





Abstract

A map illustrating the geology of the New
Braunfels, Texas, 30 X 60 minute quadrangle
and this summary report present the physical
geology of a rapidly growing urban-growth
corridor in South-Central Texas. The map area
includes a complex part of the Balcones Fault
Zone and part of the regionally important
recharge zone of the Edwards aquifer. The map
was constructed by means of ficld mapping,
interpretation of aerial photographs, review of
existing maps and reports, and digitization of
map data.

The Balcones Fault Zone, marking the
northwest edge of the Texas coastal plain, is
the main structural control on the geologic units.
It is composed of en echelon normal faults that
strike mostly N40°-70°E and dip southeast-
ward, although a few of these dip toward the
northwest. Subsidiary faults strike northwest-
ward, northward, and eastward. In general,
faults have formed multiple 2.2- to 7-mi-wide
fault blocks that are bound by a long series of
closely spaced, en echelon, large normal faults
that have offsets ranging between approxi-
mately 100 and 850 ft. Smaller fault blocks also
occur within the larger fault blocks. Many
smaller faults have displacements of less than
1 to 100 ft.

Cretaceous limestone, dolomitic limestone,
argillaceous limestone, marl, shale, and clay-
stone to mudstone crop out in the map area.
These rocks represent greater than 2,000 ft of
shelf deposition. The Balcones Escarpment, a
prominent fault-line scarp, divides the map area
into a relatively high-relief physiographic area
of dissected hills and steep canyons to the north-
west and a low-relief area of rolling terrain to
the southeast. Northwest of the Balcones
Escarpment the outcrop belt consists mostly of
cyclic, shallow, subtidal to tidal-flat limestones,

dolomitic limestones, dolomite, and argilla-
ceous limestones of the Glen Rose Formation
and the younger Edwards Group. Siliciclastic-
rich limestones of the Hensell and Cow Creek
Formations crop out beneath the Glen Rose
Formation locally along the Guadalupe River.
Open shelf and shelf—prodelta strata that overlie
the Edwards Group comprise Georgetown
limestone (locally absent); Del Rio claystone
to mudstone; Eagle Ford shale, mudstone,
siltstone, and flaggy limestone; and Austin chalk
and limestone.

Southeast of the Balcones Escarpment,
poorly exposed shelf limestone, argillaceous
limestone, marl, and claystone to mudstone of
the Cretaceous Taylor and Navarro Groups
and lower Tertiary Midway Group make up
much of the outcrop belt. The Taylor, Navarro,
and Midway units are commonly covered
by Quaternary sand and gravel of the Leona
Formation, locally deposited older (Pliocene—
Pleistocene) gravel, and younger sand and
gravel of terraces of main drainageways.

The map of the New Braunfels, Texas,
quadrangle 1s intended for a diverse audience
having a wide range of interests and varying
knowledge of geology—including geologists,
hydrologists, engineers, urban planners, arche-
ologists, students, and laypersons. Basic
geological data presented concerning faults and
the limestone and dolomitic limestone that
compose the Edwards aquifer are useful in
water-management issues, such as ground-
water flow and aquifer response for pumpage
and recharge. Geological information is also
important in land-use decisions, such as locating
landfills and other waste-disposal sites, plan-
ning construction projects, designing founda-
tions, and meeting demands for construction
materials.
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Introduction

This report describes the physical geology
of a South-Central Texas area that is undergoing
rapid urban growth. The study area encom-
passes north San Antonio, Lake Medina,
Comfort, Wimberley, Canyon Lake, and New
Braunfels, and it includes parts or all of Bexar,
Comal, Guadalupe, Medina, Kendall, south-
western Hays, southern Blanco, eastern
Bandera, and eastern Kerr Counties (fig. 1 and
map). The study area includes part of the
regionally important Edwards aquifer and
recharge zone, a complex part of the Balcones
Fault Zone, and the east margin of the Edwards
Plateau.

An objective of this report is to provide basic
geologic information on the 1:100,000-scale
geologic map constructed for this study (map),
which, in turn, is a useful source of geological
information on the South-Central Texas urban-
growth corridor. Information provided by the
map and this report is intended for a diverse
audience comprising professionals in geology,
hydrology, engineering, urban planning,
archeology, and related fields, as well as
laypersons and students, all who have varying
levels of knowledge of geology.

The geologic structure and stratigraphy of
this region figure prominently in geologists’ and
other professionals’ planning of land use,
designing of construction projects, and
managing of the Edwards aquifer. The physical
properties of the different lithostratigraphic
units, for example, may influence construction
and urban-development practices. Some strata
can be excavated more easily than others,
affecting the cost of construction projects.
Stable foundations and efficient septic tanks are
easier to construct in some units than in others
because of the range of physical and lithologic
properties of the units. Clay-rich units and
limestone strata overlying clay-rich strata along
slopes are more likely to slump or slide than
are some of the thicker limestone units. In
addition, faults can locally juxtapose strata

having different physical properties, creating
potential construction and foundation problems.
Faults are the principal structural control on the
Edwards aquifer and recharge zone. Karst
features such as sinkholes and caves, as well as
some faults and joints, form local and regional
ground-water conduits. Such features are par-
ticularly important in recharge of the Edwards
aquifer. Some large faults may also act as
barriers or partial barriers to ground-water flow.

Structural attributes, including fault location,
length, dip, and amount of displacement of
normal faults of the Balcones Fault Zone, which
cut across the study area, are described in this
report. Also discussed herein are characteristics
of the physical stratigraphy, including lithology,
thickness, and occurrence. This report provides
general information relating geology to aspects
of land use, urban planning, construction prac-
tices, and water-resource management.

Methods

This study consisted of (1) review and com-
pilation of existing geologic literature and
interpretation concerning the area, (2) study and
interpretation of aerial photographs, (3) identifi-
cation of the lithostratigraphic units and faults
that cut the units at accessible localities in the
field, and (4) preparation of geologic maps.
Thirty-two open-file geologic maps (fig. 2),
scale 1:24,000, were constructed of the study
area between 1990 and 1995 according to
standard geologic field techniques. Compilation
and field review of existing geologic maps of
various scales aided map interpretation. Photo-
graphs used in this study included (1) 1:80,000-
scale, black-and-white, 1983 National High
Altitude Program (NHAP) photography;
(2) 1:40,000-scale, false-color-infrared, 1983
National Aerial Photograph Program (NAPP)
photography; and (3) 1:62,000-scale, black-and-
white, 1953 Army Mapping Service photog-
raphy. Photographs were viewed in stereo, and
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FIGURE 2. Diagram showing locations of 32 open-file geologic maps, 1:24,000 scale, that compose the “Geologic
Map of the New Braunfels, Texas, 30 X 60 Minute Quadrangle” (Baumgardner and Collins, 1991; Collins and
others, 1991a, b; Raney and Collins, 1991; Collins, 1992a through d, 1993b through h, 1994a through e, 1995a

through j).

a zoom transfer scope was used to transfer some
of the geologic data viewed on the photographs
to the 1:24,000-scale base maps. Open-file
maps, scale 1:24,000, were digitized into a
seamless data set for production of the
1:100,000-scale map. Digital-map data are also
in an ARCINFO Geographic Information
System (Tremblay and others, 1997).

The region is generally vegetated enough to
make mapping difficult, and public access is
typically limited to public roads, public areas
at lake shorelines, and parts of the Guadalupe
and Blanco Rivers. Geologic unit contacts and
faults are portrayed on maps by solid and dashed
lines to reflect the relative certainty with which
features can be located in the field and observed
on aerial photographs. Unit contacts and faults
drawn as solid lines are relatively more distinct
in the field and on photographs than those drawn

as dashed lines. Dotted lines show where faults
are covered by alluvium. The contact between
the upper and lower Glen Rose units is dashed
everywhere because it is an informal
subdivision. Identification of this contact is
based on the occurrence of a stratigraphic
interval having thin beds that contain the fossil
clam, Corbula. The top of the Corbula interval
marks the top of the lower Glen Rose. The letter
C designates where these fossils were observed
in the field.

Previous Studies

This study benefited from, and builds on,
many previous geologic investigations done
within and near the study area. Several regional
geologic maps, scales of 1:250,000 or
1:500,000, illustrate the study area’s setting



(U.S. Geological Survey, 1937; Brown and
others, 1974; Gustavson and Wermund, 1985;
Barnes, 1992). Other existing geologic maps
having scales between 1:24,000 and 1:250,000
illustrate parts of the study area in varying detail
and accuracy (Liddle, 1918; Sellards, 1919;
George, 1952; Bills, 1957; King, 1957; Noyes,
1957; Whitney, 1957; Arnow, 1959; Holt, 1959;
Reeves and Lee, 1962; DeCook, 1963; Cooper,
1964; Abbott, 1966, 1973; Grimshaw, 1970,
1976; Newcomb, 1971; Rose, 1972; Shaw,
1974; Waddell, 1977; Waterreus, 1992; and
Stein, 1993). Most of these maps are presented
on planimetric base maps. Some of these
previous maps were done for Master’s and
Ph.D. studies and are unpublished.

The map was constructed from 32 geologic
maps, scale 1:24,000, interpreted by the author
and coworkers (Baumgardner and Collins,
1991; Collins and others, 1991a, b; Raney and
Collins, 1991; Collins, 1992a through d, 1993b
through h, 1994a through e, 1995a through j).
Independent of the mapping for this report, the
U.S. Geological Survey mapped hydrologic
units of the Edwards aquifer as part of individual
county studies (Small and Hanson, 1994;
Hanson and Small, 1995; Stein and Ozuna,
1995).

Many of the numerous previous studies con-
cerning geologic aspects of the study area are
mentioned later in this report. A few of the key
stratigraphic investigations include a discussion

by Young (1967) of the Lower Cretaceous and
the Young and Woodruff (1985) guidebook of
the Upper Cretaceous Austin Group; the Rodda
and others (1966) study of Lower Cretaceous
rocks; the Stricklin and others (1971) and
Amsbury (1974) investigations of the Lower
Cretaceous Trinity deposits; interpretations of
the Lower Cretaceous Edwards Group by Fisher
and Rodda (1969), Rose (1972), and Abbott
(1973); and the Moore (1964; 1996) evaluations
of Fredericksburg strata. The McFarlan and
Menes (1991) summary of the Lower Cre-
taceous of the Gulf of Mexico Basin and the
Sohl and others (1991) discussion of the Upper
Cretaceous of the Gulf of Mexico Basin were
also useful, as was the Sellards and others
(1932) volume on the stratigraphy of Texas and
the Roy (1986) summary of the Mesozoic
geology of the region. Regional faulting of the
area was summarized recently by Collins and
Hovorka (1997), and hydrology of the region
was summarized by Klempt and others (1979)
and Maclay and Small (1986). Relationships
between geology and land use in parts of Bexar
County were discussed by Shaw (1974),
Waddell (1977), and Ewing (1996). An
informative volume that contains a variety of
articles concerning geology, hydrology,
ecology, and social development along the
Balcones Escarpment was edited by Abbott and
Woodruff (1986).

Geologic Setting

Geology of the map area is dominated by
Cretaceous carbonate rocks and the Tertiary
Balcones Fault Zone. Cretaceous strata were
deposited on the San Marcos Platform, a south-
eastern platform area of the broader Central
Texas Platform between the East Texas and
Maverick Basins (fig. 1; map). Cretaceous units
exhibit facies changes and thickness increases
from the positive platform area toward the more
rapidly subsiding basin areas (Rose, 1972).

North of the study area is the Llano Uplitt, a
part of the Texas craton Precambrian basement.
Precambrian rocks of the Llano Uplift region
were exposed as islands during Early
Cretaceous time, but they were submerged
before the Late Cretaceous began.

Normal faults of the Balcones Fault Zone
generally follow the regional strike of the
Cretaceous outcrop belt and the structural grain
of the buried Paleozoic Ouachita fold and thrust
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FIGURE 3. (a) Location of Edwards strata cross sections; (b) schematic block diagram of relay ramp (folded
aquifer strata in ramp are highly fractured locally and may serve as a highly transmissive pathway); (c) and
(d) structural cross sections of Edwards strata cut by master faults of the San Antonio relay ramp; and
(e) structural cross section along axis of relay ramp.
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FIGURE 4. Lithostratigraphy of study area.

deposition and before abundant Eagle Ford
terrigenous clastic deposition (fig. 4), represents
the boundary between the Lower and Upper
Cretaceous within the Gulf Coast of Texas
(Young, 1967; Brown and others, 1974).

Cow Creek Formation

About 50 ft of Cow Creek limestone and
argillaceous limestone crops out locally along
the Guadalupe River and some of its tributaries
(Cooper, 1964). The base of the Cow Creek does
not crop out, although George (1952) estimated
on the basis of drilling interpretations a total
thickness of approximately 75 ft. The lower part
of this unit is a poorly indurated, clay-rich
limestone having sandy and dolomitic intervals
and abundant burrows locally. These lower Cow
Creek strata form gentle slopes along the
drainageways but may also form the steep
undercut part of bluffs at river cutbanks. The
upper limestone part of this unit is well-
indurated, grainy rock that has massive to thick
beds. Upper Cow Creek limestone commonly
forms a distinct ledge along the river.
Fossiliferous and crossbedded, it contains some
siliceous nodules, and the upper surface
contains limonite nodules and poorly defined
borings. Cow Creek strata were deposited in a
nearshore marine and, possibly, beach environ-
ment (Cooper, 1964). Stricklin and others
(1971) reported that upper Cow Creek strata
located north of the map area in northern Blanco
and western Travis Counties represent an
offlapping sequence of beach deposits built out
from a regressing shoreline. In this region north
of the study area, Cow Creek deposits are dis-
conformably overlain by nonmarine Hensell
terrigenous clastic deposits. Cooper (1964)
reported that Cow Creek and overlying Hensell
deposits along the Guadalupe River in the study
area represent deposition in a setting farther off-
shore, where Cow Creek marine deposition was
followed first by a hiatus and then Hensell
marine deposition.






Hensell Formation

Sandy limestone and sandy dolomitic lime-
stone compose the approximately 45-ft-thick
Hensell Formation exposed along the
Guadalupe River (map) and its tributaries
(Cooper, 1964). The lower part of the Hensell
outcrop is sandy limestone and sandy dolomitic
limestone that contains terrigenous siliciclastic
sand (Cooper, 1964). This part of the unit, which
1s poorly indurated, locally contains calcareous
geodes and oysters. Glauconitic sandy
limestone defines the upper part of the unit. The
lower part weathers more easily than the upper
part, and the lower part generally supports grass
vegetation and weathers to a loose, yellowish-
brown soil. The outcrop belt of the lower
Hensell also contains cultivated and previously
cultivated fields. Vegetation contrasts between
the lower Hensell and the overlying and
underlying strata, which support denser tree
growth, can commonly be used to identify its
areal distribution.

Hensell deposits in the map area were
deposited in a nearshore marine environment,
although updip toward the north and northwest,
Hensell sediments were deposited in an alluvial
setting (Cooper, 1964; Stricklin and others,
1971). Regionally Hensell deposits thin
downdip by laterally grading and interfingering
into marine Glen Rose deposits.

Glen Rose Formation

Limestone, dolomitic limestone, argillaceous
limestone, and some marl compose the Glen
Rose Formation. These strata are divided into
lower and upper units by a regionally extensive
stratigraphic interval that includes a fossilifer-
ous nodular limestone containing the echinoid
Salenia texana. This Salenia texana zone of the
lower Glen Rose is overlain by an interval that
has one to three thin limestone beds containing
the abundant casts and steinkerns of the small
clam Corbula (Stricklin and others, 1971;
Stricklin and Amsbury, 1974; Pittman, 1989).
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An interval of weathered evaporitic strata
overlies the Corbula interval, although
evaporite minerals are not seen at the surface
because of dissolution. The top of the Corbula
interval marks the top of the lower Glen Rose.

Characteristic Glen Rose stair-step topog-
raphy caused by alternating resistant and
recessive beds results from the common,
upward-shoaling, subtidal to tidal-flat, cyclic
deposition that occurred (Stricklin and others,
1971; Moore and Bebout, 1989). Fossils include
mollusks, rudistids, oysters, and echinoids. The
foraminifer, Orbitolina, is common, and dino-
saur tracks have been found locally (Jones and
others, 1998). Some strata exhibit honeycomb
porosity and karst features, including sinkholes
and caves.

The 200- to 270-ft-thick lower Glen Rose has
massive beds locally and contains some rudistid
reefs and mounds (Stricklin and others, 1971;
Perkins, 1974). Upper Glen Rose strata are more
dolomitic and less fossiliferous than they are in
the lower Glen Rose. Two intervals of disturbed
bedding and collapse breccia probably caused
by evaporite dissolution occur in the upper Glen
Rose. Thickness of the upper Glen Rose is
approximately 400 ft.

Recent soil studies within Glen Rose terrain
indicate that soils overlying some of the lime-
stone beds are degraded and nearly impervious,
whereas other soils overlying more argillaceous
beds are thicker and have greater water-
infiltration and water-holding properties (Marsh
and Marsh, 1994; Woodruff and others, 1994;
Wilding, 1997). These investigations suggest
that soil analyses done in conjunction with
geological interpretations may aid engineers and
developers in land-use practices and planning.

Walnut Formation

Walnut limestone, marl, and dolomitic
limestone compose a thin, 30- to 50-ft-thick unit
that thickens toward the north-northeast away
from the study area (Moore, 1964). Some earlier
workers, including Rodda and others (1966),






which is equivalent to the Walnut strata mapped
in the study area; (2) the Dolomitic Member;
(3) the Kirschberg Evaporite Member; and
(4) the Grainstone Member. Person rocks have
been subdivided into (from oldest to youngest)
(1) the Regional Dense Member; (2) the
Leached and Collapsed Members, undivided;
and (3) the Cyclic and Marine Members,
undivided (Rose, 1972; Maclay and Small,
1986).

Abbott (1973) noted that recognition of the
Edwards members in outcrop is difficult
because the stratigraphic position of the strata
is complicated by faulting. He also determined
that because the rocks have commonly been
dolomitized, chertified, recrystallized, and
dedolomitized, they have lost some of the
unique characteristics typical of different
depositional facies. Hovorka (1996) pointed out
that the repetitiveness of cycles in the Edwards
Group can also be a hindrance to understanding
the stratigraphy in outcrop because repetition
of the similar lithologies in the stacked cycles
makes it more difficult to accurately determine
stratigraphic position from small or discon-
tinuous outcrops. Abbott (1973) reported that
the Dolomitic, lower Grainstone, Leached,
Marine, and Cyclic Members of the Kainer and
Person Formations are unrecognizable in the
outcrop belt individually. Because the lower
Person’s Regional Dense Member is in con-
junction with adjacent stacked grainstones of
the upper Kainer Formation below, it is com-
monly recognizable in outcrops. The lower
nodular member, equivalent to Walnut strata for
this study, and the underlying Glen Rose rocks
are also generally distinct enough to be
recognized in outcrops. Hovorka (1996) noted
that if multiple cycles can be identified in
measured sections of outcrops and core, then
recognition of well-developed stacking patterns
in the formation sequences can be used to help
correlate the strata.

Woodruff and others (1998) recently noted
that nomenclature of Edwards Group subdivi-
sions can be confusing to the general public,
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as well to geologists unfamiliar with Central
Texas geology. They suggested using the most
widely recognized name, the Edwards Lime-
stone, for appropriate overview reports to main-
tain communication with the general public.
Although the geologic map of the study area
illustrates subdivisions of the Edwards Group,
the stratigraphic columns on the map and in
figure 4 help identify which units are part of
the Edwards Group.

Kainer Formation

Cyclic subtidal to tidal-flat deposition re-
sulted in much of the limestone, dolomitic
limestone, and dolomite that composes the
Kainer Formation, the lower unit of the Edwards
Group (Rose, 1972; Abbott, 1973). This unit,
approximately 250 ft thick in outcrop, thickens
downdip toward the southeast. Grainstones and
packstones are abundant in the upper part of
the unit. In some places leached evaporitic strata
and breccias are very distinct in the middle part
of the unit. The lower part of the unit commonly
comprises wackestones and packstones having
local argillaceous intervals.

Chert occurs throughout the unit in varying
amounts and is typically abundant. Honeycomb
porosity is common. Current laminations
and low-angle cross-stratification are also
present. Common fossils include rudistids,
oysters, gastropods, and miliolids (Rose, 1972;
Abbott, 1973).

Person Formation

Person limestone, dolomitic limestone, and
dolomite also reflect the shallow subtidal to
tidal-flat cyclic deposition on the San Marcos
Platform (Rose, 1972; Abbott, 1973). This upper
unit of the Edwards Group, 130 to 150 ft thick
along its outcrop belt, thickens downdip. Person
outcrops typically contain limestone inter-
bedded with recrystallized dolomitic limestone
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Basalt

Minor occurrences of basalt exist in the study
area, and these are thought to be related to Late
Cretaceous volcanism that is evident in Central
Texas areas outside the study area (Lonsdale,
1927; Baldwin and Adams, 1971; Brown and
others, 1974; Young and others, 1981; Ewing
and Caran, 1982). The most accessible basalt
occurrence in the map area is a northwest-
striking dike cutting Glen Rose limestone in the
Honey Creek State Natural Area adjacent to
Guadalupe River State Park in northwest Comal
County. S. C. Caran (personal communication,
1990) traced small outcrops of basalt and basalt
float across approximately 0.5 mi, although the
dike is most visible in a small outcrop at Honey
Creek. Cooper (1964) also mapped basalt
float in an area that is located approximately
3 mi southeast and along strike of the Honey
Creek dike.

Lower Taylor Group

Lower Taylor Group deposits, as much as
400 ft thick, comprise marl, argillaceous lime-
stone, limestone, and some clay—claystone to
mud-mudstone. Some of the limestone has a
chalky texture. The unit weathers to thick black
soil and generally covers low-relief areas.
Outcrops are rare. Lower Taylor soils are more
calcareous than soils of the upper Taylor Group,
and previous soil surveys (Taylor and others,
1966; Ramsey and Bade, 1977) were useful in
interpreting the contact between these two units.

For this study, lower Taylor Pecan Gap and
Anacacho Formations have not been divided or
separately identified. Pecan Gap deposits
become thinner toward the west across the
study area, and they probably interfinger with
Anacacho strata, which thin across the study
area toward the east (Brown and others, 1974;
Young, 1985). Ewing (1996) briefly discussed
some stratigraphic relationships of the Austin,
Pecan Gap, and Anacacho units in Bexar
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County, and he proposed the name “Wetmore
marl” for the marl-to-argillaceous limestone
interval between the Austin Group and upper
Taylor Groups.

Upper Taylor Group and Navarro Group

Cretaceous upper Taylor and Navarro strata
and overlying Paleocene to Eocene Midway
deposits are undivided on the geologic map
because these units have similar lithologies and
soils, making them extremely difficult to
differentiate. These units compose only a
relatively small part of the study area. They
weather to thick, black, clayey soil across an
area of relatively low topographic relief.
Outcrops generally do not exist. The upper
Taylor consists mostly of clay—claystone to
mud-mudstone, and the Navarro, composed of
marl and clay—claystone to mud-mudstone,
contains some thin siltstone and sandstone beds.
Combined, these two units are about 950 ft
thick.

Tertiary

Tertiary deposits (fig. 4) are present only in
a small southeast part of the study area (map).
The Paleocene Midway Group was deposited
in a marine-slope environment (Galloway and
others, 1991). Overlying the Midway Group are
the Paleocene—Eocene Wilcox Group
sediments, which represent one of the major
Cenozoic progradational episodes in the Gulf
of Mexico. Much younger Pliocene- to
Pleistocene-age fluvial gravel and sand deposits
typically cap topographically high areas in the
south-southeast part of the study area (map).

Midway Group

Midway Group clay—claystone to mud-
mudstone, siltstone, and sandstone are between
100 and 400 ft thick. They weather to thick,






planning in the study area that benefit from basic
geological information. Foundation designs
vary according to the ability of the soil or
rock to support the foundation and structure
(buildings, bridges, roads, etc.). Thick, swelling-
clay soils may require foundation designs
different from what limestone with thinner soils
might. For example, swelling and shrinking
clay of the Del Rio Formation is notorious
for causing structural problems. Thick, clay-
rich deposits of the Upper Taylor Group also
have the potential to cause problems if founda-
tions are not properly designed. Complexly
faulted areas may have juxtaposed strata
and associated soils with varying physical
properties, creating potential construction/
foundation problems.

Occurrence of solution cavities 1s another
possible concern of engineers designing founda-
tions. Solution features such as sinkholes and
caves commonly serve as key ground-water
recharge conduits for the aquifers. Only the
sinkholes that are most noticeable on aerial
photographs are illustrated on this report’s
geologic map. Mapping of solution features at
a more detailed scale than that of the map is
required for responsible development through-
out much of the study area. Solution cavities
of various dimensions occur within the Kainer
and Person Formations, an arcally extensive
karstic outcrop belt of limestone and dolomitic
limestone of the Edwards Group. Caves,
sinkholes, solution-widened fractures and
bedding planes, and other karst features also
commonly occur within other Cretaceous units,
such as the Glen Rose, Walnut, and Georgetown
Formations.

The ease of excavating rock for construction
projects impacts construction planning and
costs. The more competent units of the Glen
Rose, Walnut, Kainer, Person, Georgetown, and
Buda Formations are relatively more difficult
to excavate than are the more clay-rich and
thinly bedded strata of the Del Rio, Eagle Ford,
Austin, and Taylor Formations. Different
techniques of excavating may be required for

different units. Chert is very common in parts
of the Kainer and Person Formations, and its
occurrence and hardness can cause difficulties
for some excavation methods.

Landslides or slumps may form by slope
failure in clay-rich units, in limestone above the
thicker clay-rich strata, in interbedded limestone
and marl units, and along drainageways in sandy
and gravelly alluvium. Many slumps are caused
by natural oversteepening of slopes due to
erosion and by human-induced removal of slope
toes (base of slopes) during construction. Water
saturation may also contribute to slope failures.
Slumps are common where Del Rio clay—
claystone to mud-mudstone occurs along
steeper slopes, bluffs, and construction cuts into
the unit. Layers of Buda limestone, which
commonly caps hillsides of Del Rio, are also
susceptible to slope failure. Where the Glen
Rose, Walnut, Kainer, Person, Georgetown, and
Austin units are composed of limestones
interbedded with softer, argillaceous limestone
and marl beds, oversteepening of natural bluffs
and excavations may also cause landslides.
Slumping along oversteepened slopes of
drainageways can also occur in clay-rich Taylor
deposits and sandy and gravelly alluvium,
sometimes near bridges and roads.

Drainageways in the study area are subject
to flooding by local rainstorms. Caran and
Baker (1986) reported that high-magnitude
floods occur with greater frequency in the
Balcones Escarpment area than in any other
region of the United States. Although the
comparison of flood frequency and magnitude
between that of the entire nation and that of the
Balcones Escarpment can be scientifically
debated, drainageways within the Balcones
Escarpment arca are certainly susceptible to
relatively frequent floods. Urbanization, which
results in increased impervious cover and,
hence, increases in runoff, may also elevate
flooding potential in some localities. Properly
engineered flood-prevention construction,
however, may protect (or at least partly protect)
some lower elevation areas from flooding.












reviewers T. F. Hentz, S. D. Hovorka, R. C.
Smyth, and S. C. Ruppel. Others contributing
to the production of this report were Susan

Lioyd, word processing and design, and
Lana Dieterich, editing, both under the super-
vision of Susann Doenges, Chief Editor.
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