
A Kullback-Leibler Divergence Exploration into a
Look-Ahead Simulation Optimization of the

Extended Compact Genetic Algorithm
Nathan Vasquez

College of Science and Engineering
University of Minnesota - Twin Cities

Minneapolis, MN 55455
Nathan.J.Vasquez@gmail.com

Abstract—The Kullback-Leibler Divergence of gene distribu-
tions between successive generations of the Extended Compact
Genetic Algorithm (ECGA) is explored. Therein, the fragility
of the algorithm’s dependability to the beginning generations’
biasing is suggested. A novel approach within the scope of the
ECGA for choosing a better bias by allowing the ECGA to
simulate itself is presented. It is shown that, by simulating itself,
the ECGA is able to use a smaller population and evaluate fewer
fitness calls while maintaining the same ability to find optimal
solutions.

I. INTRODUCTION

Genetics and the theory of evolution provide a powerful
framework for shaping how populations evolve. Leveraging
these techniques has been studied extensively in the efforts
to make generalized optimization algorithms. The class of
algorithms that models its optimization problems in such
genetic terms are called genetic algorithms [5]. We restrict
our attention here to the Extended Compact Genetic Algorithm
(ECGA) [9] which falls under the Estimation of Distribution
Algorithms (EDA) class of algorithms [17], [18]. EDA’s use
a Marginal Product Model (MPM) to factor the problem into
related components which allows it to sample better solutions
more frequently [11], [17], [19]. MPM’s are discussed in detail
in the Background section.

These evolutionary algorithms are often studied against
simplistically defined problems whose difficulty may be scaled
in a controlled fashion [7]. Although studied against these
algorithms, the ECGA is intended to be a “practical, real-
world” problem solver [11]. The ECGA has been successful
in areas including “forest management, quantum chemistry,
stock trading, and also as an improved learning mechanism
in learning classifier systems” [11]. The ECGA has also been
shown to be effective in the nonlinear programming problem
of binary working fluid power cycle optimization [19]. For
this reason, the ECGA often is studied in terms of fitness
evaluations of potential solutions instead of conventional time
complexity bounds.

In this work, the focus is on controlled problems as the
ECGA works on them. A constructed Kullback-Leibler di-
vergence (KLD) between successive generations is used as a

tool for exploration. KLD is chosen specifically for the fact
that [4] points out that there is a need for investigation of
this as the meaning of such a quantity is not known within
an evolutionary context [4]. We show that our construction of
this KLD does not necessarily behave uniformly within a class
of problems. However, for a class of problems that exhibits
uniform behavior with our construction we infer sensitivity of
the algorithm’s success from the construction. Based off of
this, we hypothesize that the ECGA is susceptible to biasing
within its early generations. We propose a novel approach of
investing time into simulating future generations, which we
refer to as look-ahead simulations, to control the biasing of
early generations outside the simulation. Herein, we show
that, by using look-ahead simulations, the ECGA’s required
population size may be reduced by up to 20.5% and the
required number of fitness calls may be reduced by up to 3.2%
while maintaining the same ability to find optimal solutions.

II. BACKGROUND

The contributions presented in this work discuss KLD as
a distance between probability distributions, modifications to
the behavior of the MPM’s sampling function in the ECGA,
and various parameterizations of the ECGA. Prior to this dis-
cussion in the Contributions section, we present here essential
information related to these topics.

We begin by giving an overview of the generic genetic
algorithm. We then present a deceptive problem which is
commonly explored in tandem with genetic algorithms and
discuss why they are not able to cope with this problem
class. We use this deceptive problem to motivate and guide
our discussion of linkage learning and then discuss how the
ECGA uses an MPM to tackles this issue. After discussion of
the ECGA, an overview of KLD is given.

A. Genetic Algorithm

Genetic algorithms solve optimization problems by evolving
a given non-optimal solution. As its name suggests, genetic
algorithms are rooted in genetics and draw on concepts
from evolutionary natural selection. At a high overview, the
algorithm takes as input members of a population (potential

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/211345544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


solutions) and an environment (the problem). It then modifies
the population by iterating through multiple generations of
selecting mating partners, breeding (also known as crossover),
mutating the offspring, and imitating natural selection by
replacing individuals in the population by considering each
individual’s fitness as defined by the environment.

Various implementations of genetic algorithms are able to
handle rich object-oriented approaches to these genetic oper-
ators of breeding, mutation, and natural selection. However,
these problems are most often studied as binary strings as this
makes reasoning, discussing, and presenting the individuals
easier. Restriction to binary strings is without loss of general-
ity, as these concepts may still be applied to finite-dimensional
spaces [11]. The abstraction of genetics is hence overlaid upon
these binary strings. Each member of the population is, in fact,
a binary string. We refer to each bit interchangeably as a gene
and assume a prokaryotic organism thus referring to the entire
bitstring interchangeably as a chromosome. This assumption
of a prokaryotic organism is only for the sake of uniform
terminology and does not impose restrictions on the bitstring.

For later use we formally give two equivalent definitions of
L that follow from our defined abstraction.

L := Number of genes in an organism
L := Number of bits in the bitstring
Note that L is referred to as the problem size.

We present one such genetic algorithm in Algorithm 1. Its
purpose is solely to give visual aid of how such an algorithm
would be laid out to achieve optimizing a problem.

Algorithm 1: Genetic Algorithm

1 Function GeneticAlgorithm(problem):
2 population = randomPopulation()
3 while not done do
4 newPop = []
5 while size(newPop) < size(population) do
6 parent1 = select(population)
7 parent2 = select(population)
8 offspring = breed(parent1,parent2)
9 if uniform(0,1) < chanceToMutate then

10 offspring = mutate(offspring)

11 newPop.add(offspring)

12 replace(population, newPop)

13 solution = getBestIndividual(problem, population)
14 return (solution)

The various functions in the algorithm that are simulating
natural phenomenon can be arbitrarily complex in their in-
ternal procedures. Although the implementations differ, [11]
contends that it is widely agreed that genetic algorithms are
successful because of their ability to hand off substructures
of the problem to future generations [11]. Harik et al. discuss

in depth a controversial topic without clear consensus: “the
nature of the structures [a genetic algorithm] exchanges” [11].
They boil this down to two mutually exclusive options: either
genetic algorithms can only effectively handle single genes at
a time, or they are able to effectively handle larger structures
within the chromosomes [11]. A note of clarification here may
be needed. It may be wondered why we instead would not
simply assume a eukaryotic organism and pass this structure
in the form of multiple chromosomes in to the algorithm.
The answer to this is that we wish to not have to pass
this partitioning into the algorithm. We opt to use the same
terminology as [19] and [11], and refer to these subsets of
genes as building blocks.

Before continuing with the discussion of building blocks
which will lead us to the concept of linkage learning, we
detour with a discussion of a deceptive problem to motivate
the need for linkage learning.

B. Deceptive Problems

In the study of genetic algorithms, three classes of problems
are contrasted. These classes, as defined in [3], are those that
give false information, no information, and correct information
as to the distance a solution has to an optimal solution. These
problems are referred to respectively as deceptive, hard, and
easy problems. An example of an easy problem is the OneMax
problem [7]. In this problem, an individual’s fitness is simply
the number of 1’s appearing in its bitstring. We formally define
OneMax similarly to [19] in Algorithm 3, but decompose this
in terms of Unitation, found in Algorithm 2.

Algorithm 2: Unitation

1 Function Unitation(genes):
2 return (number of genes set to 1)

Algorithm 3: OneMaxFitness

1 Function OneMaxFitness(genes):
2 return (Unitiation(genes))

This problem of OneMax lends itself nicely to breeding
functions. Assuming two individuals were selected because
they had a high fitness, they’ll both have an above average
number of 1’s in them. Thus when they combine to produce
an offspring, they too will have an above average number of
1’s. It is then up to future generations to combine different
solutions to fill in more and more 1’s. These genetic operators
ultimately amount to a pseudo-hillclimbing effect.

Deceptive problems are introduced and studied with genetic
algorithms to intentionally foil and punish this hillclimbing
[18] with the intention that they will be difficult for the genetic
algorithm to solve. A commonly studied such problem is the
m-k deceptive trap problem [7], [11], [19]. In this problem
there are m partitions of k bits, hence L = mk. The fitness of
this problem is the sum of each fitness for the m partitions,



where each partition’s fitness is defined as in Algorithm 4. We
borrow from [7] the naming convention of prefixing problems
with “one” or “zero” to reflect where that problem’s maximum
value is. For example, there are OneMax and its counterpart
ZeroMax, OneTrap and it’s counterpart ZeroTrap, etc.

Algorithm 4: ZeroTrapFitness

1 Function ZeroTrap(genes):
2 u = Unitation(genes)
3 if u = 0 then
4 return k

5 else
6 return (u - 1)

Because both of these problems can be expressed in terms of
unitation, we can view the fitness in terms of an individual’s
unitation as well. The graphs of a problem size 4 OneMax
and a problem size 4 ZeroTrap with m = 1, k = 4 in terms
of unitation are shown in Figure 1.

Fig. 1: Fitness in Terms of Unitation

(a) One Max (b) ZeroTrap-4

Throughout later discussion, we fix k, vary L, and leave m
to be inferred; thus leaving us with the naming convention of
trap-k. Because of this, we will only choose L to be multiples
of each fixed k. For example, if we have a size 40 trap-
4 problem, this problem has 10 subproblems (m = 10). To
find the fitness of an individual in this problem, each of the
subproblems will have their fitness calculated, and then the
sum of those fitnesses will yield the fitness of the size 40
problem with 40 being the maximum fitness. Although it is
irrelevant where these partitions are placed within the problem,
we choose to place them adjacent to each other as in Figure
2. However, we mention again: we choose these partitions,
but do not inform the genetic algorithm of such substructure
within the problem.

Fig. 2: Gene Partitions in a Trap-4 Problem

{[0 .. 3], [4 .. 7], [8 .. 11], . . . , [L− 4 .. L− 1]}

Considering Figure 1, and our previous discussion of hill
climbing, we see how this trap function does its job in deceiv-
ing the genetic algorithm since it is rewarded by combining
solutions to obtain more 1’s in its population’s bitstrings. With

this in mind we continue in the next section by considering this
problem of having our algorithm identify such substructures
of the problem.

C. Linkage Learning

A simple genetic algorithm attempting to solve a size 40
ZeroTrap-4 problem will more likely than not produce a
suboptimal solution consisting of some blocks of 0000, but
mostly blocks of 1111 [11]. We consider though, that the genes
making up these blocks are related (after all, we’re running
them through the same fitness function together), and it is
precisely this correlation that a normal genetic algorithm fails
to take advantage of [11]. The problem of deciding which
genes are related is known as the linkage learning problem
[11].

Defined more precisely, “Linkage learning in genetic al-
gorithms is the identification of building blocks to be con-
served under crossover.” [11]. Harik et al. argue that this
linkage learning problem of identifying which genes are
linked is equivalent to that of learning probability distributions
over multi-variate spaces [11]. It should be noted that this
equivalence is under the assumption that linking genes in a
population does, in fact, have this population available to it.
In the case of learning a probability distribution, we assume
individuals are tested against a fitness function by sampling
such an individual from said probability distribution.

To ground ourselves in this concept we consider again our
size 40 ZeroTrap-4 problem. Suppose our genetic algorithm
gets lucky at some point and finds very nice potential solutions
to one of these trap subproblems. Perhaps four members of
the population have 0000 for its first subproblem, and the
other six have have 1111. Because our breeding function does
not know about this substructure, it is likely that these will
combine into a binary string with 0’s and 1’s. Indeed, this
combination has a lower fitness than either parent. Considering
the order-1 probabilities of each individual gene without any
further information doesn’t do much better. We see that the
probability for these bits is as follows: P (bit 1 is a 1) =
P (bit 2 is a 1) = P (bit 3 is a 1) = P (bit 4 is a 1) = 6/10.
Now we could construct individuals from these probabilities
by sampling these probabilities with a random uniform vari-
able from 0 to 1. However, by doing so we wouldn’t be in
much better or worse of a situation than we were with the
population. These both suffer from the same issue in that they
are treating each gene as independent.

Population-Based Incremental Learning (PBIL) [1] and the
Compact Genetic Algorithm (cGA) [8] consider these order-1
probabilities to sample offspring. However, breaking up these
fitness boosting substructures of our individuals is precisely
our problem and limiting factor in these algorithms [11].
Consider instead a breeding function that works on these entire
blocks as a unit. An offspring receiving a guaranteed block of
1111 or 0000 would be much better in terms of fitness than the
fitness that the offspring would receive in breaking this block
up. With our same example, this population’s first building
block would be P (0000) = 4/10 and P (1111) = 6/10. Of



course now, inherently, we’ve set all other combinations (for
example 0001) to probability 0. Harik et al. argue that both
the approach of sampling the building blocks from the popula-
tion and sampling the building blocks’ marginal probabilities
achieve the same result of allowing the crossover operator to
preserve this building block’s fitness-boosting configurations
across generations [11].

D. Extended Compact Genetic Algorithm

1) Marginal Product Model: Before presenting the algo-
rithm, we discuss the machinery that the ECGA will use
to tackle the problem of linkage learning. In the previous
section, we saw that a potential schema is one that is able
to represent the particular marginal probabilities that a set of
genes has. A Marginal Product Model (MPM) is a class of
probability model that does just this. As its name suggests it
is a product of marginal distributions for a given set of genes.
For concreteness we give an example of what a MPM might
look like for a small arbitrary problem in Figure 3.

Fig. 3: Explicit Marginal Product Model

Gene
Partitions [0,3,5] [1,2] [4]

Marginal
Probabilities

000 : 0.25 11 : 1.0 0 : 0.5
110 : 0.5 1 : 0.5
111 : 0.25

Something that may not be immediately apparent that we
will investigate later is that we do not capture these probabil-
ities precisely. Theoretically, such a probability model would
exist to describe exactly what it means for a population to
have its fitness boosted by certain configurations of genes.
However, instead of capturing this precisely, the MPM may
simply note the partitions and let sampling a current population
define the marginal probabilities at these partitions. After all,
that population is a finite sample from the theoretical model
[11]. Hence, assuming we provide the MPM with a concrete
population from which to sample with the same marginal
probabilities for those partitions, it is sufficient to only capture
the partitions. Again for concreteness, for the MPM given in
Figure 3, we give an example in Figure 4 that describes the
same information. Although, for complex models, it may be
impossible to capture this precisely with a finite population
[11].

Fig. 4: Implicit Marginal Product Model

Gene
Partitions [0,3,5] [1,2] [4]

Genes

Individuals

011000
111100
111110
111111

2) Combined Complexity Criterion: Lastly, all that is left to
decide is what genes should be placed together in a partition.
Prior to doing this however, we give discussion to a thought
the reader may be wondering from a previous discussion:
If the order-1 marginal probabilities on individual genes are
not sufficient, why is it that we do not look to higher order
behavior? In fact, some algorithms have delved into this
approach with order-2 behavior [6] which have “sometimes
been found to be vastly superior” [11]. However, although
higher order behavior has the ability to model more complex
and precise behavior, Harik et al. mentions, “the validity of
doing so has been questioned [14]” [11].

It is the author’s opinion that Harik does a phenomenal job
leading the discussion to the rationale of how he chooses the
criteria for gene partitions. Hence the following is an excerpt
from [9] with our same definition of L:

Pursuing this last train of thought to its ultimate
conclusion reveals the flaw in its prescription. We
can directly model the order-L behavior of polling
the population, by only generating new members
through random selection of chromosomes that exist
in the population already. This behavior will rapidly
lead to the algorithm’s convergence, while exploring
no new structures. Thus, more accurate modeling of
the population’s distribution is not always a desirable
course of action . . . It is well known that unbiased
search for such models is futile. Thus we have no
choice but to select a bias in this search space. The
one we choose is that given all other things are equal,
simpler distributions are better than complex ones.
Simplicity here can be defined in terms of the repre-
sentational complexity of the distribution, given the
original problem encoding. All things are, however,
rarely equal, and there remains a tradeoff between
simplicity and accuracy. Our aim will therefore be
to find a simple model that nonetheless is good at
explaining the current population . . . Motivated by
the above requirement, we venture forth a hypothesis
on the nature of good distributions: By reliance on
Occam’s Razor, good distributions are those under
which the representation of the distribution using the
current encoding, along with the representation of
the population compressed under that distribution,
is minimal.

It is with this Minimum Description Length (MDL) bias
in the search for a good distribution that our problem is
now phrased as a constrained optimization problem with the
objective of minimizing the combined complexity [11]. The
combined complexity criterion is defined in [11], as follows:
Let

N := Population size,
Si := Size of the ith partition of an MPM,
Mi := Marginal distribution over ith partition of an MPM,
pk := Probability of outcome k,



and

Entropy(Mi) := −
∑
k

(pk log2(pk)).

Then, for a given partitioning of an MPM,

Cm := log2(N + 1)
∑
i

2Si − 1,

Cp := N
∑
i

Entropy(Mi),

and finally,

CC := Cm + Cp.

Cm we refer to as the model complexity, which represents
the number of bits required to represent all of the marginal
probabilities. Cp we refer to as the compressed population
complexity which is the average number of bits it takes to
represent a structure sampled from a partition’s distribution,
summed over all partitions, that value in turn multiplied by the
population size [11]; A more convenient way of interpreting
this is that Cp is the expected number of bits necessary to
transmit the population compressed under the given partition-
ing as a message, although we note that the transmission is
inapplicable to our current discussion.

At this point we have a problem defined to find the mini-
mum value of CC and simply try all possibilities to find the
minimum. In fact, we can do much better with a greedy search
implementing a cache [11], the implementation of which can
be found in [16].

3) Extended Compact Genetic Algorithm Pseudocode:
With the main component, the MPM, fleshed out, we present a
high level parameterization of the Extended Compact Genetic
Algorithm shown in Algorithm 5.

Algorithm 5: Extended Compact Genetic Algorithm

1 Function ECGA(problem):
2 population = randomPopulation()
3 while not done do
4 selectedSet = select(population)
5 MPM.generateModel(selectedSet)
6 newIndividuals = MPM.sample(selectedSet)
7 replace(population, newIndividuals)

8 solution = getBestIndividual(problem, population)
9 return (solution)

With a normal genetic algorithm, we had operators of
selection, breeding, mutating, and replacement. In the case
of the ECGA, we see that breeding and mutating have been
removed, and now in their stead have the MPM.

Because the ECGA’s main use is in complex problems for
which often the fitness calculations are relatively expensive,
much of the literature’s [11], [19], [17] analysis of the al-
gorithm has been in time units of fitness calls instead of
conventional time complexity bounds. In the case of a size 40

trap-4 problem, the ECGA has been shown to be up to 1000
times faster than a regular genetic algorithm [11]. However,
the parameterizations of this algorithm affect results such as
these. As such, we discuss briefly the various forms of these
parameterizations.

4) Selection: From our pseudocode abstraction above, it
may seem as though we should be able to build our model
from the population instead of selecting a representative set.
However, it is important to understand that the selection in this
algorithm plays the role of correlating genes with high fitness.
Harik et al. comment on the sensitivity to selection that the
ECGA has. Indeed, the MPM’s greedy search for correlated
genes starts with the assumption that all genes are independent
and begins to merge those that are correlated. If selection fails
to correlate patterns in the genes with high fitness, the ECGA
will fail [11].

Several different approaches have been suggested: tourna-
ment selection with replacement, tournament selection without
replacement, and truncation selection. Furthermore these pa-
rameterizations have been further parameterized by such things
as choosing a selected set with size given a proportion to the
original population [16]. We restrict ourselves to the most
common approach of tournaments without replacement and
choose 16 as our tournament size. As is more typically done,
we choose our selected set to be the same size as the original
population.

5) Replacement: A straightforward replacement method is
that of full replacement, where we take the old population and
replace all individuals with those generated from our MPM
sampling. In this context of full replacement, sampling pro-
duces a population with size equal to the original population.
However, this equality is not a strict requirement; We could
conceivably model a population with the birth rate not equal
to the death rate, but this hasn’t been studied within the scope
of the ECGA to the best of our knowledge.

If we choose replacement methods other than full replace-
ment, we remove the restriction that the sampled population
must be the same size as the original population and call the
proportion of sampled individuals the offspring ratio (this
ratio is referred to in [16] as offspring size). An example of
this would be worst replacement [16]. For example if we have
a population of size 1000, and we choose the offspring ratio to
be 1/2, this would cause our MPM to produce 500 individuals,
which in turn would replace the 500 individuals in the current
population with the lowest fitness.

Lastly we consider restricted replacement (explained in [10]
where they refer to this as restricted tournament selection)
which needs a tournament size, which we will call the window
size. We leave this window size as N/20 as recommended in
[15]. This approach uses a distance metric over the popula-
tion, taking two individuals and mapping them to a distance
(we focus within the scope of hamming distance). For each
individual this replacement method seeks to replace into the
population, it considers random individuals in the population
of size equal to the window size. It then computes the distances
for each of these members. It chooses whichever individual has



the closest distance to the individual seeking to be replaced
into the population. With these two individuals, it keeps in
the population the most fit individual of the two. What this
selection methods allows for us to do is to create localized
niches in the population.

In [18], the authors argue extensively the requirement of
EDA’s to have a sub-structural niching method when applied
to multimodal, hierarchical, dynamic, and multiobjective opti-
mization problems. [18] provides a more advanced technique
that performs on par with restricted replacement, but does so
with less population. Within the scope of this paper, we focus
our attention on the restricted replacement.

E. Kullback-Leibler Divergence

In the previous section, we discussed extensively the ECGA.
Now we seek to describe the behavior of the population chang-
ing with respect to the modifications the algorithm makes to
the population through replacement. We use Kullback-Leibler
Divergence (KLD) as our statistic to do just this. Before our
explanation of this quantity, it should be noted that [4] points
out that “the evolutionary meaning of this quantity is not
known and needs to be further investigated” [4]. Later, we
scratch the surface of this within the scope of the ECGA, but
for now we present this concept in more general terms.

We opt to use more conventional notation, but nonetheless,
[13] defines KLD as follows:

Given P, Q as discrete probability distributions, the KLD
from Q to P is defined to be

DKL(P ||Q) :=
∑
i

P (i) log2
P (i)

Q(i)

Note that this definition can be defined for any base loga-
rithm, but we choose ours to be base 2 for units of bits. We
note further a few restrictions, properties, and an interpretation
of this quantity and leave further discussion for later.

1) Restrictions of KLD from Q to P :
• Q(i) = 0 must imply P (i) = 0, or else KLD is not

defined.
• Contribution of the ith term is defined to be zero in the

event that P (i) is 0.
2) Properties of KLD from Q to P :
• DKL(P ||Q) is nonnegative
• KLD is a non-symmetric difference between two prob-

ability distributions, i.e. it does not obey the triangle
inequality (DKL(P ||Q) need not equal DKL(Q||P ).)

3) Interpretation of KLD from Q to P :
• In Bayesian inference, when one revises one’s beliefs

from prior probability distribution Q to posterior prob-
ability distribution P , this quantity measures information
gain [2].

III. CONTRIBUTIONS

Discussed in the background section, we built up the ra-
tionale of the components of the ECGA which allows it to
learn linkage within the set of genes in a chromosome. As the

ECGA runs, it revises its beliefs as to what the structure of
the problem is in the form of gene partitions. As the ECGA
converges on a solution, it decreases the entropies of these sets
of genes’ marginal distributions.

With this in mind, our contributions are twofold:
1) A construction of KLD is imposed over the genes’ order-

1 probabilities and is shown not to exhibit uniform
behavior across different classes of problems, nor does
it necessarily exhibit uniform behavior within the same
class of problem. Using this construction for a problem
in the deceptive class of problems which exhibits uniform
behavior, a correlation with finding an optimal solution
is shown.

2) It is further shown that in this deceptive class of prob-
lems, look-ahead simulations are an effective method of
influencing the entropies of the ECGA’s gene partitions’
marginal distributions when they’re at their most sensitive
state. This makes the ECGA more reliable, and thus
allows for higher dimensional problem sizes to able to
be solved with less population and fewer fitness calls.

All results that follow were obtained using the framework
described in [16] and available via a public repository.

A. Kullback-Leibler Divergence Exploration

Given a marginal distribution of a partition of genes within
an MPM, it would be ideal to consider how these marginal
distributions change from generation to generation. Unfortu-
nately, from generation to generation the MPM is constantly
updating its partitioning.

Attempting to consider the partitions that remain the same
would necessitate the interpretation of an aggregate collection
of variably existent statistics. Instead of attempting to impose
meaning onto such statistics, we ignore the boundaries of the
partitioning and focus on the order-1 probabilities of the genes.
We construct another probability distribution by scaling these
genes’ probabilities to sum to 1. We refer to this constructed
distribution at generation i Gi.

Now, let us consider DKL(Gi+1||Gi), i.e. the KLD from
one generation to its successor under our construction. We
note that this statistic is particularly fickle with respect to
our mirrored problems with max fitness at all 1’s versus its
counterpart with max fitness at all 0’s. We consider a few
examples to illustrate this point. In the following examples,
let us restrict ourselves to an arbitrary size 4 problem and
assume a population of size 8. We show the gene frequency
counts pertaining to how many individuals have a gene of 1
in that gene’s index and call this collection Fn for generation
n.

In all of these examples, we start with four individuals of
the eight having gene k set to 0 and the other four having
gene k set to 1. Thus our initial configuration of Fi is
[4, 4, 4, 4] in every example. Note that it does not matter which
individuals have a particular gene configuration. In Example 1,
we see that, in the posterior generation, the arbitrary problem
suggested through the fitness of these individuals that it was
best to set all individuals’ first and second genes to 0 and the



Example 1

Let

Fi := [4, 4, 4, 4] and

Fi+1 := [0, 0, 4, 4].

Then

Gi := [1/4, 1/4, 1/4, 1/4],

Gi+1 := [0, 0, 1/2, 1/2], and

DKL(Gi+1||Gi) := 1.0.

Example 2

Let

Fi := [4, 4, 4, 4] and

Fi+1 := [8, 8, 4, 4].

Then

Gi := [1/4, 1/4, 1/4, 1/4],

Gi+1 := [1/3, 1/3, 1/6, 1/6], and

DKL(Gi+1||Gi) := 0.0817.

algorithm stochastically did just this. In Example 2, we see that
in the posterior generation, the arbitrary problem suggested it
instead best to set all individuals’ first and second genes to 1.
Note that the KLD is drastically different in these examples. In
Example 3, we note another issue that can arise: although the
gene frequencies changed drastically from half set to 1’s to all
set to 1’s, there’s no difference in our constructed distribution,
hence the KLD is zero.

From these examples we conclude that the KLD will not
be useful in describing arbitrary classes of problems. This is
exemplified by simply comparing OneMax against ZeroMax
where we recognize that their genes will tend to either all 1’s
or all 0’s respectively in a near uniform fashion, which will
obtain drastically different results in terms of KLD. Another
issue arises when there is a global shift in the genes’ marginal
probabilities, i.e. a uniform trend in the same direction (as
in Example 3). This global shift will not be detected by our
construction.

In light of these complications, it seems that our construc-
tion may not be useful to us. However, [19] explores the type
of behavior found in Example 3, and coin the terms flash
identification and sequential identification to describe the man-
ner in which the ECGA discovers the building blocks within
the problem. Flash identification is when all building blocks
are discovered all at once, whereas sequential identification is
when building blocks are discovered over the span of multiple
generations. Particularly of note from their findings is that, as
the difficulty of the problem goes up, this behavior changes
from flash identification to sequential [19].

Example 3

Let

Fi := [4, 4, 4, 4] and

Fi+1 := [8, 8, 8, 8].

Then

Gi := [1/4, 1/4, 1/4, 1/4],

Gi+1 := [1/4, 1/4, 1/4, 1/4], and

DKL(Gi+1||Gi) := 0.0.

For the first few generations of the ECGA with a random-
ized population, it is a fair assumption that our population
is split roughly down the middle of having a 1 or a 0 for
gene i. Furthermore, for difficult problems, given that they
are sequentially learned, we should expect within the first few
generations that the MPM will identify partitions incorrectly.
Given that the MPM identifies building blocks incorrectly, we
expect genes that are incorrectly linked to other genes not to
stray far from previous generation’s.

With this in mind, we consider Examples 4, 5, 6, and 7
through the lens of the situation just described and contrast
with the previous examples.

Example 4

Let

Fi := [4, 4, 4, 4] and

Fi+1 := [3, 3, 4, 4].

Then

Gi := [0.25, 0.25, 0.25, 0.25],

Gi+1 := [0.21, 0.21, 0.29, 0.29], and

DKL(Gi+1||Gi) := 0.015.

Example 5

Let

Fi := [4, 4, 4, 4] and

Fi+1 := [2, 2, 4, 4].

Then

Gi := [0.25, 0.25, 0.25, 0.25],

Gi+1 := [0.17, 0.17, 0.33, 0.33], and

DKL(Gi+1||Gi) := 0.082.

In Examples 4 and 6, we have a small change in the
frequencies of genes one and two. As Examples 4 and 6 get
closer to Examples 1 and 2, we expect to see something like



Example 6

Let

Fi := [4, 4, 4, 4] and

Fi+1 := [5, 5, 4, 4].

Then

Gi := [0.25, 0.25, 0.25, 0.25],

Gi+1 := [0.28, 0.28, 0.22, 0.22], and

DKL(Gi+1||Gi) := 0.009.

Example 7

Let

Fi := [4, 4, 4, 4] and

Fi+1 := [6, 6, 4, 4].

Then

Gi := [0.25, 0.25, 0.25, 0.25],

Gi+1 := [0.3, 0.3, 0.2, 0.2], and

DKL(Gi+1||Gi) := 0.029.

Examples 5 and 7 respectively. This suggests that Examples 5
and 7 should be less likely to occur than 4 and 6. Given these
likelihoods, we consider now the KLD of these examples. For
these we introduce a temporary notation that is easier to follow.
Let {k} be the equivalence class of taking Fi = [4, 4, 4, 4]
to Fi+1 = [k, k, 4, 4]. Hence {5} represents the situation in
Example 6 whereas {2} represents Example 5. Furthermore,
let D{k} be the KLD calculated in this situation, for example
{5} = 0.009. Note that {4} is equal to the KLD calculated in
Example 3.

With our more convenient notation, we outline an important
point. Consider {0}, {4}, and {8}. In order, these represent the
extreme case of setting the first two genes to all 0’s, the case
where there is no change to the population, and the extreme
case of setting the first two genes to all 1’s. Note that D{4} <
D{0} < D{8}. However in the discussion to follow we aren’t
particularly interested in the whether D{i} < D{j} for i < 4
and j > 4. Instead we are interested only in the behavior of
those values of D{i} < D{j} for the case where i, j < 4 or
in the case i, j > 4.

From our examples, we see that

D{4} < D{5} < D{6} < ... < D{8}

and
D{4} < D{3} < D{2} < ... < D{0}.

As OneMax and ZeroMax have shown us, our construction
will not be applicable in cases involving flash identification.
However, for more difficult problems which we assume to

be sequentially learned by the argument in [19], we should
be able to see such trends for early generations. We hence
focus on Trap-4 problems. Because OneTrap and ZeroTrap
tend towards the specific poles of all 1’s or all 0’s we should
see two types of behaviors. In the case of OneTrap, we should
see behaviors like {i} for i > 4 and in the case of ZeroTrap,
we should see behaviors like {i} for i < 4 with {i} in either
case being more likely with values closer to 4.

From the previous discussion, generalizations of the behav-
ior in regard to changes that are not as controlled as those
above are especially difficult because, as we additively overlap
such examples, this behavior devolves into a global shift, and
thus our statistic vanishes. Beyond the first few generations,
the assumptions upon which this predicted behavior relies
vanish as well, since the genes will no longer be close to
uniformly distributed.

1) Corroborating Evidence: In the previous section, we
noted the difficulty in generalizations and aim to corroborate
claims based on empirical evidence. [19] gives an equation
for suggested population sizes. In this experimental setup and
others to follow, we use the term tune a population size to
be the following procedure. We consider the suggested sizes
(on the order of 1000-4000) in [19] and halve these. We
manually observe when the algorithm approximately reaches
the desired success rate. We then run at least 30 samples each
containing 100 trials of the ECGA running from start to finish.
These samples are taken in uniform increments, spread across
an interval centered on our manually observed estimate. The
radius of this interval was chosen to be at least 1000. A best
fit line is fit to this data, and from this line we obtain our
population size yielding our desired success rate.

For the first experiment, we note that the equation given in
[19] for population size is linear in the problem size. We tune a
population size for a size 80 OneTrap-4 to have a 50% success
rate, where success is finding an optimal solution, and then
tune the same for a size 160. We then interpolate population
sizes linearly to the other problem sizes. Note that we do
not make efforts to cause OneMax and ZeroMax to fail since
these are easy problems. We use a tournament size of 16 and
selection method of tournament selection without replacement
and refer to these two in the future as the standard setup.
Furthermore, we use full replacement, and halt upon popula-
tion convergence to a single individual (all individuals are the
same). For problems among {Zero,One}×{Max,Trap-4}, we
vary the population from 80 to 160 in steps of 20. With this
setup, we ran 100 trials for each variation and obtained the
graphs in Figure 5.

Figure 5 demonstrates several behaviors of the problems
under the constructed KLD. For the Trap problems, we see that
within the first few generations the KLD follows anticipated
behavior given the assumption that the ECGA sequentially
identifies building blocks. OneMax exemplifies the necessity
of this assumption given that OneMax exhibits flash identifi-
cation. However, by the nature of our construction, ZeroMax
ends up showing a trend in the graph similar to that of the
Trap problems. Exploration into why ZeroMax exhibits this



Fig. 5

(a) Zero Max (b) ZeroTrap-4

(c) One Max (d) OneTrap-4

(e) Legend Pertaining to (a)-(d)

(a) ZeroMax. (b) ZeroTrap-4. (c) OneMax. (d) OneTrap-4.
Because the optimal solution is equal to the problem size which
we are varying, we define Scaled Fitness to be fitness divided
by optimal fitness.
For a better grasp of the data, we project the data into each
plane and show trend lines on that plane’s surface.

behavior without qualification of our assumption will not be
explored here. The main corroboration we are interested in is
the Trap problems as representatives of the deceptive class of
problem.

The rest of our discussion is confined to improving the
performance of the ECGA with difficult classes of problems,
with Trap-4 as a representative. Hence, we focus our attention
in the next section to the correlation of KLD under our
construction with finding an optimal solution.

2) Correlation with Success: Within the previous results
from Figure 5, we observe the correlation of our constructed
KLD with the success of the algorithm to find the optimal
solution in the following manner. We sum our constructed
KLD over the first k generations for k from 1 to 3 and calculate

the Pearson Correlation with the success of finding an optimal
solution.

In the discussion to follow, we let Ck refer to the col-
umn in Table I pertaining to the Pearson correlation of∑k

i=1DKL(Gi+1||Gi) with finding an optimal solution. For
instance, C3 of ZeroTrapproblem size 80 is -0.26220. We re-
mind ourselves that this is the sum of our constructed
KLD going from the first to second, second to third, and
third to fourth generations. In interpreting this data, we
note that in a Bayesian inference view of the situation,∑3

i=1DKL(Gi+1||Gi) is the total bits of information by
which the algorithm has revised its beliefs in the first three
belief revisions.

Among the C1 correlations, we see that there is little



TABLE I: Correlation with Finding Optimal Solution

Problem Problem
Size

Pearson Correlation of∑1
i=1 DKL(Gi+1||Gi)

with Finding Optimal

Pearson Correlation of∑2
i=1 DKL(Gi+1||Gi)

with Finding Optimal

Pearson Correlation of∑3
i=1 DKL(Gi+1||Gi)

with Finding Optimal
ZeroTrap 80 0.11783 -0.02264 -0.26220
ZeroTrap 100 -0.20604 -0.16814 -0.31261
ZeroTrap 120 0.04840 -0.08642 -0.27657
ZeroTrap 140 0.00998 0.00136 -0.20139
ZeroTrap 160 0.05146 -0.15555 -0.23681
OneTrap 80 -0.10253 -0.19753 -0.28662
OneTrap 100 0.10800 0.07462 -0.23664
OneTrap 120 0.07597 -0.03784 -0.23690
OneTrap 140 -0.02730 -0.02054 -0.19642
OneTrap 160 -0.17927 -0.19902 -0.31136

Average -0.01035 -0.08117 -0.25575

association. This means that, regardless of whether the KLD
is large or small, there is negligible association with finding
an optimal solution. In the context of our constructed KLD,
having a larger KLD means there was a larger revision to
the population and hence a larger magnitude of entropy loss.
According to C1 this entropy loss is irrelevant, i.e., the ECGA
can recover from this.

Next considering C2, we note that having a large value for∑2
i=1DKL(Gi+1||Gi) means that there was a large change in

beliefs twice in a row. Note that C2 is now more negatively
correlated with success than C1. Again, we see this trend in
C3 as well. This trend suggests that the ECGA cannot handle
repeated large entropy losses. However, at the same time,
the ECGA must reduce the entropy of its population since
it requires this entropy loss to converge on potential solutions.

These correlations, of course, do not mean causation, but we
speculate that the beginning generations are most important
due to the fact that there is the most entropy in the system.
Based on this assumption, we endeavour to make improve-
ments on the algorithm.

B. Look-Ahead Simulations

As we noted in the previous section, we make the claim that
the entropy loss in the system during the first few generations
is more influential to the ECGA’s ability to find an optimal
solution than the entropy loss later in the system.

This guides our aim at improving this algorithm. If our
improvement adds time proportional to the fitness evaluations
in a given generation, our algorithm will still run in the same
time complexity bound. However, in terms of raw fitness
evaluations, assuming a proportion of 1 and the algorithm
running the same number of generations, we will have doubled
our fitness calls. Given this approach, we will impose on
ourselves the requirement to find the solution twice as fast in
order for this approach to be worthwhile. Finding a solution
twice as fast seems incredibly unlikely especially as [19] notes
that for large problem sizes, convergence is proportional to the
square root of the problem size. Hence we focus our attention
on the beginning of the algorithm’s entropy loss.

Consider a run of the algorithm from start to finish without
finding an optimal solution. At some point during its run, the
MPM must have partitioned genes such that, when sampled,

this produced an entropy loss in the system. We point out again
that [19] finds that the algorithm only finds an optimal solution
when all building blocks are correctly identified. Additionally,
for difficult problems and especially for deceptive ones, this
entropy loss is biasing our population towards a suboptimal
solution. By the time the building blocks are discovered, there
isn’t enough entropy left in the system for the algorithm to
do anything useful. We therefore conclude the following: If
early generations had future generations’ refined beliefs of
what the problem looks like, access to those beliefs could
allow the MPM to reduce the entropy of the population in
such a fashion that the system would be biased more towards
an optimal solution. To avoid evaluating too many fitness calls,
we endeavour only to have the beginning few generations be
informed of such information.

The only issue left is that, on a given generation, the
MPM needs to come back to the current population its
sample function was called with after considering these future
generations. At the same time, it also needs to modify this
population to consider future generations. Hence we have the
algorithm simulate itself running. That is to say, in the first few
generations, upon calling the MPM to sample individuals, we
have the MPM make a copy of the algorithm and population,
MPM included. We have the MPM’s sampling function then
simulate the algorithm running into the future to find a refined
solution to where the simulated MPM suggests the partitions
are and then halts the simulation. By having the MPM return
to its entropy-rich, original population, the MPM can impose

TABLE II: Look-Ahead Simulation Parameterization

Parameter Description
generations to simulation Number of generations to use a

modified MPM sampling technique
that simulates up to a future MPM
and instead uses its partition for
sampling outside the simulation.
After this generation, the algorithm
returns to normal behavior.

simulation generation depth Number of generations into the fu-
ture a simulation should simulate
for.

simulation offspring ratio Same as normal offspring ratio ex-
cept this size is used only during
the simulation.



TABLE III: Size 80 OneTrap-4 Tuned to 50% Success Rate

generations
to simulate

simulation
generation

depth

simulation
offspring

ratio

offspring
ratio

Trials That
Found Optimal

Solution

Mean Fitness
Evaluations

Until Optimum
found

STD Fitness
Evaluations

Until Optimum
Found

0 N/A N/A 0.5 215 15414.5 4814.30
1 1 0.5 0.5 722 17682.8 2279.50
1 1 1 0.5 726 17823.4 2370.81
1 2 0.5 0.5 762 14986.5 3252.87
1 2 1 0.5 737 15045.4 3374.42
2 1 0.5 0.5 680 17966.9 2378.30
2 1 1 0.5 666 18241.9 2476.46
2 2 0.5 0.5 654 15633.4 3400.24
2 2 1 0.5 657 15615.4 3374.97
0 N/A N/A 1 486 17669.3 2771.34
1 1 0.5 1 728 17831.8 2465.26
1 1 1 1 734 17929.3 2630.98
1 2 0.5 1 763 14959.4 3410.10
1 2 1 1 765 14929.0 3187.57
2 1 0.5 1 657 18055.4 2407.33
2 1 1 1 687 18098.9 2623.29
2 2 0.5 1 658 15697.0 3504.10
2 2 1 1 645 15816.2 3595.38

Note that trials that did not find an optimal solution are not factored into the mean or standard deviation.

a better bias into the population. We refer to this process of
the MPM simulating up to a future MPM’s gene partitions a
look-ahead simulation.

Presented in Table II is a parameterization of the look-ahead
simulation just described.

For clarity, we point out that there are two separate MPM
sampling functions: a normal one and one that does simula-
tions. When the look-ahead simulation’s sampling function is
running, it only calls the normal sampling function. I.e. there
are no simulations inside simulations.

It cannot be beneficial for generations to simulate or
simulation generation depth to be large since it will
increase the number of fitness evaluations too much. We
constrict these parameters to the set {0, 1, 2}, and leave higher
values to be studied based on preliminary results. Note that
generations to simulate set to 0 is the normal algorithm.
Based off of claims from [11], only generating half of the next
population can be a viable option which seems like a straight-
forward, potentially viable way for the algorithm to further
make up time for the expended fitness calls. Hence, we further
vary simulation offspring ratio and offspring ratio for
values in the set {0.5, 1.0}.

In the following experiments, we parameterize the algorithm
to its best known configuration to the author’s knowledge.
We use a problem size of 80 on a OneTrap-4 problem
with restricted replacement and the aforementioned standard
setup. Because restricted replacement outperforms the full
replacement used previously, we retune our population size to
yield a 50% success rate. This population size was found to be
1899. The results of running 1000 trials for each configuration
with this experimental setup are shown in Table III.

We remind ourselves that, in the setup, these results are
based on a configuration of the ECGA that had its population
size tuned to fail half of the time. Because of this, we
should not infer that the normal algorithm cannot solve these

problems. Instead, we note that the algorithm simply requires
a higher population size. By considering only the entries with
the same offspring ratio, we can see when look-ahead
simulations might require less population than the normal
ECGA. However, there is still the cost of the extra fitness calls
to be considered. We note also that, this low of a population
is not a typical parameter settings for the algorithm.

We opt to illustrate this point with the preliminary results of
the experiment we just discussed. The following experiment
is identical to the one previous, with the exception of the
population size. Where the previous population size was set to
1899 to achieve a 50% success rate, the following experiment
had its population size set to 2000, which is more towards
the spectrum of the algorithm’s suggested population size on
the order of 4000. The results of running 1000 trials for each
configuration with this experimental setup using 2000 as the
population size are shown in Table IV.

Debatably, increasing generations to simulate appears to
be more appealing given its success rate with respect to this
population size increase. However, there is still the trade off
with the increased fitness calls. We leave hypothesis testing of
inferred trends in these data as future work. Accepting these
results as circumstantial evidence that look-ahead simulations
may be beneficial, we focus our attention here on testing this
theory.

Hence we use the previous parameterizations and tune the
population such that the algorithm finds a solution 95% of the
time. The results of running 1000 trials for each configuration
with this experimental setup are shown in Table V. Included
in Table V are the population sizes that the parameterizations
tuned to.

Considering the results in Table V with an offspring ratio
of 0.5, we see that unanimously, there was not any parame-
terization that performed better in terms of fitness calls than
the original algorithm. However, all of these decreased the



TABLE IV: Size 80 OneTrap-4 Untuned

generations
to simulate

simulation
generation

depth

simulation
offspring

ratio

offspring
ratio

Trials That
Found Optimal

Solution

Mean Fitness
Evaluations

Until Optimum
found

STD Fitness
Evaluations

Until Optimum
Found

0 N/A N/A 0.5 326 16162.6 4926.03
1 1 0.5 0.5 511 15172.2 4400.72
1 1 1 0.5 604 15165.6 3859.35
1 2 0.5 0.5 686 14723.0 3640.28
1 2 1 0.5 840 15167.9 2965.70
2 1 0.5 0.5 548 15711.7 3911.84
2 1 1 0.5 700 16508.6 3446.91
2 2 0.5 0.5 762 15908.1 3125.41
2 2 1 0.5 887 18260.4 1965.52
0 N/A N/A 1 575 17826.1 2803.25
1 1 0.5 1 748 17951.9 2581.54
1 1 1 1 789 18243.3 2371.92
1 2 0.5 1 843 17727.2 2305.95
1 2 1 1 925 18585.9 1813.38
2 1 0.5 1 773 18571.8 2365.35
2 1 1 1 837 19550.8 1994.94
2 2 0.5 1 870 19137.9 1910.98
2 2 1 1 948 22130.8 1504.58

Note that trials that did not find an optimal solution are not factored into the mean or standard deviation.

TABLE V: Size 80 OneTrap-4 Tuned to 95% Success Rate

generations
to simulate

simulation
generation

depth

simulation
offspring

ratio

offspring
ratio

Population
Size

Trials That
Found Optimal

Solution

Mean Fitness
Evaluations

Until Optimum
found

STD Fitness
Evaluations

Until Optimum
Found

0 N/A N/A 0.5 2976 958 15397.2 2672.59
1 1 0.5 0.5 2803 955 15890.2 2600.43
1 1 1 0.5 2680 954 16051.9 2246.94
1 2 0.5 0.5 2620 962 15675.1 2162.14
1 2 1 0.5 2292 935 16133.5 2330.72
2 1 0.5 0.5 2791 951 16955.2 2381.88
2 1 1 0.5 2544 938 17862.2 2018.83
2 2 0.5 0.5 2471 933 17396.9 2042.47
2 2 1 0.5 2332 951 20425.2 1429.29
0 N/A N/A 1 2665 949 19660.3 2142.92
1 1 0.5 1 2446 940 19422.3 2087.11
1 1 1 1 2407 960 19682.2 1990.60
1 2 0.5 1 2327 946 19030.7 1948.83
1 2 1 1 2120 951 19347.5 1807.88
2 1 0.5 1 2481 959 20501.5 1967.13
2 1 1 1 2294 945 21209.2 1872.61
2 2 0.5 1 2355 969 21190.6 1603.89
2 2 1 1 2007 938 22087.7 1499.40

We use a shorthand notation to refer to entries in this table such as {2, 1, 1.0, 0.5} to mean the entry at generations to simulate = 2,
simulation generation depth = 1, simulation offspring ratio = 1.0, offspring ratio = 0.5. Note that trials that did not find an optimal solution

are not factored into the mean or standard deviation.

required population size and variance of how many fitness
evaluations were called before finding the optimum. Despite
this tradeoff, the case of an offspring ratio of 1.0 is able to
do better.

Considering the results in Table V with an offspring ratio
of 1.0, we see that setting generations to simulate to
2 becomes too expensive of a process in terms of fitness
calls. Among generations to simulate set to 1, with the
exception of {1, 1, 1.0, 1.0}, all of those among {1, 1, 0.5, 1.0},
{1, 2, 0.5, 1.0}, and {1, 2, 1.0, 1.0} outperformed the orig-
inal algorithm in all metrics. Contrasting these settings,
{1, 2, 0.5, 1.0} reduces the fitness calls the most, but is beat
in the other metrics. This setting of {1, 2, 0.5, 1.0} reduces

the required fitness calls by 3.2%. Conversely, {1, 2, 1.0, 1.0}
reduces the other metrics, but is beat by fitness calls. This
setting of {1, 2, 1.0, 1.0} reduces the required population size
by 20.5%.

IV. CONCLUSION

Because KLD has not been explored in an evolutionary
context [4] this work explored a construction of KLD over
the ECGA’s population’s genes’ order-1 probabilities. It was
found that this construction of KLD was not applicable to all
classes of problems. However, for the particular problem of
Trap-4, it proved useful in aiding the study of the algorithm’s
behavior on the problem. It was shown that large successive



refinements to the population’s genes were inversely correlated
with the ECGA finding an optimal solution.

Within the scope of deceptive problems, our results suggest
that the ECGA is especially susceptible to biasing in its first
few generations in terms of finding better solutions occurring,
and less so in later generations. We found it beneficial for
the ECGA to spend extra time within the first few generations
simulating up to future generations’ gene partitions created by
the MPM. This allows the ECGA with look-ahead simulations
to achieve similar results to the normal algorithm, but with
up to 20.5% smaller populations and up to 3.2% fewer
fitness evaluations. Although maximizing one these reductions
comes at the cost of decreasing the reduction of the other, in
either case, both the population size and number of fitness
evaluations are able to be made simultaneously smaller than
the original algorithm while maintaining the same ability to
find an optimal solution.

V. FUTURE WORK

A. Kullback-Leibler Divergence

We discussed different behaviors that various problems
exhibited in terms of our constructed KLD. Because genetic
algorithms are often used with machine learning, it would
seem reasonable that the machine learning portion of such
algorithms could use this KLD as a statistic for the class of
problem being solved.

We confined our attention to a particular construction of
KLD. Other constructions to the best of the our knowledge
have not been explored.

B. Simulated ECGA

We found that look-ahead simulations were effective under
the parameters of the original algorithm that we used. It
remains to be seen whether such an approach is beneficial
under different parameter settings of the original algorithm.
For that matter, it remains to be seen whether look-ahead
simulations are applicable to problems with χ-ary alphabets
as opposed to binary. In addition, appropriate settings for the
look-ahead simulation parameters need to be developed with
respect to problem size, building block size, etc. as they have
been in [19].

Furthermore, we have shown that look-ahead simulations
work for Trap-4 problems. However, it remains to be seen how
this approach scales to Trap-k problems for larger values of
k. Additionally, we defer analyzing the applicability of look-
ahead simulations with other deceptive problems and other
classes of problems. For instance, we are skeptical whether
look-ahead simulations would be beneficial in a dynamic
problem environment.

We have given a hybrid approach to the algorithm in
terms of using look-ahead simulations during the first few
generations, and then returning to the normal algorithm beyond
this point. It maybe be entirely possible that other hybrid
approaches are valid here as well. For instance, the order-
2 behavior algorithms referred to previously [6] may be
applicable approaches in lieu of look-ahead simulations.

REFERENCES

[1] Shumeet Baluja. Population-based incremental learning: A method for
integrating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, Pittsburgh, PA, January
1994.

[2] K.P. Burnham and D.R. Anderson. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer New
York, 2003.

[3] M. Clergue and P. Collard. Ga-hard functions built by combination
of trap functions. In Evolutionary Computation, 2002. CEC ’02.
Proceedings of the 2002 Congress on, volume 1, pages 249–254, May
2002.

[4] Jukka Corander, Patrik Waldmann, and Mikko J. Sillanpää. Bayesian
analysis of genetic differentiation between populations. Genetics,
163(1):367–374, 2003.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[6] Jeremy S De Bonet, Charles L Isbell, Paul Viola, et al. Mimic:
Finding optima by estimating probability densities. Advances in neural
information processing systems, pages 424–430, 1997.

[7] David E Goldberg, Kalyanmoy Deb, and Jeffrey Horn. Massive
multimodality, deception, and genetic algorithms. Urbana, 51:61801,
1992.

[8] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic
algorithm. IEEE Transactions on Evolutionary Computation, 3(4):287–
297, Nov 1999.

[9] Georges Harik. Linkage learning via probabilistic modeling in the ecga.
Urbana, 51(61):801, 1999.

[10] Georges R. Harik. Finding multimodal solutions using restricted tour-
nament selection. In Proceedings of the 6th International Conference
on Genetic Algorithms, pages 24–31, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

[11] Georges R. Harik, Fernando G. Lobo, and Kumara Sastry. Linkage
Learning via Probabilistic Modeling in the Extended Compact Genetic
Algorithm (ECGA), pages 39–61. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[12] Ekaterina A. Holdener, née Smorodkina, and Daniel Tauritz. Dissertation
title: the art of parameter-less evolutionary algorithms 4.0/4.0 gpa. 2005.

[13] S. Kullback and R. A. Leibler. On information and sufficiency. Ann.
Math. Statist., 22(1):79–86, 03 1951.

[14] Heinz Mühlenbein, Thilo Mahnig, and Alberto Ochoa Rodriguez.
Schemata, distributions and graphical models in evolutionary optimiza-
tion. Journal of Heuristics, 5(2):215–247, 1999.

[15] Martin Pelikan. Hierarchical Bayesian Optimization Algorithm, pages
105–129. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[16] José C. Pereira and Fernando G. Lobo. A java implementation of the
sga, umda, ecga, and HBOA. CoRR, abs/1506.07980, 2015.

[17] R. Santana, P. Larrañaga, and J. A. Lozano. Learning factorizations in
estimation of distribution algorithms using affinity propagation. Evolu-
tionary Computation, 18(4):515–546, Dec 2010.

[18] Kumara Sastry, Hussein A. Abbass, David E. Goldberg, and D. D. John-
son. Sub-structural niching in estimation of distribution algorithms. In
Proceedings of the 7th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’05, pages 671–678, New York, NY, USA, 2005.
ACM.

[19] Kumara Sastry and David E. Goldberg. On extended compact genetic al-
gorithm. Technical report, GECCO-2000, LATE BREAKING PAPERS,
GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE,
2000.

ACKNOWLEDGEMENTS

José C. Pereira
Under the time constraints of this research, none of this

would have been possible without the baseline algorithm given
in [16]. This made it very easy to extend the functionality due
to the great documentation and use of software engineering
design patterns.
Fernando G. Lobo



Due to some confusion in terminology in the literature, our
research came to a standstill as unexpected results were found
from an incorrect parameter setting. We are very grateful to
Dr. Lobo in his responsiveness and aid in providing a copy of
their original repository of the ECGA.
UMN-TC CSE Labs

The computational resources for this research were made
possible by the University of Minnesota - Twin Cities’ College
of Science and Engineering computer labs where roughly 5000
CPU-hours were used.


