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The human mitochondrial DNA (mtDNA) genome must be faithfully maintained 

by the mitochondrial DNA replication machinery. Deficiencies in mtDNA maintenance 

result in the accumulation of mutations and deletions, which have been associated with a 

number of neuromuscular degenerative disorders including, mtDNA depletion syndrome, 

Alpers syndrome, progressive external opthalmoplegia (PEO), and sensory ataxic 

neuropathy, dysarthria, and opthalmoparesis (SANDO). The mtDNA replication 

machinery is comprised of a nuclearly-encoded DNA polymerase gamma (Pol γ), single-

stranded DNA binding protein (mtSSB), and a hexameric mtDNA helicase. In this work, 

we employed quantitative pre-steady state kinetic techniques to establish the mechanisms 

responsible for the replication of the human mitochondrial DNA by Pol γ and explored 

the effects of point mutations that are observed in heritable diseases. With our 

biochemical characterization of mutants of Pol γ, we have shown unique characteristics 

that would lead to profound physiological consequences over time. Additionally, we have 

made significant progress towards reconstitution of the mitochondrial DNA replisome by 

monitoring DNA polymerization that is dependent on helicase unwinding of double 

stranded DNA. Overall, this work provides a better understanding of the mechanism of 
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mtDNA replication and has important implications toward understanding the role of 

mitochondrial DNA replication in mitochondrial disease, ageing and cancer.  

In addition to the work on the mtDNA replisome, we have applied pre-steady 

state kinetic techniques to better understand the mechanism of RNA-dependent DNA 

polymerization by HIV reverse transcriptase (HIV-RT). This enzyme is responsible for 

the replication of the viral genome in HIV and is a common target for anti-HIV drugs. 

We have characterized the role of enzyme conformational changes in the kinetics of 

incorporation of correct nucleotide and the Nucleotide Reverse Transcriptase Inhibitor 

(NRTI) AZT by wild-type enzyme, as well as a mutant with clinical resistance to AZT. 

This work provides a better understanding of the complete mechanism of RNA-

dependent DNA polymerization, the changes in the mechanism in the presence of 

inhibitor and the development of resistance to this nucleoside analog; and thereby this 

work contributes to the long-term goal of designing more effective drugs that can 

possibly deter resistance and be used successfully for treatment of HIV. 
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  Chapter 1: Introduction 

1.1 PROJECT SUMMARY 

The work in this dissertation is aimed at evaluating the mechanisms of human 

mitochondrial DNA replication and HIV replication in order to gain a better 

understanding of nucleotide incorporation, specificity and discrimination against 

mismatches or nucleoside analogs used to treat HIV infections. To explore HIV 

replication, the kinetics of RNA-dependent DNA replication by HIV-1 reverse 

transcriptase (HIV-RT) were analyzed using pre-steady state kinetic methods to gain an 

insight into the discrimination of HIV-RT for correct nucleotides and for the nucleoside 

reverse transcriptase inhibitor (NRTI), AZT. Previous work on NRTIs found toxic side 

effects due to incorporation by the human mitochondrial DNA polymerase gamma (Pol γ) 

when these drugs were used in patients with HIV (1, 2). Our work continues to 

characterize the mitochondrial DNA replication by Pol γ and its partners in DNA 

replication. The goal of this project is to gain a detailed mechanistic understanding of 

these DNA polymerization reactions and the specificity of these enzymes and 

discrimination against nucleoside analogs. This work aids in the overall understanding of 

the mechanisms that these enzymes employ for DNA replication. The two-pronged 

approach of studying the viral HIV reverse transcriptase along with the human 

mitochondrial DNA polymerase allows for a more complex understanding of nucleotide 

analog effectiveness versus toxicity. Detailed mechanistic characterization of these two 

enzymes furthers our understanding of the diseases associated with mutations in 

mitochondrial Pol γ and potentially designing better targets for HIV-RT that will 

overcome the development of resistance and show lower toxicity. Chapter one provides a 

background of the enzymes studied in this research project as well as their relation to 
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human disease. In Chapter two, the study of six disease-associated mutations of 

mitochondrial DNA polymerase gamma is reported. Chapter three discusses the 

characterization of three active-site mutations of Pol γ and their effect on nucleotide 

specificity. Chapter four will expand the work on mitochondrial DNA replication by Pol 

γ to include the characterization of the mitochondrial DNA helicase. Chapter 5 will 

transition to the work done on HIV-RT by looking at the RNA-dependent DNA 

polymerase reaction by the wild-type enzyme as well as a set of resistance mutations 

(TAMS) seen clinically. The final chapter will discuss attempts to explore the 

conformational changes of HIV-RT by labeling the enzyme with a conformationally 

sensitive fluorophore based on predictions from molecular modeling.  

1.2 MITOCHONDRIAL DNA REPLICATION 

Mitochondria are complex organelles that are responsible for many diverse 

functions in the cell including production of ATP by oxidative phosphorylation, 

generation of reactive oxygen species that influence signaling pathways to control cell 

proliferation and differentiation, production of NADH, and regulation of Ca2+, to name a 

few (3). Dysfunction of the mitochondrial processes is associated with a large number of 

heritable disease including neurodegenerative disorders, cardiomyopathies, cancer and 

obesity (3-8). Mammalian mitochondria contain greater than 1,500 proteins that differ in 

a tissue specific manner; however, all but 13 of these proteins are encoded by the nuclear 

genome and transported into the mitochondria (9). 

 Human mitochondrial DNA (mtDNA) is roughly 16,600 base pairs and contains 

13 essential genes for proteins that are involved in the oxidative phosphorylation pathway 

leading to the production of cellular ATP, plus 22 tRNA and 2 rRNA genes required for 

mitochondrial protein synthesis (10). The circular mtDNA genome is organized into 
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nucleoids inside mitochondrial matrix with each mitochondrion DNA containing a high 

copy number and a mixed population of wild-type and mutant alleles (11). The proteins 

of the mitochondrial DNA replication machinery, all of which are encoded in the nucleus, 

translated in the cytosol and imported into the mitochondria, must faithfully maintain this 

genome. Deficiencies in mtDNA maintenance result in the accumulation of mutations 

and deletions, which have been associated with a number of neuromuscular degenerative 

disorders including, mtDNA depletion syndrome, Alpers syndrome, progressive external 

opthalmoplegia (PEO), and sensory ataxic neuropathy, dysarthria, and opthalmoparesis 

(SANDO) (5, 6, 12). The Human DNA Polymerase Gamma Mutation Database lists 

more than 200 mutations in Pol γ that have been seen in patients with mitochondrial 

disorders (13). Currently these mitochondrial diseases cannot be cured and treatment only 

involves measures to alleviate symptoms (14). It has also been suggested that 

mitochondrial dysfunction is associated with cancer, obesity, ageing and infertility (3, 7, 

8, 15); therefore, a greater understanding of the proper maintenance of this mtDNA is of 

great value. In order to optimize treatment options and remedies for genetic 

mitochondrial diseases it will be necessary to understand the mechanistic basis for the 

physiological effects of disease mutations in the replisome machinery. This is a difficult 

task, as correlating mutations to biological phenotypes in mitochondrial disorders is often 

complex due to the high copy number of mtDNA and mixed population of mutant and 

wild-type alleles (known as heteroplasmy).  

The mtDNA replication machinery that maintains the mtDNA is comprised of a 

nuclear-encoded DNA polymerase (polymerase gamma), single-stranded DNA binding 

protein (mtSSB), and a hexameric DNA helicase (aka Twinkle) (16-19). These proteins 

assemble at the replication fork and are responsible for the faithful replication of mtDNA 

in order to maintain its integrity (Figure 1.1). Defects in the enzymes of the mtDNA 
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replisome lead to an accumulation of mutations and deletions in the mitochondrial DNA 

and reduction of mtDNA content resulting in clinical symptoms of mitochondrial 

disorders that are often slow in onset and cumulative.  

 

Figure 1.1 Proteins at the mtDNA replication fork. This figure, reproduced from (19), 
shows the mtDNA helicase (Twinkle) (blue), Pol γA (red), Pol γB (gray), mtSSB (dark 
green) and the mitochondrial RNA polymerase (POLRMT) (light green) at the replication 
fork where leading and lagging strand synthesis occurs.  

Mutagenesis of mtDNA leads to mitochondrial diseases 

Defects in mitochondria have been implicated in a variety of malignancies 

including degenerative diseases, aging and cancer (3, 7, 8, 15). Inherited mitochondrial 

diseases are genetically and molecularly complex due to he high copy number of 

mtDNA, the dynamics of the mitochondrial network and the interplay between mutations 

in nuclear and mitochondrial genomes. Mitochondrial diseases lead to a wide variety of 

clinical symptoms but primarily involve tissues that have high energy requirements and 

are affected by a reduction in cellular respiration (nerves, heart, muscle, renal and 

endocrine systems) (20). Point mutations and deletions in mtDNA can arise from 

spontaneous errors in DNA replication by Pol γ, as well as chemical damage from 

reactive oxygen species produced during respiration. Due to the high copy number of 
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mtDNA, a certain level of mtDNA mutations can be tolerated but once a phenotypic 

threshold of mutations is exceeded, mitochondrial dysfunction occurs and leads to 

clinical symptoms of mitochondrial diseases. Many mitochondrial disorders are 

cumulative and delayed in onset so that many do not present until later in life. Mutations 

arising from errors by Pol γ are rare because the enzyme has a moderately high fidelity. 

The fidelity of polymerization by the Pol γ results in one error in 280,000 base pairs, (21) 

which is further increased another 4- to 18-fold by the 5’-3’ exonuclease activity of Pol γ, 

resulting in one error in 1 – 20 million base pairs on average (22). Pol γ also plays a role 

in the efficient base excision repair system in mitochondria, by filling the gap after the 

damaged base has been removed and cleaving the 5’-deoxyribose phosphate before 

ligation of the repaired DNA (23). Mitochondria lack a mechanism for nucleotide or 

ribonucleotide excision repair and there is little evidence for a mismatch repair pathway 

(24-28). Ultimately, unrepaired mutations that persist in mtDNA or depletion of mtDNA 

can lead to mitochondrial diseases, with a large number of these diseases linked to 

deficiencies in POLG encoding Pol γA.  

Mutations in Pol γ have the potential to lead to decreased polymerization rates and 

decreased discrimination against incorrect or oxidatively damaged nucleotides, leading to 

decreased fidelity of the enzyme. The current theory for POLG-related diseases suggests 

that defects in Pol γ result in oxidative stress that leads to further mtDNA damage and a 

cycle of cumulative defects that eventually lead to the clinically observable symptoms of 

the disease (7, 8). The POLG-related diseases relevant to this work are described below. 

Progressive External Opthalmoplegia (PEO). PEO is characterized by a 

progressive, adult-onset weakness of the extraocular eye muscles that results in ptosis and 

loss of eye movements (29). PEO can occur with autosomal dominant (ad) or recessive 

(ar) mutations in POLG and leads to the accumulation of multiple mtDNA deletions in 
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skeletal tissue. This disease has also been linked to mutations in the nuclear gene for the 

mtDNA helicase (C10ORF2) (30, 31). Other symptoms of this disease include exercise 

intolerance, cataracts, hearing loss, sensory ataxia, neuropathy, dysarthria, myopathy, 

Parkinsonism and premature ovarian failure (29, 32-35).  

Alpers Syndrome. This autosomal recessive disorder, also referred to as Alpers-

Huttenlocher syndrome, often occurs in infants and children who appear to be healthy 

before the onset of the disease. Symptoms of this syndrome include seizures, 

developmental regression and dysfunction of the liver (36). Progression of the disease 

ultimately leads to liver failure and early death. Patients with Alpers syndrome often 

show normal mitochondrial DNA content early in the disease process with mitochondrial 

DNA deletions and depletion accumulating during progression of the disease (37, 38). 

Pathogenic mutations in both Pol γ and the mtDNA helicase have been linked to Alpers 

syndrome.  

SANDO. Sensory Ataxic Neuropathy, Dysarthria and Opthalmoparesis (SANDO) 

is another POLG-associated mitochondrial disease related to dysfunction in the eyes, 

similar to PEO. This unique syndrome includes the coexistence of symptoms in ocular, 

sensory and speech systems. Additionally, biopsy of skeletal muscle from SANDO 

patients revealed ragged red fibers and mitochondrial DNA deletions (39). This is an 

autosomal recessive disorder and shows wide variation in phenotype within families 

presenting the disease. Additional symptoms can include myopathy, seizures and hearing 

loss (40). 

Overall, mutations in Pol γ are associated with progressive diseases that lead to 

mitochondria dysfunction with a wide range and severity of symptoms. This work aims to 

characterize DNA replication by wild-type and mutants of Pol γ to better understand a 

biochemical basis for these diseases.  
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Mode of mitochondrial DNA replication 

The exact mode of mitochondrial DNA replication is not fully understood and is 

still a topic of great debate in the field. Historically, the mechanism of mtDNA 

replication was considered to occur by a continuous, asymmetric, strand displacement 

mode (SDM), as outlined in Figure 1.2A (19). Leading-strand synthesis begins from an 

RNA-polymerase synthesized primer at the OH origin of replication site and proceeds 

unidirectionally, displacing the single stranded DNA to form the D-loop structure. The 

helicase and polymerase proceed and at some point the OL site is exposed so that the 

lagging-strand synthesis can be initiated by synthesis of a primer by the RNA-polymerase 

followed by the extension of the primer by Pol γ. In this model, mtSSB binds to the single 

stranded regions of DNA to protect it from degradation.  

A more recent hypothesis for the mode of mtDNA replication has come from the 

work by Holt and coworkers using two-dimensional agarose gel electrophoresis (2D-

AGE) methods to monitor replication intermediates (41, 42). The authors of this study 

found evidence for RNaseH-sensitive replication intermediates that led them to develop 

the model in Figure 1.2B (left path). In this model, referred to as RITOLS (ribonucleotide 

incorporation throughout the lagging strand), replication initiates from one single origin 

and proceeds in a strand coupled mode where the leading strand is synthesized while the 

lagging strand is simultaneously protected by the binding of RNA. Once the lagging-

strand origin is unwound, replacement of the lagging-strand RNA with DNA occurs.  

In a similar proposed mode for replication, Figure 1.2B (right path), the 

replication is thought to proceed in a strand-coupled mode. In this model, the replication 

initiates at an origin and proceeds bidirectionally in a mode that results in fully double 

stranded intermediates (41, 43, 44).  
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Figure 1.2 Proposed modes of mtDNA replication. Reproduced from (19) this figure 
shows the three proposed modes of mammalian mtDNA replication. A. Strand-
displacement mode. B (left path). RITOLS – ribonucleotide incorporation throughout the 
lagging strand. B (right path). Strand-coupled mode. 

At this point the exact mode of mtDNA replication is still being debated, with the 

three predominate candidates having experimental data to support their hypotheses. It is 

also possible that there is the existence of more than one replication mode utilized by 

mitochondria and the modes are tissue or environmentally specific.   

Mitochondrial DNA polymerase gamma 

DNA polymerase gamma (Pol γ) belongs to the family A of DNA polymerases 

and is heterotrimer, containing the 140 kDa catalytic subunit (Pol γA) and a dimer of the 

55 kDa processivity subunit (Pol γB). Pol γA is encoded by POLG at chromosomal locus 

15q25, and the Pol γB subunit is encoded by POLG2 at chromosomal locus 17q24.1. The 

catalytic subunit contains domains for the polymerase (pol) and exonuclease (exo) 
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activities that are separated by a linker. A recent crystal structure of Pol γ (45), Figure 

1.3, shows that the pol domain has the canonical structure resembling a “right-hand” that 

is characteristic to most polymerases with palm, fingers, and thumb subdomains that form 

the DNA binding groove and leads to the polymerase active site (46, 47).  

The crystal structure of the ternary complex (Pol γ, DNA and nucleotide) has not 

been solved; however the ternary structure of the homologous T7 DNA polymerase can 

be used to provide insight into the functions of the active site residues (47). The 

holoenzyme of Pol γ catalyzes DNA synthesis in the 5’ to 3’ direction and also contains a 

3’ to 5’ exonuclease domain, which provides a proofreading function (22, 48). In vitro 

measurements of polymerization on a primer/template DNA substrate by Pol γ have 

reported polymerization rates of 45 s-1 and a Kd for DNA of 10 nM (49). The Johnson 

laboratory has previously studied the DNA polymerization specificity, efficiency, 

fidelity, processivity and proofreading of wild-type Pol γ and several point mutations in 

Pol γ (21, 22, 48-57). The work presented here continues these studies to further 

understand the role of single point mutations in the clinical effects seen in heritable 

diseases. 
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Figure 1.3 The crystal structure of Pol γ  (PDB:3IKM, (45)) The polymerase domain of 
the Pol γA subunit shows the “right hand” configuration with the fingers subdomain 
(blue), palm subdomain (green), and thumb subdomain (yellow). The Pol γA subunit also 
contains the N-terminal mitochondrial localization signal (MLS) (red) and exonuclease 
domain (brown). The spacer domain of Pol γA is shown in orange with its accessory 
interacting subdomain (AID) contacting the proximal monomer of Pol γB (dark gray 
surface). The distal monomer of Pol γB is shown as the light gray surface.  
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Point mutations of Pol γ  and their relation to disease 

As described above, mutations in Pol γA have been associated with several 

mitochondrial disorders including PEO, Alpers syndrome and SANDO. Below is a list of 

point mutations on Pol γA that I have explored in this work and their relation to 

mitochondrial diseases. The locations of these residues near the polymerase active site 

are shown in Figure 1.4 on the structure of the homologous T7 DNA polymerase (47).  

E895A. This residue is involved in the hydrogen-bonding network under the 

incoming nucleotide and is highly conserved in Pol γ across species and in family A 

DNA polymerases (45). Mutations at this position are rarely seen in the population with 

one case of myopathic myelodysplastic syndrome (MDS) where this position was 

mutated to a glycine (58).  

 

Figure 1.4 Disease-associated residues near the polymerase active site. The structure of 
T7 DNA polymerase (PDB: 1T7P, (47)) is used to model the locations of residues 
associated with mitochondrial diseases (yellow) that are found near the active site. The 
T7 structure contains the incoming dNTP (magenta) with the coordinating metal ions A 
and B, the primer strand (green) and the template strand (cyan). Numbering shows the 
homologous residues on Pol γ.  
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H932Y. Histidine at position 932 binds to the beta phosphate of the incoming 

nucleotide (45). Mutation to a tyrosine has been shown to be associated with autosomal 

recessive Progressive External Opthalmoplegia (PEO) as well as Sensory Ataxic 

Neuropathy, Dysarthria, and Opthalmoparesis (SANDO) (59-61). 

R943H. Arginine 943 is expected to interact with the gamma phosphate of the 

incoming nucleotide and its mutation to a histidine has been associated with severe 

clinical phenotype in PEO and premature ovarian failure (34, 62, 63). 

K947A. This mutation is not associated with any diseases however, K947R has 

been associated with PEO and ovarian failure in one case (64). Lysine 947 binds to the 

alpha phosphate of the incoming dNTP, and the K947A mutation was examined to 

determine the role of this interaction (45). 

Y951F. This active site mutation has not been associated with any diseases. 

However the mutation Y951N has been seen in one case to be associated with peripheral 

neuropathy (61). Tyrosine 951 binds the ribose of the incoming nucleotide and is 

involved in the discrimination of dideoxy nucleotides (45). The Y951 at this position is 

responsible for the toxic side effects of dideoxy nucleotides in the mitochondria, which 

are incorporated more slowly by the Y951F mutant (65). 

R953C. Arginine 953 is involved in the nucleotide binding pocket and has been 

associated with autosomal dominant PEO (35, 61, 66). 

A957S. Alanine 957 appears to be part of the nucleotide binding pocket and the 

mutation to a serine has been associated with autosomal dominant PEO (62). In the 

clinical cases reported, of the six heterozygote individuals, five displayed a low 

penetrance of the disease with milder symptoms of PEO and a late-onset of the disease. 

One of the six heterozygote individuals displayed more aggressive PEO with a more 
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typical adult-onset of disease. Only one homozygote was reported and that patient was 

severely affected, showing a high amount of mtDNA deletions.  

R1096C. This mutation is associated with PEO, Alpers syndrome, 

encephalopathy, SANDO and seizures (61, 67-73). The R1096 residue is located away 

from the active site in what is known as the partitioning loop between the palm and 

fingers subdomains of Pol γ (45). Clinically this mutation is seen as both a homozygote 

and as a compound heterozygote with other mutations. The age of onset of disease in 

patients with this mutation varies widely from <1 year to 55 years of age.  In the four 

homozygote R1096C cases reported, all patients showed an onset of symptoms in age 2 

or younger (61, 70) while the compound heterozygotes had a later age of onset of disease 

(61, 67-73).  

Mitochondrial DNA SSB and helicase  

In addition to Pol γ, the mtDNA replisome contains mtSSB, which is a non-

catalytic protein that binds to single stranded DNA as a tetramer to prevent re-annealing 

and protect the ssDNA from damage by nucleases. More recently, it has been suggested 

that E. coli SSB may play a more complex role in replication, recombination and repair 

while interacting with at least 14 other proteins (74).  

Ahead of Pol γ and mtSSB at the replication fork is the mtDNA helicase, which 

unwinds the downstream double stranded DNA to single stranded DNA in the 5’ to 3’ 

direction (75). The mtDNA helicase, which was discovered in a screen for mutations 

linked to autosomal dominant PEO, has structural similarity to phage T7 gp4 

helicase/primase although no primase activity has been shown in human mtDNA helicase 

(31, 76). The mtDNA helicase monomer (72 kDa) binds to DNA in a hexameric form and 

unwinds dsDNA in a nucleotide-dependent manner.  
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Previous studies attempting to reconstitute the mtDNA replisome have failed to 

produce a quantitative analysis of helicase unwinding and polymerization at the 

replication fork. Rolling-circle replication assays (76, 77) that monitor polymerization by 

incorporation of radiolabeled dCTP into the growing primer strand show polymerization 

following helicase unwinding but only a small fraction, ~ 0.1%, of the primers are 

extended. In published studies, the incorporation of the labeled dNTP into the growing 

strand amplified the signal to allow detection of very little product even though the 

results suggest that there is only a small fraction of active complexes.  Also of 

questionable significance, dsDNA unwinding assays have shown helicase dependent 

strand displacement of 20 base pairs (bp) of duplex, while a similar assay extending the 

duplex to a length of 55 bp resulted in no strand displacement (77). It is questionable as 

to whether this assay provided a measure of true helicase unwinding activity, or simply 

strand displacement due to binding of the helicase to the branch strand and destabilizing 

the unstable 20bp duplex.  

In order to successfully understand the mechanistic basis for disease arising to 

mutations in the replisome machinery, it is necessary to quantitatively reconstitute the 

replisome and understand the coordination between the helicase and the polymerase. This 

is necessary to accurately examine disease mutations in these enzymes that may affect the 

interactions of the proteins at the replication fork and reliable replication of mtDNA. For 

example, there are specific point mutations on Pol γ associated with Alpers syndrome, 

that have been hypothesized to be involved in contacts between the polymerase and other 

components of the replisome (78). Specifically, these mutations are on the surface of Pol 

γ and far away from the DNA binding site and active site. It is suggested that these 

surface mutations could be interfering with protein-protein interactions between the 

polymerase and SSB or the polymerase and the helicase. Understanding the relationship 
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between such biochemical changes in mutant enzymes and the clinical phenotypes that 

they are associated with will require rigorous analysis based on a more complete 

understanding of the mechanism of DNA replication by the mtDNA replisome.  

Along with its association with heritable diseases, the mtDNA polymerase has 

been shown to be susceptible to inhibition by certain nucleoside reverse transcriptase 

inhibitors (NRTIs) that are used to target HIV (1, 2, 79). These NRTIs used in anti-HIV 

therapies are nucleoside analogs that cause chain termination and their incorporation by 

Pol γ leads to the cellular toxicity of these drugs. The work in The Johnson laboratory on 

HIV reverse transcriptase (HIV-RT) is complemented by work on Pol γ in order to 

advance our understanding of the molecular basis for the effectiveness for HIV-RT vs. 

the mitochondrial toxicity of an inhibitor. A greater understanding of these effects can be 

used in the rational design of antiviral agents that are more selective for HIV-RT.  

1.3 HIV REVERSE TRANSCRIPTASE 

HIV reverse transcriptase (HIV-RT) plays a key role in the HIV lifecycle by 

copying single stranded viral RNA into double stranded DNA before it can be integrated 

into the host genome. To accomplish this task HIV-RT has 3 enzymatic activities: RNA 

template-dependent DNA polymerization, DNA template-dependent DNA 

polymerization and RNase H activity. With this work, it is our goal to better understand 

the mechanism of RNA template-dependent DNA polymerization and its role in 

nucleotide selectivity for natural nucleotides versus nucleoside analogs (NRTIs). DNA 

polymerization on a DNA/RNA template has been shown to be faster and have a higher 

fidelity of replication than that of DNA/DNA templates (80) and studies presented here 

also show interesting differences in RNA-dependent DNA polymerization. These 

differences may contribute to mechanisms of nucleotide selectivity and resistance that 
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differ from those observed with DNA template-dependent DNA polymerization. It is 

therefore important to measure the effect of a DNA/RNA template on NRTI inhibition 

and resistance mechanisms.  This work applies innovative pre-steady state kinetic 

methods to studies on RNA-dependent DNA polymerization to provide a more detailed 

explanation of the kinetics of nucleotide binding and incorporation based on pre-steady 

state rapid quench kinetic studies and stopped-flow fluorescence methods.  

Replication of the HIV single-stranded RNA genome 

To accomplish the conversion of single stranded viral RNA into linear double 

stranded DNA, HIV-RT catalyzes RNA- and DNA-dependent DNA polymerization and 

RNase H activities. The resulting double stranded viral DNA is then integrated into the 

host genome by the enzyme HIV integrase and the viral replication cycle can continue.  

The process of reverse transcriptase activity was first discovered in 1970 by 

Baltimore and Temin and Mitzutani (81, 82) who observed RNA-dependent DNA 

polymerization activity in retroviral particles. This process in HIV was described by 

Charneau et al. in 1994 (83) and the currently accepted mechanism for HIV viral 

replication is outlined in Figure 1.5 from a review by Gotte et al. (84). Viral RNA 

genome replication begins with priming of the (+) strand RNA genome by a host 

tRNALys,3 at the primer binding site and RNA-dependent DNA polymerization from this 

primer by HIV-RT towards the 5’ end of the viral RNA. HIV-RT also performs RNase H 

activity during this reverse transcription to digest the viral RNA and result in a single 

stranded (-) DNA product. This single stranded DNA is then involved in the first strand 

transfer reaction where it shifts to the 3’ end of the viral RNA by hybridizing with the 

complementary R region. Following this strand transfer step, RNA-dependent DNA 

polymerization can continue and complete the synthesis of the (-) strand DNA. RNase H 
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digestion also continues, but certain segments of the viral (+) RNA are resistant to 

degradation and remain in duplex with the (-) strand DNA. These RNase H resistant 

regions are purine-rich and are termed polypurine tract regions (PPT). Synthesis of the 

(+) DNA strand uses these PPT regions as primers for DNA-dependent DNA 

polymerization by HIV-RT. This process proceeds to synthesize the (+) strand DNA from 

the templating (-) strand DNA until it passes the tRNALys,3 which is degraded by the 

RNaseH activity. Replication of and removal of the tRNALys,3 sequence provides a 3’-

overhang of the (+) strand DNA that is complementary to the primer binding site and the 

DNA duplex circularizes in the second strand transfer step. This circularization allows for 

the final synthesis to be completed and the circular intermediate is subsequently resolved 

by either strand displacement by RT or repair and ligation to produce the linear duplex. 

This double stranded DNA duplex can then migrate into the nucleus of the host cell and 

be integrated in to the genome.  

Clearly, HIV-RT plays a critical and essential role in the replication of the viral 

RNA genome therefore a detailed mechanistic understanding of its catalytic activities is 

necessary to aid our attempts to inhibit this enzyme in patients infected with HIV.  
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Figure 1.5 HIV Genome Replication.  This figure, reproduced from (84), outlines the 
replication of the viral single stranded RNA genome to double stranded DNA before 
integration into the host genome. Synthesis of the (-) strand DNA by RT is initiated from 
the host tRNALys,3 and RNA-dependent DNA polymerization proceeds while RNase H 
activity is degrading segments of the (+) strand RNA between the polypurine tracts. 
Following a strand transfer, the newly synthesized single stranded (-) strand DNA is 
shifted to the 3’-end of the (+) strand RNA to complete (-) strand synthesis. Synthesis of 
the (+) strand is initiated from the polypurine tracts which act as primers for DNA-
dependent DNA polymerization by RT through the tRNA primer. A second strand 
transfer event then leads to a circularization by annealing of the complementary primer 
binding site sequences and synthesis of the double stranded DNA is completed.  
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HIV reverse transcriptase structure 

HIV-RT is a heterodimer of a 66 kDa subunit (p66) and a 51 kDa subunit (p51). 

The p66 subunit contains the enzymatic active sites for DNA polymerization and RNase 

H activity, while the smaller p51 subunit plays a structural role. p66 is separated into two 

domains, the polymerase domain and the RNase H domain. Within the polymerase 

domain there are four subdomains that resemble parts of a right hand: fingers, palm, 

thumb and connection (Figure 1.6). The palm subdomain contains the polymerase active 

site with three catalytic carboxylates, two of which are part of the highly conserved 

YXDD motif found in retroviral reverse transcriptases (85).  

 

 

Figure 1.6 Structure of HIV Reverse Transcriptase. The structure of HIV-RT (PDB: 
1RTD (86)) contains the p66 catalytic subunit which shows the “right hand” 
configuration containing the fingers subdomain (blue), palm subdomain (green), and 
thumb subdomain (yellow). The connection subdomain (orange) links the thumb 
subdomain with the RNaseH domain (red) of p66. The non-catalytic p51 accessory 
subunit is shown in brown. The crystal structure contains the duplex DNA showing the 
primer strand in light gray and the template strand in black.  
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HIV Reverse Transcriptase Inhibitors and resistance mutations  

Due to its critical role in viral lifecycle, HIV-RT is a common target for anti-HIV 

therapies. The enzyme is targeted with nucleoside analog RT inhibitors (NRTIs) and non-

nucleoside RT inhibitors (NNRTIs) (87, 88). NRTIs are nucleoside analogs lacking the 

3’-OH and therefore act as substrates for the enzyme that cause chain termination (89). 

Alternatively, NNRTIs bind in a hydrophobic pocket near the polymerase active site and 

act as noncompetitive inhibitors that block chemistry (90, 91). Targeting HIV-RT with 

NRTIs inhibitors has been successful because RT is a low fidelity enzyme that will 

readily incorporate nucleotide analogues and lacks a proofreading exonuclease activity. 

However, because the enzyme is error prone and replicates so quickly, RT will evolve 

resistance to the inhibitors by increasing its discrimination against the nucleotide analogs. 

To try to combat the high rate of development of resistance in the clinic, it has been 

necessary to simultaneously attack the virus with multiple drugs, or a “drug cocktail”. In 

particular, highly active antiretroviral therapy (HAART), the current treatment method, 

combines at least three drugs to attempt to suppress viral replication and slow the rate of 

resistance (88). This method is effective at saving lives but it is important to note that it 

does not cure HIV infection and the therapy is a life-long treatment.   

There are two known methods of discrimination against inhibitors employed by 

HIV-RT. The first is an exclusion mechanism where the resistance mutation causes 

increased discrimination for the drug reducing the rate of incorporation of the inhibitor 

(86, 92, 93). The second method is an excision mechanism. In this case the discrimination 

for the inhibitor is not increased, but instead the mutation(s) increase the rate of excision 

of the NRTI after it has been incorporated (94-97). This is the case with the TAMs 

(thymidine analog mutations) mutations that arise in from NRTI therapy and confer 

resistance to the thymidine analog AZT (3’-azido-3’-deoxythymidine). The TAMs 
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mutations increase the binding of ATP, which can be used as a pyrophosphate donor to 

excise the AZT and unblock the primer terminus in a reaction analogous to 

pyrophosphorolysis (96, 98, 99). A recent crystal structure of HIV-RT cross-linked to an 

AZT-terminated primer strand supports this hypothesis by suggesting that these 

mutations create an ATP binding site with high affinity (100). In Chapter 5, the kinetics 

of RNA-dependent DNA polymerization by HIV-RT were examined in order to better 

understand the mechanistic basis for the effectiveness of inhibitors and the evolution of 

resistance. By better understanding the mechanism of HIV-RT polymerization and 

development of resistance to NRTIs, we can possibly develop drugs that are more 

effective in blocking replication of the virus. 
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Chapter 2: Characterization of Mitochondrial DNA Polymerase 
Gamma Disease Mutations 

2.1 INTRODUCTION 

Mutations in the nuclearly-encoded mitochondrial DNA polymerase (Pol γ) lead 

to a wide range of mitochondrial disorders, including progressive external 

opthalmoplegia (PEO), Alpers syndrome, Parkinsonism, male infertility, and sensory 

ataxic neur1opathy, dysarthria and opthalmoparesis (SANDO) (5, 6, 12, 101). Mutations 

lead to diseases of widely varying severity and age of onset with more severe symptoms 

occurring with the earliest ages. The reported clinical data for mutations in POLG have 

been compiled in The Human DNA Polymerase Gamma Mutation database (13) with a 

list of more than 200 mutations. Two recent reports from the Kaguni Lab have attempted 

to organize 136 of these pathogenic mutations into five functional clusters based upon 

structural analysis of Pol γA and previously published biochemical data on these mutants 

(Figure 2.1) (78, 102). However, both the clinical data and biochemical data are not 

sufficient to have full confidence in these general clusters of mutations, but it is an 

important theory to consider when studying these mutations. Five of the six mutations 

studied in this chapter are predicted by Kaguni’s analysis to belong in Cluster 1 and one 

mutation studied here was classified into Cluster 3. Cluster 1 mutations are located in the 

N-terminal domain (NTD), Exo and Pol domains and are predicted to be associated with 

a severe phenotype due to a reduction in polymerase activity. Mutations classified into 

Cluster 1 are also predicted to be dominant due to their ability to compete with wild-type 

Pol γ for dNTP binding but are not efficient at polymerization. Cluster 3 residues are 

                                                
1 Parts of this chapter were adapted from published paper under maiden name of J.L. McKenzie: 
Batabyal, D., McKenzie, J. L., and Johnson, K. A. (2010) Role of histidine 932 of the human mitochondrial 
DNA polymerase in nucleotide discrimination and inherited disease, J Biol Chem 285, 34191-34201. 
D.B. and J.L.M designed experiments, collected data and analyzed data. K.A.J. supervised the project. 
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located on the partitioning loop between the polymerase and exonuclease domains and 

are thought to contribute critical functions and therefore mutations are associated with a 

severe disease phenotype. This chapter will report the biochemical characterization of six 

disease mutations of Pol γ. In some cases, in vitro steady state assays have been reported 

but the results of these simple screens are often inconsistent (57, 103). Steady state 

kinetic analysis of polymerases often greatly underestimates the effect of a mutation 

because the slow rate of DNA release limits the steady state rate. This rate limiting DNA 

release can mask a significant effect on the rate of chemistry for a given mutation. It is 

therefore important to characterize these mutations in Pol γ under pre-steady state 

conditions. Below I will summarize several mutations selected for detailed study. 

 

Figure 2.1 Clustering of POLG disease mutations. This figure from Farnum et al (102) 
displays 136 pathogenic mutations on the gene for Pol γA and the location of the 5 
clusters that these mutations are assigned to on the protein structure. Mutations are 
colored according to the cluster they have been assigned to.  

 

H932Y/A. Histidine at position 932 binds to the beta phosphate of the incoming 

nucleotide (45) and its mutation to a tyrosine has been shown to be associated with 

autosomal recessive Progressive External Opthalmoplegia (PEO) as well as Sensory 

Ataxic Neuropathy, Dysarthria, and Opthalmoparesis (SANDO) (59-61). A preliminary 
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steady state analysis has been performed on the H932Y mutant of Pol γ suggesting a 200-

fold decrease in nucleotide binding affinity and only a mild decrease in catalysis 

compared to wild-type (104). However, these steady state assays did not fully evaluate 

the role of the histidine residue at position 932 in nucleotide selectivity. Additionally, 

work in this same study on the homologous yeast mitochondrial polymerase, Mip1, 

containing the homologous mutation (H734Y) showed an increase in petite frequency 

suggesting defects in mitochondrial DNA replication.  

 

Figure 2.2 Location of disease mutations on Pol γA. The crystal structure of Pol γA 
(PDB: 3IKM (45)) is labeled to illustrate the location of the disease mutations studied in 
this chapter. The mutations (magenta) are located on the fingers (blue) and palm (green) 
subdomains near the active site. The two catalytic aspartic acids D890 and D1135 are 
shown in cyan on the palm subdomain. The structure for the incoming nucleotide bound 
at the active site is modeled based on alignment of the active site with the homologous T7 
DNA polymerase (PDB: 1T7P (47)). 
 

R943H. Arginine 943 interacts with the gamma phosphate of the incoming 

nucleotide and its mutation to a histidine has been associated with severe clinical 

phenotype in autosomal dominant PEO and premature ovarian failure (34, 62, 63). In 
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three clinical cases of patients with PEO harboring this mutation, two homozygous 

patients were age 30 and one heterozygous patient was 63 when the severe PEO 

symptoms developed. Preliminary steady state measurements have been made on the 

R943H mutant of Pol γ in vitro indicating in a 475-fold decrease in kcat/Km coming largely 

from the 83-fold increase in Km (105).  

R953C. R953 is involved in the nucleotide binding pocket and the mutation to 

cysteine has been associated with PEO (35, 61, 66). There have been four clinical cases 

of this mutation being associated with PEO where the patients were homozygous for 

R953C and all presented symptoms around age 20. The two other cases of this mutation 

were seen as compound heterozygotes with symptoms presenting at age 22 and 51.  

A957S. This residue appears to be part of the nucleotide binding pocket and the 

mutation to a serine has been associated with autosomal dominant PEO (62) In the 

clinical cases reported, of the six heterozygote individuals, five displayed a low 

penetrance of the disease with milder symptoms of PEO and a late-onset of the disease. 

One of the six heterozygote individuals displayed more aggressive PEO with a more 

typical adult-onset of the disease. Only one homozygote was reported and that patient 

was severely affected, showing a high amount of mtDNA deletions. Biochemical assays 

measuring the steady state kinetics of this mutant in vitro described only a 4-fold 

decrease in kcat/Km (105). A more recent report (106), also suggests a mild effect of this 

mutation with a 1.7-fold decrease in kcat/Km compared to wild-type.  

R1096C. This mutation is associated with PEO, Alpers syndrome, cerebellar 

ataxia and sensory neuropathy (61, 67-73). The R1096 residue is located away from the 

active site in what is described as the partitioning loop between the palm and fingers 

subdomains of Pol γ (45).  Clinically this mutation is seen as both a homozygote and as a 

compound heterozygote with other mutations. The age of onset of disease in patients with 
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this mutation varies widely from <1 year to 55 years of age.  In the four homozygous 

R1096C cases reported, all patients showed an onset of symptoms at age 2 or younger 

(61, 70). The compound heterozygotes had a later age of onset of disease (61, 67-73).  

This chapter will characterize the six mutations of Pol γ listed above that have 

been associated with human mitochondrial disorders. The goal of this work is to analyze 

the biochemical effect of these point mutations in order to gain a better understanding of 

the observed clinical phenotypes in order to make progress towards establishing a 

molecular basis for mitochondrial diseases. 

 The work in this chapter on wild-type, H932Y and H932A Pol γ has been 

published in The Journal of Biological Chemistry in October 2010 (55). This work has 

been adapted for this dissertation. 

2.2 MATERIALS AND METHODS 

Site directed mutagenesis of Pol γA 

For this section of work, the clone of Pol γA in the pUC19.1 was constructed to 

delete the first 66 amino acids from the N-terminus. This Δ66 deletion, removes the 

mitochondrial localization sequence as well a polyglutamine tract of unknown function. 

The clone also contained the two mutations, D198A and E200A, in the exonuclease 

domain that render the enzyme exonuclease deficient (exo-) for use in nucleotide 

misincorporation assays (107). Site-directed mutagenesis was performed using the PCR 

mutagenic primers shown in Table 2.1 to make the H932Y, H932A, R943H, R953C, 

A957S, and R1096C mutants in the Δ66 Pol γA exo- background. All sequences were 

confirmed by sequencing the Pol γA gene in the pUC19.1 plasmid using the sequencing 

primers listed in Table 2.2.  
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Table 2.1. Mutagenic primers for Pol γA Disease Mutants  

H932A  	
  	
  	
  	
  
Forward:  5'-CGTGGCACCGACCTGGCTAGCAAAACCGCAAC-3' 
Reverse: 5'-GTTGCGGTTTTGCTAGCCAGGTCGGTGCCACG-3' 

H932Y  	
  	
  	
  	
  
Forward:  5'-CGTGGCACCGACCTGTATAGCAAAACCGCAA-3' 
Reverse: 5'-TTGCGGTTTTGCTATACAGGTCGGTGCCACG-3' 

R943H  	
  	
  	
  	
  
Forward:  5'-CGACTGTGGGCATTTCGCATGAACATGCAAAGATTTT-3' 
Reverse: 5'-AAAATCTTTGCATGTTCATGCGAAATGCCCACAGTCG-3' 

R953C  	
  	
  	
  	
  
Forward:  5'-CAAAGATTTTCAATTACGGTTGTATTTACGGCGCAGGTCAG-3' 
Reverse: 5'-CTGACCTGCGCCGTAAATACAACCGTAATTGAAAATCTTTG-3' 

A957S  	
  	
  	
  	
  
Forward:  5'-GGTCGTATTTACGGCTCAGGTCAGCCGTTCG-3' 
Reverse: 5'-CGAACGGCTGACCTGAGCCGTAAATACGACC-3'  

R1096C  	
  	
  	
  	
  
Forward:  5'-GAGTTCATGACCAGCTGTGTCAACTGGGTCG-3' 
Reverse: 5'-CGACCCAGTTGACACAGCTGGTCATGAACTC-3'  

	
  	
  	
  *mutated codons are underlined 
 	
  	
  	
  

Table 2.2. Sequencing primers for Pol γA  
	
  	
   	
  	
  

  	
  	
   	
  
Seq Primer 1 5'-GTAAGCGGATGCCGGGAGCAGACAA-3' 
Seq Primer 2 5'-GTTCCGGTGGCGATCCCAGAGGAA-3' 
Seq Primer 3 5'-AACCCACGAGGTGTTCCAGCAGCAA-3' 
Seq Primer 4 5'-CGCGATAACCTGGCGAAACTGCCAA-3' 
Seq Primer 5 5'-CCATTACGCGCCGTGCAGTTGAA-3' 
Seq Primer 6 5'-GTGGCACGGAGAGCGAGATGTTTAACAA-3' 
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Baculovirus expression of Pol γA  

The recombinant Pol γA clones were inserted into the pBacPAK9 transfer vector 

of the BacPAK Baculovirus Expression System (Clontech) by restriction digest of the 

pUC19.1 vector at the BglII and NotI (NEB) sites and subsequent ligation with the 

digested pBacPAK9. Recombinant virus was then generated by co-transfecting the 

pBacPAK9 containing the Pol γA gene and the Bsu36I-digested BacPAK6 viral DNA. 

The homologous recombination event was performed in Spodoptera frugiperda SF9 cells 

and resulted in a recombinant baculovirus that expresses Pol γA. SF9 cells were 

maintained in Sf-900 II SFM media (Gibco) supplemented with 10% v/v Fetal Bovine 

Serum (Gibco), 100 units/ml Penicillin (Sigma-Aldrich), and 100 µg/ml Streptomycin 

(Sigma-Aldrich). After performing the co-transfection, viral plaque assays were 

performed to obtain individual viral plaques, which were then amplified to high viral 

titers. Expression of Pol γA in SF9 cells was confirmed on 6-well tissue culture plates 

and analyzed by SDS-PAGE (Figure 2.3) before expression was scaled up.  

 

Figure 2.3 Baculovirus expression of Pol γA in SF9 cells.  

Coomassie blue stained SDS-PAGE of lysed SF9 cells 
expressing Pol γA (140 kDa) for 3 days post infection with 
amplified virus stock. Control lane (Ctrl) contains sample 
from uninfected SF9 cells and subsequent lanes were 
loaded with increasing volumes of sample (3-7µL) from 
cells infected with baculovirus.  

 

 

For large-scale expression, a monolayer of cells in a 150-cm2 flask was infected 

with the amplified virus stock at a multiplicity of infection greater than 10. After 72 hours 

of infection, cells were removed from the 150-cm2 flask and added to a suspension culture 
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containing log-phase cells at a concentration of 1x106 cells/ml. The infected suspension 

was then incubated at 27°C for 72 hours before harvesting by centrifugation at 1,500xg 

for 20 minutes at 4°C. The cell pellet was then flash frozen in liquid nitrogen and stored 

at -80°C until purification.   

Purification of Pol γA  

Cell pellets from baculovirus expression of Pol γA in SF9 cells were thawed and 

resuspended in Pol γA Lysis Buffer (0.32 M sucrose, 10 mM HEPES pH 7.5, 0.5% v/v 

NP-40, 3 mM CaCl2, 2 mM MgAc.4H2O, 0.1 mM EDTA, 5mM 2-mercaptoethanol and 

protease inhibitor cocktail V, EDTA-free (AG Scientific)) by stirring on ice for 1 hour. 

The suspension was then centrifuged using a JS4.3 rotor (Beckman) at 1,500xg for 25 

minutes. A 3M KCl solution was then added dropwise to the supernatant to obtain a final 

concentration of 0.5 M KCl. After stirring for 15 minutes on ice in the presence of 0.5 M 

KCl, the solution was ultracentrifuged at 31,000 rpm for 35 minutes. The supernatant was 

then incubated with Ni-NTA agarose resin (Qiagen) by stirring on ice at 4°C for 30 

minutes. The nickel resin was equilibrated in Pol γA Nickel Equilibration Buffer (20 mM 

HEPES pH 7.5, 5 mM imidazole pH 8, 0.2 M KCl, 5% glycerol). After binding to the Ni-

NTA, the resin was washed with Pol γA Nickel Wash Buffer (20 mM HEPES pH 7.5, 20 

mM imidazole pH 8, 0.1 M KCl, 5% glycerol). Pol γA was then eluted with Pol γA 

Nickel Elution Buffer (20 mM HEPES pH 7.5, 200 mM imidazole pH 8, 0.05 M KCl, 5% 

glycerol) while collecting fractions. Fractions were analyzed by SDS-PAGE (Figure 2.4) 

and those containing Pol γA were pooled and diluted to 30 mM KCl with Pol γA Nickel 

Dilution Buffer (20 mM HEPES pH 7.5, 1 mM EDTA pH 8, 5% glycerol).  
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Figure 2.4 Nickel-NTA column purification of Pol γA. SDS-PAGE analysis of the flow-
through (FT), washes (W1, W2, W3) and fractions from nickel-NTA column show Pol 
γA is present in fractions 2 and 3. 

The fractions from the nickel column were then pumped at 1 mL/minute onto an 

SP Sepharose column (GE Healthcare) equilibrated in Pol γA SP Buffer A (20 mM 

HEPES pH 7.5, 30 mM KCl, 1 mM EDTA pH 8, 5 mM 2-mercaptoethanol, 5% glycerol) 

using the AKTA Purifier (GE Healthcare). After loading, the column was then washed 

with Pol γA SP Buffer A for 5 column volumes. The protein was eluted from the SP 

column with a linear gradient from 0-70% Pol γA SP Buffer B (20 mM HEPES pH 7.5, 

700 mM KCl, 1 mM EDTA pH 8, 5 mM 2-mercaptoethanol, 5% glycerol) at 1 

mL/minute over 8.5 column volumes. 1 mL fractions were collected from SP column and 

the absorbance at 280 nm and 260 nm was recorded. The fractions were then analyzed by 

SDS-PAGE (Figure 2.5) and those containing Pol γA were pooled and concentrated using 

a vivaspin sample concentrator (GE Life Sciences). The protein concentration was then 

measured by A280 using the extinction coefficient ε280 = 243,7900 M-1cm-1, previously 

determined (108). Experiments were all performed on the reconstituted holo-enzyme (Pol 
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γ) by combining the catalytic subunit Pol γA and the accessory subunit Pol γB with a 4:1 

molar excess of Pol γB:Pol γA.  

 

 

Figure 2.5 SP sepharose column purification of Pol γA. (A) SP sepharose column 
chromatography of Pol γA from pooled Nickel-NTA fractions. Absorbance at 280 nm 
(blue) and 254 nm (red) were monitored to detect protein and DNA respectively. After 
loading onto the SP column, Pol γA was eluted from the column with a linear gradient 
from 0-70% Pol γA SP Buffer B and conductivity percentage was monitored (light blue). 
(B) SDS-PAGE analysis of the flow-through (FT), wash (W) and fractions 3-13 confirm 
the presence of Pol γA in fractions 4-10.  
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Cloning, expression and purification of Pol γB  

The accessory subunit, Pol γB, used in these studies has the first 25 amino acids 

truncated from the N-terminal end and is modified at the C-terminus to have a His tag 

added for purification. The gene sequence was cloned into pET43.1a vector and 

transformed in E. coli Rosetta (DE3) (Novagen). A 250 ml starter culture of LB medium 

containing 50µg/ml ampicillin and 34 µg/ml chloramphenicol was inoculated with a 

single colony transformant with the vector containing Pol γB. The starter culture was 

grown at 37°C with shaking at 150 rpm overnight. After overnight incubation, the starter 

culture was used to inoculate a large-scale 1L LB medium culture to OD600 of 0.1, which 

was incubated at 37°C with shaking at 100 rpm. Once the optical density at 600 nm 

reached 0.6, the protein expression was induced by the addition of 1mM isopropyl-β-D-

thiogalactopyranoside (IPTG) and expression continued at 25°C for 6 hours. Cells were 

then harvested by centrifugation at 3,500 rpm and 4°C using a Beckman JLA8.1 rotor 

and subsequently frozen at -80°C. Protein purification was performed as described 

previously (55, 109). The thawed cell pellet was resuspended in Pol γB Lysis Buffer (20 

mM Tris-HCl pH 8.0, 500 mM NaCl, 50 mM imidazole, 0.1% Triton X-100, protease 

inhibitors (Roche)) and incubated with lysozyme (0.3 mg/ml) for 15 minutes on ice while 

stirring. The suspension was then sonicated for 20 minutes on ice. The resulting cell 

lysate was centrifuged at 15,000 rpm for 20 minutes in a Beckman 45Ti rotor to remove 

the debris. A 10% Polyethyleneimine (PEI) solution was added dropwise to the 

supernatant to a final concentration of 0.1% followed by ultracentrifugation at 40,000 

rpm for 30 minutes in a Beckman 45Ti rotor. The supernatant was stirred for 30 minutes 

on ice with 5 mL Ni-NTA resin (Qiagen) equilibrated in Pol γB Binding Buffer (20 mM 

Tris-HCl pH 8, 500 mM NaCl, 50 mM imidazole pH 8). The protein was then eluted in 6 

mL fractions with Pol γB Nickel Elution Buffer (20 mM Tris-HCl pH 8, 500 mM NaCl, 
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250 mM imidazole pH 8). SDS-PAGE analysis of fractions was performed and fractions 

containing Pol γB were pooled, concentrated by centrifugation and injected onto a S200 

Superdex gel filtration column (Amersham Biosciences) equilibrated in Pol γB S200 

Buffer (20 mM Tris-HCl pH 8, 500 mM NaCl). Fractions from the gel filtration column 

were analyzed by SDS-PAGE and pooled before dialysis into storage buffer containing 

50 mM Tris-HCl pH 8, 100 mM NaCl, 1 mM dithiothreitol (DTT), 2.5 mM EDTA, 50% 

glycerol. Protein concentration was determined by A280 using the extinction coefficient, 

ε280 = 71,940 M-1cm-1(108). Aliquots of the protein were flash frozen in liquid nitrogen 

and stored at -80°C.  
 

Preparation of substrate DNA 

The DNA substrates used in these studies were purchased as DNA oligomers 

from Integrated DNA Technologies (IDT) and purified by 15% denaturing 

polyacrylamide gel electrophoresis. Sequences of all substrate DNA oligomers are listed 

in Table 2.3. The primer oligonucleotide used was 25 nucleotides (25-mer) and the 

template strand was 45 nucleotides (45-mer). These sequences were selected for 

consistency with previous studies from our lab (49, 56).  

For quench flow assays, the 5’ end of the primer oligomer was 32P-labeled using 

T4 polynucleotide kinase (New England Biolabs) and γ-32P-ATP according to the 

manufacturers protocol. After 32P labeling, the reaction was heated to 95°C for 5 minutes 

and the labeled DNA was purified using a Bio-Spin P-6 gel column (Bio-Rad) to remove 

the excess γ-32P-ATP. The concentration of the purified 32P-5’-labeled primer was 

determined by TLC.  

Duplex DNA substrates were formed by incubating the 25-mer primer with the 

45-mer template at a 1:1 molar ratio in an Annealing Buffer (10 mM Tris-HCl pH 7.5, 50 
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mM NaCl, 1 mM EDTA) and heating to 95°C for 5 minutes before allowing to slowly 

cool to room temperature.  

 

Table 2.3 DNA primer-template sequences for Pol γ  
	
  	
  

25/45mer      
25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA   
45-mer 3’-CGGAGCGTCGGCAGGTTGGTTGAGTTGGAGCTAGGTTACGGCAGG 

 

Correct nucleotide incorporation assays 

Chemical quench flow experiments measuring single nucleotide incorporation 

assays were performed at 37 ºC in a Pol γ Reaction Buffer containing 50 mM Tris-HCl 

(pH 7.5), 100 mM NaCl, 12.5 mM MgCl2 with a RQF-3 rapid-quench-flow apparatus 

(KinTek Corp). All experiments measuring incorporation of the correct nucleotide 

(dATP) used the 5’-32P-labeled 25/45mer primer-template duplex sequence listed in 

Table 2.3. The incorporation of dATP was measured by rapidly mixing a preformed 

enzyme-DNA complex (150 nM Pol γA, 600 nM Pol γB, 75 nM 5’-32P-labeled 25/45mer 

DNA) with an equal volume of Mg-dATP2- at various concentrations (0.2, 0.5, 1.5, 3, 5.5, 

and 8.5 µM dATP for wild-type). The final concentration of MgCl2 was 12.5 mM. The 

reactions were quenched by mixing with 0.5 M EDTA after various time intervals (0-1 

second for wild-type). All concentrations listed are final (after mixing to start the 

reaction).  

After quenching, the reactions were mixed with denaturing PAGE loading dye 

(0.25% bromophenol blue, 0.25% xylene cyanol) and separated on a 15% denaturing 

polyacrylamide sequencing gel. After drying the gel was exposed to a storage phosphor 
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screen and the bands were quantified using a Typhoon scanner (GE) and ImageQuant 5.0 

(Molecular Dynamics). The concentration of the product formed over time was calculated 

as the product of the concentration of substrate 32P-labeled DNA added times the fraction 

of material in the 26-mer band. Data collected were fit by global data fitting methods 

described below.  

Nucleotide misincorporation assays 

Misincorporation assays were performed in a similar assay as described above for 

correct dNTP incorporation; however, the formation of a mismatch often required longer 

time scales and higher concentrations of the incorrect dNTP. For time scales greater than 

5 seconds, manual hand mixing was done instead of using the rapid-quench-flow 

instrument. In all assays, a maximum of 5 mM dNTP (final concentration after mixing) 

was not exceeded in order to avoid complications due to nonspecific inhibition (110, 

111). For misincorporation experiments a preformed enzyme-DNA complex (150 nM Pol 

γA, 600 nM Pol γB, 75 nM 5’-32P-labeled 25/45mer DNA) with an equal volume of Mg-

dNTP2- at various concentrations (0.2, 0.5, 1.5, 3, 5.5, and 8.5 µM dATP for wild-type) in 

Pol γ Reaction Buffer. When noted, misincorporation was monitored in the presence of 

pyrophosphate (PPi) by including 0-50 µM NaPPi in the Mg-dNTP2- mix. After various 

time intervals from (0 – 1.5 hours, in some cases) the reactions were quenched with 0.5 

M EDTA and the products were analyzed on a 15% denaturing polyacrylamide 

sequencing gel. When multiple misincorporation events occurred the product was 

calculated as the sum of all the bands above 25-mer divided by the total of bands 

including 25-mer. Data collected were fit by global data fitting methods described below. 
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Active site titration with DNA 

Chemical quench assays measuring the Kd for DNA-binding were performed by 

preforming an enzyme-DNA complex with a fixed concentration of Pol γ and increasing 

concentrations of 5’-32P-labeled 25/45mer DNA (100 nM Pol γA, 400 nM Pol γB, 10-700 

nM 5’-32P-labeled 25/45mer DNA). These were allowed to pre-equilibrate on ice for 10 

minutes, then warmed to 37°C and reacted with an equal volume of 250 µM dATP in Pol 

γ Reaction Buffer + 12.5 mM MgCl2 at 37°C for 0.15 seconds. The reactions were 

quenched with 0.5 M EDTA and the products were analyzed on a 15% denaturing 

polyacrylamide sequencing gel. The amount of 26-mer product formed after 0.15 seconds 

was calculated as the product of the concentration of substrate 32P-labeled DNA added 

times the fraction of material in the 26-mer band. The 26-mer product was plotted as a 

function of 5’-32P-labeled 25/45mer DNA substrate concentration ([DNA]) and the data 

were fitted to a quadratic equation (Equation 2.1) to define the concentration of enzyme 

(E0) and the Kd for DNA using non-linear regression (GraFit5, Erithacus). 

 

Equation 2.1  

 

Global data fitting 

The Global data fitting throughout this work was performed using the KinTek 

Explorer simulation software (KinTek Corp). This program allows the data to be fit to a 

hypothesized model based on numerical integration of the rate equations with no 

simplifying assumptions (112). The process of global data fitting involves inputting the 

reaction model, the experimental concentrations of enzyme and substrates, scaling factors 

appropriate for each experimental observable, and estimates of rates for the reaction 

  
E ⋅DNA⎡⎣ ⎤⎦ =

(E0 + D0 + Kd)− (E0 + D0 + Kd)2 − 4E0D0

2
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steps. The KinTek Explorer program then allows for a refinement and a final 

convergence to the best-fit value for each parameter using nonlinear regression based on 

numerical integration of the rate equations. In this process, data are fit directly to the 

model so that both the rates and amplitude information are included in the fit. This 

eliminates any simplifying assumptions as are typically required to derive equations in 

conventional data fitting. Additionally, multiple experiments are simultaneously fit to the 

same set of rate constants for a given model. This ensures that the proposed model 

accounts for all of the data sets obtained. Error analysis by the program is comprehensive, 

in that it gives the standard error values for each parameter, as well as a confidence 

contour analysis. This pairwise error analysis method examines the dependence of chi2 on 

a pair of parameters to create a 3D confidence contour that shows the relationship 

between parameters and to outline the level to which parameters are constrained by the 

data (112, 113). This allows for a reliable estimate of errors of fitted parameters and 

determines how well constrained the parameters are by the data. The data in this chapter 

were fit to either Scheme 2.1 or Scheme 2.2 as indicated. In these fits, the previously 

determined rates of DNA binding and release were used in the model (Kd,DNA=10 nM, 

koff,DNA = 0.02 s-1 (114). Additionally, the equilibrium constant for the initial complex 

formation was estimated by assuming diffusion-limited nucleotide binding (k1=100 µM-

1s-1) and allowing the dissociation rate to vary during fitting. During global fitting of data 

within a concentration series, a small background correction (less than 10% of the signal) 

was applied to individual traces based upon optimal fitting the data to the model. The 

parameters in the data tables are presented as the best fit values, standard error values, as 

well as the upper and lower limits for each parameter as determined by the confidence 

contour analysis. These upper and lower limits are derived from a chi2 threshold limit of 

10%, or Chi2min/Chi2x,y = 1.1.  
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2.3 RESULTS 

Kinetics of correct incorporation  

The kinetics of incorporation of the correct nucleotide (dATP) were explored 

using rapid quench flow methods to measure the apparent nucleotide dissociation 

constant (Kd,app) and the maximum rate of incorporation (kpol) by the wild-type enzyme as 

well as the six mutants. For these single turnover assays an enzyme-DNA (25/45mer) 

complex was formed and subsequently mixed with various concentrations of the correct 

nucleotide, Mg-dATP2-, for various time intervals and quenched with 500 mM EDTA. 

The formation of 26-mer product over time at various nucleotide concentrations was then 

fit by simulation using the KinTek Global Explorer Program. The expanded model for 

DNA polymerization is described in Scheme 2.1.  

 

Scheme 2.1 

 

 

In this scheme the ground state binding of nucleotide to the enzyme-DNA 

complex (EDn) is in a rapid equilibrium (K1=k1/k-1) and is followed by the chemistry step 

k2. After chemistry, the pyrophosphate release and translocation steps occur to allow 

binding of the next nucleotide. In these experiments, the next template base is a mismatch 

with dATP, so binding is weak and reaction slow. Therefore our experimental design 

allows us to perform single turnover kinetic analysis.  

In most cases, this scheme can be reduced to a more simplified form of the 

polymerization model (Scheme 2.2). In Scheme 2.2, fast rates of pyrophosphate release 

EDn
koff
kon

⎯ →⎯⎯← ⎯⎯⎯ E +Dn;         EDn +dNTP
k1

k−1

⎯ →⎯⎯← ⎯⎯⎯ EDndNTP
k2

k−2

⎯ →⎯⎯← ⎯⎯⎯ EDn+1PPi
k3⎯ →⎯ EDn+1+PPi
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and translocation for wild-type Pol γ and most mutants allows k-2 to be neglected and 

therefore the apparent Kd (Kd,app) = k-1/k1, and kpol = k2 (110, 115).   

 

Scheme 2.2 

EDn

koff

kon
⎯ →⎯← ⎯⎯ E + Dn;         EDn + dNTP

Kd ,app⎯ →⎯⎯← ⎯⎯⎯ EDndNTP
kpol⎯ →⎯← ⎯⎯ EDn+1PPi

fast⎯ →⎯⎯ EDn+1 + PPi  

 

Additionally, the specificity constant governing each sequential nucleotide 

incorporation, kcat/Km, is equal to kpol/Kd,app. The data for correct incorporation by wild-

type and the Pol γ mutants could be fit to this simplified model in Scheme 2.2 and the 

global fitting results are summarized in Table 2.4 and displayed in Figure 2.6. 
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Table 2.4 Pol γ Kinetic Parameters of dATP Incorporation 

  Kd,app kpol kpol/Kd,app Fold Change 
 µM s-1 µM-1s-1  
     
WT          

 0.7 ± 0.14 30 ± 2 43 ± 9 - 
(0.62 - 0.84) (29 - 33) 

H932Y         

 103 ± 15 28.6 ± 2.9 0.3 ± 0.05 143 
(97 - 110) (27 - 30) 

H932A         

 39 ± 6.4 23 ± 2.8 0.6 ± 0.1 72 
(39 - 49) (23 - 27) 

R943H         

 149 ± 19 29.9 ± 3 0.2 ± 0.03 215 
(137 - 187) (27.9 – 36.3) 

R953C         

 0.63 ± 0.22 77.8 ± 11 123 ± 46 0.35 
(0.42- 0.99) (67 - 97) 

A957S         

 1.2 ± 0.26 29 ± 2.1 24 ± 5.5 1.8 
(0.96 - 1.55) (27 - 32) 

R1096C         

 0.13 ± 0.07 4.6 ± 0.9 35 ± 20 1.2 
(0.1 - 0.17) (4.2 - 5.1) 

This table summarizes the kinetic parameters derived in globally fitting data to Scheme 
2.2 to define the kinetics of incorporation of dATP by wild-type and mutant forms of Pol 
γ. Data for the wild-type, H932Y and H932A enzymes are from (116). Numbers in 
parenthesis give the lower and upper limits derived from the confidence contour analysis 
in fitting the data.  
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The parameters determined by global fitting of the dATP incorporation by wild-

type enzyme are in agreement with previously published data from our lab (49, 117) and 

give a kpol/ Kd,app of 43 ± 9 µM-1s-1 (Table 2.4 and Figure 2.6A). The H932Y mutant 

(Figure 2.6B) showed a maximum rate of incorporation of 28.6 s-1, which is similar to 

that of the wild-type enzyme at 30 s-1 (Figure 2.6A). However, the 143-fold change in the 

specificity constant comes from the drastically decreased Kd for nucleotide binding from 

0.7 µM for wild-type to 103 µM for H932Y. The case is similar for the alanine mutation 

at position 932, though not as severe with a 72-fold decrease in kpol/Kd,app. The R943H 

mutant showed a similar trend to H932Y with no effect seen in the rate of nucleotide 

incorporation (29.9 s-1) and a decrease in Kd,app, this time by over 200-fold. This resulted 

in a 215-fold decrease in kpol/Kd,app for the R943H mutant compared to wild-type Pol γ. 

Both the R953C and the A957S mutants were less drastic in their effects on kpol and Kd,app. 

The R953C mutant, shown in Figure 2.6C, surprisingly showed a 2-fold increase in kpol 

and a very slight decrease in Kd,app. This led to a specificity constant that was almost 3-

fold greater than that of the wild-type enzyme. The A957S mutant showed kinetics very 

close to wild-type with only a 1.8-fold change in kpol/ Kd,app. R1096C (Figure 2.6D) also 

showed a small change in specificity constant (1.2-fold) but this was due to a 6.5-fold 

decrease in kpol which was offset by the 5.4 fold decrease in Kd,app.   
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Figure 2.6. Correct incorporation of dATP by wild-type and mutants of Pol γA. For each 
concentration series, a preformed enzyme-DNA complex was rapidly mixed with MgCl2 
and various concentrations of dATP. In each experiment, the final concentrations of 
enzyme and DNA after mixing were 150-175 nM and 75-100 nM, respectively. Results 
of the global fitting to Scheme 2.2 are shown and in each case the concentration of active 
enzyme was adjusted to fit the amplitude of the curves. (A) Incorporation of dATP by 
wild-type (WT) Pol γ at various concentrations (0.2, 0.5, 1.5, 3, 5.5, and 8.5 µM) was 
globally fit yielding kpol of 30 ± 2 s-1 and Kd,app  of 0.7 ± 0.14 µM. (B) Incorporation of 
dATP by H932Y Pol γ at various concentrations (2.5, 7.5, 20, 40, 100, and 500 µM) was 
globally fit yielding kpol of 28.6 ± 2.9 s-1 and Kd,app  of 103 ± 15 µM. (C) Incorporation of 
dATP by R953C Pol γ at various concentrations (0.025, 0.1, 0.4, 2 and 20 µM) was 
globally fit yielding kpol of 77.8 ± 11 s-1 and Kd,app  of 0.63 ± 0.22 µM. (D) Incorporation 
of dATP by R1096C Pol γ at various concentrations (0.02, 0.05, 0.1, 0.25, 5 and 500 µM) 
was globally fit yielding kpol of 4.6 ± 0.9 s-1 and Kd,app  of 0.13 ± 0.07 µM. 
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Kinetics of DNA binding 

In certain cases where the kinetics of DNA binding were hypothesized to be 

affected by mutants, an active site titration with various concentrations of DNA was 

performed.  

The active site titration of A957S was fit to a quadratic equation (Equation 2.1) to 

yield a Kd for DNA of 12.8 nM. This is close to the value of 9.9 nM previously 

determined for wild-type that was used in the global fitting of all mutants (49).  

 

 

Figure 2.7 Active site titration of A957S mutant. All concentrations listed are final. 100 
nM enzyme was preincubated with increasing concentrations of 25/45mer (10, 25, 50, 
100, 150, 200, 300, 500 and 700 nM) and rapidly mixed with MgCl2 and 250 µM dATP. 
The reactions were quenched after 0.15 seconds with 500 mM EDTA. Quantification of 
the concentration of 26mer was calculated as described in the materials and methods 
section and plotted as a function of DNA concentration. Data were fit to the quadratic 
equation (Equation 2.1) yielding a Kd,DNA = 12.8 ± 5.9 and an active enzyme 
concentration of 57 ± 4.1 nM.  

Kinetics of misincorporation  

The kinetics of misincorporation of TTP, dCTP and dGTP opposite a templating 

TMP of the 25/45mer template were measured to explore the discrimination of the Pol γ 
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mutants against mismatches. These studies were carried out in a similar fashion to those 

for correct nucleotide incorporation where a preformed enzyme-DNA complex was 

preincubated with an excess of Pol γ over DNA to insure single turnover conditions. This 

complex was then rapidly mixed with various concentrations of incorrect nucleotide 

(TTP, dCTP or dGTP) and MgCl2. The time course of product formation was then plotted 

and fit globally to a model for DNA polymerization. With some mutants of Pol γ, 

multiple misincorporations were seen where multiple nucleotides were incorporated onto 

the primer strand and resulted in products of up to 35 nucleotides long. When this 

occurred, all of the extended primers, 26 nucleotides and greater, were summed and 

quantified as the total product that was then plotted versus time. The results for wild-type 

enzyme and most mutants could be fit using the minimal model described in Scheme 2.2 

for correct nucleotide incorporation.  

In these cases, the global fitting resulted in a best-fit value for 1/K1 as the 

nucleotide dissociation constant (Kd,app) and k2 as the maximum rate of nucleotide 

incorporation (kpol). As was described above, the ratio of these kpol/Kd,app, gives the 

specificity constant governing nucleotide incorporation, kcat/Km. In some cases, 

misincorporation by mutants required an expanded model (Scheme 2.1) to account for the 

trends seen in the data. Specifically, some of the data showed that the amplitude of 

product formation was concentration dependent. The minimal model in Scheme 2.2 does 

not allow for an amplitude dependence on concentration because the fast, largely 

irreversible step of pyrophosphate release after chemistry drives the reaction forward 

even at low nucleotide concentrations. An amplitude dependence on concentration 

suggests that the chemistry step is reversible and comes to an equilibrium that is linked to 

nucleotide binding. For this to occur, the pyrophosphate release step after chemistry must 

be slow or readily reversible. This phenomenon has been seen previously with Pol γ in 
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the incorporation of 8-oxo-dGTP and AZT-triphosphate (118, 119). When this trend in 

the data was seen, the expanded model (Scheme 2.1) was used to fit the data where the 

reversible rate of chemistry, k-2 is greater than zero and k3 the pyrophosphate release step 

is slow relative to k-2. 

The best-fit values of the wild-type misincorporation data and data for the 6 

mutants studied in this chapter are summarized in Table 2.5. Experiments that could be fit 

with the minimal model for nucleotide incorporation have the k-2 set to 0 (because it is 

not defined by the data) and the k3 step listed as fast (relative to k2). For those mutants 

requiring the expanded model including a reversible chemistry step and slow 

pyrophosphate release, the best-fit values for k-2 and k3 are listed. Table 2.6 shows the kcat, 

Km, kcat/Km and discrimination values for each enzyme. For those fitted with the minimal 

model of Scheme 2.2, the k2=kcat, 1/K1=Km and the kcat/Km is therefore equal to k2/(1/K1). 

For situations where the expanded 3-step model of Scheme 2.1 was required, Equations 

(Eqn) 2.2, 2.3 and 2.4 were used to obtain values for kcat, Km and kcat/Km. The 

discrimination was calculated as the kcat/Km for correct nucleotide divide by the kcat/Km for 

a mismatch nucleotide. 

 

Eqn 2.2    kcat =
k2k3

k2 + k−2 + k3

Eqn 2.3    Km = k2k3 + k−1(k−2 + k3)
k1(k2 + k−2 + k3)

Eqn 2.4    kcat /Km = k1k2k3

k2k3 + k−1k−2 + k−1k3

 

The misincorporation of TTP, dCTP and dGTP by wild-type enzyme were all fit 

to the minimal model in Scheme 2.2. These misincorporation assays have been 

previously described for wild-type Pol γ (21), however they were repeated in this study 

for accurate comparison with the six mutants. Figure 2.8 shows the polyacrylamide gel 

showing incorporation of a T:T mismatch by wild-type enzyme and the data for the full 
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concentration series are plotted in Figure 2.10A. The discrimination for TTP, dCTP and 

dGTP are 430,000, 717,000, and 8,600 respectively. Consistent with previously published 

misincorporation results (21), the discrimination by wild-type Pol γ for mismatches 

comes from both greatly reduced kcat values and increased Km values.  

 

  

Figure 2.8 Formation of a T:T mismatch by wild-type exo- Pol γ. All concentrations listed 
are final. 100 nM enzyme was preincubated with 75 nM 25/45mer DNA and 
subsequently mixed with MgCl2 and various concentrations of dTTP before quenching 
with 500 mM EDTA. Products from incorporation of 50 µM and 250 µM dTTP are 
shown on a 15% polyacrylamide sequencing gel. For each concentration of dTTP, time 
points were taken from 0 – 1200 seconds and the formation of a 26mer T:T mismatch 
was observed.  
 

The H932Y and H932A mutants both showed interesting results for a T:T and 

C:T mismatch. These data required fitting to the expanded the model in Scheme 2.1 that 

allowed for reversible chemistry and slow pyrophosphate release. Figure 2.10B shows an 

attempt to fit the data to the minimal model in Scheme 2.2 with the dashed lines. It is 

clear that this fit cannot account for the amplitude dependence that is seen in the data. 

The expanded model of Scheme 2.1 is able to fit the trends seen in the data (solid lines). 

H932Y/A also differed from wild-type in the formation of a T:T mismatch by forming 

multiple misincorporations over this time scale and at these dTTP concentrations. This is 

displayed in Figure 2.9 which shows the formation of products up to 31-nucleotides in 

length. The formation of a C:T mismatch by H932Y and H932A also suggested a slow 

pyrophosphate release step leading to a reversible chemistry step. In both cases, H932Y 

50 µM dTTP 250 µM dTTP

15% Polyacrylamide Gel

25mer
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and A, the release of pyrophosphate is 0.0003 to 0.0005 s-1. Theses lead to very low 

values for kcat/Km, but when the decreased kcat/Km for dATP is considered, the calculated 

value for discrimination does not vary greatly from wild-type. For H932Y, the 

discrimination for TTP is down to 150,000 from 430,000 for wild-type, the 

discrimination for dCTP is comparable (750,000 vs 717,000) and the discrimination for 

dGTP is slightly lower at 6,000 compared to 8,600 for wild-type. Overall, mutations 

H932Y/A did not have a significant effect on the enzyme fidelity of incorporation.  

 

Figure 2.9 Misincorporation of dTTP by Pol γ exo- H932Y mutant. All concentrations 
listed are final. 150 nM enzyme was preincubated with 75 nM 25/45mer DNA and 
subsequently mixed with MgCl2 and various concentrations of dTTP before quenching 
with 500 mM EDTA. Products from incorporation of dTTP were resolved on a 15% 
polyacrylamide sequencing gel. For each concentration of dTTP, time points were taken 
from 0 – 1200 seconds. At concentrations greater than 125 µM dTTP, formation of 
multiple incorporations past the T:T mismatch were observed with products up to a 
31mer observed. The right axis on the 5000 µM dTTP concentration displays the 
mismatch formed according to the templating base of the DNA substrate as it 
corresponds to each band.    
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The R943H mutant was similar to the mutation of the histidine at position 932 in 

that the misincorporation of TTP and dCTP required steps for slow pyrophosphate release 

and reversible chemistry. These effects led to a decrease in discrimination of TTP from 

430,000 for wild-type to 95,000 for R943H. Alternatively, the discrimination against 

dCTP was increased from 717,000 for wild-type to 2,000,000 for R943H.  

The misincorporation data for the remaining mutants studied here, R953C, 

A957S, and R1096C, were fit to the minimal model in Scheme 2.2. R953C showed an 

increase in the discrimination for all mismatches largely due to the increases in Km that 

were seen for the mismatched nucleotides with that mutant. The A957S showed 

discrimination values similar to those for wild-type enzyme. The R1096C mutant had a 

decrease in the discrimination against TTP and dCTP while obtaining comparable values 

against discrimination of dGTP.  
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Figure 2.10 Misincorporation by wild-type and mutant exo- Pol γ. For each concentration 
series, a preformed enzyme-DNA complex was rapidly mixed with MgCl2 and various 
concentrations of incorrect nucleotide. In each experiment, the final concentrations of 
enzyme and DNA after mixing were 150-175 nM and 75-100 nM, respectively. The time 
course of product formation was then fit globally and in each case the concentration of 
active enzyme was adjusted to fit the amplitude of the curves. (A) Incorporation of dTTP 
by wild-type (WT) Pol γ at various concentrations (1.5, 5, 15, 50, 250 µM) was globally 
fit to Scheme 2.2 yielding kpol of 0.01 ± 0.004 s-1 and Kd,app  of 81.8 ± 10.9 µM. (B) 
Incorporation of dTTP by H932Y Pol γ at various concentrations (15, 50, 125, 250, 1000 
and 5000 µM) was globally fit to Scheme 2.1 (solid lines) yielding Kd,app  of 1634 ± 482 
µM, k2 = 0.09 ± 0.03 s-1, k-2 = 0.009 ± 0.005 s-1 and k3 = 0.0003 ± 0.0008 s-1. Attempts to 
fit the model described in Scheme 2.2 are shown as the dashed lines that do not account 
for the concentration dependence of the rate and amplitude seen in the data. (C) 
Incorporation of dCTP by R943H Pol γ at various concentrations (350, 750, 1500, 3000 
and 5000 µM) was globally fit to Scheme 2.1 yielding Kd,app  of  >17000 µM, k2 = 0.08 ± 
0.004 s-1, k-2 = 0.001 ± 0.001 s-1 and k3 ≤ 0.0004 s-1.  (D) Incorporation of dGTP by R943H 
Pol γ at various concentrations (150, 500, 1200, 3000 and 5000 µM) was globally fit to 
Scheme 2.2 yielding kpol of 0.49 ± 0.06 s-1 and Kd,app  of  >13,000 µM. 
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Table 2.5 Pol γ Kinetic Parameters of Misincorporation 

  1/K1 k2 k-2 k3 
  µM s-1 s-1 s-1 
WT          

TTP 81.8 ± 10.9 0.01 ± 0.004 (0) fast 
(40 - 90) (0.006 - 0.01) 

dCTP 1030 ± 193 0.06 ± 0.018 (0) fast 
(810 - 1300) (0.05 - 0.08) 

dGTP 1300 ± 1600 6.6 ± 7.4 (0) fast 
(836 - 4100) (4.5 - 20) 

H932Y     

TTP 1634 ± 482 0.09 ± 0.03 0.009 ± 0.005 0.0003 ± 0.0008 
(1330 - 4800) (0.08 - 0.22) (0.007 - 0.02) ( 1.3x10-9 -  0.001) 

dCTP 22200 ± 3420 0.02 ± 0.005 0.0004 ± 0.003 0.0003 ± 0.002 
(17800 - 6.7x1011) (0.015 - 8.3x105) (0.0002 - 0.002) (2.8x10-8 - 0.001) 

dGTP 24000 ± 9600 1.2 ± 0.4 (0) fast  
(18300 - 1.5x105) (1 - 7) 

H932A         

TTP 9400 ± 2700 0.47 ± 0.15 0.013 ± 0.0056 0.0003 ± 0.0004 
(7000 - 1.7x105) (0.35 - 11.5) (0.01 - 0.02) (2x10-5 - 0.0008) 

dCTP 40900 ± 9470 0.038 ± 0.012 0.0009 ± 0.0006 0.0005 ± 0.001 
(26000 - 1.9x105*) (0.02 - 0.18) (0.0005 - 0.0017) (0.0002 - 0.0008) 

dGTP 5150 ± 1500 0.27 ± 0.06 (0) fast  
(4100 - 10000) (0.23 - 0.45) 

R943H         

TTP 1350 ± 82 0.02 ± 0.002 0.006 ± 0.002 0.001 ± 0.003 
(1350 - 2110) (0.02 - 0.04) (0.005 - 0.013) (0.0009 - 0.002) 

dCTP >17000 0.08 ± 0.004 0.001 ± 0.001 ≤  0.0004 
 (0.02 - 1) (0.0009 - 0.006) (5x10-5 - 0.0004) 

dGTP >13000 0.49 ± 0.06 (0) fast 
  (0.3 - 2.33*) 
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Table 2.5 Continued Pol γ Kinetic Parameters of Misincorporation 
  1/K1 k2 k-2 k3 

  µM s-1 s-1 s-1 
R953C 

    
TTP 2860 ± 980 0.16 ± 0.05 (0) fast 

(2260 - 5830) (0.13 - 0.31)   
dCTP >24000 0.96 ± 0.07 (0) fast 

 (0.49 - 8.97*)   
dGTP >1850 3.46 ± 0.97 (0) fast 

 (2.77 – 6.97)   
A957S         

TTP 1390 ± 317 0.096 ± 0.03 (0) fast 
(812 - 1650) (0.06 - 0.1)   

dCTP 3270 ± 1000 0.08 ± 0.03 (0) fast 
(2980 - 4370) (0.08 - 0.11)   

dGTP 1560 ± 560 2.9 ± 0.98 (0) fast 
(995 - 2430) (2 – 4.5)   

R1096C         

TTP 967 ± 408 0.29 ± 0.11 (0) fast 
(667-1770) (0.22-0.5)   

dCTP 444 ± 195 0.097 ± 0.046 (0) fast 
(355-498) (0.08-0.1)   

dGTP 327 ± 150 1.18 ± 0.4 (0) fast 
(283-402) (1-1.35)   

This table summarizes the kinetic parameters derived in globally fitting data to define the 
kinetics of misincorporation against a template dT by wild-type and mutant forms of Pol 
γ. Numbers in parenthesis give the lower and upper limits derived from the confidence 
contour analysis in fitting the data. * denotes that no boundary was found during the 
confidence contour search; the number given defines the most extreme value examined.  
Data for the wild-type, H932Y and H932A enzyme were obtained from (116). 
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Table 2.6 Pol γ Kinetic Parameters of Misincorporation 

  kcat Km kcat/Km Discrimination 

 s-1 µM µM-1s-1  
WT (del66)         

TTP 0.01 ± 0.004 81.8 ± 10.9 0.0001 ± 0.00005 430,000 
dCTP 0.06 ± 0.018 1030 ± 193 0.00006 ± 0.00002 717,000 
dGTP 6.6 ± 7.4 1300 ± 1600 0.005 ± 0.008 8,600 

H932Y     
TTP 0.0003 ± 0.0007 153 ± 105 0.000002 ± 0.000005 150,000 
dCTP 0.0003 ± 0.002 750 ± 3875 0.0000004 ± 0.000003 750,000 
dGTP 1.2 ± 0.4 24000 ± 9600 0.00005 ± 0.00003 6,000 

H932A         
TTP 0.0003 ± 0.0004 260 ± 150 0.000001 ± 0.000002 600,000 
dCTP 0.0005 ± 0.001 1450 ± 1330 0.0000003 ± 0.0000007 2,000,000 
dGTP 0.27 ± 0.06 5150 ± 1500 0.00005 ± 0.00002 12,000 

R943H     
TTP 0.0007 ± 0.002 350 ± 189 2.1x10-6 ± 6.4x10-6 95,000 
dCTP 8.9x10-5 ± 0.6x10-5 1750 ± 1605 5x10-8 ± 4.6x10-8 4,000,000 
dGTP 0.49 ± 0.06 ≥13000 2.3x10-5 ± 0.28x10-5 8,700 

R953C         
TTP 0.16 ± 0.05 2860 ± 980 5.6x10-5 ± 2.5x10-5 2,500,000 
dCTP 0.96 ± 0.07 >24000 2x10-5 ± 0.1x10-5 6,150,000 
dGTP 3.46 ± 0.97 >1850 0.001 ± 0.0004 120,000 

A957S     
TTP 0.096 ± 0.03 1390 ± 317 7x10-5 ± 2.6x10-5 340,000 
dCTP 0.08 ± 0.03 3270 ± 1000 2.4x10-5 ± 1.2x10-5 1,000,000 
dGTP 0.097 ± 0.046 444 ± 195 0.0018 ± 0.0008 13,000 

R1096C         
TTP 0.29 ± 0.11 967 ± 408 0.0003 ± 0.00017 117,000 
dCTP 0.097 ± 0.046 444 ± 195 0.0002 ± 0.0001 175,000 
dGTP 1.86 ± 0.83 265 ± 150 0.007 ± 0.005 9,700 

The table summarizes the kcat and Km values governing misincorporation by mutant forms 
of Pol γ, calculated from the data in Table 2.5. Data for the wild-type, H932Y and H932A 
enzymes are from (116). Discrimination was calculated as the ratio of kcat/Km values for 
correct versus mismatched dNTP.  
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2.4 DISCUSSION 

For each of these mutants we have characterized of the effect of the mutation by 

conducting single turnover rapid quench flow experiments and fitting our data to a model 

for the pathway of DNA polymerization, shown in Scheme 2.1.   

Scheme 2.1. 

   
Pathway of DNA polymerization. Pol γ data fit is to the model shown above. The initial 
binding of nucleotide is in a rapid equilibrium therefore we assume k1 = 100 µM-1s-1 and 
from the fitted value of k-1 we can compute Kd = k-1/k1. In most cases, k3 >>  
k-2, so kcat is determined solely by k2 and Km = k-1/k1. In some cases, k3 appears to be rate 
limiting and we can obtain estimates of k-1, k2, k-2 and k3. In all cases, our comprehensive 
modeling includes DNA binding and release with kon = 2 µM-1s-1 and koff = 0.02 s-1 based 
on previous measurements (114).  
 

In the simplest form of this model, the ground state binding of nucleotide to the 

enzyme-DNA complex is in a rapid equilibrium and the polymerization rate is governed 

by the singled rate limiting step k2, followed by steps after chemistry presumed to be fast 

(pyrophosphate release and translocation) (110, 115). The fast rates of translocation and 

pyrophosphate release for wild-type Pol γ and most mutants allows k-2 to be neglected 

(Scheme 2.2) and therefore the apparent Kd (Kd,app) = k-1/k1, and kpol = k2, and, the 

specificity constant governing nucleotide incorporation, kcat/Km, is defined by kpol/Kd,app.  

Scheme 2.2 

 

Upon analysis of the quench flow data monitoring nucleotide incorporation, it 

became evident that the simple model (Scheme 2.2) could not account for the trends seen 

in the data. In particular, several cases of nucleotide misincorporation showed an 

amplitude dependence on nucleotide concentration. We have interpreted this as a 

reversible chemistry step that is thermodynamically linked to nucleotide binding and 
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therefore requires a slow step following chemistry. Previous studies on Pol γ have seen 

this with 8-oxo-dG and AZT incorporation as a mechanism to reduce incorporation of 

these compounds (118, 119). In the cases where the amplitude dependence of the 

nucleotide incorporation concentration series was seen, we utilized the expanded fitting 

model to allow chemistry to be reversible (k-2>0) and k3 to be a variable parameter. These 

fits resulted in a slow step for k3 relative to the rate of chemistry. In this chapter, the 

kinetics of incorporation of a mismatched nucleotide were also examined to investigate 

the fidelity of these various mutants.  

Relating biochemical characterization to clinical phenotype 

H932Y/A mutants  

Histidine at position 932 is positioned near the active site to form a hydrogen 

bond with the β-phosphate of the incoming dNTP during polymerization by Pol γ. The 

presumed role for this residue is based on alignment of the amino acids near the active 

site with the homologous T7 DNA polymerase where the crystal structure of the ternary 

complex is available (45, 47). H932 is conserved throughout DNA polymerases (104) and 

mutation of this position to a tyrosine is seen in patients with mitochondrial disorders 

(59-61). In particular, the Human DNA Polymerase Gamma Mutation Database (13) lists 

four reported cases of the H932Y missense mutation in clinical studies (59-61). These 

patients all exhibited a late onset of Pol γ deficiencies (PEO, myopathy of upper limbs, 

mtDNA depletion, peripheral neuropathy) that presented in individuals 20-40 years old. 

The characterization of this H932Y mutant and the alanine mutant give some insight into 

the mechanistic basis for clinical features that are seen in patients harboring this 

mutation.  
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 Disruption of the hydrogen bonding interaction between H932 and the β-

phosphate of the incoming nucleotide by the mutation to a tyrosine residue resulted in a 

decrease in specificity constant for Pol γ by 140-fold. This drastic decrease in kcat/Km 

comes predominantly from a change in the Kd,app for the enzyme which was increased to 

103 µM from the 0.7 µM Kd,app for wild-type enzyme. The H932Y mutation did not 

significantly affect the kpol value. These results show the importance of this residue in 

nucleotide incorporation particularly by enhancing the binding of the nucleotide to the 

active site. In a case where this hydrogen bonding is lacking, nucleotide binding is 

decreased but the overall rate of polymerization is not affected and is possibly 

accommodated by the binding of the nearby Y951 that is also hypothesized to form a 

hydrogen bond to the β-phosphate. The mutation of the H932 residue may not interfere 

with the stabilization of the transition state of the reaction that is required for catalysis, 

which is accomplished predominantly by the Mg2+ ions and K947 binding to the α-

phosphate. Our comparison of the H932Y mutant with the H932A mutant showed that 

the tyrosine had a more drastic effect than the alanine, suggesting that the presence of the 

tyrosine at this position may lead to steric effects that are more unfavorable than caused 

by alanine.  

 Analysis of the enzyme fidelity of the H932Y and H932A mutants did not reveal 

a significant difference in the discrimination of the enzyme against mismatches in single 

turnover studies. However, other differences were seen in misincorporation kinetics that 

differed significantly from that of wild-type. H932Y and H932A mutants both readily 

catalyzed the incorporation of multiple mismatches, which would have significant 

physiological effects over time and could lead to progressive and cumulative mutations in 

the mitochondrial DNA. It is important to note that these experiments were performed in 

an exonuclease deficient enzyme and therefore the contribution of the exonuclease to the 
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fidelity of the enzyme was not analyzed. However, stalling of a polymerase after 

misincorporation is a key kinetic determinant of exonuclease specificity. Thus, 

incorporation after a mismatch would decrease overall fidelity. 

 The mutants of H932 and the R943H mutation were the only cases that required 

the model to be expanded to include a slow pyrophosphate release step following 

chemistry during nucleotide misincorporation. Generally the steps of pyrophosphate 

release and translocation after chemistry are presumed to be fast and perhaps limited by a 

conformational change of the enzyme from the closed to open state (110, 115). Because 

the histidine at position 932 is predicted to be involved in hydrogen bonding with the β-

phosphate of the incoming nucleotide and to stabilize the negative charge of the 

pyrophosphate, it is somewhat surprising that mutation of this residue appears to slow 

pyrophosphate release rather than accelerate it. The same is true for the R943 residue that 

hydrogen bonds with the γ-phosphate. It is possible that these residues are involved in the 

conformational change step that is presumed to limit pyrophosphate release after 

chemistry. Without the stabilizing interaction of these positively charged residues with 

the pyrophosphate leaving group, perhaps the conformational change is slowed. In these 

studies, the slow pyrophosphate release was only seen in the T:T and C:T mismatches for 

these mutants and not in the G:T mismatch or for correct incorporation of A:T. It appears 

that this result only occurs in the pyrimidine:pyrimidine base pairs and not in the 

purine:pyrimidine cases, including the formation of the G:T wobble. This suggests that 

the structure of DNA containing the pyrimidine:pyrimidine base pair and the mutations at 

position 932 or 943 lead to a slower pyrophosphate release possibly by slowing the rate 

of the conformational change from closed to the open form of the enzyme.  
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R943H mutant 

The arginine at position 943 is involved in hydrogen bonding with the γ-

phosphate of the incoming nucleotide during DNA polymerization by Pol γ (45). 

Mutation of this residue to a histidine is associated with the most severe clinical 

phenotypes of autosomal dominant PEO. The disease is often late in onset with cases of 

patients in their 30s or 60s. The R943H mutation is often found as a compound 

heterozygote and in most cases appears to be fully penetrant; meaning every person who 

has the mutation shows symptoms for PEO. This missense mutation has also been 

associated with premature ovarian failure.  

These results show that the R943H mutation severely affects the specificity of the 

enzyme resulting in a kcat/Km value that is 215-fold lower than that of wild-type enzyme. 

This decrease in kcat/Km comes exclusively from a decrease in Kd,app and the kpol is 

comparable to wild-type Pol γ. This is consistent with the proposed role for this residue to 

bind to the γ-phosphate of the incoming nucleotide and a disruption in that bonding 

interaction severely affects the nucleotide binding. Analysis of enzyme fidelity reveals a 

4.5-fold decrease in discrimination for T:T mismatches and surprisingly, compared to 

wild-type the R943H mutation increases the discrimination 5.5-fold for a C:T mismatch. 

The fitting of data collected for these two mismatches T:T and C:T with this mutant also 

required the slow pyrophosphate release step that was described above for H932Y.  

R953C mutant 

Clinically the reported cases of the R953C mutation in Pol γ involve patients 

greater than age 20 who have been diagnosed with PEO (35, 61, 66). This mutation has 

been seen as a compound heterozygote with other mutations in Pol γ and is associated 

with autosomal dominant PEO. Additionally, in 2012 three cases were reported of 

patients that were homozygous for this missense mutation and were diagnosed with 
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autosomal recessive PEO (66). The residue at position 953 is positioned in an alpha helix 

of the fingers subdomain near the active site of Pol γ (45). The characterization of the 

R953C mutant revealed a surprising increase in kcat/Km of 2.8-fold compared to wild-type 

enzyme. This increase in specificity constant comes largely from a 2.6-fold increase in 

kpol by this Pol γ mutant. Examination of the fidelity of this mutant also was surprising 

and revealed that the discrimination values for T:T, C:T and G:T mismatches were all 

increased compared to wild-type by at least 5-fold. For the T:T and C:T mismatches, the 

kcat values were actually higher than the wild-type kcat values for formation of these 

mismatches, but the mutant had much weaker binding of the mismatches as reflected in 

the higher Kd,app values. The lack of deficiency of this mutant seen in these single turnover 

nucleotide incorporation studies leads to the hypothesis that perhaps this mutant is 

involved in disrupting an interaction of Pol γ with other proteins at the replisome, 

potentially the helicase. This has yet to be tested. Also, the less severe clinical phenotype 

seen with this mutant is supported by this characterization. Furthermore, the fact that the 

mutation is present as a homozygote in patients that develop deficiencies that are late in 

onset suggests that this mutation is not hugely detrimental to mtDNA replication.  

A957S mutant 

The A957 residue is positioned on a loop of the fingers subdomain of Pol γ and is 

predicted to be part of the nucleotide-binding pocket (Figure 2.2) (45). It is also in a close 

proximity to the template strand of DNA based on alignment of Pol γ with the T7 DNA 

polymerase structure containing nucleotide and DNA (47). Mutation of this residue from 

an alanine to a serine is associated with cases of autosomal dominant PEO. The mutation 

appears to have a low penetrance and results in milder symptoms of PEO. In one study 

(62), seven cases of this A957S mutation were reported. There were six heterozygotes 
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examined and five of those six showed late-onset PEO symptoms and just 1 showed 

symptoms representing the typical PEO. Also reported was one case of a homozygous 

individual who was severely affected by PEO. The analysis of this mutation presented 

here reveals kpol, Kd,app, kcat/Km, and Kd,DNA values that are all very similar to wild-type 

polγ. Analysis of the fidelity of this A957S mutant also showed very wild-type values for 

discrimination of T:T, C:T and G:T mismatches. This biochemical analysis correlates 

well with the low penetrance of this mutation in clinical studies and the less severe 

phenotypes that are seen. However, this mutation does lead to a late onset clinical 

phenotype that is not explained by its wild-type-like activity in our assay. It is possible 

that this A957S mutation could interfere with interactions of Pol γ with other proteins in 

the replisome at the replication fork of mtDNA.  

R1096C mutant 

The arginine residue at position 1096 in Pol γ is located away from the active site 

at the junction between the palm and fingers subdomains of the protein (Figure 2.2) (45). 

Mutation of this residue to a cysteine has been associated with several Pol γ disorders 

including PEO, Alpers, seizures, encephalopathy and SANDO (61, 67-73). One case of a 

R1096H mutation has also been seen clinically (68). In these clinically reported cases, the 

average age of disease onset is 18 years old (see Appendix) but the ages of patients range 

from 5 months to 55 years. The mutation is often found as a compound heterozygote with 

other mutations in Pol γ, possibly accounting for the variable age of onset, but 

homozygous forms have also been observed. The four homozygotes that were observed 

all had an early age of onset with symptoms occurring at 5 months, 8 months, 1 year and 

2 years old (61, 70). The ages of the compound heterozygotes ranged from 2-55 (61, 68-

73). Analysis of the R1096C mutant in the studies presented in this chapter revealed that 
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for dATP incorporation the kpol was decreased 6.5-fold from wild-type and the Kd,app was 

also decreased 5-fold to yield a modest 1.2-fold decrease in the overall kcat/Km value. The 

misincorporation data for R1096C showed that the misincorporation of a T:T mismatch 

was almost 30-fold faster than wild-type but this was offset by the weaker binding of the 

T:T mismatch to give an overall decrease in discrimination. The discrimination of C:T 

mismatch was also decreased compared to wild-type but the G:T mismatch was very 

similar to that of wild-type Pol γ. Overall the characterization of this mutant relates to it’s 

clinical phenotype seen where the mutation does not appear to be severe and could 

account for the slow onset of phenotype in the heterozygous case. Also this mutation has 

more clinically reported cases than the other mutants here so it is more tolerated in the 

population.  

Summary of all mutants 

In general, the variable phenotypes of POLG-related mitochondrial disorders are 

genetically and biochemically difficult to explain (6). The diseases that manifest from 

mutations in the gene for Pol γ are often slow in onset and likely due to the accumulation 

of mutations over time; however, in some cases mutations lead to a severe clinical 

phenotype and death within two years of birth (64). The variability in phenotype can be 

attributed to the high copy number of mtDNA in the cell and the heterozygosity of the 

two POLG alleles. Most mammalian cells contain hundreds of mitochondria and each 

mitochondria is estimated to be contain somewhere between 2-10 copies of mtDNA (120, 

121). Therefore the mtDNA copy number in a mammalian cell can range from 1,000 – 

10,000 copies and the regulation of such is not well understood (122). Additionally, the 

regulation of Pol γ expression in the nucleus is not well understood. It could be that in 

many cases where one mutant allele is present, the other allele is upregulated such that 



 61 

the wild-type enzyme is more abundant. In this case, the mutant polymerase therefore 

wouldn’t significantly interfere with efficient polymerization, other than to possibly bind 

to primer template regions and block wild-type binding. The off-rate of Pol γ is shown to 

be 0.02 s-1 (114), therefore a polymerase would fall off the DNA every 30 seconds and a 

new, potentially wild-type polymerase, would have the opportunity to bind. Many of the 

clinical reports of mutations in Pol γ are found as compound heterozygotes, coexisting 

with another mutation on the other Pol γ allele, which adds to the variability in 

complementation and ultimately disease severity.  

As an initial summary of all mutants, Figure 2.11 shows the individual 

contributions of Kd and kpol to changes in enzyme specificity due to a mutation in Pol γ. 

Data from Table 2.4 was used to plot the effect of each mutation on catalytic efficiency 

of Pol γ on a free energy scale, revealing that most of the effects on enzyme efficiency 

are due to a decrease in Kd for the mutants (dark color). The R943H mutant showed the 

most drastic effect of these disease mutants followed by the mutation of the histidine at 

position 932. In the case of R953C, the negative free energy value represents the increase 

in kpol /Kd seen by this mutant largely from its increase in kpol (light color). This summary 

of the net specificity for each mutant does generally relate to the clinically observed 

phenotypes for each mutant (R943H most severe, A957S wild-type-like activity), 

however recent work suggests that the increased mutation frequency of mutants in Pol γ 

is the primary effect leading to defects in mitochondria (123). Therefore a more robust 

characterization of mutants must include effects on fidelity of Pol γ mutants.  
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Figure 2.11. Contributions of Kd and kpol to specificity displayed on a free energy scale.  

The Y-axis displays free energy ΔΔG = RT ln(R), where R is the ratio of Kd or kpol 
values. On this scale, a positive ΔΔG equals the free energy difference favoring the wild-
type over the mutant, whereas a negative value that the mutant is favored over the wild-
type. Kd  values for each mutant divided by the Kd  for the WT (Kd mut/Kd WT ), and the 
corresponding ratios of kpol values kpol,WT/kpol,mut are shown. Values represent the 
contributions of ground-state binding (Kd, darker color) and rate of polymerization (kpol, 
lighter color) to the net specificity (kpol /Kd), represented by the sum of the two. 

 

Figure 2.12 shows a simple diagram in attempt to understand the effects of each 

mutation in Pol γ on DNA replication in the cell, taking into account a decreased 

polymerization rate and an increase in mutation frequency. This example supposes that a 

slow enzyme may be less detrimental than a fast enzyme in generating errors. The 

numbers for rates and discrimination were selected for ease of explaining the relative 

effects of a mutant vs. a wild-type enzyme in the cell. The illustration shows that, in the 
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simplest case after 1000 seconds, a mutant polymerase with a 100-fold decrease in rate of 

polymerization and a 100-fold decrease in discrimination would result in 1000 bp 

replicated containing 1 error. This is in contrast to the wild-type case, which would result 

in 100,000 bp replicated containing 1 error. One can imagine how a mutant polymerase, 

such as the one in this example could be compensated by the wild-type polymerase such 

that it is able to sustain life, but over time it’s effects could be detrimental to 

mitochondrial function due to the accumulation of mutations. 

 

Figure 2.12. Comparison of wild-type and mutant Pol γ. The illustration above displays a 
simple example of the relative effects on kcat and discrimination that result from a 
mutation in Pol γ. 
 

Figure 2.13 displays two proposals for a calculation of a “Mutation Severity 

Index” for POLG-related diseases, using data presented for the mutants in this chapter. 

This analysis is an attempt to apply a quantitative basis to physiological effects of these 

mutation in Pol γ. Figure 2.13A displays the simple explanation where a slow enzyme 

making errors is not as detrimental to mtDNA as a fast enzyme (described by Figure 

2.12). Under this assumption, the Mutation Severity Index value would be calculated as 

the fold change in discrimination for mutant divided by the fold change in kcat 

((Dwt/Dmt)/(kcat,wt/kcat,mt)). In this case, a decrease in discrimination could be offset by a 

WT

MT 1/sec, error 1/103

100/sec, error 1/105

1000 sec
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1 error
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comparable decrease in kcat. The rationale for this is that the more error prone enzyme 

would not have as much opportunity for misincorporation compared to the wild-type 

simply because it has a slower rate of polymerization and has less incorporation events 

overall. Therefore, based on this rationale, a value close to one for this ratio would 

represent the case where the discrimination is offset by the kcat changes. This calculated 

Mutation Severity Index value is shown in Figure 2.13A for all mutants, with all mutants 

other than H932Y giving values less than 1. Plotting these as a function of the average 

age of disease onset in heterozygote individuals based on available clinical data is shown 

in Figure 2.14C. The average age of onset in heterozygote individuals was used and 

homozygote ages were excluded to facilitate the comparison of values and due to the lack 

of homozygous data in some cases (see Appendix for clinical data). The plot in Figure 

2.14C does not show a correlation between the Age of onset and this calculation for 

Mutation Severity Index. Therefore, a counter scoring function for Mutation Severity 

Index is proposed below.  

An alternative interpretation of the relationship between the discrimination and 

kcat for a mutant, is that Mutation Severity Index value would be better described by the 

product of the change in discrimination and change in kcat compared to wild-type, as 

described in 2.13B. In this case, a defect in discrimination by a mutant would be 

compounded by a defect in the kcat. This was the case for R1096C where the 6.5-fold 

decrease in kcat and the 3.8-fold decrease in discrimination compared to wild-type were 

multiplied resulting in a Mutation Severity Index value of 25. In the case of R953C, the 

increase in kcat and increase in discrimination compared to wild-type, led to a calculation 

of 0.05 for the Mutation Severity Index using this calculation. The calculated values for 

Mutation Severity Index are plotted as a function as the age of disease-onset in 

heterozygotes in 2.14D. There is a negative correlation between the Mutation Severity 
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Index calculated in this way and the age of onset, with the Pol γ mutation R1096C having 

the lowest average age of onset and the highest Mutation Severity Index value.  

Overall, relating in vitro biochemical data with clinical phenotypes for mutations 

in POLG is a complex process. The relationships outlined in this chapter show the need 

for more biochemical and clinical data in order to fully assess the physiological 

consequences of mutations in Pol γ. 
 

 

  

Figure 2.13. Calculating a Mutation Severity Index for Pol γ mutants. Bar graphs show 
the relationship between the fold changes in discrimination and kcat for mutants of Pol γ 
versus wild-type on a log scale. (A) The fold change in discrimination divided by the fold 
change in kcat gives values of less than 1 for all mutants other than H932Y. (B) The 
product of the fold change in discrimination and the fold change in kcat gives the shows 
the most drastic changes with R1096C and R953C.  

A

B
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Figure 2.14. Relating biochemical parameters in POLG mutants to age of onset of 
disease. Each plot displays the biochemically-determined parameter on the 

y-axis versus the average age of disease onset in patients harboring heterozygous 
mutations in POLG. Average age of disease onset for heterozygote cases are as follows: 
H932Y = 33 years, R943H = 63 years, R953C = 41 years, R1096C = 25 years. (See 
appendix for clinically reported cases and ages) A. Fold change in kcat (wild-type/mutant). 
B. Fold change in discrimination (wild-type/mutant). C. The fold change in 
discrimination divided by the fold change in kcat. D. The product of the fold change in 
discrimination and the fold change in kcat 
  

A B

C D
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Chapter 3: Characterization of Mitochondrial DNA Polymerase 
Gamma Active Site Mutations 

3.1 INTRODUCTION 

This chapter explores three active site residues of Pol γ and their role in 

nucleotide incorporation, specificity and discrimination. The active site of the polymerase 

domain in Pol γ is formed by residues in the fingers subdomain and the palm subdomain 

that come together during the conformational change that occurs upon nucleotide binding 

(45). This conformational change brings together the positively charged residues of the 

fingers subdomain to bind the negatively charged triphosphate of the incoming dNTP and 

align it with the catalytic aspartic acids (D890 and D1135). The crystal structure of Pol 

γA (45) suggests that residues E895 and Q1102 of the palm subdomain along with Y951 

and Y955 of the fingers subdomain are involved in binding of the nucleotide. The E895 

residue is involved in the hydrogen-bonding network under the incoming nucleotide and 

is highly conserved in Pol γ across species and in family A DNA polymerases (45). The 

Y951 residue is located on the O helix of the fingers subdomain and has been suggested 

to bind the ribose of the incoming nucleotide. This residue is involved in the 

discrimination of dideoxy nucleotides and is responsible for the toxic side effects of 

dideoxy nucleotides in the mitochondria (124, 125). The third residue studied in this 

chapter is K947, which binds to the alpha phosphate of the incoming dNTP (45). The 

relevant active site residues in Pol γ are shown on the crystal structure of the homologous 

T7 DNA polymerase in Figure 3.1 (47).  
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Figure 3.1 Active site residues of Pol γ. Homologous structure of T7 DNA polymerase 
(PDB: 1T7P) showing the conserved residues of the Pol γ active site explored in this 
chapter. Incoming nucleotide is magenta, template strand is cyan, primer strand is green, 
active site residues are yellow and labeled with Pol γ amino acid numbers.  

Mutations of these residues are rarely seen clinically 

The three residues studied in this chapter are absolutely conserved in Pol γ across 

species and highly conserved within family A DNA polymerases. The few clinical cases 

that have been reported involving these residues show clinical phenotypes in patients of a 

young age and in the case of E895G the patient only survived for 36 hours after birth. 

The conservation of these active site residues along with the clinical data suggests that 

mutation of these residues are severe and in most cases they are likely to be lethal. Below 

I will summarize several mutations of active site residues selected for detailed study. 

E895A. Residue E895 is involved in the hydrogen-bonding network under the 

incoming nucleotide (Figure 3.1). Mutations at this position are rarely seen in the 

population with one case of myopathic myelodysplastic syndrome (MDS) where this 

position is mutated to a glycine. This mutation E895G was found in a heterozygous 
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newborn that died soon after birth with generalized floppiness (muscle weakness) and 

20% liver mtDNA depletion (58).  

K947A. This mutation is not associated with any diseases however, K947R has 

been associated with PEO, facial weakness, proximal myopathy and ovarian failure in 

one case of a patient who showed symptoms at age 18. The mutation was seen as a 

compound heterozygote in this patient (64). Lysine 947 binds to the alpha phosphate of 

the incoming dNTP, and the K947A mutation was examined to determine the role of this 

interaction (45). 

Y951F. The mutation of tyrosine 951 to phenylalanine has not been associated 

with any diseases, however the mutation Y951N has been seen in two cases of peripheral 

neuropathy in patients 22 and 23 years old (61). Tyrosine 951 binds the ribose of the 

incoming nucleotide and is involved in the discrimination of dideoxy nucleotides (45). 

The Y951 at this position is responsible for the toxic side effects of dideoxy nucleotides 

in the mitochondria, which are incorporated more slowly by the Y951F mutant (65). 

This chapter will characterize the three mutations of Pol γ listed above that are 

located near the polymerase active site of Pol γ. The goal of this work is to analyze the 

biochemical effect of these point mutations in order to gain a better understanding of the 

role of these residues in catalysis. 

 

3.2 MATERIALS AND METHODS 

Cloning expression and purification. 

Accessory subunit Pol γB  

The accessory subunit of Pol γ, Pol γB used in these studies has the first 25 amino 

acids truncated from the N-terminal end and is modified at the C-terminus to have a His 
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tag added for purification, as is described in Chapter 2. The protein was expressed in E. 

coli BL21 (DE3) from New England Biolabs. After harvesting the cells, the protein was 

purified by sequential application of Ni- NTA (Novagen) and Superdex 200 (Amersham 

Biosciences) columns as described previously (55) and above in Chapter 2.  
 

Catalytic subunit Pol γA 

The clone for the wild-type exonuclease deficient C terminus His tagged Pol γA 

was maintained in pUC 19.1 and lacked the first 66 amino acid from the N-terminus as 

was described in detail in Chapter 2. The exonuclease deficient enzyme with mutations 

D198A and E200A was used in the studies in this section of work. The mutagenesis of 

Pol γA in the pUC19.1 vector was performed using site directed mutagenesis; the PCR 

mutagenic primers listed in Table 3.1. 

  

Table 3.1 Mutagenic primers for Pol γA Active Site Mutants  

E895A 	
  
Forward:  5'-ATGTTGACAGCCAGGCGTTGTGGATTGCCGC-3' 
Reverse: 5'-GCGGCAATCCACAACGCCTGGCTGTCAACAT-3' 

K947A  
Forward:  5'-GGCATTTCGCGTGAACATGCAGCGATTTTCAATTACGGTCGTAT-3' 
Reverse: 5'-ATACGACCGTAATTGAAAATCGCTGCATGTTCACGCGAAATGCC-3' 

Y951F  
Forward:  5'-GCGTGAACATGCAAAGATTTTCAATTTCGGTCGTAT-3' 
Reverse: 5'-CGTAAATACGACCGAAATTGAAAATCTTTGCATGTT-3' 

*mutated codons are underlined 

Once mutagenic sequences were confirmed, the Pol γA clones were transferred to 

the pBacPak9 transfer vector by a double restriction digest followed by ligation. A 

recombinant baculovirus expressing each mutant in SF9 insect cells at high viral titers 
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were then optimized for protein expression before large scale expression occurred. Large 

scale expression in Sf9 insect cells was followed by the protein purification procedure 

outlined in detail in Chapter 2. The purification included the sequential application of 

lysates to a Ni-NTA and an SP Sepharose column. Cell pellets from baculovirus 

expression of Pol γA in SF9 cells were thawed and resuspended by stirring in Pol γA 

Lysis Buffer (0.32 M sucrose, 10 mM HEPES pH 7.5, 0.5% v/v NP-40, 3 mM CaCl2, 2 

mM MgAc.4H2O, 0.1 mM EDTA, 5mM 2-mercaptoethanol and protease inhibitor 

cocktail V, EDTA-free (AG Scientific)). The suspension was then centrifuged using a 

JS4.3 rotor (Beckman) at 1,500xg for 25 minutes. A 3M KCl solution was then added 

dropwise to the supernatant to obtain a final concentration of 0.5 M KCl. After stirring 

for 15 minutes on ice in the presence of 0.5 M KCl, the solution was ultracentrifuged at 

31,000 rpm for 35 minutes. The supernatant was then incubated with Ni-NTA agarose 

resin (Qiagen) equilibrated in Pol γA Nickel Equilibration Buffer (20 mM HEPES pH 7.5, 

5 mM imidazole pH 8, 0.2 M KCl, 5% glycerol). After binding to the Ni-NTA, the resin 

was washed with Pol γA Nickel Wash Buffer (20 mM HEPES pH 7.5, 20 mM imidazole 

pH 8, 0.1 M KCl, 5% glycerol) and eluted with Pol γA Nickel Elution Buffer (20 mM 

HEPES pH 7.5, 200 mM imidazole pH 8, 0.05 M KCl, 5% glycerol). Fractions were 

analyzed by SDS-PAGE and those containing Pol γA were pooled and diluted to 30 mM 

KCl with Pol γA Nickel Dilution Buffer (20 mM HEPES pH 7.5, 1 mM EDTA pH 8, 5% 

glycerol). The fractions from the nickel column were then loaded onto an SP Sepharose 

column (GE Healthcare) equilibrated in Pol γA SP Buffer A (20 mM HEPES pH 7.5, 30 

mM KCl, 1 mM EDTA pH 8, 5 mM 2-mercaptoethanol, 5% glycerol) using the AKTA 

Purifier (GE Healthcare). After loading, the column was then washed with Pol γA SP 

Buffer A and eluted with a linear gradient from 0-70% Pol γA SP Buffer B (20 mM 

HEPES pH 7.5, 700 mM KCl, 1 mM EDTA pH 8, 5 mM 2-mercaptoethanol, 5% 
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glycerol). 1 mL fractions were collected from SP column and the absorbance at 280 nm 

and 260 nm was recorded. The fractions were then analyzed by SDS-PAGE and those 

containing Pol γA were pooled and concentrated using a vivaspin sample concentrator 

(GE Life Sciences). The protein concentration was then measured by A280 using the 

extinction coefficient ε280 = 243,7900 M-1cm-1, previously determined (108). Experiments 

were all performed on the reconstituted holo-enzyme (Pol γ) by combining the catalytic 

subunit Pol γA and the accessory subunit Pol γB with a 4:1 molar excess of Pol γB:Pol 

γA. 

Preparation of substrate DNA 

DNA substrates were purchased from Integrated DNA Technologies (IDT) and 

purified by 15% denaturing polyacrylamide gel electrophoresis. Sequences of 25-mer 

primer and 45-mer template DNA oligomers are listed in Table 3.2.  

Table 3.2 DNA primer-template sequences for Pol γ  
	
  	
  

25/45mer      
25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA   
45-mer 3’-CGGAGCGTCGGCAGGTTGGTTGAGTTGGAGCTAGGTTACGGCAGG 

 

For quench flow assays, the 5’ end of the primer oligomer was 32P-labeled using 

T4 polynucleotide kinase (New England Biolabs) and γ-32P-ATP according to the 

manufacturers protocol. After 32P labeling, the reaction was heated to 95°C for 5 minutes 

and purified using a Bio-Spin P-6 gel column (Bio-Rad) to remove the excess γ-32P-ATP. 

The concentration of the purified 32P-5’-labeled primer was determined by TLC.  

Duplex DNA substrates were formed by incubating the 25-mer primer with the 

45-mer template at a 1:1 molar ratio in an Annealing Buffer (10 mM Tris-HCl pH 7.5, 50 
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mM NaCl, 1 mM EDTA) and heating to 95°C for 5 minutes before allowing to slowly 

cool to room temperature. 
 

Kinetics of correct nucleotide incorporation 

Chemical-quench flow assays were performed to measure the incorporation of 

correct nucleotide by mutants of Pol γ. These experiments were conducted at 37ºC in Pol 

γ Reaction Buffer (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 12.5 mM MgCl2) using a 

RQF-3 rapid-quench-flow apparatus (KinTek Corp). For these single turnover 

experiments, preformed enzyme-DNA complex (150 nM Pol γA, 600 nM Pol γB, 75 nM 

5’-32P-labeled 25/45mer DNA) was mixed rapidly with an equal volume of Mg-dATP2- at 

various concentrations (0.2, 0.5, 1.5, 3, 5.5, and 8.5 µM dATP for WT). The final 

concentration of MgCl2 was 12.5 mM. After various time intervals, the reactions were 

quenched by mixing with 0.5 M EDTA. All concentrations listed are final.  

After quenching, the reactions were mixed with denaturing PAGE loading dye 

(0.25% bromophenol blue, 0.25% xylene cyanol) and separated on a 15% denaturing 

polyacrylamide sequencing gel. The dried gel was then exposed to a storage phosphor 

screen and the bands were quantified using a Typhoon scanner (GE) and ImageQuant 5.0 

(Molecular Dynamics). The concentration of the product formed over time was calculated 

as the product of the concentration of substrate 32P-labeled DNA added times the fraction 

of material in the 26-mer band. Data collected were fit by global data fitting methods 

described below and in Chapter 2. 

Nucleotide misincorporation assays 

Misincorporation assays were performed in a similar assay as described above for 

correct dNTP incorporation, however the formation of a mismatch often required longer 
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time scales and higher concentrations of the incorrect dNTP. For time scales greater than 

5 seconds, manual hand mixing was done instead of using the rapid-quench-flow 

instrument. In all assays, a maximum of 5 mM dNTP (final concentration after mixing) 

was not exceeded in order to avoid complications due to nonspecific inhibition (110, 

111). For misincorporation experiments a preformed enzyme-DNA complex (150 nM Pol 

γA, 600 nM Pol γB, 75 nM 5’-32P-labeled 25/45mer DNA) with an equal volume of Mg-

dNTP2- at various concentrations (0.2, 0.5, 1.5, 3, 5.5, and 8.5 µM dATP for WT) in Pol γ 

Reaction Buffer. Reactions were quenched with 0.5 M EDTA after various time intervals 

from (0 – 1.5 hours, in some cases) and the products were analyzed on a 15% denaturing 

polyacrylamide sequencing gel. Data collected were fit by global data fitting methods 

described below and in Chapter 2. 

Pyrophosphate Release Assay 

Pyrophosphate release was measured in a stopped-flow coupled assay as 

described previously (119, 126) using an AutoSF-120 series stopped-flow instrument 

from KinTek Corp. For this assay, 100 nM Pol γ was preincubated with 90 nM 25-

mer/45mer DNA duplex in the presence of 1.5 µM E. coli phosphate binding protein 

(PBP) with MDCC (7-Diethylamino-3-((((2-Maleimidyl)ethyl)amino)carbonyl) 

-coumarin) label at mutated Cys197, 100 µM 7-methylguanosine (Sigma), 0.02 units/ml 

purine nucleoside phosphorylase (Sigma), and 0.6 µM yeast inorganic pyrophosphatase 

(PPase) (Sigma) in Pol γ reaction buffer for 15 minutes at 37°C. The reaction was then 

started by mixing with a solution containing various concentrations of dATP in the 

presence of 100 µM 7-methylguanosine (Sigma), 0.02 units/ml purine nucleoside 

phosphorylase (Sigma), and 0.6 µM yeast inorganic pyrophosphatase (Sigma) in Pol γ 

reaction buffer. The MDCC fluorophore on PBP was excited at 425 nm and the change in 



 75 

fluorescence was measured as a function of time using a 475 nm single-band bandpass 

filter (Semrock).  

 

Figure 3.2. Crystal structure of MDCC-PBP. (PDB: 1A54) (127) The structure of 
phosphate binding protein from E. coli is shown with the labeling site mutation A197C 
and labeled with MDCC. The MDCC coumarin fluorophore is displayed in green and is 
located in the hydrophobic groove on the surface of the molecule near the phosphate 
binding site which in this case is bound by a dihydrogenphosphate ion (pink spheres). 

Control experiments for phosphate binding to PBP-MDCC as well as 

pyrophosphate hydrolysis by PPase followed by subsequent phosphate binding to PBP-

MDCC were performed to ensure that these rates were sufficiently fast so that the 

coupled assay measures the rate of pyrophosphate release by Pol γ.  

Pyrophosphate Release Controls 

Phosphate binding to PBP-MDCC. For this assay, 3 µM E. coli phosphate binding 

protein (PBP) with MDCC label, was preincubated with 200 µM 7-methylguanosine 

(Sigma) and 0.04 units/ml purine nucleoside phosphorylase (Sigma) in Pol γ reaction 

buffer for 15 minutes at 37°C. The reaction was then started by mixing with a solution 

containing various concentrations of Na2HPO4 (0.2, 0.5, 1, 2, 3, and 5 µM) in Pol γ 

Reaction Buffer.  



 76 

Pyrophosphate hydrolysis followed by phosphate binding to PBP-MDCC. For this 

assay, 3 µM E. coli phosphate binding protein (PBP) with MDCC label, was 

preincubated with 100 µM 7-methylguanosine (Sigma), 0.02 units/ml purine nucleoside 

phosphorylase (Sigma) and 1.2 µM yeast inorganic pyrophosphatase (PPase) (Sigma) in 

reaction buffer for 15 minutes at 37°C. The reaction was then started by mixing with a 

solution containing various concentrations of NaPPi (0.05, 0.2, 0.4, 0.6 and 0.8 µM) in 

the presence of 100 µM 7-methylguanosine (Sigma) and 0.02 units/ml purine nucleoside 

phosphorylase (Sigma) in Pol γ Reaction Buffer.  

For both assays, the MDCC fluorophore on PBP was excited at 425 nm and the 

change in fluorescence was measured as a function of time using a 475 nm single-band 

bandpass filter (Semrock). 
 

Global data fitting 

Data from chemical quench flow and stopped flow experiments were fit globally 

using the KinTek Explorer simulation software (Kintek Corp). The details of this fitting 

are described in Chapter 2. Briefly, the fitting by simulation involves inputting a model 

sequence of reaction steps, initial estimates of rate constants, the experimental setup and 

after trial and refinement, a final convergence to the best fit value for each parameter is 

obtained by nonlinear regression based upon numerical integration of the rate equations 

(112, 113). Two models were used in the fitting of data in this chapter.  
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Scheme 3.1 

 

Scheme 3.1 is the expanded model for nucleotide binding and incorporation that 

includes a rate of pyrophosphate release (k3) that is slow and allows the rate of chemistry 

k2 to be reversible and include the k-2 step. When the expanded model of Scheme 3.1 is 

used for fitting and the contributions of k-2 and k3 cannot be neglected, kcat, Km and kcat/Km 

were calculated according to Equations (Eqn) 3.1, 3.2 and 3.3. 

Eqn 3.1    kcat =
k2k3

k2 + k−2 + k3

Eqn 3.2    Km = k2k3 + k−1(k−2 + k3)
k1(k2 + k−2 + k3)

Eqn 3.3    kcat /Km = k1k2k3

k2k3 + k−1k−2 + k−1k3

 

As was the case in Chapter 2, the previously determined rates of DNA binding 

and release were used in the model (Kd,DNA=10nM, koff,DNA = 0.02 s-1) (114). Additionally, 

the equilibrium constant for the initial complex formation was estimated by assuming 

diffusion-limited nucleotide binding (k1=100 µM-1s-1) and allowing the dissociation rate 

to vary during fitting.   

Scheme 3.2 shows the minimal model for nucleotide incorporation that assumes 

the binding of the nucleotide is in a rapid equilibrium and the rates after chemistry are 

fast so that the reverse of chemistry can be neglected.  By fitting the concentration 

dependence of the rate of polymerization to the model of Scheme 3.2, an apparent 

nucleotide dissociation constant (Kd,app) is obtained along with a maximum rate of 

nucleotide incorporation (kpol).  

Scheme 3.2 
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As was described in Chapter 2, in the simple model of Scheme 3.2 the specificity 

constant (kcat/Km) is defined as the ratio of kpol/Kd,app. In this case, the term from quench 

flow experiments is reported as an apparent Kd and would equal the true Kd if the binding 

occurred in a single step. Because we are measuring the concentration dependence of 

incorporation and not the actual ground state binding of the nucleotide, then there are in 

multiple steps involving a conformational change of the enzyme (128, 129), this apparent 

Kd is more accurately defined as a Michaelis constant. 

In experiments of this chapter, when noted, the pyrophosphate release stopped 

flow experiments were fit globally with chemical quench flow data to determine the rate 

of pyrophosphate release (Scheme 3.1, k3). The control experiments for the coupled assay 

measuring pyrophosphate release were included in the global fitting of the data collected 

for the Pol γ mutants and the model was adapted to include steps for pyrophosphate 

hydrolysis by PPase and phosphate binding to PBP-MDCC.  

In the results tables, the standard error values are reported for each parameter 

along with the upper and lower limits for each fitted parameter. These limits are derived 

from a threshold in the confidence contours as described in Chapter 2 (Chi2
min/Chi2

x,y = 

1.1) (113). 

 

3.3 RESULTS 

Kinetics of correct incorporation  

The kinetics of incorporation of the correct nucleotide (dATP) for the three Pol γ 

active site mutants (E895A, Y951F and K947A) were explored using rapid quench flow 

methods to measure the apparent nucleotide dissociation constant (Kd) and the maximum 

rate of incorporation (kpol). The results are summarized in Table 3.3 and 3.4.  
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Table 3.3 Pol γ Kinetic Parameters of dATP Incorporation 

  1/K1 k2 k-2 k3 
 µM s-1 s-1 s-1 
     
WT          

dATP 0.7 ± 0.14 30 ± 2 0 fast 
(0.62 - 0.84) (29 - 33)     

E895A     

dATP 17 ± 0.3 2.4 ± 0.04 1.9 ± 0.07 0.4 ± 0.005 
(13 - 17.6) (2.2 - 3.1) (1.6 - 3.5) (0.34 - 0.47) 

Y951F         

dATP 1.6 ± 0.1 6.9 ± 0.1 0 fast 
(1.3 - 1.2) (6.4- 7.6)     

K947A         

dATP 1320 ± 230 5.2 ± 0.6 0 fast 
(1130 - 1780) (4.6 - 6.3)     

This table summarizes the kinetic parameters derived in globally fitting data to Scheme 
3.1 and 3.2 to define the kinetics of incorporation of dATP by wild-type and mutant 
forms of Pol γ. Data for the wild-type enzymes is from (116). Numbers in parenthesis 
give the lower and upper limits derived from the confidence contour analysis in fitting 
the data.  
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Table 3.4 Pol γ Kinetic Parameters of dATP Incorporation 

  Kd, kpol kpol/Kd,app Fold Change 
 µM s-1 µM-1s-1  
     
WT          

dATP 0.7 ± 0.14 30 ± 2 43 ± 9 - 

E895A       

dATP 8.3 ± 0.3 0.2 ± 0.005 0.024 ± 0.001 1790 

Y951F         

dATP 1.6 ± 0.1 6.9 ± 0.1 4.3 ± 0.3 10 

K947A         

dATP 1320 ± 230 5.2 ± 0.6 0.004 ± 0.0008 11000 

This table summarizes the kinetic parameters derived in globally fitting data to Scheme 
3.1 and 3.2 to define the kinetics of incorporation of dATP by wild-type and mutant 
forms of Pol γ. Data for the wild-type enzymes is from (116). Numbers in parenthesis 
give the lower and upper limits derived from the confidence contour analysis in fitting 
the data.  

 

 

The data for dATP incorporation by the Y951F mutant were fit to the simple 

model (Scheme 3.2) for nucleotide incorporation and showed a 4.3-fold decrease in kpol 

and a 2.3-fold increase in Kd,app. relative to wild-type. This resulted in a 10-fold decrease 

in the specificity constant compared to wild-type. Slow pyrophosphate release was not 

required to fit the dATP incorporation data for this mutant (Figure 3.3A and C). The 

quench flow data and stopped flow PPi release data for Y951F were globally fit to the 

model shown in Scheme 3.2 with fast pyrophosphate release. The K947A mutant was 

also fit to the simple model in Scheme 3.2 and is consistent with fast pyrophosphate 
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release. The fitting of the K947A data resulted in a modest decrease in kpol by 5.7-fold but 

a drastic increase in Kd,app by 1880-fold, leading to a 11,000-fold decrease in the 

specificity constant as compared to wild-type. Alternatively, the data for E895A showed 

an amplitude dependence on nucleotide concentration and the expanded model with slow 

pyrophosphate release was used for fitting (Scheme 3.1). This was further supported 

when the pyrophosphate release experiment was added to the quench flow data and both 

were fit to the model in Scheme 3.1. These two datasets included in the global fit for 

E895A are shown in Figure 3.3B and D. The fitting of these data for E895A resulted in a 

value for 1/K1=17 µM, k2=2.4 s-1, k-2=1.9s-1, and k3= 0.4 s-1. These rates lead to a kcat/Km 

value of 0.02 µM-1s-1which is 2,150-fold lower than that of wild-type enzyme. The data in 

Figure 3.4 show the control experiments included in global fits of Y951F dATP 

incorporation and E895A incorporation that utilized pyrophosphate release experiments. 

The pyrophosphate release assay could not be used in the case of K947A because the 

dATP concentrations required to saturate binding for this mutant exceeded the limit of 

the coupled assay due to the apparent direct binding of dATP to MDCC-PBP above 

concentrations of 1 mM dATP.  
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Figure 3.3 Kinetics of incorporation of dATP for the Y951F and E895A mutants. For 
each concentration series, an enzyme-DNA complex was rapidly mixed with MgCl2 and 
various concentrations of dATP. In each experiment, the final concentrations of enzyme 
and DNA after mixing were 150-175 nM and 75-100 nM, respectively. Results of the 
global fitting are shown and in each case the concentration of active enzyme was adjusted 
to fit the amplitude of the curves in the quench flow experiment. (A) Incorporation of 
dATP by Y951F exo- Pol γ at various concentrations (0.25, 0.5, 1, 2, 10, 20, 50, 100, 250 
and 500 μM) by quench flow methods. (B) Incorporation of dATP for E895A exo- Pol γ 
at various concentrations (2, 12.5, 25, 75, 200, and 500 μM) by quench flow methods. (C) 
Incorporation of dATP and release of pyrophosphate by Y951F exo- Pol γ at 5 μM dATP 
measured by stopped flow methods using PBP-MDCC. The data in A and B, along with 
pyrophosphate release control experiments (Figure 3.4), were globally fit to the 
mechanism shown in Scheme 3.2, yielding an apparent Kd of 1.6 ± 0.1 µM and kpol of 6.9 
± 0.1 s-1. (D) Incorporation of dATP and release of pyrophosphate by E895A exo- Pol γ at 
5, 15 and 100 μM dATP measured by stopped flow methods using PBP-MDCC. The data 
in C and D, along with pyrophosphate release control experiments were fit to the 
mechanism shown in Scheme 3.1, yielding an apparent Kd of 17 ± 0.3 µM, k2 of 2.4 ± 
0.04 s-1, k-2 of 1.9 ± 0.07 s-1, and k3 of 0.4 ± 0.005 s-1. 
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Figure 3.4 Stopped flow controls for pyrophosphate release assay. A. Phosphate binding 
to PBP-MDCC. For this assay, 3 µM E. coli phosphate binding protein (PBP) with 
MDCC label, was preincubated with 200 µM 7-methylguanosine (Sigma) and 0.04 
units/ml purine nucleoside phosphorylase (Sigma) in Pol γ Reaction Buffer for 15 
minutes at 37°C. The reaction was then started by mixing with a solution containing 
various concentrations of Na2HPO4 (0.2, 0.5, 1, 2, 3, and 5 µM) in reaction buffer B. 
Pyrophosphate hydrolysis followed by phosphate binding to PBP-MDCC. For this assay, 
3 µM E. coli phosphate binding protein (PBP) with MDCC label, was preincubated with 
100 µM 7-methylguanosine (Sigma), 0.02 units/ml purine nucleoside phosphorylase 
(Sigma) and 1.2 µM yeast inorganic pyrophosphatase (PPase) (Sigma) in Pol γ Reaction 
Buffer for 15 minutes at 37°C. The reaction was then started by mixing with a solution 
containing various concentrations of NaPPi (0.05, 0.2, 0.4, 0.6 and 0.8 µM) in the 
presence of 100 µM 7-methylguanosine (Sigma) and 0.02 units/ml purine nucleoside 
phosphorylase (Sigma) in Pol γ Reaction Buffer. For both assays, the MDCC fluorophore 
on PBP was excited at 425 nm and the change in fluorescence was measured as a 
function of time using a 475 nm single-band bandpass filter (Semrock).  
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Nucleotide Misincorporation Assays 

Chemical quench flow assays were performed on Pol γ to monitor the 

incorporation of mismatches in order to investigate the discrimination of the Pol γ 

mutants against mismatches. All of the mutants were prepared in the background of an 

exonuclease deficient variant and lacked significant proofreading ability so that the rates 

of misincorporation could be measured (22, 49). Misincorporation assays measured the 

amount of 25-mer DNA primer extended by the polymerase upon mixing with various 

concentrations of the incorrect nucleotide and MgCl2 for different time intervals. The 

results plotting the accumulation of product over time were fit to the models from either 

Scheme 3.1 or Scheme 3.2. In all cases, the minimal model (Scheme 3.2) was first used 

in an attempt to fit the data, and in cases when an amplitude dependence on nucleotide 

concentration was observed, the expanded model in Scheme 3.1 was applied. The results 

of the fitting are shown in Table 3.5 and summarized in Table 3.6. For each of the 3 

mutants tested, the formation of a T:T mismatch and a G:T mismatch required the fitting 

to the model in Scheme 3.1 to allow for a slow pyrophosphate release step with reversible 

chemistry. This was seen in the H932Y, H932A and R943H misincorporation results 

described in Chapter 2 as well as the E895A correct nucleotide incorporation described 

above.  However, the formation of the C:T mismatches by the three mutants of this 

chapter did not require this expanded model and could be fit to the minimal model with 

fast pyrophosphate release (Scheme 3.2). The E895A mutant showed a 10-fold reduction 

in the discrimination of dTTP on a templating TMP compared to that of wild-type 

(43,000 vs. 430,000) (Figure 3.5A). This mutation also showed a significant decrease in 

the discrimination for dCTP:TMP with a 27-fold decrease in discrimination compared to 

that of wild-type. The discrimination for a G:T mismatch by E895A did not significantly 
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differ from that of wild-type despite the requirement in the model for the slow 

pyrophosphate release step with the E895A mutant and not for the wild-type.  

 

 

Figure 3.5 Kinetics of misincorporation by the E895A and Y951F mutants. All 
concentrations listed are final. 150 nM enzyme was preincubated with 75 nM 25/45mer 
DNA and subsequently mixed with Mg2+ and various concentrations of incorrect 
nucleotide. (A) Formation of a T:T mismatch by E895A exo- Pol γ at each TTP 
concentration (20, 50, 125, 375 and 5000 µM) was fit globally to the mechanism shown 
in Scheme 3.1, yielding an apparent Kd of 1090 ± 110 µM, k2 of 0.0018 ± 0.0007 s-1, k-2 of 
0.001 ± 0.0005 s-1, and k3 of ≤ 0.0004 s-1. (B) Formation of a C:T mismatch by Y951F 
exo- Pol γ at each dCTP concentration (30, 100, 400 and 5000 µM) was fit globally to the 
mechanism shown in Scheme 3.2 yielding an apparent Kd of >10,000 µM and a kpol of > 
0.04 s-1.  

 

The Y951F mutation showed an increase in discrimination against the C:T and 

G:T mismatches and only a 1.5-fold decrease in discrimination for the T:T mismatch. In 

the case of the C:T mismatch for this mutant (Figure 3.5B), the nucleotide binding was so 

weak that only a lower limit of Kd,app could be determined, as well as a lower limit for kpol. 

Nonetheless, the ratio of these as kpol/Kd,app value was well determined based on the 

concentration dependence of the rate. In the misincorporation assays, a maximum 

concentration of 5 mM nucleotide was not exceeded in order to minimize complications 
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from non-specific inhibition at high nucleotide concentrations that have been seen 

previously (110, 111). 

With the K947A mutant, only the formation of a T:T mismatch and a G:T 

mismatch could be monitored because in the C:T misincorporation experiment very little 

product was formed and could not be quantified. The T:T mismatch showed a very 

significant decrease in discrimination with the K947A mutant having a 90-fold decrease 

in discrimination. The discrimination of a G:T mismatch was also significantly decreased 

by 18-fold with this mutant.  
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Table 3.5 Pol γ Kinetic Parameters of Misincorporation 

  1/K1 k2 k-2 k3 
  µM s-1 s-1 s-1 
WT          

TTP 81.8 ± 10.9 0.01 ± 0.004 (0) fast 
(40 - 90) (0.006 - 0.01) 

dCTP 1030 ± 193 0.06 ± 0.018 (0) fast 
(810 - 1300) (0.05 - 0.08) 

dGTP 1300 ± 1600 6.6 ± 7.4 (0) fast 
(836 - 4100) (4.5 - 20) 

E895A         

TTP 1090 ± 110 0.0018 ± 0.0007 0.001 ± 0.0005 ≤ 0.0004 
(810 - 1180) (0.0013 - 0.0019) (0.0005 - 0.0015)  

dCTP 650 ± 110 0.0005 ± 0.0002 (0) fast 
(560 - 1360) (0.0004 - 0.0007) 

dGTP 800 ± 120 0.004 ± 0.001 0.0015 ± 0.0005 ≤ 0.0019 
(767 - 1470) (0.0035 - 0.0063) (0.0006 - 0.0038) (2.5x10-8 - 0.0016) 

Y951F     

TTP 1500 ± 500 0.36 ± 0.03 0.03 ± 0.009 ≤ 0.002 
(930 - 2700) (0.3 - 0.6) (0.025 - 0.13)  

dCTP >10000 >0.04 (0) fast 
 (0.04 - 0.6) 

dGTP 1350 ± 200 1.03 ± 0.13 0.33 ± 0.1 0.11 ± 0.03 
(1140 - 1590) (0.91 - 1.2) (0.25 - 0.45) (0.08 - 0.14) 

K947A         

TTP ≥7000 0.01 ± 0.007 0.0018 ± 0.0013 ≤ 0.0025 
 (0.007 - 0.1) (0.0005 - 0.003)  

dCTP - - - - 

dGTP > 2400 0.03 ± 0.005 0.0009 ± 0.0005 ≤ 0.002 
  (0.004 - 0.4) (0.0002 - 0.003)   

This table summarizes the kinetic parameters derived in globally fitting data to define the 
kinetics of misincorporation against a template dT by wild-type and mutant forms of Pol 
γ. Numbers in parenthesis give the lower and upper limits derived from the confidence 
contour analysis in fitting the data. Data for the wild-type enzyme was obtained from 
(116).  
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Table 3.6 Pol γ Kinetic Parameters of Misincorporation 

  kcat Km kcat/Km Discrimination 

 s-1 µM µM-1s-1  
WT          

TTP 0.01 ± 0.004 81.8 ± 10.9 0.0001 ± 0.00005 430,000 
dCTP 0.06 ± 0.018 1030 ± 193 0.00006 ± 0.00002 717,000 
dGTP 6.6 ± 7.4 1300 ± 1600 0.005 ± 0.008 8,600 

E895A     
TTP 0.0002 ± 0.0001 475 ± 220 4.7x10-7 ± 3.1x10-7 43,000 
dCTP 0.0005 ± 0.0002 650 ± 110 7.7x10-7 ± 3.3x10-7 26,000 
dGTP 0.001 ± 0.0003 370 ± 95 2.8x10-6 ± 1.1x10-6 7,000 

Y951F         
TTP 0.0018 ± 0.0002 122 ± 54 1.5x10-5 ± 0.7x10-5 290,000 
dCTP >0.04 >10000 3.6x10-6 ± 0.5x10-6 1,200,000 
dGTP 0.08 ± 0.02 400 ± 130 0.0002 ± 8x10-5 22,000 

K947A         
TTP 0.0017 ± 0.0015 2100 ± 1200 8.3x10-7 ± 8.6x10-7 4,800 
dCTP - - - - 
dGTP 0.0018 ± 0.0004 210 ± 48 8.6x10-6 ± 2.7x10-6 470 

The table summarizes the kcat and Km values governing misincorporation by mutant forms 
of Pol γ, calculated from the data in Table 3.5. Data for the wild-type enzyme is from 
(116). Discrimination was calculated as the ratio of kcat/Km values for correct versus 
mismatched dNTP.  
 

3.4 DISCUSSION 

The active site mutations studied here were explored to gain a better 

understanding of the role of these conserved residues in the kinetics of nucleotide 

incorporation. The three residues probed, E895, Y951 and K947 are hypothesized to be 

involved in alignment of the incoming nucleotide at the active site of Pol γ and therefore 

understanding the effect of mutation of these residues will provide an important 

contribution to the knowledge of their role in polymerization. Previous studies have been 

reported on these residues in Pol γ, however their steady state assays have overlooked 
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details that were revealed in these pre-steady state assays and derived incorrect values for 

key kinetic parameters (130). Figure 3.6 displays a summary of all mutants from this 

chapter, showing the individual contributions of Kd and kpol to changes in enzyme 

specificity due to a mutation in Pol γ. Data from Table 3.4 was used to plot the effect of 

each mutation on catalytic efficiency of Pol γ on a free energy scale. This figure reveals 

the most drastic effect on enzyme specificty was in the K947A mutant and was largely 

due to a decrease in Kd for the mutant (dark color). The large change in specificty 

constant for the E895A mutant was largely due to the decrease in kpol compared to wild-

type but the increase in Kd,app also contributed to the defect of this mutant. 

 

                  

Figure 3.6. Contributions of Kd and kpol to specificity displayed on a free energy scale.  

The Y-axis displays free energy ΔΔG = RT ln(R), where R is the ratio of Kd or kpol 
values. On this scale, a positive ΔΔG equals the free energy difference favoring the WT 
over the mutant, whereas a negative value would indicate that the mutant is favored over 
the WT. Kd  values for each mutant divided by the Kd  for the WT (Kd mut/Kd WT ), and 
the corresponding ratios of kpol values kpolWT/kpolmut are shown. Values represent the 
contributions of ground-state binding (Kd, darker color) and rate of polymerization (kpol, 
lighter color) to the net specificity (kpol /Kd), represented by the sum of the two. 
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Mutation E895A 

A 2003 study on this mutation of Pol γ (130) reported that the kcat for this mutant 

was 0.49 s-1, the Km was 140 µM and the kcat/Km was 0.003 µM-1s-1. This same study 

reported values for the wild-type enzyme that were kcat = 3.7 s-1, the Km was 2.6 µM and 

the kcat/Km was 1.4 µM-1s-1, which differs substantially from recently published results 

from the same group (106) where kcat = 72 s-1, the Km was 2.1 µM and the kcat/Km was 34 

µM-1s-1. The group’s results for E895A suggest a 466-fold change kcat/Km from wild-type 

to mutant. However, the steady state assays used in this work do not give any information 

about the chemistry step of the reaction because steady state rates are governed by the 

rate of DNA release and therefore the effect of the mutation is not fully realized in these 

types of studies. The pre-steady state kinetic assays in the work presented here measuring 

the kinetics of single nucleotide incorporation and rigorous global fitting of the data to a 

model, reveal unique features of these mutants that are not seen with wild-type enzyme or 

in steady state assays. The data here shows a 1790-fold decrease in kpol/Kd,app for E895A 

(Figure 3.6) and the presence of slow pyrophosphate release after chemistry (Figure 3.3B 

and D). The amplitude dependence of the quench flow data and the measurement of 

pyrophosphate release in the stopped flow assay using E. coli phosphate binding protein 

affirm the step of slow pyrophosphate release following correct nucleotide incorporation 

to be 0.4 s-1. In misincorporation experiments the formation of a T:T mismatch as well as 

a G:T mismatch also required slow pyrophosphate release steps but these were 

considerably slower at <0.0019 s-1. The overall fidelity of E895A mutant was mildly 

affected with the discrimination for a T:T mismatch decreased 10-fold compared to wild-

type and the discrimination for C:T mismatch decreased 27-fold. The discrimination for a 

G:T mismatch was comparable to that of wild-type.   
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Mutation Y951F 

The 2003 study mentioned above on E895A also examined Y951F (130). Using 

steady state methods the authors showed the kcat for this mutant was 1.8 s-1, the Km was 2 

µM and the kcat/Km was 0.9 µM-1s-1. Which compared to their values for wild-type Pol γ, 

did not suggest a large change due to this mutation. Their results suggested a 1.5-fold 

change in kcat/Km from wild-type to mutant whereas the work here suggests a slightly 

more significant, 10-fold change coming from a 2-fold increase in Km and a 5-fold 

decrease in kcat. Overall the mutation did not drastically affect the kpol or Kd,app of the 

enzyme, possibly due to the presence of the H932 residue that also interacts with the β-

phosphate of the incoming nucleotide. The mutation of the H932 residue to tyrosine 

(results in Chapter 2) resulted in a much more drastic effect on Kd,app with a 100-fold 

change compared to wild-type, and no significant effect on kcat. The results characterizing 

the residues interacting with the β-phosphate suggest that in the absence of the histidine 

at position 932, the tyrosine at position 951 can still stabilize the transition state of the 

reaction and therefore the kcat is not reduced. However, in the absence of the tyrosine at 

position 951, the transition state is not as well stabilized and the kcat is reduced. The 

histidine at position 932 showed a more important role in nucleotide binding affinity than 

Y951, but their roles appear to be complementary in their interactions with the incoming 

nucleotide.  

Mutation K947A 

Mutation of K947 to alanine showed the most drastic effect and therefore suggests 

an important role for this residue in polymerization. This residue is thought to interact 

with the α-phosphate of the incoming nucleotide and act to stabilize the developing 

negative charge of the transition state during nucleotide incorporation (45). The removal 

of the positively charge lysine at this position renders this residue unable to stabilize the 
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negatively charge of the transition state and therefore the rate of chemistry is reduced 6-

fold. Even more dramatically affected is the nucleotide binding which was reduced 

1,885-fold. This indicates that the interaction of the lysine at position 947 with the 

incoming nucleotide plays a key role in the affinity of the nucleotide.  The fidelity of this 

mutant was also drastically affected due to large changes in both the Km and the kcat for 

formation of mismatches. Overall this mutation had a very dramatic effect on nucleotide 

incorporation.  

Relating active site mutations to disease mutations 

The results of the characterization of these three mutants can be applied to gain a 

better understanding of not only the role of these residues in polymerization but also a 

better understanding of the very few clinically reported cases of mutations at these 

residues. Of these mutants, the Y951F mutation showed the least effect on kcat/Km as well 

as the least change in fidelity. This correlates with the disease mutations of Y951N that 

have been reported in two cases (61). In these cases, 2 patients in their young 20s showed 

symptoms of peripheral neuropathy. No other mutations at this residue have been 

reported. A slightly more affected patient was seen carrying the K947R mutation and 

presented symptoms of adult onset PEO at 18 years old (64). Our studies confirm the 

high importance of this residue and it perhaps makes sense that the only clinically 

tolerated mutation of this lysine is to an arginine. Our alanine mutant showed drastic 

effects on the specificity constant for nucleotide incorporation and the fidelity, however it 

is possible that the mutation to an arginine may be less detrimental, but this would need 

to be tested. Finally the most detrimental of the disease mutations of these residues is the 

report of the E895G mutation that was found as a compound heterozygote in a patient 

that died 36-hours after birth (58). Our results suggested a 1790-fold decrease in 
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specificity constant for this mutant. The clinical results suggest that this mutant was able 

to function as a compound heterozygote at least for the fetus to survive and for the baby 

to be delivered but that the mutation was indeed lethal in the newborn.  

Figure 3.7 displays the two proposals for a calculation of a “Mutation Severity 

Index” for POLG-related diseases that was described for the disease-associated mutations 

in Chapter 2. Using data presented for the mutants in this chapter, these analyses are an 

attempt to apply a quantitative basis to physiological effects of these mutations in Pol γ. 

Figure 3.7A displays the simple explanation where a slow enzyme making errors is not as 

detrimental to mtDNA as a fast enzyme. Under this assumption, the Mutation Severity 

Index value would be calculated as the fold change in discrimination for mutant divided 

by the fold change in kcat ((Dwt/Dmt)/(kcat,wt/kcat,mt)). In this case, a decrease in 

discrimination could be offset by a comparable decrease in kcat. This calculated Mutation 

Severity Index value is shown in Figure 3.7A for all mutants of this chapter, with the 

K947A mutant having the largest calculated value due to the large decrease in 

discrimination by the mutant (146-fold) compared to wild-type and the modest decrease 

in kcat (5-fold).  

An alternative interpretation of the relationship between the discrimination and 

kcat for disease-associated mutations presented in Chapter 2, was that Mutation Severity 

Index value would be better described by the product of the change in discrimination and 

change in kcat compared to wild-type (3.7B). In this case, a defect in discrimination by a 

mutant would be compounded by a defect in the kcat. In this case, all of the active site 

mutants studied in this chapter result in a calculated index value greater than 1 with 

K947A having the largest effect.  

Overall, the pre-steady state characterization of these active site residues indicate 

the importance of these residues in nucleotide binding, incorporation and pyrophosphate 
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release. It is not surprising that there are very few clinical reports of mutations at these 

residues and those that do occur are rare and exhibit a severe disease phenotype. 

 

 

Figure 3.7. Calculating a Mutation Severity Index for Pol γ mutants. Modified from 
Figure 2.13 (blue) to include mutants from this chapter (red). Bar graphs show the 
relationship between the fold changes in discrimination and kcat for mutants of Pol γ 
versus wild-type on a log scale. (A) The fold change in discrimination divided by the fold 
change in kcat. (B) The product of the fold change in discrimination and the fold change in 
kcat. 
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Chapter 4: Reconstitution of the Human Mitochondrial DNA Replisome 

4.1 INTRODUCTION 

The mtDNA replisome is comprised of a nuclearly-encoded DNA polymerase 

(polymerase gamma), single-stranded DNA binding protein (SSB), and a hexameric 

DNA helicase (16, 17). These proteins assemble at the replication fork and carry out 

replication of the mtDNA. DNA polymerase gamma (Pol γ) is a heterotrimer, containing 

the catalytic subunit (Pol γA) and a dimer of the processivity subunit (Pol γB). The 

holoenzyme of Pol γ catalyzes DNA synthesis in the 5’ to 3’ direction and also contains a 

3’ to 5’ exonuclease domain, which provides a proofreading function (22, 48). In vitro 

measurements of polymerization on a primer/template DNA substrate by Pol γ have 

reported polymerization rates of 45 s-1 and a Kd for DNA of 10 nM (49). SSB is a non-

catalytic protein that binds to single stranded DNA as a tetramer to protect the ssDNA 

from damage by nucleases. Ahead of Pol γ and SSB at the replication fork is the mtDNA 

helicase, which unwinds the downstream double stranded DNA to single stranded DNA 

by movement along the displaced strand in the 5’ to 3’ direction (75). The mtDNA 

helicase, which was discovered in a screen for mutations linked to autosomal dominant 

PEO, has structural similarity to phage T7 gp4 helicase/primase although no primase 

activity has been shown in human mtDNA helicase (31). The mtDNA helicase binds to 

DNA in a hexameric form and unwinds dsDNA in an NTP-dependent manner. Previous 

studies attempting to reconstitute the mtDNA replisome have failed to provide a 

quantitative analysis of helicase unwinding and polymerization at the replication fork. 

Rolling-circle replication assays (76, 77, 131), that monitor polymerization by 

incorporation of radiolabeled dCTP into the growing primer strand show polymerization 

following helicase unwinding but only a small fraction, ~ 0.1%, of the primers are 

extended. In published studies following the incorporation of the labeled dNTP into the 
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growing strand the signal was enhanced to allow observation of product even though only 

a small fraction of complexes were active.  Also of questionable significance, dsDNA 

unwinding assays have shown helicase dependent strand displacement of 20 base pairs 

(bp) of duplex, while an assay extending the duplex to a length of 55bp observed no 

strand displacement (77). It is questionable as to whether this assay provided a measure 

of true helicase unwinding activity, or simply strand displacement that could be due to 

binding of the helicase to the branch strand thereby destabilizing the unstable 20bp 

duplex. In order to successfully understand the mechanistic basis for disease mutations in 

the replisome machinery, it will be necessary to quantitatively reconstitute the replisome 

and understand the coordination between the helicase and the polymerase.  

This chapter reports the results of reconstituting the mtDNA replisome in high 

yield by successfully assembling the replication complex containing Pol γ and the 

helicase on a synthetic oligonucleotide that resembles a replication fork, as shown in 

Figure 4.1. The modeled complex in panel A of this figure shows the crystal structure of 

Pol γ with the DNA modeled by overlaying with the homologous T7 DNAP-DNA 

structure (45, 132). To represent the helicase, we used the structure of the highly 

homologous T7 gp4 helicase/primase (1Q57.pdb, (133)) and extended the DNA to 

resemble the replication fork. This model illustrates one plausible arrangement of the 

helicase and polymerase on the replication fork with the helicase at the base of the fork 

and the polymerase at the end of the primer strand and presents a more realistic view than 

the cartoons typically portrayed.  
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Figure 4.1.  Reconstitution of the mtDNA Replication fork. (A) In this figure, the T7 
Primase-Helicase structure, 1Q57.pdb (133) is shown to represent the mtDNA helicase in 
relation to Pol γ  at the replication fork. The Pol γ structure shows the Pol γA large 
subunit and the Pol γB small subunit bound to DNA primer and template strands, which 
have been modeled in using the crystal structure of T7 DNA polymerase, 1T7P.pdb (45, 
134). We have extended this stretch of DNA to display a possible configuration of the 
dsDNA downstream of the polymerase being unwound by the helicase. (B) The DNA 
substrate used for helicase and Pol γ assays consists of a 25-nucleotide primer strand 
annealed to a 73-nucleotide template strand. A branch strand of 84 nucleotides is 
annealed to the primer-template, giving a gap of 4 nucleotides before 44 base pairs of 
duplex DNA. 
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25-mer  5’GCCTCGCAGCCGTCCAACCAACTCA    GTAAAACGACGGCCAGTGCCAAGCTTGCATGCCTGCAGGTGGGG  84-mer
73-mer  3’CGGAGCGTCGGCAGGTTGGTTGAGTTCTCCATTTTGCTGCCGGTCACGGTTCGAACGTACGGACGTCCACCCC

        5’ACATGATAAGATACATGGATGAGTTTGGACAAACCACAAC

Branch
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Template



 98 

4.2 MATERIALS AND METHODS 

Cloning, expression and purification of Pol γA 

For the clone for Pol γA used in this section of work we truncated the first 25 

amino acids from the N-terminus (Δ25), to remove the mitochondrial localization 

sequence but retaining the polyglutamine tract that had been removed in previous studies 

on the Δ66 construct (55). As was the case in previous chapters, the clone for Pol γA 

contained a C-terminal His tag. The clone was constructed in pUC 19.1 and transferred to 

pBacPak9 by restriction digestion and subsequent ligation. Once in pBacPak9 the clone 

was then transferred to baculovirus by recombination with BacPak6 viral DNA 

(Clontech). Protein expression in SF9 cells and purification methods were followed as 

described previously (55) and in Chapter 2. Briefly, recombinant viral DNA was used to 

infect SF9 cells and cells were harvested 72 hours after infection. Protein was then 

purified from the cell pellet by stirring in Lysis buffer (0.32 M sucrose, 10 mM HEPES, 

pH 7.5, 0.5% NP-40, 3 mM CaCl2, 2 mM MgAc.4H2O, 0.1 mM EDTA and protease 

inhibitor cocktail from A. G. Scientific Inc.), centrifugation at 1,500xg for 10 minutes, 

slowly increasing the salt concentration to 500 mM KCl, and ultracentrifugation at 

31,000 x g RCF for 30 minutes. The supernatant was then passed over a Ni-NTA column 

(Qiagen), followed by a cation exchange SP Sepharose column (GE Healthcare). Lastly, 

as a modification to our previously described procedure in Chapters 2 and 3, an anion 

exchange HiTrap Capto Q column (GE Healthcare) was used for a final purification step. 

Fractions from the SP Sepharose column were pooled and loaded onto the HiTrap Capto 

Q column. After washing with Buffer A (20 mM HEPES pH 7.5, 30 mM KCl, 1 mM 

EDTA, 5% glycerol, 5 mM β-ME), the protein was eluted with a 0-100% linear gradient 

of Buffer B (20 mM HEPES pH 7.5, 700 mM KCl, 1 mM EDTA, 5% glycerol, 5 mM β-

ME) over 16 column volumes collecting 1 ml fractions. After analysis with 8% SDS-
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PAGE, the protein was pooled, concentrated with a Centricon ultrafiltration unit (50KDa 

MWCO, Millipore), and dialyzed into Storage Buffer (50 mM Tris-HCl pH 7.5, 100 mM 

NaCl, 2.5 mM EDTA pH 8.0, 50% glycerol, 1 mM DTT). Protein was then divided into 

small aliquots, flash frozen in liquid nitrogen and stored at -80°C. All experiments 

containing Pol γ were performed with a reconstituted holo-enzyme formed by pre-

incubating with a 4:1 molar excess of Pol γB over Pol γA.  All references to Pol γ refer to 

the reconstituted holo-enzyme.  
 

Cloning, expression and purification of Pol γB  

The Pol γB small subunit was expressed and purified as described previously (55) 

and in Chapter 2. The Pol γB protein lacks the first 25 amino acids from the N-terminal 

end, thus removing the mitochondrial localization sequence, and is C-terminal His 

tagged.  

 

Cloning, expression and purification of mtDNA Helicase  

The human mitochondrial DNA Helicase with an N-terminal His tag and lacking 

the first 43 amino acids, was cloned into pcIts ind+ plasmid and expressed in C2984H 

cells. The large-scale expression (6 L) was induced at an OD of 4.7 with temperature 

change to 37°C and addition of Nalidixic acid to a final concentration of 50 µg/ml 

(Figure 4.2). The cultures were then grown overnight to a final OD of 13.7 and pelleted at 

6,500 x g for 20 minutes at 4°C.  
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Figure 4.2.  Growth kinetics of E. coli expressing mtDNA Helicase. Cultures of NEB 
Turbo E. coli expressing mtDNA helicase were grown at 30°C to an induction density of 
4.7 OD600/mL which was reached in 300 minutes (filled circles). Cultures were induced 
with a temperature shift to 37°C and the addition of 50 µg/ml nalidixic acid and grown 
overnight (filled circles) before harvesting by centrifugation.  

 

For protein purification, the cell pellet was re-suspended in 5 volumes (5 mL/gm) 

of Lysis buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 20 mM imidazole, 5 mM 

MgCl2.6H2O, 0.1 mM PMSF, 10% Glycerol, 0.5% Nonidet-P40) for 20 minutes. A 

Dounce A homogenizer was used to ensure uniform suspension. Lysozyme was then 

added to the suspension to a final concentration of 50 µg/ml and stirred on ice for 15 

minutes. The NaCl concentration was then brought to 500 mM and 1 mM ATP was 

added to the cell lysate before sonicating for 15 minutes. This was followed by 

centrifugation to pellet the debris at 55,000 x g RCF for 30 minutes at 4°C in a Beckman 

45Ti. The supernatant then incubated for 20 minutes on ice with Ni-Sepharose beads (GE 

Healthcare) pre-equilibrated with Lysis buffer + 1 mM ATP + 500 mM NaCl. The Ni-

Sepharose beads were then pelleted at 700 x g RCF for 20 minutes at 4°C. The pelleted 
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beads and minimal residual supernatant volume were transferred to a jacketed column 

with water bath set to 4°C and allowed to pack. The column (Figure 4.3) was then 

washed with 10 column volumes of Lysis buffer + 1 mM ATP + 500 mM NaCl. Next, the 

column was washed with 5 column volumes of Nickel Column Wash 1 (30 mM Tris-HCl 

pH 7.5, 20% Glycerol, 0.5% Nonidet-P40, 1 mM β-ME, 5 mM MgCl2.6H2O, 0.1 mM 

PMSF, 0.2 mM ATP, 0.5 M NaCl, 20 mM imidazole) followed by a wash with Nickel 

Column Wash 2 (30 mM Tris-HCl pH 7.5, 20% Glycerol, 0.5% Nonidet-P40, 1 mM β-

ME, 5 mM MgCl2.6H2O, 0.1 mM PMSF, 0.2 mM ATP, 350 mM NaCl, 20 mM 

imidazole). The protein was then eluted with a linear gradient from 0-100% Nickel 

Column Elution Buffer (30 mM Tris-HCl pH 7.5, 20% Glycerol, 0.5% Nonidet-P40, 1 

mM β-ME, 5 mM MgCl2.6H2O, 0.1 mM PMSF, 0.2 mM ATP, 350 mM NaCl, 250 mM 

imidazole) over 5 column volumes. Fractions were collected and the peak fractions were 

pooled for further purification on 3 tandem columns (Figure 4.4): Q-Sepharose (1 mL) 

followed by two Heparin Sepharose columns (1 mL each). Columns were washed with 10 

column volumes of Heparin Column Buffer A (30 mM Tris-HCl pH 7.5, 20% Glycerol, 

0.5% Nonidet-P40, 1 mM β-ME, 5 mM MgCl2.6H2O, 0.1 mM PMSF, 350 mM NaCl, 

0.2 mM ATP) and the Q-column was removed. The protein was then eluted off of the 

Heparin Sepharose columns with a steep gradient to Heparin Column Buffer B (30 mM 

Tris-HCl pH 7.5, 20% Glycerol, 0.5% Nonidet-P40, 1 mM β-ME, 5 mM MgCl2.6H2O, 

0.1 mM PMSF, 1 M NaCl, 0.2 mM ATP). The helicase peak eluted at about 550-600 mM 

NaCl and fractions were pooled, concentration estimated by Bradford assay, aliquoted 

and flash frozen in liquid nitrogen. Protein was stored at -80°C until used in assays. 
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Figure 4.3 Nickel sepharose column purification of mtDNA helicase. (A) Nickel 
sepharose column chromatography of mtDNA helicase from cell lysate. Absorbance at 
290 nm (magenta) was monitored to detect protein and avoid any additional absorbance 
from the presence of ATP in the buffer. After loading onto the Nickel column, mtDNA 
helicase was eluted from the column with a linear gradient from 0-100% Nickel Column 
Elution Buffer (green). (B) SDS-PAGE analysis of the loaded lysate (Load), flow-through 
(FT), wash and fractions 3-10 confirm the presence of mtDNA helicase in fractions 4-7. 
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Figure 4.4 Tandem column purification of mtDNA helicase. Tandem Q sepharose and 
heparin sepharose column chromatography of mtDNA helicase from nickel sepharose 
fractions. Absorbance at 290 nm (magenta) was monitored to detect protein and avoid 
any additional absorbance from the presence of ATP in the buffer. After loading onto the 
tandem columns, the Q sepharose column was removed and the mtDNA helicase was 
eluted from the heparin columns with a linear gradient from 0-100% Heparin Column B 
Buffer (green). (B) SDS-PAGE analysis of the loaded sample (Load), flow-through (FT), 
wash and fractions 3-6 confirm the presence of mtDNA helicase in fractions 3-5. 
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Cloning of mtDNA Helicase trimer 

In an attempt to overcome the difficulties in assembly of the hexameric helicase, 

the original Δ43helicase gene in the pcIts expression plasmid was altered to express two 

(mtHelicase dimer) or three helicase (mtHelicase trimer) genes in tandem with a flexible 

linker domain between each subunit. This technique was adapted from work on other 

hexameric DNA translocases (135-139). A flow chart of this cloning process is outlined 

in Figures 4.5-4.8. The first step in constructing these clones was to add two additional 

restriction sites at the 3’ end of the mtHelicase gene (Figure 4.5). For this, mtHelicase 

oligomer #1 and #2 (Table 4.1) were used in a PCR reaction to generate a 736 bp 

amplicon that was then restriction digested with NotI/NcoI (NEB). This digested 

amplicon was then ligated to the pcIts_Δ43helicase plasmid, which had also been digested 

by NotI/NcoI.  
  



 105 

Table 4.1 Oligomers for construction of mtHelicase trimer 

Oligomer # 	
   	
  	
  
1 5'-AGATATGCGGCCGCTTACTTAATGCTAGCATAATAACTGAATTCCTTTGAACGCTTGGAGGTGT-3' 
2 5'-TCATGCTGACACAGTTTGCCGA-3' 
3 5'-TGTATATCTCATATGGGTACCACTCTCCAAGCCTTGGATATGCCAGTGTTGCCTGTAA-3' 
4 5'-TACAATATAAGCTTGCTAGCCTTTGAACGCTTGGAGGTGTCTGGCTGGTCGGGA-3' 
5 5'-TACAATATAAGCTTGCGGCCGCTTACTTTGAACGCTTGGAGGTGTCTGGCTGGTCGGGA-3' 

6 
5'-
TATGGAATTCGGCGGCGGTTCCGAGGGCGGTGGTTCAGAAGGCGGTTCCGGTGGTGGCGGTAGCGAAG-
3' 

7 
5'-
CTGCCACCACCTTCGCTACCGCCACCACCGGAACCGCCTTCTGAACCACCGCCCTCGGAACCGCCGCCGA
ATTCCA-3' 

8 5'-GTGGTGGCAGCGAAGGTGGCAGCGGTGGTGGTAGCGAAGGCGGTAGCGGTGGTAGCGAAGGTGGCG-
3' 

9 5'-GTACCGCCACCTTCGCTACCACCGCTACCGCCTTCGCTACCACCACCGCTGCCACCTTCG-3' 

10 
5'-
TATGGCTAGCGGCGGCGGTTCCGAGGGCGGTGGTTCAGAAGGCGGTTCCGGTGGTGGCGGTAGCGAAG-
3' 

11 
5'-
CTGCCACCACCTTCGCTACCGCCACCACCGGAACCGCCTTCTGAACCACCGCCCTCGGAACCGCCGCCGC
TAGCCA-3' 

 *Restriction sites are in bold. Stop codon is underlined. 
   

A copy of the Δ43helicase gene was amplified from the original pcIts_Δ43helicase 

plasmid in a PCR reaction using Primer #3 and #4 (Figure 4.6A). These primers included 

sequences to add NdeI and KpnI restriction sites to the 5’ end of the gene and HindIII and 

NotI sites to the 3’ end of the gene. The PCR product was then cut with NdeI/HindIII and 

ligated with a NdeI/HindIII digest of an empty pUC19.1 plasmid. This resulted in what 

we refer to as “Gene 2 minus linker”. The same process was repeated with Primers #3 

and #5 to generate “Gene 3 minus linker” but this time Primer #5 added the sequence 

coding for a stop codon at the 5’end of the gene before the HindIII and NotI restriction 

sites (Figure 4.7A).  
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The DNA sequence coding for the 44 amino acid linker sequence between gene 1 

and gene 2 of the helicase  trimer  

(EFGGGSEGGGSEGGSGGGGSEGGGSEGGSGGGSEGGSGGSEGGG)  

was constructed by annealing the two oligomers #6 and 7 and separately annealing 

oligomers #8 and 9 by heating to 95°C for 5 minutes in Annealing Buffer (10 mM Tris-

HCl pH 7.5, 50 mM NaCl, 1 mM EDTA) and then allowing to cool slowly to room 

temperature. The two duplexes were then ligated to give the full sequence for the 44 

amino acid linker between helicase gene 1 and helicase gene 2 of the trimer (“linker 1-2”) 

(Figure 4.6B).  The sequence of this “linker 1-2” was engineered to contain an NdeI 

digested overhang at the 3’ end and a Acc65I digested overhang at the 5’end. This was 

then able to be ligated with a NdeI/Acc65I digested “Gene 2 minus linker” to result in 

“Gene 2 plus linker” (Figure 4.6B). This process was then repeated for the linker to insert 

between helicase gene 2 and helicase gene 3 of the trimer. Oligomers #10 and 11 were 

annealed and separately oligomers #8 and #9 from above were annealed. The two 

duplexes of #10/11 and #8/9 were ligated and resulted in the full sequence for the linker 

between gene 2 and gene 3 of the helicase trimer (“linker 2-3”).  

(EFGGGSEGGGSEGGSGGGGSEGGGSEGGSGGGSEGGSGGSEGGG)   

The sequence of this “linker 2-3” was also engineered to contain an NdeI digested 

overhang at the 3’ end and a Acc65I digested overhang at the 5’end. This was then able 

to be ligated with a NdeI/Acc65I digested “Gene 3 minus linker” to result in “Gene 3 plus 

linker” (Figure 4.7B). Sequences were confirmed for “Gene 3 plus linker” in the pUC19 

plasmid and the “Gene 2 plus linker” in a separate pUC19 plasmid. The following double 

restriction digests were made to prepare for the final ligation of the 3 genes: EcoRI/NotI 

digest of pcIts_Δ43helicase; EcoRI/NheI digest of pUC19_Gene2PlusLinker; NheI/NotI 

digest of pUC19_Gene3PlusLinker. A tripartite ligation (Figure 4.8) was performed of 
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these 3 digests to form the final clone containing 3 helicase genes in tandem each 

separated by a 43 amino acid flexible linker.  

 

 

Figure 4.5 Cloning of mtHelicase trimer – adding gene insertion sites. Additional 
insertion sites were added to the expression plasmid pcIts containing the mtDNA helicase 
gene.  
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Oligomer #2
PCR,NotI/NcoI 
digest, ligation
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Figure 4.6 Cloning of mtHelicase trimer – construction of gene 2. (A) Scheme to transfer 
mtHelicase gene to cloning vector pUC19.1 while adding KpnI restriction site to 5’-end 
of gene. (B) Scheme to add Linker 1-2 to 5’-end of gene 2 by digestion with NdeI and 
KpnI. 
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Figure 4.7 Cloning of mtHelicase trimer – construction of gene 3. (A) Scheme to transfer 
mtHelicase gene to cloning vector pUC19.1 while adding KpnI restriction site to 5’-end 
of gene and NotI site to 3’-end of the gene. (B) Scheme to add Linker 2-3 to 5’-end of 
gene 3 by digestion with NdeI and KpnI. 
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Figure 4.8 Cloning of mtHelicase trimer – tripartite ligation. Scheme to ligate genes 1, 2 
and 3 of the mtDNA Helicase trimer.  
 

Preparation of DNA substrates 

Oligonucleotides were synthesized by Integrated DNA Technologies (IDT, Inc.) 

and PAGE purified using a 10-15% polyacrylamide denaturing gel. To form the 25/73/84 

DNA substrate a 25-nt primer strand (5’ GCC TCG CAG CCG TCC AAC CAA CTC A 
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3’), 73-nt template strand (5’ CCC CAC CTG CAG GCA TGC AAG CTT GGC ACT 

GGC CGT CGT TTT ACC TCT TGA GTT GGT TGG ACG GCT GCG AGG C 3’) and 

84-nt branch strand (5’ ACA TGA TAA GAT ACA TGG ATG AGT TTG GAC AAA 

CCA CAA CGT AAA ACG ACG GCC AGT GCC AAG CTT GCA TGC CTG CAG 

GTG GGG 3’) were annealed. Oligomers were annealed by heating to 95°C for 5 minutes 

and then allowing to cool slowly to room temperature. DNA substrates were 5’-32P-

labeled, as noted, using T4 polynucleotide kinase (Invitrogen).  

 

Table 4.2 Substrates for replisome assays 

25/73(-br)   
   25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA 

   73-mer 
3’-CGGAGCGTCGGCAGGTTGGTTGAGTTCTCCATTTTGCTGCCGGTCACGGTTCG 
AACGTACGGACGTCCACCCC 

25/73/84   
   25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA 

   73-mer 
3’-CGGAGCGTCGGCAGGTTGGTTGAGTTCTCCATTTTGCTGCCGGTCACGGTTC 
GAACGTACGGACGTCCACCCC 

   84-mer 
5'-ACATGATAAGATACATGGATGAGTTTGGACAAACCACAACGTAAAACGACG 
GCCAGTGCCAAGCTTGCATGCCTGCAGGTGGGG   

r25/73/84 	
   	
  
   r25-mer 5'-GCCUCGCAGCCGUCCAACCAACUCA 

   73-mer 
3’-CGGAGCGTCGGCAGGTTGGTTGAGTTCTCCATTTTGCTGCCGGTCACGGTT 
CGAACGTACGGACGTCCACCCC 

   84-mer 
5'-ACATGATAAGATACATGGATGAGTTTGGACAAACCACAACGTAAAACGACGGC 
CAGTGCCAAGCTTGCATGCCTGCAGGTGGGG   

25/73/84agag   
   25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA 

   73-mer(agag) 
3’-CGGAGCGTCGGCAGGTTGGTTGAGTAGAGCATTTTGCTGCCGGTCACGGTTCG 
AACGTACGGACGTCCACCCC 

   84-mer 
5'-ACATGATAAGATACATGGATGAGTTTGGACAAACCACAACGTAAAACGACGG 
CCAGTGCCAAGCTTGCATGCCTGCAGGTGGGG   
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Table 4.2 Continued Substrates for replisome assays 
 
25/73/84-8ntgap 	
  

   25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA 

   73-mer 
3’-CGGAGCGTCGGCAGGTTGGTTGAGTTCTCCATTTTGCTGCCGGTCACGGT 
TCGAACGTACGGACGTCCACCCC 

   84-mer 
5'-ACATGATAAGATACATGGATGAGTTTGGACAAACCACAACCAGGAACGACG 
GCCAGTGCCAAGCTTGCATGCCTGCAGGTGGGG   

25/89/84-20ntgap 	
  
   25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA 

   89-mer 
3'-CGGAGCGTCGGCAGGTTGGTTGAGTAGAGGAGAAGAGAGGGAGAGCATTTTG 
CTGCCGGTCACGGTTCGAACGTACGGACGTCCACCCC 

   84-mer 
5'-ACATGATAAGATACATGGATGAGTTTGGACAAACCACAACGTAAAACGACGGC 
CAGTGCCAAGCTTGCATGCCTGCAGGTGGGG   

25/89/84-20ntgap with primer on branch 
   25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA 

   89-mer 
3'-CGGAGCGTCGGCAGGTTGGTTGAGTAGAGGAGAAGAGAGGGAGAGCATTT 
TGCTGCCGGTCACGGTTCGAACGTACGGACGTCCACCCC 

   84-mer 
5'-ACATGATAAGATACATGGATGAGTTTGGACAAACCACAACGTAAAACGACG 
GCCAGTGCCAAGCTTGCATGCCTGCAGGTGGGG   

   20-mer 3'-TGTACTATTCTATGTACCTA 
	
   	
   	
  
*5' branch overhang is shown in bold. Single stranded template gap is underlined. 
	
    

 

Helicase Unwinding Assays 

Helicase unwinding of the branched DNA substrate shown in Figure 4.9 was 

monitored by 5’-32P-labeling of the 84-nt branch strand and monitoring the conversion of 

double to single strand DNA on a gel under non-denaturing conditions. For the reaction 

in the absence of polymerase, the helicase (20 nM hexamer) was pre-incubated with 15 

nM 25/73/84 DNA substrate at 37°C for 5 minutes in the Reaction Buffer (20 mM Tris-

HCl pH 7.5, 100 mM NaCl, 10% glycerol, 100 µg/ml BSA, and 4 mM DTT). The 

reaction was started by mixing with 5 mM “free” MgCl2, 3 mM ATP and 150 nM 

unlabeled 84-nt branch strand DNA to serve as a trap. For the reaction in the presence of 
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the polymerase, 20 nM helicase hexamer was pre-incubated with 15 nM 25/73/84 DNA 

substrate, 15 nM Pol γA, 60 nM Pol γB, and 0.5 mM EDTA at 37°C for 5 minutes in 

reaction buffer. The reaction was then started by the addition of 5 mM “free” MgCl2, 3 

mM ATP, 250 µM dATP, 250 µM dGTP, and 150 nM unlabeled 84-nt branch strand 

DNA to serve as a trap. At each time point, the reaction was stopped by the addition of 

the Stop Solution (90 mM EDTA, 30% glycerol, 1% SDS, 0.25% Xylene Cyanol, 0.25% 

Bromophenol Blue). Single stranded DNA products were resolved from the duplexed 

DNA substrate on a 10% polyacrylamide non-denaturing gel. The concentration of 

product formed was calculated as the percentage of ssDNA at each time point multiplied 

by the initial DNA concentration.  
 

Replisome Assays 

A branched DNA substrate was used in order to measure polymerase extension 

based on helicase unwinding. This 25/73/84 DNA substrate, shown in Figure 4.1B, 

consists of a 25-nt primer strand, 73-nt template strand and an 84-nt branch strand. In the 

presence of the branch strand, the polymerase can extend the primer by only 4 

nucleotides while displacement of the branch by the helicase will allow formation of a 

73mer. To measure full extension, the 25-nt primer strand was 5’-32P-labeled using T4 

polynucleotide kinase (Invitrogen) and then annealed to the 73-nt template strand along 

with the 84-nt branch strand by heating to 95°C for 5 minutes and then slowly cooling to 

room temperature. In the “Polymerase Start” reaction setup, 50 nM 25/73/84 DNA 

substrate was pre-incubated with 500 nM helicase hexamer at 37°C for 30 or 60 minutes 

in reaction buffer containing 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM “free” 

MgCl2, 10% glycerol, 100 µg/ml BSA, 4 mM DTT and 3 mM ATP. After pre-incubation, 

the reaction was then started by mixing with 100 nM Pol γA, 400 nM Pol γB and all 4 
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dNTPs at 250 µM each. Alternatively in the “dNTP Start” reaction setup, 50 nM 

25/73/84 DNA substrate was pre-incubated with 500 nM helicase hexamer, 100 nM Pol 

γA, 400 nM Pol γB, 250 µM dATP  and 250 µM dGTP at 37°C for 30 minutes in the 

reaction buffer. The reaction was then started by mixing dCTP and TTP at 250 µM each. 

At each time point, the reaction was stopped by mixing with Stop Solution containing, 

166 mM EDTA, 0.25% Xylene Cyanol and 0.25% Bromophenol Blue. The reaction 

products were resolved on a 15% polyacrylamide denaturing gel and the amount of 

product formed at each time point was analyzed using the ImageQuant software (GE 

Healthcare). The concentration of product formed was calculated as the percentage of 

73mer product multiplied by the initial DNA concentration. 

 

4.3 RESULTS 

Kinetics of helicase unwinding 

Previous studies have not been able to show unwinding of more than 20 base pairs 

by the mtDNA helicase in a helicase unwinding assay (77).  To probe this inconsistency, 

we optimized a radiometric assay to monitor helicase unwinding of 44 base pairs of 

duplexed DNA. After pre-incubation of the helicase and the 25/73/84 DNA substrate, the 

unwinding reaction was started by the addition of ATP and Mg2+. It was necessary to add 

excess unlabeled 84-nt branch strand to the reaction to serve as a trap and prevent re-

annealing of the unwound radiolabeled strand. The three necessary controls shown in 

Figure 4.9A explore the behavior of the dsDNA substrate in the absence of helicase, the 

re-annealing of the heat denatured DNA substrate over the time course of the reaction and 

also the re-annealing of the heat denatured DNA substrate during loading onto the native 

polyacrylamide gel. There is a small amount of re-annealing seen in these controls. 
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Helicase unwinding of this 44 base pair substrate is slow in the absence of polymerase 

with the formation only 0.12 nM product after 60 minutes of reaction time. The kinetics 

of unwinding with the helicase alone is displayed in Figure 4.9B; the data were fit to a 

linear equation giving an unwinding rate of 0.002 min-1.  

 

 

Figure 4.9. Pol γ stimulates DNA helicase activity. (A) Unwinding of the branch strand 
was monitored by 32P-labeling the 5’ end of the 84-mer branch strand. A no enzyme 
control shows the duplex DNA before enzyme was added. Controls for re-annealing of 
ssDNA were heated to 95°C for 5 minutes at the start of the reaction time course, and 
also heated to 95° for 5 minutes just before loading on the gel. For the reaction, 20 nM 
helicase hexamer was pre-incubated with 15 nM primer-template-branch DNA, 15 nM 
Pol γ, and 0.5 mM EDTA for 5 minutes. The reaction was started by the addition of 5 
mM “free” Mg2+, 3 mM ATP, 250 µM dATP, 250 µM dGTP, and 150 nM unlabeled 84-
mer branch strand DNA. ssDNA products unwound by helicase were resolved on a non-
denaturing 10% polyacrylamide gel. The reaction was performed at 37°C and the reaction 
buffer contained 20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 5 mM MgCl2, 10% Glycerol, 
100 µg/ml BSA, 4 mM DTT, and 3 mM ATP. All concentrations noted are final 
concentrations after mixing. (B) The time course of ssDNA product formation is plotted 
and fit to a linear equation giving a slope of 0.037 min-1 in the presence of the Pol γ 
(filled circles) and 0.002 min-1 in the absence of Pol γ (open circles). 
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Kinetics helicase unwinding in the presence of polymerase. 

Helicase unwinding assays performed in the presence of the polymerase show an 

18.5 fold increase in the rate of unwinding. In these assays we used the same 

experimental setup described above when monitoring unwinding of the helicase alone. To 

test the effect of Pol γ on helicase unwinding, Pol γ was included in the pre-incubation 

and the reaction was started with the addition of ATP, Mg2+, dATP and dGTP. The two 

dNTPs were included allows the polymerase to extend the primer by five nucleotides 

based on the sequence of the 73-mer template DNA. The 10% native polyacrylamide gel 

from this assay is shown in Figure 4.9A and displays the formation of ssDNA product 

over the time course of 30 minutes. These data are then plotted in Figure 4.9B (filled 

circles) as the concentration (nM) of product formed over time in the presence of helicase 

and Pol γ. A linear fit to these data gives a helicase unwinding rate of 0.037 min-1 in the 

presence of the polymerase. This marked increase in unwinding rate in the presence of 

the polymerase suggests that the polymerase stimulates unwinding by the helicase, 

perhaps by assisting in loading of assembly of the helicase on the branch strand. In a 

follow-up experiment where all 4 dNTPs were added to the reaction mix in order to allow 

full length extension of the primer by Pol γ there was no significant difference seen in the 

rate of unwinding (data not shown). The kinetics support the hypothesis that the 

polymerase aids in assembly or loading of the helicase, which appears to be rate-limiting 

in the assay.  
 

Kinetics of mtDNA Replisome 

In order to reconstitute the mtDNA replisome and monitor polymerization 

following helicase unwinding, we again used the branched DNA substrate shown in 

Figure 4.1B. In this radiometric assay, we are able to monitor extension of the 5’-32P-
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labeled 25-nt primer strand by the polymerase. Extension of the primer to 29-nt by Pol γ 

is unimpeded, but further extension to the full length 73-nt is dependent on displacement 

of the 84-nt branch strand. As shown in Figure 4.10A, Pol γ is able to rapidly extend the 

25-nt primer to the full-length product in the absence of the branch strand (-br) in less 

than 10 seconds. Alternatively, with the branch strand present and in the absence of the 

helicase (-hel), after 10 minutes the polymerase can extend the primer by 4 nucleotides 

right up to the fork junction. There is a small amount of product formed showing 

polymerization up to ~ 38-nt into the forked structure, but after 10 minutes there is no 

significant formation of full length product indicating that the polymerase cannot 

completely displace the branch strand on its own. When the helicase is pre-incubated (for 

30 or 60 minutes) with the branched DNA substrate and then mixed with the polymerase 

and dNTPs (Pol Start), there is formation of full length 73-mer product over the time 

course of 10 minutes. The time course of product formation after a 30 minute pre-

incubation is plotted in Figure 4.10B and a fit of the data to a single exponential equation 

gives a rate of 0.0015 s-1 with an amplitude of 33 nM (66% efficiency). As is displayed 

on the gel in Figure 4.10A, there is no significant difference in rate or amplitude of 

product formation when the incubation time is extended to 60 minutes.  
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Figure 4.10. Polymerase extension is dependent on helicase unwinding of the branch 
strand.  

In all cases DNA, Pol γ  and dNTPs are present at a final concentration of 50 nM, 100 nM 
and 250 µM each, respectively. (A) Primer extension was monitored by 32P-labeling the 
5’ end of the 25-mer primer strand. At each time point the reaction was quenched in a 
solution of 500 mM EDTA and formamide loading dye solution, and products were then 
separated on a denaturing 15% polyacrylamide gel. For the –branch strand control (-br), 
primer-template DNA (25/73) lacking the branch strand was mixed with Pol γ and all 4 
dNTPs. For the –helicase (-hel) control, primer-template-branch DNA (25/73/84) was 
mixed with Pol γ and all 4 dNTPs. To analyze polymerization following unwinding of the 
branch strand, primer-template-branch DNA was pre-incubated with 500 nM helicase 
hexamer for 30 or 60 minutes, then mixed with Pol γ and all 4 dNTPs (Pol Start). 
Alternatively in a dNTP Start, primer-template-branch DNA was pre-incubated with 500 
nM helicase hexamer, Pol γ, dATP and dGTP for 30 minutes, then mixed with dCTP and 
TTP to start the reaction. All concentrations noted are final concentrations after mixing. 
(B) Data from gel shown in panel A Polymerase Start, 30 minute pre-incubation. 
Formation of 73-mer product was plotted over time and fit to a single exponential 
equation resulting in a rate of 0.0015 s-1 with an amplitude of 33 nM. (C) Data from gel 
shown in panel A dNTP Start, 30 minute pre-incubation. Formation of 73-mer product 
was plotted over time and fit to a single exponential equation resulting in a rate of 0.0083 
s-1 and an amplitude of 39 nM. 
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In an alternative pre-incubation strategy, we performed a “dNTP Start” where the 

25/73/84 DNA substrate was pre-incubated with helicase, Pol γ, dATP and dGTP for 30 

minutes. This allowed the polymerase to extend the 25-nt primer to 29 nucleotides as is 

shown in the 0 time point on the gel in Figure 4.10A – dNTP Start. After mixing in the 

two remaining dNTPs (dCTP and TTP), extension of the 29-nt primer is dependent on 

helicase unwinding of the branch strand. The time course of product formation under 

these conditions is plotted in Figure 4.10C and a fit to a single exponential equation gave 

a rate of 0.0083 s-1 and an amplitude of 39 nM. This reaction proceeds to ~80% 

completion with a half-life of 84 seconds. As was suggested in the helicase assays, it 

appears that pre-incubation with the helicase and the polymerase results in a faster 

unwinding rate that is likely due to the ability of Pol γ to assist with assembly and/or 

binding of the helicase.  
 

Alternative assembly strategies 

Preincubation of the helicase, polymerase and DNA under a variety of conditions 

and for varying lengths of time failed to further increase the rate or amplitude of the 

observed extension reaction (data not shown). Below is a summary of the alternative 

assembly strategies that were explored in an attempt to reach a point where helicase 

unwinding and polymerization are the rate limiting steps.  

In an attempt to optimize assembly of the replisome we examined the time 

dependence of pre-incubation by pre-incubating for up to 3 hours. We observed that 

longer pre-incubation times resulted in less overall product formed, perhaps due to a 

contaminating exonuclease. We also examined the reactions under various helicase 

concentrations with the hypothesis that high concentrations of helicase may be inhibitory 
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due to binding on the duplex DNA. We tested a range of helicase concentrations (data not 

shown) from 67 nM helicase hexamer to 3 µM helicase hexamer and saw no significant 

difference in amount of total product formed. Other attempts were made to optimize the 

buffer conditions by varying the Mg2+ concentration (5 - 20 mM free Mg2+), NaCl 

concentration (20 - 100 mM); salt ion used (50 - 150 mM KOAc), and buffer pH (6.5 – 

8.5). We found that the optimal buffer conditions to be as reported above (5 mM free 

Mg2+, 100 mM NaCl, no significant change with KOAc, and pH 7.5).  We observed the 

effects of different NTPs for example UTP showed no significant increase in product 

formed compared to ATP. Also in the absence of ATP, there was still 73mer product 

formed, due to the ability of the helicase to utilize dNTPs (131). However, interestingly 

ATP-γ-S was shown to be an inhibitor resulting in no 73mer product formation even in 

the presence of dNTPs.  

As an alternative attempt to increase assembly of the replisome at the forked 

DNA substrate we used a 25-nt RNA primer instead of the 25-nt DNA primer. This was 

working under the hypothesis that in vivo the helicase initiates replication from an RNA 

primer at the origin of H-strand replication (140, 141). The use of the RNA primer 

resulted in a lower amplitude of product formation and no significant increase in rate.    

Additionally, we modified the DNA substrate to have an 8- or 20-nt gap instead 

of the 4-nt gap that is present on the 25/73/84 DNA substrate. Based on our model in 

Figure 1, it appears that Pol γ and the helicase can be in close proximity to each other in 

the orientation that we have placed them in, but it is possible that a larger gap between 

the two would be necessary for assembly of the replisome. With the larger gaps in our 

synthetic replication fork (8- or 20-nt), again we saw no appreciable difference in the rate 

of product formation. 
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Finally, we attempted to increase assembly of the helicase by cloning and 

expressing covalently linked dimers and trimers of the helicase. The purification of these 

multimers was complicated by proteolysis of the multimers leading to monomers in the 

purification. A purified fraction containing 4% mtHelicase trimers (remainder was 

cleaved to dimer and monomeric forms) was tested in the replisome assay on the 

25/73/84 DNA substrate and there was no apparent polymerization following unwinding 

of the branch strand. Expression and purification methods for the helicase trimer and 

dimer need to be optimized in the future to obtain intact helicase multimers to determine 

the effectiveness of this technique.  

4.4 DISCUSSION 

Pol γ  stimulates DNA helicase activity 

We have successfully shown unwinding of 44 base pairs of duplex DNA by the 

mtDNA helicase and demonstrated that this unwinding rate is increased in the presence 

of Pol γ. Previous studies have suggested unwinding of 20bp by mtDNA helicase but 

paradoxically have failed to show unwinding of a 55bp substrate (77). It is possible that 

the observed formation of the ssDNA product was attributable to destabilization of the 

weak 20bp substrate by binding of the helicase to the branch strand, not unwinding 

activity. This would explain the lack of unwinding seen with a more stable 55bp 

substrate. The uncertainty of what was being measured in these assays was not taken into 

account in several similar assays, such as one used to screen multiple disease mutations 

of the helicase (142). In this case, the DNA substrate for the helicase-unwinding assay 

only contained 18bp for unwinding and thus the assay may not measure helicase activity 

at all. In order to accurately observe and quantify the effects of disease mutations one 
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must first establish an accurate assay for helicase unwinding and know what is being 

measured.  
 

Kinetics of mtDNA Replisome 

We have successfully assembled the mtDNA replisome at our forked DNA 

substrate. Our results show polymerization that is dependent on unwinding of the branch 

strand DNA by the helicase. By pre-incubating the helicase and polymerase with the 

DNA substrate, we have achieved helicase unwinding followed by polymerization that 

proceeds to ~80% completion at a rate of 0.0083 s-1. However, the observed unwinding 

rates that we obtained appear to be limited by initiation of unwinding by either assembly 

or binding of the helicase because we fail to see any intermediates in the reaction. In the 

Pol Start reactions, the gel shown in Figure 4.10A shows conversion of the 25-mer to the 

29-mer and then further conversion to the 73-mer that is dependent on helicase 

unwinding. However, there are no significant intermediate bands between the 29-mer and 

the 73-mer suggesting that once the helicase is assembled there is rapid unwinding 

followed by rapid polymerization. Our single exponential rates of product formation are 

therefore limited by the rate of initiation. The same is true for the dNTP Start reaction 

where the starting material is at the 29-mer and once initiated, we see rapid conversion to 

73-mer products.  
 

This project will require continued efforts to achieve a higher fraction of assembly 

during pre-incubation. This would allow us to start the reaction and simultaneously 

measure rates of primer extension with rates of ATP hydrolysis by the helicase to 

quantify the coupling of ATP turnover during unwinding. Successful initiation of the 

replisome during pre-incubation with our assay will also afford measurements of the 
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effects of single point mutations on the polymerase and helicase as they act at the 

replication fork. Our previous studies have examined mutations at the active site of Pol γ 

(55, 143) and a reconstituted replisome fork will allow for the examination of residues 

outside of the Pol γ active site that are important in the coordination between the 

polymerase, helicase and mtSSB. This will ultimately provide a better understanding of 

the mechanistic basis for the physiological consequences of mitochondrial disease 

mutations.  
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Chapter 5: Characterization of HIV Reverse Transcriptase Nucleotide 
incorporation on a DNA/RNA substrate by WT and TAMS mutant 

 

5.1 INTRODUCTION 

The work presented here has examined the kinetics of RNA-dependent DNA 

polymerization by HIV-RT in order to understand the mechanistic basis for the 

effectiveness of inhibitors and the evolution of resistance. Extensive work in the Johnson 

lab has been done to study DNA-dependent DNA polymerization and it is still ongoing 

(90, 144-146), but it is important to study the differences seen in RNA-dependent DNA 

polymerization. By better understanding the mechanism of HIV-RT polymerization and 

development of resistance to NRTIs, we can facilitate the development of drugs that are 

more effective in blocking replication of the virus. We have combined traditional pre-

steady state experiments with newly developed experiments involving an 

environmentally sensitive fluorophore to obtain rates for individual steps governing 

RNA-dependent DNA polymerization. Using methods similar to those shown for labeling 

T7 DNA polymerase (129), we have adapted the method to fluorescently label HIV-RT 

on the fingers subdomain (128). The fluorophore provides a signal to monitor changes in 

conformation of the fingers subdomain in order to measure the rates of conformational 

changes. The MDCC (7-diethy - lamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) 

-coumarin) label, shown in magenta in Figure 5.2, is added to position 36 that is mutated 

from a glutamic acid to a cysteine by site directed mutagenesis. This places the 

fluorophore in an ideal location on the outside of the fingers subdomain on the αA helix. 

At this position, it can be used to detect conformational changes in the fingers subdomain 

from the “open” to “closed” state but likely does not interfere with the conformational 
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change (86, 146-148). Our labeling method does include the removal of one cysteine at 

position 280 by mutating to a serine, but it has been shown that this alteration is 

frequently found in naturally occurring HIV isolates (149) and therefore could also be 

considered wild-type. There is another naturally occurring cysteine in the enzyme that 

was not necessary to remove at position 38. This residue is highly conserved and buried 

in a hydrophobic pocket near the active site so it is not reactive with the MDCC label 

(150).  

Using MDCC labeled HIV-RT we can perform stopped flow experiments to 

monitor changes in fluorescence over time under different reaction conditions. As an 

example, work with MDCC-labeled protein has been recently published (128) showing 

how the fluorescence signal monitors conformation changes during polymerization. In 

this work, stopped flow experiments showed a 30% increase in fluorescence upon DNA 

binding to HIV-RT followed by a 30% decrease in fluorescence upon formation of the 

ternary Enzyme-DNA-dNTP complex. These large changes in fluorescence are sufficient 

to accurately measure kinetic and equilibrium binding. The MDCC label was able to 

detect a change in fluorescence due to a conformational change of the enzyme induced by 

nucleotide binding and revealed a two step nucleotide binding model consisting of a 

weak rapid equilibrium binding to the open enzyme state, followed by a rapid 

conformational change to the closed enzyme state. This finding was able to resolve the 

mechanism by which HIV-RT discriminates against the nucleoside analog 3TC-TP 

which, in previous studies, had been shown to have a lower Km than the natural 

nucleotide. In this work we study the six thymidine analog mutations (TAMs) that have 

been shown to give clinical resistance to AZT, the thymidine analog 3’-azido-3’-

deoxythymidine (Figure 5.1 and 5.2).   
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Figure 5.1. Structure of thymidine and AZT. AZT (3’-azido-3’-deoxythymidine) contains 
an azide group in place of the hydroxyl group at the 3’ carbon of the ribose ring. The 
presence of the 3’-azido group does not allow for the 5’ to 3’ phosphodiester linkage and 
therefore AZT acts as a chain terminator. 

AZT was the first drug approved to treat HIV in 1985 (151) and is still used 

today. It is given as a pro-drug and is converted to its triphosphate form by cellular 

kinases (152) before it can be incorporated into the DNA by HIV-RT in place of the 

natural thymidine triphosphate as an NRTI (nucleoside reverse transcriptase inhibitor). 

As can be seen in the structure (Figure 5.1), AZT lacks the free 3’ OH; therefore, once it 

is incorporated into the growing DNA strand, chain termination occurs and 

polymerization can no longer continue. 

Because treatment of HIV with NRTIs does not provide a cure for the virus, drug 

therapy must be life-long which ultimately leads problems of drug toxicity and 

development of resistance mutations in HIV-RT. With the treatment of AZT, patients 

commonly develop a group of mutations referred to as the Thymidine Analog Mutations 

(TAMs) (153, 154). Of the six TAMs mutations, the K70R and T215Y mutations have 

been shown to appear in patients relatively early after treatment with AZT and they serve 

as the primary mutations that confer resistance to AZT. The four remaining mutations 

(M41L, D67N, L210W, and K219Q) are considered secondary mutations that improve 

AZT resistance (155). The resistance mechanism thought to be employed by the TAMs 

mutant is ATP-dependent excision of the NRTI (94, 96, 156). Recent structural data 

Thymidine AZT
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suggests that the TAMs mutations create a new ATP binding site to which ATP can bind 

and act as the pyrophosphate donor to excise the AZT from the terminated primer (100). 

It has also been suggested that once incorporated, an AZT terminated primer remains 

more often in the nucleotide binding site (pre-translocation) and not the primer binding 

site (post-translocation) so that it is readily accessible for pyrophosphorolysis (157).  

Once the AZT is excised the primer is rescued and can react with the correct nucleotide 

to continue polymerization.  

 

Figure 5.2. Structure of HIV-RT with TAMs mutations. Crystal structure of HIV-RT 
(PDB:3KLF) with the TAMs mutations shown in cyan (M41L, D67N, K70R, L210W, 
T215Y and K219Q). The fingers subdomain is shown in blue with the MDCC 
fluorophore position highlighted in magenta.  



 128 

 

Kinetic studies have previously been performed on the TAMs mutant but none of 

the results can account for the strong resistance effects seen in the clinic (153, 158, 159). 

Published pre-steady state kinetic experiments with a DNA/RNA primer template have 

shown only a modest 2-fold decrease in selectivity for AZT incorporation by the TAMs 

mutant compared to the wild-type enzyme (158). In this work, pre-steady state rapid 

quench methods, stopped flow methods and global fitting methods are employed to more 

closely examine the specificity by the TAMs mutant.  

 

5.2 MATERIALS AND METHODS 

Site directed mutagenesis of HIV-RT 

The catalytic subunit (p66) and the accessory subunit (p51) of HIV-1 RT strain 

HxB2 were cloned and expressed individually and combined at the purification step. The 

gene for the full-length p66 subunit used in previous studies by our lab (146), was 

maintained in a pET-21a ampR vector under the control of the T7lac promoter by which 

expression is induced with the addition of isopropyl-β-D-thiogalactopyranoside (IPTG). 

The p51 accessory subunit with the deletion of thirteen amino acids at the C-terminus 

(p51Δ13) was also under the control of a T7lac promoter in a separate pET-30a vector. 

This vector differs from pET-21a in its antibiotic resistance to kanamycin rather than 

ampicillin. No purification tags were added to either the p66 or p51 subunit. Site-directed 

PCR mutagenesis was utilized to introduce all of the mutations discussed in this work. 

For this chapter on RNA-dependent DNA polymerization it was necessary to perform 

experiments with a variant of HIV-RT that is deficient in RNase H activity. This allows 

the study of the DNA polymerization reaction exclusively, without the complication of 
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any RNase H activity while using a DNA/RNA substrate. A mutation of the glutamic 

acid residue at position 478 to a glutamine results in a defective RNase H function but 

wild-type reverse transcriptase activity (160). This mutation was therefore present in the 

p66 subunit in all experiments in this chapter. Other mutations added to RT in this 

chapter are the TAMs mutations in p66 along with the MDCC labeling site mutations in 

both p66 and p51 (p66-E36C/C280S, p51-C280S). For each 50 µL mutagenesis reaction, 

50 ng of parental dsDNA was mixed with 100 ng of forward and reverse primers, 1X 

cloned Pfu reaction buffer, 1 µl of 10 mM dNTPs (Promega), and 2.5 units of Pfu Turbo 

DNA polymerase (Stratagene). The PCR amplification reaction was then performed with 

the following optimized thermal cycling conditions: 95°C for 5 minutes, followed by 18 

cycles of 95°C for 30 seconds, 55°C for 1 minute, and 72°C for 8 minutes. A final 

extension step of 72°C for 15 minutes before final storage at 4°C. The PCR reaction was 

then transformed into Novablue (Novagen) E. coli See Table 5.1 for primer sequences 

used for mutagenesis as well as the T7 promoter sequencing primers used to confirm the 

result of the mutagenesis.  
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Table 5.1 Mutagenic primers for HIV-RT  

MDCC Labeling  Site Mutations 	
  	
  	
   	
   	
  

 p66-E36C 	
   	
   	
   	
   	
   	
   	
  

 Forward:  
5'-CATTGACAGAAGAAAAAATAAAAGCATTAGTATGCATTTGTACAGA 
GATGGAAAAGGAAG-3' 

 Reverse: 
5'-CTTCCTTTTCCATCTCTGTACAAATGCATACTAATGCTTTTATTTTTT 
CTTCTGTCAATG-3' 

 p66/p51-C280S 	
   	
   	
  	
   	
   	
  
 Forward:  5'-CCAGGGATTAAAGTAAGGCAATTATCTAAACTCCTTAGAGGAACCAAAGCACT-3' 
 Reverse: 5'-AGTGCTTTGGTTCCTCTAAGGAGTTTAGATAATTGCCTTACTTTAATCCCTGG-3' 

RNaseH Deficiency Mutation 	
   	
   	
  	
   	
   	
  

 p66-E478Q  	
   	
   	
   	
   	
   	
  
 Forward:  5'-TGACACAACAAATCAGAAGACTCAGTTACAAGCAATTTATCTAG-3' 	
  
 Reverse: 5'-CTAGATAAATTGCTTGTAACTGAGTCTTCTGATTTGTTGTGTCA-3' 	
  

TAMS Mutations 	
   	
   	
  	
   	
   	
  

	
   p66-M41L  	
   	
   	
   	
   	
   	
  
	
   Forward:  5'-CATTAGTATGCATTTGTACAGAGCTGGAAAAGGAAGGGAAAATTTC-3' 	
  
	
   Reverse: 5'-GAAATTTTCCCTTCCTTTTCCAGCTCTGTACAAATGCATACTAATG-3' 	
  

	
   p66-D67N_K70R 	
   	
   	
  	
   	
   	
  

	
   Forward:  
5'-CTCCAGTATTTGCCATAAAGAAAAAAAACAGTACTCGCTGGAGAAAATT 
AGTAGATTTCA-3' 

	
   Reverse: 
5'-TGAAATCTACTAATTTTCTCCAGCGAGTACTGTTTTTTTTCTTTATGGCA 
AATACTGGAG-3' 

	
   p66-L210W_T215Y_K219E 	
   	
  	
   	
   	
  

	
   Forward:  
5'-GCTGAGACAACATCTGTGGAGGTGGGGACTTTACACACCAGACGAAAAA 
CATCAGAAAGA-3' 

	
   Reverse: 
5'-TCTTTCTGATGTTTTTCGTCTGGTGTGTAAAGTCCCCACCTCCACAGATG 
TTGTCTCAGC-3' 

T7 Sequencing primers 	
   	
   	
  	
   	
   	
  
	
   Forward:  5'-TAATACGACTCACTATAGGG-3' 	
   	
   	
   	
  
	
  	
   Reverse: 5'-GCTAGTTATTGCTCAGCGGT-3' 	
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Expression of HIV-RT p66 and p51 subunits 

Once sequencing with the T7 sequencing primers confirmed the correct sequence 

for a p66 or p51 gene, the plasmid was transformed into BL21(DE3) competent E. coli 

cells (EMD Millipore) by following the suppliers protocol for a standard transformation 

reaction. The transformation mix was subsequently plated on LB agar plates containing 

the correct antibiotic to select for either the pET21-a_p66 or pET-30a_p51 plasmid and 

incubated at 37°C overnight. The pET21-a_p66 plasmid was selected for using LB agar 

plates containing 100 µg/mL ampicillin and the pET30-a_p51 plasmid was selected for 

using LB agar plates containing 50 µg/ml kanamycin. An individual colony was then 

used to inoculate an overnight “starter culture” for the large-scale expression. The starter 

culture contained 250 mL of LB plus antibiotic (100 µg/mL Ampicillin or 50 µg/mL 

kanamycin). Once inoculated with a single transformant, the starter culture was incubated 

with shaking at 250 rpm at 37°C overnight. After >10 hours of growth, the OD600 of the 

starter culture was measured by spectrophotometer and this was used to inoculate the 

large scale cultures consisting of 6 1L baffled-bottom Erlenmeyer flasks of LB plus 

antibiotic to an OD600 of 0.1. The cultures were grown at 37°C with shaking at 150 rpm 

and the optical density was monitored until it reached an OD600 of 0.6. At this point, the 

protein expression was induced by the addition of 0.5 mM IPTG to each flask. After 

induction, the incubation at 37°C and 150 rpm continued for 3 hours while monitoring 

the optical density. After 3 hours of growth the cells were then harvested by 

centrifugation at 4000xg for 20 minutes and the cell pellet was stored at -80°C until 

purification. A typical expression curve is shown in Figure 5.3 below. Figure 5.3B shows 

an 8% SDS-PAGE gel with samples from an expression of p66 pre- and post-induction 

with IPTG (lanes 1 and 2, respectively) and a separate expression of p51 pre- and post-

induction with IPTG (lanes 3 and 4, respectively). Typically expressions resulted in 18g 
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of cell pellet per 6 liters of culture. For a typical purification of RT, 6 liters of culture 

were used to express p66 and 6 liters of culture were used to express p51.  

 

  

Figure 5.3. Expression of HIV-RT. (A) Growth kinetics of BL21(DE3) cells containing 
the expression plasmid pET21a expressing the p66 subunit of HIV-RT. Cultures were 
grown at 37°C to an OD600 of 0.6 (filled circles) and induced with the addition of 0.5 mM 
IPTG. After induction, cultures were grown for 3 hours (open circles) before harvesting 
by centrifugation. (B) SDS-PAGE analysis of expression of subunits of HIV-RT. Lane 1 
shows a sample from cultures containing the pET21a_p66 plasmid before induction and 
Lane 2 shows a sample from this culture 3 hours after induction with the expression of 
p66. Lane 3 shows a sample from cultures containing the pET30a_p51 plasmid before 
induction and Lane 4 shows a sample from this culture 3 hours after induction with the 
expression of p51. 

 

The pre- and post-induction samples equal to 6 OD units of cells were then 

analyzed by SDS-PAGE as shown in Figure 5.3B. For this analysis, the 6 OD unit 

samples from p66-pre-induction, p66-post-induction, p51-pre-induction, and p51-post-

induction were resuspended in 50 mM Tris-HCl pH 8 and 100 µg/ml lysozyme (Sigma-

Aldrich) before incubation in a 37°C water bath for 10 minutes to lyse the cells. The 

lysate was then sonicated for 30 bursts (20% duty cycle, 1.5 output level) followed by 

A B

1 2 3 4

70

100

170
130

55

35

40

kDa

Induction with IPTG



 133 

centrifugation at 10,000 rpm for 10 minutes. The supernatant was then mixed with SDS-

PAGE loading dye and run on an 8% SDS-PAGE gel. Once stained with coomassie blue 

solution and destained the gel was scanned using an Odyssey CLx (LI-COR) to 

determine the relative densities of the p66-post-induction and p51-post-induction bands. 

This was then used to calculate the weights of each of the cell pellets to be mixed to 

obtain a 1:1 molar ratio of p66 and p51 during purification.  
  

Purification and MDCC labeling of HIV-RT 

The combined p66 and p51 cell pellets were resuspended in RT Buffer A (30 mM 

HEPES pH 7.9, 60 mM NaCl, 1 mM DTT, 0.1 mM EDTA) + protease inhibitor cocktail 

IV (AG Scientific). Cells were then lysed by sonication using a Branson sonifier 450 at 

20% duty cycle, output 6 for 20 minutes while stirring on ice. The lysate was then cleared 

by ultracentrifugation at 40,000 rpm for 30 minutes at 4°C using a Beckman 45Ti rotor. 

The supernatant was then loaded onto a tandem setup of a Q sepharose (GE) column 

followed by a Bio-Rex 70 column (Bio-Rad) equilibrated in RT Buffer A (Figure 5.5). 

After loading, the Q sepharose column was removed and the Bio-Rex 70 column was 

washed with 2% RT Buffer B (30 mM HEPES pH 7.9, 1 M NaCl, 1 mM DTT, 0.1 mM 

EDTA). The protein was eluted from the Bio-Rex 70 column with a linear gradient from 

2-47% RT Buffer B over five column volumes collecting 5 mL fractions. Fractions were 

analyzed by SDS-PAGE, pooled and diluted to the conductivity of RT Buffer A using RT 

Buffer C (30 mM HEPES pH 7.9, 1 mM DTT, 0.1 mM EDTA). The diluted protein was 

then loaded onto a single-stranded DNA cellulose column (Sigma Aldrich) equilibrated 

in RT Buffer A (Figure 5.6). After loading the column was washed with 2% RT Buffer B 

and eluted with a linear gradient from 2% to 47% RT Buffer B over five column volumes 

collecting 5 ml fractions. Fractions were analyzed by SDS-PAGE and selected fractions 
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were dialyzed against 2 L MDCC Labeling Buffer (30 mM HEPES pH 7.9, 250 mM 

NaCl, 0.1 mM EDTA, 1 mM Tris(2-carboxyethyl)phosphine hydrochloride (Sigma-

Aldrich)) for 2 hours. Protein concentration was then estimated by absorbance using the 

ε280 = 260,450 M-1cm-1 and MDCC labeling reactions were setup by adding a 10-fold 

molar excess of MDCC (Figure 5.4) and incubating overnight at 4°C. The labeled protein 

was then purified from excess label by passing over the Bio-Rex 70 column in RT Buffer 

A and eluting with 30% RT Buffer B (Figure 5.7). Fractions were then pooled, 

concentrated using a Centricon ultrafiltration unit (30 KDa MWCO, Millipore), and 

dialyzed into RT Storage Buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 1 mM DTT, 0.1 

mM EDTA). The final protein concentration was estimated by A280, as above, flash 

frozen in liquid nitrogen and stored at -80°C.  

 

Figure 5.4. Structure of MDCC.  MDCC (7-diethylamino-3-((((2-maleimidyl)ethyl) 
amino)carbonyl)coumarin) is a thiol reactive coumarin that forms a covalent linkage 
through a thiol-maleimide bond. This fluorescent probe is environmentally sensitive and 
when excited with 425 nm light it gives an emission of about 470 nm.  
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Figure 5.5 Tandem column purification of HIV-RT. (A) Tandem Q sepharose and Bio-
Rex70 column chromatography of HIV-RT from cell lysate. Absorbance at 280 nm 
(blue) and 254 nm (red) was monitored to detect protein and DNA respectively. After 
loading onto tandem columns, the Q sepharose column was removed and the Bio-Rex 70 
column was washed with 2% RT Buffer B. HIV-RT was eluted from the Bio-Rex70 
column with a linear gradient from 2-47% RT Buffer B and conductivity percentage was 
monitored (light blue). (B) SDS-PAGE analysis of the loaded lysate (Load), flow-through 
(FT) and fractions 1-12 confirm the presence of HIV-RT p66 and p51 subunits in 
fractions 3-9. 
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Figure 5.6 ssDNA cellulose column purification of HIV-RT. ssDNA cellulose column 
chromatography of HIV-RT from Bio-Rex 70 fractions. Absorbance at 280 nm (blue) and 
254 nm (red) was monitored to detect protein and DNA respectively. After fractions from 
the Bio-Rex70 column were pooled, they were loaded onto ssDNA cellulose column. The 
ssDNA cellulose column was washed with 2% RT Buffer B and HIV-RT was eluted with 
a linear gradient from 2-47% RT Buffer B and conductivity percentage was monitored 
(light blue). (B) SDS-PAGE analysis of the flow-through (FT) and fractions 1-12 confirm 
the presence of HIV-RT p66 and p51 subunits in fractions 3-7. 
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Figure 5.7 Bio-Rex70 column purification of MDCC-labeled HIV-RT. Bio-Rex70 column 
chromatography of HIV-RT from MDCC-labeled fractions. Absorbance at 280 nm 
(blue), 254 nm (red) and 425 nm (magenta) was monitored to detect protein, DNA and 
MDCC respectively. Overnight MDCC-labeling reactions of HIV-RT were loaded onto 
the Bio-Rex70 column and washed with RT Buffer A to remove the excess MDCC label. 
Labeled HIV-RT was eluted with 30% RT Buffer B and conductivity percentage was 
monitored (light blue).  

Preparation of substrate DNA and RNA 

DNA substrates were purchased from Integrated DNA Technologies (IDT) and 

purified by 15% denaturing polyacrylamide gel electrophoresis. RNA substrates were 

also purchased from IDT and were ordered HPLC-purified. Sequences of 25-mer DNA 

primer (d25mer) and 36-mer template RNA (r36mer) oligomers are listed in Table 5.2.  

For quench flow assays, the 5’ end of the primer oligomer was 32P-labeled using 

T4 polynucleotide kinase (New England Biolabs) and γ-32P-ATP according to the 

manufacturers protocol. After 32P labeling, the reaction was heated to 95°C for 5 minutes 
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and purified using a Bio-Spin P-6 gel column (Bio-Rad) to remove the excess γ-32P-ATP. 

The concentration of the purified 32P-5’-labeled primer was determined by TLC.  

Duplex DNA/RNA substrates were formed by incubating the d25mer primer with 

the r36mer template at a 1:1 molar ratio in an Annealing Buffer (10 mM Tris-HCl pH 7.5, 

50 mM NaCl, 1 mM EDTA) and heating to 95°C for 5 minutes before allowing to slowly 

cool to room temperature. 

All work with RNA was performed with DEPC-treated water in an RNA-free 

environment. 

Synthesis of 2’, 3’-dideoxyterminated dd26mer  

In stopped flow assays measuring the binding of nucleotide without chemistry, a 

2’, 3’-dideoxy-terminated primer (dd25mer) was used such that chemistry was not 

possible on the primer lacking a 3’-OH. This dd25mer was synthesized in a reaction 

containing an oligomer with the first 24-nucleotides of the DNA primer sequence (5’-

GCCTCGCAGCCGTCCAACCAACTC-3’) annealed to a 45-mer DNA template 5’-

GGACGGCATTGGATCGACGATGAGTTGGTTGGACGGCTGCGAGGC-3’) to 

allow the incorporation of a ddATP versus the template dTMP. The synthesis reaction 

contained 560 µM 24/45mer DNA substrate, 500 µM HIV-RT, 10 units of 

pyrophosphatase (Sigma), and 1.5 mM ddATP (UBS).  The reaction was incubated at 

37°C for 2 hours in RT-buffer (50 mM Tris-HCl (pH 7.5), 100 mM potassium acetate, 

0.1 mM EDTA) and 10 mM MgCl2. After incubation the reaction was terminated by 

phenol:chloroform extraction and purification of the dd25mer by ethanol precipitation 

followed by 15% denaturing PAGE.  
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Quench flow kinetic assays  

Chemical quench flow experiments measuring single nucleotide incorporation of 

TTP or AZTTP were performed at 37 ºC in a 1X-RT-Buffer containing 50 mM Tris-HCl 

(pH 7.5), 100 mM potassium acetate, 0.1 mM EDTA with a RQF-3 rapid-quench-flow 

apparatus (KinTek Corp). Quench flow assays used 5’-32P-labeled d25/r36mer primer-

template duplex sequence listed in Table 5.2. The incorporation of TTP or AZTTP was 

measured by rapidly mixing a preformed enzyme-DNA complex (175 nM HIV-RT, 75 

nM 5’-32P-labeled d25/r36mer DNA/RNA) with an equal volume of Mg-TTP2- or Mg-

AZTTP2- at various concentrations (0.1, 0.25, 0.5, 1.5, 10, and 100 µM TTP for wild-type 

HIV-RT). The final concentration of magnesium acetate was 10 mM. The reactions were 

quenched by mixing with 0.5 M EDTA after various time intervals (0-2 seconds for wild-

type HIV-RT). All concentrations listed are final.  

After quenching, the reactions were mixed with denaturing PAGE loading dye 

(0.25% bromophenol blue, 0.25% xylene cyanol) and separated on a 15% denaturing 

polyacrylamide sequencing gel. After drying the gel was exposed to a storage phosphor 

screen and the bands were quantified using a Typhoon scanner (GE) and ImageQuant 5.0 

(Molecular Dynamics). The concentration of the product formed over time was calculated 

 

 

Table 5.2 DNA-primer/RNA-template sequences for HIV-RT  
	
  	
  

d25/r36mer      
d25mer 5'-GCCTCGCAGCCGTCCAACCAACTCA  
r36mer 3’-CGGAGCGUCGGCAGGUUGGUUGAGUAGCAGCUAGGU 

dd25/r36mer      
dd25mer 5'-GCCTCGCAGCCGTCCAACCAACTCAdd  
r36mer 3’-CGGAGCGUCGGCAGGUUGGUUGAGUAGCAGCUAGGU 
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as the product of the concentration of substrate 32P-labeled DNA added times the fraction 

of material in the 26mer band. Data collected were fit by global data fitting methods 

described below.  

Stopped flow nucleotide incorporation assays 

Stopped flow experiments measuring incorporation of TTP or AZTTP were 

performed at 37 ºC in a 1X-RT-Buffer containing 50 mM Tris-HCl (pH 7.5), 100 mM 

potassium acetate, 0.1 mM EDTA with a an AutoSF-120 series stopped-flow instrument 

from KinTek Corp. For this assay, 100 nM MDCC-labeled HIV-RT wild-type or mutant 

was preincubated with 150 nM d25/r36mer DNA/RNA duplex for 15 minutes at 37°C. 

The reaction was then started by mixing with a solution containing various concentrations 

of TTP or AZTTP in RT buffer supplemented with 10 mM magnesium acetate. The 

MDCC fluorophore on HIV-RT was excited at 425 nm and the fluorescence emission 

was measured as a function of time using a 475 nm single-band bandpass filter 

(Semrock). 

Stopped flow nucleotide dissociation assays 

Experiments measuring nucleotide dissociation from a dd25/r36mer 

ddDNA/RNA primer template were performed in the AutoSF-120 stopped-flow 

instrument in a similar manner as was described above. In this nucleotide dissociation 

assay, 100 nM MDCC-labeled HIV-RT wild-type or mutant was preincubated with 150 

nM dd25/r36mer DNA/RNA duplex and 1.4 µM TTP or AZTTP for 15 minutes at 37°C. 

This was then rapidly mixed with a solution of RT Buffer containing a 5 µM unlabeled-

HIV-RT trap to bind the dissociated nucleotide. An increase in MDCC-fluorescence was 

observed by exciting at 425 nm and monitoring emission at 475 nm as a function of time.  
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Global data fitting  

The chemical quench flow assays and stopped flow assays were fit to the models 

described in the subsequent results section using the Kintek Global Explorer program 

(Kintek Corp.). This fitting technique is outlined in detail in the methods section of 

Chapter 2.  

5.3 RESULTS 

Kinetics of nucleotide binding and incorporation by quench flow methods 

In this work, both rapid chemical quench flow and stopped flow experiments were 

performed on the RNase H deficient, fluorescently labeled HIV-RT (MDCC-RT) on a 

DNA/RNA primer template. Here, to measure the kinetics of nucleotide binding and 

incorporation by quench flow methods, RNaseH deficient MDCC-RT and the MDCC-

RT-TAMS mutants were each preincubated with the d25/r36mer substrate in reaction 

buffer to form an enzyme-DNA complex. The reactions were setup with an excess of 

enzyme over DNA/RNA template to afford single turnover conditions. This formed 

complex was then rapidly mixed with various concentrations of the correct nucleotide 

(TTP) or AZTTP and quenched with 0.5M EDTA after various time intervals in the rapid 

quench flow instrument RQF-3 to obtain the data shown in Figure 5.8. The amount of 26-

mer product formed over time was plotted and globally fit using the model shown in 

Scheme 5.1. 

Scheme 5.1 

 

 

 Fitting of just the quench flow experiments to the model for nucleotide 

incorporation in Scheme 5.1 allows for determination of the maximum rate of 

 EiDn + dNTP
Kd ,app⎯ →⎯⎯← ⎯⎯⎯ EiDn idNTP

kpol⎯ →⎯⎯← ⎯⎯⎯ EiDn+1iPPi
fast⎯ →⎯⎯ EiDn+1 + PPi
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incorporation (kpol) and an apparent nucleotide dissociation constant (Kd,app). The model 

assumes that the polymerization step is a single rate-limiting step that follows a rapid 

equilibrium for nucleotide binding. These values were then used to calculate the 

specificity constant where kcat/Km = kpol/Kd,app. The discrimination and resistance values 

were calculated according to Equation 5.1 and 5.2. The fitting results are summarized in 

Table 5.3. On the RNA/DNA substrate, the RNaseH deficient MDCC-labeled RT showed 

similar nucleotide incorporation kinetics to those that have been previously reported  

(158). The rate of polymerization kpol was 78.6 s-1 and the apparent Kd for TTP was 13 

µM. This yielded a specificity constant of 6 µM-1s-1. The results for the incorporation of 

AZTTP by RNaseH deficient MDCC-labeled RT, showed a slight reduction in kpol to a 

value of 41.1 s-1 and a comparable Kd,app of 13.9 µM. The resulting kpol/Kd,app determined 

by the quench flow studies was 2.9 µM-1s-1, therefore the discrimination 

((kpol/Kd,app)correct/(kpol/Kd,app)NRTI) favoring TTP over AZTTP is 2.0. The RNaseH deficient 

MDCC-labeled RT containing the TAMS mutations had a 1.8-fold slower rate of 

incorporation, 42.5 s-1, and similar Kd,app of 14.7 µM compared to wild-type incorporation 

of TTP. The quench flow analysis of the incorporation of AZTTP by the RNaseH 

deficient MDCC-labeled RT containing the TAMS mutations revealed an even further 

decrease of kpol to a rate of 16.2 s-1 while maintaining the same apparent Kd. These results 

for the TAMS mutant lead to a discrimination factor of 2.6 for correct incorporation of 

TTP over AZTTP which when divided by the discrimination factor of 2.0 for the wild-

type enzyme, leads to a resistance value of 1.3 by the TAMS mutant.  

 

                   Equation 5.1         Equation 5.2 

               
Discrimination = D =

(kpol / Kd )dNTP
(kpol / Kd )NRTI

Resistance = Dwt

Dmutant
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Figure 5.8. Chemical quench flow incorporation of dTTP and AZTTP by HIV-RT WT and 
TAMS mutant. All concentrations listed are final. (A) A preformed enzyme-

DNA complex with 175 nM WT HIV-RT and 75 nM d25/r36mer DNA/RNA was rapidly 
mixed with increasing concentrations of dTTP (0.1, 0.25, 0.5, 1.5, 10 and 100 µM). The 
reactions were quenched by the addition of 0.5 M EDTA at times from 0 to 2 seconds. 
(B) A preformed enzyme-DNA complex with 175 nM TAMS HIV-RT and 75 nM 
d25/r36mer DNA/RNA was rapidly mixed with increasing concentrations of dTTP (0.5, 
1.5, 5, 15 and 150 µM). The reactions were quenched by the addition of 0.5 M EDTA at 
times from 0 to 1 second. (C) A preformed enzyme-DNA complex with 175 nM WT 
HIV-RT and 75 nM d25/r36mer DNA/RNA was rapidly mixed with increasing 
concentrations of AZTTP (0.1, 0.25, 0.5, 1.5, 10 and 100 µM). The reactions were 
quenched by the addition of 0.5 M EDTA at times from 0 to 2 seconds. (D) A preformed 
enzyme-DNA complex with 175 nM TAMS HIV-RT and 75 nM d25/r36mer DNA/RNA 
was rapidly mixed with increasing concentrations of AZTTP (0.5, 1.5, 5, 15 and 150 
µM). The reactions were quenched by the addition of 0.5 M EDTA at times from 0 to 1 
second. In all experiments the formation of 26mer product over time was fit the model in 
Scheme 5.1 using Kintek Global Explorer. Parameters obtained in fitting are listed in 
Table 5.3. 

A

WT dTTP Incorp TAMS dTTP Incorp

B

C D

WT AZT Incorp TAMS AZT Incorp
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Table 5.3 HIV-RT Incorporation parameters 

  kpol Kd, app kpol/Kd,app Discrimination Resistance 
 s-1 µM µM-1s-1   
WT            

TTP 78.6 ± 18.6 13 ± 3.6 6 ± 2.2 
2.0 - (62.9 - 123) (10 - 21) 

AZTTP 41.1 ± 8.1 13.9 ± 3.3 2.9 ± 0.9 
(34.9 - 64.3) (11 - 23) 

TAMs          

TTP 42.5 ± 5 14.7 ± 2.3 2.9 ± 0.6 
2.6 1.3 (34 - 54.3) (11.1 - 20.4) 

AZTTP 16.2 ± 2 14.5 ± 2.9 1.1 ± 0.3 
(12.8 - 22.5) (11 - 24) 

*Numbers in parenthesis give the lower and upper limits derived from the confidence 
contour analysis in fitting the data. 

Kinetics of nucleotide binding and incorporation by stopped flow methods 

The chemical quench flow assays described above allow determination of the 

apparent Kd and the kpol for nucleotide binding and incorporation when fitting to the 

simple model in Scheme 5.1. This model assumes that the kpol is a single rate-limiting 

step and the nucleotide binding occurred in a rapid equilibrium. However, previous 

studies have shown that for RT and other polymerases the nucleotide binding occurs with 

a minimum of two steps involving a weak equilibrium binding to the open state of the 

enzyme followed by a reversible conformational change step to a closed conformation of 

the enzyme before chemistry occurs (129, 161-163). Therefore the value obtained for 

nucleotide binding in quench flow assays is referred to as an apparent Kd. The apparent 

Kd value is a measure of the relative rates of substrate binding and incorporation, which 

makes it more similar to a Michaelis constant (Km) rather than a measure of ground state 

nucleotide binding. To explore this two-step nucleotide binding we utilized the 
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fluorescent MDCC label on the mobile fingers subdomain of RT in the stopped flow 

instrument (146, 161). These studies were conducted by preforming an enzyme-

DNA/RNA complex where RNaseH deficient MDCC-RT and the MDCC-RT-TAMS 

mutants were each preincubated with the d25/r36mer substrate in reaction buffer. As with 

the quench flow studies, the reactions were setup with an excess of enzyme over 

DNA/RNA template to afford single turnover conditions. This formed complex was then 

rapidly mixed various concentrations of the correct nucleotide (TTP) or the NRTI 

AZTTP in the stopped flow instrument. The change in MDCC fluorescence over time 

was measured and the data were included in the global fitting of each mutant (Figures 

5.9, 5.11-5.13).  

We also included in the global fits an experiment measuring nucleotide 

dissociation from the enzyme-ddDNA/RNA complex. This change in fluorescence 

represents the transition from the “closed” nucleotide bound state of the enzyme to the 

“open” nucleotide free state of the enzyme at a rate limited by the dissociation of the 

nucleotide.  

Global fitting of HIV-RT wild-type TTP incorporation 

Figure 5.9 shows the global fitting results for the quench flow and stopped flow 

experiments performed with wild-type HIV-RT and TTP. 5.9A shows the solid lines of 

the fitted curves on the data collected from TTP incorporation by HIV-RT monitored 

changes in fluorescence in the stopped flow instrument. 5.9B shows the global fit of the 

quench flow TTP incorporation data at six different nucleotide concentrations and 5.9C 

shows the fitting of the nucleotide dissociation stopped flow monitoring nucleotide 

release from a ternary complex with MDCC-labeled HIV-RT. The model used for fitting 
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these three experiments with wild-type HIV-RT is shown in Scheme 5.2 and best-fit 

values for each parameter are summarized in Table 5.4.  

 

Scheme 5.2 

 

 

This scheme includes two-step nucleotide binding model where the nucleotide 

first binds to the enzyme in the open conformation with a weak ground state binding 

(1/K1) of 1430 ± 4.4 µM. This is followed by a fast conformational change to the closed 

state of the enzyme at 5670 ± 660 s-1 with a reverse rate of 1.93 ± 0.006 s-1. At 37°C, the 

rapid decrease in fluorescence in the stopped flow experiment representing the 

conformational change of the enzyme from “open” to “closed” was too fast to be fit 

accurately due to the dead-time of the instrument therefore a temperature dependence of 

this rate was measured at 5, 10, 15, 20 and 25°C and extrapolated to 37°C. This 

temperature dependence analysis is shown in Figure 5.10 where A is the rate of the fast 

phase, k2, versus concentration of TTP for the five temperatures tested. Figure 5.10B 

shows the Arrhenius plot of ln(kmax) against the reciprocal of the absolute temperature 

relative to 37°C, (1/T-1/T37), so that a linear fit extrapolating a y-intercept representing 

the ln(kmax) value at 37°C (T37). This estimated a maximum rate of 5670 ± 660 s-1 that was 

consistent with initial global fitting analysis and therefore k2 was locked at this value for 

the final global fit.  

Following the fast conformational change, the model in scheme includes the step 

for chemistry at 78.3 ± 0.15 s-1 to form the FD26 complex. This is followed by a 

conformational change to a lower fluorescent state with a rate of 19.1 s-1. The calculation 

ED25 + dNTP
1430µM⎯ →⎯⎯⎯← ⎯⎯⎯⎯ ED25dNTP

5670s−1

1.93s−1
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ FD25dNTP

78.3s−1⎯ →⎯⎯⎯ FD26
19.1s−1⎯ →⎯⎯ ED26
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of kcat/Km using the values obtained in the global fit was determined using Equation 5.3 

and the resulting specificity constant for TTP incorporation by wild-type HIV-RT on a 

DNA/RNA template is 3.7 ± 0.74 µM-1s-1 (Table 5.5). This value is within the error of the 

value that was obtained by fitting the quench flow experiment alone (6 ± 2.2 µM-1s-1 ) 

(Table 5.3).  

Equation 5.3 

 

 

 

 

 

kcat /Km = k1k2k3k4
k−1k−2k−3 + k−1k−2k4 + k−1k3k4 + k2k3k4
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Figure 5.9. Global fitting of dTTP 
binding and incorporation by WT 
HIV-RT. (A) Fluorescence data from 
stopped-flow experiments monitoring 
MDCC fluorescence over time 
representing dTTP binding and 
incorporation. Preformed enzyme-
DNA/RNA complex (200 nM HIV-RT 
WT, 300 nM d25/r36) was rapidly 
mixed with increasing concentrations 
of Mg2+ and dTTP (2.5, 5, 10, 20, 30, 
40, 60, 80 and 100 µM). (B) Chemical 
quench flow data (shown in Figure 
5.8) monitoring the incorporation of 
dTTP by HIV-RT WT over time. 
Preformed enzyme-DNA/RNA 
complex (175 nM HIV-RT WT, 75 
nM d25/r36) was rapidly mixed with 
increasing concentrations of Mg2+ and 
dTTP (0.1, 0.25, 0.5, 1.5, 10 and 100 
µM). (C) Fluorescence data from 
stopped-flow experiments measuring 
dTTP dissociation from the closed 
enzyme-DNA/RNA ternary complex. 
A preformed enzyme-DNA/RNA-
dTTP complex (50 nM HIV-RT WT, 
75 nM dd25/r36, 1.4 µM dTTP) was 
rapidly mixed with 600 nM unlabeled 
enzyme-ddDNA/RNA complex to 
serve as a trap. An increase in 
fluorescence representing the release 
of dTTP from the ternary complex was 
observed. Rate constants derived from 
the global fitting are described in 
Table 5.4.  

 

 

 

0 0.1 0.2 0.3
0.45

0.5

0.55

0.6

Time (s) 

Fl
uo

re
sc

en
ce

 

0 0.5 1 1.5 2
0

10

20

30

40

50

60

Time (s) 

[P
ro

du
ct

], 
nM

 

0 0.2 0.4 0.6 0.8 1
0.86

0.88

0.9

0.92

0.94

0.96

Time (s) 

Fl
uo

re
sc

en
ce

 
A

B

C



 149 

 

Figure 5.10. Temperature dependence of dTTP binding and incorporation by WT HIV-
RT. (A) Stopped flow experiments measuring nucleotide binding and 

incorporation were performed at five different temperatures. The rate of the initial rapid 
decrease in fluorescence was plotted as a function of nucleotide concentration for each 
temperature (5°C (open circles), 10 °C (filled circles), 15 °C (open squares), 20 °C (filled 
squares) and 25 °C (open triangles)). These data were fit to a hyperbola to extract a 
maximum rate of the conformational change. (B) The natural logarithm of maximum rate 
determined from A was plotted versus the reciprocal of the absolute temperature minus 
the reciprocal of the absolute temperature at 37° (1/T-1/T37). Fitting of this Arrhenius plot 
to a linear equation allows for extrapolation to a rate of 5673 ± 658 s-1 at 37°C.  
 

A

B
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Global fitting of HIV-RT wild-type AZTTP incorporation 

Global fitting of the stopped flow and quench flow experiments for the 

incorporation of AZTTP by wild-type enzyme during RNA-dependent DNA 

polymerization is shown in Figure 5.11 and the best fit values are shown on the model 

Scheme 5.3 and in Table 5.4. The dissociation constant for the initial binding (1/K1) of 

AZTTP is 169 ± 2.2 µM and the rate of the conformational change is 1620 ± 21 s-1 with a 

reverse rate of 132 ± 1.9 s-1. The chemistry step following the fast conformational change 

is 20.6 ± 0.08 s-1 and the isomerization to a lower fluorescence state after chemistry is 

0.21 ± 0.0007 s-1. These best fit values were used in Equation 5.3 to calculate the 

specificity constant (kcat/Km) for a 4-step reaction which is equal to 1.3 ± 0.03 µM-1s-1. 

The discrimination for TTP over AZTTP is therefore equal to (kcat/Km)TTP/(kcat/Km)AZTTP 

and is equal to 2.8.  

 

Scheme 5.3 

 
 

 
 

ED25 + dNTP
169µM⎯ →⎯⎯⎯← ⎯⎯⎯⎯ ED25dNTP

1620s−1

132s−1
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ FD25dNTP

20.6s−1⎯ →⎯⎯⎯ FD26
0.21s−1⎯ →⎯⎯⎯ ED26
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Figure 5.11. Global fitting of AZTTP 
binding and incorporation by WT HIV-
RT. (A) Fluorescence data from stopped-
flow experiments monitoring MDCC 
fluorescence over time representing 
AZTTP binding and incorporation. 
Preformed enzyme-DNA/RNA complex 
(200 nM HIV-RT WT, 400 nM d25/r36) 
was rapidly mixed with increasing 
concentrations of Mg2+ and AZTTP (2.5, 
5, 10, 20, 30, 40, 60, 80 and 100 µM). 
(B) Chemical quench flow data (shown 
in Figure 5.8) monitoring the 
incorporation of AZTTP by HIV-RT WT 
over time. Preformed enzyme-
DNA/RNA complex (175 nM HIV-RT 
WT, 75 nM d25/r36) was rapidly mixed 
with increasing concentrations of Mg2+ 
and dTTP (0.1, 0.25, 0.5, 1.5, 10 and 100 
µM). (C) Fluorescence data from 
stopped-flow experiments measuring 
AZTTP dissociation from the closed 
enzyme-DNA/RNA ternary complex. A 
preformed enzyme-DNA/RNA-AZTTP 
complex (200 nM HIV-RT WT, 300 nM 
dd25/r36, 3.5 µM AZTTP) was rapidly 
mixed with 3.5 µM unlabeled enzyme-
ddDNA/RNA complex to serve as a trap. 
An increase in fluorescence representing 
the release of AZTTP from the ternary 
complex was observed. Rate constants 
derived from the global fitting are 
described in Table 5.4.

   

A

B

C
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Global fitting of HIV-RT TAMS TTP incorporation 

Figure 5.12 shows the global fitting of TTP incorporation by the HIV-RT TAMS 

mutant during RNA-dependent DNA polymerization. These data are fit to the model 

shown in Scheme 5.4 and the summary of best-fit values are listed in Table 5.4. The first 

step of nucleotide binding to the HIV-RT TAMS mutant gives a value for 1/K1 of 577 ± 

87 µM. This is followed by the fast conformational change of the enzyme from the open 

to closed conformation at a forward rate of 2050 ± 315 s-1 and a reverse rate of 12.9 ± 

0.04 s-1. The chemistry step is 48.3 ± 0.9 s-1. The rates following chemistry are assumed 

to be fast (pyrophosphate release and translocation). The kcat/Km value of 2.7 ± 0.8 µM-1s-1 

was calculated using Equation 5.4 for a 3-step reaction. This is a 1.4-fold decrease in 

kcat/Km compared to wild-type enzyme for the incorporation of TTP.  

 

Scheme 5.4 
 

 
 

Equation 5.4 
 

 

 

ED25 + dNTP
577µM⎯ →⎯⎯⎯← ⎯⎯⎯⎯ ED25dNTP

2050s−1

12.9s−1
⎯ →⎯⎯⎯← ⎯⎯⎯⎯ FD25dNTP

48.3s−1⎯ →⎯⎯⎯ ED26PP
fast⎯ →⎯⎯ ED26 + PP

kcat /Km = k1k2k3
k2k3 + k−1k−2 + k−1k3
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Figure 5.12. Global fitting of dTTP 
binding and incorporation by TAMS 
HIV-RT. (A) Fluorescence data from 
stopped-flow experiments monitoring 
MDCC fluorescence over time 
representing dTTP binding and 
incorporation. Preformed enzyme-
DNA/RNA complex (200 nM HIV-
RT TAMS, 300 nM d25/r36) was 
rapidly mixed with increasing 
concentrations of Mg2+ and dTTP 
(2.5, 5, 10, 20, 30, 40, 60, 80 and 100 
µM). (B) Chemical quench flow data 
(shown in Figure 5.8) monitoring the 
incorporation of dTTP by HIV-RT 
TAMS over time. Preformed 
enzyme-DNA/RNA complex (175 
nM HIV-RT TAMS, 75 nM d25/r36) 
was rapidly mixed with increasing 
concentrations of Mg2+ and dTTP 
(0.5, 1.5, 5, 15 and 150 µM). (C) 
Fluorescence data from stopped-flow 
experiments measuring dTTP 
dissociation from the closed enzyme-
DNA/RNA ternary complex. A 
preformed enzyme-DNA/RNA-dTTP 
complex (50 nM HIV-RT TAMS, 75 
nM dd25/r36, 1.75 µM dTTP) was 
rapidly mixed with 3.5 µM unlabeled 
enzyme-ddDNA/RNA complex to 
serve as a trap. An increase in 
fluorescence representing the release 
of dTTP from the ternary complex 
was observed. Rate constants derived 
from the global fitting are described 
in Table 5.4.

 

A

B

C
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Global fitting of HIV-RT TAMS AZTTP incorporation 

The global fitting of quench flow and stopped-flow data for the incorporation of 

AZTTP for the TAMS mutant of HIV-RT is shown in Figure 5.13 and the best fit values 

are summarized in Table 5.4. The data are fit to the model shown in Scheme 5.5 giving a 

1/K1 = 76.8 ± 0.8 µM, k2 = 261.7 ± 2.2 s-1, k-2 = 76.6 ± 0.6 s-1, k3 = 17.4 ± 0.08 s-1 and k4 = 

1.47 ± 0.01 s-1. Using Equation 5.3 for a 4-step reaction, these rate constants yield a 

kcat/Km value of 0.62 ± 0.01 µM-1s-1 which is 2-fold lower than the specificity constant for 

AZTTP incorporation by wild-type enzyme. For the TAMS mutant of HIV-RT, the 

discrimination for TTP over AZTTP is calculated as (kcat/Km)TTP/(kcat/Km)AZTTP  and is equal 

to 4.3. This discrimination constant compared to that of wild-type enzyme gives a 1.5-

fold resistance to AZTTP by the TAMS mutant (DiscriminationTAMS/Discriminationwild-

type).  

 

Scheme 5.5 

 

 

ED25 + dNTP
76.8µM⎯ →⎯⎯⎯⎯← ⎯⎯⎯⎯⎯ ED25dNTP

261.7s−1

76.6s−1
⎯ →⎯⎯⎯⎯← ⎯⎯⎯⎯⎯ FD25dNTP

17.4s−1⎯ →⎯⎯⎯ FD26
1.47s−1⎯ →⎯⎯⎯ ED26
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Figure 5.13. Global fitting of AZTTP 
binding and incorporation by TAMS 
HIV-RT.

  (A) Fluorescence data from stopped-
flow experiments monitoring MDCC 
fluorescence over time representing 
AZTTP binding and incorporation. 
Preformed enzyme-DNA/RNA 
complex (200 nM HIV-RT TAMS, 
300 nM d25/r36) was rapidly mixed 
with increasing concentrations of 
Mg2+ and AZTTP (2.5, 5, 10, 20, 30, 
40, 60, 80 and 100 µM). (B) 
Chemical quench flow data (shown 
in Figure 5.8) monitoring the 
incorporation of AZTTP by HIV-RT 
TAMS over time. Preformed 
enzyme-DNA/RNA complex (175 
nM HIV-RT TAMS, 75 nM d25/r36) 
was rapidly mixed with increasing 
concentrations of Mg2+ and AZTTP 
(0.5, 1.5, 5, 15 and 150 µM). (C) 
Fluorescence data from stopped-flow 
experiments measuring AZTTP 
dissociation from the closed enzyme-
DNA/RNA ternary complex. A 
preformed enzyme-DNA/RNA-
AZTTP complex (300 nM HIV-RT 
TAMS, 200 nM dd25/r36, 5 µM 
AZTTP) was rapidly mixed with 5 
µM unlabeled enzyme-ddDNA/RNA 
complex to serve as a trap. An 
increase in fluorescence representing 
the release of AZTTP from the 
ternary complex was observed. Rate 
constants derived from the global 
fitting are described in Table 5.4. 
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Table 5.4 Rate constants for TTP and AZTTP Incorporation by HIV-RT determined by global 
fitting 

  1/K1 k2 k-2 K2 k3 k4 
 µM s-1 s-1 	
  	
   s-1 s-1 
WT        	
       

TTP 1430 ± 4.4 5670 ± 660 1.93 ± 0.006 2937 ± 342 78.3± 0.15 19.1 ± 0.06 
(1380 - 1490) - (1.86 - 2)   (76.3 - 80.2) (18.3 - 19.8) 

AZTTP 169 ± 2.2 1620 ± 21 132 ± 1.9 12.2 ± 0.23 20.6 ± 0.08 0.21 ± 0.0007 
(135 - 212) (1290-2020) (105 - 184)   (18.9 - 22.6) (0.20 - 0.22) 

TAMs            

TTP 577 ± 87 2050 ± 315 12.9 ± 0.04 158 ± 24.4 48.3 ± 0.9 - 
(96 - 5650) (334 - 20700) (12.3 - 13.1)   (44.8 - 60.4)   

AZTTP 76.8 ± 0.8 261.7 ± 2.2 76.6 ± 0.6 3.4 ± 0.04 17.4 ± 0.08 1.47 ± 0.01 
(60- 114) (232 - 333) (66.2 - 86.2)   (16.1 - 19.2) (1.18 - 1.73) 

*Numbers in parenthesis give the lower and upper limits derived from the confidence 
contour analysis in fitting the data. 

 

 

Table 5.5 Specificity, discrimination and resistance determined by global fitting  

  kcat Km Kd,net kcat/Km Discrimination Resistance 
 s-1 µM µM µM-1s-1   
WT              

TTP 77.2 ± 12.6 20.7 ± 2.4 0.48 ± 0.06 3.7 ± 0.74 

2.8 -         

AZTTP 18.8 ± 0.34 14.7 ± 0.31 12.7 ± 0.3 1.3 ± 0.03 
        

TAMs            

TTP 46.9 ± 10 17.2 ± 3.6 3.6 ± 0.9 2.7 ± 0.8 

4.3 1.5         

AZTTP 12.8 ± 0.14  20.4 ± 0.3  17.4 ± 0.3 0.62 ± 0.01  
        

*Numbers in parenthesis give the lower and upper limits derived from the confidence 
contour analysis in fitting the data. 
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5.4 DISCUSSION 

The work here explores the RNA-dependent DNA polymerase reaction for wild-

type HIV-RT as well as HIV-RT containing the TAMS mutations. In this work we 

studied the kinetics of incorporation of a correct TTP and the incorporation of AZTTP, 

which is a nucleoside reverse transcriptase inhibitor (NRTI). Previous work has been 

done in our lab to characterize the DNA-dependent DNA polymerase activity by these 

two enzyme forms on the two nucleotide substrates (159). The results here show 

differences in rates of incorporation and conformational changes compared to 

polymerization on a DNA/RNA primer-template. However, the overall analysis of 

discrimination against NRTIs by the TAMS mutant enzyme confirms the previous result 

that discrimination is only modestly affected by the mutations.  

The initial analysis in this chapter using quench flow methods alone, revealed a 

modest 1.3 fold increase in discrimination of AZTTP over TTP by the TAMS mutant 

compared to wild-type HIV-RT. The quench flow data were fit to the simple one-step 

nucleotide binding model for nucleotide incorporation that assumes that nucleotide 

binding first occurs in a rapid equilibrium, is followed by a single-rate limiting 

polymerization step and the steps after nucleotide incorporation (pyrophosphate release, 

translocation) are fast.  

Inclusion of stopped flow experiments in a global fit with the quench flow data 

allow for a characterization of the two-step nucleotide binding model by monitoring a 

change in fluorescence representing the conformational change of the enzyme upon 

nucleotide binding. The presence of the MDCC fluorophore that is covalently attached to 

the fingers subdomain of RT, results in a 27% decrease in fluorescence upon addition of 

nucleotide to monitor the isomerization from the “open” to “closed” state (146). A regain 

in fluorescence is then subsequently seen which is limited by the rate of chemistry. A 
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result observed in these studies and not in those monitoring DNA-dependent DNA 

polymerization, was a further isomerization to a lower fluorescent state of the enzyme 

after the chemistry step. This rate constant, k4, was seen for wild-type incorporation of 

TTP and AZTTP and for TAMS mutant incorporation of AZTTP. Stopped-flow studies 

revealed this isomerization to a different fluorescent state of the enzyme that was not seen 

with the TAMS mutant incorporation of TTP and could not be detected in the quench 

flow experiments because it occurs as an irreversible step after irreversible chemistry. It 

is possible that this observed isomerization could be a measure of pyrophosphate release 

or translocation but more studies must be done to explore these possibilities.  

The global fit of stopped flow and quench flow data for TTP incorporation by 

wild-type enzyme was fit to the expanded 4-step model for nucleotide incorporation. This 

is described by an initial weak ground state binding of TTP to the open form of the 

enzyme (1/K1) followed by a rapid isomerization to the closed state (k2). This 

isomerization to the closed state is reversible and is followed by the chemistry step (k3) 

followed by a subsequent isomerization step (k4). Both the rate of chemistry and the 

isomerization after chemistry were irreversible, as the experimental setup did not provide 

information about the reverse of these steps.  It is the relative rates of chemistry (k3) and 

the reverse of the conformational change (k-2) that determine the specificity constant for 

nucleotide binding. For TTP incorporation by wild-type enzyme, the rate of the 

conformational change was determined to be 5670 s-1 which is 2-fold faster than the rate 

reported for the wild-type HIV-RT TTP incorporation on DNA/DNA primer template. 

An explanation for this faster conformational change with a DNA/RNA primer template 

could be the increase in interactions between the RNA template and the protein as was 

reported in crystal structures of HIV-RT with DNA/RNA primer template (164, 165). 
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With TTP incorporation the binding does not come to equilibrium due to the fast 

rate of chemistry relative to the reverse rate of the conformational change, k3>>k-2, 

therefore the Kd,app estimates the ratio of the rates of product turnover to the formation of 

the closed complex and can be estimated as k3/(K1k2). This value k3/(K1k2) from the 

global fit parameters is determined to be 19.7 µM which is close to the value for Kd,app 

determined by conventional fitting of the quench flow experiment of 13 ± 3.6 µM. This 

Kd,app from the quench flow experiment however, does not equal the Kd,net which is defined 

as 1/(K1(1+K2)) (Equation 5.5) and in this case equals 0.48 ± 0.06 µM. The specificity 

constant kcat/Km is calculated to be 3.7 µM-1s-1 is a product of the equilibrium constant 

governing nucleotide ground state binding and the forward rate of the conformational 

change and the equation for kcat/Km can be simplified to K1k2 which equals 3.9 µM-1s-1. 

This simplification of the equation for kcat/Km can be used because of the fast rate of 

chemistry relative to the slow reverse of the conformational change (k3>>k-2). Overall the 

wild-type enzyme with TTP incorporation has a weak nucleotide binding that is then 

committed to chemistry by the presence of the fast conformational change step at 5670 s-1 

followed by a rate of chemistry at 78.3 s-1 and the reverse rate of the conformational 

change at only 1.93 s-1 is not significant. This induced-fit model for nucleotide 

incorporation by RT is similar to that which was seen for the analysis of DNA-dependent 

DNA-polymerase activity (159).  

 
Simplifying assumptions for calculation of specificity constant: 
 
  

 

 

If  k−2  k3,  then  kcat /Km = K1K2k3 If  k3  k−2,  then  kcat /Km = K1k2
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The case of AZTTP incorporation by wild-type enzyme differs from that of TTP 

incorporation by the fact that the reverse rate of the conformational change at 132 s-1 is 

significant relative to the rate of chemistry at 20.6 s-1. This increase in the reverse rate and 

decrease of the rate of chemistry relative to wild-type enzyme allows the nucleotide 

binding to come to equilibrium before the chemistry step. In this case where k-2>>k3, the 

measurement of the Kd,app by the quench flow studies does equal to the Kd,net and the Km 

for the nucleotide binding (13.9 µM ≈ 12.7 µM  ≈ 14.7 µM, respectively) (Equations 5.5 

and 5.6).  

 

               Equation 5.5    Equation 5.6 

                            

 

In this scenario the derivation of the specificity constant can be simplified to the 

product of the equilibrium constants and the rate of chemistry (K1K2k3). This simplified 

equation gives a value of 1.5 µM-1s-1 while the expanded equation for specificity constant 

gives the value of 1.3 µM-1s-1.  The incorporation of this NRTI therefore binds 8.5-fold 

more tightly in the initial ground state binding compared to the wild-type, however the 

slower conformational change step that comes to equilibrium before chemistry leads to a 

26-fold weaker Kd,net and a 1.3-fold lower specificity constant for nucleotide 

incorporation. This tighter ground-state binding for AZTTP is not too surprising as it was 

seen in the DNA-dependent DNA polymerization analysis and is likely due to the 

additional contacts formed between AZTTP and the nucleotide binding site (100).  

Characterization of the TAMS mutant of HIV-RT with TTP incorporation 

revealed that the fast chemistry relative to the reverse of the conformational change step 

Kd ,net =
1

K1(1+ K2 )
Km = k2k3 + k−1(k−2 + k3)

k1(k2 + k−2 + k3)
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was maintained as was seen in wild-type enzyme. However the equilibrium constant for 

the conformational change step was reduced from K2 = 2937 for wild-type to K2 = 158 

for the TAMS mutant. In the mutant, the 48.3 s-1 rate for chemistry is faster than the 

reverse of the conformational change at 12.9 s-1 so the same simplifying assumptions that 

were applied for wild-type TTP incorporation can be applied here. Specifically, because 

k3>k-2, the Kd,app value of 14.7 µM from the quench flow studies describes the ratio of the 

rates of product turnover to the rates of formation of the closed complex and is 

approximately equal to k3/(K1k2), which is calculated as 13.6 µM. The calculation of the 

Km by Equation 5.6 is equal to 17.2 µM and therefore the Kd,app is more similar to the Km 

than the net Kd. The equation for the Kd,net (Equation 5.5) determines a value of 3.6 µM 

for TTP binding to the TAMS mutant which is 7.5-fold weaker than the binding to wild-

type enzyme. Therefore the binding affinity for correct nucleotide is sacrificed with the 

mutation to the TAMS mutant.  Also the specificity constant, which is calculated to be 

2.7 µM-1s-1 by the expanded Equation 5.4, is 1.4-fold lower than that for wild-type. As 

with wild-type, because the k3>k-2 for the TAMS mutant, the calculation of kcat/Km can be 

approximated by the product of the equilibrium constant governing ground-state 

nucleotide binding and the forward rate of the conformational change, K1k2 which is 

equal to 3.6 µM-1s-1. 

Although the TAMS mutant sacrifices a 1.4-fold reduction in the specificity 

constant for TTP incorporation compared to wild-type, the specificity constant for 

AZTTP is reduced 2-fold to give an increase in discrimination for AZTTP over TTP, and 

therefore a net resistance of 1.5-fold for this mutant. The TAMS mutations reduce the 

rate of the conformational change of the enzyme 6-fold compared to wild-type AZTTP 

incorporation which drastically affects the equilibrium of the conformational change step. 

Also the slight reduction in the rate of chemistry relative to wild-type contributes to the 
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decrease in kcat/Km for AZTTP incorporation by the TAMS mutant. This mutant showed 

the same pattern of relative values for rate constants with AZTTP incorporation that was 

seen with wild-type however the effect is even more extreme. Specifically, the 

conformational change step (k2 =261.7 s-1) comes to equilibrium with a reverse rate of 

76.6 s-1 and is subsequently followed by the rate of chemistry at 17.4 s-1. In this case 

where k-2>>k3 , the apparent Kd determined by quench flow studies (14.5 µM)  is 

approximates to the Km calculated from the full Equation 5.6 (20.4 µM) and also the Kd,net 

which was calculated to be 17.4 µM (Equation 5.5).  

Overall this characterization of RNA-dependent DNA-polymerase activity by 

wild-type HIV-RT and the TAMS mutant of HIV-RT shows that the TAMS mutations 

lead to a slower rate of chemistry and an increased Kd,net compared to wild-type which 

results in a modest 1.5-fold increase in discrimination of AZTTP over TTP. This result is 

similar to the effects seen in the characterization of DNA-dependent DNA-

polymerization (159). The stopped flow studies monitoring the polymerization reaction 

on an RNA template however did reveal an additional isomerization step following 

chemistry that was not seen on a DNA template.  
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Chapter 6: HIV Reverse Transcriptase Labeling Site Mutations 

6.1 INTRODUCTION 

Previous studies and the work outlined in Chapter 5 have shown the importance 

of the conformational change in HIV-RT upon nucleotide binding in determination of 

specificity and discrimination of nucleotides (166). This nucleotide-induced 

conformational change has been monitored using an environmentally sensitive 

fluorophore (MDCC) on the fingers subdomain of HIV-RT and has revealed that the fast 

isomerization from open to closed complex commits the enzyme to carrying forward the 

substrate to incorporation into the growing DNA primer. With wild-type enzyme on a 

DNA/DNA primer-template (159) and a DNA/RNA primer-template (Chapter 5), the 

initial weak nucleotide binding to the open conformation is in a rapid equilibrium and the 

subsequent isomerization to the closed conformation on a millisecond timescale leads to a 

large change in structure and is responsible for determining the specificity constant for 

the correct nucleotide. Stopped-flow experiments monitoring this reaction by the MDCC 

labeled protein have proved to be very valuable in establishing the rate of the induced-fit 

mechanism for HIV-RT and T7 DNA polymerase (146, 159, 161).  

A recent paper from Kirmizialtin, et al. has performed molecular dynamics 

simulations to illustrate global changes in structure of HIV-RT from the open to closed 

states (167). Figure 6.1 shows the p66 subunit of HIV-RT in the open (gray) and closed 

(blue) states. This structure shows the incoming dNTP (magenta) bound at the active site 

near the two catalytic magnesium ions in yellow. The primer and template DNA are 

shown in green and cyan.  
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Figure 6.1. Open and closed conformations of HIV-RT p66. This figure from 
Kirmizialtin et al (167), shows an overlay of open (gray) and closed (blue) conformations 
of the HIV-RT p66 subunit. The crystal structure of HIV-RT and primer template was 
used to model the open complex (PDB: 1J5O (92)) while a crystal structure of the ternary 
complex with enzyme, primer template DNA and nucleotide was used to model the 
closed complex (PDB: 1RTD (86)) The incoming nucleotide is shown in magenta, the 
DNA primer and template strands are shown in green, and the two catalytic magnesium 
ions are displayed as yellow spheres. 

Using these two endpoint structures of the open and closed complexes, computer 

simulation was used to model the changes in structure of the enzyme over time between 

these two endpoints. The global changes that were observed in the p66 catalytic subunit 

are outlined in Figure 6.2, which shows the difference in the protein states as a function 

of amino acid residue and time relative to the initial open structure. The largest change 

was seen in the fingers subdomain but significant movement was detected throughout the 

enzyme. The fingers subdomain contains positively charged residues that make contact 

with the negatively charged triphosphate of the incoming nucleotide to align the 

nucleotide substrate at the active site for catalysis and the large conformational change of 
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this domain was expected. The thumb and palm subdomains showed the next largest 

changes in conformation while the connection and RNase H domains appeared to be 

more rigid. The most mobile regions of the protein were often found in flexible loop 

domains and less movement was seen in beta sheets and alpha helices.   

 

Figure 6.2. Global changes of HIV-RT structure with time. This figure, also from 
Kirmizialtin et al (167), shows the residue number of HIV-RT p66 subunit on the x-axis 
versus the average root mean square deviation of alpha carbons with respect to the open 
conformation of the enzyme on the y-axis. The top plot with the black line represents the 
difference between the open and closed conformations of the enzyme as a function of 
residue number. The lower five plots represent the difference in structure at a given time 
(t) versus the open conformation. The lines are color coded to represent the subdomains 
of the protein: red-fingers, orange-thumb, green-palm, cyan-connection and blue-
RNaseH. The gray and yellow shaded regions of each plot represent regions of beta-sheet 
and alpha helices, respectively.   
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The work presented in this chapter aims to explore regions of HIV-RT distant 

from the active site, which were predicted to be highly mobile by the molecular dynamic 

simulations with conformational changes possibly linked to nucleotide binding (167). 

Mobility of these residues and regions of the protein were explored using the fluorescent 

probe previously used to monitor the conformational change of the fingers subdomain 

(146). Residues chosen for mutation to cysteine and subsequent labeling with an MDCC 

fluorophore (summarized in Table 6.1) were selected based on the following criteria: 1. 

The residue is on a mobile region of the protein as predicted by the molecular dynamics 

simulation 2. The residue is distant from the active site 3. The residue is not highly 

conserved. Three residues on the thumb subdomain and one residue on the connection 

subdomain of p66 were studied. Additionally on p66, two residues in the RNaseH 

domain were analyzed. Finally, two residues on the p51 subunit were studied which were 

predicted to have changes in conformation during nucleotide incorporation.  

 

Table 6.1 Residues selected for cysteine mutagenesis and MDCC labeling  

Subunit Residue Location	
  
p66 Q242C Thumb subdomain 
p66 E300C Thumb subdomain 
p66 K311C Thumb subdomain 
p66 Q334C Connection subdomain 
p66 L517C RnaseH domain 
p66 E523C RnaseH domain 
p51 Q91C p51 opposite side from p66 interface 
p51 R358C p51 near connection subdomain of p66 
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Figure 6.3. Potential MDCC-labeling sites on HIV-RT. The MDCC-fluorophore labeling 
sites studied in this chapter are shown as cyan spheres on the structure of HIV-RT (PDB: 
1RTD). The previously used position for MDCC-labeling (E36), is shown in magenta on 
the fingers subdomain (blue). The potential labeling sites are found on the thumb 
subdomain (yellow), the connection domain (orange) and the RNaseH domain (red) of 
p66. The non-catalytic p51 accessory subunit is shown in gray and contains two potential 
labeling sites Q91 and R358. No labeling sites were studied on the palm subdomain 
(green). 

6.2 MATERIALS AND METHODS 

Site directed mutagenesis of HIV-RT 

The catalytic subunit p66 and the accessory subunit p51 of HIV-1 RT strain HxB2 

were cloned and expressed individually in the same vectors as described in Chapter 5. 

However, in this section of work the p66 subunit, which was in the pET21a expression 

vector, did not contain the E36C mutation for the labeling position on the fingers 

subdomain used previously. To test the six proposed MDCC-labeling sites on p66, the 

full length wild-type p66 sequence with the C280S mutation was used for site directed 
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mutagenesis using the primers listed in Table 6.2. For each 50 µL mutagenesis reaction, 

50 ng of parental dsDNA was mixed with 100 ng of forward and reverse primers, 1X 

cloned Pfu reaction buffer, 1 µl of 10 mM dNTPs (Promega), and 2.5 units of Pfu Turbo 

DNA polymerase (Stratagene). The PCR amplification reaction was then performed with 

the following optimized thermal cycling conditions: 95°C for 5 minutes, followed by 18 

cycles of 95°C for 30 seconds, 55°C for 1 minute, and 72°C for 8 minutes. A final 

extension step of 72°C for 15 minutes before final storage at 4°C. The PCR reaction was 

then transformed into Novablue (Novagen) E. coli and a miniprep procedure (Qiagen) 

was performed to isolate the plasmid DNA. In cases where a labeling site was explored 

on the p51 accessory subunit the same procedure was performed on the pET30a plasmid 

containing sequence for the p51 subunit with the 13 amino acid C-terminal deletion and 

the C280S mutation, as was used in Chapter 5. See Table 6.2 for mutagenic primer 

sequences used for mutagenesis and Table 5.1 for the T7 promoter sequencing primers 

used to confirm the mutagenesis. 
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Table 6.2 Mutagenic primers for HIV-RT labeling site mutants  
	
  	
  

p66-Q242C 	
   	
  	
  	
   	
  
Forward:  5'-CCTGATAAATGGACAGTATGCCCTATAGTGCTGCCAGAAAAAG-3' 
Reverse: 5'-CTTTTTCTGGCAGCACTATAGGGCATACTGTCCATTTATCAGG-3' 

p66-Q334C  	
  	
  	
   	
  
Forward:  5'-ATACAGAAGCAGGGGTGCGGCCAATGGACATAT-3' 
Reverse: 5'-ATATGTCCATTGGCCGCACCCCTGCTTCTGTAT-3' 

p66-K311C  	
  	
  	
   	
  
Forward:  5'-AACAGAGAGATTCTATGCGAACCAGTACATGGA-3' 
Reverse: 5'-TCCATGTACTGGTTCGCATAGAATCTCTCTGTT-3' 

p66-L517C  	
  	
  	
   	
  
Forward:  5'-GATCAAAGTGAATCAGAGTGCGTCAATCAAATAATAGAGC-3' 
Reverse: 5'-GCTCTATTATTTGATTGACGCACTCTGATTCACTTTGATC-3' 

p66-E300C  	
  	
  	
   	
  
Forward:  5'-CTAACAGAAGAAGCATGCCTAGAACTGGCAGAA-3' 
Reverse: 5'-TTCTGCCAGTTCTAGGCATGCTTCTTCTGTTAG-3' 

p66-E523C  	
  	
  	
   	
  
Forward:  5'-GAGTTAGTCAATCAAATAATATGCCAGTTAATAAAAAAGGAAAAGG-3' 
Reverse: 5'-CCTTTTCCTTTTTTATTAACTGGCATATTATTTGATTGACTAACTC-3' 

p51-R358C  	
  	
  	
   	
  
Forward:  5'-AAATATGCAAGAATGTGCGGTGCCCACACTAAT-3' 
Reverse: 5'-ATTAGTGTGGGCACCGCACATTCTTGCATATTT-3' 

p51-Q91C  	
  	
  	
   	
  
Forward:  5'-GACTTCTGGGAAGTTTGCTTAGGAATACCACAT-3' 
Reverse: 5'-ATGTGGTATTCCTAAGCAAACTTCCCAGAAGTC-3' 

mutated codons are underlined	
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Expression, purification and MDCC-labeling of HIV-RT 

The catalytic subunit p66 and the accessory subunit p51 of HIV-1 RT strain HxB2 

were expressed individually in the same vectors as described in Chapter 5. The 

purification and MDCC labeling was also performed as described in detail in Chapter 5 

using Q-sepharose, Bio-rex 70 and ssDNA-cellulose columns for purification. 

Preparation of substrate DNA  

DNA substrates were purchased from Integrated DNA Technologies (IDT) and 

purified by 15% denaturing polyacrylamide gel electrophoresis. Sequences of 25-mer 

DNA primer, dideoxy-terminated 26-mer primer and 45-mer template oligomers are 

listed in Table 6.3.  

Duplex substrates were formed by incubating the 25mer primer with the 45mer 

template at a 1:1 molar ratio in an Annealing Buffer (10 mM Tris-HCl pH 7.5, 50 mM 

NaCl, 1 mM EDTA) and heating to 95°C for 5 minutes before allowing to slowly cool to 

room temperature. 

Table 6.3 Primer template sequences for HIV-RT labeling mutants  
	
  	
  

25/45mer      
25-mer 5'-GCCTCGCAGCCGTCCAACCAACTCA  
45-mer 3’-CGGAGCGTCGGCAGGTTGGTTGAGTTGGAGCTAGGTTACGGCAGG 

dd26/45mer 	
   	
  	
  	
  	
  
dd26-mer 5'-GCCTCGCAGCCGTCCAACCAACTCATdd 	
  
45-mer 3’-CGGAGCGTCGGCAGGTTGGTTGAGTAGCAGCTAGGTTACGGCAGG 

Fluorimeter assay measuring substrate binding 

To measure the changes in fluorescence of the MDCC-labeled mutants of HIV-

RT upon substrate binding, fluorescence emission was measured in a steady-state 

fluorimeter (Photon Technologies Inc). The fluorophore was excited at 425 nm and 

emission was monitored from 450 – 550 nm. First, the cuvette containing RT-Buffer (50 
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mM Tris-HCl (pH 7.5), 100 mM potassium acetate, 0.1 mM EDTA) supplemented with 

10 mM magnesium acetate was scanned as a base-line sample. MDCC-labeled HIV-RT 

was then added to the cuvette at a final concentration of 400 nM and the sample was 

scanned again. The dideoxy-terminated primer-template DNA substrate (Table 6.3) was 

then added to the sample and it was scanned again. A final scan was done after the 

addition of the correct nucleotide (dCTP) at a final concentration of 100 µM.  

Stopped flow assay measuring nucleotide incorporation 

Stopped flow experiments measuring incorporation nucleotide by the MDCC-

labeled HIV-RT were performed at 37 ºC in a 1X-RT-Buffer containing 50 mM Tris-HCl 

(pH 7.5), 100 mM potassium acetate, 0.1 mM EDTA with a an AutoSF-120 series 

stopped-flow instrument from KinTek Corp. For these assays, 100 nM MDCC-labeled 

HIV-RT wild-type or mutant was preincubated with 150 nM 25/45mer DNA for 15 

minutes at 37°C. The reaction was then started by mixing with a solution containing 

various concentrations of dATP in RT buffer supplemented with 10 mM magnesium 

acetate. The MDCC fluorophore on HIV-RT was excited at 425 nm and the fluorescence 

emission was measured as a function of time using a 475 nm single-band bandpass filter 

(Semrock). 

6.3 RESULTS 

Each of the labeling-site mutants of HIV-RT were expressed and purified in the 

same protocol that was described in Chapter 5, as described previously (146). In most 

cases the labeling efficiency was similar to that of the E36C labeling site that has been 

established as a good labeling site. Once the purified proteins were labeled with MDCC, 

the labeling site mutants were tested in steady state fluorimetric assays and stopped flow 

assays measuring nucleotide incorporation. None of the labeling-site mutants studied in 
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this chapter gave an appreciable signal for nucleotide incorporation that could be carried 

forward to future experiments.  

In one of the better cases, the E300C labeling site showed a 10% decrease in 

fluorescence upon formation of the enzyme-DNA binary complex and a further 4% 

decrease in fluorescence upon formation of the ternary complex with enzyme-DNA-

nucleotide (Figure 6.4). When incorporation of dATP was tested in the stopped flow 

experiment for this mutant, a small (%) change in signal was seen in a biphasic curve 

over a 2 second timescale (Figure 6.5).  

 

 

Figure 6.4. Emission spectra of HIV-RT p66-C280S-E300C-MDCC. Binding of DNA 
substrate to the MDCC-labeled enzyme at residue 300 produces a decrease in 
fluorescence emission (yellow to cyan) and the addition of the correct nucleotide dCTP 
produces a further decrease in fluorescence (cyan to magenta). The decrease upon 
binding nucleotide is only a 4% change in fluorescence emission. RT Buffer alone is 
shown as the red curve as a control. 
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Figure 6.5. Fluorescence Stopped-flow signal of HIV-RT p66-C280S-E300C-MDCC. A 
preformed Enzyme-DNA complex with 200 nM HIV-RT p66-C280S-E300C and 300 nM 
25/45mer DNA was rapidly mixed with increasing concentrations of dATP (2.5 (red), 30 
(cyan) and 100 µM (blue)). The MDCC-labeled protein was excited at 425 nm and 
emission was detected using a 475 nm single-band bandpass filter (Semrock).  

 

Another of the better results was the Q334C small change in signal was seen in 

the stopped flow experiment due to the incorporation of dATP but due to the small 

amplitude of the signal, it was hard to interpret (Figure 6.6). It was noticed that for most 

of these mutants there was an increase in the starting point of the signal when dATP was 

mixed with enzyme-DNA compared to the no-dATP control. This led to the hypothesis 

that perhaps there was a rapid increase in fluorescence that was missed in the dead-time 

of the instrument (0.002 s). To explore this, the stopped flow experiment was repeated at 

4°C and the results are shown in Figure 6.7. The results show that the signal amplitude 

was only 0.7% change in signal and therefore the labeling at this site would not be 

suitable for studies to measure a conformational change in the enzyme. 
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Figure 6.6. Fluorescence Stopped-flow signal of HIV-RT p66-C280S-Q334C-MDCC. (A) 
A preformed Enzyme-DNA complex with 200 nM HIV-RT p66-C280S-Q334C and 300 
nM 25/45mer DNA was rapidly mixed with increasing concentrations of dATP (0 (red), 
2.5 (blue), 30 (green) and 100 µM (magenta)). The MDCC-labeled protein was excited at 
425 nm and emission was detected using a 475 nm single-band bandpass filter 
(Semrock). (B) The 2.5 µM dATP trace from A shown alone, was fit to a double 
exponential equation resulting in k1=49 s-1 and k2=1.5 s-1. (C) The 30 µM dATP trace 
from A shown alone, was fit to a double exponential equation resulting in k1=17.7 s-1 and 
k2=1.2 s-1. (D) The 100 µM dATP trace from A shown alone, was fit to a double 
exponential equation resulting in k1=51.5 s-1 and k2=1.3 s-1. 

 

A B

C D
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Figure 6.7. Fluorescence Stopped-flow signal of HIV-RT p66-C280S-Q334C-MDCC at 
4°C. (A) A preformed Enzyme-DNA complex with 200 nM HIV-RT p66-

C280S-Q334C and 300 nM 25/45mer DNA was rapidly mixed with increasing 
concentrations of dATP (2.5 (blue), 30 (green) and 100 µM (magenta)) at 4°C. The 
MDCC-labeled protein was excited at 425 nm and emission was detected using a 475 nm 
single-band bandpass filter (Semrock).  

 

6.4 DISCUSSION 

Somewhat surprisingly none of the eight sites for labeling with a fluorescent 

probe that were studied here provided a sufficient signal for measuring conformational 

changes in HIV-RT.  An effective labeling position for monitoring conformational 

changes of the fingers subdomain of HIV-RT has been identified in previous work in our 

lab based on studies labeling the fingers of T7 DNA polymerase (146, 161). This labeling 

of residue 36 by mutation from a glutamic acid to a cysteine and reaction with the 

coumarin derivative MDCC fluorophore that can react with the thiol group of the 

cysteine to be covalently bound to the fingers subdomain. Stopped flow experiments 
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monitoring the change in fluorescence of the conformationally sensitive fluorophore lead 

to a 34% increase in fluorescence upon binding of DNA and upon binding of correct 

nucleotide a 30% decrease in fluorescence was observed. This large change in 

fluorescence represents the movement of the fingers subdomain during substrate binding 

that is estimated to be a 15Å conformational change upon nucleotide binding (168).  

The goal of the work in this chapter was to utilize the methods previously 

employed to fluorescently label the fingers subdomain of RT to explore results from 

molecular dynamics simulation suggesting that residues distant from the active site were 

highly mobile during catalysis (167). The results presented above show that none of the 

residues when labeled with an MDCC fluorophore produced a signal that could be 

measured in the stopped flow. Each of the labeling sites tested was unable to produce a 

signal that was sufficient to accurately be measured in the stopped flow. As a standard, it 

is necessary that the signal change in stopped flow be significantly large enough to 

overcome the signal-to-noise ratio that is inherent in the stopped flow instrument. 

Realistically, a signal change of less than 2% is difficult to differentiate from the noise of 

the instrument and is not a good candidate for further studies with the stopped flow 

instrument. Beyond a reliable and measureable fluorescence signal for a particular 

labeling site on the enzyme, it is essential that this fluorescent label does not interfere 

with the enzymatic activity being measured. To control for this, a good candidate for a 

fluorescently labeled enzyme must be tested against the unlabeled enzyme for 

deficiencies in enzymatic activity. Once a site which produces a significant signal and 

does not interfere with the enzymatic activity is found, this can be used in further 

stopped-flow assays to delve into the rates of conformational changes of the enzyme. 

Unfortunately, the sites explored in this chapter did not produce a fluorescently labeled 
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protein that gave a large enough change in fluorescence signal upon nucleotide binding 

and incorporation to be used in our pre-steady state stopped-flow experiments.  

The sites of labeling that were explored were hypothesized to be mobile based on 

molecular dynamics simulations. It is possible that the motions of the enzyme at these 

sites were too rapid to be measured on the time scale of our instrument. It is also possible 

that there is no significant movement of the labeled residues to be detected at all.  
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