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investigate the 1D → 2D transition as a simpler case of the more complicated 3D → 4D

transition which is conjectured to be holographically dual to the baryonic to quarkyonic phase
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Chapter 1

Chiral Symmetry Breaking and External Fields in the

Kuperstein-Sonnenschein Model

1.1 Introduction

1 With the advent of holography, and more specifically the gauge-gravity duality[53, 55, 54]

(for a review, see [4]), we have been provided with a remarkable tool to study a large class of

strongly coupled large Nc gauge theories. Within these class of theories, much effort has been

spent trying to construct holographic models which share some of the key features of QCD at

strong coupling, such as the confinement/deconfinement transition, chiral symmetry breaking

and numerous other properties which are of recent phenomenological interests. See e.g. the

review [5] for more details. The hope is any lesson learnt using these models will teach us useful

lessons about QCD in some universal (and at least qualitative) sense.

In this chapter we will focus entirely on the physics of chiral symmetry breaking. In

the holographic construction the fundamental matter fields are introduced by considering Nf

“flavour branes” in the background of Nc “colour branes” and the global symmetry associated

with these flavour branes is identified with the chiral symmetry. In an analogue of the quenched

approximation, the problem simplifies in the probe limit where Nf � Nc and thus the gravi-

1This chapter is based on previous work done with Vadim Kaplunovsky and Arnab Kundu.
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tational backreaction of the flavour branes can be safely ignored. The dynamics of the probe

branes is then simply determined by the Dirac-Born-Infeld (DBI) action (supplemented by the

Chern-Simons action when necessary) in the given gravitational background. This was initially

done in [58] by considering probe D7-branes in the background of Nc D3-branes. The background

geometry there is given by AdS5 × S5 and the dual field theory is the N = 4 super Yang-Mills.

However, the global flavour symmetry in [58] is only a U(1) and does not resemble the chiral

symmetry group in QCD. Besides, the D7-brane embeddings are 1
2
-BPS which necessarily im-

plies that the chiral condensate identically vanishes and there is no spontaneous chiral symmetry

breaking. We will refer to this as the D3−D7 model.2

The Sakai-Sugimoto model[106, 10], on the other hand, is based on considering D8 and D8-

branes in the non-extremal D4-brane background. This brane–anti-brane pair is separated in the

UV which gives rise to an U(Nf )L×U(Nf )R flavour symmetry, very similar to the chiral symmetry

group in QCD. In the IR, these branes merge together smoothly spontaneously breaking the chiral

symmetry to a diagonal U(Nf ). This model gives a simple and elegant geometric realization of

the chiral symmetry breaking in QCD.

Recently a similar geometric mechanism of spontaneous chiral symmetry breaking has

been introduced in [56] by considering D7/D7-branes in the conformal Klebanov-Witten background[59].

We will call this the Kuperstein-Sonnenschein model. The D7/D7-branes wrap a three cycle in

the internal manifold T 1,1 ∼= S2 × S3 and is extended along the rest of the conifold R+ × S2.

At zero temperature the brane–anti-brane pair has no choice but to dynamically join in the IR,

2If we embed a probe D7-brane in a deformed confining D3-brane geometry (e.g. the Constable-Myers back-

ground), then the axial U(1) (corresponding to the rotation in the directions transverse to the D7-brane) can be

broken spontaneously[7]. This further allows one to compute the mass of the ρ-meson in terms of the mass of the

π-meson, see e.g. [8].
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which realizes spontaneous breaking of chiral symmetry: U(Nf )L × U(Nf )R → U(Nf )diag. Since

the background is conformal, the two branches corresponding to the brane and the anti-brane

produce an asymptotic angle separation of ∆φ∞ = (
√

6/4)π which is independent of the IR

point where the brane–anti-brane pair joins. This asymptotic angle separation corresponds to

the coupling of the corresponding operator introduced in the dual gauge theory.

It is worth remarking on the differences between this model and the Sakai-Sugimoto model.

First, the Sakai-Sugimotmo model contains a running dilaton which diverges in the UV and one

needs to worry about the UV completion of the theory. Second, the Sakai-Sugimoto model is

built upon D4-branes compactified on a spatial circle which is dual to a (4+1)-dimensional gauge

theory at energies bigger than the compactification scale. The Kuperstein-Sonnenschein model

avoids these two drawbacks rather simply: the dilaton does not run and by construction this is

dual to an honest (3 + 1)-dimensional gauge theory. Thus the Kuperstein-Sonnenschein model

has certain advantages over the Sakai-Sugimoto model.

Within the probe approximation, it is possible to further study the physics of chiral

symmetry breaking in the presence of external parameters, such as temperature, constant elec-

tromagnetic field etc. In this article, we study the effect of finite temperature and a constant

electromagnetic field in the Kuperstein-Sonnenschein model. Having a finite temperature cor-

responds to introducing a black hole in the bulk geometry. This corresponds to having the

AdS-Schwarzschild×T 1,1-background. The physics at finite temperature is rather simple because

of the underlying conformal invariance. Since there is no other scale, chiral symmetry is restored

as soon as any temperature is turned on.

At finite temperature, we introduce a constant electromagnetic field by exciting gauge

fields on the worldvolume of the probe brane. This gauge field, in the probe limit, does not
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modify the background; it only affects the probe. Thus the electromagnetic field we consider

couples only to the flavour sector and results in a non-trivial phase structure for the flavours.

Recall that at zero temperature and vanishing external fields the coupling in the dual field theory

∆φ∞ has a fixed value. When we introduce these external parameters we do not insist that the

coupling remain fixed at this value. If we have well-defined UV theory for a given coupling, then

changing this coupling would imply we change the theory as well, which may not be desirable.3

However, as pointed out in [56] the operator corresponding to ∆φ∞ in the dual field theory is not

completely understood. Our approach, thus, is entirely guided by the holographic construction

and is more in the spirit of condensed matter physics where one allows various couplings in the

theory to depend on the external parameters introduced in the system and scans the space of

possible phases as the couplings change.

Phase diagrams with similar external parameters have been studied in the D3−D7 model

in [96, 97, 91, 16, 17] and in the Sakai-Sugimoto model in [18, 98]; for a comparative account

of these studies see e.g. [20].4 It has been found that the magnetic field promotes the sponta-

neous breaking of the global flavour symmetry and results in a non-trivial phase diagram in the

temperature vs magnetic field plane. This effect is widely recognized as the magnetic catalysis

in chiral symmetry breaking[23, 24, 25]. The key physics behind this phenomenon is an effective

dimensional reduction of the problem in the presence of a magnetic field. In a strong magnetic

field, the lowest Landau level plays an important role and reduces the dynamics from d-spatial

dimensions to (d − 2)-spatial dimensions. From the holographic point of view, this catalysis

effect is seen as a magnetic field-induced bending of the probe flavour brane. An electric field

3We thank Anatoly Dymarsky for raising this point.
4For more recent studies involving the D3−D7 model, see e.g. [21, 22].
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on the other hand favours symmetry restoration and drives a current[90, 91, 18]. This current

is non-zero even in the absence of finite chemical potential or charge density. The key physics

behind this is simple: charge carriers are created from the vacuum via thermal and quantum

fluctuations. The holographic realization of this effect is rather elegant. In the presence of a

constant electric field, the probe brane excites an appropriate gauge field on its worldvolume

which is dual to a boundary current carried by the fundamental flavours. In the T-dual picture,

having a constant electric field on the worldvolume of the probe brane is equivalent to consider-

ing the brane with some angular velocity, as considered in e.g. [27, 28]. In such a case, due to

gravitational red-shift, the local speed of propagation on the probe brane can exceed the speed

of light near the infrared region of the bulk geometry. To prevent such superluminal propagation

the probe brane can develop a non-trivial profile along another transverse direction. When we

T-dualize back to our original configuration, this “extra” profile maps to a gauge field living on

the worldvolume of the D7-brane which is holographically dual to a current in the boundary

theory.

In this chapter we demonstrate that a similar magnetic catalysis effect exists in the

Kuperstein-Sonnenschein model. At vanishing magnetic field, the finite temperature immedi-

ately restores the symmetry without undergoing any phase transition. At non-zero magnetic

field, there is a first order phase transition at some critical temperature below which chiral sym-

metry is broken and beyond which it is restored. This happens at a critical value of the coupling

∆φ∞ in the boundary theory. As we increase the magnetic field, the critical coupling increases

and at infinitely large magnetic field approaches a finite constant value. We also study the

thermodynamics associated with this first order phase transition.

The thermal physics in the presence of an electric field is more subtle. The presence of
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a current in the boundary theory implies that we are dealing with a steady-state system rather

than an equilibrium system. The identification of a thermodynamic free energy and hence to

determine the corresponding phase diagram in this case becomes more subtle. Previous works in

e.g. [91, 18] have made use of a “Maxwell construction” to determine the phase transition point.

However, we believe this is inappropriate. The “insulating” phase has vanishing current and the

“conducting” phase has a non-zero current. The current jumps to a constant non-vanishing value

across the phase transition, but we do not see the “metastable” states where the current smoothly

interpolates between zero and the non-vanishing constant value across the phase transition. To

count the energetics properly, the Maxwell construction relies on the presence of these metastable

states. We circumvent this issue by proposing a definition of the thermodynamic free energy in

the conducting phase in terms of the probe brane’s on-shell action. The prescription is: we first

need to supplement the usual DBI piece with a boundary term in order to have a well-defined

variational problem. Then we need to put an IR cut-off at a radial position which we call the

“pseudo-horizon” that emerges as a natural radial scale in the problem. We argue that this cut-off

is natural since the open string degrees of freedom effectively see a horizon at this position.

Using our proposal of the thermodynamic free energy we then explore the rich phase

diagrams when both electric and magnetic fields are present. We choose two representative

configurations: perpendicular electric and magnetic fields and parallel electric and magnetic

fields. In both these cases the qualitative features of the phase diagrams are similar and conforms

to our general intuition of temperature and electric field favouring chiral symmetry restoration

and a magnetic field promoting symmetry breaking. We also argue that when both electric and

magnetic fields are present, the corresponding phase diagrams have non-trivial structure only

when the electric field is smaller than the magnetic field. In the regime where the electric field
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is greater than the magnetic field, we do not have any chiral symmetry broken phase.

This chapter is organized as follows: We briefly review the Kuperstein-Sonnenschein model

in section 2. In section 3, we briefly discuss the physics at finite temperature. We introduce a

magnetic field in section 4 and in section 5 we study the effect of both temperature and magnetic

field. In section 6, we introduce an electric field and discuss the subtleties associated in identifying

a free energy and conjecture a proposal to do sensible thermodynamics. We use this proposal in

section 7 to study the detailed phase structure in the presence of both perpendicular and parallel

electric and magnetic fields. Finally we conclude in section 8 with open questions and future

directions. Some relevant details have been relegated to three appendices.

1.2 The Kuperstein-Sonnenschein Model

Let us begin by briefly reviewing the Kuperstein-Sonnenschein model introduced in [56].

We start with the AdS5×T 1,1 background (first obtained in [29] and then explored in the context

of AdS/CFT in [59]) which is the near-horizon limit of a stack of Nc D3-branes placed on the

tip of a conifold. The metric is

ds2 =
r2

R2
dxµdx

µ +
R2

r2
ds2

6 , (2.1)

ds2
6 = dr2 + r2ds2

T 1,1 (2.2)

= dr2 +
r2

3

(
1

4

(
f 2

1 + f 2
2

)
+

1

3
f 2

3 +

(
dθ − 1

2
f2

)2

+

(
sin θdφ− 1

2
f1

)2
)
,

the dilaton is constant, and there is a self-dual 5-form RR flux

F5 =
4r3

gsR4
dr ∧ d4x − R4

27gs
sin θ dθ ∧ dφ ∧ f1 ∧ f2 ∧ f3 . (2.3)
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In our notations xµ are the four Minkowski directions, r is the AdS-radial coordinate, and

(f1, f2, f3, θ, φ) represent the T 1,1 as a local S3×S2 trivialization — the f1,2,3 are unit differentials

on the S3 while θ and φ are spherical coordinates on the S2. Furthermore, R is the AdS radius

— which obtains as

R4 =
27π

4
Ncgsα

′2 = λα′2 (2.4)

where gs is the string coupling, 2πα′ is the inverse string tension, and λ is the ’t Hooft coupling

of the dual 4D gauge theory; later in this paper we shall use a related coupling

λ̄ =
π2

4
λ . (2.5)

The field theory dual to this background was constructed in [59]: it is an N = 1 super-

conformal quiver gauge theory with a gauge group SU(Nc) × SU(Nc) and two bi-fundamental

chiral superfields usually denoted by A1,2, B1,2. These fields transform in the (Nc, N̄c) and

(N̄c, Nc) representations of the gauge group SU(Nc)× SU(Nc). This theory has a further global

SU(2) × SU(2) × U(1)R symmetry. Under these two SU(2) symmetries the bi-fundamentals

transform as a doublet of one of the SU(2)’s and as a singlet of the other one.

Following [56] we place the D7 and anti D7-brane along the Minkowski and the S3-

directions, and restrict to the equatorial embedding denoted by θ = π/2, φ = φ(r). The

brane–anti-brane pair is separated in the φ-direction at the UV boundary (at r → ∞). This

configuration preserves one of the global SU(2)’s of the background. The corresponding DBI

action is given by

S = −τ7

∫
d8ξ
√
−detP [G] = −N

∫
dtdrr3

[
1 +

r2

6
(φ′)

2

]1/2

= −N
∫
dtdrL , (2.6)

N = τ7VR3

8π2

9
. (2.7)
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In the above equation, τ7 denotes the tension of the D7-brane, ξ denotes the D7-brane worldvol-

ume coordinates, P [G] denotes the pull back of the background metric on the probe brane, L is

the Lagrangian density. Here VR3 is the volume of the spatial R3.

The equation of motion resulting from the action in (2.6) is given by

(r5/6)φ′(
1 + r2

6
(φ′)2

)1/2
= c , (2.8)

where c is the constant of motion. The large r behaviour of the profile is

φ(r) =
∆φ∞

2
− 3c

2r4
+ . . . , (2.9)

where ∆φ∞ is the asymptotic angle separation between the brane–anti-brane pair. It is clear

from the asymptotic behaviour of the profile function that ∆φ∞ is the non-normalizable mode

(corresponding to source/coupling in the boundary theory) and c is the normalizable mode

(corresponding to VEV/condensate in the boundary theory).

We can integrate the equation of motion in (2.8) analytically and the full solution is given

by[56]

cos

(
4√
6
φ(r)

)
=
(r0

r

)4

, with φ′(r0)→∞ =⇒ c =
r4

0√
6
. (2.10)

The boundary condition φ′(r0)→∞ ensures that the brane–anti-brane smoothly join at r0. We

have two branches of solutions with φ ∈ [0, π/2] and φ ∈ [−π/2, 0]. The first branch corresponds

to the D7-brane and the second one to the D7-brane. As r →∞, we see that ∆φ∞ =
√

6
4
π. Thus,

in fact, one gets a family of solutions (with the same asymptotic angle separation) parametrized

by r0 where the brane–anti-brane pair joins. For future references we call these profiles as the

“U-shaped” embeddings. It is easy to see that since there is no natural place for the brane–anti-

brane pair to end separately, they must join together. We will see at finite temperature this is
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not the case any more. There is a special solution for r0 = 0 given by φ± = ±(
√

6/8)π. Each

branch of the family of solutions with r0 6= 0 is non-holomorphic and thus breaks supersymmetry

completely. The two branches of the solution with r0 = 0 also break supersymmetry completely

since they are not antipodal[56]. The qualitative shapes of the brane–anti-brane profile have

S3 S2

r = r0

r = 0

D7

D7

r = �

�

r

(spontaneous breaking)

U(Nf )L � U(Nf )R ⇥ U(Nf )diag

Figure 1.1: A schematic diagram showing the shape of the profile (in grey) of the brane–anti-

brane pair. The red dot located at r = 0 represents the conifold singularity. The brane–anti-

brane pair joins at r = r0 realizing the spontaneous breaking of chiral symmetry.

been demonstrated in fig. 1.1.

Introducing probe D7 and D7 implies that we have introduced matter fields in the fun-

damental representation in the dual gauge theory. As argued in [56], adding the D7/D7-brane

corresponds to introducing left-handed/right-handed Weyl fermions in the dual gauge theory.

Thus, in the UV where the D7 and the D7 are separate, we have a global U(Nf )L × U(Nf )R
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flavour symmetry, where Nf is the number of flavours.5 This global flavour symmetry is dy-

namically broken to a diagonal U(Nf ) in the infrared where the brane–anti-brane pair joins.

The asymptotic angle separation ∆φ∞ corresponds to the coupling of an operator in the dual

gauge theory.6 One would be tempted to identify the constant c with the quark condensate

corresponding to the breaking of the chiral symmetry, however since the corresponding operator

is not well-understood at this moment we will make no such precise claim. Nonetheless, it is fair

to say that the constant c serves the purpose of an order parameter for the breaking of the chiral

symmetry.

1.3 Introducing Finite Temperature

Let us now discuss the physics at finite temperature. The finite temperature background

is given by AdS5-Schwarzschild×T 1,1. Also, we need to Euclideanize the time direction and

periodically identify along a circle. The temperature is then simply given by the inverse period.

In Euclidean signature this background is explicitly given by

ds2 =
r2

R2

(
f(r)dt2E + dx2

i

)
+
R2

r2

dr2

f(r)
+R2ds2

T 1,1 , f(r) = 1−
(rH
r

)4

, (3.11)

where tE is the Euclidean time direction, xi with i = 1, 2, 3 represent the spatial 3-directions,

rH is the location of the horizon and the temperature is given by T = rH/(πR
2). Furthermore,

ds2
T 1,1 represents the metric on the T 1,1 which is given in (2.1). This background corresponds to

the phase of the dual gauge theory where the adjoint matter is deconfined.

5Strictly speaking, here we take Nf = 1.
6It is not completely clear at present what the corresponding operator is; in fact the quiver diagram of this

theory (after introducing the fundamental matter) is not completely understood. Part of the complications arise

from breaking supersymmetry completely, which means we can no longer use the technology of supersymmetric

field theories to “fix” various terms in the Lagrangian. Some thoughts and proposals on this are given in [56].
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Now, we introduce the D7 and D7 pair along the same directions as in the zero temperature

case. In this case the DBI action7 is given by

S = τ7

∫
d8ξ
√

detP [G] = NT
∫
drr3

(
1 +

r2

6
f(φ′)2

)1/2

, (3.12)

NT =
N
T
. (3.13)

Note that the definition of NT in this case differs from the zero temperature case by a factor of

the temperature. The resulting equation of motion is given by

(r5/6)fφ′(
1 + r2

6
f(φ′)2

)1/2
= c , (3.14)

where c is the constant of motion. The equation (3.14) is not analytically solvable. There

are two possible classes of solutions to the equation (3.14): the U-shaped ones for which we

have c =
r40√

6
f(r0)1/2, where r0 is the point where the brane–anti-brane pair smoothly joins; the

second class of solutions are the ones where the brane and the anti-brane separately end on the

horizon. These are given by φ± = ±const (corresponding to c = 0) which we henceforth call the

“‖ embedding”. The ± sign corresponds to the D7 and the D7-brane respectively. As before,

the U-shaped embeddings correspond to spontaneous breaking of chiral symmetry and the ‖

embeddings correspond to chiral symmetry restoration. Clearly r0 and r both have the following

range: rH ≤ r0, r ≤ ∞. In fig. 1.2 we have pictorially demonstrated various possible profiles.

In a situation like this, one would typically expect as we vary the temperature the system

undergoes a first order phase transition and at some critical temperature chiral symmetry is

7Note that there is a relative -ve sign between the DBI action at finite temperature and the one at zero

temperature. This simply stems from the fact that in the finite temperature case we are working in an Euclidean

signature.
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S3 S2

r = r0

r = �

r = rH

�

r

Figure 1.2: A schematic diagram showing the qualitative shapes of the probe brane–anti-brane

pair when a non-zero temperature has been introduced. We have two classes of embeddings:

the U-shaped ones (in grey) and the parallel ones (in red). The singularity of the cone is hidden

behind the horizon located at r = rH .
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restored. However, we started with a conformal background and so far temperature is the only

scale in the system. We do not have any other scale in terms of which such a critical temperature

can be measured.8 The conclusion therefore must simply be: If there exists a temperature that

can restore the chiral symmetry, then the ‖ embeddings will always be energetically favoured.

Let us elaborate a bit more on this issue. As we have seen, the chiral symmetry broken

phase measures a non-zero value of c and the chiral symmetry restored phase has c = 0. Thus

the constant c serves the purpose of an order parameter of this symmetry breaking, although

it should not be confused with the chiral condensate. Thus we have the canonically conjugate

variables {∆φ∞, c} and we should be able to see the signature of a first order phase transition

(if it exists) in this plane. A numerical plot is shown in Fig. 1.3. To have a first order phase

transition we would expect to see a turn-around behaviour of ∆φ∞ as c is increased. However,

here ∆φ∞ only approaches the value (
√

6/4)π from below as c → ∞. Hence we can conclude

that this system does not have any first order phase transition.

To conclusively decide which embedding is favoured, we consider the following energy

difference

∆S = SU − S‖ = NT r4
0

(∫ ∞
1

dyy3

[(
1 +

f(1)

y8f(y)− f(1)

)1/2

− 1

]
−
∫ 1

yH

dyy3

)
, (3.15)

where we have defined

y =
r

r0

, yH =
rH
r0

, f(y) = 1−
(
yH
y

)4

. (3.16)

8Note that r0 where the brane–anti-brane pair joins seems to provide another scale in the system. However,

in reality this is a modulus of the problem and this modulus is only perceived as the dimensionless asymptotic

angle separation at the boundary, but not a scale in the system.
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Figure 1.3: ∆φ∞ as a function of c. The red dashed line is the asymptotic boundary value at

zero temperature. The blue curves (including the vertical line at c = 0) correspond to the space

of solutions.
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Now it is sufficient to check the sign of ∆S for any value of yH , since every temperature is

identical. We can perform a Taylor expansion of the integrand in the limit yH → 0+ and at the

leading order in yH obtain

∆S = (NT r4
0)
y4
H

8
> 0 . (3.17)

This clearly implies that the ‖ embeddings are favoured. Thus finite temperature restores chiral

symmetry.

1.4 Introducing a Magnetic Field

Let us first discuss the case of vanishing temperature. The relevant background is given

in (2.1). Now we want to introduce a constant magnetic field on the worldvolume of the probe

D7 and D7-brane. Recall that the DBI action is given by

S = −τ7

∫
d8ξ
√
−det (P [G+B] + (2πα′F ) , (4.18)

where B is the background NS-NS field (which is zero in this case) and F is the electromagnetic

2-form on the worldvolume of the probe brane.

Here we want to introduce a Minkowski gauge field, specifically a constant magnetic field,

on the probe brane worldvolume. This can be achieved by simply exciting a gauge field of the

form:9 A3 = Hx2 which gives a constant field strength F23 = H. This corresponds to having

a constant magnetic field along the x1-direction on the probe brane worldvolume. Since we are

in the probe limit, this gauge field does not affect the 10-dimensional background. Thus in the

9It can be checked a posteriori that this ansatz for the gauge field does satisfy the equations of motion resulting

from the DBI action itself.
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dual field theory the adjoint matter is insensitive to this external field and only the fundamental

matter couples to it. Our purpose here will be to investigate the effect of this constant field on

the physics of chiral symmetry breaking.

With this gauge field, the action for the D7/D7 is given by10

S = −N
∫
dtdrL = −N

∫
dtdrr3

(
1 +

r2

6
(φ′)2

)1/2(
1 +

h2

r4

)1/2

, (4.19)

h = 2πα′R2H , N = τ7VR3

8π2

9
. (4.20)

Introducing the magnetic field introduces a scale in the theory which is denoted by h. Thus we

break conformal invariance explicitly even in the zero temperature case. The equation of motion

resulting from this action is given by

r3 (1 + h2/r4)
1/2

(r2/6)φ′

(1 + (r2/6)(φ′)2)1/2
= c , (4.21)

where c is the constant of motion. The asymptotic behaviour of the profile φ(r) is the same as

given in (2.9).

This equation of motion can be solved analytically and the solution is given by

cos

(
4√
6
φ(r)

)
=
(r0

r

)4 1

h2 + 2r4
0

[
h2

(
2− r4

r4
0

)
+ 2r4

0

]
, (4.22)

with φ′(r0)→∞ =⇒ c =
r4

0√
6

(
1 +

h2

r4
0

)1/2

, (4.23)

where r0 is the point where the brane–anti-brane pair smoothly joins. In the limit h → 0, we

recover the known result in (2.10). In fig. 1.4, we have shown a schematic diagram of the shape

of the probe brane profile.

10It can be checked that there is no contribution coming from the Chern-Simons term.
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Figure 1.4: A schematic diagram showing the qualitative features of the brane–anti-brane

profile in the presence of a non-zero magnetic field at zero temperature. The dashed grey curve

represents the corresponding profile at zero magnetic field. The red dot again represents the

conifold singularity located at r = 0.

A few comments on the asymptotic angle separation are in order. Considering the limit

r →∞, from the solution in (4.22) we get

∆φ∞ =

√
6

4
π +

√
6

2
α , α = sin−1

(
h2

h2 + 2r4
0

)
. (4.24)

As a consequence of the explicit breaking of conformal invariance, the asymptotic angle separation

is now promoted to a function of h and r0; in fact, it depends only on the dimensionless ratio

h/r2
0. It is clear from this expression that in the limit h → 0, we recover the known result

∆φ∞ → (
√

6/4)π and as h → ∞, we get ∆φ∞ → (
√

6/2)π; for any intermediate value of h,

∆φ∞ interpolates between these two limiting values. The special solution for r0 = 0 (which
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corresponds to c = 0) is identified with the solution obtained at h→∞ limit and is simply given

by: φ± = ±(
√

6/4)π.

For a more thorough investigation we obtain the following integral formula for the asymp-

totic angle separation

∆φ∞(xh) = 2
√

6

∫ ∞
1

dy

y

(1 + xh)
1/2

[y8(1 + xh/t4)− (1 + xh)]
1/2

=
√

6 tan−1
(√

1 + xh
)
, (4.25)

y =
r

r0

, xh =
h2

r4
0

. (4.26)

This is a monotonically increasing function of xh. The dependence is explicitly demonstrated

in Fig. 1.5. From this monotonicity we can conclude that for a given r0, ∆φ∞(xh) > ∆φ∞(0)

6
2

Π

6
4

Π

0 20 40 60 80 100
xh

1.5

2.0

2.5
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3.5

4.0

DΦ¥HxhL

Figure 1.5: ∆φ∞ as a function of xh. The range of allowed values are given by: (
√

6/4)π ≤
∆φ∞ ≤ (

√
6/2)π.

which in turn implies that the magnetic field helps the brane–anti-brane pair to join. Since this
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is the basic mechanism leading to chiral symmetry breaking we expect that the magnetic field

is further promoting this spontaneous symmetry breaking. We will find that this is indeed the

case at finite temperature in the next section.

1.5 Temperature and Magnetic Field

Let us now consider the case where both temperature and magnetic field are present.

For this we consider the background in (3.11) and we place the probe D7/D7-brane similarly as

before. The magnetic field is again realized as a gauge field on the worldvolume of the probe

brane. The action is

S = τ7

∫
d8ξ
√
−det (P [G+B] + (2πα′F ) = NT

∫
drL

= NT
∫
drr3

(
1 +

h2

r4

)1/2(
1 +

r2

6
f(r)(φ′)2

)1/2

. (5.27)

The equation of motion is

r3 (1 + h2/r4)
1/2

(r2/6)fφ′√
1 + r2

6
f(φ′)2

= c . (5.28)

This equation is not analytically solvable anymore. As in the pure finite temperature case, we

have two different classes of solutions: the U-shaped ones and the ‖ ones. The U-shaped ones

are characterized by the position r0 where the brane–anti-brane pair smoothly join which gives

c =
r4

0√
6
f(r0)1/2

(
1 +

h2

r4
0

)1/2

. (5.29)

The ‖ solutions are simply given by: φ±(r) = ±const (which gives c = 0). These solutions

corresponds to 0 ≤ ∆φ∞ ≤ 2π.
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On the other hand, for the U-shaped profiles the asymptotic angle separation is given by

∆φ∞(yH , xh) = 2
√

6

∫ ∞
1

dy

y

√
f(1)

f(y)

(1 + xh)
1/2

[y8(1 + xh/y4)f(y)− (1 + xh)f(1)]1/2
, (5.30)

xh =
h2

r4
0

, (5.31)

where the ranges of the parameters are given by: 0 ≤ yH ≤ 1 and 0 ≤ xh ≤ ∞. In the limit

yH → 0+, xh → 0+, we can analytically evaluate this integral to be given by

∆φ∞(yH , xh) =

√
6

4

[(
π + xh −

1

2
x2
h +O(x3

h)

)
+

(
2− π

4
xh +

2π − 3

8
x2
h +O(x3

h)

)
y4
H

]
+ . . . (5.32)

We can also evaluate this integral analytically in the limit yH → 0+ and xh →∞ to be given by

the following

∆φ∞(yH , xh) =

√
3

2

[(
π − 2√

xh
+O(x

−3/2
h )

)
+

(
−π

4
+

1√
xh

+O(x−1
h )

)
y4
H

]
+ . . . . (5.33)

It is clear from both the expansions in (5.32) and (5.33) that ∆φ∞ approaches the respective

constant values that we encountered in sections 1.2 and 1.4. In the limit yH → 1, however, it

can be shown that this angle separation approaches zero as ∆φ∞ ∼ (1− yH)1/2.

For a generic point in the {yH , xh} parameter space, we have to resort to numerics. Now

∆φ∞ depends on two variables yH and xh and generates a 3-dimensional plot, but we can take

various constant yH or constant xh-slices. Some such slices are shown in Fig. 1.6.

Before proceeding to determine the phase structure, let us analyze the possible phases

closely. Since our underlying theory is conformal, the only meaningful quantity that we can vary

is a dimensionless ratio constructed from the temperature and the magnetic field, for example

h

r2
H

=
H√
λ̄T 2

(5.34)
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Figure 1.6: We have shown the dependence of ∆φ∞ as a function of yH (for a given value

of xh) on the left and as a function of xh (for a given value of yH) on the right. It is clear

from these plots that when we have both yH ad xh present, the allowed range is given by:

0 ≤ ∆φ∞ ≤ (
√

6/2)π for the whole parameter space. Note that ∆φ(yH)→ 0 as yH → 1, which

is suggestive from the plot on the left.
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where h = (2πα′R2)H and λ̄ = (π2/4)λt Hooft ; we shall use this particular ratio in this and

following sections. Introducing a magnetic field (in the presence of a temperature) ultimately

gives rise to the possibility of a first order phase transition. This can be best understood by

looking at the {∆φ∞ − c} plot as before. This is shown in Fig. 1.7. The main qualitative

difference as compared to the purely thermal case presented in Fig. 1.3 is the bending of the

curves for large enough values of c, which encodes the possibility of a first order phase transition.

It is clear from Fig. 1.7 that the maximum value of ∆φ∞ depends on the value of

H/(
√
λ̄T 2). For a given H/(

√
λ̄T 2), beyond the maximum value of ∆φ∞, there is no chiral

symmetry broken phase. On the branch where (∂∆φ∞)/(∂c) > 0, increasing r0 will increase the

asymptotic angle separation and thus a small perturbation will either push the brane–anti-brane

pair all the way up to infinity or pull them all the way down to the horizon. Thus the branch

corresponding to (∂∆φ∞)/(∂c) > 0, although possesses the U-shaped embeddings, is thermody-

namically unstable. There is no chiral symmetry broken stable phase here. The only window

where chiral symmetry broken phase can appear is for values of ∆φ∞ which lies in between its

maximum value and the asymptotic value (as c→∞, demonstrated in Fig. 1.8), where both the

U-shaped and the parallel shaped embeddings are available and are thermodynamically stable.

Within this window we need to compute the free energies of the corresponding phases to decide

which embedding is thermodynamically favoured.

Now we check which embedding is picked by thermodynamic energy considerations within

the window discussed above. To analyze what happens to the chiral symmetry, we need to

evaluate the free energy difference which is given by (up to a factor of temperature) the difference
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Figure 1.7: We have shown the dependence of ∆φ∞ as a function of c for fixed values of

H/(
√
λ̄T 2) = 2, 5, 7 corresponding to blue, red and maroon curves. The asymptotic (as c→∞)

value of ∆φ∞ for any value of H/(
√
λ̄T 2) approaches the constant value of (

√
6/4)π.
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Figure 1.8: We have shown the dependence of ∆φ∞ as a function of c for fixed values of

H/(
√
λ̄T 2) = 5. The asymptotic (as c → ∞) value of ∆φ∞ for any value of H/(

√
λ̄T 2)

approaches the constant value of (
√

6/4)π, which is marked by the lower horizontal red dashed

line and the blue solid curve asymptotes to this line. We have marked the various possible

phases for various ranges of the angle separation.
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of the on-shell Euclidean actions for the corresponding embedding

∆S = SU − S‖

= NT r4
0

∫ ∞
1

dyy3

(
1 +

xh
y4

)1/2
[(

1 +
(1 + xh)f(1)

y8 (1 + xh/y4) f(y)− (1 + xh)f(1)

)1/2

− 1

]

− NT r4
0

∫ 1

yH

dyy3

(
1 +

xh
y4

)1/2

= NT r4
0 I(yH , xh) . (5.35)

We can argue that the right hand side of (5.35) changes sign for a given yH as we vary xh. This

can be seen from fixing the value of yH to be some very small non-zero number such that yH � 1.

Now in the limit xh → 0+, we get ∆S ∼ xh log yH < 0. On the other hand, in the limit xh →∞

we get ∆S ∼ √xhy2
H > 0, thus clearly indicating that ∆S goes through zero. Note that even

for a small magnetic field ∆S starts off being negative which implies that the chiral symmetry

broken phase is favoured. This broken symmetry now gets restored at some critical value of

temperature. Thus our primary analysis indicates that the magnetic field is catalyzing in chiral

symmetry breaking.

Finding the zeroes of the right hand side of (5.35) in the full parameter space will give a

curve yH(xh) which corresponds to the phase boundary between a chiral symmetry broken and

a chiral symmetry restored phase. This phase boundary in the ∆φ∞ vs H/(
√
λ̄T 2)-plane can be

obtained numerically and the result is shown in Fig. 1.9.

In Fig. 1.9 if we take the strict limit H → 0, then there is no phase transition at all

and all we have is the chiral symmetry restored phase for any given temperature. For a non-

zero magnetic field the system undergoes a first order phase transition at some critical value of

temperature for the range within the red dashed curves. For a fixed finite value of H/(
√
λ̄T 2), we

get a critical ∆φ∞ below which the chiral symmetry broken phase is favoured and above which
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Figure 1.9: The phase diagram in the ∆φ∞ vs H/(
√
λ̄T 2) plane. The upper red dashed curve

corresponds to the maximum value of ∆φ∞ and the lower dashed red curve corresponds to

the asymptotic (as c → ∞) value of ∆φ∞. Below the red dashed line, we only have chiral

symmetry restored phase for all values of ∆φ∞. We have not shown the complete range of this

for aesthetic reasons.
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chiral symmetry is restored. As we increase the magnetic field, i.e. increase the ratio H/(
√
λ̄T 2),

this critical coupling monotonically increases and in the strict H →∞ limit approaches the value

(
√

6/2)π. Thus the external magnetic field indeed catalyzes the chiral symmetry breaking.

The appropriate thermodynamic potential for our system is the Helmholtz free energy

given by

dF = −SdT − µdH , F =
S

T
, (5.36)

where F is the Helmholtz free energy, S is the entropy, µ is the magnetization and S is the

on-shell Euclidean action of the brane/anti-brane. The first order phase transition is associated

with a non-zero latent heat and a relative change in magnetization given by

S‖ − SU = ∆S = − ∂

∂T

(
F‖ −FU

)∣∣∣∣
Tc

, Clatent = Tc∆S .

= NT r3
0πR

2

(
∂I
∂yH

)∣∣∣∣
Tc

, (5.37)

µ‖ − µU = ∆µ = − ∂

∂H

(
F‖ −FU

)∣∣∣∣
Tc

= 2NT r2
0R

2

(√
xh

∂I
∂xh

)∣∣∣∣
Tc

. (5.38)

where I has been defined in (5.35). The absolute free energy is a formally divergent quantity,

however the change in free energy is finite. The same is true for the magnetization. Thus instead

of calculating the absolute quantities for each of these phases we focus on the relative ones.11

From simple scaling arguments it can be argued that both Clatent ∼ T 4
c and ∆µ ∼ T 4

c . Their

dependence on the magnetic field is more involved and we have shown the numerical results in

11To obtain the finite action for each phases, one needs to add proper counter terms to cancel the divergences.

In this particular case, the free energy has two sources for divergences: one is a power law divergence which comes

from the infinite volume of AdS and the other is a log-divergence supported by a non-zero electromagnetic field

strength.
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Figure 1.10: We have shown the dependence of the change in entropy and in magnetization

associated with the first order phase transition. The entropy is measured in units of N r3
0πR

2,

the magnetization is measured in units of 2N r2
0R

2 and the magnetic field is measured in units

of (2πα′)(r0/R)2.

Fig. 1.10. Clearly the change in entropy increases with increasing magnetic field. The relative

magnetization initially increases, but then seems to saturate an upper bound. The fact that

∆µ > 0 is intuitively clear: the chiral symmetry restored phase is more ionized than the chiral

symmetry broken phase.

On the other hand, the log-divergence supported by the external field in the free energy

is quadratic in the field strength. Thus any quantity obtained from taking the second derivative

of the free energy with respect to the field strength can be regulated rather simply. One such

thermodynamic quantity is the magnetic susceptibility. We define the regularized magnetic

susceptibility as below[18]

χ = −∂
2F
∂H2

+
∂2F
∂H2

∣∣∣∣
H=0

. (5.39)

and compute the corresponding susceptibilities in each phases. For the chirally symmetric phase,
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the magnetic susceptibility (as defined in (5.39)) can be evaluated analytically to be given by

χ‖ = −2NR4

[
1− y2

H√
y4
H + xh

− 2 log(yH) + log

(
y2
H +

√
y4
H + xh

2

)]
. (5.40)

For the symmetry broken phase, the integral is not analytically tractable. The dependence of

the magnetic susceptibility in both these phases has been shown in Fig. 1.11, which shows the

non-linear monotonic dependence with the magnetic field. As expected, we also observe that the

symmetry restored phase has higher susceptibility than the symmetry broken phase.
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Figure 1.11: The dependence of the magnetic susceptibility with the applied magnetic field in

the chiral symmetry broken (blue solid curve) and chiral symmetry restored (red dashed curve)

phases. The magnetic susceptibility is measured in units of (4NR4) and the magnetic field is

measured in units of (2πα′)(r0/R)2.
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1.6 Introducing an Electric Field

We can include the effect of an external electric field in a similar manner. The gauge

potential that we excite in this case is simply given by[90, 91]

Ax = −Et+ A(r) , (6.41)

where E is the strength of the electric field along the x1-direction.12 Note that we have also

included a function A(r) in the ansatz for the gauge field. In the presence of an electric field we

must also include the possibility of a flavour current. This function encodes this information of

the current.

The Euclideanized13 DBI action takes the following form

S = NT
∫
drr3

[(
1− e2

fr4

)(
1 +

r2

6
f(φ′)2

)
+ f(a′)2

]1/2

,

= NT
∫
drL(a′, φ′, r) , (6.42)

e = (2πα′E)R2 , a = 2πα′A . (6.43)

From the structure of the action in (6.42) it is clear that for any non-trivial φ(r), the action is

minimized for a′ = 0. The equation of motion for the profile function φ(r) is given by(
1− e2

r4f(r)

)1/2
(r5/6)f(r)φ′

(1 + (r2/6)f(r)φ′2)1/2
= c =

r4
0√
6

(
1− e2

r4
0f(r0)

)1/2

, (6.44)

12Note that the ansatz for the gauge field contains the time coordinate t explicitly. At the horizon (when a

black hole is present in the background), this coordinate is ill-defined. A better coordinate system is the ingoing

Eddington-Finkelstein coordinates. However, since the Poincaré coordinate is well-defined everywhere except at

the horizon, it will not affect the physics we study here. For an analysis involving the Eddington-Finkelstein

coordinates, see e.g. [30].
13After Euclideanization, the gauge field will take the form: Ax = −iEtE + A(r), where tE is the Euclidean

time obtained by t→ itE.
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where r0 is the point where the brane–anti-brane pair joins. The reality condition of the constant

c imposes an upper bound for the electric field: e2 < r4
0f(r0) = e2

max. The existence of this

maximum value of the electric field simply tells us that before we reach emax, the chiral symmetry

restored phase should become energetically favourable. A similar effect has been discussed in

[18] for the Sakai-Sugimoto model. In our case, this is trivially true: at finite temperature the

U-shaped embeddings are already energetically disfavoured. We expect an electric field will tend

to restore the chiral symmetry, therefore our intuition tells us that at finite temperature and

non-zero electric field, the parallel embeddings must be the thermodynamically preferred phase.

We can check this explicitly by evaluating the corresponding on-shell actions; however, there are

subtleties we need to address.14

Any non-trivial a′(r) is supported only for the parallel embedding for which φ′ = 0. For

this class of embeddings, let us examine the action in (6.42) carefully. The variation of this

action yields

δS = NT
[
∂L
∂a′

δa

∣∣∣∣∞
rmin

− EOM

]
, (6.45)

where rmin is the IR boundary. Usually this rmin should be identified with the location of the

black hole horizon; however, we will argue this is not the case here. To have a well-defined

variational problem the boundary term in (6.45) must vanish. We have the freedom to choose

δa(∞) = 0, but generically δa(rmin) 6= 0. Thus in this case, we need to supplement the action

in (6.42) with an additional boundary term at rmin. This boundary term does not affect the

equation of motion, but it will have a non-trivial effect when we evaluate the free energy by

evaluating the on-shell action.

14We are grateful to Oren Bergman and Gilad Lifschytz for a very fruitful discussion on this issue.
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Before including this boundary term, let us look at the equation for the gauge field

∂L
∂a′

=
r3fa′[(

1− e2

fr4

)
+ f(a′)2

]1/2
= j , (6.46)

a′ = ± j

r2f

√
r4f − e2

r6f − j2
, =⇒ a(r)|r→∞ = ∓ j

2r2
+ . . . (6.47)

where j is a constant. It is clear that a(r) → 0 as r → ∞. We have to decide on the sign of

the solution for a′ above. This can be fixed by imposing an “ingoing” boundary condition at the

horizon (meaning any energy-momentum flow at the horizon only flows into the horizon and not

the other way round). This condition picks up the solution with the +ve sign.

Now let us go back to the action with the boundary term subtracted. This can be written

as

S = NT
[∫ ∞

rmin

drL(a′, r)− j
∫ ∞
rmin

a′dr

]
, (6.48)

where we have used the fact that a(r) → 0 as r → ∞. From now on, in the presence of an

electric field we will work with this action for the parallel embeddings.

From the perspective of the boundary theory, the response current is given by

〈Jx1〉 = lim
ε→0

1√−γ
1

ε4
δSren

δAx1

∣∣∣∣
ε

, (6.49)

where ε is the UV cut-off (in our notation ε ∼ 1/r) and γ denotes the pull-back metric on

the r = 1/ε cut-off surface and Sren is the renormalized action after adding the appropriate

counter-terms. Following [90], it can be easily shown that 〈Jx1〉 ∼ j.

Let us now comment on the choice of rmin when we want to identify the on-shell action

as the thermodynamic free energy. A natural choice is clearly rmin = rH . However there is an
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issue with this choice. The integral of (j · a′) yields a contribution of the form (j · e)τ , where τ

is some typical time-scale. This time-scale τ has an IR log-divergence coming from the horizon

τ =
1

4rH
log (r − rH) with r → rH . (6.50)

From the bulk point of view, τ can be identified with the time light rays take to travel from

the boundary (at r = ∞) to the horizon (at r = rH)[31]. On the other hand, from the gauge

theory point of view, the existence of (j · e)τ can be interpreted as the total energy dissipated to

maintain the current j from time t = 0 to time t = τ .

The process of switching on an electric field and the onset of flow of charges is a time-

dependent one. The electric field creates fundamental matter anti-matter pair via the Schwinger

mechanism and accelerates them. This results in a deposition of energy into the background

thermal bath of the adjoint matter. In the probe limit, the energy density of the fundamental

sector is suppressed by a factor of Nf/Nc and thus the background does not heat up. Finally the

fundamental matter reaches a steady-state where a constant current flows.

Thus what we have here is not a stationary equilibrium state. Clearly, the energy dissi-

pated to maintain the current should not be included in the thermodynamic free energy of the

corresponding phase. The physics is telling us the choice of rmin = rH is incorrect as far as

the computation of the thermodynamics goes and there has to be another radial scale naturally

arising in this problem. This is indeed the case.

The parallel branes go all the way to the horizon. Thus the on-shell action in this case is

given by

S = NT
[∫ ∞

rH

dr

{
r3

(
1− e2

r4f(r)

)1/2(
1− j2

r6f(r)

)−1/2

− ja′
}]

. (6.51)
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This action must remain real. This reality condition imposes two algebraic conditions. These

conditions determine the constant j in terms of e and rH

e2 = r4
∗f(r∗) and j2 = r6

∗ f(r∗) for the same r∗ , (6.52)

hence

r4
∗ = r4

H + e2 (6.53)

and

j = e× 4

√
r4
H + e2 . (6.54)

Thus we obtain the analogue of an Ohm’s law where the conductivity depends non-linearly on the

electric field. This result is in precise agreement with the one obtained in [90, 91] by considering a

completely different kind of D7-brane embedding in AdS-Schwarzschild×S5 background.15 This

conductivity depends entirely on the non-compact part of the background metric (which is AdS5

here) and is insensitive to the details of how the probe brane is embedded along the compact

internal directions. Although the dual gauge theories are different in these cases, this fact tells

us that the finite temperature transport properties (such as the conductivity) are insensitive to

such differences.

The above algebraic constraints do more for us than to just determine the conductivity;

they give us another natural radial scale denoted by r∗. Following [91], we will call this the

“pseudo-horizon”. We will argue momentarily that this radial scale acts as a natural “cut-off” as

far as thermal properties are concerned, which is otherwise usually played by the event-horizon.

Note that at this radial position nothing special happens to the background; moreover the induced

15This corresponds to adding N = 2 hypermultiplets to the N = 4 super Yang-Mills.
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metric on the probe D7-branes is also ignorant about the location of the pseudo-horizon. As we

will argue now, it is only the flavour degrees of freedom which are sensitive to the existence of

the pseudo-horizon.

Before doing so, let us remind ourselves some important facts on the physics at finite

temperature. At finite temperature, we identify the Euclidean on-shell action of the probe with

its thermodynamic free energy (up to a factor of temperature). In evaluating the Euclidean

on-shell action, we use rmin = rH . As elaborated in [31] with a toy model, the action of the

probe that is inside the black hole contributes to the overall entropy of the background once the

back-reaction of the probe is taken into account. We do not need to account for the part of the

probe D-brane inside the horizon while computing the thermodynamic free energy of the probe

sector.

Now, the degrees of freedom living on the probe brane are the open string degrees of

freedom. In the presence of a background gauge field, e.g. an electric field on the probe world-

volume, the effective geometry perceived by the fundamental sector can be different from the

background geometry. As has been explicitly demonstrated in the seminal work in [32], in the

presence of background gauge fields, the open string “feels” an effective geometry described by

the so called open string metric. Let G be the induced metric on the probe and F be the constant

electromagnetic field on its world-volume, then the open string metric, denoted by S, is given by

Sab = Gab −
(
FG−1F

)
ab
. (6.55)

This metric can be seen to naturally arise by expanding the DBI Lagrangian to quadratic order.

In the presence of an electric field it can be explicitly shown that this open string metric S

has a horizon at r = r∗. We have explicitly demonstrated this in Appendix C. In [33], using
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a similar set-up (studying D7-branes in AdS-Schwarzschild×S5-background) it has also been

explicitly shown that the various conductivities can be determined by the data at r = r∗. This

is reminiscent of the “membrane paradigm”; however the “fictitious” membrane is not located

at the horizon, but at the pseudo-horizon.

Thus, as far as the fundamental degrees of freedom are considered, the pseudo-horizon

plays an analogue role of the actual event-horizon of the space-time. Also, from the analysis of

the different classes of embeddings in the presence of an electric field, we conclude that once the

probe brane crosses r = r∗, it has to turn on a current j given by the formula in (6.54) and fall

all the way through the horizon. Therefore, we propose to identify the Euclidean on-shell action

evaluated up to r = r∗ with the thermodynamic free energy of the probe in the presence of an

electric field. Notice, however, the pseudo-horizon has an important difference compared to an

event-horizon: classically we cannot recover any information hidden behind an event-horizon;

whereas information can propagate outside the pseudo-horizon. In analogy with the analysis

done in [31], we conjecture that the part of the probe brane hidden behind r = r∗ contributes to

the production of entropy of the background once the back-reaction of the probes are taken into

account. It will be extremely interesting to verify this claim explicitly, but this is a non-trivial

problem which we leave for future investigations.

Now, let us comment on a technical advantage of using rmin = r∗. Recall that choosing

rmin = rH led to an IR log-divergence. It can now be explicitly checked that the action in (6.48)

is perfectly IR-finite if we choose rmin = r∗. Emboldened by all these observations, we propose

the following prescription for computing the free energy in the presence of the electric field. We

compute the on-shell action, but truncate it in the IR at r = r∗. Note that in determining r∗

and j we can either use the on-shell action extended all the way to the horizon or we can simply
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impose reality condition for the solution of the gauge field in (6.47). The boundary term that

we added in (6.48) can be interpreted as follows: for the part of the brane above r∗, this term

simply acts as a boundary term; for the part of the brane below r∗, this acts as a source.

Now, with our conjectured proposal, we can easily verify that the parallel embeddings

are always energetically favourable and chiral symmetry is always restored for the purely electric

field case. We will get non-trivial phase structure in the presence of both electric and magnetic

field at finite temperature, which we study in the next section.

1.7 Electric and Magnetic Field

We have argued and explicitly shown that an external magnetic field helps in chiral

symmetry breaking whereas an external electric field restores the symmetry. Clearly electric and

magnetic fields are two competing parameters as far as chiral symmetry breaking is considered.

In this section we will explore the corresponding phase diagram when both of these competing

parameters are present at finite temperature.

So far the dynamics of the flavours have been governed solely by the DBI action. In the

presence of the electric and magnetic field (specifically the case when they are parallel to each

other as we will see later), there will be a non-zero contribution coming from the Wess-Zumino

term as well. This term takes the following general form

SWZ = µ7

∫ ∑
p

Cp ∧ e2πα′F+B , (7.56)

where µ7 is related to the 7-brane tension, F is the worldvolume 2-form field strength, B is

the NS-NS 2-form and Cp is the p-form potential present in the background. The supergravity

background given in (2.1) does not have any NS-NS field and F5 is the only Ramond-Ramond
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field strength that is present. Thus the non-zero contribution coming from the Wess-Zumino

term in this case takes the following general form

SWZ =
µ7

2

∫
P [C4] ∧ F ∧ F +

µ7

2

∫
P [C̃4] ∧ F ∧ F , (7.57)

where P denotes the pull-back and the potentials C4 and C̃4 are defined by

F5 = dC4 , (7.58)

?F5 = dC̃4 . (7.59)

Here ? represents the 10-dimensional Hodge dual. The explicit form of the potentials are given

by

C4 =
1

gs

r4

R4
dt ∧ dx ∧ dy ∧ dz , (7.60)

C̃4 = − R4

27gs
cos θf1 ∧ f2 ∧ f3 ∧ dφ . (7.61)

It is clear from the expression in (7.57), since F has legs along the Minkowski directions only,

the Wess-Zumino term (which is proportional to F ∧ F ) gives a non-zero contribution when the

Minkowski electric and magnetic fields are parallel and this contribution comes solely from the

second term in (7.57). We will discuss the consequences of this term in a subsequent subsection.

At zero temperature, there are only two Lorentz invariants: ~E2 − ~H2 and ~E · ~H. Thus

it suffices to consider two configurations: ~E ⊥ ~H and ~E|| ~H. Non-zero finite temperature breaks

this Lorentz invariance. For a generic configuration, both the DBI and the WZ contributions

depend on the relative angle of the electric and the magnetic fields. For simplicity, here we

will focus on two representative cases: ~E ⊥ ~H and ~E|| ~H. In view of our discussion earlier,

the WZ piece will contribute only in the parallel configuration. In this process, we will obtain
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the corresponding formulae for the flavour conductivity for these two cases. As before, these

formulae are identical to the ones obtained in [34].

1.7.1 The case of perpendicular fields

Let us first consider the case when the electric and the magnetic fields are perpendicular

and the Chern–Sinons term vanishes. Our ansatz for the gauge fields is16

Ax = −Et+ A(r) , Ay = Hx . (7.62)

and the probe action is given by

S = NT
[∫

drr3

[(
1 +

h2

r4
− e2

fr4

)(
1 +

r2

6
f(φ′)2

)
+ f(a′)2

]1/2

− j
∫
dra′

]
, (7.63)

where

e = (2πα′E)R2, h = (2πα′H)R2, a′(r) = 2πα′
dA

dr
. (7.64)

Note that e and h have dimensions length2, so the phase structure of the theory depends on the

dimensionless ratios e/h = E/H and

h

r2
H

=
H√
λ̄T 2

(7.65)

where λ̄ = (π2/4)λt Hooft.

The first term on the action (7.63) is the DBI action while the second term is a total

derivative which does not change the equations of motion but contributes to the net action of

16Note that in general one would expect the presence of a Hall current perpendicular to the electric field for

this configuration; however, it can be shown explicitly (or see e.g. [34]) that this Hall current is proportional to

the chemical potential in this system. We do not consider the theory at finite chemical potential, hence we are

safe to ignore the Hall current.
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the brane. As we saw in section 6, for the U-shaped brane embedding the boundary conditions

at the two sides of the U lead to a(r) = const, but for the || embedding there is a′(r) 6= 0. Solving

the equation of motion for the a(r), we obtain

a′(r) =
j

r2f

(
(r4 + h2) f − e2

r6f − j2

)1/2

(7.66)

where j is the constant determined from the reality of the action integral

S|| =

∫ ∞
rmin

L||dr = NT
∫ ∞
rmin

dr

[
r4

(
(h2 + r4) f(r)− e2

r6f(r)− j2

)1/2

− ja′(r)

]
. (7.67)

As explained in section 6, the lowest poin rmin of this integral is the pseudohorizon r∗. For

reality’s sake, both the numerator and the denominator of the ratio under the square root must

change signs at the same point r = r∗, hence

(
h2 + r4

)
f(r)− e2 = 0 =⇒ r4

∗ =
1

2

((
e2 + r4

H − h2
)

+

√
(e2 + r4

H − h2)
2

+ 4h2r4
H

)
,

j2 = r6
∗f(r∗) . (7.68)

The above result matches with [34] in the appropriate limit.

For the U-shaped embeddings a′ ≡ 0 while the equation of motion for the φ′(r) is

(r5/6)
(

1 + h2

r4
− e2

fr4

)1/2

fφ′(
1 + r2

6
f(φ′)2

)1/2
= const =

r4
0√
6

√
f(r0)

(
1 +

h2

r4
0

− e2

f(r0)r4
0

)1/2

. (7.69)

The on-shell action for this class of embeddings becomes

SU = NT
∫ ∞
r0

dr
r3√
f(r)

(
(r4 + h2)f(r)− e2

) [ 1

r4 ((r4 + h2)f(r)− e2)− ((1 + h2)f(1)− e2)

]1/2

=

∫ ∞
r0

LUdr . (7.70)
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Now we have to resort to numerical analysis to find out the thermodynamically preferred

embedding. According to our proposal for the free energy, the corresponding phase diagram is

obtained by looking at the zeroes of the following energy difference

∆S =

∫ ∞
r0

LUdr −
∫ ∞
r∗

L||dr . (7.71)

Notice that our underlying theory was conformal. We have introduced three dimensionful scales

in the system (the temperature, the electric and magnetic field), which explicitly break the

conformal invariance. However, the only meaningful quantities we can talk about are two dimen-

sionless ratios: E/H and H/(
√
λ̄T 2). Thus our goal will be to study the dependence of ∆φ∞ as

a function of each of these ratios for a fixed value of the other one.

Before proceeding further, let us investigate some important features of the asymptotic

angle separation in this case. From equation (7.69), the asymptotic angle separation is given by

∆φ∞ =
3c

x0

∫ ∞
1

dy√
y(y − 1)

1√
y − r4H

x0

1√
y + 1 + ∆

x0

, (7.72)

where we have defined

x0 = r4
0 , ∆ = h2 − e2 − r4

H , y =
r4

r4
0

, (7.73)

and

3c =

√
3

2

(
x2

0 + x0∆− r4
Hh

2
)1/2

. (7.74)

In the limit of large c, which translates to the limit of large x0, we can obtain the following
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formula:17

∆φ∞ =

√
6π

4
−
√

3

2

e2 − h2

2x0

+ . . . . (7.75)

The formula in (7.75) implies if e > h, then asymptotically ∆φ∞ <
√

6π/4; on the other hand if

e < h, then asymptotically ∆φ∞ <
√

6π/4. The first case is similar to the behaviour observed in

fig. 1.3 and the second case is similar to the behaviour observed in fig. 1.7. Thus we expect no

phase transition for e > h and any non-trivial phase transition will take place only in the limit

e < h. These features are pictorially demonstrated in fig. 1.12. We have numerically verified

that the qualitative features demonstrated in fig. 1.12 are completely generic for both e/h > 1

and e/h < 1.

Alternatively, from the definition of the on-shell action in (7.70) and the asymptotic angle

separation obtained from (7.69) we can obtain

SU
NT
− 1

2
c∆φ∞ =

∫ ∞
r0

1

r
√
f

(
r8fQ2 − 6c2

)1/2
, Q =

(
1 +

h2

r4
− e2

r4f

)1/2

. (7.76)

=⇒ ∂

∂c

(
SU
NT
− 1

2
c∆φ∞

)
= −1

2
∆φ∞

=⇒ 1

NT
∂SU
∂c

=
1

2
c
∂∆φ∞
∂c

. (7.77)

Using the asymptotic expansion in (7.75) we get

1

NT
SU = const.+

√
3

2

e2 − h2

4
log c+ . . . (7.78)

From (7.70) it is clear that in the limit e > h the U-shaped embeddings become more and more

energetic as c increases; on the other hand, in the limit e < h increasing c decreases the energy of

17Interestingly, there is a term proportional to r4H at the same order in 1/x0 but it’s coefficient vanishes;

thus there is no contribution coming from the background temperature. Non-zero effects of the background

temperature is observed at the next order in 1/x0.
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Figure 1.12: We have shown the dependence of the asymptotic angle separation as a function

of c for both e/h > 1 and e/h < 1. It is clear that for e/h > 1, there is no phase transition and

the interesting physics can happen only in the regime e/h < 1. The black (horizontal) dashed

line represents the value
√

6π/4.
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this class of embeddings. Thus we can conclude that for e > h, there will be no phase transition

since the parallel shaped are always favoured and the interesting physics happens only in the

regime where e < h.

�

�

Λ T2=1.5H

Λ T2=H

ΧSB

ΧSR

ΧSR Only

0.2 0.4 0.6 0.8 1.0 1.2
E�H1.91

1.92

1.93

1.94

1.95

1.96

DΦ¥

Figure 1.13: The phase diagram in the (∆φ∞−E/H)-plane for various fixed values of the ratio

H/(
√
λ̄T 2). The non-trivial phase structure appears only in the limit E/H < 1 and in the

regime E > H only the chiral symmetry restored phase is available.

We have demonstrated a few representative phase diagrams in {∆φ∞ − E/H}-plane

{∆φ∞ − H/(
√
λ̄T 2)}-plane and in fig. 1.13 and fig. 1.14 respectively. To avoid clumsiness,

we have just presented the corresponding phase boundaries and have not appropriately labeled

every region as in fig. 1.9. In fig. 1.13, we observe that for a fixed value of H/(
√
λ̄T 2), increasing

electric field decreases the asymptotic angle separation. On the other hand, for a fixed value of

E/H, increasing (
√
λ̄T 2)/H decreases ∆φ∞. This behavior is expected since both the electric

field and temperature favour the restoration of chiral symmetry, whereas a magnetic field pro-

motes symmetry breaking. Beyond the value E/H = 1, we do not have any chiral symmetry
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Figure 1.14: The phase diagram in the ∆φ∞ −H/(
√
λ̄T 2)-plane for various fixed values of the

ratio E/H. Again we restrict ourselves to the regime E/H < 1.

broken phase at all.

From fig. 1.14 we observe qualitatively similar physics. For a fixed value of e/h, increasing

magnetic field increases the asymptotic angle separation, which is in keeping with the effect of

magnetic catalysis in chiral symmetry breaking. We also observe that for a given value of

H/(
√
λ̄T 2), increasing e/h decreases ∆φ∞.

1.7.2 The case of parallel fields

For the parallel electric and magnetic fields, the vector potential takes form

Ax = −Et+ A(r) , Az = Hy . (7.79)

This time, there is a non-zero Wess–Zumino term, which pushes the D7 brane away from the

equatorial θ = π/2 plane of the S2 sphere. Consequently, we need to parametrize the brane’s
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geometry by two r-dependent angles θ(r) and φ(r), or equivalently by a unit 3-vector ~n(r). The

DBI action is given by

SDBI = −N
∫
dtdrr3

(
1 +

h2

r4

)1/2 [(
1− e2

r4f

)(
1 +

r2

6
f(r)~n′2

)
+ fa′2

]1/2

, (7.80)

where

h = (2πα′H)R2, e = (2πα′E)R2, N = τD7VR3

8π2

9
,

h

r2
H

=
H√
λ̄T 2

(7.81)

and

~n′2 = θ′2 + sin2 θ φ′2 (7.82)

(where ′ denotes d/dr), while the non-zero part of the Wess-Zumino term is

SWZ =
µ7

2

∫
P
[
C̃4

]
∧ F ∧ F , (7.83)

for

P
[
C̃4

]
= − R4

27gs
cos θ(r)φ′(r)f1 ∧ f2 ∧ f3 ∧ dr . (7.84)

Integrating the WZ term over the 3–space and the S3 gives us

SWZ = −ehµ7

27gs

∫
cos θφ′dt ∧ dx ∧ dy ∧ dz ∧ dr ∧ f1 ∧ f2 ∧ f3

= −2

3
ehN

∫
dtdr~V(~n) · ~n′ (7.85)

where ~V(~n) is a vector field on S2 similar to the ~A field of a magnetic monopole,

~V(θ, φ) = cos θ∇φ = cot θ φ̂ (φ̂ is a unit vector in the φ direction). (7.86)
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Altogether, the net Euclidean action for the probe brane takes form

S = SDBI + SWZ = NT
∫
drLnet , (7.87)

Lnet =

(
1 +

h2

r4

)1/2 [(
1− e2

r4f

)(
1 +

r2

6
f(r)~n′2

)
+ fa′2

]1/2

+
2

3
eh~V · ~n′. (7.88)

For the U-shaped solutions — where a → 0 for r → ∞ along both sides of the U — the

action is clearly minimized for a′ ≡ 0. Consequently, the remaining Lagrangian has form

L = A(r)

√
1 + B(r) (~n)2 + k~V(~n) · ~n′ , (7.89)

— where

A(r) = r3

(
1 +

h2

r4

)1/2(
1− e2

r4f(r)

)1/2

, B(r) = 1
6
r2f(r) , k = 2

3
eh , (7.90)

— which resembles Lagrangian of a charged particle moving in magnetic field of a monopole

combined with a central electric potential. As explained in Appendix A, such particle has a

modified conserved angular momentum

L = r×mv + Mq
r

r
(7.91)

where M is the magnetic charge of the monopole and q is the electric charge of the particle.

When the ordinary angular momentum r×mv is conserved, the particles moves in a plane ⊥ L.

But for the conserved angular momentum of the form (7.91) the particle moves along a cone

making fixed angle with the L vector. In spherical coordinates (where L points to the North

pole) the radius r and the longitude φ change with time while the latitude remains constant,

θ = const 6= π/2.
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Likewise, we show in Appendix B that for the U-shaped D7 brane θ(r) = θc = const 6= π/2

(in some coordinate system) while the longitudinal profile φ(r) depends on the functions A(r)

and B(r). Specifically,

cos θ ≡ k

L
while

AB φ′√
1 + B(sin θ φ′)2

≡ L. (7.92)

Assuming the U-shaped brane is smooth at its lowest point r0 (where the D7 brane connects to

the D7 antibrane), we have φ′(r0) =∞, hence

A(r0)
√
B(r0) = L sin θc while L cos θc = k (7.93)

and therefore

θc = arctan
A(r0)

√
B(r0)

k
, (7.94)

dφ

dr
=

√
A2(r0)B(r0) + k2

[A2(r)B(r) − A2(r0)B(r0)]B(r)
. (7.95)

Plugging this solution into the Lagrangian (7.89), we obtain the net on-shell Euclidean action

for the U-shaped solution as

SEU = NT
∞∫
r0

dr√
B(r)

A2(r)B(r) + k2√
A2(r)B(r) − A2(r0)B(r0)

(7.96)

= NT
∞∫
r0

dr

r
√
f(r)

(r4 + h2)(fr4 − e2) + 8
3
e2h2√

(r4 + h2)(fr4 − e2) − (r4
0 + h2)(f0r4

0 − e2)
.

On the other hand, for the parallel-shaped profile, the equation of motion for the gauge

field can be solved to give

a′ =
j

r2f

√
r4f − e2

(r6 + r2h2) f − j2
, (7.97)
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from which we determine

r4
∗ = r4

H + e2 , j2 =
(
r6
∗ + r2

∗h
2
)
f(r∗) . (7.98)

The on-shell Euclidean action for this class of solutions is given by

SE|| = NT
∫ ∞
r∗

dr

[(
r4 + h2

)√ r4f − e2

(r6 + r2h2) f − j2
− ja′

]
. (7.99)

The corresponding phase diagram is obtained by looking at the zeroes of

∆S = SEU − SE|| . (7.100)

Before proceeding further, let us again investigate the asymptotic angle separation — or

rather the asymptotic longitude separation ∆φ∞ — in some details. Our goal here is to estimate

when a phase transition is possible depending on the relative strength of the electric and the

magnetic field. From (7.95) we obtain:

∆φ∞ =
3L

x0

∫ ∞
1

dy√
y
(
y − r4H

x0

) 1[(
y + h2

x0

)(
y − r4H+e2

x0

)
−
(

1 + h2

x0

)(
1− r4H+e2

x0

)]1/2
,

(7.101)

where we have again defined

x = r4 , x0 = r4
0 . (7.102)

It can again be shown that in the large L (hence the large x0) limit, the asymptotic longitude

separation is given by

∆φ∞ =

√
6π

4
−
√

3

2

e2 − h2

2x0

+ . . . , (7.103)
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Interestingly, this is the exact expression we obtained for the perpendicular case in (7.75) as well.

As before it can also be checked that in this case we get

1

NT
∂SU
∂c

=
1

2
c
∂∆φ∞
∂c

+ . . . , (7.104)

where we now have

c = L sin2 θc . (7.105)

Unlike (7.78), the above relation in (7.104) holds only in the limit c → ∞. Taking everything

together our general conclusion is similar as before: for e > h we will not have any phase

transition and chiral symmetry restored phase is the only available phase, but for e < h we will

have non-trivial physics and corresponding phase diagrams.

Before presenting the phase diagram a few words about the asymptotic angle separation

are in order. Since in this case we have to fix some constant value of θ = θc, which is non-

equatorial, the physical angle separation is the three-dimensional one instead of just ∆φ∞. If we

denote this 3-d angle separation by ∆Ω, then in terms of θc and ∆φ∞ this is given by18

cos ∆Ω = cos2 θc + sin2 θc cos ∆φ∞ . (7.107)

The relevant coupling in the dual field theory corresponds to ∆Ω. We will use ∆Ω in the

corresponding phase diagrams.

18This formula is obtained by considering the dot product of two vectors represented by: xi = sin θc cosφi,

yi = sin θc sinφi, zi = cos θc, with i = 1, 2. Here {x, y, z} represent the Cartesian coordinates. Now, taking the

dot product we get

cos ∆Ω = x1x2 + y1y2 + z1z2 = cos2 θc + sin2 θc cos ∆φ∞ , (7.106)

where ∆φ∞ = φ1 − φ2.
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Figure 1.15: The phase diagram in the (∆Ω−E/H)-plane for various fixed values of the ratio

(
√
λ̄T 2)/H. The non-trivial phase structure appears in the regime E/H < 1 and in the regime

E/H > 1 only the chiral symmetry restored phase is available.
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Figure 1.16: The phase diagram in the ∆Ω −H/(
√
λ̄T 2)-plane for various fixed values of the

ratio E/H. We have restricted ourselves to the interesting regime E < H.
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A few of the representative phase boundaries has been presented in fig. 1.15 in the (∆Ω−

E/H)-plane and in fig. 1.16 in the {∆Ω−H/(
√
λ̄T 2)}-plane. As before, in these phase diagrams

we have presented just the phase boundaries and have for simplicity. The qualitative features of

these phase boundaries are similar to what we have observed for the perpendicular case. For a

fixed value of H/(
√
λ̄T 2), increasing e/h decreases ∆Ω, where for a fixed value of e/h increasing

H/(
√
λ̄T 2) increases ∆Ω. As we have already explained before, this is the expected general

behavior.
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1.8 Conclusions

We have studied in detail the Kuperstein-Sonnenschein model in the presence of tem-

perature and a constant electromagnetic field. We have explicitly demonstrated the effect of

magnetic catalysis in chiral symmetry breaking in this model adding to the claim of this univer-

sal phenomenon in various systems. The basic mechanism behind this is the fact that at strong

magnetic field the fundamental matter populates the lowest Landau level and the dynamics of

flavours effectively becomes (1 + 1)-dimensional. We have also obtained a detailed phase dia-

gram in the temperature vs magnetic field plane. It is interesting and amusing to compare our

phase diagram to the ones obtained earlier from various other holographic models. Such phase

diagrams may be relevant for magnetars (neutron stars with a large magnetic field).

Based on our conjectured proposal of free energy in the presence of an electric field, we

have also studied in detail the phase diagram when both electric and magnetic fields are present.

Two representative situations that we have studied are parallel and perpendicular electric and

magnetic fields. Not surprisingly, the qualitative features of these phase diagrams are similar.

It is interesting to note that our analysis of a strongly coupled system conforms to weakly

coupled field theory intuitions and hence hints towards some robust universal features of such

non-Abelian gauge theories. Furthermore, the geometric manifestations of such gauge theory

phenomena provide new and interesting outlook.19

It is worthwhile to remark here that in what we have considered, the magnetic catalysis

(or the effects of the electric field) affects some scalar function which represents the embedding

function of the probe brane. Such a bulk scalar field is dual to a single trace fermion bilinear

19For example, within a similar framework a holographic calculation of Schwinger effect has been recently

carried out in [35].
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in the dual boundary theory. Recently in [36] the magnetic catalysis of a bulk fermion field has

been analyzed, which corresponds to a double trace operator in the boundary theory. Although

the construction in [36] is not embedded within string theory, it is interesting to speculate such

a possibility and its connection with our work.

There are many avenues for future work. It will be interesting to study the meson spectrum

by studying the fluctuations of the probe brane around its classical profile in the presence of

these external parameters to supplement our analysis of the various phases. The magnetic field

produces interesting effects in the meson spectrum, e.g. Zeeman splitting, level mixing and

enhancing the stability of mesons[96, 37] and thus it will be interesting to identify and study

such features.

We have not considered the effect of a chemical potential or a non-zero baryon number in

this model. A chemical potential can be realized by exciting the time component of the gauge

field living on the probe brane worldvolume. The presence of a magnetic field and the baryon

number is known to produce novel phases and interesting effects both in the so called D3−D7-

model[38, 39] and in the Sakai-Sugimoto model[40, 41, 42, 43]. Thus it will be very interesting to

further study the Kuperstein-Sonnenschein model in the presence of a non-zero baryon number.20

Having both a magnetic field and a chemical potential gives rise to a non-zero Chern-Simons

contribution through an F ∧ F ∧ C4 term. This term has radial dependence through the profile

function θ(r) as well as the gauge field excited on the worldvolume of the probe. This makes

the problem technically more challenging as we will no longer be able to consider some constant

θ-embedding and will have two coupled differential equations to solve for the profile. Thus we

20Baryon interactions based on non-supersymmetric D7/D7-brane in the Klebanov-Strassler background has

been studied in [94].
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leave this for future work.

Note that one can place the probe D7-branes in the Klebanov-Witten background in two

ways: the supersymmetric embeddings discussed in [45] and the non-supersymmetric ones which

we have studied here. The former embedding does not have any spontaneous chiral symmetry

breaking at zero temperature. Moreover, the global “flavour” symmetry for the supersymmetric

embeddings is simply a U(1). These embeddings are in close analogue of the Karch-Katz type

embedding of D7-branes in the AdS5×S5-background, which we have called the D3−D7-model

earlier. It is quite interesting that the Klebanov-Witten background allows for both Karch-Katz

type and a Sakai-Sugimoto type construction, although with different global “flavour” symmetry

group and different physics as far as chiral symmetry is considered. Nonetheless, it would be

interesting to investigate whether within the Klebanov-Witten background one could perhaps

capture the rich phenomenology of both the D3 − D7-model and the Sakai-Sugimoto model by

considering these two different kinds of D7-embeddings.

It is noteworthy to remark that the Klebanov-Witten background has a conifold singular-

ity at the origin where both the S2 and the S3 shrinks to zero size. This singularity is resolved

in the Klebanov-Strassler background[46] by considering a deformed conifold and threading an

NS-NS three-form flux through the S3. This background corresponds to the confining phase of

the dual field theory. Adding non-supersymmetric D7/D7-branes in this background has been

studied in [57]. To study non-trivial phase diagrams in the presence of external parameters,

one needs to know the finite temperature version of the Klebanov-Strassler background which is

currently not known in the literature in a closed form. For large temperature, an approximate

solution is obtained in [48]. It will be interesting to study at least a part of the phase diagram

in this large temperature background.
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Our analysis is valid in the so called probe limit where the gravitational backreaction of

the flavour branes are ignored. One crucial but technically challenging direction is to consider the

backreaction of the probe branes and determine the resulting gravitational background. Some

earlier works along these lines have been nicely summarized in e.g. [67]. Such an exercise with

the non-supersymmetric branes in the Kuperstein-Sonnenschein model could also be a fruitful

direction for future work. It is also interesting to speculate how the probe sector physics would be

affected in such a back-reacted geometry. Some work along similar directions have been pursued

recently in the so called D3–D7 model in [100, 51].

Our proposal of the thermodynamic free energy in the presence of the electric field and

the boundary current, albeit a physically appealing one, is a conjecture. It would be extremely

interesting if it could be directly verified in some simplifying model or argued further. One

obvious direction is to consider the backreaction of the probe branes in the presence of the

electric field and explicitly demonstrate our claim, which however is a technically difficult task.

Some work along similar direction has been carried out in e.g. [52].

It is interesting to note that introducing an electric field and consequently having a non-

zero current naturally realizes a system out of equilibrium. In the probe limit, according to

our proposed definition of thermodynamic free energy, we seem to be able to perform sensible

thermodynamics even outside the realm of equilibrium physics. For a system in thermal equilib-

rium, fluctuation-dissipation theorem relates the fluctuations of the system at equilibrium and

its response to applied perturbations. Using our system, we can explore what might be the

analogue of such a theorem for systems which are steady-state instead of at strict thermal equi-

librium. Towards this end, we need to analyze the gauge field fluctuations around their classical

configurations. We leave this for future investigations.
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Finally we conclude by saying that although we do not pretend these models resemble

QCD in the microscopic details, many macroscopic (qualitative) properties seem to be universal

for these class of strongly coupled large Nc gauge theories (such as the magnetic catalysis). Thus

within this approach we hope to continue to learn interesting and useful lessons relevant to the

physics of quarks and gluons.

Appendix A. Charged particle in a monopole field

In section 7.2 we saw that the effect of the Wess-Zumino term on the motion of the D7

brane on the S2 is similar to the effect of a monopole magnetic field on the motion of a charged

particle. So as a warm-up exercise, let us consider the motion of a charged non-relativistic

particle in a magnetic monopole field B = (M/r2)n superimposed on a central electrostatic

potential V (r).

When the Coulomb electric field of the charged particle is superimposed on the monopole

magnetic field, the Poynting vector E×B has vorticity and hence non-zero angular momentum

LEM =

∫
d3x x× E×B = −qM n (A.1)

where q is the electric charge of the particle, M is the magnetic charge of the monopole, and

n = r/r is the unit vector in the direction from the monopole to the particle. Consequently, the

net angular momentum of the particle and the EM fields is

L = Lparticle + LEM = r×mv − qM n . (A.2)

Note that this is the net angular momentum that is conserved by the particle’s motion while

the Lparticle and LEM vary due to magnetic torques on the particle. Indeed, particle’s equation of
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motion

ma = Fnet = −q∇V + qv ×B = −qV ′n +
qM

r2
(v × n) (A.3)

leads to

d

dt
(r×mv) = r× Fnet = 0 +

qM

r2
r× (v × n) =

qM

r

(
v − (vn)n

)
= qM

dn

dt
(A.4)

and hence

dL

dt
= 0. (A.5)

When the ordinary angular momentum r × mv is conserved, the particle moves in the

central plane⊥ to the L vector. In the monopole magnetic field the conserved angular momentum

is (A.2), so instead of a central plane the particle moves along a cone at fixed angle θ = const 6=

π/2 to the L vector. Indeed,

n · L = n · (r×mv) − n · (qM n) = 0 − qM = const (A.6)

and therefore

cos θ =
n · L
|L| = −qM

L
= const. (A.7)

In the spherical coordinate system with North pole in the L direction, this constant θ is the

particle’s latitude angle, while the particle’s motion in the longitudinal direction φ is governed

by L,

mr2dφ

dt
= L = const. (A.8)

Finally, the radial motion is governed by the energy conservation,

E =
m

2

(
dr

dt

)2

+ V (r) +
L2 sin2 θ = L2 − (qM)2

2mr2
= const. (A.9)
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Appendix B. Brane Profile for Parallel E and B Fields

In section 7.2 we saw that when a D7 brane carries both electric and magnetic fields that

are parallel to each other (or more generally when E ·B 6= 0), the action governing the brane’s

geometry included a non-trivial Wess–Zumino term. Consequently, the path of the brane on

the S2 as a function of the radius r does not follow the equator (or any other great circle) but

involves both dimensions of the S2. In this Appendix we shall see that the brane lies along a

latitude circle θ = const 6= π/2 and derive its longitudinal profile φ(r).

The effective action for the profile of a U-shaped brane is spelled out in eq. (7.89). In

terms of r-dependent unit 3-vector ~n(r),

S =

∫
dr
(
A(r)

√
1 + B(r)~n′2 + k~V(~n) · ~n′

)
(B.1)

where ~n′
def
= d~n/dr, A and B are functions of r — they are spelled out in eq. (7.90), but their

form is not important for the present argument, — and ~V(~n) is a vector field on the S2 similar

to the A field of a magnetic monopole,

~V(θ, φ) = cos θ∇φ = cot θ φ̂, ∇× ~V(~n) = −~n . (B.2)

Indeed, the effect of the WZ term k~V ·~n′ on the brane profile is similar to the effect of a magnetic

monopole field on the motion of a charged particle discussed in Appendix A — there is an extra

k~n term in the conserved (i. e., r-independent) angular momentum of the brane.

To see how this works, let’s develop the analogy between the brane profile ~n(r) and the

particle’s motion r(t). For the brane, there is no radial motion, and the radial coordinate r itself

plays the role of time for the angular motion on the S2. Thus, the first term in the brane’s
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Lagrangian (B.1) acts as a non-quadratic r-dependent kinetic energy for the angular motion,

hence the analogue of the particle’s mechanical momentum p = mv is

~P =
∂(first term in (B.1))

∂~n′
=

AB ~n′√
1 + B ~n′2

(B.3)

while the canonical momentum is

~Pcan =
∂L
∂~n′

= ~P + kV(~n) . (B.4)

Consequently, the Euler–Lagrange equation for the brane is

d

dr
~P =

∂L
∂~n
− k

d~V(~n)

dr
= k

∂Vj
∂~n

n′j − k
∂~V
∂nj

n′j = k ~n′ × (∇× ~V) = −k ~n′ × ~n , (B.5)

where the right hand side is analogous to the Lorentz force in a monopole magnetic field. Finally,

the analogy of the conserved net angular momentum is

~L = ~n× ~P + k~n,
d~L

dr
= 0. (B.6)

Indeed,

d

dr
(~n× ~P ) = ~n′ × ~P + ~n× ~P ′ = 0 − ~n× (k~n′ × ~n) = −k~n′ =⇒ ~L′ = 0. (B.7)

Conservation of the angular momentum (B.6) containing the k~n term leads to constant

angle Θ = const between the brane and the ~L vector. Specifically,

~n · ~L = k = const =⇒ cos Θ =
k

|L| = const. (B.8)

Thus, the brane’s path on the S2 lies along a circle, but it’s not a great circle since cos Θ 6= 0.21

21The brane does follow a great circle ⊥ ~L (which can be identified as the equator in some coordinate system)

when the Wess–Zumino term vanishes, k = 0 =⇒ cos Θ = 0. This happens when there is only the magnetic field

but E = 0, or when there is only the electric field but B = 0, or when the E and B fields are ⊥ to each other.

But when both the electric and the magnetic fields are present and E 6⊥ B, there is non-zero WZ term k ∝ E ·B
which moves the brane away from a great circle on the S2, cos Θ 6= 0.
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Instead, we may identify it as a constant-latitude circle

θ(r) ≡ Θ = arccos
k

L
6= π

2
(B.9)

in a spherical coordinate system where the North pole is in the direction of ~L.

As to the motion in the longitudinal direction φ(r), in 3-vector notations we have ~n′ =

~ω × ~n where ~ω is a vector of magnitude φ′ pointing due North (same direction as ~L). Thus,

~n′2 = (~ω × ~n)2 = ω2 sin2 θ , (B.10)

~P =
AB√

1 + B ω2 sin2 θ
~ω × ~n , (B.11)

~L =
AB√

1 + Bω2 sin2 θ
~n× (~ω × ~n) + k~n, (B.12)

⇓

~L − (L cos θ)~n =
AB√

1 + B ω2 sin2 θ

(
~ω − (ω cos θ)~n

)
, (B.13)

and consequently

AB ω√
1 + B ω2 sin2 θ

≡ L . (B.14)

Solving this equation for the ω = φ′, we obtain

dφ

dr
=

L√
B(r)×

√
A2(r)B(r) − L2 sin2 θ

. (B.15)

Appendix C. The Open String Metric

In [32], the authors studied open strings in the presence of a constant electromagnetic

field. One of the upshots of this is the definition of the open string metric which is different from

just the spacetime metric in the presence of such background fields. Let G be the background
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spacetime metric, F be the constant electromagnetic field; then the open string metric, denoted

by S, is given by

Sab =
[
(G+ F )−1

symm

]ab
=
[
(G+ F )−1G (G− F )−1]ab , (C.1)

Sab = Gab −
(
FG−1F

)
ab
, (C.2)

Aab =
[
(G+ F )−1

anti−symm

]ab
= −

[
(G+ F )−1 F (G− F )−1]ab , (C.3)

where A is the purely anti-symmetric part. As argued in [32], the open string metric S simply

describes the effective metric seen by the open strings.

The ten-dimensional background geometry is given in (2.1). Following [56], we place the

D7/anti-D7 brane at θ = π/2 and their profile is described by the scalar function φ(r). With

this information, the induced metric on the worldvolume of the probe can be calculated to be

given by

ds2
D7 =

r2

R2

(
−f(r)dt2 + d~x2

)
+

R2

r2f(r)

(
1 +

r2

3
(φ′)2

)
dr2

+
R2

3

[
1

2

(
f 2

1 + f 2
2

)
+

1

3
f 2

3 − φ′drf1

]
= gttdt

2 + gxxd~x
2 + grrdr

2 + g11f
2
1 + g22f

2
2 + 2gr1drf1 . (C.4)

Our goal here is to compute the open string metric (for an open string ending on the D7-brane)

taking G to be the induced metric in (C.4) in the presence of D7-brane worldvolume gauge fields.

We consider two particular cases: perpendicular and parallel electric and magnetic field. Not

surprisingly, our results will match the corresponding results in [33].

• Perpendicular electric and magnetic field:
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The world volume gauge field ansatz is given by:

Ax = −Et+ A(r) , Ay = Hx . (C.5)

The open string metric evaluated using the formula in (C.1) is given by

ds2 =
gttgxx + e2

gxx
dt̃2 +

(
e2

gtt
+ gxx +

h2

gxx
+

g11(a′)2

g11grr − g2
r1

)
dx2 +

(
gxx
(
gttgxx + e2

)
+ h2gtt

)
dỹ2

+ dr2

(
grr +

gttgxx(a
′)2

gxx (gttgxx + e2) + h2gtt

)
+ gxxdz

2 + g11f
2
1 + g22f

2
2 + g33f

2
3 + gr1drf1 , (C.6)

dt̃ = dt+
eh

gttgxx + e2
dy − ea′

gttgxx + e2
dr , (C.7)

dỹ =
1√

gttgxx + e2

(
dy +

ha′gtt
gxx (gttgxx + e2) + h2gtt

dr

)
. (C.8)

Here gαβ denotes the induced metric on the probe D7/anti-D7 brane. As we have seen before,

only the parallel embeddings have a non-trivial a(r). For this class of embeddings, the open

string metric has an event horizon (denoted by r = r∗) which is different from the event horizon

on the induced probe metric. The position of the open string metric event horizon is determined

from

Srr =

(
grr +

gttgxx(a
′)2

gxx (gttgxx + e2) + h2gtt

)−1

=
j2 + gttgxx
gttgrrg2

xx

= 0 , (C.9)

=⇒ j2 + gttgxx = 0 =⇒ gtt
(
g2
xx + h2

)
+ gxxe

2 = 0 . (C.10)

where we have used the equation of motion of the gauge field to substitute a′(r) in favour of the

constant j and also used the relation from which we fix j. It is clear from above that for this class

of embeddings the corresponding phase in the dual field theory feels an effective temperature set

by the pseudo-horizon. Thus in analogy with the purely finite temperature story, the appropriate
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“free energy” in this phase is defined as the on-shell action of the probe D7/anti-D7 brane which

goes from r = r∗ to r =∞.

On the other hand, for the U-shaped embeddings we have a′ = 0 and thus the open string

metric event horizon and the event horizon on the induced probe brane coincide.

• Parallel electric and magnetic field:

For parallel electric and magnetic fields, we take the following ansatz for the gauge fields

Ax = −Et+ A(r) , Az = Hy . (C.11)

In this case, the open string metric is given by

ds2 =
gttgxx + e2

gxx
dt̃2 +

g2
xx + h2

gxx

(
dy2 + dz2

)
+

(
e2

gtt
+ gxx +

g11(a′)2

g11grr − g2
r1

)
dx2

+ dr2

(
grr +

gtt(a
′)2

gttgxx + e2

)
+ g11f

2
1 + g22f

2
2 + g33f

2
3 + gr1f1dr , (C.12)

dt̃ = dt− ea′

gttgxx + e2
. (C.13)

For the parallel embeddings, the open string metric event horizon is determined from the following

relation

Srr =

(
grr +

gtt(a
′)2

gttgxx + e2

)−1

=

(
grrgtt (g2

xx + h2)

gtt (g2
xx + h2) + j2

)−1

= 0 ,

=⇒ gtt
(
g2
xx + h2

)
+ j2 = 0 =⇒ gttgxx + e2 = 0 , (C.14)

where we have again used the equation of motion for the gauge field and the relation from

which we fix the current j. Once again we see the emergence of an effective temperature for the

conducting phase which is set by the pseudo-horizon. In this case as well we propose a similar

definition of free energy as in the previous section.
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Chapter 2

Backreaction and Phase Transitions

2.1 Introduction

1 We saw evidence in the previous chapter that the use of holography, and in particular the

AdS/CFT correspondence[53, 54, 55], has provided us with a powerful analytical tool to address

strong coupling dynamics of certain gauge theories. Over the years it has become possible to

capture some qualitative but key features of Quantum Chromodynamics (QCD), which so far

has eluded the standard lore of conventional field theory methods.

In this chapter we will discuss one such aspect: the physics of the chiral symmetry break-

ing within the flavour sector of a large Nc gauge theory, with the hope that we learn at least

qualitatively useful lessons about QCD and therefore the strongly coupled matter created at the

Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). We will rely on

a model proposed in [56]2, which we will henceforth refer to as the Kuperstein-Sonnenschein

model.

The standard way of discussing the flavour physics is to introduce a set of probe branes

in a particular gravity background which is sourced by some stack of D-branes. This method

was pioneered in [58]. In the Kuperstein-Sonnenschein model, a pair of probe D7 and anti-D7

1This chapter is based on previous work done with Arnab Kundu, Matthias Ihl and Sandipan Kundu.
2See also [57].
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brane is placed in the AdS5×T 1,1 background which is popularly known as the Klebanov-Witten

background[59]. The probe branes wrap a three cycle inside the internal manifold T 1,1 ∼= S2×S3

and extend along the rest of the conifold R+ × S2. The zero temperature physics of the probes

realizes a spontaneous breaking of the chiral symmetry by having the branes join smoothly in the

IR and thus leading to: U(Nf )L×U(Nf )R → U(Nf )diag. In [60], we have explored the dynamics

of the flavours in this model in the presence of a temperature and an external electro-magnetic

field and found an interesting and rich phase structure.

The physics explored in the probe limit teaches us interesting lessons about the dynamics

of flavours in such models, however they are also limited by the probe approximation. It is

an interesting question in its own right to consider going beyond this approximation. Such an

exercise is also physically relevant for QCD, where the number of colours and the number of

flavours are of the same order. To consider back-reaction by the probes on the background

geometry, one has to solve for the equations of motion obtained from an action consisting of

supergravity and Dirac-Born-Infeld pieces. Typically, to facilitate the technical challenges, such

an undertaking is carried out within the so called “smearing” approximation, where the probes are

smeared along their transverse directions such that the full symmetry of the original background

is recovered.

Work along this direction has been carried out in [61]-[66] in related models and sum-

marized in the review [67]. However, most of these efforts rely on supersymmetry and become

technically simpler than solving the equations of motion. The Kuperstein-Sonnenschein model

is non-supersymmetric to begin with and thus one needs to consider a system of coupled second

order non-linear differential equations to make any progress. We explored this system of equa-

tions in [68] and found an analytic solution at the leading order in the back-reaction, measured
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in powers of Nf/Nc.

When the flavour back-reaction is taken into account, the underlying conformal theory is

deformed by higher dimensional irrelevant operators of dimension 6 and dimension 8 respectively.

Furthermore, the gauge coupling runs and the theory acquires a Landau pole in the UV: the

resulting theory is not UV-complete. Interestingly, these generic properties are very similar to

the back-reacted backgrounds which do preserve some supersymmetry. In [68] we have also

demonstrated that an additional probe sector in this back-reacted background now undergoes

a chiral phase transition, which is otherwise absent when the back-reaction vanishes. This is

simply because the Landau pole now gives a scale and there is a clear notion of small and large

temperature regimes.

Let us offer a few more comments. It is not possible to observe a finite temperature phase

transition in a theory whose underlying description is conformal. However, if one introduces

another scale in the system (other than the temperature), as we have explored in [60], this

possibility opens up. Typically, any such scale is an “infrared property” of the system since we

are probing the system at low energies, e.g. at room temperatures. This is often summarized by

saying that thermodynamics is an infrared property of a system, which means it does not care

about the energy-scales that lie much higher than what is explored in an experimental set-up.

On the other hand, we have an example, demonstrated in [68], where such a phase transi-

tion happens because the Landau pole provides a scale other than the temperature. The theory

is valid well below the Landau pole; and we have shown in [68] that within the regime of its

validity there is now a phase transition. Thus the thermodynamics of the system is not quite

just an “infrared property” of the system anymore. If we had an UV-complete description of the

back-reacted system, the Landau pole would disappear yielding a more fundamental microscopic
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description which is not conformal. Thus it is not a surprising fact that a finite temperature

phase transition takes place in such a fundamentally non-conformal system.

Before proceeding further, let us remark on a possible limitation3 of our approach as

far as exploring the physics in the flavour sector is concerned. We will introduce an additional

probe sector and discuss the phase structure of this additional probe sector in the back-reacted

background. Note, however, that our back-reacted background is obtained by considering back-

reaction by the parallel shaped embeddings only. Thus, if we observe a phase transition from

the parallel-shaped to the U-shaped embeddings in this additional probe sector, perhaps this is

an indication that we need to actually consider back-reaction by both parallel-shaped and the

U-shaped profiles separately and then compare the free energies of these two backgrounds. This

is a very interesting yet technically more involved problem subject to ongoing research. For

present purposes, we will adhere to a simpler analysis and pretend that the additional probe

sector and the back-reacting probe sector are distinguishable, which should be viewed as a first

attempt towards exploring the actual issue.

In the present article we will explore more aspects of the flavour sector by introducing

additional probe branes in the back-reacted background and exciting a constant electro-magnetic

field on this additional probe system. Our focus is to study the flavour dependence on the phase

structure obtained in [60]. This effort, the reader should note, is merely a first attempt to

understand how the QCD phase diagram might depend on the number of flavour degrees of

freedom. Using lattice simulations, current understanding of flavour dependence of the QCD

phase diagram at vanishing chemical potential is usually summarized in the so called “Columbia

3We thank Jacques Distler and Vadim Kaplunovsky for raising this point.
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plot” (see for example fig 1 in [69]).4 However, there is no general understanding about the phase

structure in the presence of external fields such as the ones considered in this article. Thus our

hope is to learn about robust qualitative features which may be relevant to QCD; although we

have to remember that since we account for the back-reaction only up to the leading order in

Nf/Nc, the flavour dependence that we will find within this framework is, by definition, weak.

Nonetheless, the fact that this back-reaction breaks the conformal invariance of the background

will result in some drastic changes as compared to the case when the back-reaction vanishes.

This article is divided in the following sections: Section 2 reviews the most relevant results

on the back-reacted background obtained in [68]. In section 3, we discuss some interesting phys-

ical aspects of the perturbative back-reacted solution, while in section 4, electro-magnetic fields

are introduced in the probe sector and their effects are investigated thoroughly, including their

impact on holographic renormalization of UV divergences of the on-shell DBI action. Moreover,

section 4 contains an exhibition of the most pertinent effects associated with the introduction

of a chemical potential, studied both in the grand-canonical and canonical ensembles. Finally,

section 5 offers concluding remarks and an outlook on future research.

2.2 Review of previous results

2.2.1 The back-reacted background

Let us begin with a brief review of the earlier results based on which we will continue to

explore similar physical effects in our current work. Before taking any back-reaction into account,

the model we consider is described in [56]. The authors introduced probe D7/anti-D7 branes in

4We thank Massimo D’Elia for very useful correspondence and the reference.
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the AdS5× T 1,1 background, which is obtained as the near-horizon limit of a stack of D3-branes

placed at the tip of the conifold. The D7/anti-D7 branes wrap a 3-cycle in the internal manifold

T 1,1 ∼= S2 × S3 and are extended along the rest of the conifold.

Before introducing the flavours, the dual field theory is given by an N = 1 superconformal

quiver gauge theory in (3 + 1)-dimensions with a gauge group SU(Nc) × SU(Nc) and a global

SU(2) × SU(2) × U(1)R symmetry group. The degrees of freedom are contained in two bi-

fundamental chiral superfields which transform in the
(
Nc, N̄c

)
and

(
N̄c, Nc

)
representations of

the gauge group.

Introducing the probe branes corresponds, in the dual field theory, to introducing flavour

degrees of freedom in an analogue of the so called “quenched approximation”. This amounts to

introducing a global U(Nf )L × U(Nf )R flavour symmetry group, where Nf denotes the number

of flavours. The zero temperature physics of this system captures a geometric realization of the

spontaneous breaking of chiral symmetry: the brane–anti-brane pair joins in the IR breaking

the aforementioned flavour symmetry group down to a diagonal U(Nf ). On the other hand, the

finite temperature physics of this system is rather trivial: since the background is conformal,

there is no scale in the system and hence no phase transition can happen. Chiral symmetry is

always restored in this case [60]. Nonetheless, the system exhibits interesting phase structure

and some interesting phenomenon, such as the effect of magnetic catalysis in chiral symmetry

breaking, when more control parameters are introduced [60]. In this article we will analyze the

effect of the back-reaction by flavours on the physics observed and analyzed in [60].

Towards that end, we need to find the back-reacted background. Such a background

can be found by sourcing the supergravity equations of motion by the Dirac-Born-Infeld (DBI)

contribution coming from the probe flavour degrees of freedom. It turns out that, employing
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the “smearing technique”, we can find an analytical solution of these back-reacted equations of

motion at the leading order in the Nf/Nc correction [68]. In Einstein frame, the most general

form of the back-reacted background is given by

ds2 = h(r)−1/2
(
−b(r)dt2 + d~x2

)
+ h(r)1/2

[
dr2

b(r)
+
e2g(r)

6

∑
i=1,2

(
dθ2

i + sin2 θidφ
2
i

)
+

e2f(r)

9

(
dψ +

∑
i=1,2

cos θidφi

)2
 , (C.1)

F5 = k(r)h(r)3/4
(
et ∧ ex1 ∧ ex2 ∧ ex3 ∧ er + eψ ∧ eθ1 ∧ eφ1 ∧ eθ2 ∧ eφ2

)
, (C.2)

where the vielbeins are given by

et = h−1/4b1/2dt , ex
i

= h−1/4dxi , er = h1/4b−1/2dr , (C.3)

eψ =
1

3
h1/4ef (dψ + cos θ1dφ1 + cos θ2dφ2) , (C.4)

eθ1,2 =
1√
6
h1/4egdθ1,2 , eφ1,2 =

1√
6
h1/4eg sin θ1,2dφ1,2 . (C.5)

Here k(r) is a function that we can determine from the relation

k(r)h(r)2e4g(r)+f(r) = 27πg∗sNcl
4
s = 4L4 , (C.6)

where g∗s is the string coupling defined at r = r∗, which is a UV cut-off that we need to introduce

since we have a running dilaton; ls is the string length and L is the AdS-radius. The various
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metric functions are given by

b(r) = 1− r4
H

r4
, (C.7)

Φ(r) =
ε

4
log

(
r

r∗

)
, (C.8)

h(r) =
L4

r4

(
1 +

ε

8

)
+ εα

(
2− r4

H

r4

)
, (C.9)

ef(r) = r

[
1 + ε

(
− 1

24
+ 4−2

(
r4
H

r2

)
K

(
1− r4

H

r4

)
− 8−2r2E

(
1− r4

H

r4

))]
, (C.10)

eg(r) = r

[
1 + ε

(
− 1

48
−−2

(
r4
H

r2

)
K

(
1− r4

H

r4

)
+ 2−2r2E

(
1− r4

H

r4

))]
, (C.11)

with

ε =
3

2π2

(
λNf

Nc

)
. (C.12)

Here rH is the location of the event-horizon, α and are two constants which correspond to — in

the dual field theory — the couplings of a dimension 6 and a dimension 8 operator, respectively.5

The temperature of the background can be identified with the inverse period of the Euclidean

time direction. This yields [68],

T =
rH
πL2

(
1− ε

16

)
. (C.13)

Before proceeding further, let us comment on the regime of validity of the solution given

in (C.7)-(C.11). To avoid the Landau pole coming from the diverging dilaton field we need to

impose r∗ � ∞, where r∗ is the UV cut-off. Now the perturbative solution for various other

5Note that the constant α is denoted by c3 in [68]. The general solution in [68] contains another constant which

is denoted by c5; however, since the coupling corresponding to the dimension 8 operator is a linear combination

of these two constants, we have set c5 = 0 without the loss of any generality.
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functions will hold provided

ε

∣∣∣∣log

(
rH
r∗

)∣∣∣∣� O(1) , ε

∣∣∣∣m−2

(
r4
H

r2
∗

)∣∣∣∣� O(1) , ε
∣∣m−2r2

∗
∣∣� O(1) , (C.14)

and 2ε

∣∣∣∣α( r4
∗
L4

)∣∣∣∣� O(1) . (C.15)

In this article, we will often be interested in a simpler case where α = 0 and m−2 = 0, in which

case we only need to ensure that the first condition of the inequalities written above is satisfied.

2.2.2 Introducing an additional probe sector

In [68], we have explored the phase diagram of an additional probe sector in the back-

ground given in (C.1) and (C.7)-(C.11) imposing α = 0, i.e. setting the source for the dimension

8 operator to zero. The inclusion of the back-reaction breaks the conformal invariance of the

background and we found that the additional probe sector now undergoes a chiral phase tran-

sition. This phase transition is, in a very precise sense, caused by the existence of the Landau

pole: this pole is located at r → ∞ at the leading order in ε, which means we need to use a

momentum UV cut-off. In what follows, we will discuss the phase structure in the additional

probe sector including more control parameters such as a constant electro-magnetic field. For

simplicity, we will mostly consider the case with −2 = 0 and α = 0.

Before going further, let us revisit the phase structure in more details. Following [68], we

introduce N ′f additional probe D7 and anti-D7 branes such that N ′f � Nf . These N ′f probes are

aligned in a way similar to the back-reacting flavour branes. The dynamics of the N ′f flavours

are given by

SDBI = NT
∫
dref(r)+2g(r)+Φ(r)

√
1 +

1

6
b(r)e2g(r)φ′2 , NT = N ′fτ7VR3

8π2

9T
, (C.16)
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where τ7 is the tension of the probe, VR3 denotes the volume along the three spatial directions

and T is the background temperature. We have denoted φ ≡ φ1 and also used the fact that it is

consistent to set θ1 = π/2.

The equation of motion admits two classes of solutions: the parallel-shaped solutions

denoted by

φ(r) = const , (C.17)

and the U-shaped solutions given by

φ′(r) =
6c√

b(r)2e2f(r)+8g(r)+2Φ(r) − 6c2b(r)e2g(r)
, c2 =

1

6
b(r)e2f(r)+6g(r)+2Φ(r)

∣∣∣∣
r=r0

, (C.18)

where r0 is the point where the brane–anti-brane pair joins smoothly. The parallel-shaped solu-

tions correspond to the chiral symmetry restored phase and the U-shaped solutions correspond

to the chiral symmetry broken phase.

Before discussing the phase transition, let us comment on the dependence of the coupling

on the expansion parameter ε. For simplicity we will discuss the case when m−1 = 0 = α. In this

case the asymptotic angular separation is given by

(ε) = (0) + ε (r0, rH) , where (r0, rH) < 0 . (C.19)

Thus at the leading order in ε the angular separation decreases linearly with ε with a slope

which is determined by r0 and rH . The dependence of with ε is schematically shown in fig. 2.1.

It is clear that, for the U-shaped profiles, increasing the effect of the back-reaction reduces the

maximum value attained by the angular separation, denoted by max. In fact there is more physics

in fig. 2.1: it displays the various available phases of the system for a given value of the coupling
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Figure 2.1: The blue and the red dashed curves correspond to ε = 0.01 and ε = 0.5 respectively

corresponding the U-shaped embeddings. We have set m−2 = 0 and rH = 1 and r∗ = 10. The

solid vertical blue line correspond to the parallel embeddings.

. For any >max, we only have the chiral symmetry restored phase available. On the other hand,

for any <max, we have three available points in the phase space: one on the vertical solid line and

two on the dashed curves. Comparing this situation with the more familiar {P − V }-diagram of

the Van der Waals gas, we can conclude that there exists a first order phase transition from a

point on the solid vertical line (i.e. the chiral symmetry restored phase) to a point on the dashed

line (i.e. the chiral symmetry broken phase) for some critical value of .

The energetics of the two classes of embeddings will now decide the phase of the system.

One has to look at the Euclidean on-shell action — which is identified with the thermodynamic
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free energy of the system — for these two types of embeddings and compute their difference

∆S = SU − S|| . (C.20)

Now depending whether ∆S > 0 or ∆S < 0, we will get a chiral symmetry restored or a chiral

symmetry broken phase. This results in a non-trivial phase structure analyzed in [68], which we

have shown in fig. 2.2. The phase diagram is presented in the vs m2 plane, where m2 is defined

as

m2 = πL4

(
T

m

)2 (
1 +

ε

8

)
. (C.21)

As can be observed from (C.16) this result is independent of α. We want to emphasize two main

features here: First, in the absence of the back-reaction, no such phase structure exists at finite

temperature. The underlying theory is conformal and only the chiral symmetry restored phase

exists. Taking back-reaction into account breaks the conformal invariance by introducing a UV

Landau pole and also deforming the CFT by higher dimensional irrelevant operators. In the

leading order back-reacted solution described here, the UV Landau pole is located at r → ∞

and the couplings corresponding to the irrelevant operators of dimension 6 and 8 respectively

are denoted by α and m.

From the phase diagram shown in fig. 2.2 it is clear that m2 = 0 is not a special point as

far as the existence of the phase transition is considered. Thus we can conclude that the non-

trivial phase structure and the associated thermodynamics that we obtain in this back-reacted

model is caused by the existence of the Landau pole. We will now move on to discuss the effect

of the back-reaction on some bulk properties of the background as well as the phase structure of

an additional probe sector in the spirit of [60].
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Figure 2.2: The phase diagram in the ∆φ? vs m2 plane. The blue line separates the χSB ≡
chiral symmetry broken phase (below the line) from the χSR ≡ chiral symmetry restored phase

(above the line). Between the blue and the red line, we also have a metastable χSB phase.

Above the red line we have only the χSR phase.

2.3 The back-reacted background: some physical aspects

Let us briefly comment on a few physical properties that we can extract from the solution

in (C.7)-(C.11). To begin with, let us focus on the physics of the energy loss of the plasma. In

the presence of the black hole, i.e., introducing a non-zero temperature in the dual field theory,

dissipation will occur due to the presence of the black hole in the bulk. We can now investigate

how the back-reaction of the flavours affect the physics of dissipation at least when the back-
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reaction is taken into account perturbatively. Within such a “stringy” framework, there are two6

canonical ways to explore this: First, in a perturbative description, the mechanism of energy loss

of a parton moving in a plasma is usually characterized by the so called jet quenching parameter

[72], usually denoted by q̂. In [73], it was proposed that a non-perturbative description of the

jet quenching parameter is given by a light-like Wilson loop, which one can use to perform

computations at strong coupling. Second, within the “stringy” framework, the energy loss of a

moving quark (parton) can be easily modeled by considering a fundamental string moving with

a constant velocity. The force required to drag the string at a constant velocity is essentially the

energy that is being lost in the plasma. This was first proposed and explored in [74, 75]. Here

we will explore both these cases.

2.3.1 Jet quenching parameter

Let us begin with the jet quenching parameter. Using the general formula in [76], the jet

quenching parameter is given by

q̂−1 = πα′
∫ r∗

rH

e−Φ/2

√
Grrdr

Gxx

√
Gxx +Gtt

, (C.22)

6See also [70, 71].
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where G denotes the spacetime metric in the Einstein frame and the dilaton enters because of

the conversion factor between the string frame and the Einstein frame. This gives

q̂−1 = I0 + εI1 + εαI2 , where

I0 =
L4

r3
H

∫ r∗/rH

1

dρ√
ρ4 − 1

, (C.23)

I1 =
L4

8r3
H

∫ r∗/rH

1

dρ√
ρ4 − 1

[1− log (rH/r∗)− log ρ] , (C.24)

I2 =
1

rH

∫ r∗/rH

1

dρ√
ρ4 − 1

[
2ρ4 − 1

]
. (C.25)

Let us now offer a few comments: First, notice that although the integrals I0, I2 > 0, I1 < 0.

Thus the parameter q̂ receives a correction of the form

q̂ = I−1
0 − ε

I1

I2
0

− εα I2

I2
0

. (C.26)

The sign of the parameter α, which is hitherto unconstrained, determines whether the flavour

contribution to the jet quenching parameter is positive or negative. The α-independent contri-

bution is always positive. Note that, in [77] the parameter α is set to zero and thus the flavour

contribution turns out to be always positive. The inclusion of the back-reaction breaks the un-

derlying conformal symmetry by introducing a dimension 8 operator, which a priori can have

both positive or negative contribution. The dimension 6 operator, however, does not play any

role here.

2.3.2 Drag force computation

We will keep our discussion brief and follow [78] closely as far as notations are concerned.

To discuss the drag force computation, we need to consider the following: let us start from the
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back-reacted background and consider a string that is hanging from the boundary, which in this

case is located at r = r∗. The end point of the string describes a quark moving in the plasma

as the string propagates in the bulk space-time. The ansatz for such a moving string takes the

form

x (σ, τ) = r (σ) + vτ , (C.27)

where {τ, σ} represents the string worldsheet and v denotes the velocity of the quark.

Due to the constant velocity, the string worldsheet develops a horizon that can be obtained

from the following formula:

Gtt +Gxxv
2
∣∣
r=rc

= 0 , =⇒ rc = rH
(
1− v2

)−1/4
, (C.28)

where rc denotes the location of the horizon and G once again denotes the background spacetime.

The momentum transfer is given by [78]

dp

dt
= − 1

2πα′
C , with eΦGttGxx + C2

∣∣
r=rc

= 0 , (C.29)

where the dilaton Φ enters the above formula since G is presented in the Einstein frame. Thus

we finally get

C =
L2π2T 2v√

1− v2

[
1 +

ε

16
+
ε

8
log

(
L2πT

r∗ (1− v2)1/4

)
− ε

2
L4π4T 4α

1 + v2

1− v2

]
. (C.30)

Once more we observe that for α ≤ 0, the energy loss is enhanced by the presence of the back-

reaction. This is consistent with what we obtained for the jet quenching parameter.

2.3.3 Quark–anti-quark potential

We can use the background found in (C.7)-(C.11) to explore some of the non-perturbative

aspects of the dual theory. The dual theory in this case is a non-supersymmetric theory which
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consists of the Klebanov-Witten theory coupled with a chiral flavour sector. We can investigate

how the interaction between the flavours is affected by the presence of the adjoint as well as

the fundamental degrees of freedom in this non-supersymmetric theory. To explore this, we can

consider a massive quark anti-quark pair such that the mass of the pair is very small compared

to the Landau pole. The corresponding bound state is given by a string worldsheet ending on a

probe flavour brane that extends from r0 to r∗, where r0 is some infrared scale satisfying r0 ≥ rH .

To parametrize the worldsheet of the string we can choose: τ = t, σ = x1 and r = r(x1),

where x1 is one of the spatial directions ranging from −`/2 to +`/2; and {τ, σ} represents the

string worldsheet parameters. The quark–anti-quark distance, denoted by `, and the renormal-

ized potential, denoted by V , are then given by[79, 80]

` (r0) = 2

∫ r∗

r0

GP0

P
√
P 2 − P 2

0

dr , (C.31)

V (r0) =
1

πα′

[∫ r∗

r0

GP√
P 2 − P 2

0

dr −
∫ r∗

rH

Gdr

]
, (C.32)

with P = eΦ/2
√
GttGxx , G = eΦ/2

√
GttGrr . (C.33)

Once again, G above represents the background metric and the dilaton enters the above formulae

since we are working in the Einstein frame. Our task here is to study the potential V as a function

of the quark–anti-quark separation `.

Recall that at zero temperature, in the absence of any back-reaction, the quark–anti-quark

potential is Coulombic [81]; at finite temperature it undergoes a phase transition depending on

the value of T`, as observed in [82, 83]. In the presence of the back-reaction, this phase transition

will continue to exist and will receive ε order corrections. Thus we do not expect any qualitative

change in the thermal physics of the system. Therefore we will consider the case when T` � 1
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and explore how the Coulomb potential is affected by the back-reaction.7 A representative plot

is shown in fig. 2.3. It is evident that the Coulomb behaviour of the potential does not change in

0.1 0.2 0.3 0.4 0.5 0.6
{

-7

-6

-5

-4

-3

-2

-1

VH{L

Figure 2.3: The quark–anti-quark potential obtained from (C.31) and (C.32). The black dashed

line corresponds to ε = 0 and the red dashed line correspond to ε = 0.5. We have further set

L = 1, rH � 1, α = 0.

the presence of the back-reaction. Although we have not explicitly presented it, this behaviour

does not change when α 6= 0. This is in accord with what has been observed in e.g. [84].

7For some related studies in similar models, see e.g. [84].
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2.3.4 Entanglement entropy

Entanglement entropy is a measure of quantum entanglement of a given system. It is

defined as the von Neumann entropy of a reduced density matrix. For a given system, let us

imagine dividing it into two parts denoted by A and B. For an observer who is restricted to

access the information of the subsystem A only, the system will be described by the reduced

density matrix ρA = trBρtot, where ρtot denotes the total density matrix of the full system. Now,

the entanglement entropy of the subsystem A is defined as

SA = −trAρA log ρA . (C.34)

In the context of AdS/CFT correspondence, a proposal to compute the entanglement entropy

was suggested in [85, 86]. Suppose we divide the system into two regions: one “rectangular”

strip of length ` along x1-direction (denoted by A) and its complement. The “rectangular”

strip obviously has an infinite dimension along the x2 and the x3-directions. In such a scenario,

the entanglement entropy is obtained by computing the minimal area surface whose boundary

coincides with the boundary of the region A.

In the 10-dimensional Einstein frame metric, the Ryu-Takayanagi proposal yields

SA =
1

4G10

∫
d8ξ
√

detG =
2

27G10

VR2

∫ √
hef+4g

(
x′2 +

h

b

)1/2

, (C.35)

where VR2 denotes the area of the “rectangular” strip along the {x2, x3}-direction. The minimal

area surface is parametrized by x1(r) ≡ x(r) with the boundary conditions x(r∗) = ±`/2. Before

going further, let us note that for the perturbative solution presented in (C.7)-(C.11) the quantity

(f + 4g) is independent of the coupling m. Hence the dimension 6 operator will have vanishing

contribution to the entanglement entropy at least at the leading order in ε. This is not true for

the dimension 8 operator, whose coupling is denoted by α.
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The equation of motion resulting from minimizing the volume functional is given by

√
hef+4g x′√

x′2 + h
b

= const =
√
h0e

f0+4g0 , (C.36)

where we have imposed the condition that at r = r0 the minimal area surface turns over and

have defined: h0 = h(r0), f0 = f(r0) and g0 = g(r0). Substituting back the profile of the minimal

area surface in (C.35), we get

SA = S
(0)
A + εS

(1)
A , (C.37)

at the leading order in ε.

One crucial property of the entanglement entropy is the so called “area law”, i.e. SA

scales as the area of the sub-region A: SA ∼ (∂A)/a2, where a is an infrared cut-off in the dual

field theory. It is easy to check that S
(0)
A ∼ (∂A)/a2 and there are no sub-leading divergent pieces,

as was previously alluded to in [86];8 the new term here is S
(1)
A . Using the explicit functions for

the background in (C.7)-(C.11), it is straightforward to check that

S
(1)
A ∼ (∂A)

r2
∗

24

(
8r4
∗α− L4

)
+ finite , (C.38)

where r∗ is the UV cut-off and we can identify a−1 ≡ r∗. Note that the term εαr4
∗ has to be small

because of the condition in (C.15). Hence, the divergence structure is the same as in the case

where the back-reaction vanishes. It is nonetheless an interesting question whether going beyond

a leading order perturbative solution in ε changes the divergence structure of the entanglement

entropy.

8For the finite part of the entanglement entropy and physics related to it see [87, 88].
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2.4 Physics on the probe brane

We will investigate the effects of introducing a constant electromagnetic field on the

additional probe sector in this model. Let us begin by discussing the case of a purely electric

field.

2.4.1 Purely electric field

Let us introduce a gauge field in the additional probe sector of the form

Ax1 = −Et+ A1(r) , (C.39)

where E is the electric field along the x1-direction. The function A1(r) encodes the possibility of

a non-zero current which results from applying the electric field. The Euclideanized DBI action

is given by

SDBI = NT
∫
dref+2g+Φ

[(
1− e2h

b

)(
1 +

b

6
e2gφ′2

)
+ ba′21

]1/2

, (C.40)

e = (2πα′)E , a1 = (2πα′)Ax . (C.41)

As discussed in [60], for a non-trivial φ(r), the action is minimized for a′1 = 0. To have a

non-trivial a′1, we focus on the parallel-shaped profiles which are given by φ = const. For the

parallel-shaped profiles the equation of motion for the gauge field is given by

ef+2g+Φ ba′1(
1− e2h

b
+ ba′21

)1/2
= j ,

=⇒ a′1 =
j

b

(
b− e2h

be2f+4g+2Φ − j2

)1/2

. (C.42)

Asymptotically, the solution for the gauge field takes the following form

a1(r) = − j

2r2

(
1 + ε

1− 32αe2

32

)
+ ε
(
3jm−2

)
log r + . . . , (C.43)
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The condition that the solution for the gauge field given in equation (C.42) remain real ultimately

determines the constant j in terms of the electric field and other parameters of the theory.

First, the location of the pseudo-horizon — which is where the numerator of the right

hand side of (C.42) vanishes — is given by

r4
ph =

(
e2L4 + r4

H

)
+
ε

8
e2
[
8r4

Hα + L4
(
1 + 16e2α

)]
+O(ε2) . (C.44)

Note that in the above formula the coupling m does not enter. In general, depending on the

sign of the constant α, the location of the pseudo-horizon can increase or decrease compared to

the location in the case of vanishing back-reaction. If we set α = 0, then the pseudo-horizon

receives a positive contribution coming from the back-reaction. Now the constant j can be fixed

by demanding

j(α,m, e, rH) = b(r)1/2ef(r)+2g(r)+Φ(r)
∣∣
r=rph

. (C.45)

In general the correction to the constant j at the leading order in ε has a complicated algebraic

form. For illustrative purposes, we can present one simplifying case in the limit r2
H/(eL

2) � 1.

We get

j2 =
(
eL2
)3
[
1 +

ε

48
− 8ε

(
eL2
)
m−2 + 3εe2α +

ε

8
log

(
rph

r∗

)]
+O

(
rH√
eL

)
, (C.46)

where we have used equation (C.44) above.

To recast the above formula in terms of the quantities defined on the boundary field

theory, let us recall a few basic definitions: First, the overall constant N that appears in front

of the DBI action leaving out the integral over the time direction

N = N ′fτ7

(
8π2
)
, and τ7 =

1

g∗s
(2π)−7 α′−4 , (C.47)
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where we have set the volume of the three Minkowski spatial directions, VR3 = 1. If we also set

the radius of the deformed AdS-space, L = 1 then using equation (C.6) and the above definitions

we get

N = λN ′fNc , where λ =
34

26
λ =

34

26
(4πg∗sNc) , (C.48)

where λ denotes the ’t Hooft coupling. The current density in the boundary gauge theory,

denoted by 〈Jx〉, can be obtained as (see equation (C.69))

〈Jx〉 = N (2πα′) j . (C.49)

For simplicity, setting −1 = 0 = α we get

〈Jx〉 = λN ′fNcE
√

2πα′E

(
1 +

ε

96
+

ε

16
log

(
rph

r∗

))
. (C.50)

Here we can define an effective ’t Hooft coupling absorbing all ε dependences in it, which will leave

us with a simple formula for the conductivity much like for the case of vanishing back-reaction.

Notice that now, even for the purely electric field case, we will have a non-trivial phase

structure. To demonstrate the existence of this phase transition, in fig. 2.4 we have shown the

behaviour of as a function of r0, the radial position where the brane–anti-brane pair joins,

for different values of e/r2
H . On the other hand our expectation is that increasing the electric

field will favour a restoration of the chiral symmetry. Thus we should observe a monotonically

decreasing behaviour of the phase boundary curve in the vs e/r2
H plane. This is demonstrated

in fig. 2.5. We should note that only for ε 6= 0 there is a non-trivial phase structure and the

qualitative features are similar for various values of ε.
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Figure 2.4: (r0) for rH = 1, ε = 0.01,m2 = 0.05, α = 0 and e = 1 (red), e = 5 (green), e = 10

(purple), e = 15 (black) and e = 20 (blue). Clearly e is measured in units of r2
H .
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Figure 2.5: The critical
(

e
r2H

)
for m2 = 0.001 and ε = 0.01 (blue) or ε = 0.1 (green). The

shaded region below the respective dashed lines corresponds to the χSB or metastable χSR

phase and the region above the respective dashed lines represents the χSR or metastable χSB

phase.

2.4.2 Purely magnetic field

Now we will introduce a constant magnetic field on the worldvolume of the additional

probe D7 and anti-D7 branes. The ansatz for the gauge field is

A3 = Hx2 , (C.51)
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which represents a constant magnetic field F23 = H along the x1-direction. With this gauge field

the DBI action is given by:

SDBI = NT
∫
dref(r)+2g(r)+Φ(r)

(
1 + 4π2α′2H2h(r)

)1/2

√
1 +

1

6
b(r)e2g(r)φ′(r)2 . (C.52)

Defining B := 2πα′H, we obtain

ef+4g+Φ
√

1 +B2h(r) b
6
φ′√

1 + 1
6
be2gφ′2

= cH . (C.53)

Equivalently,

φ′(r) =
6cH√

b(r)2 (1 +B2h(r)) e2f(r)+8g(r)+2Φ(r) − 6c2
Hb(r)e

2g(r)
, (C.54)

where we have defined

c2
H =

e2f(r0)+6g(r0)+2Φ(r0)

6
b(r0)

(
1 +B2h(r0)

)
. (C.55)

To demonstrate how this constant magnetic field affects the coupling , we can make a plot

in the vs r0 plane for different values of B. This is shown in fig. 2.6. The existence of a phase

transition is self-evident from this diagram and the corresponding phase structure is shown in

fig. 2.7, which is consistent with the phenomenon of magnetic catalysis.

2.4.3 Holographic renormalization

In the context of the AdS/CFT correspondence, the on-shell action SDBI of the addi-

tional probe sector corresponds to the generating functional of the additional flavour sector that

has been introduced in the dual field theory. This on-shell action contains UV divergences.

Holographic renormalization is the rigorous procedure to regulate such divergences by adding
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Figure 2.6: (r0) for rH = 1, ε = 0.01,m2 = 0.05, α = 0 and B = 0 (black), B = 5 (green),

B = 10 (blue), B = 20 (red) and B = 30 (purple).
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Figure 2.7: The critical (blue and green, dashed) and maximal (red, dotted) ∆φ∗(h/r
2
H) for

m2 = 0.001 and ε = 0.01 (blue, red) or ε = 0.05 (green). The shaded region below the dashed

line corresponds to the χSB or metastable χSR phase and the region between the dashed and

dotted lines represents the χSR or metastable χSB phase. Above the dotted line, χSR is the

only possible configuration.

covariant counter-terms on a cut-off surface and then taking the cut-off to infinity. In our cur-

rent scenario, we have a cut-off surface r∗ already in the problem and we need to restrict this
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cut-off surface to a position much below the Landau pole, which in our case is located at infinity.

For a review on the procedure of holographic renormalization, see e.g. [89].

Let us apply the procedure of holographic renormalization to our current case. Here we

will work with Euclidean signature. To procede, we need the following data: Λ ≡ cut-off; γij is

the induced metric on the r = Λ slice and γ := detγij. After the counter-terms are introduced,

we need to take Λ→ r∗, which is the actual cut-off surface.

Firstly, we shall discuss the case of the parallel embeddings. We will review and elaborate

on the discussion presented in [68]. In the absence of any external fields, the on-shell Euclidean

action for the parallel embeddings is given by

S|| = NT
∫ r∗

rH

dref(r)+2g(r)+Φ(r) . (C.56)

The divergent pieces in S|| can be arranged as follows:

Sdiv
|| = NT

[
−2r6

∗ (−2ε)

3
+

1

192
r4
∗ (−7ε+ 48) +

1

2

−2

r2
∗εr

4
H −

1

16
εr4
H log

(
rH
r∗

)]
+ finite . (C.57)

Of course, the ε dependent terms are parametrically much smaller compared to order one numbers

and thus the leading order divergent behaviour is identical to the pure AdS-case, which contains

only a quartic term. In addition to that there is another divergent piece proportional to (εr6
∗).

The remaining terms in the above expression are actually not divergent under the conditions

written in equations (C.14) and (C.15) and will eventually be absorbed in an effective ’t Hooft

coupling which receives correction due to the presence of the back-reaction and the temperature.

It is worthwhile to remark that the “potentially divergent” term proportional to log(rH/r∗) stems

from the infrared part of the geometry. This can be understood by noticing that this term will

not arise if one first expands the integrand in (C.56) in inverse powers of r∗ and then integrates;
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instead one needs to first integrate (C.56) and then expand the result in inverse powers of r∗.

Note that the on-shell action does not depend on the warp factor h(r) and hence the divergences

are also insensitive to the constant α.

It was shown in [68] that we need only one counter-term to regulate the divergences of

this on-shell action; however, the α-dependent contribution (which will be present in the counter-

term) was not included there. In the most general case, we need the following counter-term

Sct = −NT
L

4

(
1− ε 1

32
+

4

3
εr2
∗
−2 +

α

2L4
εr4
∗

)√
det γ

= A
(
ε−2r2

∗, εαr
4
∗
)√

det γ . (C.58)

The constant A receives finite correction coming from the presence of the back-reaction and the

irrelevant operators in the theory. This leaves us with the two “potentially divergent” pieces

which can be absorbed in the definition of an effective ’t Hooft coupling:

λeff(T ) = λ

[
1 +

1

4
ε log

(
rH
r∗

)
+

1

3
ε−2r2

∗

]
+O(ε2) , (C.59)

where λ = 4πg∗sNc is the ’t Hooft coupling. Note that the effective ’t Hooft coupling also receives

finite corrections due to the presence of the back-reaction, the deformations of the original CFT

and the background temperature. This exercise demonstrates that the presence of the back-

reaction does not call for a new counter-term, at least at the leading order in ε. Let us now

discuss the case when there is a constant electro-magnetic field on the worldvolume of the probe

sector. We will discuss the electric and the magnetic cases separately.

Case I: electric field
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We will first discuss some subtleties that occur in the presence of an electric field as

elaborated in [60]. First, the on-shell action in this case for the parallel embeddings should be

supplemented by a boundary term due to the variation of the gauge field itself. Second, the

lower limit of the integration is where the pseudo-horizon is located rather than the actual event-

horizon of the background. The latter is motivated by a couple of facts, most prominently the

fact that the open string metric, which is the metric the open string degrees of freedom should

sense, possesses an event-horizon which is the pseudo-horizon; and hence it is natural to cut-off

the integral at this location. This prescription also has the technical advantage of avoiding an

IR singularity coming from the location of the event-horizon [60]. Altogether, we arrive at the

following form for the on-shell action,

S|| = NT
∫ r∗

rph

dr

[
e2f(r)+4g(r)+2Φ(r) (b(r)− e2h(r))

1/2

(b(r)e2f(r)+4g(r)+2Φ(r) − j2)
1/2
− ja′1

]
, (C.60)

where rph was determined in equation (C.44). Subsequently the constant j is determined from

equation (C.45) and the gauge field can be obtained from equation (C.42).

It is straightforward to see that the boundary term due to the gauge field contributes a

finite quantity and there will be no divergences associated with it. All divergences will come

from the DBI-piece. Let us comment on the case of vanishing back-reaction. The presence of

the background gauge field introduces a new logarithmic divergence,

Sdiv
|| = −NT

(
r4
∗
4
− 1

2
e2L4 log r∗

)
+ finite , (C.61)

where r∗ is the cut-off surface. The above divergences can be regulated by adding a counter-term

on the r = const. slice

Sct = NT
L

4

(√
detγ − (2πα′)

2
√

detγ γijγklFikFjl log r∗

)
= A

√
detγ + B

√
detγ γijγklFikFjl log r∗ , (C.62)
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where A and B are the coefficients of the counter-terms.

Now — including the effect of the back-reaction — the divergences take the following

form:

Sdiv
|| /NT =

r4
∗
4

(
1− 7ε

48

)
− 1

2
e2L4 log r∗

(
1 +

ε

24

)
+ ε

[
−2

3

−2

r6
∗ +

1

2

−2

r2
∗
(
r4

ph + e2L4
)
− 1

4
e2αr4

∗ +

(
2j2−2 − 1

2
αe2r4

ph

)
log

(
r∗
rph

)]
+

ε

16
e2L4 (log(r∗/rph))2 + J (rph, e, r∗) + finite , (C.63)

which is true at the leading order in ε. The term J is a “potentially divergent” term coming

from the IR of the geometry, which in this case is located at r = rph. This term gives

J (rph, e, r∗) =
ε

2

∫
rph

x5

√
4x4 + 2e2L4

log

(
x

r∗

)
dx , (C.64)

which can be integrated analytically; however, we refrain from doing so since the result is alge-

braically complicated and not particularly illuminating. Note that, when e→ 0, we get

J (rph, 0, r∗) = J (rH , 0, r∗) = − ε

16
r4
H log

(
rH
r∗

)
, (C.65)

which is exactly what we had in [68]. Ultimately, the term J contributes to an effective ’t Hooft

coupling as explicitly demonstrated in [68].

We will now introduce appropriate counter-terms to take care of the divergences. Note

that the leading order divergences in (C.63) are again a quartic one and a logarithmic one. There

is an r6
∗ divergence supported purely by the back-reaction. The rest of the terms — which depend

on r∗ — are nonetheless parametrically finite within the regime of validity of our solution. Since

the physics should not depend on the cut-off surface r∗, we will define an effective coupling
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which will receive corrections due to the presence of the horizon, the electric field and the cut-off

surface.

The counter-term turns out to be:

Sct = −NT
L

4

[(
1− ε

32
+

ε

2L4
αr4
∗ +

4ε

3

−2

r2
∗ + 3αe2ε log(r∗/rph)

√
detγ

)
−
(

1 + 4ε−2r2
∗ −

ε

8
log(r∗/rph)

)
(2πα′)

2
√

detγ γijγklFikFjl log(r∗/rph)
]

= A
√

detγ + B
√

detγ γijγklFikFjl log r∗ . (C.66)

which again implies that there is no need for any additional counter-term as compared to the

case of vanishing back-reaction. The presence of the back-reaction and other relevant parameters

in the theory, such as the temperature or the electric field, yields a finite contribution to the

coefficients of the counter-terms.

To obtain the boundary current, one can follow the procedure outlined in [90]. We will

briefly review this process and argue that the presence of the back-reaction does not change the

identification of the boundary current. To this end, we go back to Minkowski signature and write

the on-shell action for the probes as

SD7 = −N
∫
dtdrLon−shell +N

∫
dtLct , (C.67)

where Lon−shell denotes the on-shell Lagrangian (presented in equation (C.60)) and Lct denotes the

counter-terms given in equation (C.66) and N = TNT , where T is the background temperature.

The variation of the on-shell regularized action is

δSD7 = −N
[∫

dtdr

(
δLon−shell

δ∂rAx
∂rδAx +

δLon−shell

δ∂tAx
∂tδAx

)
−
∫
dt

δLct

δ∂tAx
∂tδAx

]
. (C.68)
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There will be no contribution coming from the counter-term since we impose
∫
dt∂tδAx = 0. The

only contribution will come from the first variation of the on-shell Lagrangian and thus we get

〈Jx〉 :=
δSD7

δAx
= N (2πα′) j , (C.69)

where we have used the definition of j from equation (C.75).

Case II: magnetic field

Since the divergence structure is identical for the parallel and the U-shaped embeddings,

we will discuss the parallel case in detail. The on-shell action with a purely magnetic field is

given by

S|| = NT
∫
dref(r)+2g(r)+Φ(r)

(
1 +B2h(r)

)1/2
. (C.70)

The divergences of the on-shell action takes the following form

S||/NT =
r4
∗
4

(
1− 7ε

48

)
+

1

2
B2L4 log r∗

(
1 +

ε

24

)
+ ε

[
−2

3

−2

r6
∗ +

1

4
B2αr4

∗ +
1

2

−2

r2
∗
(
r4
H − 2B2L4

)
− 1

2
αr4

HB
2 log

(
r∗
rH

)
− 1

16
B2L4 (log(r∗/rH))2

]
+ J (r∗, B, rH) + finite , (C.71)

where J is the “potentially divergent” term that arises from the IR of the background, which is

explicitly given by

J =
ε

4

∫
rH

dxx
√
x4 +B2L4 log

(
x

r∗

)
. (C.72)
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Note that the divergences in equation (C.71) are very similar to the ones encountered for purely

electric case in equation (C.63); in fact, equation (C.71) can be obtained from equation (C.63) by

j → 0 and e2 → −B2, which of course makes sense since in the absence of a finite temperature

Lorentz symmetry allows one to the identify the physics by sending e2 → −B2. This means that

the divergence structure does not depend on the finite temperature. However, the presence of

the finite temperature affects the effective ’t Hooft coupling in inequivalent ways for the electric

and the magnetic cases.

2.4.4 Electromagnetic fields

At zero temperature, in the presence of an electric and magnetic field, denoted by E

and H respectively, there are two Lorentz invariants: ~E2 − ~H2 and ~E · ~H. Therefore, when the

temperature vanishes, it is sufficient to analyze the cases when the electric and the magnetic fields

are parallel or perpendicular. However, it was demonstrated in [60] that these two situations

yield qualitatively similar results; hence in order to keep our discussions simple, we will consider

the perpendicular case only.

Let us introduce

Ax1 = −Et+ A1(r) , Ax2 = Hx1 , (C.73)

which yields

SDBI = NT
∫
dref(r)+2g(r)+Φ(r)

[(
1 +B2h(r)− e2h(r)

b(r)

)
(

1 +
1

6
b(r)e2g(r)φ′(r)2

)
+ b(r)

(
∂a1(r)

∂r

)2
]1/2

.
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For convenience, we have again introduced the following:

e := 2πα′E , B := 2πα′H , a1 := 2πα′A1 . (C.74)

Of course, the action should be supplemented by the boundary term discussed in [60], but we

have not written it explicitly since it does not affect the equations of motion. The boundary term

becomes relevant only for the computation of the free energy and the discussion of the phase

diagrams. The basic structure of the probe profile functions remain qualitatively the same as

discussed in [60]. In the case of a non-trivial profile φ(r), the action is clearly minimized when

a′1(r) = 0.

For the parallel embeddings we find,

a′ = ± j√
b(r)

√
1 +B2h(r)− e2 h(r)

b(r)√
b(r)e2f(r)+4g(r)+2Φ(r) − j2

, (C.75)

= ±
[
j

r3
+O(r−7) + ε

(
4jm−2

r
+O(r−3)

)]
+ . . . . (C.76)

The second line above is valid as r → r∗, the UV cut-off. As it was pointed out in [60], imposing

the ingoing boundary condition singles out the solution in (C.75) with positive sign.

The location of the the pseudo-horizon, denoted by rph, is now obtained by solving the

following algebraic equation

1 +B2h(r)− e2h(r)

b(r)

∣∣∣∣
r=rph

= 0 , (C.77)

which then fixes the response-current

j = b(r)e2f(r)+4g(r)+2Φ(r)
∣∣
r=rph

. (C.78)
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The current in the dual field theory is proportional to this constant j, with the proportionality

constant determined in (C.69). It is not particularly illuminating to present the formulae explic-

itly in terms of all the variables of the system; therefore we refrain from doing so. The formula

above gives an Nf/Nc correction of the conductivity formula discussed in [90, 91]. Note that in

[92] an analogous Nf/Nc correction to the conductivity formula has been obtained for a probe

sector which is different from what we are discussing here. So, although in the limit of vanishing

back-reaction, both our result and the result of [92] coincide with [90], the Nf/Nc correction is

different.

As far as the possibility of a phase transition is considered, let us investigate (along the

lines of [60]) the angular separation for the U-shaped embeddings. The angular separation in

this case is given by

= 12c

∫ r∗

r0

dr

eg
√
b

1√
e2f+6g+2Φ [b+ h(B2b− e2)]− 6c2

, (C.79)

where

c =
1√
6
ef+3g+Φ

[
b+ h

(
B2b− e2

)]1/2∣∣∣∣
r=r0

. (C.80)

It can be checked from the above expression that the large r0 limit corresponds to large c limit.

Our task is to investigate what happens to this angular separation as c→∞. Using the solutions

in (C.7)-(C.11), it can be shown that in the limit c→∞ we get

=

∫ r∗/r0

1

dy 1(y, ε)− 1

r4
0

(
e2 −B2

) ∫ r∗/r0

1

dy 2(y, ε) + . . . , (C.81)

where we have defined y = r/r0. Here we will not present the functional forms of 1 or 2 since they

are not particularly illuminating; however, we will remark that the resulting integrals, performed
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over the variable y, are positive numbers. For large values of r0, we can have two physically

different regimes to consider: one where r∗ � r0 and one where r0 ∼ r∗. In the former regime,

the angular separation tends to asymptote to a constant value and the behaviour is similar to

what is discussed in [60]; however as r0 increases, we enter the second regime and→ 0 eventually.

Thus, in this case, irrespective of the relative magnitudes of the electric and the magnetic fields,

there will always be a corresponding phase transition.

To make connection with our earlier work in [60] with a vanishing back-reaction, let us

recall that there we found an upper limit on the electric field e < B, beyond which no phase

transitions happen. We can recover this result from the above expression. To do so, let us set

ε = 0, which restores the conformal symmetry and we will have r∗/r0 → ∞ now. In that case,

<
√

6π/4 for e > B and therefore no phase transition takes place.

2.4.5 Including a chemical potential

There are two types of chemical potential we can introduce: U(1) (baryonic) and isospin9.

We can explore their effect in both the back-reacted and non-back-reacted backgrounds. We

find that the effects are very nearly the same in any of these cases, i.e. back-reaction does

not significantly alter the results. Also an isospin chemical potential yields results that are

qualitatively similar to the ones obtained in the U(1) case. Thus for simplicity, we will discuss

the U(1) chemical potential case in the absence of back-reaction.

The canonical way to realize a chemical potential is to excite the time-component of the

gauge field At(r), which will give rise to a bulk field strength Ftr. The corresponding DBI action

9In this case, one will require two flavour branes. See e.g. [93] introducing an isospin chemical potential in the

Sakai-Sugimoto model.
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takes the form

S = NT
∫
drr3

(
1 +

r2

6
b(r)φ′2 − a′2t

)1/2

= NT
∫
drL , (C.82)

b(r) = 1−
(rH
r

)4

, at := (2πα′)At . (C.83)

Once again we remind the reader that we are considering the case when the back-reaction van-

ishes, i.e. ε = 0 limit of the background in (C.7)-(C.11).

The equations of motion that result from the above action are given by(
r2

6

)
r3b(r)φ′(

1 + r2

6
b(r)φ′2 − a′2t

)1/2
= c , (C.84)

r3a′t(
1 + r2

6
b(r)φ′2 − a′2t

)1/2
= d , (C.85)

where we have seen the constant c appear before and d denotes a new constant of motion. Before

going further, let us discuss these equations in more details. Note that, in order for the U-shaped

profiles to join smoothly at some r = r0, we need to impose φ′(r0) → ∞.10 From the above

equations of motion we can conclude that this condition leads to set d = 0 identically, or demand

that a′t(r0)→∞ as well. In order to keep the norm of the bulk vector field Ftr finite, we conclude

that for the U-shaped profiles we have d = 0 and they will not be affected by the inclusion of the

chemical potential. This is expected on physical grounds since the bulk radial field has nowhere

10Note that, if we relax the condition φ′(r0) → ∞, then the physics is richer. One will have to consider

including explicit sources which can support the radial field strength on the U-shaped profiles. Usually there are

two candidates for such sources: a baryon vertex and a bunch of fundamental string attached to the probe brane

at r0. The qualitative picture is similar to [94], which analyzes baryons in the Klebanov-Strassler set-up[57]. In

the Klebanov-Witten case, we have one candidate for explicit source: a bunch of fundamental strings that stretch

from r = r0 to r = rH . However, we will not discuss the physics when such explicit sources are included.
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to go for the U-shaped profiles. On the other hand, for the parallel embeddings there will be a

non-trivial gauge field.

For the parallel shaped case, the asymptotic behaviour of the gauge field takes the form

at(r) ' (2πα′)µ− 2d

r2
+ . . . , (C.86)

where the constant µ is related to the chemical potential and the constant d is related to the

charge density of the system. Let us denote the charge density in the probe sector by

ρ =
δS

δFrt
=⇒ ρ = (4NT ) (2πα′) d , (C.87)

where we have used the asymptotic expansion in (C.86) and the definition of S from (C.82). On

the other hand, the chemical potential of the system can be obtained by

µ =
1

2πα′

∫ ∞
rH

a′t(r)dr =
d

(2πα′)r2
H

2F1

(
1
3
, 1

2
; 4

3
;−(d2/r6

H)
)

2
, (C.88)

where we have utilized the solution of a′t(r) in terms of d from equation (C.85) and 2F1 is a hy-

pergeometric function. Our task henceforth will be to determine the favoured phase among the

U-shaped and the parallel profiles. To determine this, we need to evaluate and compare the cor-

responding thermodynamic free energies of the individual phases. In this context, we can address

this in two inequivalent ways, i.e. in grand canonical and canonical ensembles respectively.

2.4.5.1 Grand Canonical Ensemble

Let us first work in the grand canonical ensemble. If we take the action in (C.82) in its full

generality and evaluate the corresponding variation on-shell, then we are left with the following

boundary term

δS = NT
[
∂L
∂φ′

δφ+
∂L
∂a′t

δat

]rmax

rmin

, (C.89)
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where rmin denotes the lowest point in the infrared, rmax denotes the UV-cutoff and L denotes

the Lagrangian density in (C.82). Using the equations of motion in (C.84) and (C.85), we get

δS = Oφδ (∆φ∞) +Oµδµ , (C.90)

Oφ = NT c , Oµ = NT (2πα′) d , (C.91)

which implies that the natural thermodynamic variables in the corresponding ensemble are ∆φ∞

and µ. This means that the on-shell action defines the corresponding Gibbs free energy in the

grand canonical ensemble. The corresponding canonically conjugate variables are c, which is a

condensate-like object, and d, which is related to the charge density via (C.87).

In the grand canonical ensemble it is straightforward to check that at finite temperature,

the chiral symmetry restored phase is always favoured for any value of the chemical potential,

which qualitatively is the same physics we observe at vanishing chemical potential as well [60].

In the absence of any back-reaction, we can only obtain a non-trivial phase structure after the

inclusion of a magnetic field. This can be easily achieved as before, see e.g. equation (C.51).

Introducing this field will deform the DBI Lagrangian and we will get

L = r3

(
1 +

r2

6
b(r)φ′2 − a′2t

)1/2 (
1 +B2L4/r4

)1/2
. (C.92)

The analysis of the solutions proceeds as before and one can conclude that a non-trivial chemical

potential will exist only for the parallel shaped case. For a fixed value of the chemical potential

one can now explore the phase diagram, which is shown in fig. 2.8. From the phase diagram it is

clear that the effect of magnetic catalysis observed in [60] for vanishing chemical potential survives

here. Here we have presented only a representative diagram, but have checked explicitly that

the qualitative behaviour remains similar for a wide range of values for the chemical potential.
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Figure 2.8: The phase diagram in the non-backreacted background with a U(1) chemical po-

tential for (2πα′)µ = 1.0 in the grand canonical ensemble.

Evidently, one can also explore the phase diagram (even without any magnetic field) resulting

from the non-trivial dynamics once back-reaction is included. However we will not attempt this

here, because, as should be noted, once the back-reaction is taken into account, the qualitative

nature of fig. 2.8 will not change since we treat the back-reaction perturbatively. Thus, the

physics will remain unchanged at the leading order.

2.4.5.2 Canonical Ensemble

Let us now switch gear and discuss the physics in the canonical ensemble, which is charac-

terized by the charge density rather than the chemical potential. The corresponding free energy

is the so called Helmholtz free energy that can be obtained by a Legendre transformation of the

Gibbs free energy. In terms of the on-shell action of the probe, we now need to consider the
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following quantity (see e.g. [95])

L̃ = L − ∂L
∂a′t

a′t . (C.93)

Clearly, since the U-shaped profiles do not support a non-trivial a′t, the Legendre transformation

will change the corresponding free energy for the parallel shaped profiles only. It can be checked

that in the canonical ensemble we have a non-trivial phase diagram when a non-zero charge

density is introduced. We obtain a phase transition both at vanishing and at non-zero magnetic

field. The corresponding diagram is shown in fig. 2.9. Moreover, we can also explore the physics
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Figure 2.9: Panel (a): Phase diagram at vanishing magnetic field, in the canonical ensemble.

Note that there is no corresponding phase transition in the grand canonical ensemble. Panel

(b): A representative phase diagram in the presence of a magnetic field. Here we have fixed

d = 2.

in the presence of a magnetic field. A representative phase diagram in shown in fig. 2.5, which

again demonstrates the effect of magnetic catalysis that we have observed and commented on

several times by now. Before concluding this section let us remark that the inclusion of the

back-reaction again does not have a significant effect on the qualitative physics, as expected.
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2.5 Discussion of results

In this chapter, we investigated various aspects of the back-reacted solution that we

obtained in [68]. In keeping with our perturbative approach, we find that the physics is qual-

itatively similar to the original background both w.r.t. the back-reacted background and the

additional probe sector. We observe the familiar magnetic catalysis effect11, and the emergence

of a pseudo-horizon in the probe sector. We also initiated a study of the corresponding phase

structure introducing a chemical potential in this model.

There are various directions for future work. When the back-reaction is included, the

presence of the phase transition in the additional probe sector demands a more thorough study

of the model. This phase transition is perhaps signaling that we need to obtain backgrounds

back-reacted by both the parallel and the U-shaped profiles and compare their energetics to

decide whether the true picture is richer in physics. This is a rather intriguing possibility that

we hope to address in the future.

For our current work, it was convenient to consider the additional probe sector and exciting

various fields restricted to this sector. In principle, it should not be possible to distinguish

between the additional probe sector and the back-reacting probe sector and thus what we have

analyzed here is at best an approximate situation, however, it would be very instructive to

consider the back-reaction including such worldvolume gauge fields: The back-reaction by a

probe magnetic field will induce anisotropy in the system, a chemical potential will induce a

charged black hole background, an electric field will induce a time-dependent background where

11See e.g. [96, 97, 98, 99] for similar effects in other models in the probe limit and in [100] beyond the probe

limit.
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the actual bulk event-horizon will be increasing with time. Such results would be exciting to

further analyze and understand.

Note that our analysis of the model with the chemical potential is rather rudimentary

in the sense that we did not include any source terms. We observed that the phenomenon of

magnetic catalysis persists and is independent of the chemical potential. On the other hand,

it has been observed in e.g. [101] that an inverse magnetic catalysis effect exists for the Sakai-

Sugimoto model. It will be very interesting to see whether it is possible to find a similar physical

effect in this model once sources are included. We leave such interesting research opportunities

for future work.
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Chapter 3

Instanton Crystals

3.1 Introduction

In this chapter, we investigate lattices of instantons. In a large class of holographic models

of QCD, baryons are represented by instantons of the U(Nf ) gauge theory residing on the flavor

branes. In this way, cold nuclear matter is represented by a crystalline lattice of instantons. We

take the Sakai-Sugimoto model as a prototype model for our investigation. However, the same

arguments could be applied for any holographic model in which baryons arise as instantons of the

flavor gauge theory. The geometry as well as the dimensionality of the instanton lattice varies

as the instanton density. At low to moderate densities, the baryons (or the flavor instantons)

are confined to form a 3D lattice in the x4 = 0 hyperplane. At high densities, the baryons are

pushed out into the x4 direction and form a 4D lattice. This 3D → 4D transition is conjectured

to be dual to the baryonic to quarkyonic phase transition of nuclear matter. In the baryonic

phase, quarks are confined to individual baryons. In the quarkyonic phase, the quarks fill the

Fermi sea but the excitations near the Fermi surface are not free quarks or holes but rather

meson-like quark-hole pairs or baryon-like bound states of Nc quarks rather than free quarks or

holes themselves.

Instead of trying to solve the 3D → 4D transition, we focus our attention here on the 1D → 2D
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transition as a first step in trying to solve the much more complicated problem. We put the

instantons in a harmonic potential that rises at different rates along three of the four space

coordinates. In terms of the 5D gauge coupling,

8π2

g2
5

= NcλM

(
1 +

3∑
i=1

M2
i x

2
i +O(M4x4

2,3,4)

)
(C.1)

with three independent parameters M2, M3 and M4. Our investigations are in the regime

M2 � M3 ∼ M4 but M3 < M4. Under this approximation, the instantons line up along the x1

axis for low densities, or rather low external pressure. As we increase the pressure, the instanton

lattice starts spreading out in the x2 direction. Depending on the M3/M4 ratio, we obtain a rich

variety of 2D crystalline lattices whose details we present below.

Apart from the motivation to use gauge/gravity duality to investigate the baryonic to

quarkyonic phase transition, one could also view this work as the description of a hypothetical

condensed matter system. There are limitations inherent to the large Nc limite of gauge/gravity

duality that constrain us from accurately modeling the above mentioned phase transition. For

example, in ordinary Nc = 3 QCD, cold nuclear matter forms a quantum liquid but for large Nc

it becomes a crystalline solid since the ratio of the kinetic to potential energy decreases with Nc.

Indeed, in the large Nc limit the two-baryon potential [105] becomes

V ∼ Nc · AC(r) +Nc · AS(r)(I1 · I2)(J1 · J2)

+Nc · AT (r)(I1 · I2)(3(n · J1)(n · J2)− (J1 · J2)) +O(1/Nc) (C.2)

for some Nc-independent profiles AC(r), AS(r) and AT (r) for the central, spin-spin and tensor

forces, with overall magnitudes A ∼ ΛQCD for r ∼ 1/ΛQCD. Classically, such a potential tends
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to organize the baryons into a crystalline structure such that the distance between baryons

is independent of Nc but the binding energy per baryon scales like NcO(ΛQCD). Quantum

mechanically, the baryons in such a crystal oscillate in their potential wells with zero-point

kinetic energies K, just as atoms in ordinary crystals

K ∼ π

2mBd2
∼ ΛQCD

Nc

1

d2
(C.3)

where d ∼ 1/ΛQCD is the Nc-independent diameter of the potential well. Consequently, at zero

temperature the ratio of kinetic to potential energy scales as

K

V
∼ 1

N2
c

(C.4)

which becomes very small as Nc grows large. At high enough temperature, the kinetic energies

of the baryons does become larger, K ∼ T , but in the confined phase we are constrained to

T < Td < ΛQCD so that K < O(ΛQCD), in which case the ratio of kinetic to potential energy

scales as

K

V
∼ 1

Nc

(C.5)

which is larger than 1/N2
c but still tends to zero as Nc tends to infinity. Therefore, for large

Nc neither zero-point quantum motion nor the thermal motion of baryons are able to melt the

baryon crystal into a liquid, and the large Nc nuclear matter remains solid all the way upto the

deconfining temperature.

Moreover, in gauge/gravity duality, we typically take not only the large Nc limit but also the

large t’hooft coupling λ = Ncg
2
YM limit. In this limit, the baryons become heavy[103]: in units

of the mesonic mass scale M ∼ ΛQCD, the baryon mass is Mb ∼ λNcM . On the other hand,
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the interactions between baryons do not grow with λ. Even for baryons very close to each other,

the mutual repulsive potential is only V ∼ NcM ∼ Mb/λ. The potential grows weaker as the

distance between them grows large as the hard-core radius of a holographic baryon shrinks with

λ as Rb ∼ M−1λ−1/2. Outside of this radius, the repulsive potential decreases as 1/r2 until

r ∼ M−1, at which point the potential becomes model dependent. In some cases, the potential

becomes attractive for r ∼M−1 while in others it remains repulsive for all values of r, as depicted

below.

Figure 3.1: Two-body nuclear potential in holographic QCD.

Apart from nuclear matter, one could instead also take the approach of viewing this as a many-

body problem. If we take Nf = 2 in the holographic model, we are essentially exploring lattices

of SU(2) instantons. The interactions between these instantons are stringy in origin, and de-

pend not only on the positions of instantons in the physical space, but also on their orientation

in the internal isospace. Moreover, the interaction energy of the instantons depend on a mixing
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of orientations in isospace and positions in physical space. This serves as an interesting many-

body problem in its own right, and the techniques employed here may be applied to other types

of non-abelian crystals. To make everything concrete, we specifically use the Sakai-Sugimoto

model[106] although our considerations can be applied to a larger class of models.

3.2 Instantons in the Sakai-Sugimoto Model and their interactions

We now describe the Sakai-Sugimoto, or the D4/D8, model in some detail. Starting with

the space R3,1 × S1 × S4 × R+ (radial coordinate), we place Nc coincident D4 branes spanning

the Minkowski directions ×S1. The circle has antiperiodic boundary conditions for the fermions

which breaks theN = 4 SUSY down toN = 0?. In the field theory limit λ� 1⇒ ΛQCD �MKK

and the effective low-energy theory is pure U(Nc) Yang-Mills. On the λ� 1 side of the duality,

the D4 branes merge into a black brane which warps the 10D geometry. Instead of flat spacetime,

we now have a warped product of R3,1 Minkowski space, the S4 sphere (which originally surrounds

the D4 branes), and a 2D cigar that spans the radial direction transverse to the brans, and finally

the S1 circle. The radial coordinate u runs from uΛ > 0 to infinity. At uΛ the S1 shrinks to a

point, hence the cigar shaped geometry. Altogether we have

ds2 =

(
u

RD4

)3/2 [
−dt2 + δijdx

idxj + f(u)dx2
4

]
+

(
RD4

u

)3/2 [
du2

f(u)
+ u2dΩ2

4

]
(C.6)
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with

F4 = 3πl3sNc × volume form(S4)

eφ = gs

(
u

RD4

)3/4

(C.7)

where x4 was originally the coordinate along the S1 circle but is now the polar angle on the 2D

cigar,

R3
D4 = πgsl

3
sNc

f(u) = 1−
(uΛ

u

)3

(C.8)

such that ls =
√
α′ is the string length scale and gs is the string coupling, while uΛ, which is the

minimal value of the radial coordinate u at the tip of the cigar, is related to the original radius

R of the S1 circle as

2πR =
4π

3

(
R3
D4

uΛ

)1/2

(C.9)

The 4D gauge coupling and hence also the t’Hooft coupling λ also depend on R. Analytically

continuing from λ� 1 to λ� 1 we must have

λ = g2
4DNc =

g2
5D

2πR
Nc =

2πgsls
R

Nc (C.10)

Next, we add the flavor degrees of freedom by adding Nf D8 and anti-D8 branes in the probe

approximation Nf � Nc. The flavor branes span the Minkowski space ×S4× a line on the 2D

cigar. The topology of the cigar demands that the brane/anti-brane pair merge into a single

brane at some point u0 ≥ uΛ, which can be seen more explicitly from minimizing the brane
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action. The result is that the U(Nf )L × U(Nf )R symmetry breaks down to a diagonal U(Nf )

symmetry, resulting in chiral symmetry breaking, simlilar to the situation in the previous chap-

ters.

As was the case there, the low energy dynamics of the flavor degrees of freedom living on

Figure 3.2: The U-shaped profile of the brane/anti-brane pair on the 2D cigar of the Sakai-

Sugimoto model merging together to give rise to spontaneous breaking of chiral symmetry. The

figure on the right depicts the antipodal configuration where the branes merge at the tip of the

cigar u = uΛ, while the figure on the left depicts the non-antipodal configuration where the

branes merge at some point u0 > uΛ.

the D8 branes is governed by the effective action consisting of the DBI + CS terms

S = SDBI + SCS (C.11)
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where

SDBI = T8

∫
D8+D8

d9xe−φStr
(√
−det(gmn + 2πα′Fmn)

)
(C.12)

where T8 = (2π)−pl
−(p+1)
s is the D8 brane tension, gmn is the 9-dim induced metric on the flavor

brane, Fmn is the U(Nf ) gauge field strength, and Str denotes the symmetrized trace over flavor

indices.

In the limit of fixed brane geometry and weak gauge fields, the DBI action reduces to the

YM action

SDBI [F ] = const. + SYM [F ] +O(F4) (C.13)

The low-energy field modes we are interested in are constant along the S4 while the vector fields

directions are transverse to the S4. We therefore dimensionally reduce to 5 dimensions: the 4

Minkowski directions and a coordinate z along the U-shaped line of the cigar. It is convenient

to choose a particular z coordinate that makes the 5D metric conformal

ds2 = A(z)(−dt2 + dx2 + dz2), A(z) =

(
u(z)

RD4

)3/2

(C.14)

In the (x0, x1, x2, x3, z) coordinates, the 5D YM action for the flavor gauge fields becomes

SYM ≈
∫
d4x

∫
dz

1

2g2
YM(z)

tr
(
F2
mn

)
(C.15)

Besides the U(Nf ) gauge fields, the effective low-energy 5D theory also contains scalar fields

Φa(x, z) that describes small fluctuations of the D8 branes in the transverse directions. These

scalars form the adjoint multiplet of the U(Nf ) gauge symmetry. The action for these scalar
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fields follows from the DBI action for the pull-backed metric of the fluctuation branes. For the

Φ(x, z) fields normalized to have similar kinetic energies to the vector fields, the scalar action is

Sscalar =

∫
d4x

∫
dz

1

2g2
YM(z)

tr
(
(DMΦ)2 + V (Φ)

)
+

Nc

16π2

∫
d4x

∫
dzC(z)tr

(
ΦFMNFMN

)
(C.16)

For C(z) 6= 0, which characterizes the non-antipodal models, the second term leads to attractive

nuclear forces[103]. Meanwhile, the Chern-Simons term arises from the couplings of the gauge

fields on the D8 brane to the bulk RR field. In 9 dimensions,

SCS = T8

∫
D8+D8

C3 ∧ tre2πα′F (C.17)

After integrating over the S4 and dimensionally reducing to 5D, the CS term becomes

SCS =
Nc

24π2

∫
5D

tr

(
AF2 − ı

2
A3F − 1

10
A5

)
(C.18)

In the case of Nf = 2, it is convenient to separate the U(2) gauge fields AM into their SU(2)

components AM and the U(1) components ÂM . In terms of these components, the CS action

becomes

SCS =
Nc

16π2

∫
Â ∧ trF 2 +

Nc

96π2

∫
Â ∧ F̂ 2 (C.19)

The first term above implies that the instanton number density

I(x, z) =
εκλµνF a

κλF
a
µν

32π2
(C.20)

acts as electric charge density for the abelian field Â0, so that the net electric charge of an in-

stanton is Qel = Nc/2.
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To identify the instantons as baryons of the holographic model, we need to construct a baryon ver-

tex. This is generally given by wrapping Dp branes on compact cycles carrying O(Nc) Ramond-

Ramond fluxes. In the Sakai-Sugimoto model, the baryon vertex is realized as a D4 brane

wrapping the S4, which carries Nc units of RR flux

1

(2π)3l3s

∫
S4

F4 = Nc (C.21)

so the Chern-Simons coupling of this flux to the U(1) gauge field B on the D4 brane world-volume

acts as Nc units of the net electric charge for the B0

T4

∫
D4

C3 ∧ e2πα′dB = Nc

∫
B0dt (C.22)

In a compact space such as the S4, the net electric charge must equal zero. To cancel the above

charge, we need to connect the D4 brane to open strings. The tail-end of an oriented open string

carries charge -1, so we connect the D4 to the tail-end of Nc such open strings. The front-ends

of the open strings connect to the D8 flavor branes and act as Nc quarks. For Nf > 1, each

of the Nc strings connecting the vertex to the flavor branes possesses electric charge 1/Nf un-

der the abelian U(1) subgroup of the U(Nf ), so that the entire baryon has abelian charge Nc/Nf .

In principle, we could place the D4 brane anywhere on the cigar. However, the S4 volume in-

creases with the u coordinate and the brane action tends to pull it down to the cigar tip u = uΛ.

On the other hand, the strings connected to the baryon vertex tend to pull it towards the flavor

D8 branes, competing against the gravity like force that tends to place the brane at the cigar

tip. In some models, the forces reach equilibrium for the baryon vertex hanging on strings some-

where below the flavor branes, while in many others such as the non-antipodal Sakai-Sugimoto
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model (in which the D8 branes do not reach the cigar’s tip but rather u = u0) which we consider,

the string forces win and pull the baryon vertex all the way to lowest point u0 of the flavor branes.

In all such models, the baryonic vertex is a Dp brane completely embedded in a stack of Dp+4

flavor branes, so it is equivalent to zero-radius Yang-Mills instanton of the U(Nf ) gauge sym-

metry of the flavor branes, and for Nf > 1 this could be smoothly inflated to finite-radius

instanton[107, 108, 109, 110, 111]. In p + 5 dimensions of the flavor branes, this instanton is a

Dp brane wrapping some compact cycle, and once we dimensionally reduce to 5 dimensions, the

instanton becomes a finite size particle. Consequently, in the low-energy effective 5D theory, a

baryon is realized as a finite-size instanton of the U(Nf ) gauge theory.

Correspondingly, a static system of N baryonss corresponds to a time-independent configuration

of the non-abelian magnetic flavor fields F a
µν(x, z) (µ, ν = 1, 2, 3, z) of net instanton number N ,∫

d3xdz
εκλµν

16π2
tr(FκλFµν) (C.23)

accompanied by the Coulomb electric Aa0(x, z) and scalar Φa(x, z) potentials induced by their

CS and ΦFF couplings to the magnetic fields. The entire configuration should minimize the net

DBI + CS energy of the system subject to the constraint (C.23).

Now the 5D gauge coupling is given by

1

g2
YM(z)

=
NcλMKK

216π3
· u(z)

uΛ

(C.24)
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We have already noted that the baryon vertex resides at the bottom of the U-shaped flavor

branes, u = u0. In this region,

1

g2
YM(z)

' NcλMKK

216π3

(
ζ +

8ζ3 − 5

9ζ
M2

KKz
2 +O(M2

KKz
4)

)
(C.25)

To constrain the instantons to form 1 or 2 dimensional lattices in the (x1, x2) plane, we curve

the x2 and x3 dimensions of the flavor brane similar to the x4 ≡ z coordinate. In terms of the

effective 5D theory, this essentially corresponds to the 5D gauge coupling acquiring a dependence

on the x2 and x3 directions as well as the x4 ≡ z,

8π2

g2
5(x)

= NcλM
(
1 +M2

2x
2
2 +M2

3x
2
3 +M2

4x
2
4

)
(C.26)

Therefore, the gauge coupling acts as a harmonic potential for the instantons tends to align them

along the x1 axis. At higher densities, the instantons push away from the x1 axis to form higher

dimensional lattices.

Now, in principle, the net energy of a multi-instanton system could have significant n-body

forces besides the 2-body force,

ξnet =
N∑
n=1

ξ(1)(n) +
1

2

∑
n6=m=1,...,N

ξ(2)(n,m) +
1

6

∑
n6=m6=l=1,...,N

ξ(3)(n,m) + ...

(C.27)

Indeed, at very high densities such that the instanton cores overlap, we should expect all the n-

body forces to have comparable strengths. However, it was shown in [102] that in the low-density

regime where instantons are separated by distance much larger than their radii, the 2-body forces

dominate the interactions while the higher n-body forces are smaller by powers of (a/D)2, where
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D is the inter-instanton distance, and a the radius. Consequently, in the regime D � a, which

is what we work under, the net energy reduces to

E =
∑

µ=2,3,4

NcλMM2
µ(Xµ

n )2 +
1

2

(
2Nc

5λM

)∑
n6=m

Q(n,m)

|Xn −Xm|2
(C.28)

where M ≡M4 is a constant times MKK and

Q(n,m) =
1

2
+ tr2(Y †nYm) +

∑
µ=2,3,4

Cµ
(
ηaµνN

ν
nmtr(Y †nYm(−ıτa))

)2
(C.29)

In the above, ηaµν is the ’t Hooft tensor

ηa44 = 0, ηa4i = −δai , ηai4 = δai , ηaij = εaij, a, i, j = 1, 2, 3 (C.30)

and

Nµ
nm ≡ ( ~Nnm, N

4
nm) =

Xµ
n −Xµ

m

|Xn −Xm|
(C.31)

while

Cµ ≡
M2

µ

M2
4 +M2

3 +M2
2

, C4 + C3 + C2 = 1 (C.32)

and the Yn are SU(2) matrices specifying the instanton orientations (for Nf = 2). Note that

only the relative orientations Y †nYm carry any physical significance, and the overall sign of Y †nYm

does not matter. We work in the approximation M2 �M3 ∼M4 (but 0 < M3/M4 < 1), so that

the instanton lattice originally forced by the harmonic potentials to line up along the X1 axis

push out in the X2 direction to form 2D lattices. In this approximation, the first term in (C.28)

reduces to NcλMM2
2

∑
n(X2

n)2. Moreover, for instantons confined to the (X1, X2) plane so that

Nµ
nm = (?, ?, 0, 0), Eq. (C.29) reduces to

Q(n,m) =
1

2
+ tr2

(
Y †nYm

)
+ C3

∑
a=1,2

tr2
(
Y †nYm(−ıτa)

)
+(1− 2C3)tr2

(
Y †nYm(−ı~τ · ~Nnm)

)
(C.33)
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It is evident from the above expression that the interaction energy of the instanton lattice de-

pends not only on the instantons’ position in the physical 2D space, but also on their orientations

Yn in the SU(2) space. Moreover, the Y †nYm(~τ · ~N) term mixes the instantons’ orientations in

SU(2) with their positions in the physical 2D space.

Let us conclude this section with the following observation. Suppose we consider a 1D lat-

tice constrained to lie along the X1 axis so that Nµ
nm = (±1, 0, 0, 0). In this case, (C.29) reduces

to

Q(n,m) =
1

2
+ tr2(Y †nYm) + C4tr2(Y †nYm(−ıτ1))

+C3tr2(Y †nYm(−ıτ2)) + C2tr2(Y †nYm(−ıτ3)) (C.34)

Under the assumptionM4 > M3 > M2 (and hence C4 > C3 > C2), which we work with, the lowest

energy configuration is for the relative orientation for an instanton pair (n,m) of Y †nYm = ±ıτ3.

If this orientation is unachievable, the next best option is a linear combination of ıτ3 and ıτ2. If

this too is unachievable, the third best option is a linear combination all three ıτ3, ıτ2 and ıτ1.

In SO(3) terms, this corresponds to a 180◦ rotation (or a π/2 rotation in SU(2) terms) about

a generic axis. Rotations other than 180◦ are energetically the least attractive option which

an instanton pair would rather avoid unless forced upon by interactions with other instantons.

Indeed, as will become obvious in the calculations, two instantons with similar orientations repel

each other 9 times stronger than instantons at the same distance from each other but whose

orientations differ by a 180◦ rotation.
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3.3 Simulation

In this section, we present the results of the simulation we run to find the lowest-energy

pattern of instanton orientations. Once we find all the patterns, we use them to form an ansatz

for which we analytically calculate the interaction energy as a function of a few parameters. We

focus exclusively on the 1D to 2D transition.

The instantons naturally want to spread out in three dimensions due to the Coulomb repul-

sion. In order to force them to form a 1D lattice, we may curve the x2 and x3 directions of the

flavor brane similar to the x4 ≡ z direction. In terms of the effective 4 + 1-dimensional theory,

this corresponds to the 5D flavor gauge coupling gaining a dependence on these directions as

well.

8π2

g2
5(x)

= NcλM

(
1 +

3∑
i=1

M2
i x

2
i +O(M4x4)

)
(C.35)

The (inverse) gauge coupling (squared) therefore acts as a harmonic potential along the x2, x3

and x4 directions. This tends to align the instantons along the x1 direction so that indeed, for

low enough densities, we only obtain a straight chain of instantons aligned along the x1 direction.

At higher densities, the Coulomb repulsion tends to push the instantons away from the x1 axis to

form more complicated 2D patterns. We choose M2 � M3 ∼ M4, but allow for different values

for M3 and M4. As a result, the instantons push out towards the x2 direction. We allow for

general values of the ratio M3/M4, constrained to 0 ≤M3/M4 ≤ 1. In doing so, we obtain a rich

variety of instanton crystals through the simulation.

To begin with, we do not assume any particular pattern for the orientations or rather the
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relative orientations y†nym. Instead, we perform a numerical simulation to find what patterns

might emerge. Typically, we use a lattice of about 200 instantons, each of which form the nodes

of the lattice. We begin with completely arbitrary SU(2) matrix yn for each instanton, apply

an external pressure along the x2 direction, and let the yn evolve to a minimum of the energy

function (C.28) according to

dyn(t)

dt
= −K δξ

δyn
(C.36)

where K is a constant mobility factor and the derivative with respect to the SU(2) matrix yn is

defined as

δξ

δyn
≡ yn

(
(−ı~τ) · ∇sξ(yn → yn(1 + ı~s · ~τ))|~s=0

)
(C.37)

We conclude each run when all the yn have seemed to converge to their equilibrium values and

their derivatives (C.36) become negligible. Strictly speaking, this method only allows us to ob-

tain a local minimum of the energy function (C.28). However, after several runs for the same

values of the relevant parameters, we may be reasonably confident that the patterns we obtain

are indeed the lowest energy configurations for those values of the parameters.

Instead of the absolute orientations yn at each node, what is physically relevant are the relative

orientations between instantons y†nym. These are represented by links between the instanton

nodes. Within the energy function (C.28), the over all sign of the relative orientations y†nym does

not carry any physical significance. Therefore, the moduli space we are really interested in is

the space S3/Z2. We would like to assign each distinct point in this space to some particular

color. However the color RBG cube, which is homeomorphic to the 3-ball B3 is topologically

inequivalent to S3/Z2 ' RP3, and so we cannot uniquely color each point in S3/Z2. Instead, we
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employ various coloring schemes to illustrate different properties of the simulated patterns we

find.

For Figs. 3.3, 3.5, 3.6, 3.10, 3.11 and 3.12, a relatively simple color scheme was employed in

which we search for 180◦ twists about some axis. Red links represent twists around τ1, blue

around τ2 and green around τ3. For Figs. 3.7, 3.8 and 3.9 on the other hand, we emply a more

complicated scheme, without which these phases might have been missed.

This scheme is as follows. Let (R, I, J,K) be the (1, τ1, τ2, τ3) components of the SU(2) twist

y†myn respectively. Then the color of the link has

Lightness: L = 0.5 + 0.4(R2 −K2)

Chroma: C = I2 + J2

Saturation: S = C/max(2L, 2− 2L) (C.38)

Meanwhile the Hue depends on the J/I ratio. In the ‘absolute’ scheme,

Hue: H = 2ArcTan(J/I)− 60◦ (C.39)

while in the ‘relative’ scheme,

Hue: H = 2ArcTan(J/I)− 60◦ − 2ArcTan(∆y/∆x) (C.40)

In other words, the ‘absolute’ scheme colors the SU(2) twists between the two instantons with

no knowledge of the link’s direction in space, while the ‘relative’ scheme colors the SU(2) twists

relative to the space direction of the link. In both these schemes, a 180◦ (or π/2 in SU(2) terms)
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twist about the τ3 axis is denoted by dark gray color, while a 180◦ twist about any axis per-

pendicular to the τ3 axis is denoted by a bright saturated color whose hue indicates the axis’s

direction in the (τ1, τ2) plane, a 180◦ twist about some general axis is denoted by a saturated

but darker color, and a trivial 0◦ (or 360◦) twist is denoted by a very light gray. For Figs. 3.7,

3.8 and 3.9, we have used the ‘absolute’ scheme for illustrative purposes.

The simplest lattice we obtain in this way is the anti-ferromagnetic pattern aligned along the

x1 axis, which occurs for low enough values of the external pressure. For large enough M3/M4

but at low pressure, we observe a wave-like pattern periodically repeating itself after every 3

instantons. For low pressure and also low to moderate M3/M4 we observe two distinct types

of zig-zag patterns following non-abelian orders. For high enough pressure, we observe a square

pattern following a non-abelian order. For high enough pressure but higher M3/M4, we observe

a triangular lattice following a non-abelian order. For high enough pressure and even higher

M3/M4 we observe a square pattern following an anti-ferromagnetic order. These are depicted

in the diagrams below. We find square patterns with increasingly many layers as we go to higher

pressure. In addition, we also find non-abelian square patterns rotated by 45◦, but these are not

to be confused with the non-abelian triangular lattice.

In real life crystals, there may also be impurities such as crystalline defects, or edge effects.

We encounter such impurities in our simulation. To get rid of the defects, we often resort to

increasing the ‘temperature’ of the lattice so the instanton nodes can jostle around, and then let

the whole lattice ‘cool down’ so that the instantons reassemble themselves into a more uniform

lattice. This ‘temperature’ is not to be confused with the temperature that the lattice actually
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experiences. Instead, it is simply noise as written in the simulation code. The background we

work with is in reality at zero temperature. We can often get rid of defects in this way, but we

allow for the possibility of edge effects. Indeed, for the triangular non-abelian lattice, we form

an ansatz for the edge effects and calculate the interaction energy which is generically different

from the same lattice without any edge effects.

Figure 3.3: The anti-ferromagnetic chain in which all the instantons are aligned along the x1

axis. In this coloring scheme, the green links represent 180◦ twists about the τ3 axis.
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Figure 3.4: A wave like pattern which periodically repeats itself after every three instantons.

The links represent 180◦ twists about the τ3 axis.

Figure 3.5: The Anti-Ferromagnetic Square lattice. In this coloring scheme, as in the case of

the straight line and the period 3 wave, the green links represent 180◦ twists about the τ3 axis.
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Figure 3.6: The Non-Abelian Square lattice in which all links represent a 180◦ twist albeit

about different axes. In this coloring scheme, horizontal links represent twists about the τ2 axis

and vertical links about the τ1 axis.

Figure 3.7: Non-Abelian Zig-Zag pattern. In this coloring scheme, both kind of diagonal links

are 180◦ twists, but the direction of rotation alternates between two different axes in the (12)

plane.

Figure 3.8: Another Non-Abelian Zig-Zag pattern. In this coloring scheme, both kind of diag-

onal links are 180◦ twists, but the direction of rotation no longer lie in the (12) plane.
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Figure 3.9: Triangular pattern following a non-abelian order.

Figure 3.10: Square Anti-ferromagnetic lattice with three layers.
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Figure 3.11: Square Non-Abelian lattice with three layers.

Figure 3.12: Square Non-Abelian pattern rotated by 45◦.
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Figure 3.13: A crystalline defect observed in the simulation of a Square Non-Abelian lattice.
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3.4 Thin Crystals

In this section, we explore crystals that extend infinitely long along the x1 axis but typi-

cally a few layers along the x2 direction. Based on the results of the simulation, we form ansatz

for the instanton orientations for each of the various patterns we find. The simplest pattern

we found is a 1D chain, in which neighboring instantons undergo a 180◦ (in SO(3) terminology

which really corresponds to π/2 in SU(2) terminology) twist about the τ3 axis.

Y1 Y2 Y1 Y2 Y1 Y2 ...

where Y1 = ±1, Y2 = ±ıτ3. For instantons labelled by n and m, we have that |Xn − Xm| =

(n − m)D, where D is the distance between any two neighboring instantons. For odd n − m,

we have Y †nYm = ±ıτ3 so that using Eq. (C.29), we find Q = 1/2. On the other hand, for even

n−m, we have Y †nYm = ±1 so that in this case Q = 9/2. This illustrates the general rule that

instantons having the same orientation will repel each other 9 times stronger than those differing

by a relative orientation of 180◦ about some axis (in this case the τ3 axis, which is the most

favored one), for the same physical separation. We define F ≡∑n 6=mQ(n,m)/|Xn −Xm|2, and

for this lattice we have

F =
1

2

∑
n odd

1

(nD)2
+

9

2

∑
n even

1

(nD)2

=
π2

2D2
(C.41)

In general, the F function for other lattices will have the form π2/2D2+ other terms.

The non-abelian zigzag pattern # 1 (NAZ1) follows the arrangement such that the relative
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orientation between neighboring instantons is through an 180◦ angle, but the direction of rota-

tion alternates between two different axes in the (τ1, τ2) plane, one axis for the odd-numbered

instantons and the other for even-numbered ones. In SU(2) terms,

Y †2kY2k+1 = exp
( ıπ

2
~ne · ~τ

)
= ı~ne · ~τ = ıAτ1 + ıBτ2

Y †2k+1Y2k+2 = exp
( ıπ

2
~no · ~τ

)
= ı~no · ~τ = ıAτ1 − ıBτ2 (C.42)

for some A,B 6= 0 such that A2 +B2 = 1.

On the other hand, the non-abelian zigzag pattern # 2 (NAZ2 )follows the pattern such that the

relative orientation between neighboring instantons is always through a 180◦ angle, but this time

the direction of rotation alternates between two different axes that are no longer constrained to

just the (τ1, τ2) plane. In SU(2) terms,

Y †2kY2k+1 = ıAτ1 + ıBτ2 + ıCτ3

Y †2k+1Y2k+2 = ıAτ1 − ıBτ2 + ıCτ3 (C.43)

where A,B,C 6= 0 such that A2 +B2 + C2 = 1.

Both the zigzag patterns can be fit into a single ansatz

Yn = exp

(
ın
φ

2
τ2

)
× exp

(
ı

(
α

2
+ (−1)n

β

2

)
τ1

)
,

Y †nYn+1 = cos
φ

2
cosβ × 1− (−1)ncos

φ

2
sinβ × ıτ1

+sin
φ

2
cosα× ıτ2 + sin

φ

2
sinα× ıτ3 (C.44)

for some angles φ, α and β. The NAZ1 phase is characterized by 0 < φ < π, α = 0, β = π/2,

while the NAZ2 phase is characterized by 0 < φ < π, 0 < α < π/2, β = π/2. The F function for
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such a lattice was already calculated in [102], and here we present the result

F =
π2

4D2

[
3

2
+
(
−1 + C3(cos2αcos2β + sin2αsin2β)

)
· Σ0(φ)

+

(
5

2
+ cos2α− sin2β

)
· Σ1(ν) +

(
2− cos2α− sin2β

)
· Σ2(φ, ν)

+(1− 2C3)(sin2β − cos2α) · Σ3(ν)

+(1− 2C3)(sin2β + cos2α) · Σ4(φ, ν)

+2(2C3 − 1)cosαsinβ · Σ5(φ, ν)] (C.45)

where ν = L/2D, such that D is the distance between neighboring instantons in any one layer

(upper or lower), while L is the vertical distance between the upper and lower layers of the zigzag

pattern, and the Σi are given by

Σ0 =
4φ(π − φ)

π2

Σ1 =
tanh(πν)

πν

Σ2 =
sinh((π − 2φ)ν)

(πν)cosh(πν)

Σ3 =
1

cosh2(πν)

Σ4 =
cosh(2φν)

cosh2(πν)
− 2φ

π
· cosh((π − 2φ)ν)

cosh(πν)

Σ5 =
sinh(2φν)

cosh2(πν)
+

2φ

π
· sinh((π − 2φ)ν)

cosh(πν)
(C.46)

The F functions for the rest of the lattices we obtain are calculated in Appendix A. Here, we

gather the main results.
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First, the wave-like pattern periodic after every 3 instantons consists of the following pattern

Y1 Y2 Y1 Y2 ..

Y2 Y1 Y2 Y1 ..

Y1 Y2 Y1 Y2 ..

where Y1 = ±1 and Y2 = ±ıτ3. For this lattice arrangement, we have

F [P3] =
π2

18D2
+

π

3DL

(
2sinh(ν)

3
· 5cosh(ν)− 2

cosh2(ν)− 1
4

+
sinh(2ν)

6
· 5cosh(2ν)− 2

cosh2(2ν)− 1
4

)
(C.47)

for ν = πL/3D. Generically, ν is the (inverse) aspect ratio L/D times some constant, whose

definition we change according to convenience for the various lattices.

The square anti-ferromagnetic lattice consists of the following pattern

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 ..

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

where Y1 = ±1 and Y2 = ±ıτ3. With two lines of instantons, this lattice arrangement has

F2−lines[ AF ] =
π

2DL

(
2ν +

5cosh(2ν)− 4

sinh(2ν)

)
(C.48)
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where ν = πL/D. For three lines, we have

F3−lines[ AF ] =
π2

2D2

(
1 +

17coth(ν/2) + 81tanh(ν/2)

12ν
+

tanh(ν)

6ν

)
(C.49)

and more generally, for N lines, we have

FN−lines[ AF ] =
π2

2D2
+

N−1∑
k=1

2(N − k)

N
· π

2DkL

[
5cosh(kν) + 4(−1)k

sinh(kν)

]
(C.50)

The square non-abelian lattice consists of the following pattern:

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

Y3 Y4 Y3 Y4 Y3 Y4 Y3 Y4 ..

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

where Y1 = ±1, Y2 = ±ıτ2, Y3 = ±ıτ1, Y4 = ±ıτ3. With two lines of instantons, this lat-

tice has

F2−lines[ NA] =
π2

2D2

[
2C3 + 1 +

2C3 − 1

sinh2(ν)
+

5coth(ν) + tanh(ν)

4ν

]
(C.51)
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where ν = πL/2D. For three lines,

F3−lines[ NA] =
π2

2D2

[
(2C3 + 1) +

2

3
(2C3 − 1)

(
2

sinh2(ν)
+

1

cosh2(2ν)

)
+

49coth(ν) + 17tanh(ν) + 10tanh(2ν)

24ν

]
(C.52)

and more generally for N lines,

FN−lines[ NA] = (1 + 2C3)
π2

2D2

+
N−k∑
k=1

2(N − k)

N
· Fk[ NA] (C.53)

where

Fk[ NA] =
π

4DkL

(
[7 + 2(−1)k]coth(kν) + [3 + 2(−1)k]tanh(kν)

)
+
π2

D2
· (2C3 − 1)

cosh(2kν) + (−1)k
(C.54)

The triangular non-abelian lattice consists of the following pattern:

Y3 Y4 Y3 Y4 Y3 Y4 ..

Y1 Y2 Y1 Y2 Y1 Y2 Y1 ..

Y4 Y3 Y4 Y3 Y4 Y2 ..
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where

Y1 = ±1

Y2 = ±ıτ3

Y3 = ± ı√
2

(τ1 − τ2)

Y4 = ± ı√
2

(τ1 + τ2) (C.55)

With three lines, this lattice has

F3−lines[4NA] =
π2

2D2

[
1 +

coth(ν) + 49tanh(ν)

6ν
+

16(2C3 − 1)sinh(ν)

3cosh2(ν)

]
(C.56)

where ν = πL/D. More generally, for N lines we have

FN−lines[4NA] =
π2

2D2
+

N−1∑
k=1

2(N − k)

N

[
(kmod 2) · Fk odd[4NA]

+ ((k + 1) mod 2) · Fk even[4NA]
]

(C.57)

where

Fk even[4NA] =
π

2DkL

[
5cosh(kν) + 4(−1)k/2

sinh(kν)

]
(C.58)

and

Fk odd[4NA] =
π

2DkL

(
5 + 4kν(−1)

k+1
2 (1− 2C3)sech(kν)

)
tanh(kν)

(C.59)

A treatment of the triangular lattice with edge effects is also presented in Appendix A.
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3.5 Infinite Crystals

In this section, we present the results for lattices extending for infinite extent in both the

x1 and x2 directions. Nevertheless, in practice, we have to cutoff one of the directions at some

width W . For simplicity we assume that the (inverse) aspect ratio L/D = 1. The calculations

are presented in Appendix B, and here we simply gather the main results. Instead of presenting

the F functions, we directly write the net interaction energy of the lattice per instanton, ξ.

For the square anti-ferromagnetic lattice, we have

ξ[ AF ] =
πNc

λMD2

(
log

W

D
+ γE + A

)
(C.60)

where γE is the Euler Gamma constant and A ≈ 0.247.

For the square non-abelian lattice, we have

ξ[ NA] =
πNc

λMD2

(
log

W

D
+ γE +R1 −R2ζ

)
(C.61)

where R1 and R2 are numerical constants

R1 ≈ 0.389

R2 ≈ 0.438 (C.62)

and

ζ = 1− 2C3 =
M2

4 −M2
3

M2
4 +M2

3

(C.63)

while for the triangular non-abelian lattice, we have

ξ[4] =
πNcρ

λM
· (log(W

√
ρ) + γE + T1 − T2ζ) (C.64)
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where the constants T1 and T2 are

T1 ≈ 0.3319

T2 ≈ 0.3252 (C.65)

A comparison of the energetics of these three lattices is presented in Appendix B.

3.6 Phase Diagram

In order to stabilize the instanton density ρ, we need to supply an external pressure P

which acts as a compressive force in the x1 direction. It could be argued that one could instead

simply constrain the overall volume of the lattice of instantons. However, this approach has

problems. As an analogous situation, consider a fluid governed by a Van-der-Waals equation

of state. Up to some upper bound, this equation allows for a uniform fluid to have any den-

sity. However, at sub-critical temperatures one could have a low-density gas or a high-density

liquid, but no uniform fluid with intermediate densities. Instead, we find some domains with

high-density liquid while others with low-density gas. For instantons, we could fix the length of

the fluid to some amount V such that the average density ρ = N/L falls into the intermediate

range, however we would then have L split into domains of two different lattices, one denser than

N/L and the other less dense, as this configuration would then minimize the energy.

In order to keep ρ uniform for the instanton lattice then, we instead control the P (or the

net compression force F) rather than the lattice spacing D or the net length L. Therefore, the
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phase diagram follows from minimizing the free enthalpy G = E − ST + FL rather than the

internal energy E. But since our background is at T = 0, what we really need is the ordinary

enthalpy H = E + FL, or in our case H = E + P × Length. Equivalently, we minimize the

non-relativistic chemical potential

µ̂ = µrel −Mbaryon

= ξ(ρ, ν,M) +
P

ρ

=
P

ρ
+NcλMM2

2

ν2

ρ2
+

Nc

5λM
ρ2kF (ν,M, C3) (C.66)

Note that in the above we define ν = L/D where L is the RMS x2 amplitude, whereas in the

preceding calculations, we have typically taken ν to be some constant that depends on the lattice

geometry times L/D. The above expression is to be understood as absorbing that overall factor

into the constant k.

At fixed external pressure P , the entire system seeks to minimize the chemical potential (C.66)

with respect to all the parameters of the lattice geometry. TheM parameters constitute all the

parameters other than the linear density ρ and the RMS x2 amplitude L = ν/ρ. We minimize

the chemical potential with respect to the M parameters at fixed ν, so that the optimal values

of the M parameters becomes function of ν. As the ν parameter changes in response to the

external pressure P , the M parameters change accordingly, M =M(ν(P )).

Next, in the case ν = 0, the lattice is simply a straight line. For any ν > 0, minimizing

the chemical potential with respect to ν requires

ρ = ρ(ν) =
[√

10λMM2

]1/2
[
−k
ν

∂F

∂ν

]−1/4

(C.67)
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Minimizing with respect to the density ρ requires

P =
kNc

5λM
2ρ3 · F (ν)− (NcλMM2

2 )
2ν2

ρ
(C.68)

In order to determine ν and ρ as functions of the external pressure P we should solve the combined

equations (C.67) and (C.68). It could occur that (C.67) and (C.68) have multiple solutions for

ν(P ) and ρ(P ). In such a situation, we choose the solution which has the lowest value for

µ̂ =
3kNc

5Mλ
ρ2F (ν,M, C3)− (NcλMM2

2 )
ν2

ρ2
(C.69)

which follows from combining (C.66) and (C.68). Using these rules, we obtain the phase diagram.

In the following figures,

Z,Z ′ : Two layer zigzags, Z represents NAZ1, while Z ′ represents NAZ2.

�n : Square lattice, n-layer regular slice, anti-ferromagnetic orientations.

n : Square lattice, n-layer regular slice, non-abelian orientation.

3n : Square lattice, n-layer diagonal slice, non-abelian orientation.

4n : Triangular lattice, n layers, non-abelian orientation.

Black lines between phases indicate first order phase transitions while white lines indicate sec-

ond order phase transitions. Gray areas on the third diagram do not correspond to any stable

uniform lattices.
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Figure 3.14: M3/M4 vs. non-relativistic chemical potential µ̂ (in units of NcM2).
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Figure 3.15: M3/M4 vs. 1D pressure P (in units of Nc

√
λMM3

2 ).
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Figure 3.16: M3/M4 vs. linear density ρ (in units of
√
λMM2).
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3.7 Conclusion and Outlook

We have investigated 1D and 2D lattices of SU(2) instantons whose interactions arise

from the gauge/gravity duality in a string theory setting. An obvious next step is to generalize

this exploration to higher dimensional instanton lattices, 3D and eventually the 4D. Indeed, from

the perspective of understanding the baryonic to quarkyonic phase transition of nuclear matter,

it is the 3D to 4D transition that is ultimately conjectured to be dual to this phase transition.

Another direction one could take is to generalize these results from Nf = 2 to Nf = 3. In such

a case, the instantons would also acquire non-abelian electric charges in addition to the abelian

electric charge [102].

Seen as a description of a hypothetical condensed matter system however, one could ask another

question. The interaction energy of the crystalline lattice we have investigated was schematically

of the form

E ∼ A(r) +B(r)(relative orientation)

+C(r)
(

(relative orientation) · (distance in physical space)
)

(C.70)

where A(r), B(r) and C(r) are terms that generically depend on the relative distance between

interacting objects. Can the techniques we have developed here describe other systems that

schematically carry this form for the energy? Can the system we describe here, or some close

cousin of it, be realized experimentally in the lab? We leave these as open questions to be ex-

plored in the future.
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3.8 Appendix A: Thin Crystals

In this section, we calculate the net energies of the various instanton chains we have

encountered earlier. Recall that the energy of a general 2D configuration of instantons in a

background characterised by M2 �M3 ∼M4 is given by

E = NcλMM2
2

∑
n

(X2
n)2 +

Nc

5λM

∑
n6=m

Q(n,m)

|Xn −Xm|2
(C.71)

where

Q(n,m) =
1

2
+ tr2

(
Y †nYm

)
+ C3

∑
a=1,2

tr2
(
Y †nYm(−ıτa)

)
+(1− 2C3)tr2

(
Y †nYm(−ı~τ · ~Nnm)

)
(C.72)

and C3 = M2
3/(M

2
3 +M2

4 ), 0 ≤ C3 ≤ 1
2
, and Nµ

nm = (Xµ
n −Xµ

m)/|Xn−Xm|. We focus our atten-

tion on the two-body interaction term. Specifically, we calculate F ≡∑n6=mQ(n,m)/|Xn−Xm|2

for the various instanton crystals.

In summing over n 6= m, it is convenient to fix m = 0 so that we sum over all n except

zero. Alternatively, one could think of this as a redefinition of the variable n in the sum. Note

that all the terms in the Q-function except for the constant 1/2 are squares of a trace (or sums
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thereof), so that the overall sign of Y †nYm does not matter. To spell it out,

tr2
(
Y †nYm

)
=

[
tr
(
Y †nYm

)]2∑
a=1,2

tr2
(
Y †nYm(−ıτa)

)
=

[
tr
(
Y †nYm(−ıτ1)

)]2
+
[
tr
(
Y †nYm(−ıτ2)

)]2
tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
=

[
tr
(
Y †nYm(−ı~τ · ~Nnm)

)]2

(C.73)

which makes it explicit that the overall sign of Y †nYm does not matter. We will use this fact

extensively.

3.8.1 Square Anti-Ferromagnetic

This is a relatively simple lattice

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 ..

where the orientations are given by Y1 = ±1, Y2 = ±ıτ3. There are two types of F func-

tions here: one in which we sum over instantons within the same line, and the other in which we

sum over instantons that are out of line from one another by one line (strictly speaking, there

are two of each in this case). In general, it is useful to define Fk as the F function that sums

over instantons differing by k lines. Thus, we denote the first F function as F0 and the other as F1.

For the in-line function F0, we have Xn−Xm = (n−m)D. For even n−m, the relevant orienta-

tions are Y †1 Y1 ∼ Y †2 Y2 = ±1 (where ∼ denotes equality upto a ± sign) and Xn−Xm = (n−m)D

(where D is the horizontal lattice spacing) for even n − m, while for odd n − m we have

Y †1 Y2 ∼ Y †2 Y1 = ±ıτ3.
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Thus, we obtain

Y †1 Y1 ∼ Y †2 Y2 = ±1

⇒ tr2
(
Y †nYm

)
= 4∑

a=1,2

(
Y †nYm(−ıτa)

)
= 0

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0 (C.74)

and consequently Qeven = 9/2 for F0. Similarly,

Y †1 Y2 ∼ −Y †2 Y1 = ±ıτ3

⇒ tr2
(
Y †nYm

)
= 0∑

a=1,2

(
Y †nYm(−ıτa)

)
= 0

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0 (C.75)

so that Qodd = 1/2 for F0. In all we obtain

F0 =
9

2

∑
n even

1

(nD)2
+

1

2

∑
n odd

1

(nD)2

=
9

2

∑
k 6=0

1

(2kD)2
+

1

2

∑
k

1

((2k + 1)D)2

=
π2

2D2
(C.76)

where we have used ∑
n even

1

n2
=

∑
k 6=0

1

(2k)2
= 2

(
∞∑
k=1

1

(2k)2

)
=
π2

12∑
n odd

1

n2
=

+∞∑
k=−∞

1

(2k + 1)2
=
π2

4
(C.77)
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For the out-of-line function F1, we have ~τ · ( ~Xn− ~Xm) = (n−m)Dτ1±Lτ2 where L is the vertical

lattice spacing (it is + in ± if instanton m is one line below instanton n, and − if it’s the other

way round). The Q-functions switch their respective values from the ones they had in F0. Thus,

for F1 we obtain

F1 =
1

2

∑
n even

1

(nD)2 + L2
+

9

2

∑
n odd

1

(nD)2 + L2
(C.78)

In general, we have that

n=+∞∑
n=−∞

1

(nγ + x)2 + κ2
=

π

γ|κ|

[
1 +

η

1− η +
η∗

1− η∗
]

=
π

γ|κ|

[
1− |η|2

1− 2Re(η) + |η|2
]

=
π

γ|κ|

 sinh
(

2π|κ|
γ

)
cosh

(
2π|κ|
γ

)
− cos

(
2πx
γ

)
 (C.79)

where η = e−2π|κ|/γe−2πıx/γ. Using this, we obtain

F1 =
1

2
· π

2DL

(
sinh(πL/D)

cosh(πL/D)− 1

)
+

9

2
· π

2DL

(
sinh(πL/D)

cosh(πL/D) + 1

)
=

π

4DL

(
coth(ν/2) + 9tanh(ν/2)

)
=

π

2DL

(
5cosh(ν)− 4

sinh(ν)

)
(C.80)

where ν = Lπ/D (or π times the inverse aspect ratio, L/D). To obtain the final F function for

this lattice, we may simply sum up F0 and F1. As a general rule, which is relevant for more

complicated lattices, we calculate the F function as the average of all the Fks (recall that in this

case, there are two each of F0 and F1).
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Thus, in all we have

F =
π

2DL

(
2ν +

5cosh(2ν)− 4

sinh(2ν)

)
(C.81)

3.8.2 Square Non-Abelian

This is the following array

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

Y3 Y4 Y3 Y4 Y3 Y4 Y3 Y4 ..

where Y1 = ±1, Y2 = ±ıτ2, Y3 = ±ıτ1, Y4 = ±ıτ3. For F0, we have Xn −Xm = (n−m)D, and

the relevant orientations give us

Y †1 Y2 ∼ Y †3 Y4 = ±ıτ2

⇒ tr2
(
Y †nYm

)
= 0∑

a=1,2

(
Y †nYm(−ıτa)

)
= 4C3

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0 (C.82)

so that Q = (4C3 + 1/2) for odd n−m, and

Y †1 Y 1 ∼ Y †2 Y2 = ±1

⇒ tr2
(
Y †nYm

)
= 4∑

a=1,2

(
Y †nYm(−ıτa)

)
= 0

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0 (C.83)
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so that Q = 9/2 for even n−m. In all we have

F0 =

(
4C3 +

1

2

)∑
n odd

1

(nD)2
+

9

2

∑
n even

1

(nD)2

= (1 + 2C3)
π2

2D2
(C.84)

For the out-of-line function F1, we have the relevant orientations

Y †1 Y3 ∼ Y †2 Y4 = ±ıτ1

tr2
(
Y †nYm

)
= 0∑

a=1,2

(
Y †nYm(−ıτa)

)
= 4C3 (C.85)

while for the last term we note that since ~τ · ( ~Xn − ~Xm) = (n−m)Dτ1 ± Lτ2 here,

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
=

4(1− 2C3)(n−m)2D2

(n−m)2D2 + L2
(C.86)

for even n−m. Meanwhile, for odd n−m we have for F1

Y †1 Y4 ∼ Y †2 Y3 = ±ıτ3 (C.87)

and our previous analysis from the last section carries over to show that Q = 1/2 for odd n−m

in F1.

As in the previous section, we can simply sum up the two F functions to obtain the complete F
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function for this lattice, i.e. F = F0 + F1. All together, we have

F =

(
4C3 +

1

2

)∑
n odd

1

(nD)2
+

9

2

∑
n even

1

(nD)2
+

1

2

∑
n odd

1

(nD)2 + L2

+

(
4C3 +

1

2

) ∑
n even

1

(nD)2 + L2
+ 4(1− 2C3)

∑
n even

(nD)2

[(nD)2 + L2]2

(C.88)

Using (C.79), we obtain∑
n odd

1

(nD)2 + L2
=

∑
k

1

(2kD +D)2 + L2

=
π

2DL

(
sinh(πL/D)

cosh(πL/D) + 1

)
(C.89)

and ∑
n even

1

(nD)2 + L2
=

∑
k

1

(2kD)2 + L2

=
π

2DL

(
sinh(πL/D)

cosh(πL/D)− 1

)
(C.90)

We also have in general that

n=+∞∑
n=−∞

κ2 − (nγ + x)2

[(nγ + x)2 + κ2]2
=

2π2

γ2

[
η

(1− η)2
+

η?

(1− η?)2

]
=

2π2

γ2

[
2Re(η) + 2|η|2Re(η)− 4|η|2

1 + 2(Re(η)2 − Im(η)2)− 4Re(η) + |η|4 − 4|η|2Re(η) + 4|η|2
]

=
2π2

γ2

 2 cos
(

2πx
γ

)
cosh

(
2π|κ|
γ

)
− 2

cosh
(

4π|κ|
γ

)
+ cos

(
4πx
γ

)
− 4 cos

(
2πx
γ

)
cosh

(
2π|κ|
γ

)
+ 2


(C.91)

We further note that

1

(nγ + x)2 + κ2
− κ2 − (nγ + x)2

[(nγ + x)2 + κ2]2
=

2(nγ + x)2

[(nγ + x)2 + κ2]2
(C.92)
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which we can use to compute

∑
n even

(nD)2

[(nD)2 + L2]2
=

∑
k

(2kD)2

[(2kD)2 + L2]2

=
1

2

∑
k

1

(2kD)2 + L2
− 1

2

∑
k

L2 − (2kD)2

[(2kD)2 + L2]2

=
1

2
· π

2DL

[
sinh(πL/D)

cosh(πL/D)− 1

]
−1

2
· 2π2

(2D)2

[
2cosh(πL/D)− 2

cosh(2πL/D)− 4cosh(πL/D) + 3

]
=

π2

8D2

[
coth(ν)

ν
− 1

sinh2(ν)

]
(C.93)

where we define ν = πL/2D (differing by an overall factor of 1/2 from the previous section).

Putting all the results together, we obtain the following expression for the F function for this

lattice

F =
π2

2D2

[
2C3 + 1 +

2C3 − 1

sinh2(ν)
+

5coth(ν) + tanh(ν)

4ν

]
(C.94)

3.8.3 Period 3 Wave

Here we have the array which follows a wave-like pattern periodically repeating itself after

every three instantons.

Y1 Y2 Y1 Y2 ..

Y2 Y1 Y2 Y1 ..

Y1 Y2 Y1 Y2 ..

where Y1 = ±1 and Y2 = ±ıτ3. We take 3D as the distance between neighboring instantons
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in any one line, and L as the vertical spacing between horizontal layers. We have already en-

countered the relative orientations Y †1 Y2 and Y †1 Y1 ∼ Y †3 Y3 before, and these give Q = 9/2 and

Q = 1/2 respectively (Note that if Y
†|
n Ym had included a τ1 or τ2 term, we would have to be more

careful in carrying over the previous analysis).

For the in-line function F0, we have

F0 =
1

2

∑
n odd

1

(n.3D)2
+

9

2

∑
n even

1

(n.3D)2

=
1

2

π2

36D2
+

9

2

π2

108D2
=

π2

18D2
(C.95)

For out of line by one layer, we have

F1 =
1

2

∑
n even

1

(D + n.3D)2 + L2
+

9

2

∑
n odd

1

(D + n.3D)2 + L2

=
π

12DL

[
1− e− 2πL

3D

1− 2e−
πL
3D cos

(
π
3

)
+ e−

2πL
3D

]
+

3π

4DL

[
1− e− 2πL

3D

1− 2e−
πL
3D cos

(
4π
3

)
+ e−

2πL
3D

]

=
π

12DL

[
sinh

(
πL
3D

)
cosh

(
πL
3D

)
− cos

(
π
3

)]+
3π

4DL

[
sinh

(
πL
3D

)
cosh

(
πL
3D

)
− cos

(
4π
3

)] (C.96)

using the general result from the previous section. For out of line by two layers, we have

F2 =
1

2

∑
n odd

1

(2D + n.3D)2 + (2L)2
+

9

2

∑
n even

1

(2D + n.3D)2 + (2L)2

=
π

24DL

[
1− e− 4πL

3D

1− 2e−
2πL
3D cos

(
5π
3

)
+ e−

4πL
3D

]
+

9π

24DL

[
1− e− 4πL

3D

1− 2e−
2πL
3D cos

(
2π
3

)
+ e−

4πL
3D

]

=
π

24DL

[
sinh

(
2πL
3D

)
cosh

(
2πL
3D

)
− cos

(
5π
3

)]+
9π

24DL

[
sinh

(
2πL
3D

)
cosh

(
2πL
3D

)
− cos

(
2π
3

)] (C.97)

In principle, we should really calculate all possibilities for each of the Fk. If we label the horizontal

layers a, b and c from top to bottom, we can calculate F0 for the combinations (a, a), (b, b) and

156



(c, c), F1 for the combinations (a, b), (b, a), (b, c), (c, b), and F2 for the combinations (a, c) and

(c, a). However, as can be checked, each of the possible combinations within each family of Fk

yield identical results, so it is sufficient to calculate each Fk for any one possible combination.

Nevertheless, we sum over all the possible contributions and then divide by the total number of

horizontal lines to obtain the average F function. We then have 3Favg = 3F0 + 4F1 + 2F2, using

which we obtain

Favg =
π2

18D2
+

π

3DL

(
2sinh(ν)

3
· 5cosh(ν)− 2

cosh2(ν)− 1
4

+
sinh(2ν)

6
· 5cosh(2ν)− 2

cosh2(2ν)− 1
4

)
(C.98)

where for convenience we redfine ν from the previous sections to be ν = πL/3D, i.e. π/3 times

the inverse aspect ratio, L/D.

3.8.4 Three Parallel Lines, Square Anti-Ferromagnetic

We now return to the earlier case of the square anti-ferromagnetic lattice, except now

with three horizontal layers of instantons.

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 ..

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

where Y1 = ±1 and Y2 = ±ıτ3. Our results for F1 and F2 carry over from the earlier sec-

tion. We still have that Y †1 Y2 yields Q = 1/2 while Y †1 Y1 ∼ Y †2 Y2 yields Q = 9/2. We have for
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the F2 function

F2 =
9

2

∑
n even

1

(nD)2 + (2L)2
+

1

2

∑
n odd

1

(nD)2 + (2L)2

=
π

8DL
(9coth(ν) + tanh(ν))

=
π

4DL

(
5cosh(2ν) + 4

sinh(2ν)

)
(C.99)

where as in the section with two horizontal layers, ν = πL/D.

As in the section with the Period 3 Wave lattice, we take 3Favg = 3F0 + 4F1 + 2F2. Using

the results from the earlier section with two layers for F0 and F1, we obtain

Favg =
π2

2D2
+

2π

3DL

(
5cosh(ν)− 4

sinh(ν)

)
+

π

6DL

(
5cosh(2ν) + 4

sinh(2ν)

)
(C.100)

which may also be rewritten as the less (or more – depending on taste) complicated expression

Favg =
π2

2D2

(
1 +

17coth(ν/2) + 81tanh(ν/2)

12ν
+

tanh(ν)

6ν

)
(C.101)

3.8.5 Three Parallel Lines, Square Non-Abelian

Here we extend our case of the square non-abelian lattice to three layers of instantons.

We have the following lattice

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..

Y3 Y4 Y3 Y4 Y3 Y4 Y3 Y4 ..

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 ..
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where Y1 = ±1, Y2 = ±ıτ2, Y3 = ±ıτ1, Y4 = ±ıτ3. The results for F0 and F1 carry over from

the earlier section with two layers. For F2, we have that Y †1 Y1 ∼ Y †2 Y2 ∼ Y †3 Y3 ∼ Y †4 Y4 = ±1, so

that for instantons separated by nD for even n along the horizontal axis, we have Q = 9/2.

For instantons separated by nD for odd n, the relative orientations give us

Y †1 Y2 ∼ Y †3 Y4 = ±ıτ2

⇒ tr2
(
Y †nYm

)
= 0∑

a=1,2

(
Y †nYm(−ıτa)

)
= 4C3

For F2, we have that ~τ · ( ~Xn− ~Xm) = (n−m)Dτ1±2Lτ2, so that the last term in the Q-function

is

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
=

4(1− 2C3)(2L)2

(n−m)2D2 + L2
(C.102)

Thus, we obtain

F2 =
9

2

∑
n even

1

(nD)2 + (2L)2
+

(
4C3 +

1

2

)∑
n odd

1

(nD)2 + (2L)2

+4(1− 2C3)
∑
n odd

(2L)2

[(nD)2 + (2L)2]2
(C.103)

To calculate the last term above, we note that

1

(nγ + x)2 + κ2
+

κ2 − (nγ + x)2

[(nγ + x)2 + κ2]2
=

2κ2

[(nγ + x)2 + κ2]2
(C.104)

so we can use (C.79) and (C.91) to obtain∑
n odd

1

(nD)2 + (2L)2
=

π

8DL

(
sinh(4ν)

cosh(4ν) + 1

)
− π2

4D2

(
2cosh(4ν) + 2

cosh(8ν) + 4cosh(4ν) + 3

)
(C.105)
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where as in the section with two layers, we have ν = πL/2D. Following the prescription 3Favg =

3F0 + 4F1 + 2F2, we obtain the following simplified expression for this lattice

Favg =
π2

2D2

[
(2C3 + 1) +

2

3
(2C3 − 1)

(
2

sinh2(ν)
+

1

cosh2(2ν)

)
+

49coth(ν) + 17tanh(ν) + 10tanh(2ν)

24ν

]
(C.106)

3.8.6 Triangular Non-Abelian

Here we have the following lattice

Y3 Y4 Y3 Y4 Y3 Y4 ..

Y1 Y2 Y1 Y2 Y1 Y2 Y1 ..

Y4 Y3 Y4 Y3 Y4 Y2 ..

where

Y1 = ±1

Y2 = ±ıτ3

Y3 = ± ı√
2

(τ1 − τ2)

Y4 = ± ı√
2

(τ1 + τ2) (C.107)

We start with the in-line F0 function. We take D as the distance between neighboring instan-

tons in any one horizontal layer, and L as the vertical distance between horiztonal layers. For
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instantons separated by nD within the same line for odd n, we have the relative orientations

Y †1 Y2 ∼ Y †3 Y4 = ±ıτ3

⇒ tr2
(
Y †nYm

)
= 0∑

a=1,2

(
Y †nYm(−ıτa)

)
= 0

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0 (C.108)

which gives us Q = 1/2. For instantons separated by nD within the same line for even n, we

have

Y †1 Y1 ∼ Y †2 Y2 ∼ Y †3 Y3 ∼ Y †4 Y4 = ±1

⇒ tr2
(
Y †nYm

)
= 4∑

a=1,2

(
Y †nYm(−ıτa)

)
= 0

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0 (C.109)

which gives us Q = 9/2. Therefore, for F0 we get the simple expression

F0 =
9

2

∑
n even

1

(nD)2
+

1

2

∑
n odd

1

(nD)2

=
π2

2D2
(C.110)
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For F1, we have ~τ · ( ~Xn − ~Xm) =
(
D
2

+ (n−m)D
)
τ1 ± Lτ2. For odd n, we have

Y †3 Y1 ∼ Y †4 Y2 = ± ı√
2

(τ1 − τ2)

⇒ tr2
(
Y †nYm

)
= 0

C3

∑
a=1,2

(
Y †nYm(−ıτa)

)
= 4C3

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 2(1− 2C3)

(
D
2

+ nD + L
)2(

D
2

+ nD
)2

+ L2

(C.111)

while for even n, we have

Y †3 Y2 ∼ Y †4 Y1 = ± ı√
2

(τ1 + τ2)

⇒ tr2
(
Y †nYm

)
= 0

C3

∑
a=1,2

(
Y †nYm(−ıτa)

)
= 4C3

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 2(1− 2C3)

(
D
2

+ nD − L
)2(

D
2

+ nD
)2

+ L2

(C.112)

Thus, in all we have

F1 =

(
1

2
+ 4C3

)∑
n odd

1(
D
2

+ nD
)2

+ L2
+ 2(1− 2C3)

∑
n odd

(
D
2

+ nD + L
)2[(

D
2

+ nD
)2

+ L2
]2

+

(
1

2
+ 4C3

) ∑
n even

1(
D
2

+ nD
)2

+ L2
+ 2(1− 2C3)

∑
n even

(
D
2

+ nD − L
)2[(

D
2

+ nD
)2

+ L2
]2

(C.113)
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The first and third terms above can be combined under a single sum and solved using (C.79)

∑
n

1(
D
2

+ nD
)2

+ L2
=

π

DL

[
sinh

(
2πL
D

)
cosh

(
2πL
D

)
+ 1

]
(C.114)

To evaluate the second and fourth terms above, we first note that

(nγ + x± κ)2

[(nγ + x)2 + κ2]2
=

1

(nγ + x)2 + κ2
± 2κ(nγ + x)

[(nγ + x)2 + κ2]2
(C.115)

Now we have in general that

+∞∑
n=−∞

2κ(nγ + x)

[(nγ + x)2 + κ2]2
=

2π2

γ2

[ −ıη
(1− η)2

+
ıη?

(1− η?)2

]
· sign(κ)

=
2π2

γ2

[
2Im(η)[1− |η|2]

1 + 2(Re(η)2 − Im(η)2)− 4Re(η) + |η|4 − 4|η|2Re(η) + 4|η|2
]

×sign(κ)

=
2π2

γ2

 2sinh
(

2π|κ|
γ

)
sin
(

2πx
γ

)
cosh

(
4π|κ|
γ

)
+ cos

(
4πx
γ

)
− 4 cos

(
2πx
γ

)
cosh

(
2π|κ|
γ

)
+ 2


×sign(κ) (C.116)

and we may use the above two equations to evaluate∑
n odd

(
D
2

+ nD + L
)2[(

D
2

+ nD
)2

+ L2
]2 =

∑
n even

(
D
2

+ nD − L
)2[(

D
2

+ nD
)2

+ L2
]2

=
π

2DL
tanh(ν)− π2

D2

(
sinh(ν)

cosh(2ν) + 1

)
(C.117)

where ν = Lπ/D. Summing over all the terms, we obtain the simplified expression

F1 =
π2

2D2

[
5

ν
+

4(2C3 − 1)

cosh(ν)

]
tanh(ν) (C.118)
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Next, for F2 we have ~τ · ( ~Xn − ~Xm) = (n − m)Dτ1 ± (2L)τ2. For instantons separated by

nD for even n along the horizontal axis, the relative orientations are

Y †1 Y2 ∼ Y †3 Y4 = ±ıτ3

⇒ tr2
(
Y †nYm

)
= 0

C3

∑
a=1,2

(
Y †nYm(−ıτa)

)
= 0

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0

so that Q = 1/2. Meanwhile, for instantons separated by nD for odd n along the horizontal axis,

the relative orientations are

Y †3 Y3 ∼ Y †4 Y4 ∼ Y †2 Y2 ∼ Y †1 Y1 = ±1

⇒ tr2
(
Y †nYm

)
= 4

C3

∑
a=1,2

(
Y †nYm(−ıτa)

)
= 0

(1− 2C3)tr2
(
Y †nYm(−ı~τ · ~Nnm)

)
= 0

so that Q = 9/2. Altogether, we have

F2 =
1

2

∑
n even

1

(nD)2 + (2L)2
+

9

2

∑
n odd

1

(nD)2 + (2L)2
(C.119)

which upon employing (C.79) reduces to the expression

F2 =
π

8DL
(coth(ν) + 9tanh(ν)) (C.120)

Finally, following the prescription 3Favg = 3F0 + 4F1 + 2F2, we obtain the simplified expression

Favg =
π2

2D2

[
1 +

coth(ν) + 49tanh(ν)

6ν
+

16(2C3 − 1)sinh(ν)

3cosh2(ν)

]
(C.121)
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3.8.7 Triangular Lattice, with Edge Effects

Here we include edge effects for the triangular lattice we encountered above. We have the

following array

Y5 Y6 Y5 Y6 Y5

Y3 Y4 Y3 Y4

Y2 Y1 Y2 Y1 Y2

Y4 Y3 Y4 Y3

− − − − − − − − −
Y1 Y2 Y1 Y2 Y1

Y3 Y4 Y3 Y4

Y2 Y1 Y2 Y1 Y2

Y8 Y7 Y8 Y7

where the orientations now acquire an additional phase and are given by

Y1 = ±eı(γ/2)τ1

Y2 = ±ıτ3 · eı(γ/2)τ1

Y3 = ±ıτ1 + τ2√
2
· eı(γ/2)τ1

Y4 = ±ı−τ1 + τ2√
2
· eı(γ/2)τ1 (C.122)

while on the edges we have the orientations

Y5 = ±eı(α+γ/2)τ1

Y6 = ±ıτ3 · eı(α+γ/2)τ1

Y7 = ±ıτ1 + τ2√
2
· eı(α+γ/2)τ1

Y8 = ±ı−τ1 + τ2√
2
· eı(α+γ/2)τ1 (C.123)
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Taking (x, y) to be the coordinates in the 2D space for now, the relative orientations in the inner

part of the lattice are given by

Y †1 Y2 ∼ Y †3 Y4 = ı (−sinγ · τ2 + cosγ · τ3)

⇒ Q =
1

2
+ 2sin2γ + 2(1− 2C3)sin2γ · y

2 − x2

y2 + x2
(C.124)

Y †1 Y4 ∼ Y †2 Y3 = ± ı√
2

(−τ1 + cosγ · τ2 + sinγ · τ3)

⇒ Q =
5

2
− sin2γ − (1− 2C3)sin2γ · y

2 − x2

y2 + x2

−2(1− 2C3)cosγ · 2xy

y2 + x2
(C.125)

Y †1 Y3 ∼ Y †2 Y4 = ± ı√
2

(τ1 + cosγ · τ2 + sinγ · τ3)

⇒ Q =
5

2
− sin2γ − (1− 2C3)sin2γ · y

2 − x2

y2 + x2

+2(1− 2C3)cosγ · 2xy

y2 + x2
(C.126)
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The relative orientations between the inner part of the lattice and the edge are given by

Y †1 Y5 ∼ Y †2 Y6 ∼ Y †3 Y7 ∼ Y †4 Y8 = ± (cosα · 1 + sinα · ıτ1)

⇒ Q =
9

2
− 2sin2α− 2(1− 2C3)sin2α · y

2 − x2

y2 + x2

Y †1 Y6 ∼ Y †2 Y5 ∼ Y †3 Y8 ∼ Y †4 Y7 = ±ı (−sin(α + γ)τ2 + cos(α + γ)τ3)

⇒ Q =
1

2
+ 2sin2(α + γ) + 2(1− 2C3)sin2(α + γ) · y

2 − x2

y2 + x2

Y †1 Y8 ∼ Y †4 Y5 ∼ Y †3 Y6 ∼ Y †2 Y7 = ± 1√
2

(sinα · 1− cosα · ıτ1 + cos(α + γ) · ıτ2 + sin(α + γ) · ıτ3)

⇒ Q =
5

2
+ sin2α− sin2(α + γ)

+(1− 2C3)(sin2α− sin2(α + γ)) · y
2 − x2

y2 + x2

−2(1− 2C3)cosαcos(α + γ) · 2xy

y2 + x2

Y †1 Y7 ∼ Y †3 Y5 ∼ Y †4 Y6 ∼ Y †2 Y8 = ± 1√
2

(−sinα · 1 + cosα · ıτ1

+ cos(α + γ) · ıτ2 + sin(α + γ) · ıτ3)

⇒ Q =
5

2
+ sin2α− sin2(α + γ)

+(1− 2C3)
(
sin2α− sin2(α + γ)

)
· y

2 − x2

y2 + x2

+2(1− 2C3)cosαcos(α + γ) · 2xy

y2 + x2
(C.127)
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while the relative orientation along the edges are given by

Y †5 Y6 ∼ Y †7 Y8 = ±ı (−sin(γ + 2α)τ2 + cos(γ + 2α)τ3)

⇒ Q =
1

2
+ 2sin2(γ + 2α) + 2(1− 2C3)sin2(γ + 2α) · y

2 − x2

y2 + x2

Y †5 Y8 ∼ Y †6 Y7 = ± ı√
2

(−τ1 + cos(γ + 2α)τ2 + sin(γ + 2α)τ3)

⇒ Q =
5

2
− sin2(γ + 2α)− (1− 2C3)sin2(γ + 2α) · y

2 − x2

y2 + x2

−2(1− 2C3)cos(γ + 2α) · 2xy

y2 + x2

Y †5 Y7 ∼ Y †6 Y8 = ± ı√
2

(τ1 + cos(γ + 2α)τ2 + sin(γ + 2α)τ3)

⇒ Q =
5

2
− sin2(γ + 2α)− (1− 2C3)sin2(γ + 2α) · y

2 − x2

y2 + x2

+2(1− 2C3)cos(γ + 2α) · 2xy

y2 + x2
(C.128)

Let us now define ν = L/D as the (inverse) aspect ratio with D as the distance between neigh-

boring instantons within a horizontal layer, so that x =
(
n− 1

2
k
)
D and y = kνD, where k and

n are integers, and k indexes the number of the horizontal line. Let us further define

F (k) ≡ 2D2

π2

∑
n

Q((0, 0); (x, y))

x2 + y2

=
2

π2

∑
n

Q(k = 0, n)

n2
(C.129)

so that the net interaction energy per instanton becomes

ξ =
E

Ninst.

=
π2Nc

10λMD2
· 1

Nlines

∑
k1,k2

F (k1 − k2) (C.130)

In an infinitely long lattice, F (k) only depends on the difference k = k1−k2, which is the number

of horizontal lines the interacting instantons are away from each other. However, in a lattice
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with a finite number of lines such that the edge effects make the outer lines different from the

inner lines, F (k) further depends on whether k1 or k2 are inner or outer (edge) lines.

In the case where k1 = k2 are both inner lines,

Fi(0) =
2

π2

∑
n6=0

Qi(n, 0)

n2
(C.131)

where the subscript i denotes inner line. In the case of even n, the interacting instanton pair

separated by (n, 0) have the same orientations so that Qn even = 9/2, while for odd n the relative

orientation is Y †1 Y2 ∼ Y †3 Y4, so that

Qn odd =
1

2
+ 2sin2γ + 2(1− 2C3)sin2γ · y

2 − x2

y2 + x2

=
1

2
+ 4C3sin2γ (C.132)

Consequently,

Fi(0) =
9

π2

∑
n6=0 even

1

n2
+

1 + 8C3sin2γ

π2

∑
n odd

1

n2

= 1 + 2C3sin2γ (C.133)

In the case where k1 = k2 are both outer lines, we still have Qeven = 9/2 as before, but now for

odd n the relative orientation is Y †5 Y6 ∼ Y †7 Y8, so that

Qn odd =
1

2
+ 4C3sin2(γ + 2α) (C.134)

so that

Fo(0) = 1 + 2C3sin2(γ + 2α) (C.135)
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where the subscript o denotes outer line. In the case where both k1 and k2 label inner lines,

but we have odd k = k1 − k2, the relative orientations are either Y †1 Y4 ∼ Y †2 Y3 (for even n) or

Y †1 Y3 ∼ Y †2 Y4 (for odd n), so that

Q =
5

2
− sin2γ − (1− 2C3)sin2γ · y

2 − x2

y2 + x2
+ (−1)n2(1− 2C3)cosγ · 2xy

y2 + x2
(C.136)

and as a result

Fii(k odd) =
5− 2sin2γ

π2

∑
n

1(
n− 1

2
k
)2

+ ν2k2

−2(1− 2C3)sin2γ

π2

∑
n

ν2k2 −
(
n− 1

2
k
)2[

ν2k2 +
(
n− 1

2
k
)2
]2

+
4(1− 2C3)cosγ

π2

∑
n

2(−1)nνk
(
n− 1

2
k
)[

ν2k2 +
(
n− 1

2
k
)2
]2

= (5− 2sin2γ)
tanhπνk

πνk
+ 2(1− 2C3)

sin2γ

cosh2(πνk)

−4(1− 2C3)cosγ
sinh(πνk)

cosh2(πνk)
(−1)(k−1)/2 (C.137)

The case where both k1 and k2 are outer (edge) lines for odd k = k1 − k2 works similarly, and

we obtain

Foo(k odd) = (5− 2sin2(γ + 2α))
tanhπνk

πνk
+ 2(1− 2C3)

sin2(γ + 2α)

cosh2(πνk)

−4(1− 2C3)cos(γ + 2α)
sinh(πνk)

cosh2(πνk)
(−1)(k−1)/2 (C.138)

In the case where k1 is an inner line and k2 is an outer (edge) line for odd k = k1 − k2, the

relative orientation is Y †3 Y5, Y †4 Y6, Y †1 Y7 or Y †2 Y8 for even n; and Y †4 Y5, Y †3 Y6, Y †1 Y8 or Y †2 Y7 for
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odd n. Thus, we find

Fio(k odd) =
[
5 + 2sin2α− 2sin2(γ + α)

]
· tanhπνk

πνk
+ 2(1− 2C3)

sin2(γ + α)− sin2α

cosh2(πνk)

−4(1− 2C3)cosα cos(γ + α)
sinh(πνk)

cosh2(πνk)
(−1)(k−1)/2 (C.139)

In the case where both k1 and k2 are inner lines, for even k = k1 − k2, we have Q = 9/2 for

instantons separated by even n, while for odd n the relative orientation is Y †1 Y2 ∼ Y †3 Y4, so

proceeding along similar lines we find

Fii(k even) =
9

2
· cosh(πνk) + (−1)k/2

(πνk)sinh(πνk)
+

1 + 4sin2γ

2
· cosh(πνk)− (−1)k/2

(πνk)sinh(πνk)

−2(1− 2C3)sin2γ · (−1)k/2

cosh(πνk) + (−1)k/2
(C.140)

In the case where both k1 and k2 are outer lines, for even k = k1 − k2, we get a similar result

Foo(k even) =
9

2
· cosh(πνk) + (−1)k/2

(πνk)sinh(πνk)
+

1 + 4sin2(γ + 2α)

2
· cosh(πνk)− (−1)k/2

(πνk)sinh(πνk)

−2(1− 2C3)sin2(γ + 2α) · (−1)k/2

cosh(πνk) + (−1)k/2
(C.141)

For the case of inner k1 and outer k2 (or vice versa), for even k = k1 − k2, the relative

orientation is Y †1 Y5 ∼ Y †2 Y6 ∼ Y †3 Y7 ∼ Y †4 Y8 for even n, while the relative orientation is Y †1 Y6 ∼

Y †2 Y5 ∼ Y †3 Y8 ∼ Y †4 Y7 for odd n. Consequently, we have

Fio(k even) =
9− 4sin2α

2
· cosh(πνk) + (−1)k/2

(πνk)sinh(πνk)

−2(1− 2C3)sin2α · (−1)k/2

cosh(πνk)− (−1)k/2

+
1 + 4sin2(γ + α)

2
· cosh(πνk)− (−1)k/2

(πνk)sinh(πνk)

−2(1− 2C3)sin2(γ + α) · (−1)k/2

cosh(πνk) + (−1)k/2
(C.142)
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Now we have that F (k) = F (−k). We can use this fact to calculate the net F function

Fnet =
∑
k1,k2

F (k1 − k2) (C.143)

where after counting pairs, we obtain

Fnet = (N − 2)Fi(0) + 2Fo(0) + 2
N−3∑
k=1

(N − 2− k)Fii(k) + 4
N−2∑
k=1

Fio(k) + 2Foo(N − 1)

(C.144)

in terms of which we have the net interaction energy of the lattice per instanton

ξ =
π2Nc

10λMD2
· Fnet
N

=
π2Ncρ

2

10λM
· Fnet
N3

(C.145)

where ρ = N/D is the linear density. Meanwhile, the 1-body term V 1−body = NcλMM2
2 y

2

averaged over the instanton lines gives us

ξ1−body = NcλMM2
2 ·

1

N

N∑
k=1

y2(k)

= NcλMM2
2 (νD)2

N∑
k=1

(2k −N − 1)2

4N

= NcλMM2
2 ·

N2ν2

ρ2
· N

2 − 1

12
(C.146)

so that the net energy of the lattice per instanton becomes

ξ =
π2Nc

10λM
ρ2Fnet(ν, α, γ)

N3
+NcλMM2

2 ·
N2(N2 − 12)

12

ν2

ρ2
(C.147)
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3.8.8 Generalization to N lines

Here, we generalize the results for a few lattices so that instead of two or three lines, the

pattern consists of more generally N lines. We start with the relatively simple case of the square

anti-ferromagnetic lattice. We already have that

F0 =
π2

2D2
(C.148)

Following our earlier notation, we use Fk to denote the F function calculated for interacting

instantons separated by k lines. We have that for even k, instantons separated by nD along the

x1 axis for even n have Q = 9/2, while those for odd n have Q = 9/2. Therefore,

Fk even =
9

2

∑
n even

1

(nD)2 + (kL)2
+

1

2

∑
n odd

1

(nD)2 + (kL)2

=
π

4DkL

[
9coth

(
kν

2

)
+ tanh

(
kν

2

)]
=

π

2DkL

[
5cosh(kν) + 4

sinh(kν)

]
(C.149)

where ν = πL/D. For k odd, the Q’s flip values so that we have

Fk odd =
1

2

∑
n even

1

(nD)2 + (kL)2
+

9

2

∑
n odd

1

(nD)2 + (kL)2

=
π

4DkL

[
coth

(
kν

2

)
+ 9tanh

(
kν

2

)]
=

π

2DkL

[
5cosh(kν)− 4

sinh(kν)

]
(C.150)

Next, we note that in a lattice of N lines, there are a total of N number of F0 functions and

2(N − k) number of Fk (for k > 0), but whose values are fixed (or rather functions of the

parameters) for fixed k. Taking this into account, and generalizing our previous rule of finding
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the average net F function, we now have

Fnet = F0 +
N−1∑
k=1

2(N − k)

N
Fk (C.151)

using which we find for the square anti-ferromagnetic lattice

FN−lines[ AF ] =
π2

2D2
+

N−1∑
k=1

2(N − k)

N
· π

2DkL

[
5cosh(kν) + 4(−1)k

sinh(kν)

]
(C.152)

Next, for the square non-abelian lattice, we derived earlier that

F0 = (1 + 2C3)
π2

2D2
(C.153)

For even k, we have that instantons separated by nD along the x1 axis for odd n have a relative

orientation of Y †Y ∼ τ2, while for even n we have Y †Y ∼ 1⇒ Q = 9/2. Consequently,

Fk even =

(
1

2
+ 4C3

)∑
n odd

1

(nD)2 + (kL)2
+ 4(1− 2C3)

∑
n odd

(kL)2

(nD)2 + (kL)2

+
9

2

∑
n even

1

(nD)2 + (kL)2

=
π

4DkL
(9coth(kν) + 5tanh(kν)) +

π2

D2
· (2C3 − 1)

cosh(2kν) + 1
(C.154)

where now ν = πL/2D. For odd k, instantons separated by nD along x1 for odd n have

Y †Y ∼ τ3 ⇒ Q = 1/2 while for even n they have Y †Y ∼ τ1, so that we have

Fk even =

(
1

2
+ 4C3

)∑
n odd

1

(nD)2 + (kL)2
+ 4(1− 2C3)

∑
n odd

(kL)2

(nD)2 + (kL)2

+
1

2

∑
n odd

1

(nD)2 + (kL)2

=
π

4DkL
(5coth(kν) + tanh(kν)) +

π2

D2
· (2C3 − 1)

cosh(2kν)− 1
(C.155)
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Putting these results together we have that

FN−lines[ NA] = (1 + 2C3)
π2

2D2

+
N−k∑
k=1

2(N − k)

N
· Fk[ NA] (C.156)

where

Fk[ NA] =
π

4DkL

(
[7 + 2(−1)k]coth(kν) + [3 + 2(−1)k]tanh(kν)

)
+
π2

D2
· (2C3 − 1)

cosh(2kν) + (−1)k
(C.157)

Next, we consider the triangular non-abelian lattice. We already have that

F0 =
π2

2D2
(C.158)

For the Fk functions, we have to be a little more careful. Instead of organizing the Fk (k 6= 0)

according to either even or odd k, we should rather sum them up according to k modulo 4. For

odd k = 1, 5, 9, ..., we have

Fk=1,5,9,.. =

(
1

2
+ 4C3

)∑
n

1(
D
2

+ nD
)2

+ (kL)2
+ 2(1− 2C3)

∑
n even

(
D
2

+ nD − kL
)2[(

D
2

+ nD
)2

+ (kL)2
]2

+2(1− 2C3)
∑
n odd

(
D
2

+ nD + kL
)2[(

D
2

+ nD
)2

+ (kL)2
]2

=
π

2DkL

(
5 + 4kν(2C3 − 1)sech(kν)

)
tanh(kν) (C.159)
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while for odd k = 3, 7, 11, ..., we have

Fk=3,7,11,.. =

(
1

2
+ 4C3

)∑
n

1(
D
2

+ nD
)2

+ (kL)2
+ 2(1− 2C3)

∑
n even

(
D
2

+ nD + kL
)2[(

D
2

+ nD
)2

+ (kL)2
]2

+2(1− 2C3)
∑
n odd

(
D
2

+ nD + kL
)2[(

D
2

+ nD
)2

+ (kL)2
]2

=
π

2DkL

(
5− 4kν(2C3 − 1)sech(kν)

)
tanh(kν) (C.160)

which we can write together as

Fk odd[4NA] =
π

2DkL

(
5 + 4kν(−1)

k+1
2 (1− 2C3)sech(kν)

)
tanh(kν)

(C.161)

For even k = 2, 6, 10, ..., we have

Fk=2,6,10,.. =
1

2

∑
n even

1

(nD)2 + (kL)2
+

9

2

∑
n odd

1

(nD)2 + (kL)2

=
π

4DkL

(
coth

(
kν

2

)
+ 9tanh

(
kν

2

))
(C.162)

while for k = 4, 8, 12, ..., we have

Fk=4,8,12,.. =
9

2

∑
n even

1

(nD)2 + (kL)2
+

1

2

∑
n odd

1

(nD)2 + (kL)2

=
π

4DkL

(
9coth

(
kν

2

)
+ tanh

(
kν

2

))
(C.163)

which we can simplify and write together as

Fk even[4NA] =
π

2DkL

[
5cosh(kν) + 4(−1)k/2

sinh(kν)

]
(C.164)
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These Fk’s cannot further be brought to a similar form, so our net F function is given by

FN−lines[4NA] =
π2

2D2
+

N−1∑
k=1

2(N − k)

N

[
(kmod 2) · Fk odd[4NA]

+ ((k + 1) mod 2) · Fk even[4NA]
]

(C.165)

3.9 Appendix B: Infinite Crystals

In this section, we adopt a slight change in notation for convenience, and express the

orientations in unimodular quaternions. The two-body interaction energy is

E =
4Nc

5λM

∑
i 6=j

Q

| ~Xi − ~Xj|2
(C.166)

where the ~Xi denote the instantons’ locations in 2D space, while Q depends on the orientations

of the instantons here represented by unimodular quaternions ys

Q =
1

8
+R2

(
y†i yj

)
+

1− ζ
2

∑
a=1,2

I2
a(y†i yj) + ζ

(
~Nij · ~I(y†i yj)

)
(C.167)

where R and I denote the real and pure quaternion components respectively, and

~Nij =
~Xi − ~Xj

| ~Xi − ~Xj|
(C.168)

and

ζ = 1− 2C3 =
M2

4 −M2
3

M2
4 +M2

3

(C.169)

We seek to calculate the net interaction energy per instanton, ξ = E/#instantons. This energy

is IR divergent in two dimensions, and to regulate this divergence we introduce a cutoff in the
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X2 direction, i.e. −W < X2
i < W .

In calculating the interaction energy, we pick a single instanton, e.g. at ~X = (0, 0), and first

sum over the X1 direction and then over the X2 direction. In doing so, we make extensive use

of (C.79), (C.91) and (C.116). Indeed, if we identify

Σ1 =
n=+∞∑
n=−∞

1

(nγ + x)2 + κ2
=

π

γ|κ|

[
1 +

η

1− η +
η∗

1− η∗
]

Σ2 =
n=+∞∑
n=−∞

κ2 − (nγ + x)2

[(nγ + x)2 + κ2]2
=

2π2

γ2

[
η

(1− η)2
+

η?

(1− η?)2

]

Σ3 =
+∞∑

n=−∞

2κ(nγ + x)

[(nγ + x)2 + κ2]2
=

2π2

γ2

[ −ıη
(1− η)2

+
ıη?

(1− η?)2

]
· sign(κ)

(C.170)

then we can reduce these sums for some special cases. For x
γ
∈ Z, η = η? = e−2π|κ|/γ and the

above sums simplify to

Σ1 =
π

γ|κ|

[
1 +

2e−2π|κ|/γ

1− e−2π|κ|/γ

]
Σ2 =

2π2

γ2

[
2e−2π|κ|/γ

(1− e−2π|κ|/γ)
2

]
Σ3 = 0 (C.171)

For x
γ
∈ Z + 1

2
, η = η? = −e−2π|κ|/γ and we have

Σ1 =
π

γ|κ|

[
1− 2e−2π|κ|/γ

1 + e−2π|κ|/γ

]
Σ2 =

2π2

γ2

[
−2e−2π|κ|/γ

(1 + e−2π|κ|/γ)
2

]
Σ3 = 0 (C.172)
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For x
γ
∈ Z + 14, η = ±ıe−2π|κ|/γ, η? = −η = ∓ıe−2π|κ|/γ, and thus

Σ1 =
π

γ|κ|

[
1− 2e−4π|κ|/γ

1 + e−4π|κ|/γ

]
Σ2 =

2π2

γ2

[
−4e−4π|κ|/γ

(1 + e−4π|κ|/γ)
2

]

Σ3 =
2π2

γ2
· 2e−2π|κ|/γ(1− e−4π|κ|/γ)

[1 + e−4π|κ|/γ]2
· sign(κ) (C.173)

A useful thing to note while summing over X2 is

N∑
n=1

1

n
= log(N) + γE +O(1/N) (C.174)

where γE is the Euler Gamma constant.

3.9.1 Square Antiferromagnetic

For simplicity, we will assume that this lattice is an honest-to-god square so that D = L.

Thus, we take

X1 = nD

X2 = mD (C.175)

and y†nym = ±1 for even n+m, and y†nym = ±k, where k is the third imaginary quaternion unit

(analogous to the third Pauli matrix, τ3, used earlier). Much of our analysis carries over from

the previous section, except for changes in overall factors. Thus, we have

Q((0, 0), (n,m)) =

{
9/8 for even n+m

1/8 for odd n+m
(C.176)
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As a first step to calculate the interaction energy per instanton, we first sum over n with m = 0

S0 =
9

8

∑
n even

1

n2
+

1

8

∑
n odd

1

n2

=
π2

8
(C.177)

Next, we sum over n for even m 6= 0.

Sm even =
9

8

∑
n even

1

n2 +m2
+

1

8

∑
n odd

1

n2 +m2

=
9

8
· π

2|m|

(
1 +

2e−π|m|

1− e−π|m|
)

+
1

8
· π

2|m|

(
1− 2e−π|m|

1 + e−π|m|

)
=

π

|m|

(
5

8
+

e−π|m|

1− e−2π|m| +
5

4
· e−2π|m|

1− e−2π|m|

)
(C.178)

Quite similarly, the sum over n for odd m evaluates to

Sm odd =
1

8

∑
n even

1

n2 +m2
+

9

8

∑
n odd

1

n2 +m2

=
1

8
· π

2|m|

(
1 +

2e−π|m|

1− e−π|m|
)

+
9

8
· π

2|m|

(
1− 2e−π|m|

1 + e−π|m|

)
=

π

|m|

(
5

8
− e−π|m|

1− e−2π|m| +
5

4
· e−2π|m|

1− e−2π|m|

)
(C.179)

Next, if we take ±W as the cutoff in length in the X2 direction, then the sum over m must be

cutoff at the integer ±W/D. Summing over all the contributions then, we obtain

+W/D∑
m=−W/D

Sm =
π2

8
+ 2

W/D∑
m=1

π

m

(
5

8
+

(−1)me−π|m|

1− e−2π|m| +
5

4
· e−2π|m|

1− e−2π|m|

)

≈ π2

8
+

5π

4

(
log

W

D
+ γE

)
+

5π

4

∞∑
m=1

1

m
·

8
5
(−µ)m + 2µ2m

1− µ2m

(C.180)
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where µ = e−π ≈ 0.0432. Seen as a function of m, the summand approaches the m-axis from

below fairly rapidly, so we obtain a reliable numerical value for the sum after just a few terms

∞∑
m=1

1

m
·

8
5
(−µ)m + 2µ2m

1− µ2m
≈ −0.0670647 (C.181)

Thus we obtain ∑
m

Sm =
5π

4

(
log

W

D
+ γE +

π

10
− 0.0670647

)
(C.182)

and consequently the net interaction energy per instanton is

ξ[ AF ] =
πNc

λMD2

(
log

W

D
+ γE + A

)
(C.183)

where A ≈ 0.247.

3.9.2 Square Non-Abelian

As in the previous section, we assume an aspect ratio of 1 so that in the physical 2D

space, we have

X1 = nD

X2 = mD (C.184)

However, in this case, we have a non-abelian order for the orientations

y†nym =


±1 for even n, even m,

±j for odd n, even m,

±i for even n, odd m,

±k for odd n, odd m,

(C.185)

We may graphically represent the lattice as
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y1 y2 y1 y2 y1 y2 y1 y2

y3 y4 y3 y4 y3 y4 y3 y4

y1 y2 y1 y2 y1 y2 y1 y2

y3 y4 y3 y4 y3 y4 y3 y4

y1 y2 y1 y2 y1 y2 y1 y2

y3 y4 y3 y4 y3 y4 y3 y4

where the orientations are given by y1 = ±1, y2 = ±j, y3 = ±i, y4 = ±k (the only differ-

ence from the earlier section on thin crystals being the extent in 2D space, and the replacement

of Pauli matrices with quaternions). The various possibilities for Q(n,m) are now

Q(even, even) =
9

8

Q(odd, even) =
5

8
+
ζ

2
· m

2 − n2

m2 + n2

Q(even, odd) =
5

8
− ζ

2
· m

2 − n2

m2 + n2

Q(odd, odd) =
1

8
(C.186)

Now we sum over n for fixed m. The sum over n for m = 0 is

S0 =
9

8

∑
n even

1

n2 +m2
+

(
5

8
− ζ

2

)∑
n odd

1

n2 +m2

=
π2

8
(2− ζ) (C.187)

For even m 6= 0, we have

Sm even =
9

8

∑
n even

1

n2 +m2
+

5

8

∑
n odd

1

n2 +m2
+
ζ

2

∑
n odd

m2 − n2

[n2 +m2]2

=
9

8
· π

2|m|

(
1 +

2e−π|m|

1− e−π|m|
)

+
5

8
· π

2|m|

(
1− 2e−π|m|

1 + e−π|m|

)
+
ζ

2
· π

2

2
· −2e−π|m|

[1 + e−π|m|]2
(C.188)
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and likewise for odd m we have

Sm odd =
1

8

∑
n odd

1

n2 +m2
+

5

8

∑
n even

1

n2 +m2
− ζ

2

∑
n even

m2 − n2

[n2 +m2]2

=
1

8
· π

2|m|

(
1− 2e−π|m|

1 + e−π|m|

)
+

5

8
· π

2|m|

(
1 +

2e−π|m|

1− e−π|m|
)

−ζ
2
· π

2

2
· 2e−π|m|

[1 + e−π|m|]2
(C.189)

Both the above expressions are expressible as

Sm =
π

2|m|

(
5

4
+

(−1)m

2
+

µ|m|

1− (−µ)|m|
+

5µ2|m|

2(1− µ2|m|)

)
− ζπ2

2
· µ|m|

[1 + (−µ)|m|]2

(C.190)

where as in the previous section we have µ = e−π ≈ 0.0432. Finally, summing over m we obtain

+W/D∑
m=−W/D

Sm =
π2

8
(2− ζ) +

5π

4

W/D∑
m=1

1

m

(
1 +

2

5
(−1)m +

2µ2m

1− µ2m
+

4µm

5[1− (−µ)m]

)

−ζπ
2

2

W/D∑
m=1

µ|m|

[1 + (−µ)|m|]2

≈ π2

8
(2− ζ) +

5π

4

(
log

W

D
+ γE −

2

5
log2

)
+

5π

4

∞∑
m=1

1

m

(
2µ2m

1− µ2m
+

4µm

5[1− (−µ)m]

)
− ζπ2

∞∑
m=1

µ|m|

[1 + (−µ)|m|]2

(C.191)

We may evaluate the last two sums above numerically to obtain the approximate values

∞∑
m=1

1

m

(
2µ2m

1− µ2m
+

4µm

5[1− (−µ)m]

)
≈ 0.0377 (C.192)

∞∑
m=1

µ|m|

[1 + (−µ)|m|]2
≈ 0.0469 (C.193)
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so that

∑
m

Sm =
5π

4

(
log

W

D
+ γE +R1 −R2ζ

)
(C.194)

where R1 and R2 are numerical constants

R1 ≈ 0.389

R2 ≈ 0.438 (C.195)

Consequently, the net interaction energy per instanton for this lattice is

ξ[ NA] =
πNc

λMD2

(
log

W

D
+ γE +R1 −R2ζ

)
(C.196)

3.9.3 Comparison of Square Lattices

We can now compare the energies of the two kinds of square lattices we find. The net

interaction energy per instanton for either lattice has the same IR divergence but different finite

parts, so that the difference

∆ξ ≡ ξ[ NA]− ξ[ AF ] =
πNc

λMD2
(R1 − A−R2ζ) (C.197)

Note that R1 − A = 0.142 is less than R2, so the sign of ∆ξ depends on ζ. The non-abelian

lattice has higher energy than the anti-ferromagnetic one for ζ < ζc where

ζc =
R1 − A
R2

≈ 0.324 (C.198)

and lower energy for ζ > ζc. This critical value ζc corresponds to (M3/M4)c ≈ 0.72. Thus, the

square lattice prefers the non-abelian order for (M3/M4) < 0.72 and the anti-ferromagnetic order

for (M3/M4) > 0.72.
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3.9.4 Triangular Non-Abelian Lattice

Here, we consider the triangular lattice of non-abelian order. Graphically, we may repre-

sent it as

y3 y4 y3 y4 y3 y4

y1 y2 y1 y2 y1 y2 y1

y4 y3 y4 y3 y4 y2

y2 y1 y2 y1 y2 y1 y2

y3 y4 y3 y4 y3 y4

y1 y2 y1 y2 y1 y2 y1

y4 y3 y4 y3 y4 y2

y2 y1 y2 y1 y2 y1 y2

where we take y1 = ±1, y2 = ±α, y3 = ±β, y4 = ±γ. Here, α, β and γ are imaginary

unimodular quaternions that satisfy αβ = ±γ, βγ = ±α, and γα = ±β. As 3-vectors, they are

all perpendicular to each other. To minimize the energy, α should be perpendicular to the X1

axis, which we identify as the triangle’s base, while β and γ should be perpendicular to the other

two sides of the triangle. The following ansatz satisfies all these requirements

α = 0 · i+

√
2

3
· j +

√
1

3
· k

β =

√
1

2
· i−

√
1

6
· j +

√
1

3
· k

γ = −
√

1

2
· i−

√
1

6
· j +

√
1

3
· k (C.199)

We take D as the distance between neighboring instantons within any one horizontal layer, but

also as the diagonal distance between neighboring instantons within the triangle. In the 2D space
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then, the instantons’ coordinates are given by

X1 = nD +m
D

2
, X2 = m

√
3D

2
(C.200)

and their relative orientations are given by

y†nym =


±1 for even n, even m,

±α for odd n, even m,

±β for even n, odd m,

±γ for odd n, odd m,

(C.201)

Consequently, the various possibilities for Q(n,m) are

Q(even, even) =
9

8

Q(odd, even) =
11

24
+
ζ

3
·

3
4
m2 − (n+ 1

2
m)2

3
4
m2 + (n+ 1

2
m)2

Q(even, odd) =
11

24
− ζ

6
·

3
4
m2 − (n+ 1

2
m)2

3
4
m2 + (n+ 1

2
m)2

− ζ

12
·

2(n+ 1
2
m)
√

3
4
m

3
4
m2 + (n+ 1

2
m)2

Q(odd, odd) =
11

24
− ζ

6
·

3
4
m2 − (n+ 1

2
m)2

3
4
m2 + (n+ 1

2
m)2

+
ζ

12
·

2(n+ 1
2
m)
√

3
4
m

3
4
m2 + (n+ 1

2
m)2

(C.202)

using which we can calculate

ξ[4] =
4Nc

5λMD2

∑
n,m

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

(C.203)

We can perform these sums using (C.170) using

η = im(−1)n+1µ|m| (C.204)
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where now µ = e−
√

3π/2 ≈ 0.065. In performing the sums, we need to be careful to distinguish

whether x = n + 1
2
m is integer or half-integer depending on m. For m 6= 0 divisible by 4, we

obtain

∑
n even

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
9

8
· π√

3|m|

(
1 +

2µ|m|

1− µ|m|
)

∑
n odd

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
11

24
· π√

3|m|

(
1− 2µ|m|

1 + µ|m|

)
+
ζ

3
· π

2

2

−2µ|m|

[1 + µ|m|]2
(C.205)

For even m = 4l + 2 for some integer l, we have

∑
n even

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
9

8
· π√

3|m|

(
1− 2µ|m|

1 + µ|m|

)
∑
n odd

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
11

24
· π√

3|m|

(
1 +

2µ|m|

1− µ|m|
)

+
ζ

3
· π

2

2

2µ|m|

[1− µ|m|]2

(C.206)

For odd m = 4l + 1 for some integer l, we have

∑
n even

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
11

24
· π√

3|m|

(
1− 2µ2|m|

1 + µ2|m|

)
− ζ

6
· π

2

2

−4µ2|m|

[1 + µ2|m|]2

− ζ√
12

π2

2

2µ|m|(1− µ2|m|)

[1 + µ2|m|]2
· sign(m)∑

n odd

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
11

24
· π√

3|m|

(
1− 2µ2|m|

1 + µ2|m|

)
− ζ

6
· π

2

2

−4µ2|m|

[1 + µ2|m|]2

+
ζ√
12

π2

2

2µ|m|(1− µ2|m|)

[1 + µ2|m|]2
· sign(m) (C.207)
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For odd m = 4l + 3 for some integer l, we have

∑
n even

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
11

24
· π√

3|m|

(
1− 2µ2|m|

1 + µ2|m|

)
− ζ

6
· π

2

2

−4µ2|m|

[1 + µ2|m|]2

+
ζ√
3

π2

2

−2µ|m|(1− µ2|m|)

[1 + µ2|m|]2
· sign(m)∑

n odd

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
11

24
· π√

12|m|

(
1− 2µ2|m|

1 + µ2|m|

)
− ζ

6
· π

2

2

−4µ2|m|

[1 + µ2|m|]2

− ζ√
12

π2

2

2µ|m|(1− µ2|m|)

[1 + µ2|m|]2
· sign(m)

(C.208)

After summing over both even and odd n for odd m we obtain

Sm odd =
∑
n

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
11π

12
√

3

1

|m|

(
1− 2µ2|m|

1 + µ2|m|

)
+

2π2ζ

3

µ2|m|

[1 + µ2|m|]2

−π
2ζ√
3

µ|m|(1− µ2|m|)

[1 + µ2|m|]2
(−1)(|m|−1)/2 (C.209)

Similarly, summing over both even and odd n for even m we obtain

Sm even =
∑
n

Q(n,m)
3
4
m2 + (n+ 1

2
m)2

=
π

6
√

3

1

|m|

(
19

2
+ 19

µ2|m|

1− µ2|m| + 8(−1)|m|/2
µ|m|

1− µ2|m|

)
+
π2ζ

3

µ|m|

[1− µ|m|]2 (C.210)
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Meanwhile, the m = 0 line evaluates to

Sm=0 =
∑
n 6=0

Q(n, 0)

n2

=
∑

n6=0 even

9

8n2
+
∑
n odd

11− 8ζ

24n2

=
π2

24
(5− 2ζ) (C.211)

We may now add up all the Sm, and as before the sum
∑

m Sm carry IR divergences which come

from the leading terms that are independent of µ

Sleadm even =
π

12
√

3
· 19

|m|
Sleadm odd =

π

12
√

3
· 11

|m| (C.212)

We identify M = W/(
√

3
4
D) as the cutoff for summing over m so that

sum+M
m=−MS

lead
m = Sm=0 + 2

M∑
m=1

12

π
√

3
· 15 + 4(−1)m

m

=
π2

24
(5− 2ζ) +

5π

2
√

3

(
logM + γE −

4

15
log2

)
(C.213)

Consequently

ξ[4] =
4Nc

5λMD2

∑
m

Sm =
2πNc√
3λMD2

· log
W

D
+K (C.214)

where K is a finite constant. Note that the coefficient of the IR divergence here is different from

that of the square lattices, however this is an artifact of the different lattice spacings. The square

lattices have density

ρ( ) =
1

D2
(C.215)
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while the triangle lattice has density

ρ(4) =
2√
3D2

(C.216)

For the same density ρ, the triangular lattice has the same IR divergence as the square lattices

ξ[4] =
πNcρ

λM
· log(W

√
ρ) + finite (C.217)

Including the finite terms we obtain

ξ[4] =
πNcρ

λM
· (log(W

√
ρ) + γE + T1 − T2ζ) (C.218)

where the constants are

T1 =
1

4
log

4

3
− 4

15
log2 +

π

4
√

3
− 22

15

∑
m>0 odd

1

m
· µ2m

1 + µ2m

+
2

15

∑
m>0 even

1

m
· 19µ2m + 8µm(−1)m/2

1− µ2m

≈ 0.3319

T2 =
π

10
√

3
+

4π

5
√

3

∑
m>0 even

−µm
[1− µm]2

+
4π

5
√

3

∑
m>0 odd

−2µ2m +
√

3µm(1− µ2m)(−1)(m−1)/2

[1 + µ2m]2

≈ 0.3252 (C.219)

3.9.5 Comparison of Square Anti-ferromagnetic, Square Non-Abelian and Trian-

gular Non-Abelian Lattices

We have noted that the IR divergences of all three lattices is the same for the same

density, ρ. Subtracting this divergence, we obtain the finite parts of the net interaction energy
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per instanton for all three lattices

ξ̂ ≡ ξ − πNcρ

λM
(log(W

√
ρ) + γE)

=
πNcρ

λM
·


A for the Square AF lattice

R1 −R2ζ for the Square NA lattice

T1 − T2ζ for the Triangular NA lattice

(C.220)

We may plot this finite part of the interaction energy per instanton as a function of the ζ pa-

rameter, as depicted below. Therefore, the lowest energy state is

Figure 3.17: Dependence of the finite part of the net interaction energy per instanton of the

AF and NA lattices, and the 4 NA lattice.

(a) Square Anti-ferromagnetic lattice for

0 ≤ ζ ≤ ζc1 = 0.252 ⇐⇒ 0.77 ≤M3/M4 ≤ 1 (C.221)
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(b) Triangular Non-Abelian lattice for

0.252 ≤ ζ ≤ ζc2 = 0.505 ⇐⇒ 0.57 ≤M3/M4 ≤ 0.77 (C.222)

(c) Square Non-Abelian lattice for

0.505 ≤ ζ ≤ 1 ⇐⇒ 0 ≤M3/M4 ≤ 0.57 (C.223)
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