

P⇤(ai) =
1

W⇤(⌧)

X

w2W

ew(⇤)
Y

↵2�+

1� ⌧ 2e�w(↵)

1� e�w(↵)
(2.14)

W⇤(⌧) =

s X

w2StabW (⇤)

⌧ 2l(w) (2.15)

where �+ are the positive roots of j and flavor fugacities {ai} are assigned

once we choose a basis for the weight lattice of j.
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In the twisted sector, some of the defects are associated with a twist

by an outer automorphism o 2 Out(j). Let g ⇢ j be the invariant subalgebra.

Twisted defects are labeled by, up to conjugation, homomorphisms ⇢ : su(2) !

g_ where g_ is Langlands dual of g. As in the untwisted case, the flavor

symmetry is the centralizer of the image of ⇢ [9]. Twisted-sector fixtures

have 2 twisted punctures and 1 untwisted puncture. Unrefined superconformal

indices for such fixtures have almost the same form as before but are slightly

modified as [11, 12, 20]

ISchur(p) =
X

⇤0

KS(b)�j
⇤
(b)
Q

3

i=2
K̄S(ai)�

g_

⇤0 (ai)

KS({p})�j
⇤
({p})

�����
ai,b!1

(2.16)

IHL(⌧) =
X

⇤0

KHL(b)P j
⇤
(b)
Q

3

i=2
K̄HL(ai)P

g_

⇤0 (ai)

KHL({⌧})P j
⇤
({⌧})

�����
ai,b!1

(2.17)

where the sum is now over the weights ⇤0 of g_, extended3 (in the case of the

untwisted puncture) to weights of j (denoted as ⇤ in the formulas). The K̄ and

flavor fugacities ai for twisted punctures are determined as in the untwisted

case but with j replaced by g_.

The main computational bottleneck is computing and evaluating the

Hall-Littlewood polynomials, which requires a sum over the elements of the

Weyl group. For low rank classical algebras AN and DN , the Weyl groups are

rather small and the HL polynomials can be evaluated with ease. However,

|WE6
| = 51840, which makes the evaluation of HL polynomials very tedious.

3For the main case of interest here, namely g_ = f4 and j = e6, the precise extension can
be found in §4.1 of [12].
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Figure 2.1: An interacting fixture in the D4 theory

And we need to compute them for every representation that contributes to a

given order in ⌧ . Fortunately, one can exploit the freedom in the choice of

flavor fugacity assignments to deduce whether or not a given representation

will contribute to a desired order.

For the untwisted E6 theory, it turns out there are 71 representations

that contribute to the order p2 and ⌧ 4. The highest dimensional representa-

tion that occur has Dynkin labels [0, 0, 1, 0, 0, 2]e6 and dimension = 1911195.

In the twisted E6 case, there are 30 representations that contribute, 15 of

which already appeared in the untwisted case. The largest f4 and e6 represen-

tations that contribute to order p2 and ⌧ 4 have dim[1, 1, 0, 1]f4 = 379848 and

dim[2, 1, 0, 1, 2, 0]e6 = 688740975.

2.4 Examples

As a simple example, consider an interacting fixture in the D4 theory

as given in Figure 2.1. The corresponding 4d N = 2 SCFT was identified as

the product of two copies of rank-1 Minahan-Nemeschansky E6 SCFT in [26].
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The unrefined Schur and Hall-Littlewood indices for this fixture to the order

of p2 (⌧ 4) are

ISchur = 1 + 156p+ 11102p2 + . . .

IHL = 1 + 156⌧ 2 + 10944⌧ 4 + . . .
(2.18)

We read o↵ h1 = s1 = 156, which equals the dimension of e6 � e6. The lower

bound on #Ĉ0(0,0) is

s2 � h1 � h2 = 11102� 156� 10944 = 2.

The lower bound is clearly saturated in this example.

At least for low N , there are not too many further examples of product

SCFTs among the (twisted or untwisted) fixtures of the AN or DN theories.

For most of the interacting fixtures the lower bound on #Ĉ0(0,0) is equal to 1.

However, there are more interesting product SCFTs in theories of type E6.

In the untwisted E6 case, our results can be summarized in the table

below. We find 10 product theories among the 881 good fixtures (the number-

ing is the one used in [32]) with regular punctures. The first 7 were known to

be product theories in [32]. The last 3 were not.

Those three fixtures,

������ ������� , ������ ��� , ��
���

(respectively, #59, #61 and #99 in the table of interacting fixtures in [32])

were later identified as product theories in [12] by gauging a subgroup of the

flavour symmetry and using S-duality.
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#type Fixture ISchur(p) IHL(⌧) #Ĉ0(0,0) Theory

1int ��
������� 1 + 496p+

+ 116002p
2
+ . . .

1 + 496⌧
2
+

+ 115504⌧
4
+ . . .

2 [(E8)12 SCFT]
2

8int ��
��� 1 + 222p+ 216p

3
2 +

+ 23880p
2
+ . . .

1 + 222⌧
2
+ 216⌧

3
+

+ 23656⌧
4
+ . . .

2

[(E7)8 SCFT]

⇥

[(E6)16 ⇥ Sp(2)
10

⇥ U(1) SCFT]

6int ��
��� � �� 1 + 269p+ 266p

3
2 +

+ 35045p
2
+ . . .

1 + 269⌧
2
+ 266⌧

3
+

+ 34774⌧
4
+ . . .

2

[(E7)8 SCFT]

⇥

[(E7)16 ⇥ SU(2)
9
SCFT]

39int ��
��� 1 + 329p+ 156p

3
2 +

+ 50739p
2
+ . . .

1 + 329⌧
2
+ 156⌧

3
+

+ 50408⌧
4
+ . . .

2

[(E8)12 SCFT]

⇥

[(E6)12 ⇥ SU(2)
7
SCFT]

11mix ������ ������� 1 + 54p
1
2 + 1641p+

+ 36198p
3
2 +

+ 640688p
2
+ . . .

1 + 54⌧ + 1641⌧
2
+

+ 36144⌧
3
+

+ 637614⌧
4
+ . . .

2 [(E6)6 SCFT]
2
+ 1(27)

5int ��
������� 1 + 399p+

+ 75582p
2
+ . . .

1 + 399⌧
2
+

+ 75180⌧
4
+ . . .

3 [(E7)8 SCFT]
3

18int ������ ��� 1 + 404p+

+ 77039p
2
+ . . .

1 + 404⌧
2
+

+ 76632⌧
4
+ . . .

3

[(E8)12 SCFT]

⇥

[(E6)6 SCFT]
2

99int ��
��� 1 + 172p+

+ 14886p
2
+ . . .

1 + 172⌧
2
+

+ 14712⌧
4
+ . . .

2

[(E6)6 SCFT]

⇥

[(E6)18 ⇥ SU(3)
2

12
SCFT]
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#type Fixture ISchur(p) IHL(⌧) #Ĉ0(0,0) Theory

61int ������ ��� 1 + 165p+ 164p
3
2 +

+ 13451p
2
+ . . .

1 + 165⌧
2
+ 164⌧

3
+

+ 13284⌧
4
+ . . .

2

[(E6)6 SCFT]

⇥

[(E6)18 ⇥ SU(3)
12

⇥ U(1) SCFT]

59int ������ ������� 1 + 212p+ 112p
3
2 +

+ 22273p
2
+ . . .

1 + 212⌧
2
+ 112⌧

3
+

+ 22059⌧
4
+ . . .

2

[(E6)6 SCFT]

⇥

[(E7)18 ⇥ U(1) SCFT]

In the twisted E6 case, we identify 13 product theories among 2078

good fixtures with regular punctures. Only one interacting fixture, namely

fixture #91, was not previously listed in [12] as a product theory. We also

find that three gauge theory fixtures are product theories. One was explicitly

noted as such in §3.6 of [12]. We discuss the other two below. Our results can

be summarized in the following table.

#type Fixture ISchur(p) IHL(⌧) #Ĉ0(0,0) Theory

111int �� ������� 1 + 136p+ 104p
3
2 +

+ 9036p
2
+ . . .

1 + 136⌧
2
+ 104⌧

3
+

+ 8898⌧
4
+ . . .

2

[(E6)6 SCFT]

⇥

[(F4)12 ⇥ SU(2)
2

7
SCFT]

103int ������������� 1 + 159p+ 156p
3
2 +

+ 12229p
2
+ . . .

1 + 159⌧
2
+ 156⌧

3
+

+ 12068⌧
4
+ . . .

2

[(E6)6 SCFT]

⇥

[(E6)12 ⇥ SU(2)
7
SCFT]

99int ������������� 1 + 234p+

+ 25779p
2
+ . . .

1 + 234⌧
2
+

+ 25542⌧
4
+ . . .

3 [(E6)6 SCFT]
3

22



#type Fixture ISchur(p) IHL(⌧) #Ĉ0(0,0) Theory

91int �� ��� 1 + 186p+

+ 16142p
2
+ . . .

1 + 186⌧
2
+

+ 15954⌧
4
+ . . .

2

[(E7)8 SCFT]

⇥

[(F4)10 ⇥ U(1) SCFT]

14int �� ���� 1 + 326p+

+ 49102p
2
+ . . .

1 + 326⌧
2
+

+ 48774⌧
4
+ . . .

2

[(E8)12 SCFT]

⇥

[(E6)6 SCFT]

5int �� ���� 1 + 170p+

+ 14601p
2
+ . . .

1 + 170⌧
2
+

+ 14429⌧
4
+ . . .

2

[(E6)6 SCFT]

⇥

[(E6)18 ⇥ (G2)10 SCFT]

4int �� ��� 1 + 162p+ 312p
3
2 +

+ 13365p
2
+ . . .

1 + 162⌧
2
+ 312⌧

3
+

+ 13201⌧
4
+ . . .

2 [(E6)12 ⇥ SU(2)
7
SCFT]

2

3int �� ���� � �� 1 + 159p+ 160p
3
2 +

+ 12464p
2
+ . . .

1 + 159⌧
2
+ 160⌧

3
+

+ 12303⌧
4
+ . . .

2

[(E6)6 SCFT]

⇥

[(E6)18 ⇥ SU(2)
20

SCFT]

2int �� ������� 1 + 237p+ 156p
3
2 +

+ 27140p
2
+ . . .

1 + 237⌧
2
+ 156⌧

3
+

+ 26900⌧
4
+ . . .

3

[(E6)6 SCFT]
2

⇥

[(E6)12 ⇥ SU(2)
7
SCFT]

1int �� ������� 1 + 312p+

+ 46540p
2
+ . . .

1 + 312⌧
2
+

+ 46224⌧
4
+ . . .

4 [(E6)6 SCFT]
4
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#type Fixture ISchur(p) IHL(⌧) #Ĉ0(0,0) Theory

1gauge ������ ���
1 + 133p+ 52p

3
2 +

+ 8446p
2
+ . . .

1 + 133⌧
2
+ 52⌧

3
+

+ 8311⌧
4
+ . . .

2

2gauge ������������� 1 + 156p+

+ 11830p
2
+ . . .

1 + 156⌧
2
+

+ 11672⌧
4
+ . . .

2

3gauge ������ ������� 1 + 326p+

+ 12558p
2
+ . . .

1 + 326⌧
2
+

+ 12400⌧
4
+ . . .

2

2.5 Gauge theory fixtures

The F4(a1) puncture, in the twisted sector of the E6 theory, is “atyp-

ical” (in the nomenclature of [10]). That is, it carries a “hidden” marginal

deformation. To access the full space of marginal couplings, we should resolve

it to a pair of punctures: F4 (the simple puncture from the twisted sector) and

E6(a1) (the simple puncture from the untwisted sector). The coincident limit

of those two punctures does not imply any gauge coupling becoming weak,

instead we simply obtain F4(a1).

A fixture with an F4(a1) puncture is thus a 4-punctured sphere in dis-

guise, where the gauge theory is at a strong coupling point in the interior of

the conformal manifold. (See Figure 2.2 for the gauge theory fixture 1gauge in

our table.)
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Figure 2.2: Resolving the atypical puncture in the gauge theory fixture 1gauge
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Figure 2.3: Degeneration A of the 4-punctured sphere relevant to 1gauge

We computed that the theory has two stress tensors, and is thus a

product SCFT. That is indeed the case, as we can see by examining the other

degenerations of the 4-punctured sphere. Degeneration A is given in Figure 2.3,

where one of the SU(2)s of the (F4)12⇥SU(2)2
7
SCFT is gauged. Degeneration

B is given in Figure 2.4, where a G2 subgroup of the E8 is gauged. In each case,

there is a decoupled Minahan-Nemeschansky (E6)6 SCFT, as anticipated.

The same remarks apply, mutatis mutandis, to the gauge theory fixture

2gauge. (Gauge theory fixtures 2gauge and 3gauge were also discussed in detail

in §8.1 of [12].) In particular, Figures 2.6 and 2.7 show the two degenerations
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Figure 2.4: Degeneration B of the 4-punctured sphere relevant to 1gauge
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Figure 2.5: Resolving the atypical puncture in the gauge theory fixture 2gauge

where there is a decoupled (E6)6 SCFT.

This is a nice check that our formalism works, even when the SCFTs

are not isolated.
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Figure 2.6: Degeneration A of the 4-punctured sphere relevant to 2gauge
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Figure 2.7: Degeneration B of the 4-punctured sphere relevant to 2gauge
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2.6 The new product SCFT

The following fixture

�
�� ��

������ 	
��  � ������� � ���� 	
�� 
is a product SCFT that hasn’t been identified previously4. Since it has rank-3,

it must be a product of a rank-1 and a rank-2 theory. The possibilities for

rank-1 N = 2 SCFTs are very limited [43–46]. The only one consistent with

the global symmetries and R-charges of the Coulomb branch parameters is

the Minahan-Nemeschansky (E7)8 SCFT. The other factor in the product is,

then, a new rank-2 SCFT, with global symmetry (F4)10 ⇥ U(1), n4 = n5 = 1

and (nh, nv) = (32, 16). So far, we are not aware of an alternative class-S

construction of this theory.

2.7 Moduli space of product SCFTs: a case study

We have identified a list of product SCFTs by counting the N = 2

stress tensor multiplet Ĉ0(0,0). However, a product SCFT has more interest-

ing properties than having more than one stress tensor. In particular, the

4Only an (F4)18 ⇥ SU(2)24 ⇥ U(1) subgroup of the global symmetry is manifest. Of
this, only (a subgroup of the) (F4)18 ⇢ (E7)8 ⇥ (F4)10 is gaugeable, which makes the usual
S-duality tricks useless for discerning that this is a product SCFT.
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supersymmetric vacuum moduli space of a product SCFT should better be

factorized into a product of moduli spaces of simple SCFTs. In this subsec-

tion we will explore the moduli space of the simplest product SCFT, namely

the interacting fixture in the D4 theory as shown in Figure 2.1. In the following

we will denote this theory as TD4
.

The Higgs branch of the rank-1 Minahan-Nemeschansky E6 SCFT is

given by the centered moduli space of the one E6-instanton on R4, or equiva-

lently the minimal nilpotent orbit in e6 [47]. Its refined Hilbert series is given

by [48]:

IM(E6,1)
(z) =

1X

k=0

[0, k, 0, 0, 0, 0]z⌧
2k. (2.19)

Here z is the e6 fugacity and [0, k, 0, 0, 0, 0]z is the character of the irreducible

representation with Dynkin label [0, k, 0, 0, 0, 0], where [0, 1, 0, 0, 0, 0] corre-

sponds to the 78-dimensional adjoint representation of e6.

It was argued in [19] that, for class-S theories whose corresponding

Riemann surfaces have the topology of a sphere, the Higgs branch Hilbert series

coincides with the Hall-Littlewood index. Concretely in those theories, the

contribution from short multiplets of the type DR(0,j2)
to the Hall-Littlewood

index is the same as imposing constraints between Higgs branch operators in

the Hilbert series calculation. From this perspective the factorization of the

Higgs branch would be reflected through the refined Hall-Littlewood index for

the theory TD4
being a “square” of (2.19). We have computed the refined
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Hall-Littlewood index for TD4
up to ⌧ 6 order5:

IHL,TD4
(z1, z2) =1 + [(78, 1) + (1, 78)]z1,z2⌧

2

+ [(2430, 1) + (1, 2430) + (78, 78)]z1,z2⌧
4

+ [(43758, 1) + (1, 43758) + (78, 2430) + (2430, 78)]z1,z2⌧
6 + . . .

(2.20)

In the above expression for simplicity we have denoted the irreducible repre-

sentations using their dimensions.

We remark here that computing the refined Hall-Littlewood index to

higher order in ⌧ is very challenging and thus refrains us from making further

checks. Moreover, studying the Higgs branch at the level of Hilbert series

does not involve its structure as a hyperkähler manifold. For other product

SCFTs in our list, if all simple SCFTs that appear in the factorization have

an alternative class-S realization, we could then compute the Hall-Littlewood

indices to certain order in ⌧ and confirm the factorization of the index to that

order.

Now we turn to study the Coulomb branch of the theory TD4

6. For this

purpose we would need the Coulomb branch analysis for the rank-1 Minahan-

Nemeschansky E6 SCFT. A realization of this theory in class-S is given by a

fixture in the A2 theory with three full punctures, which is often called the T3

theory. T3 has a one-dimensional Coulomb branch, parametrized by u 2 C.

The Seiberg-Witten geometry of T3 was analyzed in [49]. In particular, the

5This was part of results from a project with Anderson Trimm.
6The study of Coulomb branch of product SCFTs is ongoing work with Jacques Distler,

Behzat Ergun, Qianyu Hao and Andy Neitzke.
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period integrals are proportional to u1/3, which is consistent with the fact that

u has scaling dimension 3. Below we will analyze the Seiberg-Witten geometry

of TD4
and we will see some first evidence that the Coulomb branch of TD4

is

factorized into a product of two copies of the Coulomb branch of the T3 theory

(the rank-1 Minahan-Nemeschansky E6 SCFT).

We use the PSL(2,C) symmetry of CP1 to fix the three punctures to

be located at (z1, z2, z3) = (0, 1,1), where punctures 1 and 2 are the ones

labeled by the D-partition [3, 3, 1, 1] and puncture 3 is the full puncture in

the D4 theory. The UV curve is C = CP1 \ {0, 1,1}. The k-di↵erentials in

the D4 theory are �(2),�(4),�(6) and the Pfa�an �̃. The pole structures and

constraints (as worked out in [26]) at the three punctures yield that the only

non-vanishing k-di↵erential is �(6), which has at most fourth-order poles at

z1,2 = 0, 1, and at most a fifth-order pole at z3 = 1. Moreover, the leading pole

coe�cients of �(6) at z1,2 = 0, 1 satisfy constraints of the form c1,2 = (a1,2)2,

where a1,2 parametrizes the Coulomb branch [9,26]. The Seiberg-Witten curve

⌃ ⇢ T ⇤C is then given by:

�2(�6 � �(6)) = 0, (2.21)

where

�(6) =
a2
1
+ (a2

2
� a2

1
)z

z4(z � 1)4
dz6. (2.22)

� is the Seiberg-Witten di↵erential, concretely in terms of coordinates (x, z) on

T ⇤C, � = xdz. Two sheets of ⌃ are trivial coverings of C, the other six sheets

form a branched covering of C with a branch point at zp :=
a
2

1

a
2

1
�a

2

2

. Denote this
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Figure 2.8: Choice of branch cuts for ⌃0 and cycles in homology classes �1
(blue) and �2 (green) in H1(⌃0,Z). The four branch points are at z1 = 0,
z2 = zp, z3 = 1 and z4 = 1. The four branch cuts are represented by wavy
lines and they meet at some point on CP1. Each branch cut is labeled with
the corresponding sheet permutation and the direction to do the gluing.

branched covering as ⌃0 and fill in the punctures, we obtain a genus 4 curve

⌃0. ⌃0 is a branched covering of CP1 with four branch points at 0, 1,1, zp.

Concretely we could obtain ⌃0 by gluing together six sheets along branch cuts

as shown in Figure 2.8, where the six sheets are labeled by the six possible

choices of 6-th root of �(6).

If the Coulomb branch of TD4
has the desired factorization, then for

any homology class � 2 H1(⌃0,Z), the corresponding period integral would

take the following form:

I

�

� = Au1/3

1
+Bu1/3

2
, (2.23)

where A,B 2 C and u1,2 are some functions of a1,2. We would like to confirm
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this property and identify u1,2. First let us look at the cycle in homology class

�1 as depicted in Figure 2.8, we have

I

�1

� =
�
e2⇡i/3 � 1

� Z 1

0

(a2
2
� a2

1
)1/6(z � zp)1/6

z2/3(1� z)2/3
dz ⇠

⇣q
a2
1
+
q

a2
2

⌘1/3
. (2.24)

Similarly for a cycle in homology class �2 as depicted in Figure 2.8,

I

�2

� =
�
e2⇡i/6 � 1

� Z 1

zp

(a2
2
� a2

1
)1/6(z � zp)1/6

z2/3(1� z)2/3
dz ⇠

⇣q
a2
1
�
q
a2
2

⌘1/3
. (2.25)

Moreover one could argue that for any homology class � the period integral

takes the form of (2.23), with

u1 =
q

a2
1
+
q
a2
2
, u2 =

q
a2
1
�
q
a2
2
. (2.26)

Concretely, due to the pole/zero order of �(6) at the branch point, to prove

(2.23) it is su�cient to check that the integrals between the branch points take

the desired form, which is indeed the case. For example,

Z
1

1

(a2
2
� a2

1
)1/6(z � zp)1/6

z2/3(1� z)2/3
dz ⇠ (a2

2
� a2

1
)1/6cos

⇣1
3
arcsin

h a1p
a2
1
� a2

2

i⌘

⇠ A
⇣q

a2
1
+
q

a2
2

⌘1/3
+B

⇣q
a2
1
�
q

a2
2

⌘1/3
,

(2.27)

where A,B 2 C7.

Although (2.23) o↵ers a strong evidence, it is not enough to prove that

the Coulomb branch of TD4
is factorized into two copies of the Coulomb branch

of the rank-1 Minahan-Nemeschansky E6 theory. The proof would involve a

7Here we have used cos(3↵) = 4cos3↵� 3cos↵.
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detailed study of the electromagnetic charge lattice of the infrared theory,

which is still under investigation.

We have seen that even for the simplest example of product SCFTs

the study of its supersymmetric vacuum moduli space is already quite com-

plicated. In future work we would like to have a better picture of how the

moduli space factorizes, preferably also for more complicated product SCFTs.

Another interesting direction that we are pursuing is to understand exactly

why and how these product SCFTs appear in class-S construction.
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Chapter 3

Line defect Schur indices, Verlinde algebras
and U(1)r fixed points1

3.1 Introduction

In this chapter we describe a puzzling new feature of the line defect

Schur index in N = 2 theories, introduced in [50] and recently reconsidered

in [51]. In short, there is an unexpectedly close relation between:

• the Schur index in the presence of a supersymmetric (half) line defect L,

• the vevs hLi in U(1)r-invariant vacua of the theory compactified on S1.

The precise statements and some discussion appear in §3.1.7-§3.1.9 below; the

intervening sections provide the necessary notation and background.

3.1.1 Schur indices and chiral algebras

In [52] a novel correspondence between 4d N = 2 SCFT and 2d chiral

algebras was discovered: given an N = 2 SCFT, there is a corresponding

1Previously published as A. Neitzke and F. Yan, “Line defect Schur indices, Verlinde
algebras and U(1)r fixed points”, JHEP 11 (2017) 035 [4]. In collaboration with Andrew
Neitzke, I contributed to formulating the commutative diagram relation, testing the relation
in various examples, and writing up the paper.
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chiral algebra A. The operators in the vacuum module of the chiral algebra A

correspond to local operators in the original N = 2 theory which contribute

to the Schur index I(q) (and Macdonald index2).

The algebras A corresponding to Argyres-Douglas theories have been

intensively studied in e.g. [52, 54–60]. In particular, the chiral algebra for the

(A1, A2N) Argyres-Douglas theory3 was conjectured to be the Virasoro minimal

model with (p, q) = (2, 2N+3), and the chiral algebra for (A1, D2N+1) Argyres-

Douglas theories was conjectured to be [sl(2)
k
at level k = �4N/(2N+1). The

Schur indices for certain Argyres-Douglas theories have been computed and

indeed match the vacuum characters of the corresponding 2d chiral algebra

[51,55,56, 60].

3.1.2 Schur indices with half line defects and Verlinde algebra

In [51] this story was extended to include the non-vacuum characters

of the chiral algebra A, by considering a new Schur index IL(q), which counts

operators of the N = 2 SCFT which sit at the endpoint of a supersymmet-

ric “half line defect” L. In various examples, [51] found that IL(q) can be

expressed as a linear combination of characters associated to modules for the

algebra A:

IL(q) =
X

�

vL,�(q)��(q) (3.1)

2Macdonald index and its relation to chiral algebra was studied in [53].
3Here and below we use the taxonomy of Argyres-Douglas theories from [61], in which

they are labeled by pairs of ADE type Lie algebras. Argyres-Douglas theories were first
discovered in [62,63].
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where ��(q) are the characters, and vL,�(q) are some simple Laurent polyno-

mials in q, with integer coe�cients.

In the expansion (3.1), the index � is running over some finite collec-

tion of modules, which moreover are closed under a canonical action of the

modular S matrix. This being so, we can use the Verlinde formula to define

a commutative and associative algebra V , generated by the “primaries” ��

corresponding to the modules with characters ��(q), with product laws of the

form

[��]⇥ [�↵] = c�
�↵
[��]. (3.2)

In (A1, A2N) Argyres-Douglas theories this commutative product corresponds

to the true fusion operation in the (2, 2N + 3) Virasoro minimal model. More

generally though, we do not claim to interpret this product as any kind of

fusion operation: we just use the formal rule provided by the Verlinde formula.

In the following we will often refer to these product laws as modular fusion

rules
4 of the Verlinde-like algebra V .

Now, let us return to the expansion (3.1) and specialize the coe�cients

vL,�(q) to q = 1, defining

VL,� = vL,�(q = 1). (3.3)

Then for every line defect L we get an element f(L) 2 V by

f(L) =
X

�

VL,�[��]. (3.4)

4We thank Christopher Beem for suggesting us to make a distinction from the true fusion
rules.
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Remarkably, [51] found evidence that this map is actually a homomorphism of

commutative algebras,

f : L ! V (3.5)

where L is the commutative OPE algebra of line defects in the original N = 2

theory.

f always maps the trivial line defect to the vacuum module, since the

Schur index without any line defect insertions is the vacuum character of A.

Thus the fact that the trivial line defect is the identity in the OPE algebra

gets mapped to the fact that the vacuum module is the identity in the Verlinde

algebra V .

Evidence for the homomorphism property of the line defect Schur index

was observed in [51] in the (A1, A2) and (A1, A4) theories. In §3.5.4 below we

give evidence that the same is true in the (A1, A6) theory. We also extend

to the (A1, D3) and (A1, D5) theories, in §3.6.1 and §3.6.2, but this involves a

little twist: see §3.1.8 below.

3.1.3 A simple example

Just to fix ideas, we quickly review here the case of the Argyres-Douglas

theory of type (A1, A2). The basic data are:

• There are five distinguished nontrivial line defects L1, . . . , L5 in the the-

ory, which generate all the rest by operator products. In fact one only

needs products involving consecutive Li: the most general simple line
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defect can be written [23]

L = Lm

i
Ln

i+1
(3.6)

for i 2 {1, . . . , 5} and m,n � 0 (letting L6 = L1). We also have the

trivial line defect which we write as 1.

• The chiral algebra A is the (2, 5) Virasoro minimal model, with c =

�22/5. The corresponding Verlinde algebra V has two generators [�1,1],

[�1,2] corresponding to the two primaries. [�1,1] is the identity element,

so the only nontrivial product is [�1,2]⇥ [�1,2], which is

[�1,2]⇥ [�1,2] = [�1,1] + [�1,2]. (3.7)

The line defect Schur indices come out to [51]

I1(q) = �1,1(q), ILi(q) = q�
1

2

�
�1,1(q)� �1,2(q)

�
. (3.8)

Thus the homomorphism f in this case is

f(1) = [�1,1], f(Li) = [�1,1]� [�1,2]. (3.9)

In particular, f forgets the index i, so it identifies the 5 generators Li.5 More-

over, f collapses the infinite-dimensional algebra L, spanned by the operators

(3.6), down to the two-dimensional algebra V .

5We will give a derivation of this property of f in §3.2.4.
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3.1.4 Diagonalizing the Verlinde algebra

To explain the main new results of this paper, we need a brief digression

to recall a structural fact about the Verlinde algebra V : the modular S operator

gives a canonical diagonalization of V [64]. Concretely, if we choose an ordering

of the n primaries, then we can represent the operation of fusion with �i by

an n⇥ n matrix N�i , and likewise S by an n⇥ n matrix; then the statement

is that the matrices

N̂� = SN�S
�1 (3.10)

are all diagonal.

For example, in the (2, 5) Virasoro minimal model, if we choose the

ordering of the primaries (�1,1,�1,2), then we have [65]

N�1,1 =

✓
1 0
0 1

◆
, N�1,2 =

✓
0 1
1 1

◆
, S =

2p
5

✓
� sin 2⇡

5
sin 4⇡

5

sin 4⇡

5
sin 2⇡

5

◆
, (3.11)

from which we can compute

N̂�1,1 =

✓
1 0
0 1

◆
, N̂�1,2 =

 
1�

p
5

2
0

0 1+
p
5

2

!
. (3.12)

The representation of V by the diagonal matrices N̂� shows that V is

naturally isomorphic to a direct sum of copies of C. Moreover these copies

correspond canonically to the primaries themselves, using the ordering of the

primaries we have chosen. Another way of saying this is: V is canonically

isomorphic to the algebra of functions on the set of primaries of A. We will

use the statement in this form, in §3.1.5 below.
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3.1.5 Verlinde algebra and U(1)r-fixed points in three dimensions

Now we recall another place where the Verlinde algebra of A has re-

cently appeared.

We consider the compactification of our superconformal N = 2 theory

to three dimensions on S1. As is well known, beginning with [66], the Coulomb

branch of the compactified theory is a hyperkähler space N . For example, if

our theory is a theory of class S, say S[g, C], then N is a moduli space of

solutions of Hitchin equations on C with gauge algebra g [1, 21].

The U(1)r symmetry of the theory acts geometrically onN . This action

is an important tool in the study of this space. For example, it can be used to

compute the Betti numbers of the Hitchin moduli spaces, as was noted already

in [21]. More recently [67, 68] this U(1)r action has been used to define and

compute a new “U(1)r-equivariant index” for N , related to a Coulomb branch

index in the N = 2 theory. In both computations the starring role is played

by the fixed locus F ⇢ N of the U(1)r symmetry. The points of F are the

U(1)r-invariant vacua of the compactified theory.

For our purposes the key fact about F is the following recent observa-

tion: the points of F are naturally in 1-1 correspondence with the primaries of

A [61,69–71].
6 Combining this correspondence with the picture of V reviewed

6Some early hints of this appeared in [61], and a precise correspondence of this sort in
the case of (Am, An) Argyres-Douglas theories with (m+ 1, n+ 1) = 1 is developed in [69],
first reported in [70]. This correspondence was used extensively in [71], where the U(1)R
weights at the fixed points were also worked out; that work also substantially broadened
the scope of the correspondence, well beyond the class of (Am, An) theories. Despite all
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in §3.1.4, we conclude that there is a canonical isomorphism

h : V ! O(F ), (3.13)

where O(F ) means the algebra of functions on F . Concretely, h maps [�] to

the vector of diagonal entries of N̂�, using the correspondence above to match

up the points of F with the positions along the diagonal.

3.1.6 Fixed points and vevs

We consider the vacuum expectation values of 1

2
-BPS line defects wrapped

around S1 in S1 ⇥ R3. These vevs are functions on the vacuum moduli space

N ; the process of taking vevs gives a homomorphism of commutative algebras

L ! O(N ) (3.14)

from the OPE algebra of 1

2
-BPS line defects to the algebra O(N ) of holo-

morphic functions on N .7 Now consider the restriction of these vevs to the

U(1)r-fixed locus F ⇢ N : this gives another homomorphism of commutative

algebras,

g : L ! O(F ). (3.15)

In Argyres-Douglas theories, the map g is very far from being an iso-

morphism: it forgets most of the details of a line defect, remembering only

this, as far as we know, nobody has yet provided a first-principles explanation of why the
correspondence between points of F and primaries of A exists. In this paper we just take
this correspondence as a given.

7In fact, in all examples we know, this is an isomorphism L ' O(N ), though we do not
need this fact in anything that follows.
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its vevs at the finitely many U(1)r-invariant vacua. This is reminiscent of the

fact that the map f , built from line defect Schur indices IL, likewise forgets

most of the details of the line defects L. In the next section we flesh this out

into a precise sense in which f and g are “the same.”

Before we state our main result, we would like to point out that the

1

2
-BPS line defects that we are talking about in this section are full line defects,

which are by definition di↵erent from the half line defects in 3.1.2. However,

away from the endpoints of the half line defects they are “locally” the same

object. In particular the OPE algebra of half line defects is isomorphic to the

OPE algebra of full line defects, both of which we denote as L.

3.1.7 The commutative diagram

So far in this introduction we have described three a priori unrelated

commutative algebras associated to an N = 2 SCFT:

• The OPE algebra L of 1

2
-BPS line defects,

• The Verlinde algebra V associated to the chiral algebra A,

• The algebra O(F ) of functions on the set of U(1)r-invariant vacua of the

theory compactified on S1.

We also described three a priori unrelated maps between these algebras:

• The map f : L ! V obtained by computing Schur indices in the presence

of half line defects and expanding them in terms of characters of A,
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• The isomorphism h : V ! O(F ), constructed using the mysterious iden-

tification between U(1)r-invariant vacua and chiral primaries, and using

also the modular S matrix,

• The map g : L ! O(F ) obtained by compactifying the theory on S1

and evaluating line defect vevs in U(1)r-invariant vacua of the reduced

theory.

These ingredients can be naturally assembled into a diagram:

L V

O(F )

f

g
h

This raises the natural question of whether the diagram commutes, i.e. whether

h � f = g. (3.16)

In §3.5 below, we verify by direct computation that (3.16) indeed holds, in the

Argyres-Douglas theories of type (A1, A2), (A1, A4), and (A1, A6). In §3.6 we

verify a similar statement in (A1, D3) and (A1, D5) theories: see §3.1.8 below

for more on this.

The commutativity (3.16) is the main new result of this paper. In a

sense it is not surprising — once you realize that this diagram exists, it is hard

to imagine that it would not commute — but on the other hand its physical

meaning is not at all transparent, at least to us. It should be interesting to

unravel. We comment a bit further on this question in §3.1.9 below.
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3.1.8 Flavor symmetries

In N = 2 theories with flavor symmetries the story described above can

be enriched. The Schur index, rather than being a function IL(q), is promoted

to IL(q, z) where z stands for the flavor fugacities. The chiral algebra A also

contains currents for the flavor symmetry group, and thus its characters are

promoted to �i(q, z). It is natural to ask whether there are analogues of the

homomorphisms f , g, h in such theories with the extra parameters z included.8

In §3.6 below we consider this question for the (A1, D3) and (A1, D5)

Argyres-Douglas theories, which have flavor symmetry SU(2). The Cartan

subgroup of SU(2) consists of matrices diag(z, z�1) for |z| = 1; thus the fu-

gacity in this case is just a single number z. The chiral algebras in these

theories are A = [sl(2)
�

4

3

and A = [sl(2)
�

8

5

respectively.

In the compactification of the theory on S1, turning on the fugacity z,

with |z| = 1, corresponds to switching on a “flavor Wilson line” around the

S1. Such a Wilson line leads to a deformation of N which does not break the

U(1)r symmetry. Thus for any fixed z we can consider the fixed locus Fz ⇢ Nz,

which turns out to be discrete, just as in the (A1, A2n) theories we considered

above. Evaluating line defect vevs at Fz we get a homomorphism

gz : L ! O(Fz). (3.17)

8In [51] the case of (A1, D3) was considered, after specializing to z ! 1 to “forget” the
flavor symmetry. Though this limit is very special in the sense that characters of the two
non-vacuum admissible representations diverge in this limit and only one linear combination
of the two characters is well-defined. This linear combination and the vacuum character
transform into each other under modular transformations [72].
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Now we would like to repeat the story of §3.1.7 here, i.e. to construct

maps fz and hz, and to verify (3.16). A key question arises: what should

we use as “Verlinde algebra”? There are no conventional two-dimensional

conformal field theories with A as symmetry algebras; the usual candidate

with symmetry [sl(2)
k
would be the WZWmodel, but that only makes sense for

positive integer k. Thus there is no clear physically-defined notion of Verlinde

algebra. Still, it was realized in [73] that at admissible levels there is a finite set

of admissible representations of A whose characters span a representation of

the modular group SL(2,Z). A Verlinde-like algebra built from the admissible

representations V1 was constructed in [74] where the fusion rules were given

by naive application of the Verlinde formula [73]. V1 has the odd feature that

some of the structure constants are equal to �1.9

Nevertheless, we could try to construct fz and hz, and verify (3.16),

using this algebra V1. What we find experimentally in §3.6 below is that this

does not quite work: we need to use a deformed Verlinde-like algebra Vz. Vz

is obtained from V1 by replacing each structure constant �1 by �z2. Once we

make this modification, the whole story goes through as in §3.1.7 above.

9Fusion rules of dsl(2)k at admissible negative fractional level have been studied intensively
over the years and have been completely solved and understood recently in [75,76] (see also
references therein). From this point of view, the negative structure constants have to do
with the fact that admissible representations are not closed under fusion. In any case,
in in our context we are simply considering a Verlinde-like algebra V1 defined by naive
application of the Verlinde formula, and not worrying too much about whether it has a
fusion interpretation.
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3.1.9 Interpretations and comments

• The main new result of our paper is the commutative diagram in §3.1.7.

What is the physical interpretation of this commutative diagram? One

tempting possibility is that there is a new localization computation of the

Schur index. Indeed, if we think of the Schur index as a kind of partition

function on S3 ⇥S1, we could imagine computing it by first reducing on

S1 and then making some computation in the resulting e↵ective theory

on S3. After this reduction the line defects become local operators, which

are determined by their vevs on N . In a localization computation using

U(1)r, they could get further reduced to just their vevs in the U(1)r-

invariant vacua. This would match our observation that the object f(L)

— which contains much10 of the information of the Schur index IL —

is linearly related to g(L), i.e. to the vevs of L in the U(1)r-invariant

vacua.

• Our verification of the commutativity (3.16) requires us to evaluate ex-

plicitly the vacuum expectation values of 1

2
-BPS line defects at the fixed

points of the U(1)r action on N . In the language of the Hitchin system,

this amounts to solving an instance of the nonabelian Hodge correspon-

dence: for some specific Higgs bundles, we determine the corresponding

complex flat connections up to equivalence. It would be very interesting

to see how far one can push these ideas: can we compute the vevs in

10Though not quite all, because of the need to take q ! 1 in the coe�cients v
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every case where the vacua are isolated? Can we extend beyond the fixed

points, say to get some information about their infinitesimal neighbor-

hoods? Can we say anything about non-isolated fixed points?

• It is natural to ask how broadly the commutative diagram of §3.1.7

exists; so far we have checked it only in five theories. We conjecture

that it exists more generally whenever it makes sense, i.e. whenever

the U(1)r-invariant vacua of the theory reduced on S1 are all isolated.

The U(1)r-invariant vacua are isolated in all Argyres-Douglas theories

where the question has been investigated, e.g. the (Am, An) theories for

gcd(m+ 1, n+ 1) = 1, but more generally they are usually not isolated.

• One of the simplest examples where the U(1)r-invariant vacua are not

isolated is N = 2 super Yang-Mills with G = SU(2) and Nf = 4,

compactified on S1 with generic flavor Wilson lines. In this theory it

appears that there are 4 isolated U(1)r-invariant vacua, but also an S2

of U(1)r-invariant vacua, as explained e.g. in [77]. In this theory [71]

argued that nevertheless there is a correspondence between connected

components of the space of U(1)r-invariant vacua and chiral primaries.

It would be very interesting to understand how the diagram (3.16) can

be extended to this case. (An obstacle to the most naive extension is

that the line defect vevs are not constant on the S2 of invariant vacua.

Perhaps one needs instead to take the average over this S2.)

• In this paper one of the main players is the homomorphism f : L ! V .
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The observation that there is some relation between algebras of line de-

fects and Verlinde algebras was made already in [61]. Indeed, that paper

described a map f 0 : L ! V in the (A1, A2N) theories, constructed in a

di↵erent way, by mapping certain distinguished line defects directly to

minimal model primaries.11 To forestall a possible confusion, we empha-

size that f and f 0 are not the same. For example, in the (A1, A2) theory

we have f 0(Li) = [�1,2], while (3.9) says f(Li) = [�1,1]� [�1,2].

• Beyond line defects one could also consider surface defects and interfaces

between surface defects. The Schur index in the presence of surface de-

fects, and its relation to 2d chiral algebra, were studied quite recently

in [78, 79] and also featured in the ongoing work [80]. It might be inter-

esting to incorporate surface defects into the story of this paper.

• In this paper we focused on examples of (A1, A2N) and (A1, D2N+1)

Argyres-Douglas theories, mainly because their chiral algebras have been

relatively well understood and computation of line defect generators is

not too complicated. What about other (A1, g) Argyres-Douglas the-

ories? There is one more example which we expect should be rela-

tively straightforward, namely (A1, D4), for which the chiral algebra is

[sl(3)
�3/2

[55, 56, 81, 82]. Beyond this:

– The chiral algebra for (A1, A2N�1) Argyres-Douglas theories with

11The distinguished line defects in question actually coincide with the generators
Ai, Bi, . . . which we use in §3.5.
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N > 2 is conjectured to be the BN+1 algebra, the subregular quan-

tum Hamiltonian reduction of \sl(N)
�N2/(N+1)

[57,72]12. As pointed

out in [71], the relevant modules associated with the U(1)r fixed

points depend on the parity of N , and for even N , the relevant

modules are suitable representatives of local modules which are

closed under modular transformation [57, 72, 85, 86]. For odd N ,

S-transformation turns local modules into twisted modules [57, 72,

85, 86], which makes the matching of U(1)r fixed points with rel-

evant modules very subtle [71]. These local and twisted modules

and their modular properties are studied in [72, 85,86].

– The situation is similar for (A1, D2N) Argyres-Douglas theories with

N > 2. Here the chiral algebra has been conjectured to be the WN

algebra coming from a non-regular quantum Hamiltonian reduction

of \sl(N + 1)
�(N2�1)/N

[57]. For even N , [71] confirmed that the

relevant modules are suitable representatives of local modules listed

in [57], while for odd N the situation becomes subtle again [71] since

S-transformation turns local modules into twisted modules [57].

– Chiral algebras for (A1, E6,7,8) Argyres-Douglas theories were con-

jectured in [56,58], and at least for (A1, E6) and (A1, E8) there is a

natural guess for the relevant class of modules. However, in these

theories the computation of line defect generators and their framed

12Chiral algebra for (A1, A2N�1) and (A1, D2N ) Argyres-Douglas theories were reproduced
in [58] along with new results for generalized Argyres-Douglas theories in the sense of [83,84].
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BPS spectra has not been worked out; it would be interesting to

develop it.

3.2 Schur indices and their IR formulas

In this section we review the definition and IR formula for the ordinary

Schur index and the Schur index with half line defects inserted.

3.2.1 The Schur index

The superconformal index of a four-dimensionalN = 2 SCFT is defined

as [19, 40]

I(p, q, t, ai) = Tr(�1)Fpj2�j1�rqj2+j1�rtR+r
Y

i

afi
i
e���

2�̇ , (3.18)

where

2�2�̇ = { eQ2�̇, eQ
†

2�̇
} = E � 2j2 � 2R + r. (3.19)

Here p, q, t are three superconformal fugacities, ai are flavor symmetry fugaci-

ties, E is the scaling dimension, j1 and j2 are Cartan generators of SU(2)1 ⇥

SU(2)2, R and r are the Cartan generators of the SU(2)R⇥U(1)r R-symmetry

group. The trace is taken over the Hilbert space on S3 in radial quantization.

The Schur index is obtained by taking the q = t limit [19, 87],

I(q, ai) = Tr(�1)F qE�R
Y

i

afi
i
. (3.20)

Here the contributing states are 1

4
-BPS, annihilated by four supercharges: Q1

�
,
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Q̃2�̇, S
�

1
and S̃2�̇. Their quantum numbers satisfy

E � j1 � j2 � 2R = 0, j1 � j2 + r = 0. (3.21)

3.2.2 The IR formula for the Schur index

Recently an IR formula for the Schur index was conjectured in [56],13

relating the Schur index to the trace of the “quantum monodromy” operator,

a q-series introduced in [61]:

I(q) = (q)2r
1
Tr[M(q)], (q)1 :=

1Y

j=0

(1� qj+1). (3.22)

In this section we review the mechanics of this formula.

To write down the operator M(q), we need to perturb to a point of

the Coulomb branch of the theory, where the only massless fields are those

of abelian N = 2 gauge theory. M(q) will be built out of the massive BPS

spectrum of the theory.

Recall that massive BPS states in anN = 2 theory lie in representations

of SU(2)J⇥SU(2)R, where SU(2)J is the little group. The one-particle Hilbert

space is graded by the IR charge lattice �, consisting of electromagnetic and

flavor charges:14 thus H = ��2�H�. Factoring out the center-of-mass degrees

of freedom, we have:

H� = [(2, 1)� (1, 2)]⌦ h�. (3.23)

13We follow the convention of [51, 56] for fermion number, (�1)F = e2⇡iR.
14The lattice � strictly speaking is the fiber of a local system, depending on the point

u of the Coulomb branch, so we should really write it as �u; we will suppress this in the
notation.
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To count BPS particles refined by representations of SU(2)J ⇥ SU(2)R, one

consider the protected spin character [22]

Trh� [y
J(�y)R] =

X

n2Z

⌦n(�)y
n, (3.24)

with integers ⌦n(�) 2 Z, and packages the ⌦n(�) into the “Kontsevich-Soibelman

factor”:

K(q;X�;⌦i(�)) :=
Y

n2Z

Eq((�1)nqn/2X�)
(�1)

n
⌦n(�). (3.25)

K is a q-series valued in the algebra of formal variables X�; these variables

themselves are valued in the “quantum torus” algebra, obeying the relations

X�X�0 = qh�
0
,�iX�0X� = q

1

2
h�,�

0
iX�+�0 , (3.26)

where h, i is the Dirac pairing on �. Eq(z) is the quantum dilogarithm defined

as

Eq(z) =
1Y

j=0

(1 + qj+
1

2 z)�1 =
1X

n=0

(�q
1

2 z)n

(q)n
. (3.27)

The quantum monodromy operator M(q) is defined as

M(q) =
xY

�2�

K(q;X�;⌦i(�)). (3.28)

The ordering in this product is based on the central charges Z�: if arg(Z�1
) >

arg(Z�2
) then K(X�1

) is to the right of K(X�2
). The flavor charges — which

have zero Dirac pairing with other charges — form a sublattice �f ⇢ �. The

trace operation is defined by a truncation to this sublattice:

Tr(X�) =

(
0 if � /2 �f ,

X� otherwise.
(3.29)
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If we denote a basis for �f by (�fa), then the trace is a function of the X�fa
,

which are related to the flavor fugacities ai in the UV definition of the Schur

index [51,56].

TrM(q) is invariant when crossing walls of marginal stability in the

Coulomb branch [1,22,88,89]. Of course this is a necessity for (3.22) to make

sense, since I(q) is defined directly in the UV and does not depend on a point

of the Coulomb branch.

As pointed out in [51,56], (3.22) is only a formal definition: in principle,

in evaluating it, we could meet infinitely many terms contributing to the same

power of q. In practice we may hope that these infinitely many terms will

come with alternating signs so that they leave a well-defined Laurent series in

q, but at least we need to have some definite prescription for how we will order

the terms. In [51] the authors propose a prescription to tackle this problem.

First they rewrite (3.22) as

I(q) = (q)2r
1
Tr[S(q)S(q)], (3.30)

where S(q) is the “quantum spectrum generator” (so called because it contains

enough information to reconstruct the full BPS spectrum),

S(q) =
xY

arg(Z�)2[0,⇡)

K(q;X�;⌦i(�)), S(q) =
xY

arg(Z�)2[⇡,2⇡)

K(q;X�;⌦i(�)).

(3.31)

Next, they conjecture that S(q) and S(q) can be expanded as Taylor series in

q, with no negative powers of q appearing. If this is so, then one can try to
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compute the coe�cient of qk in TrM(q) by expanding S(q) and S(q) up to some

large finite order qN . The conjecture is that for large enough N the coe�cient

of qk will stabilize to some limiting value (in the examples investigated in [51]

it is su�cient to take N larger than some theory-dependent linear function

of k.) In the examples we consider in this paper, we find that the necessary

stabilization does indeed occur, and thus we can use the prescription of [51].

3.2.3 The Schur index with half line defects

Supersymmetric line defects in N = 2 theories have been studied ex-

tensively: a small sampling of references is [23, 51, 90–92].

The line defects which have been studied most extensively are full line

defects. These are 1

2
-BPS objects extended along a straight line in some fixed

direction nµ 2 R4. For example, there are 1

2
-BPS line defects that extend

along the time direction and sits at a point in R3, preserving four Poincaré

supercharges, time translation, SU(2)J rotation around the defect in R3, and

SU(2)R R-symmetry. The choices of half-BPS subalgebra which can be pre-

served by such a line defect are parameterized by ⇣ 2 C⇥. When |⇣| = 1,

so that ⇣ = e�i✓, the line defect can be interpreted as a heavy external BPS

source particle, whose central charge has phase ✓.

In this section, following [51], we will be interested in half line defects

in superconformal N = 2 theories. A half line defect extends along a ray in R4

and terminates at a point, say the origin. The half line defect looks like a full

line defect except near its endpoint; in particular, the indexing set labeling half
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line defects is the same as that for full line defects, and it will sometimes be

convenient to let the symbol L stand simultaneously for a half line defect and

for its corresponding full line defect. The endpoint, however, only preserves

two Poincaré supercharges, and breaks all translation symmetry. Moreover the

endpoint supports a variety of local endpoint operators; these are the operators

which will be counted by the line defect Schur index.

More generally we can consider a junction of multiple half line defects

Li. To preserve some common supersymmetry, these half line defects must

lie in a common spatial plane R2 ⇢ R3. Each Li ends at the origin and has

orientation

nµ

i
= (cos ✓i, sin ✓i, 0, 0), (3.32)

where ✓i is the phase of the central charge of Li. After conformal mapping to

S3 ⇥ S1, each half line defect wraps S1 and sits at a point on a common great

circle on S3. This configuration preserves one Poincaré supercharge and one

conformal supercharge,

Q = Q1

�
+ Q̃2�̇, S = S�

1
+ S̃2�̇. (3.33)

Recall from [19] that Q1

�
, Q̃2�̇, S

�

1
and S̃2�̇ are exactly the four supercharges

that annihilate Schur operators. Thus the definition of Schur index can be

extended to include these half line defect insertions [50, 51]:

IL1(✓1)L2(✓2)···Ln(✓n)(q) = TrH0 [e2⇡iRqE�R]. (3.34)

Here the trace is over the Hilbert space H0 on S3 with half line defects Li
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inserted along the great circle at angles ✓i. H0 consists of states annihilated

by Q and S in (3.33).

For Lagrangian gauge theories with ’t Hooft-Wilson half line defects,

one could use a localization formula to compute the Schur index, as formulated

in [50, 51]. In this paper we consider half line defects in Argyres-Douglas

theories, for which we do not have a Lagrangian description available. Instead,

we will use the IR formula conjectured by [51], which we describe next.

3.2.4 The IR formula for the line defect Schur index

Suppose we fix a full line defect L in R4 and go to a point u in the

Coulomb branch. Let HL,u denote the Hilbert space of the theory with line

defect L inserted. In this setting there is a new class of BPS states, called

framed BPS states [23], which saturate the bound

M � Re(Z/⇣), ⇣ = ei✓. (3.35)

Framed BPS states form a subspace HBPS

L,u
⇢ HL,u. As usual HBPS

L,u
has a

decomposition into sectors labeled by electromagnetic and flavor charges,

HBPS

L,u
=
M

�2�

HBPS

L,u,�
. (3.36)

The degeneracies of framed BPS states are counted by the “framed protected

spin character” defined in [23]:

⌦(L, �, u, q) = TrHBPS

L,u
[qJ(�q)R]. (3.37)
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In the infrared the line defect L has a description as a sum of IR line defects,

which can be thought of as infinitely heavy dyons with charges � 2 �. These

IR line defects are represented by formal quantum torus variables X� with

OPE given by (3.26). Then, for each L one can define a generating function

counting the framed BPS states:

F (L(✓)) =
X

�2�

⌦(L, �, u, q)X�. (3.38)

These generating functions are di↵erent in di↵erent chambers of the Coulomb

branch, undergoing framed wall-crossing at the BPS walls [23].

The IR formula of [51] for the Schur index with insertion of a half line

defect L with phase ✓ is:

IL(✓)(q) = (q)2r
1
Tr[F (L(✓))S✓(q)S✓+⇡(q)], (3.39)

where

S✓(q) =
xY

arg(Z�)2[✓,✓+⇡)

K(q;X�;⌦i(�)). (3.40)

As demonstrated in [51], the right side of (3.39) is invariant under framed

wall-crossing, as is needed since the left side manifestly does not depend on a

point of the Coulomb branch. When computing half line defect Schur index

we often choose ✓ = 0, in which case S✓(q) and S✓+⇡(q) reduce to S(q) and

S(q) respectively.

More generally, for multiple half line defects Li, i = 1, . . . , k, with phase

relations ✓1 < ✓2 < · · · < ✓k, where there are no ordinary BPS particles with

58



phases in the interval [✓1, ✓k], the IR formula of [51] for the Schur index is

IL1(✓1)···Lk(✓k)
= (q)2r

1
Tr[F (L1(✓1)) . . . F (Lk(✓k))S✓k

(q)S✓k+⇡(q)]. (3.41)

We note that this formula is “compatible with operator products”, in

the following sense. The Schur index with two half line defects inserted,

IL1(✓)L2(✓+�✓) with �✓ small, only depends on sgn(�✓). In particular, in the

limit of �✓ ! 0 this looks like taking the non-commutative OPE of two par-

allel half line defects with phase ✓. Therefore computing IL1(✓)L2(✓+�✓) and

taking the q ! 1 limit in the character expansion coe�cient does correspond

to the commutative OPE of two parallel half line defects in L.

Given the IR formula for half line defect Schur index we would like

to point out a general property of half line defect index in Argyres-Douglas

theories. Line defect generators in Argyres-Douglas theories can be labeled as

L⇢i where the index i is related to the underlying discrete symmetry of the

theory. In particular, suppose L⇢j and L⇢i are two half line defect generators

that are related by a monodromy action, namely

F (L⇢j) = M(q)F (L⇢i)M
�1(q). (3.42)

Then according to the IR formula

IL⇢j(q) = (q)2r
1
Tr[F (L⇢j)S(q)S(q)] = (q)2r

1
Tr[F (L⇢j)M(q)]

= (q)2r
1
Tr[M(q)F (L⇢i)M

�1(q)M(q)]

= IL⇢i(q).
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In particular this proves that Schur index with one half line defect generator

insertion does not depend on the i-index, as first observed in some examples

in [51].

3.3 Fixed points of the U(1)r action

3.3.1 The U(1)r action

Because the four-dimensional theories we consider are superconformal,

they have a U(1)r symmetry in the UV. Note that the U(1)r charges need

not be integral (indeed they are not integral in Argyres-Douglas theories),

though they are rational in all examples we will consider. Thus the action

of Rt 2 U(1)r is not necessarily trivial when t = 2⇡, but there is some k for

which R2⇡k is trivial.

The U(1)r symmetry of the four-dimensional superconformal theory

acts in particular on the 1

2
-BPS line defects. Recall from [23] that each 1

2
-

BPS line defect preserves some subalgebra of the N = 2 algebra, with the

di↵erent possible subalgebras parameterized by ⇣ 2 C⇥. Given a line defect L

preserving the subalgebra with parameter ⇣ 2 C⇥, a rotation Rt 2 U(1)r maps

L to a new operator L(t) preserving the subalgebra with parameters eit⇣.

Now suppose we consider the dimensional reduction to three dimensions

on S1. The U(1)r symmetry acts on the moduli space N of vacua of the three-

dimensional theory. In what follows we will be particularly interested in the

U(1)r-invariant vacua.
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3.3.2 Line defect vevs in U(1)r-invariant vacua

Let FL denote the vev of the line defect L wrapped on S1. FL is a

function on the moduli space N . We specialize to a U(1)r-invariant vacuum:

after this specialization FL is just a number. Moreover, since the vacuum is

invariant, FL is invariant under U(1)r acting on L, i.e. for any t, t0

FL(t) = FL(t0). (3.43)

This simple statement has surprisingly strong consequences, which put

constraints on the possible U(1)r-invariant vacua, as follows. We imagine

making a small perturbation away from the invariant vacuum. After this

perturbation the UV line defect L(t) can be decomposed into IR line defects

LIR

�
(t),

L(t) !
X

�

⌦(L, �, t)LIR(t) (3.44)

with a corresponding decomposition of the vev FL(t) as a sum of monomials

X�(t),

FL(t) =
X

�

⌦(L, �, t)X�(t). (3.45)

Here both sides may depend nontrivially on t, since our perturbation is not

U(1)r invariant. The expansion coe�cients ⌦(L, �, t) 2 Z appearing in (3.45)

are the framed BPS state counts which we discussed earlier in (3.37), evaluated

in the perturbed vacuum, and specialized to q = 1.

Now let us take the limit where the perturbation ! 0, and optimisti-

cally assume that the ⌦(L, �, t) and X�(t) remain well defined in this limit. In
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that case we get an interesting equation:15

X

�

⌦(L, �, t)X�(t) =
X

�

⌦(L, �, t0)X�(t
0). (3.46)

Requiring (3.46) to hold for all UV line defects L gives a relation on the

X�(t). For example, if t0 is su�ciently close to t, so that ⌦(L, �, t) = ⌦(L, �, t0)

for all L and �, then (3.46) says simply that X�(t) = X�(t0). More generally,

though, the ⌦(L, �, t) will jump as t is varied. Then we get a more general

relation, of the form [22,23]

X�(t
0) = (St,t0X )�(t). (3.47)

Here St,t0 denotes a birational map (C⇥)n ! (C⇥)n which can be written

concretely in the form

St,t0 =
xY

arg(Z�)2(t,t
0)

T⌦(�)

�
, (3.48)

where T� : (C⇥)n ! (C⇥)n is a transformation of the form [22,88]16

T� : (Xµ) ! (Xµ(1� �(�)X�)
hµ,�i) (3.49)

and � : � ! {±1} is a quadratic refinement of the mod 2 intersection pairing.

The equation (3.47) is an interesting relation, but so far not useful in

producing a constraint: it just relates the values of X�(t) for di↵erent t.

15We emphasize that (3.46) is supposed to hold only in a U(1)r-invariant vacuum. In-
deed, when considered as functions on the whole moduli space N , X�(t) and X�(t0) are
holomorphic in di↵erent complex structures, so they could hardly obey such a relation.

16T� should be thought of as the q ! 1 limit of the operation of conjugation by the
operator K appearing in (3.25).
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Now let us specialize to t0 = t+⇡. In that case we have the key relation

from [1]

X�(t+ ⇡) = X��(t) (3.50)

so we conclude that

St,t+⇡X�(t) = X��(t). (3.51)

This is a closed equation for the numbers X�(t), with fixed t. To make it really

concrete, of course, we need some way of computing the “classical spectrum

generator” St,t+⇡. We could do so by first computing the BPS spectrum (e.g.

by the mutation method) and then directly using the definition (3.48), but

there are also various methods available for computing it directly. In general

theories of class S some of these methods have appeared in [1, 93–95]. In the

theories we consider, we will explain a simple method below in §3.3.3.

We believe that (3.51) is likely to be a useful equation for the study of

U(1)r-invariant vacua in general N = 2 theories, and it would be interesting to

explore it further. For the Argyres-Douglas theories which we consider in this

paper, though, a simpler equation su�ces. Namely, instead of taking t0 = t+⇡

we take t0 = t+ 2⇡. Then we get the relation

X�(t+ 2⇡) = X�(t), (3.52)

leading to the fixed-point constraint

St,t+2⇡X�(t) = X�(t). (3.53)

The constraint (3.53) has the advantage that it is purely algebraic, not in-

volving a complex conjugation. (3.51) implies (3.53), but not the other way
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around: (3.53) can have additional “spurious” solutions not associated to ac-

tual U(1)r-invariant vacua.17 In the Argyres-Douglas theories we consider in

this paper, such spurious solutions do not occur, as we will see directly just

by counting the number of solutions. Thus we will use (3.53) as our criterion

for a U(1)r-invariant vacuum.

There is one more point which will be important below: we will need

to keep track of some discrete information attached to the fixed points p 2 N ,

namely the weights of the U(1)r action on the tangent space TpN . These

weights are easily computable if we have a Higgs bundle description of the

fixed point as in [69, 71]. On the other hand, suppose that we only know the

fixed point as a solution of the constraint (3.53): how then can we compute

the U(1)r weights? We will use a trick, as follows. St,t+2⇡ acts as exp(2⇡iV )

where V is a holomorphic vector field on the twistor space of N generating

the U(1)r action. Thus we have dSt,t+2⇡ = exp(2⇡iV ) acting on TpN . Thus,

by computing dSt,t+2⇡ at the fixed point, we can get the U(1)r weights mod 1.

Fortunately, in the (A1, A2N) cases we treat in §3.5, knowing the U(1)r

weights mod 1 is su�cient to determine which fixed point we are looking

at. For the (A1, D2N+1) cases it is not su�cient, which will cause us some

headaches in §3.6.

17For an extreme example, we could consider any superconformal theory in which the
U(1)r charges are all integral, such as the SU(2) gauge theory with Nf = 4; in such a theory
St,t+2⇡ is the identity operator, so that (3.53) reduces to the triviality X�(t) = X�(t), which
of course imposes no constraint at all on the vacuum. In contrast, even in these theories,
(3.51) is a nontrivial constraint.
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3.3.3 Classical monodromy action in Argyres-Douglas theories

To use (3.53) in practice we need a way of computing St,t+2⇡, which we

call the classical monodromy map. In this section we describe a convenient

way of doing so in (A1, Am) Argyres-Douglas theories.

The starting point is to use the realization of these theories as class S

theories. This implies that the space N is a moduli space of flat connections

— in this case, flat SL(2,C)-connections defined on CP1 with an irregular

singularity at z = 1. In [1] the functions X� appearing in §3.3.2 were described

from this point of view; we now review that description.

Given a point of the Coulomb branch and generic ⇣ 2 C⇥, [1] gives a

construction of a triangulation of an (m + 3)-gon, the “WKB triangulation.”

The vertices of this (m+3)-gon are asymptotic angular directions on the “circle

at infinity,”

arg(z) =
2✓ + 2⇡j

m+ 3
, j = 1, · · · ,m+ 3, (3.54)

where ✓ = arg ⇣. Now, given a vacuum in N and the parameter ⇣ 2 C⇥,

there is a corresponding flat connection r on CP1, with irregular singularity

at z = 1. For each of the m+3 asymptotic directions, there is a unique r-flat

section si whose norm is exponentially small as z ! 1. Thus altogether we

get m+ 3 flat sections

(s1, s2, . . . , sm+3). (3.55)

Moreover, this tuple of flat sections is enough information to completely deter-

mine the vacuum; one gets coordinates on N by computing SL(2,C)-invariant
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E12

E23

E34

E41

E

Figure 3.1: The quadrilateral QE associated to edge E.

cross-ratios from the sections si.

From (3.54) we see that continuously varying ✓ ! ✓ + 2⇡ is equivalent

to making a shift j ! j + 2, i.e. relabeling

(s1, . . . , sm+3) ! (s3, s4, . . . , sm+3, s1, s2). (3.56)

This is the classical monodromy action on N .

Now we would like to understand concretely what this monodromy

looks like, relative to the local coordinates X� onN . The first step is to explain

what the X� are. For each internal edge E of the triangulation, there is an

associated coordinate function XE. E is bounded by two triangles which make

up a quadrilateral QE, as shown in Figure 3.1. Each vertex Pi is associated

with a small flat section si. XE is then defined as:

XE = �(s1 ^ s2)(s3 ^ s4)

(s2 ^ s3)(s4 ^ s1)
, (3.57)

where the si are evaluated at a common point in QE. If E is a boundary edge

of the (m + 3)-gon, by convention, we write XE = 0. Finally to go from the

XE to the desired X� one uses a dictionary decribed in [1] which maps the set

of internal edges Ei to a basis (�Ei) of the charge lattice �.
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Figure 3.2: Action of a flip on the quadrilateral QE.

In practice, to use this description for computing the classical mon-

odromy, we will need one more fact: we need to know how the coordinates

XE change when we change the triangulation. A flip of the edge E is the

transformation from a triangulation T to another triangulation T 0, where the

edge E = E13 in T is replaced by E 0 = E24 in T 0, as in Figure 3.2. Using the

standard relations between cross-ratios one gets the transformation rules:

X T
0

E0 =
1

X T

E

, X T
0

E12
= X T

E12
(1 + X T

E
),

X T
0

E23
=

X T

E23
X T

E

1 + X T

E

, X T
0

E34
= X T

E34
(1 + X T

E
),

X T
0

E41
=

X T

E41
X T

E

1 + X T

E

.

(3.58)

In examples below, we will compute the classical monodromy as a composition

of these flips.

For (A1, D2N+1) Argyres-Douglas theories the story is very similar: the

only di↵erence is that the Hitchin system is defined on CP1 with an irregular

singularity at z = 1 plus a regular singularity at z = 0. The construction

of monodromy and coordinates X� is parallel to what we wrote above, except
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that the WKB triangulations have one more “internal” vertex, at the location

of the regular singularity.

3.4 Line defects and their framed BPS states in class
S[A1]

We use two di↵erent methods for describing the algebra of line defects

in Argyres-Douglas theories of type (A1, g) and computing their framed BPS

spectra:

• In [92] it was proposed that generators of the ring of line defects and

their framed BPS spectra can be computed by methods of quiver quan-

tum mechanics. The calculation of framed BPS spectra is in parallel to

the approach previously used for ordinary BPS spectra. In simple cases

this leads to an algorithm for determining the spectrum, the “mutation

method” as introduced in [23, 61, 96, 97]. This method is easy to imple-

ment on a computer. We use it in §3.5 below to compute line defect

generators and their generating functions in (A1, A2N) Argyres-Douglas

theories. However, for the (A1, D2N+1) Argyres-Douglas theories which

we consider in §3.5, the framed BPS spectrum in general contains higher

spin states, which defeat the mutation method.18

18In these cases the framed BPS spectra could in principle be obtained by studying the
Hodge diamond of the moduli space of stable framed quiver representations [92]. However,
this is not as automated as the “mutation method,” which prompts us to use an alternative
method introduced below.
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• Alternatively, we can use the class S[A1] realization of the (A1, A2N) or

(A1, D2N+1) theories. In this realization, line defect generators are in

1-to-1 correspondence with isotopy classes of simple laminations on the

disc or punctured disc [23]. This leads to an algorithm for computing the

framed BPS indices, as described in [23]. For our purposes in this paper,

this algorithm is not quite su�cient: we also want to know the spin

content of the framed BPS spectra. In [98, 99] a method for computing

such BPS spectra in class S theories has been proposed, extending [23].19

What we use in this paper is a slight extension of the method in [99] to

treat the case of an irregular singularity.

In §3.4.1-§3.4.2 we review the approach via mutations; in §3.4.3-§3.4.5

we review the geometric methods of [23, 25, 98–100]. These two methods will

be used for the examples in §3.5-§3.6 below.

3.4.1 Line defect generators in N = 2 theories of quiver type

4d N = 2 theories of quiver type are N = 2 theories whose BPS spec-

tra can be computed via a four-supercharge multi-particle quantum mechanics

system encoded in a quiver [96, 101–103]. In particular, Argyres-Douglas the-

ories are examples of theories of quiver type, as discussed e.g. in [61]. For 4d

N = 2 theories of quiver type, there is a nice way of constructing distinguished

19The paper [98] treated the spin content for framed BPS spectra associated to certain in-
terfaces between surface defects; [99] gave the first complete prescription applicable directly
to ordinary line defects.
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line defect generators via quiver mutation, developed in [92], which we review

in this section.

Fix a point of the Coulomb branch, and fix a half-plane inside the plane

of central charges:

h✓ = {Z 2 C | ✓ < arg(Z) < ✓ + ⇡}, ✓ 2 [0, 2⇡). (3.59)

Then the BPS one-particle representations in the theory can be divided into

“particles” and “antiparticles”: particles are those whose central charges lie in

h✓, antiparticles are the rest. For theories of quiver type there is a canonical

positive integral basis {�i} for �, such that the cone

C =

(
rank(�)X

i=1

ai�i | ai 2 R�0

)
(3.60)

contains the charges of all BPS particles. We call such a basis a seed. The

corresponding quiver has one node for each basis charge �i, with the number

of arrows from �i to �j given by h�i, �ji.

Correspondingly, in the half-plane h✓ there is a cone Z(C) given by

the central charge function Z. The cone of particles is piecewise constant as

one varies the parameter ✓ or the point of the Coulomb branch, but jumps

when one boundary ray Z�i of Z(C) hits the boundary of h✓, i.e. when the

central charge of a BPS particle with charge �i exits the particle half-plane.

At this point the quiver description also jumps discontinuously, by a process of

“mutation.” Depending on whether Z�i exits h✓ on the right or on the left, the

mutation is denoted as right mutation µRi or left mutation µLi. The explicit
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transformation of the basis charges is [92, 96]

µRi(�j) = ��ij�j + (1� �ij)(�j �Min[h�i, �ji, 0]�i), (3.61)

µLi(�j) = ��ij�j + (1� �ij)(�j +Max[h�i, �ji, 0]�i). (3.62)

Now let us see how the quiver technology is related to the spectrum

of line defects in the theory. Recall that at low energy a UV line defect L

decomposes into a sum of IR line defects, as in (3.44). Among these IR line

defects, the one with the smallest Re(Z�/⇣) corresponds to the ground state

of the UV line defect. The charge of this line defect is called the core charge

of the UV line defect. One could define a RG map which maps the UV line

defect to its core charge �c. As discussed in [23,92] the RG map is a bijection

in N = 2 theories of quiver type. This nice property allows one to identify the

set of UV line defects with the IR charge lattice �.

The RGmap is piecewise constant and jumps at the locus where Re(Z�/⇣) =

0 for some �, which is the same locus where quiver mutation happens. In par-

ticular when � itself is the charge of some BPS state the jump of �c is given

by ( [92]):

µRi(�c) = �c �Min[h�i, �ci, 0]�i, µLi(�c) = �c +Max[h�i, �ci, 0]�i. (3.63)

For a given seed {�i} and its associated particle cone C, there exists a

dual cone Č defined as:

Č =

(
�̌ 2 �u ⌦Z R|h�̌, �i � 0 8� 2 C

)
. (3.64)
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Using the inverse of the RG map we see that the integral points of Č correspond

to a distinguished set of UV line defects by the inverse of the RG map. Within

this set, the OPE relations turn out to be extremely simple. Indeed, if �i the

core charge of a UV line defect Li, and all �i 2 Č, then we have simply [92]

L1L2 = q
h�1,�2i

2 L3, (3.65)

where �3 = �1 + �2.

Now pick a point of the Coulomb branch and a particle half-plane h✓.

This fixes an initial seed s. In addition to the dual cone Čs, there are other dual

cones Čµ(s), corresponding to the seeds µ(s) mutated from s. In these other

dual cones the line defect OPE also has the nice form (3.65). To put everything

in the same footing one can trivialize � using the initial seed s, then mutate

Čµ(s) back to s using (3.63). After so doing, one has a collection of dual cones

meeting along codimension-one faces in Zrank(�) ⌦Z R. In a general N = 2

theory, the dual cones obtained in this way cover only some subset of the

charge lattice. For Argyres-Douglas theories, however, there are only finitely

many dual cones, and they fill up the full charge lattice [92]. Thus the full set

of UV line defects is generated by the line defects whose core charges lie at

the boundaries of the dual cones.

Concretely, in the (A1, A2N) Argyres-Douglas theories, although the

boundaries of dual cones are in general codimension-1 hyperplanes, these hy-

perplanes intersect at half-lines, such that line defects with core charges along

those half-lines generate the whole space of UV line defects. In these theories
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we thus obtain a unique and canonical choice of line defect generators, which is

very convenient for computational purposes. (In the (A1, A2) theory we have

already mentioned these generators in §3.1.3.)

In contrast, in the (A1, D2N+1) Argyres-Douglas theories, due to the

flavor symmetry, the dual cone picture does not quite give a unique choice of

UV line defect generators. In these theories we will use the class S picture

instead.

3.4.2 Framed BPS states from framed quivers

In N = 2 theories of quiver type, framed BPS spectra associated to

line defects can be computed using framed quivers [92].20 One extends the

charge lattice � by an extra direction spanned by a new “infinitely heavy”

flavor charge �F , which has zero pairing with all charges. The line defect with

core charge �c is then regarded as a particle carrying the charge �c + �F , and

framed BPS states supported by the defect are similarly regarded as particles

with charges of the form

�c + �F + �h, where �h =
rank(�)X

i=1

ai�i, ai 2 Z�0. (3.66)

One then defines a new “framed quiver,” obtained by adding to the original

quiver a new framing node representing the bare line defect and corresponding

arrows. The framed BPS states are given by the unframed BPS states of the

framed quiver whose charges are of the form (3.66).

20As emphasized in [92], this method does not in general produce the correct framed BPS
spectrum, but it does work for a large class of theories including Argyres-Douglas theories.
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BPS states in quiver quantum mechanics can be conveniently computed

by the “mutation method” as introduced in [23,61,96,97]. Concretely, we first

fix a point in the Coulomb branch and a choice of half-plane h✓, then rotate

h✓ counterclockwise21 until ✓ has increased by ⇡. In this process the original

seed undergoes a series of right mutations µRi, and for each mutation the node

�i that exits to the right of h✓ corresponds to a BPS particle. Conversely

each BPS particle will be rightmost at some stage of the rotation, so the

�i obtained in this way exhaust all BPS particles in this chamber. In [96]

this method was applied to the ordinary BPS quiver to compute the ordinary

(vanilla, unframed) BPS spectrum; here instead we apply it to the framed

quiver constructed above, to get the framed BPS spectrum.

3.4.3 Line defects in class S[A1] theories

In class S[A1] theories there is a natural geometric picture of the 1

2
-

BPS line defects: they correspond to paths (up to homotopy) on the internal

Riemann surface C [23, 90, 91, 104]. For class S[A1] theories with irregular

punctures, one has to consider not only closed paths but also certain combina-

tions of open paths, called laminations in [23] (following [105] where the same

combinations of open paths were considered.)

The laminations we consider are drawn on a disc, which we think of

as the complex plane compactified by adding the “circle at infinity.” The

boundary circle is divided into arcs by marked points corresponding to the

21The choice of counterclockwise vs. clockwise is just a convention.
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Stokes directions (see [23] for more on this.) Then a lamination is a collection of

paths on the disc, carrying integer weights, subject to some conditions [23,105]:

the sum of weights meeting each boundary arc must be zero, and all paths

with negative weights must be deformable into a small neighborhood of the

boundary.

3.4.4 Framed BPS indices in class S[A1] theories, without spin

In [23], a scheme is presented for computing the framed BPS indices

associated to a given line defect in a theory of class S[A1], without spin infor-

mation. In this scheme one needs two pieces of data:

• the lamination representing the line defect,

• the WKB triangulation determined by the chosen point of the Coulomb

branch and phase of the line defect.

It is easiest to illustrate this rule by an example. So, consider the triangulation

of the once-punctured triangle and the lamination shown in Figure 3.3. (This

example arises in the (A1, D3) theory considered in §3.6.1 below: it corresponds

to the line defect called B2 there.)

We fix an orientation of each component of the lamination. Then we

divide each component of the lamination into arcs crossing triangles. To each
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+1

-1

-1
+1

Figure 3.3: An example of a WKB triangulation of the once-punctured triangle
and a lamination, corresponding to the line defect B2 in the (A1, D3) Argyres-
Douglas theory.

arc we assign the matrix L (R) if the arc turns left (right),22

L =

✓
1 0
1 1

◆
, R =

✓
1 1
0 1

◆
. (3.67)

When the lamination crosses an internal edge Ei we assign the matrix

ME =

✓p
XE 0
0 1/

p
XE

◆
. (3.68)

To the initial and final points of each component we assign the vectors

ER =
�
0 1

�
, EL =

�
1 0

�
, BR =

✓
1
0

◆
, BL =

✓
0
1

◆
, (3.69)

choosing L or R according to whether the endpoint is on the left or the right

of the marked point of the boundary edge. Then we multiply these matrices in

22The matrices we present here are the transpose of the matrices in [23], and correspond-
ingly we take the products in the reverse of the order taken in [23]; this corresponds to
the usual order of composition of parallel transports, and makes the construction directly
compatible with [25], which will be useful below.
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order, with the beginning of the path corresponding to the rightmost matrix,

to get a number for each component. If the component has weight k we raise

this number to the k-th power. Finally we multiply the contributions from all

components to get the vev.

In the example of Figure 3.3 above, the contribution from the left long

component with weight +1 is

ERLME2
LME3

RME1
LME2

LBR =

1p
X1X3

+
1p

X1X3X2

+ 2

p
X3p
X1

+
p

X1X3 +

p
X3p

X1X2

+
X2

p
X3p

X1

+ X2

p
X1X3.

(3.70)

Similarly, the contribution from the right long component with weight +1

is
p

X3/X1. The short components with weight �1 contribute 1. The total

contribution from this lamination is

1

X1

+
1

X1X2

+ X3 + 2
X3

X1

+
X3

X1X2

+ X2X3 +
X2X3

X1

. (3.71)

Thus (3.71) gives the generating function of framed BPS states associated to

this line defect, without spin information.

3.4.5 Framed BPS indices in class S[A1] theories, with spin

We continue with our example from §3.4.4. Incorporating the spin

information requires us to take each term in (3.71) and assign it the correct

power of q. The work of [98,99] provides a rule for determining these powers.

The first step is to associate the terms in (3.71) to arcs on a branched double
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cover ⌃ of the disc23 following the “path lifting” rules of [25], as follows.

The double cover ⌃ is presented concretely: in each triangle we fix one

branch point and three branch cuts, as in the left side of Figure 3.4; the double

cover has sheets labeled 1 and 2, and at each cut sheet 1 is glued to sheet 2

and vice versa. Next, note that each term in (3.71) comes from products of

two specific chains of matrix elements: e.g. the term 1

X1

comes from product of

two contributions. As an example, the first contribution comes from taking the

(2, 2) entries of the matrices from the beginning to the second-to-last L, then

taking the (2, 1) entry of that L, then the (1, 1) entries of all the rest. Each

of these matrix elements corresponds to an arc on the double cover, which we

regard as a “lift” of the corresponding arc of the lamination. In Figure 3.4 we

show three arcs corresponding to the three nonzero matrix elements of each of

L and R; the arc for the (i, j) matrix element begins on sheet j and ends on

sheet i.

Concatenating these arcs gives a long path P on ⌃, associated to the

term in (3.71) which we are studying. If P has no self-intersections then

we assign this term the factor q0. If there are self-intersections then each

contributes a factor q
1

2 or q�
1

2 , according to Figure 3.6, where the arc which

appears later in the path is drawn higher.

23The double cover ⌃ is the Seiberg-Witten curve of the N = 2 theory at a point of its
Coulomb branch, or the corresponding spectral curve of the Hitchin system.
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To illustrate how this works, we consider the term

2
X3

X1

(3.72)

in (3.71). The factor 2 here means (3.72) is a sum of two contributions,

associated to two di↵erent lifted paths: we show one of them in Figure 3.5.

There is one crossing in Figure 3.5, where both strands are lifted to sheet

1.24 Comparing this crossing to Figure 3.6, we see that this term should be

weighted by q
1

2 . Drawing a similar picture for the other contribution to (3.72)

we see that it gets weighted by q�
1

2 . Thus altogether (3.72) is replaced by

(q
1

2 + q�
1

2 )
X3

X1

, (3.73)

which tells us that the 2 framed BPS states with charge �3 � �1 come in a

2-dimensional multiplet of the rotation group SO(3). Carrying out similar

computations for the other terms one finds (as expected) that all of them

come with the factor q0, i.e. they are in the trivial representation of SO(3).

Thus altogether the q-deformed version of the generating function (3.71) turns

out to be

1

X1

+
1

X1X2

+ X3 + (q
1

2 + q�
1

2 )
X3

X1

+
X3

X1X2

+ X2X3 +
X2X3

X1

. (3.74)

This is exactly the generating function for the line defect generator B2 in §3.6.1

below.

24The projection of the path to the base has two crossings, but at one of these crossings
the two strands are lifted to di↵erent sheets, so it is not a crossing for the lifted path.

79



1

1

2

2

1

2

12

1
2

2

1

Figure 3.4: Left: a triangle with branch point and branch cuts marked. Middle:
lifted left-turn paths. Right: lifted right-turn paths.

1
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1

1
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1

1

2

Figure 3.5: One of the lifted paths contributing to the term (3.72).

Figure 3.6: Rules for assigning powers of q to self-crossings of the lifted path.
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Figure 3.7: A BPS quiver for (A1, A2) Argyres-Douglas theory.

3.5 (A1, A2N) Argyres-Douglas theories

In this section we present the results of explicit computations verifying

the commutativity (3.16) in the Argyres-Douglas theories of type (A1, A2),

(A1, A4) and (A1, A6).

3.5.1 (A1, A2) Argyres-Douglas theory

We consider (A1, A2) Argyres-Douglas theory and choose the chamber25

represented by the BPS quiver in Figure 3.7 containing two BPS particles: (in

increasing central charge phase order)

�1, �2. (3.75)

There are five non-identity line defect generators. Assuming the line defect

phase is smaller than the phases of all BPS particles, the generating functions

25In all the examples considered in this paper, to simplify computation, we always work
in a chamber for which the number of number of BPS particles is the minimum possible —
with one exception in the case of (A1, A6) as noted below.
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are [23, 92]:

F (L1) = X�1
,

F (L2) = X�2
+X�1+�2

,

F (L3) = X��1
+X��1+�2

+X�2
,

F (L4) = X��1��2
+X��1

,

F (L5) = X��2
.

(3.76)

In the geometric picture these generators Li correspond to five laminations

which are rotated into each other under the monodromy action. As a result

their generating functions are related to each other by the action of powers of

the monodromy operator.

The Schur index with Li inserted is computed via [51]:

ILi(q) = (q)2
1
Tr[F (Li)S(q)S(q)], S(q) = Eq(X�1

)Eq(X�2
). (3.77)

The corresponding 2d chiral algebra is the (2, 5) minimal model [52, 54, 56],

which has two primaries: the vacuum �1,1 and �1,2 with weight �1/5. In

general, characters of �s,r in the (p, p0) minimal model (1  s  p � 1, 1 

r  p0 � 1) are given by [65]:

�s,r(q) = q�
(rp�sp0)2�(p�p0)2

4pp0 +
1

24
(1�

6(p�p0)2
pp0 )

✓
Kp,p

0

s,r
(q)�Kp,p

0

�s,r(q)

◆
,

Kp,p
0

s,r
(q) =

1

q
1

24 (q)1

X

n2Z

q
(2pp0n+pr�p0s)2

4pp0 .
(3.78)

The line defect Schur index ILi(q) does not depend on the index i and

admits the following character expansion [51]:

IL(q) = q�
1

2

�
�1,1(q)� �1,2(q)

�
. (3.79)
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Similarly, the Schur index with two Li inserted is given by [51]:

ILiLj(q) = (q)2
1
Tr[F (Li)F (Lj)S(q)S(q)]. (3.80)

Unlike ILi(q), ILiLj(q) does depend on i and j, though this dependence dis-

appears in the limit q ! 1. Expansions of ILiLj(q) in terms of characters are

given as follows:

ILiLi(q) = ILiLi�1
(q) = (q�1 + q�2)�1,1(q)� q�2�1,2(q),

ILiLi+1
(q) = ILiLi�2

(q) = (1 + q�1)�1,1(q)� q�1�1,2(q),

ILiLi+2
(q) = 2�1,1(q)� �1,2(q).

(3.81)

The map f is given by

I
f�! [�1,1], Li

f�! [L] := [�1,1]� [�1,2]. (3.82)

Moreover,

LiLj

f�! [LL] := 2[�1,1]� [�1,2]. (3.83)

Recall that the non-trivial fusion rule in (2, 5) minimal model is given by

[�1,2]⇥ [�1,2] = [�1,1] + [�1,2]. (3.84)

Combining with (3.82) and (3.83) we have

[LL] = [L]⇥ [L], (3.85)

as first observed in [51].

Next we consider the fixed points of U(1)r. For this purpose we found

it convenient to use the geometric picture as described in §3.3.3. The clas-

sical monodromy action M is directly given by a single flip: see Figure 3.8.
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Figure 3.8: The classical monodromy action in the (A1, A2) theory, which
rotates the triangulation of the pentagon clockwise by 2 units, is equivalent to
a single flip which replaces the 35 edge by a 14 edge.

According to (3.58) the concrete transformation is given by

X�1
! 1

X�2

, X�2
! X�1

X�2

1 + X�2

. (3.86)

Thus the fixed locus is

X 2

�1
� X�1

� 1 = 0, X�2
=

1

X�1

. (3.87)

This locus consists of two points, which we label I, II. At these points the X�

evaluate to:

I : (X�1
,X�2

) =

 
1�

p
5

2
,�1 +

p
5

2

!
, II : (X�1

,X�2
) =

 
1 +

p
5

2
,�1�

p
5

2

!
.

(3.88)

To construct the map g : L ! O(F ), for any line defect generator Li we evalu-

ate F (Li) at these two fixed points, using (3.76). As expected, the dependence

on Li disappears in the process:

Li

g�! (F I

Li
, F II

Li
) =

 
1�

p
5

2
,
1 +

p
5

2

!
. (3.89)
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Of course we also have the trivial line defect, whose vev is 1 at every fixed

point:

1
g�! (1, 1). (3.90)

Finally, we follow the recipe described in §3.1.4, §3.1.5 to construct the

isomorphism h : V ! O(F ). We need the fusion matrices, which are given

by26

N�1,1 =

✓
1 0
0 1

◆
, N�1,2 =

✓
0 1
1 1

◆
. (3.91)

The modular S-matrix is [65]:

S =
2p
5

✓
� sin 2⇡

5
sin 4⇡

5

sin 4⇡

5
sin 2⇡

5

◆
. (3.92)

Thus the fusion matrices are diagonalized by the S matrix,

N̂�1,1 = SN�1,1S
�1 =

✓
1 0
0 1

◆
, N̂�1,2 = SN�1,2S

�1 =

 
1�

p
5

2
0

0 1+
p
5

2

!
.

(3.93)

As we explained in §3.1.4-§3.1.5, the map h takes each of �1,1 and �1,2 to

its eigenvalues. So, it takes h(�1,1) = (1, 1) and either h(�1,2) = (1�
p
5

2
, 1+

p
5

2
)

or h(�1,2) = (1+
p
5

2
, 1�

p
5

2
). To decide which is the right ordering, we need

to know the dictionary between U(1)r fixed points and eigenspaces of the

fusion operators. These eigenspaces themselves correspond to primary fields,

so equivalently, we need the dictionary between the fixed points I, II and the

primary fields �1,1, �1,2. This dictionary is determined by the table below:

26Our convention is to order the primaries as (�1,1,�1,2).
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fixed point weights of M weights of U(1)r primary field
I e2⇡i(3/5), e2⇡i(2/5) 3

5
, 2
5

�1,2

II e2⇡i(6/5), e�2⇡i(1/5) 6

5
,�1

5
�1,1

In this table, to determine the weights of M at each fixed point, we computed

directly the linearization of the classical monodromy (3.86). On the other side,

the dictionary between primary fields and U(1) weights is taken from [71]. At

any rate, we can now read o↵ that �1,1 corresponds to fixed point II and �1,2

corresponds to fixed point I. Combining this with (3.93), h is given by:

[�1,1]
h�! (1, 1), [�1,2]

h�!
⇣1 +

p
5

2
,
1�

p
5

2

⌘
. (3.94)

Composing this with f from (3.82) we have

Li

h�f��!
⇣1�

p
5

2
,
1 +

p
5

2

⌘
. (3.95)

Comparing this with (3.89) we see that the diagram indeed commutes.

3.5.2 An intermission on the homomorphism property

To make sure f is a homomorphism, (3.85) needs to hold not only

for the generators Li but also for arbitrary line defects. This would involve

checking e.g.

[LLL]
?
= [L]⇥ [L]⇥ [L] (3.96)

and similar relations for higher number of line defect generators27. As an

example let us consider the case of three line defect generators. The line

27We would like to comment that the product of F (L) is associative (due to associativity
of the quantum torus algebra of X�) and so is the fusion product.
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defect Schur index is given by

ILiLjLk
(q) = (q)2

1
Tr[F (Li)F (Lj)F (Lk)S(q)S(q)]. (3.97)

There are many relations between ILiLjLk
,

ILi�1LiLi+2
= ILi�1LiLi+1

= ILi�2LiLi+1
,

ILiLiLi+2
= ILi�2LiLi+2

= ILi�2LiLi ,

ILi+2LiLi+1
= ILiLiLi+1

= ILi+2LiLi = ILi�1LiLi = ILiLiLi�2
= ILi�1LiLi�2

,

ILi+1LiLi = ILiLiLi = ILiLiLi�1
= q�2ILi�1LiLi�2

,

ILi+1LiLi+1
= ILi�1LiLi�1

= ILi+1LiLi�1
= q�1ILi�1LiLi�2

,

ILi+2LiLi+2
= ILi+1LiLi+2

= ILi+2LiLi�1
= ILi�2LiLi�1

= ILi+1LiLi�2
= ILi�2LiLi�2

.

The independent indices admit the following character expansions,

ILi�2LiLi+1
= q�

1

2

�
(1 + 2q)�1,1(q)� (1 + q)�1,2(q)

�
,

ILi�2LiLi = q�
1

2

�
(2 + q)�1,1(q)� 2�1,2(q)

�
,

ILi�1LiLi�2
= q�

1

2

�
(1 + q�1 + q�2)�1,1(q)� (1 + q�2)�1,2(q)

�
,

ILi+2LiLi�2
= q�

1

2

�
3�1,1(q)� 2�1,2(q)

�
,

ILi�2LiLi�2
= q�

1

2

�
(2 + q�1)�1,1(q)� (1 + q�1)�1,2(q)

�
.

We immediately see that

LiLjLk

f�! [LLL] := 3[�1,1]� 2[�1,2] = [L]⇥ [L]⇥ [L]. (3.98)

In principal, to prove that f is a homomorphism we need to repeat the

above calculation for arbitrary number of line defect generator insertions. We
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are not able to prove it in this paper. Instead we o↵er some arguments about

why we believe f is indeed a homomorphism. We have seen explicitly that the

images of LiLj and LiLjLk under f does not depend on the index i. In other

examples that we consider in this paper we also checked the image of L⇢iLµj
28

does not depend on i. Although we don’t have a proof for now, we conjecture

this phenomenon is general, i.e. the image of L⇢1i1
L⇢2i2

. . . L⇢nin under f does

not depend on i1, . . . , in. Combining this conjecture with relations between line

defect generating functions one could see that f is indeed a homomorphism.

We revisit the situation of three line defect generators. To compute the

image of LiLjLk under f we could pick any three line defect generators. Let’s

recall the following relation between F (Li) [23, 92]:

F (Li)F (Li+2) = 1 + q
1

2F (Li+1), (3.99)

from which follows [L] ⇥ [L] = [�1,1] + [L].29 Schur index with insertion of

Li, Li+2, Lk is then given by

ILiLi+2Lk
(q) = ILk

(q) + q
1

2ILi+1Lk
(q), (3.100)

from which it follows that

[LLL] = [L] + [LL] = [L]⇥ [L]⇥ [L]. (3.101)

Similarly one could consider insertion of more line defect generators. By the

conjecture, to compute the image of Li1
. . . Lin under f , it doesn’t matter what

28Here ⇢, µ label di↵erent types of line defect generators, see §3.5.3, §3.5.4, §3.6.1, §3.6.2
29As discussed in §3.1.9, in (A1, A2N ) theories the line defect generators themselves cor-

respond to a basis which also realizes fusion rules.
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Figure 3.9: A BPS quiver for (A1, A4) Argyres-Douglas theory.

i1, . . . , in are. Then we could again use (3.99) to reduce the number of line

defect generators. Moreover this process is consistent with the fusion rules

such that

[L . . . L] = [L]⇥ · · ·⇥ [L]. (3.102)

For other Argyres-Douglas theories that we are considering in this pa-

per, there are always enough relations between F (L↵i) such that the same

argument goes through provided our conjecture would hold.

3.5.3 (A1, A4) Argyres-Douglas theory

We consider the (A1, A4) Argyres-Douglas theory. We choose a chamber

represented by the BPS quiver shown in Figure 3.9. Moreover our choice is

made such that there are four BPS particles in this chamber. Their charges

are (in increasing central charge phase order):

�1, �3, �2, �4 (3.103)

Line defect generators in (A1, A4) Argyres-Douglas theory and their

generating functions were computed in [51]. For completeness we reproduce

their results here. Starting from the initial seed, we apply all possible left mu-

tations to generate other seeds. There are in total 42 seeds. Correspondingly
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there are 42 dual cones. Each dual cone is bounded by four half-hyperplanes.

Moreover, every three out of the four half-hyperplanes intersect at a half line.

In total there are four such half-lines for each dual cone and they form edges

of the dual cone. Each edge corresponds to the core charge of one line defect

generator. For example, the dual cone for the initial seed is given by:

Č{�1,�2,�3,�4} =
⇢ 4X

i=1

ai�i | a2  0, a1 + a3 � 0, a2 + a4  0, a3 � 0

�
. (3.104)

Then we get four line defect generators whose core charges are given by

�1,��1 + �3,��2 + �4,��4. (3.105)

Repeating this procedure for all 42 dual cones we get 14 edges. Thus the

line defects in (A1, A4) Argyres-Douglas theory are generated by the identity

operator and 14 nontrivial generators. Recall that the (2, 7) minimal model

has two non-vacuum modules; therefore we have an expected multiplicity of

7. In the class S realization of the theory this would correspond to the Z7

symmetry of the 7-gon.

We assume that the line defect phase is smaller than the phases of all

vanilla BPS particles, and calculate the generating function using consecutive

right mutations on the framed quiver. For example, the line defect generator

with core charge �c = �1 � �3 goes through the following mutation sequence:

{�1, �2, �3, �4, �c}
µ
R
�c��! {�1, �2, �3, �4 + �c,��c}

µ
R
�4+�c����!

{�1, �2, �3 + �4 + �c,��4 � �c, �4}
µ
R
�3+�4+�c������! {�1, �2,��3 � �4 � �c, �3, �4},

(3.106)
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which implies that its generating function is

F (L) = X�1��3
+X�1��3+�4

+X�1+�4
.

The generating functions for all 14 line defect generators are (as given also

in [51]):

F (A1) = X��2+�4
,

F (A2) = X��1+�3
,

F (A3) = X�2��4
+X�1+�2��4

,

F (A4) = X�1��3��4
+X�1��3

,

F (A5) = X��1��4
+X��1+�2��4

+X�2��4
,

F (A6) = X��1��2+�4
+X��1+�4

+X��1+�3+�4
,

F (A7) = X�1��3
+X�1��3+�4

+X�1+�4
,

F (B1) = X�1
,

F (B2) = X��4
,

F (B3) = X��1��2
+X��1

,

F (B4) = X�4
+X�3+�4

,

F (B5) = X��1
+X��1+�2

+X�2
+X��1+�2+�3

+X�2+�3
,

F (B6) = X��2��3
+X��3

+X��2��3+�4
+X��3+�4

+X�4
,

F (B7) = X��3��4
+X�2��3��4

+X�1+�2��3��4
+X��3

+X�2��3
+X�1+�2��3

+X�2
+X�1+�2

.

The generating functions for Ai (Bi) are related to each other by the action of

powers of the monodromy operator. The Schur index with line defect Ai (Bi)
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inserted is computed using [51]

IAi(q) = (q)4
1
Tr[F (Ai)S(q)S(q)], IBi(q) = (q)4

1
Tr[F (Bi)S(q)S(q)] (3.107)

where in this particular chamber S(q) is given by

S(q) = Eq(X�1
)Eq(X�3

)Eq(X�2
)Eq(X�4

). (3.108)

As described in [51], the Schur index with one line defect inserted does not

depend on i 2 {1, . . . , 7}:

IA(q) = q + q4 + q5 + q6 + 2q7 + 2q8 + 3q9 + 3q10 + · · · ,

IB(q) = �q
1

2 � q
5

2 � q
7

2 � q
9

2 � 2q
11

2 � 3q
13

2 � 3q
15

2 � 4q
17

2 � 5q
19

2 + · · · .
(3.109)

The chiral algebra in this case is the (2, 7) Virasoro minimal model

[52, 54, 56]. There are three primary fields: the vacuum �1,1, �1,2 with weight

�2/7 and �1,3 with weight �3/7. Line defect Schur indices admit the following

expansions in terms of characters:

IA(q) = q�1
�
�1,3(q)� �1,2(q)

�
,

IB(q) = q�
1

2

�
�1,1(q)� �1,2(q)

�
.

(3.110)

The map f between the line defect algebra L and the Verlinde algebra V is

then given by:

I
f�! [�1,1],

Ai

f�! [A] = [�1,3]� [�1,2],

Bi

f�! [B] = [�1,1]� [�1,2].

(3.111)
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Figure 3.10: The classical monodromy action in the (A1, A4) theory is realized
by a sequence of flips of triangulations of the 7-gon. The initial triangulation
di↵ers from the final one by a clockwise rotation by 2 units.

The non-trivial fusion rules in the (2, 7) Virasoro minimal model are:

[�1,2]⇥ [�1,2] = [�1,1] + [�1,3],

[�1,3]⇥ [�1,3] = [�1,1] + [�1,2] + [�1,3],

[�1,2]⇥ [�1,3] = [�1,2] + [�1,3].

(3.112)

As first checked in [51],

[AA] = [A]⇥ [A],

[BB] = [B]⇥ [B],

[AB] = [A]⇥ [B],

(3.113)

which gives evidence f is indeed a homomorphism L ! V .

Now we turn to study the fixed points under the classical monodromy

action M . By doing a series of flips (see Figure 3.10, the initial zigzag triangu-

lation corresponds to the BPS quiver in Figure 3.9 using the dictionary in [1].
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The monodromy action is given as follows:

X�1
! 1 + X�2

+ X�4
+ X�2

X�4
+ X�2

X�3
X�4

X�2
X�3

,

X�2
! X�1

X�2
X�3

(1 + X�2
+ X�2

X�3
)[1 + X�4

+ X�2
(1 + X�1

)(1 + X�4
+ X�3

X�4
)]
,

X�3
! (1 + X�2

+ X�1
X�2

)[1 + X�4
+ X�2

(1 + X�4
+ X�3

X�4
)]

X�1
X�2

X�3
X�4

,

X�4
! X�3

X�4

1 + X�4
+ X�2

(1 + X�1
)(1 + X�4

+ X�3
X�4

)
.

(3.114)

There are exactly three fixed points, which we label I, II, III. On the fixed

points X� evaluate to

X�4
: (↵1,↵2,↵3),

X�3
: (4 + ↵1 � 2↵2

1
, 4 + ↵2 � 2↵2

2
, 4 + ↵3 � 2↵2

3
),

X�2
: (↵1 � ↵2

1
,↵2 � ↵2

2
,↵3 � ↵2

3
),

X�1
: (2 + ↵1 � ↵2

1
, 2 + ↵2 � ↵2

2
, 2 + ↵3 � ↵2

3
),

(3.115)

where ↵i are the three roots of the cubic equation

↵3 � ↵2 � 2↵ + 1 = 0. (3.116)

Concretely,

↵1 =
1

3

�
1� 7

a
(�1)1/3 + a(�1)2/3

�
, ↵2 =

1

3

�
1 +

7

a
(�1)2/3 � a(�1)1/3

�
,

↵3 =
1

3

�
1 +

7

a
+ a
�
, with a =

✓
7

2

◆ 1

3 �
� 1 + i3

p
3
� 1

3 .

Evaluating the F (Ai) at the fixed points we find that the values are indepen-

dent of i = 1, . . . , 7, and similarly for F (Bi), as expected. Concretely, we
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get

Ai

g�!
✓

1

1� ↵1

,
1

1� ↵2

,
1

1� ↵3

◆
,

Bi

g�!
✓

1

↵1

,
1

↵2

,
1

↵3

◆
.

(3.117)

Finally we want to construct h. We have the following Verlinde matrices for

[�1,2] and [�1,3]:

N�1,2 =

0

@
0 1 0
1 0 1
0 1 1

1

A , N�1,3 =

0

@
0 0 1
0 1 1
1 1 1

1

A . (3.118)

As before, we obtain h by simultaneously diagonalizing N�1,2 and N�1,3 using

S-matrix and then comparing with the correspondence between U(1) fixed

points and primaries of (2, 7) Virasoro minimal model. The S-matrix for the

(2,7) minimal models is [65]:

S =
2p
7

0

@
cos3⇡

14
�cos ⇡

14
sin⇡

7

�cos ⇡

14
�sin⇡

7
cos3⇡

14

sin⇡

7
cos3⇡

14
cos ⇡

14

1

A . (3.119)

N�1,2 and N�1,3 are simultaneously diagonalized by S:

SN�1,2S
�1 =

0

@
↵1 0 0
0 ↵2 0
0 0 ↵3

1

A , SN�1,3S
�1 =

0

@
�1 0 0
0 �2 0
0 0 �3

1

A , (3.120)

where

�1 =
1

3

�
2 +

7

b
(�1)2/3 � b(�1)1/3

�
, �2 =

1

3

�
2� 7

b
(�1)1/3 + b(�1)2/3

�

�3 =
1

3

�
2 +

7

b
+ b
�
, with b =

✓
7

2

◆ 1

3 �
1 + i3

p
3
� 1

3 .
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According to [69,71], the corresponding wild Hitchin moduli space has

exactly three U(1)r-fixed points, each of which corresponds to a primary field

in the (2, 7) minimal model:

fixed point weights of M U(1)r weights primary field
I e2⇡i(3/7), e2⇡i(4/7), e2⇡i(5/7), e2⇡i(2/7) 3

7
, 4
7
, 5
7
, 2
7

�1,3

II e2⇡i(8/7), e�2⇡i(1/7), e2⇡i(10/7), e�2⇡i(3/7) 8

7
,�1

7
, 10

7
,�3

7
�1,1

III e2⇡i(8/7), e�2⇡i(1/7), e2⇡i(5/7), e2⇡i(2/7) 8

7
,�1

7
, 5
7
, 2
7

�1,2

Using this table and (3.120), the isomorphism h between V and O(F ) is:

[�1,1]
h�! (1, 1, 1),

[�1,2]
h�! (↵3,↵1,↵2),

[�1,3]
h�! (�3, �1, �2).

(3.121)

The image of Ai and Bi under h � f is then:

Ai

h�f��! (�3 � ↵3, �1 � ↵1, �2 � ↵2),

Bi

h�f��! (1� ↵3, 1� ↵1, 1� ↵2).
(3.122)

Although it is not obvious, one can check that this indeed agrees with (3.117),

so the diagram commutes, as desired.

3.5.4 (A1, A6) Argyres-Douglas theory

Here we consider the (A1, A6) Argyres-Douglas theory. This theory

has a new feature: at one of the fixed points (fixed point I below), some

of the cluster coordinates X� associated to the canonical chamber blow up.

This being so, computing the fixed points of the classical monodromy in that
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Figure 3.11: A BPS quiver for (A1, A6) Argyres-Douglas theory.

chamber actually misses one fixed point. Thus, with the benefit of hindsight,

we choose a di↵erent chamber, whose BPS quiver is shown in Figure 3.11.

There are eight BPS particles in this chamber, with the following

charges (in increasing central charge phase order):

�4, �6, �4 + �5, �5, �3, �1 + �3, �2, �1. (3.123)

Quiver mutation starting from this chamber generates in total 429

seeds. After mutating back to the original seed the 429 dual cones span the

whole charge lattice. Each dual cone is bounded by six half-hyperplanes. Ev-

ery five of the six half-hyperplanes intersect at a half line which forms an edge

of the dual cone and there are six edges for each dual cone. For example, the

six edges of the dual cone for the initial seed Č{�1,�2,�3,�4,�5,�6}
are spanned by:

�2 + �4 + �5 + �6,��1 + �4 + �5 + �6, �4 + �5 + �6,

� �1 � �2 � �3,��1 � �2 � �3 + �6,��1 � �2 � �3 � �5.
(3.124)

Repeating this for all 429 dual cones we get in total 27 edges. Correspondingly

there are 27 nontrivial line defect generators in the (A1, A6) theory. The (2, 9)

minimal model has three non-vacuum modules, so there is a multiplicity of 9,
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corresponding to the Z9 symmetry of the 9-gon. Assuming that the line defect

phase is smaller than central charge phases of all vanilla BPS particles, their

generating functions are:

F (A1) = X�1+�2+�3��6
+X�1+�2+�3+�5��6

+X�1+�2+�3+�5
,

F (A2) = X��2��4��5��6
+X�1��2��4��5��6

+X�1��4��5��6
,

F (A3) = X��1��2��3��5
,

F (A4) = X�2+�4+�5+�6
,

F (A5) = X��1��2��3+�6
,

F (A6) = X�1+�2+�3+�5
+X�1+�2+�3+�5+�6

+X�1+�2+�3+�4+�5+�6
,

F (A7) = X�1��4��5��6
+X�1+�2��4��5��6

+X�1+�2+�3��4��5��6
+X�1+�2+�3��5��6

+X�1+�2+�3��6
,

F (A8) = X��1��2��3��4��5��6
+X��1��2��4��5��6

+X��2��4��5��6
,

F (A9) = X��1+�4+�5+�6
,

F (B1) = X��5��6
+X��6

,

F (B2) = X�1
+X�1+�2

,

F (B3) = X�5
+X�5+�6

,

F (B4) = X��1��2
+X��2

,

F (B5) = X�6
+X�4+�6

,

F (B6) = X��1��3
+X��1

,

F (B7) = X��2��3��4��5
+X��3��4��5

+X��4��5
+X��5

,

F (B8) = X��4��6
+X��4

+X�3��4��6
+X�3��4

+X�3
+X�1+�3��4��6

+X�1+�3��4
+X�1+�3

,
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F (B9) = X�2
+X�2+�3

+X�2+�3+�4
+X�2+�3+�4+�5

,

F (C1) = X��1��2��3
,

F (C2) = X�4+�5+�6
,

F (C3) = X�1+�2+�3
+X�1+�2+�3+�4

+X�1+�2+�3+�4+�5
,

F (C4) = X��2��3��4��5��6
+X��3��4��5��6

+X��4��5��6
,

F (C5) = X�1��4��6
+X�1��4

+X�1+�2��4��6
+X�1+�2��4

+X�1+�2+�3��4��6

+X�1+�2+�3��4
+X�1+�2+�3

,

F (C6) = X��4��5��6
+X�3��4��5��6

+X�3��5��6
+X�3��6

+X�1+�3��4��5��6

+X�1+�3��5��6
+X�1+�3��6

,

F (C7) = X��1��2��3��4��5
+X��1��2��4��5

+X��1��2��5
+X��2��4��5

+X��2��5
,

F (C8) = X�2+�5
+X�2+�5+�6

+X�2+�3+�5
+X�2+�3+�5+�6

+X�2+�3+�4+�5+�6
,

F (C9) = X��1��3+�6
+X��1+�6

+X��1+�4+�6
.

In this chosen chamber the spectrum generator S(q) is given by

S(q) = Eq(X�4
)Eq(X�6

)Eq(X�4+�5
)Eq(X�5

)Eq(X�3
)Eq(X�1+�3

)Eq(X�2
)Eq(X�1

)

=
1X

l1,··· ,l8=0

(�1)
P

8

i=1
liq

A
2

(q)l1 . . . (q)l8
X(l1+l7)�1+l2�2+(l3+l7)�3+(l4+l8)�4+(l5+l8)�5+l6�6

,

where

A =
8X

i=1

li�l1(l7�l2+l3)+l3(l2+l4+l8�l7)�l4(l8+l5�l6�l7)+l8(l7�l5)+l5l6.

(3.125)

For su�ciently large enough N the truncated SN(q) stabilizes to

SN(q) = 1�
6X

i=1

X�iq
1

2 + (X2�1
+X2�2

+X2�3
+X�1+�2+�3

+X2�4
+X�1+�4
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+X�2+�4
+X2�5

+X�1+�5
+X�2+�5

+X�3+�5
+X2�6

+X�1+�6
+X�2+�6

+X�3+�6
+X�4+�5+�6

)q + . . .

The Schur index with line defect L (L = Ai, Bi, Ci) inserted is given by

IL(q) = (q)6
1
Tr[F (L)S(q)S(q)]. (3.126)

In particular the line defect Schur index forgets the i index as expected:

IA(q) = �q
3

2 (1 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + · · · ),

IB(q) = �q
1

2 (1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 4q7 + 6q8 + · · · ),

IC(q) = q(1 + q2 + q3 + q4 + 2q5 + 3q6 + 3q7 + 5q8 + · · · ).

(3.127)

The chiral algebra in this case is conjectured to be the (2, 9) Virasoro

minimal model [52, 54, 56]. There are four primary fields: �1,1 which is the

vacuum, �1,2 with weight �1/3, �1,3 with weight �5/9, and �1,4 with weight

�2/3. The line defect Schur indices have the following expansions in terms of

the characters:

IA(q) = q�
3

2

�
�1,3(q)� �1,4(q)

�
,

IB(q) = q�
1

2

�
�1,1(q)� �1,2(q)

�
,

IC(q) = q�1
�
� �1,2(q) + �1,3(q)

�
.

(3.128)

Thus the map f between the line defect OPE algebra L and the Verlinde

algebra V of the (2, 9) minimal model is:

I
f�! [�1,1],

Ai

f�! [A] = [�1,3]� [�1,4],

Bi

f�! [B] = [�1,1]� [�1,2],

Ci

f�! [C] = �[�1,2] + [�1,3].

(3.129)
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Figure 3.12: Monodromy action via a sequence of flips of triangulations of the
9-gon.

Non-trivial fusion rules in the (2, 9) minimal model are given by:

[�1,2]⇥ [�1,2] = [�1,1] + [�1,3],

[�1,2]⇥ [�1,3] = [�1,2] + [�1,4],

[�1,2]⇥ [�1,4] = [�1,3] + [�1,4],

[�1,3]⇥ [�1,3] = [�1,1] + [�1,3] + [�1,4],

[�1,3]⇥ [�1,4] = [�1,2] + [�1,3] + [�1,4],

[�1,4]⇥ [�1,4] = [�1,1] + [�1,2] + [�1,3] + [�1,4].

(3.130)

Using these fusion rules one can check that [AA] = [A]⇥ [A], [AB] = [A]⇥ [B],

and [BB] = [B]⇥ [B].
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Now we study the fixed points under the classical monodromy action.

By considering the sequence of flips shown in Figure 3.12 we compute that the

classical monodromy is:

X�1
! X�2

(1 + X�3
+ X�3

X�4
), X�2

! X�3
X�4

X�5

1 + X�3
+ X�3

X�4

,

X�3
! X�1

1 + X�3
(1 + X�4

)(1 + X�1
)
,

X�4
! (1 + X�3

+ X�3
X�4

)(1 + X�3
+ X�3

X�1
)

X�3
X�4

X�1

,

X�5
! X�6

[1 + X�3
(1 + X�4

)(1 + X�1
)]

1 + X�3
+ X�3

X�1

, X�6
! X�4

1 + X�3
(1 + X�4

)(1 + X�1
)
.

(3.131)

There are exactly four fixed points which we label I, II, III, IV. At the fixed

points X� evaluate to:

X�1
: (�1,↵1,↵2,↵3), X�2

: (�1, 1� ↵2, 1� ↵3, 1� ↵1),

X�3
: (�1,↵2,↵3,↵1), X�4

: (�1, 1� ↵3, 1� ↵1, 1� ↵2),

X�5
: (�1,↵1,↵2,↵3), X�6

: (�1, 1� ↵2, 1� ↵3, 1� ↵1),

where

↵1 = (�1)
4

9 � (�1)
5

9 , ↵2 = (�1)
8

9 � (�1)
1

9 , ↵3 = (�1)
2

9 � (�1)
7

9 .

The line defect vevs evaluated at the fixed points satisfy:

F (Ai) = F (Aj), F (Bi) = F (Bj), F (Ci) = F (Cj). (3.132)

Explicitly, the evaluation map is:

Ai

g�!
�
1,�↵3,�↵1,�↵2),

Bi

g�!
�
0, 1 + ↵1, 1 + ↵2, 1 + ↵3

�
,

Ci

g�!
�
� 1, 1� ↵3, 1� ↵1, 1� ↵2

�
.

(3.133)
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The fusion matrices for [�1,2], [�1,3] and [�1,4] are:

N�1,2 =

0

BB@

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

1

CCA , N�1,3 =

0

BB@

0 0 1 0
0 1 0 1
1 0 1 1
0 1 1 1

1

CCA , N�1,4 =

0

BB@

0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

1

CCA .

(3.134)

The S-matrix for (2,9) minimal model is given by [65]:

S =
2

3

0

BB@

�sin2⇡

9
cos ⇡

18
�sin⇡

3
sin⇡

9

cos ⇡

18
�sin⇡

9
�sin⇡

3
sin2⇡

9

�sin⇡

3
�sin⇡

3
0 sin⇡

3

sin⇡

9
sin2⇡

9
sin⇡

3
cos ⇡

18

1

CCA . (3.135)

The fusion matrices are simultaneously diagonalized by S:

SN�1,2S
�1 =

0

BB@

�↵3 0 0 0
0 �↵1 0 0
0 0 1 0
0 0 0 �↵2

1

CCA , SN�1,3S
�1 =

0

BB@

1 + ↵1 0 0 0
0 1 + ↵2 0 0
0 0 0 0
0 0 0 1 + ↵3

1

CCA ,

SN�1,4S
�1 =

0

BB@

1� ↵3 0 0 0
0 1� ↵1 0 0
0 0 �1 0
0 0 0 1� ↵2

1

CCA .

(3.136)

According to [69,71], the correspondence between U(1)r-fixed points in

N and the primaries of the (2, 9) Virasoro minimal model is:

fixed point U(1) weights primary field

I 4

9
, 5
9
, 7
9
, 2
9
, 10

9
,�1

9
�1,3

II 7

9
, 2
9
, 10

9
,�1

9
, 4
3
,�1

3
�1,2

III 1

3
, 2
3
, 4
9
, 5
9
, 7
9
, 2
9

�1,4

IV 4

3
,�1

3
, 10

9
,�1

9
, 14

9
,�5

9
�1,1
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Figure 3.13: A BPS quiver for the (A1, D3) Argyres-Douglas theory.

Based on this table and (3.136), the isomorphism h : V ! O(F ) is:

[�1,1]
h�!
�
1, 1, 1, 1

�
,

[�1,2]
h�!
�
1,�↵1,�↵2,�↵3

�
,

[�1,3]
h�!
�
0, 1 + ↵2, 1 + ↵3, 1 + ↵1

�
,

[�1,4]
h�!
�
� 1, 1� ↵1, 1� ↵2, 1� ↵3

�
.

(3.137)

Combining (3.129), (3.133) and (3.137) confirms that h�f = g in the (A1, A6)

Argyres-Douglas theory.

3.6 (A1, D2N+1) Argyres-Douglas theories

In this section we present the results of explicit computations verifying

the commutativity (3.16) in the Argyres-Douglas theories of type (A1, D3)

and (A1, D5), with the appropriate modifications to take care of the flavor

symmetry in these theories.

3.6.1 (A1, D3) Argyres-Douglas theory

We consider (A1, D3) Argyres-Douglas theory. This is equivalently the

(A1, A3) Argyres-Douglas theory. Line defect generators and their generating
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functions in this description were studied in [23,51]. Line defect Schur indices

and the relation to the Verlinde algebra were studied in [51]. Here we use the

(A1, D3) description instead.

We choose a chamber where the BPS quiver is as in Figure 3.13, con-

taining BPS particles with charges (in increasing phase order):

�1, �2, �3.

Note that �1 + �3 has zero Dirac pairing with any charge, and thus is a pure

flavor charge.

The corresponding Hitchin system is defined on CP1, with one irregular

singularity at z = 1 and one regular singularity at z = 0. There are three

Stokes rays emerging from the irregular singularity. Correspondingly there are

three marked points on the S1 bounding the cut-out disc around z = 1, as

in Figure 3.14a. The WKB triangulation for the chosen chamber is shown in

Figure 3.14b. Here X�1
corresponds to edge 14, X�2

corresponds to edge 13,

and X�3
corresponds to edge 34.

Now we use the method reviewed in §3.4.3 to describe a generating set

of line defects. There are seven generators, including a pure flavor line defect

C whose corresponding lamination is a loop around the regular singularity.

The other six generators come in two types, A and B, corresponding to two

di↵erent kinds of laminations: see Figure 3.15. We denote the six generators

as Ai, Bi (i = 1, 2, 3), where A1 and B1 correspond to the laminations shown in

Figure 3.15. The lamination for Ai+1 (Bi+1) is given by rotating the lamination
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(a)

1

2 3

4

(b)

Figure 3.14: (a): CP1 \D1 where D1 is a disk around z = 1 bounded by S1

with three marked points colored in blue. The regular singularity at z = 0 is
colored in black. (b): A triangulation in the (A1, D3) Argyres-Douglas theory.
There are three boundary edges. The blue marks correspond to the positions
of three Stokes rays.

for Ai (Bi) counterclockwise by 2⇡/3. The flavor charge is normalized to be

(�1 + �3)/2, and the corresponding X� is equal to the SU(2) flavor fugacity z:

z = X �1+�3
2

. (3.138)

Moreover we define

X�0 := X �1��3
2

. (3.139)

We computed generating functions of line defect generators using the method

reviewed in §3.4.3. They are listed below (these di↵er slightly from the anal-

ogous formulas in [51] because we are computing in a di↵erent chamber):

F (A1) = z�1X��2
+X��0 +X��0��2

,

F (A2) = X��0 +X��0+�2
+ zX�2

,
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+1
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(c) Type C

Figure 3.15: Three types of laminations in (A1, D3) Argyres-Douglas theory.
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F (A3) = X�0 ,

F (B1) = X��2
+ z�1X��2+�0 ,

F (B2) = X�2�0+�2
+X�2�0��2

+ zX��0+�2
+ (q

1

2 + q�
1

2 )X�2�0 + (z + z�1)X��0 + z�1X��0��2
,

F (B3) = X�2
+ zX�2+�0 ,

F (C) = z + z�1.

The pure flavor line defect C is a Wilson line in the fundamental representation

of the SU(2) flavor symmetry.

The Schur index with one line defect L inserted is computed as

IL(q, z) = (q)2
1
Tr[F (L)S(q)S(q)], with S(q) = Eq(X�1

)Eq(X�2
)Eq(X�3

).

(3.140)

As usual the Schur indices with defects Ai and Bi inserted do not depend on

the index i; concretely (these do match [51], as they should since they are

chamber-independent):

IA(q, z) = �q
1

2 (�2 + �4q + �2�4�6q
2 + �2�2�4�2�6�8q

3 + �2�3�4�3�6�3�8�10q
4

+ �2�4�4�6�6�4�8�3�10�12q
5 + · · · ),

IB(q, z) = �q
1

2 (1 + �3q
2 + �1�3q

3 + �1�3�5q
4 + �1�3�2�5q

5 + �1�2�3�3�5�2�7q
6 + · · · ),

where framed BPS states organize themselves into representations of SU(2)30.

The associated chiral algebra is [sl(2)
�

4

3

[52,54–56,59]. There are three

30We label irreducible SU(2) representations by their dimensions.
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admissible representations [65,73] with highest weights:

�0 =


�4

3
, 0

�
, �1 =


�2

3
,�2

3

�
, �2 =


0,�4

3

�
(3.141)

where �0 is the highest weight for the vacuum module. Their characters were

computed using the Kazhdan-Lusztig formula in [51,65]. In particular the line

defect Schur indices could be written as:

IA(q, z) = q�
1

2 z�1
�
� �1(q, z) + �2(q, z)

�
,

IB(q, z) = q�
1

2

�
�0(q, z)� �1(q, z) + z�2�2(q, z)

�
.

(3.142)

The expansions of IAiAj , IBiBj and IAiBj in terms of characters are:

IAiAi(q, z) = IAiAi+1
(q, z) = (1 + q�1)�0(q, z)� q�1�1(q, z) + q�1z�2�2(q, z),

IAiAi�1
(q, z) = 2�0(q, z)� �1(q, z) + z�2�2(q, z),

IBiBi(q, z) = IBiBi+1
(q, z) = (1 + q�1 + q�2)�0(q, z)� [q�1(1 + z�2) + q�2]�1(q, z)

+ [q�1(1 + z�2) + q�2z�2]�2(q, z),

IBiBi�1
(q, z) = (2 + q)�0(q, z)� (2 + z�2)�1(q, z) + (1 + 2z�2)�2(q, z),

IAiBi(q, z) = q�1(z + z�1)�0(q, z)� (q�1 + q�2)z�1
�
�1(q, z)� �2(q, z)

�
,

IAiBi+1
(q, z) = IAiBi�1

(q, z) = (z + z�1)�0(q, z)� (1 + q�1)z�1
�
�1(q, z)� �2(q, z)

�
.

In [51] the authors take the limit q ! 1, z ! 1 and relate the line defect

algebra to the Verlinde-like algebra of [sl(2)
�

4

3

. Here we keep z general while

taking q ! 1. In this limit the expansion coe�cients do not depend on the

i index anymore, just as in the (A1, A2N) case. We introduce a z-deformed
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Verlinde-like algebra Vz with the z-deformed modular fusion rules:

[�1]⇥ [�1] = [�2],

[�1]⇥ [�2] = �z2[�0],

[�2]⇥ [�2] = �z2[�1].

(3.143)

If we take z = 1, this reduces to the naive modular fusion rules of [sl(2)
�

4

3

[51, 65]. The homomorphism f : L ! Vz is given by:

I
f�! [�0],

Ai

f�! [A] = z�1
�
[�2]� [�1]

�
,

Bi

f�! [B] = [�0]� [�1] + z�2[�2].

(3.144)

f is believed to be a homomorphism since

[AA] = 2[�0]� [�1] + z�2[�2] = [A]⇥ [A],

[BB] = 3[�0]� (2 + z�2)[�1] + (1 + 2z�2)[�2] = [B]⇥ [B],

[AB] = (z + z�1)[�0]� 2z�1
�
[�1]� [�2]

�
= [A]⇥ [B].

(3.145)

We emphasize that this holds if and only if the z-deformed modular fusion

rules are as given in (3.143).

The fusion matrices for [�1] and [�2] are:

N�1
=

0

@
0 1 0
0 0 1

�z2 0 0

1

A , N�2
=

0

@
0 0 1

�z2 0 0
0 �z2 0

1

A . (3.146)

These two matrices are simultaneously diagonalizable for z 6= 0, with eigen-

values:

eigenvector ��1
��2

(1,�z2/3, z4/3) �z2/3 z4/3

(1, (�1)1/3z2/3, (�1)2/3z4/3) (�1)1/3z2/3 (�1)2/3z4/3

(1,�(�1)2/3z2/3,�(�1)1/3z4/3) �(�1)2/3z2/3 �(�1)1/3z4/3
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Figure 3.16: Classical monodromy action via two flips in (A1, D3) Argyres-
Douglas theory.

Now we turn to study fixed loci of the classical monodromy in this

chamber. Through a composition of two flips (see Figure 3.16) the monodromy

action is:

X�1
! 1 + X�3

+ X�2
X�3

X�2

,

X�2
! 1

X�3
+ X�2

X�3

,

X�3
! X�1

X�2
X�3

1 + X�3
+ X�2

X�3

.

(3.147)

The fixed locus is determined by the equations

X�2
(1 + X�2

)X�3
= 1, X�1

= X�3
(2 + X�2

+ X�3
+ X�2

X�3
). (3.148)

To make connection with the flavor fugacity, we rewrite these equations in

terms of X�2
, z and x := X�0 ; this gives

X 3

�2
z2 = 1, x = X�2

(1 + X�2
)z. (3.149)

One can check that this is exactly the same locus where F (Ai) = F (Aj) and

F (Bi) = F (Bj). In particular, this implies the evaluation map g forgets the i

index as expected.
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Now recall that the value of z corresponds to the SU(2) flavor holonomy

that could be turned on when compactifying the 4d theory on S1. With this

in mind we first fix z and then look for the U(1)r-fixed points. For each

value of z 6= 0, there are three U(1)r-fixed points, which matches the number

of admissible representations of [sl(2)
�

4

3

. The evaluation map g is concretely

given by:

1
g�!
�
1, 1, 1

�
,

Ai

g�!
�
z1/3 + z�1/3,�(�1)1/3z1/3 + (�1)2/3z�1/3,�(�1)1/3z�1/3 + (�1)2/3z1/3

�
,

Bi

g�!
�
1 + z2/3 + z�2/3, 1 + (�1)2/3z2/3 � (�1)1/3z�2/3,

1 + (�1)2/3z�2/3 � (�1)1/3z2/3
�
.

(3.150)

Now, in contrast to the cases we studied in §3.5, in this case the weights

of the classical monodromy action are not su�cient to distinguish the three

U(1)r-fixed points, as we see from the following table (U(1)r weights and

correspondence between fixed points and primary fields taken from results

of [69, 71]):

fixed point weights of M weights of U(1)r primary field

I �1±i
p
3

2

1

3
, 2
3

�1

II �1±i
p
3

2
�1

3
, 4
3

�0

III �1±i
p
3

2
�1

3
, 4
3

�2

Thus we cannot determine a priori which U(1)r-fixed point should cor-

respond to which eigenspace of the fusion matrices. This gives an S3 ambiguity

in constructing the map h. Still, we can just try all of the 6 possible mappings
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Figure 3.17: A BPS quiver for the (A1, D5) Argyres-Douglas theory.

and see if one of them works. Indeed, suppose we take:

[�1]
h�!
�
� z2/3,�(�1)2/3z2/3, (�1)1/3z2/3

�
,

[�2]
h�!
�
z4/3,�(�1)1/3z4/3, (�1)2/3z4/3

�
.

(3.151)

Combining this with (3.144) and (3.150), we find that indeed h � f = g for

every z 6= 0.

3.6.2 (A1, D5) Argyres-Douglas theory

We choose the canonical chamber represented by the BPS quiver given

in Figure 3.17, with five BPS particles (in increasing central charge phase

order):

�1, �4, �3, �2, �5.

The corresponding Hitchin system is defined on CP1 with one regular

singularity at z = 0 and one irregular singularity at z = 1 with five stokes rays

emerging from it, i.e. there are five marked points on the S1 which boundsD1,

the disk around z = 1 that’s cut out from CP1. The situation is depicted in

Figure 3.18. The corresponding WKB triangulation for this chamber is given

in Figure 3.19, where X�1
corresponds to edge 13, X�2

corresponds to edge 35,
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Figure 3.18: CP1 \D1 where D1 is a disk around z = 1 bounded by S1 with
five marked points colored in blue. The regular singularity at z = 0 is colored
in black.

1

2

3 4

5

6

Figure 3.19: A triangulation in the (A1, D5) Argyres-Douglas theory. There
are five boundary edges. The blue marks correspond to positions of five Stokes
rays.

X�3
corresponds to edge 45, X�4

corresponds to edge 56 and X�5
corresponds

to edge 46.

The line defect generators correspond to laminations that can not be

expressed as sum of other laminations. In this case there are 21 such lami-

nations. The lamination (E) which is a loop around the regular singularity

corresponds to the pure flavor line defect. The other 20 laminations come in

four types A,B,C and D. We label their corresponding generators as Ai, Bi,
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Ci and Di (i = 1, . . . , 5) and list laminations corresponding to the generators

A1, B1, C1, D1 and E in Figure 3.20. Laminations corresponding to e.g. gen-

erators Ai+1 are obtained by rotating laminations for Ai clockwise by 4⇡/5.

We define the flavor charge �f and �0 as follows:

�f =
�4 + �5

2
, �0 =

�4 � �5
2

. (3.152)

The SU(2) flavor fugacity is z := Tr(X�f
). The generating functions are

computed using the method as reviewed in §3.4.3. In particular, the line

defect generator D2 has framed BPS states with charge 2�2 in a 3-dimensional

multiplet of SO(3):

F (A1) = X��1
+X��1��2

,

F (A2) = X��1
+X�2

+X��1+�2
+X�2+�3

+X��1+�2+�3
+ zX�2+�3+�0 + zX��1+�2+�3+�0 ,

F (A3) = X�2
+X�1+�2

+X��3
+X�2��3

+X�1+�2��3
+ z�1X��3+�0 + z�1X�2��3+�0

+ z�1X�1+�2��3+�0 ,

F (A4) = X�1
,

F (A5) = (z + z�1)X��0 + z�1X��3��0 + z�1X��2��3��0 + zX�3��0 + (q1/2 + q�1/2)X�2�0

+X��2�2�0 +X��3�2�0 +X��2��3�2�0 +X�3�2�0 ,

F (B1) = X��1��0 +X��1��2��0 +X��1+�3��0 + zX��1+�3
,

F (B2) = X��1+�0 +X�2+�0 +X��1+�2+�0 ,

F (B3) = X�2+�0 +X�1+�2+�0 ,

F (B4) = z�1X�1��3
+X�1��0 +X�1��3��0 ,

F (B5) = X��2��0 ,
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-1

+1

-1

+1

(a) Type A

-1

+1

-1

+1

(b) Type B

+1

-1

(c) Type C

-1

+1

-1

+1

+1

-1

(d) Type D

(e) Type E

Figure 3.20: Five types of laminations in (A1, D5) Argyres-Douglas theory.
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F (C1) = X��0 +X�3��0 + zX�3
,

F (C2) = (q1/2 + q�1/2)
�
X��1��0 +X�2��0 +X��1+�2��0 +X��1��3��0 + z�1X��1��3

�

+X��0 +X��3��0 +X��1��2��3��0 +X�2��3��0 +X��1+�2��3��0 +X�2+�3��0

+X��1+�2+�3��0 + (z + z�1)X��1
+ (z + z�1)X�2

+ (z + z�1)X��1+�2
+ z�1X��3

+ z�1X��1��2��3
+ z�1X�2��3

+ z�1X��1+�2��3
+ zX�2+�3

+ zX��1+�2+�3
,

F (C3) = X�0 ,

F (C4) = (q1/2 + q�1/2)
�
X�2��0 +X�1+�2��0

�
+X��0 +X��3��0 +X�2��3��0 +X�1+�2��3��0

+X�2+�3��0 +X�1+�2+�3��0 + z�1X�2
+ z�1X�1+�2

+ z�1X��3
+ z�1X�2��3

+ z�1X�1+�2��3
+ zX�2

+ zX�1+�2
+ zX�2+�3

+ zX�1+�2+�3
,

F (C5) = X��0 +X��3��0 +X��2��3��0 + z�1X��3
+ z�1X��2��3

,

F (D1) = X��1+�3
+ zX��1+�3+�0 ,

F (D2) = (q1/2 + q�1/2)X�2
+ (q1/2 + q�1/2)X��1+�2

+ (1 + 1 + q + q�1)X2�2

+ (q1/2 + q�1/2)X��1+2�2
+ (q1/2 + q�1/2)X�1+2�2

+X��1��3
+ (q1/2 + q�1/2)X�2��3

+ (q1/2 + q�1/2)X��1+�2��3
+ (q1/2 + q�1/2)X2�2��3

+X��1+2�2��3
+X�1+2�2��3

+ (q1/2 + q�1/2)X2�2+�3
+X��1+2�2+�3

+X�1+2�2+�3
+ (z + z�1)X�2+�0

+ (z + z�1)X��1+�2+�0 + (z + z�1)(q1/2 + q�1/2)X2�2+�0 + (z + z�1)X��1+2�2+�0

+ (z + z�1)X�1+2�2+�0 + z�1X��1��3+�0 + (q1/2 + q�1/2)z�1X�2��3+�0

+ (q1/2 + q�1/2)z�1X��1+�2��3+�0 + (q1/2 + q�1/2)z�1X2�2��3+�0 + z�1X��1+2�2��3+�0

+ z�1X�1+2�2��3+�0 + (q1/2 + q�1/2)zX2�2+�3+�0 + zX��1+2�2+�3+�0 + zX�1+2�2+�3+�0 ,

F (D3) = X�1��3
+ z�1X�1��3+�0 ,

F (D4) = (q1/2 + q�1/2)X�1�2�0 +X�1��3�2�0 +X�1+�3�2�0 + z�1X�1��0 + z�1X�1��3��0
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+ zX�1��0 + zX�1+�3��0 ,

F (D5) = (q1/2 + q�1/2)
�
X��1�2�0 +X��1��2�2�0 +X��1��2��3�2�0 + z�1X��1��2��3��0

�

+X��1��3�2�0 +X��1�2�2��3�2�0 +X��1+�3�2�0 + (z + z�1)X��1��0

+ (z + z�1)X��1��2��0 + z�1X��1��3��0 + z�1X��1�2�2��3��0 + zX��1+�3��0 ,

F (E) = z + z�1.

The line defect Schur index is

IL(q, z) = (q)4
1
Tr[F (L)S(q)S(q)], with

S(q) = Eq(X�1
)Eq(X�4

)Eq(X�3
)Eq(X�2

)Eq(X�5
).

(3.153)

After inserting generating functions the calculation boils down to computing

the following:

(q)4
1
Tr[Xa�1+b�2+c�3+d�0S(q)S(q)]

= (q)4
1

1X

li,ki=0

(�1)a+b+c+dqA/2zl4+l5�k4�k5

(q)l1 . . . (q)l5(q)k1 . . . (q)k5
�k1,l1+a�k2,l2+b�k3,l3+c�k4,l4�l5+k5+d, with

A =
1

2

⇣
a+ b+ ab+ c+ bc� cd+ d(1 + 2c+ 2l3) + 2

�
l1 + l2 + al2 + cl2 + l1l2 + l3

+ l2l3 + k5(1 + c+ l3) + l4 + l3l4
�⌘

.

Within the same class line defect Schur indices are the same. The coe�cients

in q are again characters of certain SU(2) representations:

IA(q, z) = �q
1

2 (1 + �3q + �1�3�5q
2 + �1�3�2�5�7q

3 + · · · ),

IB(q, z) = q(�2 + �4q + �2�4�6q
2 + �2�2�4�2�6�8q

3 + · · · ),

IC(q, z) = �q
1

2 (�2 + �4q + �2�2�4�6q
2 + �2�2�4�3�6�8q

3 + · · · ),

ID(q, z) = q(1 + �3q
2 + �1�3q

3 + · · · ).

(3.154)
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The chiral algebra corresponding to the (A1, D5) Argyres-Douglas theory is

[sl(2)
�

8

5

[52, 54, 56, 59], which has five admissible representations with the fol-

lowing highest weights:

�0 =


�8

5
, 0

�
, �1 =


�6

5
,�2

5

�
, �2 =


�4

5
,�4

5

�
,

�3 =


�2

5
,�6

5

�
, �4 =


0,�8

5

�
,

(3.155)

where �0 is the highest weight for the vacuum module. The characters of

these representations can be worked out using the Kac-Wakimoto formula [73],

which is a special case of the Kazhdan-Lusztig formula [106] (see also [65] for

expressions in terms of generalized theta functions):

�0(q, z) =

P
1

m=0
(�1)mz

2m+1
�z

�(2m+1)

z�z�1 q
5m(m+1)

2

Q
1

n=1
(1� qn)(1� z2qn)(1� z�2qn)

,

�1(q, z) =
1 +

P
1

m=1
(�1)m(z�2mq

m(5m�3)

2 + z2mq
m(5m+3)

2 )

(1� z�2)
Q

1

n=1
(1� qn)(1� z2qn)(1� z�2qn)

,

�2(q, z) =
1 +

P
1

m=1
(�1)m(z�2mq

m(5m�1)

2 + z2mq
m(5m+1)

2 )

(1� z�2)
Q

1

n=1
(1� qn)(1� z2qn)(1� z�2qn)

,

�3(q, z) =
1 +

P
1

m=1
(�1)m(z2mq

m(5m�1)

2 + z�2mq
m(5m+1)

2 )

(1� z�2)
Q

1

n=1
(1� qn)(1� z2qn)(1� z�2qn)

,

�4(q, z) =
1 +

P
1

m=1
(�1)m(z2mq

m(5m�3)

2 + z�2mq
m(5m+3)

2 )

(1� z�2)
Q

1

n=1
(1� qn)(1� z2qn)(1� z�2qn)

.

(3.156)

The S matrix for these five admissible representations, in the order (3.155),

is [65]:

S =
1p
5

0

BBBB@

1 �1 1 �1 1
�1 �(�1)3/5 (�1)1/5 (�1)4/5 �(�1)2/5

1 (�1)1/5 (�1)2/5 (�1)3/5 (�1)4/5

�1 (�1)4/5 (�1)3/5 (�1)2/5 (�1)1/5

1 �(�1)2/5 (�1)4/5 (�1)1/5 �(�1)3/5

1

CCCCA
. (3.157)
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Working out the conjugation matrix C = S2 it’s clear that �1 and �4 are

conjugate to each other, �2 and �3 are conjugate to each other. Using the

Verlinde formula [64] the modular fusion rules for [sl(2)
�

8

5

are given by:

[�1]⇥ [�1] = [�2], [�1]⇥ [�2] = [�3], [�1]⇥ [�3] = [�4],

[�1]⇥ [�4] = �[�0], [�2]⇥ [�2] = [�4], [�2]⇥ [�3] = �[�0],

[�2]⇥ [�4] = �[�1], [�3]⇥ [�3] = �[�1], [�3]⇥ [�4] = �[�2],

[�4]⇥ [�4] = �[�3].

(3.158)

As we will see shortly, multiplications in the deformed Verlinde-like algebra are

again given by multiplying the �1 coe�cients in the original modular fusion

rules by a factor of z2.

The line defect Schur indices for defect generators of type A, B, C and

D admit the following character expansions:

IA(q, z) = q�1/2
�
�0(q, z)� �1(q, z) + z�2�4(q, z)

�
,

IB(q, z) = q�1z�1
�
�2(q, z)� �3(q, z)

�
,

IC(q, z) = q�1/2z�1
�
� �1(q, z) + �2(q, z)� �3(q, z) + �4(q, z)

�
,

ID(q, z) = �0(q, z)� q�1
�
�1(q, z)� �2(q, z) + z�2�3(q, z)� z�2�4(q, z)

�
.

(3.159)

Now we again take the q ! 1 limit while keeping z general, giving the map

I
f�! [�0],

Ai

f�! [A] = [�0]� [�1] + z�2[�4],

Bi

f�! [B] = z�1([�2]� [�3]),

Ci

f�! [C] = z�1(�[�1] + [�2]� [�3] + [�4]),

Di

f�! [D] = [�0]� [�1] + [�2]� z�2[�3] + z�2[�4].

(3.160)
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This map is believed to be a homomorphism f : L ! Vz, when we define the

deformed Verlinde-like algebra Vz by the following z-deformed modular fusion

rules:

[�1]⇥ [�1] = [�2], [�1]⇥ [�2] = [�3], [�1]⇥ [�3] = [�4],

[�1]⇥ [�4] = �z2[�0], [�2]⇥ [�2] = [�4], [�2]⇥ [�3] = �z2[�0],

[�2]⇥ [�4] = �z2[�1], [�3]⇥ [�3] = �z2[�1], [�3]⇥ [�4] = �z2[�2],

[�4]⇥ [�4] = �z2[�3].

(3.161)

To check the homomorphism property we consider Schur indices with insertion

of two half line defects, which can also be expanded in terms of characters of

admissible representations. After setting q ! 1 the expansion coe�cients do

not depend on the i-index anymore:

AiAj

f�! 3[�0]� 2[�1] + [�2]� z�2[�3] + 2z�2[�4],

AiBj

f�! z�1(�[�1] + 2[�2]� 2[�3] + [�4]),

AiCj

f�! (z + z�1)[�0]� 2z�1([�1]� [�4]) + 3z�1([�2]� [�3]),

AiDj

f�! 3[�0]� 3[�1] + (2 + z�2)[�2]� (1 + 2z�2)[�3] + 3z�2[�4],

BiBj

f�! 2[�0]� [�1] + z�2[�4],

BiCj

f�! 2[�0]� 2[�1] + [�2]� z�2[�3] + 2z�2[�4],

BiDj

f�! (z + z�1)[�0] + 2z�1(�[�1] + [�2]� [�3] + [�4]),

CiCj

f�! 4[�0]� 3[�1] + (2 + z�2)[�2]� (1 + 2z�2)[�3] + 3z�2[�4],

CiDj

f�! 2(z + z�1)[�0]� (z + 3z�1)[�1] + 4z�1([�2]� [�3]) + (3z�1 + z�3)[�4],

DiDj

f�! 5[�0]� (4 + z�2)[�1] + (3 + 2z�2)[�2]� (2 + 3z�2)[�3] + (1 + 4z�2)[�4].
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f is a homomorphism if and only if the z-deformed fusion rules are as defined

in (3.161).

The fusion matrices for non-vacuum modules are given as follows:

N�1
=

0

BBBB@

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

�z2 0 0 0 0

1

CCCCA
, N�2

=

0

BBBB@

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

�z2 0 0 0 0
0 �z2 0 0 0

1

CCCCA
,

N�3
=

0

BBBB@

0 0 0 1 0
0 0 0 0 1

�z2 0 0 0 0
0 �z2 0 0 0
0 0 �z2 0 0

1

CCCCA
, N�4

=

0

BBBB@

0 0 0 0 1
�z2 0 0 0 0
0 �z2 0 0 0
0 0 �z2 0 0
0 0 0 �z2 0

1

CCCCA
.

(3.162)

For generic z these four matrices are simultaneously diagonalizable with the

following eigenvalues:

eigenspace ��1
��2

��3
��4

1 �z2/5 z4/5 �z6/5 z8/5

2 (�1)1/5z2/5 (�1)2/5z4/5 (�1)3/5z6/5 (�1)4/5z8/5

3 �(�1)2/5z2/5 (�z)4/5 (�1)1/5z6/5 �(�1)3/5z8/5

4 (�1)3/5z2/5 �(�1)1/5z4/5 �(�1)4/5z6/5 (�1)2/5z8/5

5 �(�1)4/5z2/5 �(�1)3/5z4/5 �(�1)2/5z6/5 �(�1)1/5z8/5

The classical monodromy action in this chamber can be worked out as a com-

position of flips, as in Figure 3.21:

X�1
! 1 + X�5

+ X�3
X�5

+ C

X�2
X�3

X�4

,

X�2
! X�1

X�2
X�3

X�4�
1 + X�2

(1 + X�3
+ X�3

X�4
)
��
1 + X�5

+ X�3
X�5

+ (1 + X�1
)C
� ,

X�3
!
�
1 + (1 + X�1

)X�2
(1 + X�3

)
�
(1 + X�5

+ X�3
X�5

+ C)

X�1
X�2

X�3
(1 + X�3

)X�4
X�5

,
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X�4
! 1 + X�5

+ X�3
X�5

+ (1 + X�1
)C

X�3

,

X�5
! X�3

X�4
X�5

1 + X�5
+ X�3

X�5
+ (1 + X�1

)C
,

where

C = X�2
(1 + X�3

)
�
1 + X�5

(1 + X�3
+ X�3

X�4
)
�
.

For generic fixed z 6= 0, there are exactly five fixed points, matching the

number of admissible representations of [sl(2)
�

8

5

. Concretely, at the fixed locus

X�3
satisfies the following quintic equation:

z6X 5

�3
� 5z4X 3

�3
� 10z4X 2

�3
� 5z4X�3

� (z4 + z2 + 1) = 0, (3.163)

and X�1
,X�2

,X�0 are all determined by X�3
and z (by complicated algebraic

expressions which we will not present here.) As in previous examples, the

values of line defect vevs at the fixed points do not depend on the index i.

The Galois group of the quintic (3.163) is solvable according to sage,

so in principle one can give a solution in radicals; we have not carried this

out, however. Thus, here we cannot give a closed form for the values of the

X� at the fixed points. Moreover, we also have the same problem as in §3.6.1

above: we do not know a priori how to match the five fixed points and the

five primaries. Nevertheless we numerically sampled various values of z and

confirmed that, for each z, there does exist a matching between fixed points

and primaries, such that the corresponding h makes the diagram commute.
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Figure 3.21: Monodromy action as a sequence of flips in the (A1, D5) Argyres-
Douglas theory.
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3.7 Verlinde algebra from Fixed Points Analysis

Given the relations that we have discussed between the three algebras,

one might ask whether we could say something about the Verlinde algebra

through values of generating functions at the fixed points31. The answer is

that we can not determine Verlinde algebra from fixed points analysis alone,

but we do obtain useful information about Verlinde algebra32 and expansion

of line defect Schur index in terms of characters.

First we would like to stress that, in principal one could obtain the

(deformed) Verlinde algebra through computing Schur index with one half line

and two half lines inserted and studying their images under the homomorphism

f . In fact this is practically how we found the deformed Verlinde algebra in the

D3 and D5 cases. However, in practice (at least for us) character expansions of

line defect Schur index (especially Schur index with more than one line defect

inserted) are not very easy to obtain. It would be nice if there is some way to

simplify this procedure.

To begin with, suppose that we already know the image of [�↵] under

the isomorphism h, then the modular fusion rules among them are very easy

to obtain since the corresponding multiplication in O(F ) is given directly by

pointwise multiplication. Concretely, suppose that

[�↵]
h�! �↵ := (�1

↵
, . . . ,�n

↵
),

31We thank Shu-Heng Shao for mentioning this interesting perspective.
32More precisely we mean Verlinde-like algebra of the set of highest weight modules that

correspond to the U(1)r fixed points, from direct application of the Verlinde formula.
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then by expanding e.g.

�↵�� =
X

�

c�
↵�
��,

the modular fusion coe�cients are given by c�
↵�

33. Now how do we determine

�↵? Since we know the values of FL↵i at the U(1)r fixed points, if in addition

we also know the image of L↵i under f , then �↵ is given by taking the inverse

of the linear relations. So we still need to work out the character expansions

for single line defect Schur index. But this already saves the e↵ort of working

out the character expansions of two line defect Schur index.

Now suppose that the only data given are generating functions of line

defect generators and their values at the U(1)r fixed points, what “constraints”

could we possibly put on the (deformed) Verlinde algebra? We illustrate this

by looking at two simplest examples A2 and D3 Argyres-Douglas theories. Of

course the Verlinde algebra in these cases were already known for a long time

(see [65] and references therein), the hope is that this might shed light on

unknown Verlinde algebras of certain 2d chiral algebras.

In A2 case there are two fixed points, the values of FLi don’t depend

on i at the fixed points so we denote them as FL. Over the fixed points

F 2

L
= I + FL. (3.164)

This equation is understood in the context of values of line defects at fixed

points. This could be obtained either by direct computation or through the

33Here to get the fusion coe�cients we don’t need to “order” the fixed points. We don’t
need to know the exact correspondence between U(1)r fixed points and primaries.
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relation

LiLi+2 = 1 + q
1

2Li+1. (3.165)

As discussed in §3.1.9 in (A1, A2N) theories the vev of line defect generators

themselves realize fusion rules over U(1)r fixed points. In particular (3.164)

is the non-trivial fusion rule of the (2, 5) minimal model. However this is a

special phenomenon only in (A1, A2N) theories. We would like to rediscover

fusion rules in the basis of [�↵] instead for the purpose of generalization.

We make the following ansatz for the image of Li under f :

Li

f�! [L] := a[�0] + b[�1], (3.166)

where �0 is the vacuum. We also make an ansatz for the fusion rule:

[�1]⇥ [�1] = c[�0] + d[�1].

(3.164) would imply

[LL] = [L]⇥ [L] = (a+ 1)[�0] + b[�1], (3.167)

by comparing coe�cients we get the following equations for a, b, c, d:

a2 + b2c = a+ 1, 2ab+ b2d = b. (3.168)

Now, a and b have to be integers. This was the observation made in [51]. We

do not have an explanation but it is true in all the examples that we considered

in this paper so we use this as an assumption. The fusion coe�cients c and d
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have to be 0 or 134. Moreover given each candidate fusion rule one could check

whether the solution is consistent with eigenvalues of the Verlinde matrix.

These constraints pin down the only possible fusion rule to be the desired one

in (2, 5) minimal model namely c = 1 and d = 1. There are two solutions for

a and b:

(a, b) = (1,�1) or (a, b) = (0, 1). (3.169)

The wrong answer could be easily ruled out by computing the single line defect

Schur index. In more complicated cases the finite number of solutions of (a, b)

also o↵ers ansatz for the character expansion of single line defect Schur index.

In the D3 case we have more constraints due to the z-deformed Verlinde

algebra. We take an assumption that the z-deformed Verlinde algebra always

replaces the �1 coe�cient by �z2.35 In that case by taking z = i all the fusion

coe�cients are either 0 or 1. So this reduces to a similar case as in A2. When

z = i,

[AB] = 2[A], [AA] = [�0] + [B], [BB] = 2[�0] + [B]. (3.170)

Again this was obtained either by directly looking at values of F (L) at fixed

points or through relations between generating functions. Similarly by making

ansatz and comparing coe�cients one could obtain the consistent fusion rules.

34We will discuss how this works for modular fusion rules with apparent �1 coe�cients
momentarily.

35We conjecture this is true at least for (A1, D2N+1) Argyres-Douglas theories. For other
theories one could first work out simple examples to find out patterns of deformed modular
fusion rules.
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Note that in this case there is one more constraint coming into play, namely

the fusion matrices N�1
and N�2

have to be simultaneously diagonalizable.

The only fusion rules passing these constraints are

[�1]⇥ [�1] = [�2],

[�1]⇥ [�2] = [�0],

[�2]⇥ [�2] = [�1].

(3.171)

Note that here we can not physically distinguish [�1] and [�2], e.g. we can not

compute their conformal weights etc in our setup. They only appear in our

ansatz (for z = i) for [A] and [B]. This is the reason why we can’t actually pin

down the fusion rules. Now in the deformed fusion rules each +1 coe�cient

in (3.171) could be either +1 or �z2. We again make ansatz for [A] and [B],

only now the coe�cients are monomials in z with integer coe�cients. Again

this is an assumption that we make through observations of known examples.

For general z the following holds:

[AB] = (z + z�1)[�0] + 2[A],

[AA] = [�0] + [B],

[BB] = 2[�0] + (z + z�1)[A] + [B].

(3.172)

Imposing constraints and comparing coe�cients gives us two possibilities. One

of them, which is also the correct one, is

[�1]⇥ [�1] = [�2],

[�1]⇥ [�2] = �z2[�0],

[�2]⇥ [�2] = �z2[�1],
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with the following images of Ai and Bi under f :

[A] =
1

z
([�2]� [�1]),

[B] = [�0]� [�1] + z�2[�2].

The other solution is simply given by swapping [�1] with [�2]. Note that this

is reasonable since we can not physically distinguish [�1] and [�2]. So this

is the best we could do with the available ansatz. In reality given access to

characters of admissible representations it would be easy to rule out the wrong

answer.

130



Bibliography

[1] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin

systems, and the WKB approximation,” arXiv:0907.3987 [hep-th].

[2] D. Gaiotto, “N = 2 dualities,” JHEP 08 (2012) 034, arXiv:0904.2715

[hep-th].

[3] J. Distler, B. Ergun, and F. Yan, “Product SCFTs in Class-S,”

arXiv:1711.04727 [hep-th].

[4] A. Neitzke and F. Yan, “Line defect Schur indices, Verlinde algebras

and U(1)r fixed points,” JHEP 11 (2017) 035, arXiv:1708.05323

[hep-th].

[5] S. H. Katz, A. Klemm, and C. Vafa, “Geometric engineering of

quantum field theories,” Nucl. Phys. B497 (1997) 173–195,

arXiv:hep-th/9609239 [hep-th].

[6] S. Katz, P. Mayr, and C. Vafa, “Mirror symmetry and exact solution of

4-D N=2 gauge theories: 1.,” Adv. Theor. Math. Phys. 1 (1998)

53–114, arXiv:hep-th/9706110 [hep-th].

[7] L. Rastelli and S. S. Razamat, “The Superconformal Index of Theories

of Class S,” in New Dualities of Supersymmetric Gauge Theories,

131

http://arxiv.org/abs/0907.3987
http://dx.doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/1711.04727
http://dx.doi.org/10.1007/JHEP11(2017)035
http://arxiv.org/abs/1708.05323
http://arxiv.org/abs/1708.05323
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
http://arxiv.org/abs/hep-th/9609239
http://dx.doi.org/10.4310/ATMP.1997.v1.n1.a2
http://dx.doi.org/10.4310/ATMP.1997.v1.n1.a2
http://arxiv.org/abs/hep-th/9706110
http://dx.doi.org/10.1007/978-3-319-18769-3_9
http://dx.doi.org/10.1007/978-3-319-18769-3_9


J. Teschner, ed., pp. 261–305. 2016. arXiv:1412.7131 [hep-th].

https://inspirehep.net/record/1335343/files/arXiv:

1412.7131.pdf.

[8] Y. Tachikawa, “Six-dimensional DN theory and four-dimensional

SO-USp quivers,” JHEP 07 (2009) 067, arXiv:0905.4074 [hep-th].

[9] O. Chacaltana, J. Distler, and Y. Tachikawa, “Nilpotent orbits and

codimension-two defects of 6d N = (2, 0) theories,” Int. J. Mod. Phys.

A28 (2013) 1340006, arXiv:1203.2930 [hep-th].

[10] O. Chacaltana, J. Distler, and Y. Tachikawa, “Gaiotto duality for the

twisted A2N�1 series,” JHEP 1505 (2015) 075, arXiv:1212.3952

[hep-th].

[11] O. Chacaltana, J. Distler, and A. Trimm, “Tinkertoys for the twisted

D-series,” JHEP 1504 (2015) 173, arXiv:1309.2299 [hep-th].

[12] O. Chacaltana, J. Distler, and A. Trimm, “Tinkertoys for the twisted

E6 theory,” JHEP 04 (2015) 173, arXiv:1501.00357 [hep-th].

[13] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation

Functions from Four-dimensional Gauge Theories,” Lett. Math. Phys.

91 (2010) 167–197, arXiv:0906.3219 [hep-th].

[14] N. Wyllard, “A(N-1) conformal Toda field theory correlation functions

from conformal N = 2 SU(N) quiver gauge theories,” JHEP 11 (2009)

002, arXiv:0907.2189 [hep-th].

132

http://arxiv.org/abs/1412.7131
https://inspirehep.net/record/1335343/files/arXiv:1412.7131.pdf
https://inspirehep.net/record/1335343/files/arXiv:1412.7131.pdf
http://dx.doi.org/10.1088/1126-6708/2009/07/067
http://arxiv.org/abs/0905.4074
http://dx.doi.org/10.1142/S0217751X1340006X
http://dx.doi.org/10.1142/S0217751X1340006X
http://arxiv.org/abs/1203.2930
http://dx.doi.org/10.1007/JHEP05(2015)075
http://arxiv.org/abs/1212.3952
http://arxiv.org/abs/1212.3952
http://dx.doi.org/10.1007/JHEP04(2015)173
http://arxiv.org/abs/1309.2299
http://dx.doi.org/10.1007/JHEP04(2015)173
http://arxiv.org/abs/1501.00357
http://dx.doi.org/10.1007/s11005-010-0369-5
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
http://dx.doi.org/10.1088/1126-6708/2009/11/002
http://dx.doi.org/10.1088/1126-6708/2009/11/002
http://arxiv.org/abs/0907.2189


[15] L. Hollands, C. A. Keller, and J. Song, “From SO/Sp instantons to

W-algebra blocks,” JHEP 03 (2011) 053, arXiv:1012.4468 [hep-th].

[16] L. Hollands, C. A. Keller, and J. Song, “Towards a 4d/2d

correspondence for Sicilian quivers,” JHEP 10 (2011) 100,

arXiv:1107.0973 [hep-th].

[17] C. A. Keller, N. Mekareeya, J. Song, and Y. Tachikawa, “The

ABCDEFG of Instantons and W-algebras,” JHEP 03 (2012) 045,

arXiv:1111.5624 [hep-th].

[18] A. Gadde, E. Pomoni, L. Rastelli, and S. S. Razamat, “S-duality and

2d Topological QFT,” JHEP 03 (2010) 032, arXiv:0910.2225

[hep-th].

[19] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, “Gauge theories

and Macdonald polynomials,” Commun. Math. Phys. 319 (2013)

147–193, arXiv:1110.3740 [hep-th].

[20] M. Lemos, W. Peelaers, and L. Rastelli, “The superconformal index of

class S theories of type D,” JHEP 05 (2014) 120, arXiv:1212.1271

[hep-th].

[21] N. J. Hitchin, “The self-duality equations on a Riemann surface,” Proc.

London Math. Soc. (3) 55 no. 1, (1987) 59–126.

133

http://dx.doi.org/10.1007/JHEP03(2011)053
http://arxiv.org/abs/1012.4468
http://dx.doi.org/10.1007/JHEP10(2011)100
http://arxiv.org/abs/1107.0973
http://dx.doi.org/10.1007/JHEP03(2012)045
http://arxiv.org/abs/1111.5624
http://dx.doi.org/10.1007/JHEP03(2010)032
http://arxiv.org/abs/0910.2225
http://arxiv.org/abs/0910.2225
http://dx.doi.org/10.1007/s00220-012-1607-8
http://dx.doi.org/10.1007/s00220-012-1607-8
http://arxiv.org/abs/1110.3740
http://dx.doi.org/10.1007/JHEP05(2014)120
http://arxiv.org/abs/1212.1271
http://arxiv.org/abs/1212.1271


[22] D. Gaiotto, G. W. Moore, and A. Neitzke, “Four-dimensional

wall-crossing via three-dimensional field theory,” Commun. Math.

Phys. 299 (2010) 163–224, arXiv:0807.4723 [hep-th].

[23] D. Gaiotto, G. W. Moore, and A. Neitzke, “Framed BPS States,” Adv.

Theor. Math. Phys. 17 no. 2, (2013) 241–397, arXiv:1006.0146

[hep-th].

[24] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-Crossing in Coupled

2d-4d Systems,” JHEP 12 (2012) 082, arXiv:1103.2598 [hep-th].

[25] D. Gaiotto, G. W. Moore, and A. Neitzke, “Spectral networks,”

Annales Henri Poincare 14 (2013) 1643–1731, arXiv:1204.4824

[hep-th].

[26] O. Chacaltana and J. Distler, “Tinkertoys for the DN series,” JHEP 02

(2013) 110, arXiv:1106.5410 [hep-th].

[27] E. Witten, “Five-branes and M-theory on an orbifold,” Nucl. Phys.

B463 (1996) 383–397, arXiv:hep-th/9512219.

[28] E. Witten, “Some comments on string dynamics,” in Future

Perspectives in String Theory. Proceedings of Strings ’95, Los Angeles,

USA, March 13-18, 1995, pp. 501–523. 1995. arXiv:hep-th/9507121

[hep-th].

[29] O. Chacaltana, J. Distler, and A. Trimm, “Tinkertoys for the

Z3-twisted D4 theory,” arXiv:1601.02077 [hep-th].

134

http://dx.doi.org/10.1007/s00220-010-1071-2
http://dx.doi.org/10.1007/s00220-010-1071-2
http://arxiv.org/abs/0807.4723
http://dx.doi.org/10.4310/ATMP.2013.v17.n2.a1
http://dx.doi.org/10.4310/ATMP.2013.v17.n2.a1
http://arxiv.org/abs/1006.0146
http://arxiv.org/abs/1006.0146
http://dx.doi.org/10.1007/JHEP12(2012)082
http://arxiv.org/abs/1103.2598
http://dx.doi.org/10.1007/s00023-013-0239-7
http://arxiv.org/abs/1204.4824
http://arxiv.org/abs/1204.4824
http://dx.doi.org/10.1007/JHEP02(2013)110
http://dx.doi.org/10.1007/JHEP02(2013)110
http://arxiv.org/abs/1106.5410
http://dx.doi.org/10.1016/0550-3213(96)00032-6
http://dx.doi.org/10.1016/0550-3213(96)00032-6
http://arxiv.org/abs/hep-th/9512219
http://arxiv.org/abs/hep-th/9507121
http://arxiv.org/abs/hep-th/9507121
http://arxiv.org/abs/1601.02077


[30] Y. Tachikawa, “N = 2 S-duality via outer-automorphism twists,” J.

Phys. A44 (2011) 182001, arXiv:1009.0339 [hep-th].

[31] O. Chacaltana and J. Distler, “Tinkertoys for Gaiotto duality,” JHEP

1011 (2010) 099, arXiv:1008.5203 [hep-th].

[32] O. Chacaltana, J. Distler, and A. Trimm, “Tinkertoys for the E6

theory,” JHEP 09 (2015) 007, arXiv:1403.4604 [hep-th].

[33] O. Chacaltana, J. Distler, and A. Trimm, “Seiberg-Witten for Spin(n)

with spinors,” JHEP 08 (2015) 027, arXiv:1404.3736 [hep-th].

[34] O. Chacaltana, J. Distler, and A. Trimm, “A family of 4D N = 2

interacting SCFTs from the twisted A2N series,” arXiv:1412.8129

[hep-th].

[35] O. Chacaltana, J. Distler, A. Trimm, and Y. Zhu, “Tinkertoys for the

E7 theory,” arXiv:1704.07890 [hep-th].

[36] J. A. Minahan and D. Nemeschansky, “An N = 2 superconformal fixed

point with E6 global symmetry,” Nucl. Phys. B482 (1996) 142–152,

arXiv:hep-th/9608047 [hep-th].

[37] J. A. Minahan and D. Nemeschansky, “Superconformal fixed points

with EN global symmetry,” Nucl. Phys. B489 (1997) 24–46,

arXiv:hep-th/9610076.

135

http://dx.doi.org/10.1088/1751-8113/44/18/182001
http://dx.doi.org/10.1088/1751-8113/44/18/182001
http://arxiv.org/abs/1009.0339
http://dx.doi.org/10.1007/JHEP11(2010)099
http://dx.doi.org/10.1007/JHEP11(2010)099
http://arxiv.org/abs/1008.5203
http://dx.doi.org/10.1007/JHEP09(2015)007
http://arxiv.org/abs/1403.4604
http://dx.doi.org/10.1007/JHEP08(2015)027
http://arxiv.org/abs/1404.3736
http://arxiv.org/abs/1412.8129
http://arxiv.org/abs/1412.8129
http://arxiv.org/abs/1704.07890
http://dx.doi.org/10.1016/S0550-3213(96)00552-4
http://arxiv.org/abs/hep-th/9608047
http://dx.doi.org/10.1016/S0550-3213(97)00039-4
http://arxiv.org/abs/hep-th/9610076


[38] O. Chacaltana, J. Distler, A. Trimm, and Y. Zhu, “Tinkertoys for the

E8 Theory,” arXiv:1802.09626 [hep-th].

[39] J. Distler and B. Ergun, “Product SCFTs for the E7 Theory,”

arXiv:1803.02425 [hep-th].

[40] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, “An index for 4

dimensional superconformal theories,” Commun. Math. Phys. 275

(2007) 209–254, arXiv:hep-th/0510251 [hep-th].

[41] F. A. Dolan and H. Osborn, “On short and semi-short representations

for four-dimensional superconformal symmetry,” Annals Phys. 307

(2003) 41–89, arXiv:hep-th/0209056 [hep-th].

[42] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa, and B. Wecht,

“Exactly marginal deformations and global symmetries,” JHEP 06

(2010) 106, arXiv:1005.3546 [hep-th].
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[51] C. Córdova, D. Gaiotto, and S.-H. Shao, “Infrared Computations of

Defect Schur Indices,” JHEP 11 (2016) 106, arXiv:1606.08429

[hep-th].

137

http://dx.doi.org/10.1007/JHEP05(2016)088
http://arxiv.org/abs/1602.02764
http://arxiv.org/abs/1609.04404
http://dx.doi.org/10.1007/JHEP06(2010)100
http://arxiv.org/abs/1005.3026
http://dx.doi.org/10.1007/s00220-016-2798-1
http://dx.doi.org/10.1007/s00220-016-2798-1
http://arxiv.org/abs/1607.01743
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a3
http://arxiv.org/abs/1112.5179
http://dx.doi.org/10.1007/JHEP11(2016)106
http://arxiv.org/abs/1606.08429
http://arxiv.org/abs/1606.08429


[52] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, et al.,

“Infinite chiral symmetry in four dimensions,” Commun. Math. Phys.

336 no. 3, (2015) 1359–1433, arXiv:1312.5344 [hep-th].

[53] J. Song, “Macdonald Index and Chiral Algebra,” JHEP 08 (2017) 044,

arXiv:1612.08956 [hep-th].

[54] C. Beem, M. Lemos, P. Liendo, L. Rastelli, and B. C. van Rees, “The

N = 2 superconformal bootstrap,” JHEP 03 (2016) 183,

arXiv:1412.7541 [hep-th].

[55] M. Buican and T. Nishinaka, “On the superconformal index of

Argyres–Douglas theories,” J. Phys. A49 no. 1, (2016) 015401,

arXiv:1505.05884 [hep-th].
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