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Abstract

In this dissertation, the problem of directions-of-arrival (DoA) estimation is studied

by the compressed sensing application of sparsity-promoting regularization techniques.

Compressed sensing can recover high-dimensional signals with a sparse representation

from very few linear measurements by nonlinear optimization. By exploiting the sparse

representation for the multiple measurement vectors or the spatial covariance matrix

of correlated or uncorrelated sources, the DoA estimation problem can be formulated

in the framework of sparse signal recovery with high resolution. There are three main

topics covered in this dissertation. These topics are recovery methods for the sparse

model with structured perturbations, continuous sparse recovery methods in the super-

resolution framework, and the off-grid DoA estimation with array self-calibration. These

topics are summarized below.

For the first topic, structured perturbation in the sparse model is considered. A

major limitation of most methods exploiting sparse spectral models for the purpose of

estimating directions-of-arrival stems from the fixed model dictionary that is formed

by array response vectors over a discrete search grid of possible directions. In general,

the array responses to actual DoAs will most likely not be members of such a dictio-

nary. Thus, the sparse spectral signal model with uncertainty of linearized dictionary

parameter mismatch is considered, and the dictionary matrix is reformulated into a mul-

tiplication of a fixed base dictionary and a sparse matrix. Based on this sparse model,

we propose several convex optimization algorithms. However, we are also concerned

with the development of a computationally efficient optimization algorithm for off-grid

direction finding using a sparse observation model. With an emphasis on designing

efficient algorithms, various sparse problem formulations are considered, such as uncon-

strained formulation, primal-dual formulation, or conic formulation. But, because of

the nature of nondifferentiable objective functions, those problems are still challenging
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to solve in an efficient way. Thus, the Nesterov smoothing methodology is utilized to

reformulate nonsmooth functions into smooth ones, and the accelerated proximal gra-

dient algorithm is adopted to solve the smoothed optimization problem. Convergence

analysis is conducted as well. The accuracy and efficiency of smoothed sparse recovery

methods are demonstrated for the DoA estimation example.

In the second topic, estimation of directions-of-arrival in the spatial covariance model

is studied. Unlike the compressed sensing methods which discretize the search domain

into possible directions on a grid, the theory of super resolution is applied to esti-

mate DoAs in the continuous domain. We reformulate the spatial spectral covariance

model into a multiple measurement vectors (MMV)-like model, and propose a block

total variation norm minimization approach, which is the analog of Group Lasso in

the super-resolution framework and that promotes the group-sparsity. The DoAs can

be estimated by solving its dual problem via semidefinite programming. This gridless

recovery approach is verified by simulation results for both uncorrelated and correlated

source signals.

In the last topic, we consider the array calibration issue for DoA estimation, and

extend the previously considered single measurement vector model to multiple measure-

ment vectors. By exploiting multiple measurement snapshots, a modified nuclear norm

minimization problem is proposed to recover a low-rank matrix with high probability.

The definition of linear operator for the MMV model is given, and its corresponding ma-

trix representation is derived so that a reformulated convex optimization problem can

be solved numerically. In order to alleviate computational complexity of the method, we

use singular value decomposition (SVD) to reduce the problem size. Furthermore, the

structured perturbation in the sparse array self-calibration estimation problem is consid-

ered as well. The performance and efficiency of the proposed methods are demonstrated

by numerical results.
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Chapter 1

Introduction

Directions-of-arrival (DoA) estimation is a common problem in array signal processing.

The main goal of DoA estimation is to locate closely spaced signals in angle, in the

presence of high-variance noise and low number of snapshots. Several methods for high-

resolution DoA estimation are well established, and widely used. These include the

multiple signal classification (MUSIC) [1], minimum variance distortionless response

(MVDR) [2], and the estimatin of signal parameter via rotational invariance techniques

(ESPRIT) [3]. The maximum likelihood (ML) [4] estimator of DoA acheives excellent

performance, but it suffers from substantial complexity, and sensitivity to initialization.

Its computational cost is reduced, for example through the data-supported grid search

[5]. In [6], an enhanced matching pursuit (MP) algorithm for DoA estimation is proposed

to take advantages of multiple snapshots of received signals to attain better performance

over MUSIC and ESPRIT at low signal-to-noise ratios (SNR).

Compressed sensing [7] has motivated the application of the sparse signal represen-

tation on overcomplete dictionaries for the design of super-resolution of directions-of-

arrival (DoA) estimators. Sparse recovery methods with applications to DoA estima-

tion will be the subject of this dissertation. Since the problem formulation and the

sparsity-promoting methods proposed for DoA estimation here have deep connections
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Figure 1.1: Sparse system.

with compressed sensing, a brief introduction of sparse model, and sparsity-encouraging

regularization methods are provided in the next section.

1.1 Background

1.1.1 Sparse System Formulation of Compressed Sensing

In compressed sensing, a linear system as shown in Figure 1.1 is considered

y = As + n, (1.1)

where y ∈ CM×1 is an observation measurement vector, A ∈ CM×N (M � N) is a

known dictionary matrix, n ∈ CM×1 is a measurement error or additive noise vector,

and s ∈ CN×1 is a K-sparse signal vector of interest. There are only K nonzero entries

in s, and K � N . As long as the dictionary matrix A meets the requirement of the

Restricted Isometry Property (RIP) [8, 9, 10], the sparse vector s can be reconstructed

even with a few of measurements by using a Lasso, or basis pursuit denoising solver.

However, the dictionary matrix A may not be known perfectly due to certain noise

or modeling perturbations. In [11], the sensitivity of basis mismatch in the dictionary

matrix is analyzed.
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A commonly-used observation for off-grid effects follows the noisy structured per-

turbation model given by:

y = (A + BΓ)s + n, (1.2)

where A ∈ CM×N is known, and B ∈ CM×N is known as part of the off-grid approx-

imation. Γ = diag(β), and β = [β1, . . . , βN ]T is denoted as the unknown coefficient

vector for the approximation. s is the sparse vector associated with grid points near-

est the true supports. The above can be solved by formulating a sparsity-promoting

constrained nonconvex minimization problem to estimate s and β sequentially by the

alternating method [12, 13], but with slow convergence.

Note that instead of adopting the above formulation, the off-grid effect can be

avoided by using a continuous sparse signal reconstruction method developed in the

super-resolution framework [14].

1.1.2 Self-Calibration in Compressed Sensing

A general self-calibration estimation problem in compressed sensing is given by

y = A(h)x + n, (1.3)

where y is a measurement vector, A(h) is a measurement matrix with unknown calibra-

tion parameters h, x is a sparse signal of interest, and n is additive noise. The goal is to

recover x and h, given y. h is used to capture the calibration error, which is common in

the sensing devices. The main reason of the calibrating issue in array processing comes

from antenna position offsets or environmental changes on the sensors. Therefore, since

x is assumed sparse, we can come up with L1-norm minimization problem

(x̂, ĥ) = arg min
x,h

1

2
||A(h)x− y||22 + α||x||1, α > 0. (1.4)

However, this is a non-convex optimization problem so that it’s challenging to get a

global optimal solution.
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1.2 Dissertation Contributions

There are several topics covered in this dissertation. First, the structured perturbation

(off-grid) model of sparse recovery is considered, and efficient algorithms are devel-

oped. Then, the off-grid effect is avoided by a gridless sparse recovery method in the

super-resolution framework. We then consider the calibration issue in the structured

perturbation system, and propose a variant of the nuclear norm minimization problem.

The main contributions are summarized as follows.

• Sparse Recovery Methods with Structured Perturbations and Efficient

Algorithm Designs

In compressed sensing, the sensing matrix is assumed perfectly known. However,

there exists perturbation in the sensing matrix in reality due to sensor offsets

or noise disturbance. Directions-of-arrival (DoA) estimation with off-grid effect

satisfies this situation, and can be formulated into a (non)convex optimization

problem with linear inequalities constraints. There exist many solvers, which

can be used to solve this formulation, such as group Lasso [15], basis pursuit

denoising (BPDN) [16], or Dantzig selector [17]. The performance analysis and

computable performance bounds of those sparse recovery solvers are conducted

in [18, 19]. Those solvers can utilize the interior point method (using the CVX

tools), but at a large computational cost. In order to design efficient algorithms,

we consider various alternative formulations, such as unconstrained formulation,

primal-dual formulation, or conic formulation. However, due to the nature of

the objective functions, those entail solution of nonsmooth problems. Thus, the

Nesterov smoothing is applied and combined with the accelerated gradient descent

method to develop efficient algorithms. The convergence rate for the algorithms

is analyzed as well. The efficiency and accuracy of smoothed sparse recovery

methods are demonstrated in the numerical results of DoA estimation.

• Gridless Sparse DoA Estimation Recovery Methods
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In this work, the spatial spectral covariance model for the DoA estimation prob-

lem is reformulated into a MMV-like model for several reasons, including com-

putational savings, and extrapolating array apertures. Since multiple snapshots

of source signals share the same source locations which are sparse in continuous

space, this property can be exploited to enhance the estimation of DoAs. Thus,

we extend the theory of super-resolution from single measurement vector (SMV)

[14, 20] to multiple measurement vector (MMV) by defining a block total variation

(BTV) norm for a complex measure with same locations but different amplitudes

at multiple snapshots. Then, the minimization problem of BTV norm is proposed.

By the parameter mapping of MMV-like system in this extended super-resolution

framework, the DoA estimation problem can be solved efficiently via the proposed

BTV norm minimization problem. Its dual with infinite constraints can be trans-

formed to semidefinite programming (SDP), which is used to estimate the source

locations. The performance of the proposed method is proved through two cases

of uncorrelated and correlated source signals.

• Low Rank Recovery Methods with Structured Perturbations for Array

Calibration

In this work, the combined calibration and DoA estimation, is approached by

extending known SMV approaches [21] to the MMV case. By taking advantage

of multiple snapshots, a modified nuclear norm minimization problem is proposed

to recover a low-rank matrix with larger matrix dimension. We also give the

definition of linear operator for the MMV model, and its corresponding matrix

representation so that we can come up with a variant of convex optimization.

In order to mitigate the computational complexity, singular value decomposition

(SVD) is applied to reduce the problem size. Moreover, the off-grid effect in

the sparse array self-calibration problem is considered. The performance of the

proposed methods are demonstrated by numerical simulations and compared with
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Cramer-Rao Bound (CRB) [22], and the eigenstructure-based method [23].

1.3 Outline of this Dissertation

This dissertation covers several different topics about the sparse off-grid recovery. Chap-

ter 2 introduces the off-grid effect in the sparse DoA estimation problem. Nonconvex

or convex optimization problems with linear constraints emerge, and several algorithms

are proposed to estimate the off-grid parameters and sparse signals by using their spar-

sity property. Chapter 3 extends to the nonsmooth convex optimization problems with

linear constraints, and proposes efficient optimization algorithms by using smoothing

techniques. Chapter 4 considers formulation of a continuous sparse recovery problem

by the super resolution theory, instead of in the discretized domain. The reconstruction

accuracy can be increased by solving a proposed semidefinite programming problem.

Chapter 5 introduces the calibration issue from SMV to MMV in sparse array process-

ing. The off-grid effect with calibration is also formulated as a convex optimization

problem, and solved by using nuclear norm minimization. The results are summarized

in Chapter 6, including conclusions and future directions.

1.4 Notations

Vectors and matrices are represented by boldface lowercase and uppercase letters, re-

spectively. E(·) denotes the expectation operator and (·)H denotes the Hermitian trans-

pose of a matrix. (·)T denotes the transpose of a matrix. (·)∗ denotes the complex con-

jugate of variables. diag(x) represents a diagonal square matrix with the elements of

vector x on the diagonal, while diag(X) returns a vector with the diagonal elements of

matrix X. [X]ii represents the i-th component on the diagonal of matrix X. � denotes

the Hadamard product. vec(·) is a vectorizing operator, and ⊗ denotes the Kronecker

product.



Chapter 2

Sparse Off-Grid Recovery

Methods in the Discretized

Domain

In this chapter, a sparse spatial spectral model with off-grid effect is discussed. We pro-

posed several discretized sparse recovery methods. Their performance are demonstrated

by conducting simulations in the directions-of-arrival (DoA) estimation scenario.

2.1 Introduction

Developments in sparse model recovery and compressed sensing [7] have motivated the

use of the sparse signal representation on overcomplete dictionaries for the design of

super-resolution of directions-of-arrival (DoA) estimators. In [24], the L1-SVD method

was promoted for increased resolution capabilities and robustness to noise without ac-

curate initialization. In [25], the Sparse Spatial Spectral Fitting method (SpSF) was

adopted as a similar approach as the L1-SVD, but based on the model of the spa-

tial covariance. The SpSF method achieves similar performance in DoA estimation as

7
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the L1-SVD, and obtains estimates of the source powers at the same time. Another

similar approach was also presented in [26]. When the actual DoAs do not belong to

the search grid, the performance of the sparsity-exploiting estimators such as the ones

mentioned above can be significantly degraded. To accommodate such off-grid situa-

tion, Reference [12] proposed the Weighted and Structured Sparse Total Least-squares

(WSS-TLS) method. In [27], the Sparse Spectral Fitting with Modeling Uncertainty

(SSFMU) estimator was presented, which relaxes a non-covex optimization problem to

a convex one. The SSFMU with diagonal loading can effectively ease the sensitivity of

selecting improper optimization parameters. In [28], the off-grid frequency estimation

problem is solved by an atomic norm minimization. This can then be re-formulated

as a semidefinite programming. In [29], a group lasso-based algorithm called Bounded

Joint-Sparse (BJS) method is developed to overcome the dictionary mismatch. In [30], a

low-complexity iterative alternating descent algorithm (SOMP-LS) is proposed to solve

off-grid problems, but its performance appears to be questionable for closely-spaced

sources. A number of off-grid model approximations and solutions have been proposed,

for example [13, 31, 32, 33, 34, 35].

In this chapter, the covariance-based sparse spatial spectral model with off-grid DoAs

is further studied. By linearizing off-grid errors of the discrete array response vectors, a

doublely sparse model is derived, which is decomposed into the multiplication of a pre-

specified base dictionary, a sparse dictionary, and a sparse signal. The alternating Lasso

(ALasso) algorithm is introduced to solve three optimization problems associated with

alternately estimating variables, involved in tuning several optimization parameters. In

order to overcome the associated computational disadvantage, we consider the same

sparsity patterns of variables to develop two lower complexity algorithms: the Lasso-

based Least Squares (LLS) and the group-sparsity estimator (GSE). Computer simula-

tions compare the error performance of the proposed methods with SSFMU, SOMP-LS,

BJS and multiple signal classification (MUSIC) [36], demonstrating the advantages of

ALasso and GSE at low signal-to-noise ratios (SNRs).
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2.2 Observation Model

2.2.1 Multiple Measurement Vector and Spatial Spectral Model

Consider an array of M sensors and suppose that there are K far-field narrowband

sources impinging on the array from angles θ1, . . . , θK . The observation vector y(t) =

[y1(t), . . . , yM (t)]T ∈ CM×1 at time t is modeled as

y(t) = Gx(t) + n(t), t = 1 . . . , T, (2.1)

where the measurement matrix G = [g(θ1), · · · ,g(θK)] ∈ CM×K is composed of the

steering vectors {g(θi) = [e−j(−(M−1)/2)2π d
λ
sinθi , . . . , e−j((M−1)/2)2π d

λ
sinθi ]T }Ki=1 with wave-

length λ, and n is i.i.d. white Gaussian noise with N (0, σ2I). The vector x(t) =

[x1(t), . . . , xK(t)]T ∈ RK×1 or CK×1 represents the arriving signal vector with statisti-

cal distribution N (0,Cs). Denote Tθ = {sin(θk)}Kk=1 ⊂ T = [−1, 1] as the support set

for the sines of the angles of arrival. If T > 1 multiple snapshots are considered, we can

define the following MMV system as

Y = GX + N, (2.2)

where the obervation matrix Y = [y(1), . . . ,y(T )] ∈ CM×T , the source signal matrix

X = [x(1), . . . ,x(T )] ∈ RK×T or CK×T , and the noise matrix N = [n(1), . . . ,n(T )] ∈

CM×T . Since multiple snapshots of vectors in X share the common sparsity pattern of

the support set in the domain T, this property can be exploited to jointly estimate the

support set Tθ.

Based on the second-order statistics of the received signals, the spatial spectral

model is given by

R = E[yyH ] = E[GxxHGH ] + σ2I = GS̃G
H

+ σ2I

=
K∑
i=1

E[xix
∗
i ]g(θi)g(θi)

H + σ2I =
K∑
i=1

s̄ig(θi)g(θi)
H + σ2I, (2.3)
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where S̃ = diag([s̄1, · · · , s̄K ]) ∈ RK×K is the covariance matrix of uncorrelated signals

impinging on the array with the signal power s̄i = E[xix
∗
i ], and σ2 is denoted as the

power of AWGN. In practice, we use R̄ =
∑T

t=1 y(t)y(t)H/T as the estimate of the

covariance matrix R, where T is denoted the number of snapshots. Thus, the approxi-

mation error and AWGN are summed into a new error term v, and the spatial spectral

model is expressed as

R̄ =

K∑
i=1

s̄ig(θi)g(θi)
H + v. (2.4)

By vectorizing Equation (2.4), the covariance model is reformulated into

r = P(θ)̄s + vv, (2.5)

where r = vec(R̄) ∈ CM2×1, vv = vec(v) ∈ CM2×1, s̄ = [s̄1, · · · , s̄K ]T ∈ RK×1, P(θ) =

[p(θ1), · · · ,p(θK)] ∈ CM2×K , and p(θi) = vec(g(θi)g(θi)
H) ∈ CM2×1.

Next, two problem formulations in the discrete and continuous domain are intro-

duced in the following sections.

2.2.2 Sparse Off-Grid DoA Model

The DoA estimation problem can be treated as a search for the most likely candidates

over the discretized grid of directions, which are denoted by {φ1, φ2, · · · , φL} where

L is the number of discrete directions and L � K. Suppose that the actual DoAs

{θ1, θ2, · · · , θK} belong to the grid of interest represented by {φ1, φ2, · · · , φL}. Then,

Equation (2.5) can be transformed into a sparse spatial spectral model as:

r = P(φ)s + vv, (2.6)

where P(φ) = [p(φ1), · · · ,p(φL)] ∈ CM2×L is called measurement matrix and s =

[s1, · · · , sL]T ∈ RL×1 represents the sparse spatial spectrum, i.e., ∀i = 1, · · · , L, if

∃j,3 φi = θj ∈ {θ1, θ2, · · · , θK} , then si = s̄j ; otherwise, si = 0. This problem
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Figure 2.1: Illustration of off-grid error in DoA.

can be solved by l1-norm minimization with proper regularization paprameter α as the

following:

arg min
s
||r−P(φ)s||22 + α||s||1, (2.7)

where || · ||p is denoted as p-norm, p = 1 or 2.

In reality, the actual DoAs most likely will not belong to the discretized grid in

the optimization model. Therefore, off-grid errors {βi}Li=1 is introduced into the sparse

spatial spectral model as shown in Figure 2.1. Such error is defined as βi = θj − φi if

there exists θj close to φi; otherwise βi = 0. It is noted that ∀i, |βi| ≤ r for some constant
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r, which is the bound of error. Using the first order Taylor Series expansion, the array

response vector g(θj) is approxmated as g(θj) ∼= g(φi) + g′(φi)(θj −φi), where g′(φi) is

the first order derivative of g(φi) with respect to φi. Then, p(θj) = vec(g(θj)g(θj)
H) ∼=

ci + (di + ei)βi + fiβ
2
i where ci = vec(g(φi)g(φi)

H), di = vec(g′(φi)g(φi)
H), ei =

vec(g(φi)g
′(φi)

H), and fi = vec(g′(φi)g
′(φi)

H). Equation (2.6) can be rewritten as

r ∼= Cs + (D + E)diag(b)s + Fdiag(b� b)s + vv (2.8)

where C = [c1, · · · , cL] ∈ CM2×L, D = [d1, · · · ,dL] ∈ CM2×L, E = [e1, · · · , eL] ∈

CM2×L, F = [f1, · · · , fL] ∈ CM2×L , and b = [β1, · · · , βL]T ∈ RL×1 is called the off-grid

vector.

We reformulate Equation (2.8) into

r ∼= QUs3 + vv (2.9)

= QTq + vv, (2.10)

where s3 = [sT , sT , sT ]T ∈ R3L×1 is an extended sparse spatial vector , and its corre-

sponding sparse vector q = [q1, · · · , q3L]T ∈ R3L×1, which is defined as ∀l ∈ {1, · · · , 3L},

if s3l 6= 0, then ql = 1; othewise, ql = 0. Q = [C (D + E) F] ∈ CM2×3L is called the

fixed base dictionary matrix. The sparse dictionary matricesT,U are defined as

T =


T1 0 0

0 T2 0

0 0 T3

 ,U =


U1 0 0

0 U2 0

0 0 U3

 , (2.11)

where T1 = diag(s), T2 = diag(s � b), T3 = diag(s � b � b), U1 = diag([1, · · · , 1]),

U2 = diag(b), and U3 = diag(b�b). Note that T,U,q, and s3 have the same sparsity

pattern. Thus, this system can be viewed as a double-sparsity model [37].

Based on Equation (2.9) or (2.10), the optimization problem can be expressed as

the following unconstrained ones:

ŝ, b̂ = arg min
s,b
||r−QUs3||22 + α1||s3||1, (2.12)
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ŝ, b̂ = arg min
s,b,q

||r−QTq||22 + α2||q||1. (2.13)

where α1, α2 are regularization parameters. Both optimization problems are obviously

nonconvex ones since the optimization variables, s and b, multiply each other.

2.3 Proposed Methods

In order to solve the above nonconvex problem, we proposes three methods. First, an

alternating Lasso (ALasso) algorithm is proposed to solve it by alternately estimating

variables s and b. The convergence of Alasso is guaranteed since it is an application of

block coordinate descent [38].

2.3.1 Alternating Lasso (ALasso)

There are three main steps to the proposed alternating lasso. First, given the initialized

off-grid vector b and by the use of Equation (2.9), we can find the most likely candidates

of DoA by

ŝ3 = arg min
s3
||r−QUs3||22 + α||s3||1, (2.14)

where ŝ3 = [̂sT , ŝT , ŝT ]T . Since r,Q, and U are given in this convex optimization

problem, it can be solved by Lasso. Then, in terms of ŝ3, q is determined by the

following criteria: Given by a threshold ξ, ∀i ∈ {1, · · · , L}, if ŝi ≥ ξ, set qi = 1, qi+L =

1, qi+2L = 1; otherwise, qi = 0, qi+L = 0, qi+2L = 0.

Next, by fixing q and using Equation (2.10), we can update the sparse spatial

spectrum s by solving the following optimization problem

T̂ = arg min
T
||r−QTq||22 + η||diag(T)||1

s.t. 0 ≤ [T1]ii, ∀i

− r[T1]ii ≤ [T2]ii ≤ r[T1]ii, ∀i

0 ≤ [T3]ii ≤ r2[T1]ii, ∀i, (2.15)
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where T̂ = diag([̂s, ŝ � b̂, ŝ � b̂ � b̂]), T̂1 = diag(̂s), T̂2 = diag(̂s � b̂), and T̂3 =

diag(̂s� b̂� b̂).

Finally, by fixing s, the off-grid vector b is updated by

Û = arg min
U
||r−QUs3||22 + γ||diag(U)||1

s.t. 0 ≤ [U1]ii ≤ 1,∀i

− r ≤ [U2]ii ≤ r, ∀i

0 ≤ [U3]ii ≤ r2,∀i, (2.16)

where Û2 = diag(b̂).

The drawback of this method is its complexity due to solving three optimization

problems, and involving three regularization parameters that have to be tuned. There-

fore, we proposed two reduced-accuracy approaches which are of lower complexity, i.e.,

the group-sparsity estimator (GSE) and Lasso-based Least Squares (LLS) method.

2.3.2 Lasso-based Least Squares (LLS)

Consider Equation (2.10) and reformulate it as

r ∼= Qz + vv, (2.17)

where z = [zT1 , z
T
2 , z

T
3 ]T = [ sT , (s�b)T , (s�b�b)T ]T = Tq, since T and q have the

same sparsity pattern. According to the solution of the optimization problem (2.14),

the most likely candidate of DoA ŝ is determined. Then, we define the support set

Ω = {i, i + L, i + 2L : ∃ξ, ŝi ≥ ξ,∀i = 1, . . . , L} with its cardinality |Ω| = n. In terms

of the support set Ω, the reduced matrix QΩ ∈ CM2×n is obtained. Since M2 � n, the

Moore-Penrose pseudo-inverse matrix exists and is given by (QH
Ω QΩ)−1QH

Ω . The Least

Squares solution is expressed as

ẑΩ = (QH
Ω QΩ)−1QH

Ω r. (2.18)
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Thus, the estimate of s and b is obtained as

ŝΩ = ẑΩ
1 , b̂

Ω = ẑΩ
2 � ẑΩ

1 , (2.19)

where � denotes element-wise division.

2.3.3 Group-Sparsity Estimator (GSE)

By observing the vector z in Equation (2.17), group sparsity is promoted since s and

b have the same sparsity pattern. Define ||[zT1 , zT2 , zT3 ]T ||2,1 =
∑3L

l=1 |δk|, where δl =

||[z1,l, z2,l, z3,l]||2,∀k. The notion of Group Lasso [15] is used to solve this convex problem

ẑ = arg min
z
||y −Qz||22 + ζ||z||2,1

s.t. z1 � 0, rz1 � z2 � −rz1, r
2z1 � z3 � 0, (2.20)

where � represents component-wise inequality. Once the estimate of z is solved, we use

the rule of Equation (2.19) to compute the estimates of s and b.

2.4 Numerical Results

In this subsection, Monte Carlo simulation is conducted to evaluate the performance

of the proposed methods for problem formulation I in comparison with several existing

methods. A ULA of M = 8 sensors with d/λ = 0.5 and K = 2 far-field plane waves

from the actual DoA of −5.4◦ and 4.6◦ is considered. Narrowband, zero-mean, and

uncorrelated sources for the plane waves are assumed, and the noise is AWGN with

zero-mean and unit variance. We use the uniform search grid from −90◦ to 90◦ with

1◦ separation for all methods except MUSIC with 0.1◦ separation. The number of

snapshots is set T = 3000. The value of r is set to 0.5◦. The off-grid vector b is

initialized as a zero vector in the ALasso algorithm. The root mean square error (RMSE)

of DoAs estimation is defined as (E[||[θ1− θ̂1, θ2− θ̂2]||22])1/2, and the normalized RMSE

of powers estimation is (E[||[s1 − ŝ1, s2 − ŝ2]||22])1/2/E[||[s1, s2]||2]. For each method,
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when solving the optimization problem, the regularization parameters are empirically

selected to achieve the best performance.

In Figure 2.2, the RMSE of DoA estimation of ALasso, LLS, GSE, SSFMU, SOMP-

LS, BJS and MUSIC are presented. One hundred realizations are executed for each

SNR. The complexity of SOMP-LS is lower, but its performance is the worst because

two sources are close. Although the MUSIC method with finer grid searchs outperforms

all the others when SNR is high, its performance degrades rapidly below its large error

threshold of approximately SNR=-10dB. We observe that ALasso, LLS, GSE, SSFMU

have similar RMSE and better than BJS when the SNR is high, e.g., SNR=0 or 5.

Therefore, we are more interested in their performance when SNR is lower, particularly

below the MUSIC threshold. Below -5 dB, the ALasso has the best performance. For

the RMSE of 0.6, ALasso outperforms SSFMU by about 7.5 dB. The LLS has poor

RMSE since the noise effect significantly reduces the accuracy of estimating zΩ. The

GSE, BJS, and SSFMU have similar RMSE at SNR=−5 and −10. However, GSE

outperforms SSFMU and BJS below −15 dB.

2.5 Summary

In this chapter, we proposed a sparse spatial spectral estimator that accounts in its

model DoAs that are off the search grid. The best solution entails an alternating

Lasso approach, which alternately solves for the spatial powers and off-grid DoAs at

the expense of significant complexity. Then, by promoting group sparsity, Lasso-based

Least Squares and group-sparsity estimator are proposed to reduce the computational

complexity. By computer simulations, the performances of the proposed methods are

evaluated. Simulation results show that ALasso achieves the best RMSE of DoA esti-

mation. GSE and LLS maintain similar performances as SSFMU at higher SNRs with

lower complexity.



17

-20 -15 -10 -5 0 5

SNR

10
-2

10
-1

10
0

10
1

10
2

R
M
S
E
 
o
f
 
D
o
A

DoA

ALasso

SSFMU

GLasso

LLS

SOMP-LS

CRLB

MUSIC(0.1
o
 separation)

Figure 2.2: RMSE of DoA estimation versus SNR performance of the proposed methods
and previous ones.



Chapter 3

Smoothed Optimization for DoA

Estimation

In this chapter, we solve off-grid estimation problems by the following sparsity promot-

ing formulations: basis pursuit denoising (BPDN), group Lasso (least absolute shrink-

age and selection operator), quadratically constrained l2-l1 mixed norm minimization.

First, the alternating direction method of multipliers (ADMM)[39] is applied. Then,

an iterative algorithm for the BPDN solver are proposed by combining the Nesterov

smoothing technique with accelerated proximal gradient method, and the convergence

analysis of the method is conducted. We also developed a variant of EGT (Exces-

sive Gap Technique)-based primal-dual method to systematically reduce the smoothing

parameter. Finally, we proposed algorithms for quadratically constrainedl2-l1 mixed

norm minimization by using the smoothed dual conic optimization and continuation

technique. All the proposed methods are implemented, and verified in the directions-

of-arrival (DoA) problems.

18
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3.1 Introduction

Many inverse problems in signal processing, data mining, or statistical machine learning

can be cast as a composite optimization problem, which involves the minimization of a

sum of differentiable functions and nonsmooth ones, such as solving equation (1.2). Sub-

gradient algorithms [40] are developed to deal with nonsmooth optimization problems

but with very slow convergence rate. Instead of using subgradient methods, we attempt

to design algorithms for solving nonsmooth optimization (NSO) problems efficiently by

using a sequence of approximate smoothing problems to substitute for the original ones.

The core of the techniques considered is to make the nondifferentiable functions smooth

without introducing substantial approximate errors caused by the smoothing process.

Numerous different smoothing techniques have been proposed to solve NSO prob-

lems [41, 42, 43]. A primal-dual symmetric method derived from the excessive gap

condition for nonsmooth convex optimization is proposed in [44]. In [32], the nondiffer-

entiable function, which is approximated by the Moreau envelope function [43], is used

in the column-wise mismatch problem. In [45], the overlapping group-lasso penalty is

smoothed by the Nesterov smoothing technique [41]. A unified framework of smooth-

ing approximation with fast gradient schemes is proposed in [46]. In [47], an adaptive

Nesterov-based smoothing method is developed to dynamically choose the smoothing

parameter at each iteration of the update.

Instead of solving a constrained nonconvex minimization of (1.2), an unconstrained

convex optimization problem, which is composed of one smooth and two nonsmooth

functions, can be formulated. In [48], a number of primal-dual iterative approaches

for solving large-scale nonsmooth optimization problems, such as the M+LFBF (Mono-

tone+Lipschitz Forward Backward Forward) algorithm, are reviewed. In [49, 50], sub-

gradient methods are proposed, but their complexity can not be better than than O( 1√
k
)

where k is the number of iterations. Alternatively, smoothing as presented in [41] can

be applied to mitigate non-smoothness of the objective function. In [51], a proximal
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iterative smoothing algorithm was proposed to solve convex nonsmooth optimization

problems. In [32], the nondifferentiable function, which is approximated by the Moreau

envelope function [43], is used in the column-wise mismatch formulation.

In this chapter, an unconstrained off-grid DoA estimator is studied first. It consists

of one differentiable function and two nonsmooth ones, which are a regularized group-

sparsity penalty and an indicator function. Inspired by [41, 45], the Nesterov smoothing

methodology is used to reformulate the group-sparsity penalty into a ”max”-structure

function and then add a strongly convex term to smooth it. We propose two refor-

mulations for the group-sparsity penalty since `2/`1 mixed norm has a two-layer norm

structure. Then, the accelerated proximal gradient (APG) [52] method is used on the

smoothed optimization case. Note that our first proposed Nesterov smoothing method

is equivalent to the one in [32], as can be deduced from the results of [51]. It’s noted

that the smoothing parameter has to be chosen empirically in this method. Thus, by

the excess gap technique (EGT) [44], we developed a variant of EGT-based primal-dual

method in order to select the smoothing parameter systematically. Furthermore, in-

spired by [53, 54], a variant of algorithm for quadratically constrained l2-l1 mixed norm

minimization is proposed by using the smoothed dual conic optimization and continua-

tion technique. The performance and computational efficiency of our second proposed

method is demonstrated, and compared with the interior point method (CVX), MUSIC,

M+LFBF, and CRLB.

3.2 Preliminaries and DoA Model with Structured Per-

turbations

3.2.1 Preliminaries

In this section, some definitions and preliminary results are stated to be referenced later.
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Definition 3.1 (Lipschitz Continuous). A function f : Rn → R is ρ-Lipschitz continu-

ous if there exits ρ > 0 such that |f(x)− f(y)| ≤ ρ‖x− y‖, ∀x,y ∈ Rn.

Definition 3.2 (Lipschitz Continuous Gradient). The gradient of a differentiable convex

function f : Rn → R is Lipschitz continuous with parameter L > 0 if ‖∇f(x)−∇f(y)‖ ≤

L‖x− y‖, ∀x,y ∈ Rn.

Definition 3.3 (Strongly Convex). The function f : X → R is σ-strongly convex on a

closed convex set X with parameter σ > 0 if f(y) ≥ f(x)+∇f(x)T (y − x)+ σ
2 ‖y−x‖22,

∀x,y ∈ X .

The generic convex composite optimization problem is of the form:

min
x∈Rn
{f(x) + h(x) + i(x)}, (3.1)

that satisfy the following assumptions:

Assumption 3.1.

(i) f : Rn → R ∪ {+∞} is a proper, closed, convex and continuously differentiable

function. Its gradient is Lipschitz continuous with parameter Lf .

(ii) h : Rn → R ∪ {+∞} is a proper, closed, and convex ρh-Lipschitz continuous

function. It is not necessarily differentiable.

(iii) i : Rn → R ∪ {+∞} is a proper, lower semicontinuous, and convex function but

possibly nonsmooth. For instance, the indicator function of a closed set is lower

semi-continuous.
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3.2.2 Quick Review of DoA Model with Structured Perturbations

Recap the measurement model in Capter 2 and its covariance is described by

v(t) =
K∑
k=1

s̃k(t)a(θk) + n(t) = Ã(θ)s̃(t) + n(t), (3.2)

Rv = E[vvH ] =
K∑
k=1

σ2
ka(θk)a(θk)

H + σ2
nI. (3.3)

• v(t) ∈ CM×1 is the measurement vector.

• s̃k(t) is the k-th received signal with power σ2
k.

• a(θk) denotes the steering vector for direction θk with m-th entry e−j2π
dm
λ
sinθk ,

where λ is wavelength. Ã(θ) = [a(θ1), . . . ,a(θK)].

In compressed sensing, φ = [φ1, . . . , φN ] is defined as uniformly discretized grid

atoms for the dictionary matrix. The off-grid DoA is denoted by βi = θk − φi if φi is

closest to θk, ∀k; otherwise, βi = 0. We assume that 0 ≤ |βi| ≤ r and r = |φi−φi+1|
2 .

By using Taylor series, the first-order approximate measurement model [55] is

ṽ(t) = (Ã(φ) + B̃Γ)s̄(t) + n(t), (3.4)

where B̃ = [∂a(φ1)
∂φ1

, . . . , ∂a(φN )
∂φN

] ∈ CM×N , β = [β1, . . . , βN ]T , Γ = diag(β), and s̄ is a

CN×1 sparse vector. By vectorizing the covariance of (3.4), we have

y = (A(φ) + BΓ)s + σn1n (3.5)

= (A(φ)s + Bp) + σn1n = [A(φ),B]x + σn1n.

• y = vec(Rṽ).

• A(φ) = [a(φ1)H ⊗ a(φ1), . . . ,a(φN )H ⊗ a(φN )] ∈ CM2×N .

• B = [∂a(φ1)
∂φ1

⊗ ∂a(φ1)
∂φ1

, . . . , ∂a(φN )
∂φN

⊗ ∂a(φN )
∂φN

] ∈ CM2×N .

• s is a RN×1 sparse vector with K nonzero terms σ2
k’s.
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1n = [eT1 , . . . , e
T
M ]T where ei ∈ RM×1 is a all-zero vector except 1 at i-th entry. x =

[sT ,pT ]T ∈ R2N×1, and p = β � s. Let G = [A(φ),B] for the following sections. Note

that if r is taken small, then s � p since the value of βk is much smaller than σ2
k at

mild SNRs.

Since s,p have the same sparsity pattern, we can solve (3.5) over a closed convex

set X by group Lasso :

arg min
x∈X

1

2
||y −Gx||22 + η||x||2,1,

s.t. X = {x = [sT ,pT ]T : s ≥ 0,−rs ≤ p ≤ rs}.
(3.6)

where η > 0 is a regularization parameter, and r is defined previously. Because the

constraint set X is simple, we can transform it into an unconstrained one by using an

indicator function:

arg min
x∈R2N×1

F (x) = {1

2
||y −Gx||22 + η||x||2,1 + ιX (x)}, (3.7)

where ιX (x) = 0 if x ∈ X ; otherwise,∞. Let f(x) := 1
2 ||y−Gx||22, h(x) := η||x||2,1, and

g(x) := ιX (x). However, two nonsmooth functions in the objective makes this problem

difficult to solve efficiently.

3.3 Alternating Direction Method of Multipliers (ADMM)

Let us consider the unconstrained problem first.

arg min
x∈R2N×1

F (x) = {f(x) + h(x) + ιX (x)}, (3.8)

f(x) := 1
2 ||y −Gx||22, h(x) := η||x||2,1, ιX (x) is an indicator function. This problem

can be solved by consensus ADMM (C-ADMM), which uses a consensus global variable

x and local variables zi:

arg min
x,zi

1

2
||y −Gz1||22 + η||z2||2,1 + ιX (z3).

s.t. z1 = x, z2 = x, z3 = x (3.9)
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We call this a ”consensus problem” since the constraint forces all the local variables to

be equal.

ADMM of this problem can be derived from the augmented Lagrangian

Lρ(z,x,u) =

3∑
i=1

(fi(zi) + uTi (zi − x) +
ρ

2
‖zi − x‖22), (3.10)

where f1(z1) = 1
2 ||y −Gz1||22, f2(z2) = η||z2||2,1, f3(z2) = ιX (z3), and ρ is a penalty

parameter. The resulting consensus ADMM is summarized in Algorithm 3.1.

Algorithm 3.1 Consensus Alternating Direction Method of Multipliers (ADMM)

Input: x0 = 0, z0
i = 0, ∀i, u0 = [u0

1,u
0
2,u

0
3] = 0, ρ = 1

Step k: (k ≥ 0)
1: zk+1

1 = arg minz1 Lρ(z1,x
k,uk)

⇒ zk+1
1 = (GHG + ρI)−1(GHy + ρxk − uk1)

zk+1
2 = arg minz2 Lρ(z2,x

k,uk)

⇒ zk+1
2 =

xk+uk2/ρ

‖xk+uk2/ρ‖2
max(‖xk + uk2/ρ‖2 − η/ρ, 0)

zk+1
3 = arg minz3 Lρ(z3,x

k,uk)= ProjX (xk − uk3
ρ )

2: xk+1 = arg minx Lρ(z
k+1,x,uk)=

ρ(
∑
i zi+

∑
i ui)

3ρ

3: uk+1
1 = uk1 + ρ(zk+1

1 − xk+1)
uk+1

2 = uk2 + ρ(zk+1
2 − xk+1)

uk+1
3 = uk3 + ρ(zk+1

3 − xk+1)

The convergence of ADMM is in terms of the following two assumptions:

Assumption 3.2. The extended-real-valued function fi(zi) : Rn → R ∪ {+∞} are

closed, proper, and convex.

Assumption 3.3. The unaugmented Lagragian L0 has a saddle point. Namely, there

exists a not necessarily unique solution (z∗,x∗,u∗) such that

L0(z∗,x∗,u) ≤ L0(z∗,x∗,u∗) ≤ L0(z,x,u∗) (3.11)

In [39], under assumptions 2 and 3, ADMM is shown to have its iterations sat-

isfy residual convergence, objective convergence, and dual variable convergence. The

following summarizes the algorithm.
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Although ADMM converges to modest accuracy within a few tens of iterations for

many applications, some examples show that ADMM has very slow convergence to high

accuracy. This motivates us to think if there exist other techniques which have better

convergence than ADMM.

3.4 Smoothing Techniques

In the following sections, we will show how to deal with problem (3.7) by combining

the accelerated proximal gradient algorithm with the Nesterov smoothing technique.

We aim to smooth the group-sparsity penalty h(x) = η||x||2,1 so that the APG method

can be used. A variant of EGT-based primal-dual method and smoothed dual conic

optimization method are described as well. In order to present the idea more clearly, we

introduce the notation ||x||2,1 =
∑

gi∈Ω ‖xgi‖2, where xgi ∈ R|gi| denotes the subvector

of x having the same sparse pattern in group gi, where | · | is the cardinality of a set.

Each group gi represents a subset of index set {1, · · · , 2N} and is disjoint from the

others. Denote Ω = {g1, . . . , g|Ω|} as the set of groups, and 2N =
∑|Ω|

i=1 |gi|. In our case,

|Ω| = N , |gi| = 2, gi = {i, i + N},∀i = 1, · · · , N , xgi = [xi, xi+N ]T ∈ R2 where xi = si

and xi+N = pi. Denote xi, si, and pi as the i-th entry of x, s, and p, respectively.

3.5 The Nesterov Smoothing

3.5.1 Reformulation of Group-sparsity Penalty

Since h(x) is an `2-`1 mixed norm with two layers, i.e., the inner is `2 norm and the outer

is `1 norm, we can utilize the dual norm property to reformulate it as a maximization

of a linear function over an auxiliary variable with ”simple” constraints in two different

ways.

First, inspired by [45], by using the convex conjugate function and the fact that the

dual norm of `2 norm is `2 norm, ‖xgi‖2 has the max-structure as max‖ugi‖2≤1 uTgixgi
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where ugi ∈ R|gi| denotes an auxiliary vector. Then, h(x) can be written as

h(x) = η
∑
gi∈Ω

‖xgi‖2 =
∑
gi∈Ω

max
‖ugi‖2≤1

{η〈xgi ,ugi〉}

= max
u∈Ul2

∑
gi∈Ω

{η〈xgi ,ugi〉} = max
u∈Ul2

{η〈x,u〉}, (3.12)

where Ul2 = {u ∈ R2N×1 : ‖ugi‖2 ≤ 1,∀gi ∈ Ω} is the set of vectors in the space of

the Cartesian product of `2 norm unit ball. In the Nesterov smoothing technique, if

a nonsmooth convex function has the max-structure, then we have its corresponding

smoothed function

hl2µ (x) := max
u∈Ul2

{η〈x,u〉 − µdl2(u)} (3.13)

with a smoothing parameter µ > 0. We suppose that a prox-function dl2(u) [41] is

continuous and strongly convex on Ul2 with a strong convexity parameter σ. Its prox-

center of d(u) is denoted by u0 = arg minu∈Ul2{dl2(u)}. By the definition of strongly

convex, dl2(u) ≥ σ
2 ‖u − u0‖22. Since dl2(u) is strongly convex, hl2µ (x) is a smooth and

convex function so that its solution is unique and its gradient can be computed easily.

Second, inspired by by the fact that the dual norm of `1 norm is `∞ norm, ‖x‖1 has

the max-structure as max‖u‖∞≤1 uTx, where u denotes an auxiliary vector. Therefore,

we propose a second reformulation. Let us define νi := ‖xgi‖2 and ν = [ν1, . . . , ν|Ω|]
T ∈

RN×1, and then h(x) can be rewritten as

h(x) = η
∑
gi∈Ω

‖xgi‖2 = η

|Ω|∑
i=1

νi = η‖ν‖1. (3.14)

We define a new function h(ν) as

h(ν) = η‖ν‖1 = max
u∈Ul1

{η〈ν,u〉}, (3.15)

where Ul1 = {u ∈ RN×1 : ‖u‖∞ ≤ 1} is the set of vectors in the space of `∞ norm unit

ball. Since it has the max-structure, we have its corresponding smoothed function

hl1µ (ν) := max
u∈Ul1

{η〈ν,u〉 − µdl1(u)} (3.16)
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with a smoothing parameter µ > 0. Then, hl1µ (ν) is also a smooth and convex function

if a strongly convex function dl1(u) is chosen. Note that the dimension of x is twice as

many as ν.

Since both hl2µ (x) and hl1µ (ν) are smooth and convex, their gradients can be formed

by the following modified theorem [41]

Theorem 3.1. For any µ > 0, the functions hl2µ (x) and hl1µ (ν) are well-defined and

continuously differentiable in x and ν, respectively. Moreover, both functions are convex

and their gradients:

∇hl2µ (x) = ηul2 , ∇hl1µ (ν) = ηul1 (3.17)

are Lipschitz continuous with the same constant Lµ = 1
µσ , where ul2 and ul1 are the

optimal solutions to (3.13) and (3.16), respectively.

Suppose that ∀u ∈ Ul2 ; we choose dl2(u) = 1
2‖u‖

2
2 with a strong convexity parameter

σ = 1. Then ∀gi, ul2gi , which is a subvector of ul2 , can be calculated as ul2gi = S2( ηµxgi)

where S2(·) denotes the projection operator of projecting a vector a to a `2 unit ball

S2(a) =

 a
‖a‖2 , if ‖a‖2 > 1

a, if ‖a‖2 ≤ 1.
(3.18)

Similarly, ∀u ∈ Ul1 , if we choose dl1(u) = 1
2‖u‖

2
2, then ul1 can be computed as ul1 =

S1( ηµν) where S1(·) denotes the projection operator of projecting a vector a to an `∞

unit ball

S1(a) =


1, if ai > 1,∀i

ai, if |ai| ≤ 1, ∀i

−1, if ai < −1, ,∀i

(3.19)

where ai is the i-th entry of a.

Note that the dimension of ν is a half of the one of x. Therefore, for the case

of ∇hl1µ (ν), zero-padding is performed such that ∇hl1µ (x) := [∇hl1µ (ν)T ,0T ]T ∈ R2N×1,
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where 0 is a RN×1 zero vector, so that a new gradient∇hl1µ (x) can be used in the acceler-

ated proximal gradient. This is acceptable only when parameter r is taken small enough.

Since p� s holds in this case, the value of νi mainly comes from the contribution of s,

so that zero vector can be assigned as the partial derivative of p.

3.5.2 Accelerated Smoothing Proximal Gradient (ASPG)

Now, we solve two ”smoothed” versions of problem (3.7)

arg min
x∈Rn
{Hi(x) + ιX (x)}, i = 1 or 2. (3.20)

where Hi(x) := f(x)+hliµ(x), i = 1 or 2, and then its gradient is computed as ∇Hi(x) =

∇f(x) + ηuli .

Problem (3.20) is suggested to be solved by the accelerated proximal gradient method

[52] in which a proximal operator is used:

proxι(y) = arg min
x∈Rn
{1

2
‖y − x‖2 + ι(x)}. (3.21)

In fact, the proximal operator proxιX (y) of indicator function ιX (x) is the projection

operator onto the set X , ΠX (x). The ASPG method is summarized in the Algorithm

3.2.

3.5.3 Convergence Analysis

We now show the convergence rate of the algorithm by the following theorem:

Theorem 3.2. Suppose xk is the k-th iterative solution in Algorithm 3.2, and x∗ is

the optimal solution of problem (3.7). Assume that ε-approximation is required, i.e.,

F (xk)− F (x∗) ≤ ε. If we set µ = ε
2Di

, where Di = maxu∈Uli dli(u), then

F (xk)− F (x∗) ≤ ε

2
+

2(Lf + 2Diεσ )‖x0 − x∗‖2

(k + 1)2
, (3.22)
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Algorithm 3.2 Accelerated Smoothing Proximal Gradient

Input: x0 = x1 = 0; γ = 0.5; µ = 10−8; step-size α0 = 1;
Step k: (k ≥ 1) Let α := αk−1. Compute

wk+1 = xk + k
k+3(xk − xk−1)

1: repeat
2: Compute ∇f(wk+1) = GH(Gwk+1 − y),
3: Compute ∇hliµ(wk+1) = ηul2 if i = 2,

4: Compute ∇hliµ(wk+1) = ηul1 if i = 1,

5: z = ΠX (wk+1 − α∇f(wk+1)− α∇hliµ(wk+1)),

6: Break if Fi(z) ≤ F̂αi (z,wk+1) = Fi(w
k+1) + (∇Fi(wk+1))T (z −wk+1) + 1

2α‖z −
wk+1‖22,

7: Update α := γα,
8: return αk := α, xk+1 := z

Note 1: ul2 is composed of ul2gi = S2( ηµwk+1
gi ), ∀gi.

Note 2: ul1 = [S1( ηµν)T ,0T ]T where νi = ‖wk+1
gi ‖2, νi : i-th entry of ν

where Lf is Lipschitz continuous gradient parameter of f(x). The number of iteration

k has an upper bound by √
4‖x0 − x∗‖2

ε
(Lf +

2Di

εσ
)− 1 (3.23)

Proof. Denote the smoothed version of the objective function F (x) as

min
x∈Rn

F li(x) = {f(x) + hliµ(x) + ιX (x)}, i = 1 or 2 (3.24)

with the Lipschitz continuous gradient constant L = Lf + 1
µσ . By using similar proof

schemes in [56], we decompose

F (xk)− F (x∗) = (F (xk)− F li(xk)) + (F li(xk)− F li(x∗)) + (F li(x∗)− F (x∗)).

(3.25)

Then, based on the theorem from [57], we have the following bound for an optimal

solution x∗:

F (xk)− F (x∗) ≤
2Lf‖x0 − x∗‖2

(k + 1)2
. (3.26)
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Also, by the definition of hliµ(x), we have

F li(xk) ≤ F (xk) ≤ F li(xk) + µDi. (3.27)

This implies that

F (xk)− F li(xk) ≤ µDi. (3.28)

F li(x∗)− F (x∗) ≤ 0. (3.29)

Thus,

F (xk)− F (x∗) ≤ µDi +
2L‖x0 − x∗‖2

(k + 1)2
= µDi +

2(Lf + 1
µσ )‖x0 − x∗‖2

(k + 1)2
. (3.30)

Let µ = ε
2Di

, then

F (xk)− F (x∗) ≤ ε

2
+

2(Lf + 2Di
εσ )‖x0 − x∗‖2

(k + 1)2
. (3.31)

If we let ε
2 +

2(Lf+
2Di
εσ

)‖x0−x∗‖2
(k+1)2

= ε, then we have the upper bound in (3.23).

This theorem implies its convergence rate is O( 1
k ). We cannot achieve convergence

rate O( 1
k2

) of accelerated proximal gradient method due to the smoothing process, but

better than the subgradient methods with O( 1√
k
) [40, 49].

3.6 Excessive Gap Technique

The smoothing papramter µ is chosen empirically in ASPG. Thus, inspired by [44],

we choose µ systematically by the excessive gap technique with primal-dual gradient

methods.

3.6.1 Preliminaries

In [44], we solve

arg min
x∈Q1

F (x), (3.32)
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where f is continuous convex, but not neccesarily differentiable. Q1 is a bounded

closed convex set in a finite-dimensional real vector space E1. The author considers

the objective function F (x) with the following structure

F (x) = f(x) + max
u∈Q2

{〈Ax,u〉 − φ(u)} (3.33)

where F (x) is continuous and convex on Q1. Q2 is a bounded closed convex set in a

finite-dimensional real vector space E2, A is a linear operator, and φ(u) is continuous and

convex on Q2. The function f(x) and φ(u) are assumed to have Lipschitz-continuous

gradient with Lipschitz constants L1(f) and L2(φ). Its dual form can be derived as

arg max
u∈Q2

Φ(u), (3.34)

where Φ(u) = −φ(u) + minx∈Q1{〈Ax,u〉 + f(x)}. Note that the structures of f(x)

and φ(u), Q1, and Q2 are assumed simple enough such that the optimization problem

can be solved in a closed form. Remember that function F (x) and Φ(u) are assumed

nondifferentiable, so we are going to construct a smooth approximation of them.

Let us consider a prox-function d2(u) of the set Q2. Namely, d2(u) is continuous

and strongly convex on Q2 with parameter σ2 > 0. The prox-center of d2(u) is denoted

by

u0 = arg max
u∈Q2

d2(u). (3.35)

Without loss of generality, we suppose that d2(u0) = 0, so we have the following prop-

erty:

d2(u) ≥ d2(u0) +
1

2
σ2‖u− u0‖2 =

1

2
σ2‖u− u0‖2. (3.36)

Now, we can construct a smooth approximation function Fµ2(x)

Fµ2(x) = f(x) + max
u∈Q2

{〈Ax,u〉 − φ(u)− µ2d2(u)} (3.37)
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where µ2 is a positive smoothing parameter. We define uµ2(x) as the optimal solution

of the above problem. And uµ2(x) is unique because d2(u) is strongly convex. In terms

of Danskin’s theorem, the gradient of Fµ2(x) can be computed as

∇Fµ2(x) = ∇f(x) +AHuµ2(x) (3.38)

with Lipschitz-continuous constant L1(F ) = L1(f) + 1
σ2µ2
‖A‖2.

By the same way, let us consider a prox-function d1(x) of the set Q1. Namely,

d2(x) is continuous and strongly convex on Q1 with parameter σ1 > 0. The prox-center

of d1(x) is denoted by

x0 = arg max
u∈Q1

d1(x). (3.39)

Without loss of generality, we suppose that d1(x0) = 0, so we have the following prop-

erty:

d1(x) ≥ d1(x0) +
1

2
σ1‖x− x0‖2 =

1

2
σ1‖x− x0‖2. (3.40)

Thus, a smooth approximation function Φµ1(u) is

Φµ1(u) = −φ(u) + min
x∈Q1

{〈Ax,u〉+ f(x) + µ1d1(x)} (3.41)

where µ1 is a positive smoothing parameter. We define xµ1(u) as the optimal solution

of the above problem. And xµ1(u) is unique because d1(x) is strongly convex. In terms

of Danskin’s theorem, the gradient of Φµ1(u) can be computed as

∇Φµ1(u) = −∇φ(u) +AHxµ1(u) (3.42)

with Lipschitz-continuous constant L2(Φ) = L2(φ) + 1
σ1µ1
‖A‖2.

We know, for any x ∈ Q1 and u ∈ Q2,

Φ(u) ≤ F (x) (3.43)
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always holds. However, we also have

Fµ2(x) ≤ F (x) (3.44)

Φ(u) ≤ Φµ1(u) (3.45)

, so that there exists a probability to have the following excessive gap condition (EGC):

Fµ2(x̄) ≤ Φµ1(ū) (3.46)

for certain x̄ ∈ Q1 and ū ∈ Q2. Then, an upper bound for the primal-dual pair (x̄, ū)

is derived by the following lemma:

Lemma 3.1. Let x̄ ∈ Q1 and ū ∈ Q2 satisfy EGC. Then,

0 ≤ max{F (x̄)− F ∗, F ∗ − Φ(ū)}

≤ F (x̄)− Φ(ū) ≤ µ1D1 + µ2D2

where D1 = maxx∈Q1 d1(x), D2 = maxu1∈Q2 d2(u).

We also need to justify that some starting primal-dual pair can satisfy the EGC by

defining the primal gradient mapping

Tµ2(x) = arg min
z∈Q1

{〈∇Fµ2(x), z− x〉+
1

2
L1(Fµ2(x))‖z− x‖2} (3.47)

and the following lemma:

Lemma 3.2 (Choose initial points). Choose an arbitrary µ2 > 0. For a starting point

x0, define

x̄ = Tµ2(x0), ū = uµ2(x0).

Then the EGC (3.57) is satisfied for any µ1 ≥ 1
σ1
L1(Fµ2).

Thus, if EGC is satisfied for some certain primal-dual pair, then the primal-dual

pair can be updated iteratively when keeping satisfy the EGC as µ1 and µ2 go to zero.
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In other words, we can try to decrease µ1 with fixed µ2 for the primal problem; decrease

µ2 with fixed µ1 for the dual problem. The following theorem gives a description for

solving the primal problem:

Theorem 3.3. Let x̄ ∈ Q1 and ū ∈ Q2 satisfy EGC (3.57) for µ1, µ2 > 0. Fix τ ∈ (0, 1)

and choose µ+
1 = (1− τ)µ1,

x̂ = (1− τ)x̄ + τxµ1(ū),

ū+ = (1− τ)ū + τuµ2(x̂),

x̄+ = Tµ2(x̂).

Then (x̄+, ū+) satisfies EGC with smoothness parameter µ+
1 , µ

+
2 provided that τ is cho-

sen by τ2

1−τ ≤
µ1σ1

L1(Fµ2 ) .

3.6.2 Proposed Methods

Now, let us consider the optimization problem (3.6) we want to solve

arg min
x∈X

F (x) = {f(x) + h(x)},

s.t. X = {x = [sT ,pT ]T : s ≥ 0,−rs ≤ p ≤ rs}.
(3.48)

where f(x) := 1
2 ||y −Gx||22, h(x) := η||x||2,1 = maxu2∈Ul2{η〈x,u2〉}.

Since G is a fat matrix, the error fitting function f(x) is not strongly convex. Thus,

we replace f(x) by fr(x) = ||y −Gx||2. Although fr(x) is nondifferentiable, it can be

expressed in a max-structure form, and smoothed by using a strongly convex function.

Instead of solving (3.6), we propose

arg min
x∈X

F (x) = {fr(x) + h(x)},

s.t. X = {x = [sT ,pT ]T : s ≥ 0,−rs ≤ p ≤ rs}.
(3.49)

Thus, we will smoothe not only regularization term h(x), but also the new error fitting

function fr(x). This way can help in solving problems in closed form. We can rewrite
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(3.49) into the following primal problem by using the dual norm definition:

arg min
x∈X

F (x) = { max
u=[uT1 ,u

T
2 ]T ,u1∈U2,u2∈Ul2

〈Gx,u1〉 − 〈y,u1〉+ η〈x,u2〉}, (3.50)

And its dual problem is

max
u=[uT1 ,u

T
2 ]T ,u1∈U2,u2∈Ul2

Φ(u) := {−〈y,u1〉+ min
x∈X
〈Gx,u1〉+ η〈x,u2〉} (3.51)

where u is a dual variable vector composed of u1 and u2, Ul2 = {u ∈ R2N×1 :

‖ugi‖2 ≤ 1,∀gi ∈ Ω}, and U2 = {u ∈ RM×1 : ‖u‖2 ≤ 1}.

Since both F (x) and Φ(u) are nondifferentiable, we can construct a smoothing approx-

imation of primal-dual problem

min
x∈X

Fµ2(x) := { max
u=[uT1 ,u

T
2 ]T
〈Gx− y,u1〉+ η〈x,u2〉 −

µ2

2
‖u‖22}, (3.52)

max
u=[uT1 ,u

T
2 ]T

Φµ1(u) := {−〈y,u1〉+ min
x∈X
〈Gx,u1〉+ η〈x,u2〉+

µ1

2
‖x‖22} (3.53)

by using two strongly convex functions d1(x) = 1
2‖x‖

2
2, and d2(u) = 1

2‖u‖
2
2 with two

smoothing parameters µ1, and µ2.

For the primal problem, denote u1,µ2 ,u2,µ2 as the unique optimal solution of Fµ2(x),

which can be derived in closed form solutions:

u1,µ2(x) = ProjU2(
Gx− y

µ2
) (3.54)

u2,µ2(x) = ProjUl2 (
ηx

µ2
) (3.55)

. By Danskin’s theorem, the gradient of Fµ2(x) is computed as∇Fµ2(x) = GHu1,µ2(x)+

ηu2,µ2(x) with Lipschitz-continuous constant L1(Fµ2(x)) = 1
µ2
‖[G, ηI]H‖2.

Similarly, for the dual problem, denote xµ1 as the unique optimal solution of Φµ1(u),

which can be derived in a closed form solution:

xµ1(u) = ProjX (−GHu1 + ηu2

µ1
) (3.56)



36

. By Danskin’s theorem, the gradient of Φµ1(u) is ∇Φµ1(u) =

−y

0

+

Gxµ1(u)

ηxµ1(u)

 wth

Lipschitz-continuous constant L2(Φµ1(u)) = 1
µ1
‖[GH , ηI]H‖2.

Since we know that

• Φ(u) ≤ F (x)

• By definition, Fµ2(x) ≤ F (x), Φ(u) ≤ Φµ1(u)

• Excessive gap condition (EGC) holds when, for certain x and u with sufficiently

large µ1, µ2, this inequality occurs

Fµ2(x) ≤ Φµ1(u) (3.57)

Then, we have the following modified lemma:

Lemma 3.3. Let x ∈ X and u = [uT1 ,u
T
2 ]T ,u1 ∈ U2,u2 ∈ Ul2 satisfy EGC. Then,

0 ≤ max{F (x)− F ∗, F ∗ − Φ(u)}

≤ Φ(u)− F (x) ≤ µ1D1 + µ2D2 + µ2D3

where D1 = maxx∈X ‖x‖2, D2 = maxu1∈U2 ‖u1‖2, D3 = maxu2∈Ul2 ‖u2‖2

.

By this lemma, EGC provides an upper bound of primal-dual pair (x,u) so that we

can update iteratively the primal-dual pair (x,u) and keep satisfying EGC as µ1, µ2 → 0.

We also apply the primal gradient mapping:

Tµ2(x) = arg min
z∈X
{〈∇Fµ2(x), z− x〉+

1

2
L1(Fµ2(x))‖z− x‖2}

and the dual gradient mapping:

Tµ1(u) = arg min
v∈U2
{〈∇Φµ1(x),v − u〉+

1

2
L2(Φµ1(x))‖v − u‖2}



37

to choose some starting point when satisfyling the EGC. In our case, they can be

simplied in closed forms:

Tµ2(x̂) = ProjX (x− 1

L1(Fµ2)
∇Fµ2(x)) (3.58)

Tµ1(û) = ProjU2(u− 1

L2(Fµ1)
∇Φµ1(u)) (3.59)

The lemma for choosing initial points is:

Lemma 3.4 (Choose initial points). Choose an arbitrary µ2 > 0. For a starting point

x0, define

x̄ = Tµ2(x0), ū = u∗µ2(x0) =

u∗1,µ2(x0)

u∗2,µ2(x0)

 .
Then the EGC (3.57) is satisfied for any µ1 ≥ L1(Fµ2).

We also give the theorem for the primal part of iterative algoritms:

Theorem 3.4. Let x̄ ∈ X and ū ∈ U := U2 ∪ Ul2 satisfy EGC (3.57) for µ1, µ2 > 0.

Fix τ ∈ (0, 1) and choose µ+
1 = (1− τ)µ1,

x̂ = (1− τ)x̄ + τxµ1(ū),

ū+ = (1− τ)ū + τuµ2(x̂),

x̄+ = Tµ2(x̂) = ProjX (x̂− 1

L1(Fµ2)
∇Fµ2(x̂)).

Then (x̄+, ū+) satisfies EGC with smoothness parameter µ+
1 , µ

+
2 provided that τ is cho-

sen by τ2

1−τ ≤
µ1

L1(Fµ2 ) .

The updates for primal-dual pair is summaried in Algorithm 3.3.

3.7 Smoothed Dual Conic Optimization

3.7.1 Preliminaries

In [53], a general framework is established to construct optimal first-order methods for

dealing with certain type of convex optimization problems. Namely, the following conic
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Algorithm 3.3 Excessive Gap Technique (EGT)-based Primal-Dual Method

Input: µ1 = ‖[GT , ηI]T ‖
√

D2+D3
D1

, µ2 = ‖[GT , ηI]T ‖
√

D1
D2+D3

,

x̄0 = Tµ2(x0), ū0 = uµ2(x0)
Step k: (k ≥ 0)
1: τ = 2

k+3
2: If k: even, then

x̂ = (1− τ)x̄ + τxµ1(ū)
ū+ = (1− τ)ū + τuµ2(x̂)
x̄+ = Tµ2(x̂) = ProjX (x̂− 1

L1(Fµ2 )∇Fµ2(x̂))

µ+
1 = (1− τ)µ1, µ

+
2 = µ2

3: If k: odd, then
û = (1− τ)ū + τuµ2(x̄)
x̄+ = (1− τ)x̄ + τxµ1(û)
ū+ = Tµ1(û) = ProjU (û− 1

L2(Fµ1 )∇Φµ1(û))

µ+
2 = (1− τ)µ2, µ

+
1 = µ1

formulation is considered:

arg min
x
f(x)

s.t. A(x) + b ∈ K

where x ∈ Rn is a vector of optimization variables, function f is convex but not neces-

sarily smooth. K ∈ Rm is a closed, convex cone, A is a linear operator: Rn → Rm, and

b is a constant vector.

Since the objective function f might not be smooth and obtaining a feasible point on

the constraint set might be expensive, resolving these issues using first-order methods

in the dual problem or its approximation might be more preferable than in the primal

problem. Thus, the dual of conic formulation is given as

arg max
z
g(z)

s.t. z ∈ K∗,
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where g(z) denotes the Lagrage dual function

g(z)
∆
= inf

x
L(x, z) = inf

x
f(x)− 〈z,A(x) + b〉, (3.60)

and K∗ is defined as the dual cone

K∗ ∆
= {z ∈ Rm : 〈z,x〉 ≥ 0,∀x ∈ K}. (3.61)

We have benefits from the dual problem, since it’s usually efficient for projections onto

the dual cone.

However, the dual function is usually not differentiable since the nature of the primal

problem. Subgradient methods can serve as a solution, but suffers from slow conver-

gence. Thus, the Nesterov smoothing technique is applied on the primal problem:

arg min
x
fµ(x)

∆
= fµ(x) + µd(x)

s.t. A(x) + b ∈ K,

where d(x) is a strongly convex function with a smoothing positive parameter µ. Then,

the smoothed dual problem is the following

arg max
z
gµ(z)

s.t. z ∈ K∗,

where gµ(z) is a smoothed surrogate of function g. In some applications, the smoothed

dual problem can be reformulated to an unconstrained problem

arg max
z
−gsm(z)− h(z),

where gsm(z) is smooth and convex, and h is convex, but nonsmooth. This kind of

composite problems can be solved efficiently by using optimal first-order methods. For

example, the generalized projected gradient algorithm can be applied for the composite

problem, and the corresponding iteration is the following

zk+1 ← arg min
z
gsm(zk) + 〈∇gsm(zk), z− zk〉+

1

2tk
‖z− zk‖2 + h(z),
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where tk is the step size. [50] shows that ε-optimality can be achieved inO(1/ε) iterations

if tk is selected properly. Furthermore, in [58, 59, 60, 61, 62], the iteration complexity

can be improved to O(1/
√
ε) by using the following iterations:

zk+1 ← arg min
z∈K∗

‖νk + tk∇gsm(νk)− z‖2

νk+1 ← zk+1 + αk(zk+1 − zk) (3.62)

where ν0 = z0 and the sequence {αk} need to be designed specifically.

3.7.2 Proposed Methods

Instead of solving linear inequalities constrained BPDN problem

arg min
x∈X

f(x) + h(x), (3.63)

where f(x) := 1
2 ||y−Gx||22, h(x) := η||x||2,1, X = {x = [sT ,pT ]T : s ≥ 0,−rs ≤ p ≤ rs}

Inspired by [53], a quadratically constrained with linear inequalities constraints problem

is considered

arg min
x
||x||2,1 (3.64)

s.t. ‖y −Gx‖2 ≤ ε,x ∈ X ,

since it’s more natural to decide an appropriate ε rather than an appropriate regular-

ization parameter η.

Note that X is a set of elements satisfying linear inequalities, so it can be replaced by

a matrix form representation Ax ≤ 0.

Then, let’s consider conic form of the primal problem

arg min
x∈R2N×1

||x||2,1 (3.65)

s.t. (y −Gx, ε) ∈ KM2 := {(a, b) ∈ CM × R : ‖a‖2 ≤ b},

Ax ≤ 0,
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and derive its dual by Lagrange multipliers

arg max
z∈CM×1,w≥0

g(z,w) (3.66)

where g(z,w) = infx ||x||2,1 − 〈z,y −Gx〉 − ε‖z‖2 + 〈w,Ax〉.

Note that both objectives are nonsmooth in the primal and dual formulation. So, we

smoothe ||x||2,1 by adding the strongly convex prox-function d(x) = σµ
2 ‖x− x0‖22 with

a smoothing paramter µ and a strong convexity parameter σ = 1. x0 is denoted as the

prox-center of d(x)

x0 = arg min
x∈X

d(x).

Without loss of generality, d(x0) = 0 is assumed.

In this way, the smoothed dual problem is given by

arg max
z∈CM×1,w≥0

gµ(z,w)

where

gµ(z,w) = inf
x
||x||2,1 +

µ

2
‖x− x0‖22 − 〈z,y −Gx〉 − ε‖z‖2 + 〈w,Ax〉

is a smooth function over x. The optimal solution of gµ(z,w) is unique because of the

strong convexity of d(x). Define x(z,w) as the optimal solution of gµ(z,w) which is

computed as

x(z,w) = GroupSoftThreshold(x0 −
1

µ
(GHz + AHw),

1

µ
),

where an group-thresholding operator GroupSoftThreshold(x, t) of x = [sT ,pT ]T ∈

R2N is defined as

GroupSoftThreshold(x, t)
∆
=

[xi, xi+N ]√
x2
i + x2

i+N

max{
√
x2
i + x2

i+N − t, 0}, 1 ≤ i ≤ N.

(3.67)



42

Let’s rewrite the smoothed dual problem as

arg min
z∈CM×1,w≥0

−ḡµ(z,w) = gsm(z,w) + h(z) (3.68)

where

gsm(z,w) = −||x(z,w)||2,1 −
µ

2
‖x(z,w)− x0‖22 + 〈z,y −Gx(z,w)〉 − 〈w,Ax(z,w)〉,

h(z) = ε‖z‖2.

The problem (3.68) we try to solve is in a composite form with smooth part gsm and

nonsmooth part h. The smoothed part gsm(z,w) is differentiable and its gradient is

computed as ∇gsm(z,w) =

y −Gx(z,w)

−Ax(z,w)

 in accordance with Danskin’s theorem.

Then, the generalized gradient projection method [63, 62] is applied to solve (3.68)

by updating

(zk+1,wk+1) = arg min
z∈CM×1,w≥0

gsm(zk,wk)+ (3.69)

〈∇gsm(zk,wk), (z− zk,w −wk)〉+
Lk
2
‖(z− zk,w −wk)‖2 (3.70)

+ ε‖z‖2, (3.71)

where Lk is the inverse of step size tk. Actually, closed form solution for (zk+1,wk+1)

can be derived as

zk+1 = arg min
z
〈y −Gx(z,w), z− zk〉+

Lk
2
‖z− zk‖2 + ε‖z‖2 (3.72)

= Shrink(zk −
1

Lk
(y −Gx(z,w)),

2ε

Lk
),

wk+1 = arg min
w≥0

2

Lk
〈−Ax(z,w),w −wk〉+

Lk
2
‖w −wk‖2 (3.73)

= wk +
1

Lk
Ax(z,w),

where an l2-shrinkage operation Shrink(x, t) is defined as

Shrink(x, t)
∆
= max{1− t

‖x‖2
, 0} · x =

 0, ‖x‖2 ≤ t

(1− t/‖x‖2) · x, ‖x‖2 > t
. (3.74)
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The right-hand side first-order approximation of (3.69) satisfies an upper bound property

−ḡµ(zk+1,wk+1) ≤〈∇gsm(zk,wk), (zk+1 − zk,wk+1 −wk)〉+
Lk
2
‖(zk+1 − zk,wk+1 −wk)‖2

+ ε‖zk+1‖2
(3.75)

which holds for sufficiently large Lk. Typically, if Lk ≥ L,∀k, then the upper bound

(3.75) holds, where L is Lipschitz constant. Under those assumptions, ε-optimality

can be acheived in O(L/ε) iterations by performing (3.69). A variation of the general-

ized gradient projection method proposed by Nesterov, which is an optimal first-order

method with O(L/
√
ε) iterations, is used instead of (3.69). The approach is summaried

in Algorithm 3.4.

Algorithm 3.4 Smoothed Dual Conic Optimization

Input: x0 = 0, z0 = 0, w0 = 0, µ = 1, Lk = 1, c0 = 1,γ = 0.5
s0 = [zT0 ,w

T
0 ]T

Step k: (k ≥ 0) Let L := Lk,
1: [zTk ,w

T
k ]T = (1− ck)sk + ck[z

T
k ,w

T
k ]T

2: x(zk,wk) = infx ||x||2,1 + µ
2‖x− x0‖22 − 〈zk,y −Gx〉 − ε‖z‖2 + 〈wk,Ax〉

3: repeat
4: (zk+1,wk+1) = arg minz,w≥0〈∇gsm(zk,wk), (z − zk,w − wk)〉 + L

2 ‖(z − zk,w −
wk)‖2 + ε‖z‖2

5: Break if gsm(zk+1,wk+1) ≤ gsm(zk,wk)+
〈∇gsm(zk,wk), (z− zk,w −wk)〉+ L

2 ‖(z− zk,w −wk)‖2,
6: Update L := L/γ,
7: return Lk := L
8: sk = (1− ck)sk + ck[z

T
k+1,w

T
k+1]T , ck+1 = 2

1+
√

1+4/c2k

It is noted that the smaller smoothing parameter µ, the better accuracy perfor-

mance. On the other hand, the continuation shceme, which was proposed in NESTA

[54], improves the convergence rate. The idea is that a sequence of subproblems is solved

by Algorithm 3.4 with decreasing smoothing parameters µk. Each result of subproblems

will be feed into the next round. The standard continuation scheme combined with Al-

gorithm 3.4 is listed below:
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Standard Continuation [54]

Input: X0: the set of variables in Algorithm 3.4, µ0 = 1, α = 0.5

Step j: (j ≥ 0)

1: Xj+1 ← Algorithm 3.4

2: µj+1 = αµj

3.8 Numerical Results

In the following numerical example of the off-grid DoA estimation, the proposed two

accelerated smoothing proximal gradient methods are designated as ASPG-L2 (using

hl2µ (x)) and ASPG-L1 (using ∇hl1µ (ν)), the consensus ADMM method is designated

as ADMM. the variant of excess-gap technique method is called EGT-based, and the

variant of smoothed dual conic optimization method is called SDCO. We also solve

problem (3.6) by using CVX packages. The CVX method can be viewed as a benchmark,

which is used to evaluate the estimation performance degradation caused by smoothing

in the proposed methods. The estimation errors of these methods are compared with

the same for the MUSIC estimator, M+LFBF and the CRLB. Consider K = 2 source

signals from DoAs θ = [13.2220, 28.6022] degree impinging on a uniform linear array

of M = 8 sensors with half-wavelength interelement spacing. The two sources are

randomly generated with normal distribution of zero mean and variance σ2
s . The noise

term is i.i.d. AWGN with zero mean and variance σ2
n. We use one hundred snapshots

to estimate the covariance matrix. The size N of search grid is set to 360 with r = 0.25

degree, which is used for all methods. In the ASPG method, dli(u) = 1
2‖u‖

2
2,∀i, the

decreasing factor is γ = 0.5, and smoothing parameter is chosen as µ = 10−8. The

root-mean-square-error (RMSE) of DoA estimation is (E[ 1
K ‖θ̂ − θ‖22])

1
2 . One hundred

realizations are performed at each SNR.

In Figure 3.2, the RMSE of CVX, ADMM, ASPG-L1, ASPG-L2, EGT-based, SDCO

are almost the same and better than MUSIC and M+LFBF at low SNRs. At high
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SNRs, the performance of ASPG-L1, CVX, ADMM, EGT-based, SDCO, and MUSIC

approach CRLB, but not ASPG-L2. The reason is that the sparse property of group-

sparsity penalty ‖xgi‖2 is lost during the smoothing process by only using the property

that the dual norm of `2 norm is also `2 norm so that sparsity is not promoted in this

way. In Figure 3.1, the estimated power spectrum of ASPG methods is presented at

SNR = 0 dB. Due to the smoothing process, both have lost their sparsity. However, the

two peaks of ASPG-L1 are more separated than ASPG-L2. In other words, ASPG-L1

estimator owns higher DoA resolution.

We also have verified that the computational efficiencies of the proposed methods

are better than the CVX method. At SNR = 0 dB, the running time at each realization

of SDCO, ASPG-L2, and ASPG-L1 are 12.93s, 4.43s, 7.05s 2.54s and 2.74s, which are

faster than the CVX method with 22.51s, and M+LFBF with 5.59s. The ADMM

method needs almost 7s to get an optimal solution, which is slower than expected.The

cpu time consumption of EGT-based method is almost 13s, which is too slower than

ASPG-L1, and ASPG-L2, although the smoothing parameter is chosen in a systematic

way.

Table 3.1: CPU Time (Seconds) of Methods at SNR=0 dB
Alg. CVX MUSIC ASPG-L2 ASPG-L1 EGT SDCO M+LFBF ADMM

M=8 22.52s 0.0061s 2.54s 2.74s 12.93s 4.43s 5.59s 7.05s

3.9 Summary

In this chapter, two ASPG methods were proposed for the estimation of off-grid DoAs

using a sparse model for the observation first. The group-sparsity penalty is refor-

mulated and smoothed by the Nesterov smoothing technique so that its gradient can

be calculated easily. Then, the accelerated proximal gradient is used to solve the un-

constrained optimization problem with the smoothed objective functions plus only one

nonsmooth function. The smoothing parameter is selected empirically. So, the variant
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Figure 3.1: Power Spectrum versus DoA.

of EGT-based mehtod is employed since the smoothing parameter can be chosen sys-

tematically. Instead of using BPDN solver, the variant od SDCO method is proposed,

and its smoothing parameter can be decided by using the continuation technique. The

performance and computational efficiencies of the proposed methods were verified by a

numerical example of DoA estimation.



47

-2 -1 0 1 2 3 4

SNR (dB)

10
0

10
1

R
M
S
E
 
o
f
 
D
o
A
 
(
l
o
g
 
s
c
a
l
e
)

DoA

CRLB

CVX

ASPG-L1

MUSIC

ASPG-L2

EGT-based

M+LFBF

SDCO

ADMM

Figure 3.2: RMSE of DoA estimation versus SNR.



Chapter 4

Gridless Sparse Recovery

Methods in the Continuous

Domain

In this chapter, instead of the off-grid model in the previous chapter, a super-resolution

framework is used for gridless DoA estimation.

4.1 Introduction

The super-resolution (SR) approach presented by Candès and Fernandes-Granda [14, 20]

aims to provide continuous parameter recovery by solving a total variation (TV) norm

minimization of a complex measure, which is not the TV norm [64] used in image pro-

cessing. In [33], atomic norm minimization (ANM) is proposed to estimate continuous

frequency spectrum with a subset of sensors. However, the above SR methods have only

been developed for the single-measurement-vector (SMV) model. In [65], an exact joint

sparse frequency recovery method is proposed by using ANM in multiple-measurement-

vector (MMV) system, and a theoretical analysis in the continuous dictionary setting is

48
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provided. In [66], the TV norm minimization employed in MMV is studied to improve

performance of DoA estimation, but the source signals are assumed to be zero-mean

positive-valued random variables, which is not a general case. In [67], a sublinear

time randomized algorithm is designed to recover sparse Fourier sampling signals with

continuous-valued frequencies.

In this work, we formulate the DoA estimation problem in the spatial covariance

model, and reformulate it into a MMV-like model. Use of the covariance model in the

formulation of a DoA estimator is desirable for a number of reasons, including compu-

tational savings for large number of snapshots, and exploitation of the methods that

extrapolate array appertures through their co-arrays, such as for the case of minimum-

redundancey [68] or co-prime arrays [69]. We extend the theory of super-resolution from

SMV to MMV by defining a block total variation (BTV) norm for a complex measure

with same locations but different amplitudes at multiple snapshots. Then, we propose

a BTV norm minimization approach for the MMV-like model. The performance of the

proposed method is demonstrated by simulations for cases of uncorrelated and corre-

lated source signals and compared with MUSIC, ANM-MMV [65], and the Cramer-Rao

Lower Bound (CRLB).

4.2 Problem Formulation and Preliminaries

4.2.1 The DoA Estimation Problem

Based on the DoA model considered in Chapter 2, the SMV, MMV, and covariance

model are as follows

y(t) = Gx(t) + n(t), t = 1, . . . , T, (4.1)

Y = [y(1), . . . ,y(T )] = GX + N, (4.2)

R̃ = E[yyH ] = GCxGH + σ2I. (4.3)
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In practice, the estimate of covariance matrix is calculated as R =
∑T

t=1 y(t)y(t)H/T .

If K sources are uncorrelated, i.e., Cx is a diagonal matrix with diagonal entries

[σ2
1, · · · , σK1 ] , then the spatial covariancel model can be rewritten as

R =
K∑
k=1

σ2
kg(θk)g(θk)

H + V, (4.4)

where V represents the contributions of AWGN and the approximation error due to the

sample averaging.

Based on the above models, the goal of DoA estimation problem is to estimate the

support set Tθ. In the next subsection, the super-resolution theory is introduced to fit

the DoA estimation problem in the SMV scenario.

4.2.2 Preliminary Method of Continuous Signal Recovery

Following the theory of super-resolution [14], consider a continuous signal s(τ) which

has sparse representations in the domain [−1, 1] as a weighted linear combinations of

spikes:

s(τ) =

K∑
k=1

akδτk , (4.5)

where ak may be real or complex valued, τk ∈ [−1, 1], ∀k and δτk is a Dirac measure at

location τk. Denote s = [a1, . . . , aK ]T as the data vector. The Fourier transform of s(τ)

is written as

r(n) =

∫ 1

−1
e−j2πnτs(dτ) =

K∑
k=1

ake
−j2πnτk , n = −fc, . . . , fc

where fc is an integer and 2fc + 1 is the number of Fourier transform frequency coeffi-

cients. With arbitrary noise e cosidered in this model, we simplify the above equation

as

r = Fs+ e, (4.6)
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where r = [r(−fc), . . . , r(fc)]T ∈ CM×1, and F denotes the linear operator to measure

the 2fc + 1 lowest frequency coefficients.

In order to estimate τk, the total variation (TV) norm for a complex meaure [70] on a

Borel setB ∈ Borel σ-algebra B(T) is introduced and defined as ‖s‖TV = sup
∑∞

k=1 |s(Bk)|,

where the supremum is taken over all partitions of B into countable and disjoint mea-

surable subsets Bk. The minimization of ‖s‖TV in the continuous domain is used to

promote the sparsity of continuous signal s, which is the analog of the l1-norm mini-

mization of ‖s‖1 =
∑

k |ak| in the discrete domain. In [20], convex optimization problem

is suggested as

min
s
‖s‖TV s.t. ‖Fs− r‖2 ≤ ε. (4.7)

When the signal-measurement-vector system (4.1) is considered, by letting τk = sin(θk), ∀k

and fc = (M − 1)/2, the DoA estimation problem can be cast in the super-resolution

framework as follows

r = Fs+ e = Gx(t) + n(t) = y(t), (4.8)

and then solved by the TV norm minimization (4.7). For the spatial covariance model

(4.4), we can also vectorize the covariance matrix into a SMV system, and solved by

TV norm minimization [71].

4.3 Reformulation of the Spatial Covariance Model

Instead of vectorizing the spatial covariance model (4.4), we recast it into a MMV-like

model by the following:

R = [r0, r1, . . . , rM−1] =
K∑
k=1

σ2
kg(θk)g(θk)

H + V, (4.9)

= σ2
1Ḡ(θ1) + · · ·+ σ2

KḠ(θK) + V,
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where g(θk)g(θk)
H = Ḡ(θk) is a Toeplitz matrix expressed by Ḡ(θk) = [a0(θk),a1(θk), . . . ,aM−1(θk)] ∈

CM×M . For ULA, the lth column of Ḡ(θk) is represented as al(θk)= [e−j(−l)ξk , . . . , e−j(M−1−l)ξk ]T ∈

CM×1, ∀l = 0, . . . ,M − 1, in which ξk = d
λ2πsinθk. Then, the lth column rl ∈ CM×1

can be expressed as

rl = σ2
1al(θ1) + · · ·+ σ2

Kal(θK) + vl =
∑
k

σ2
kal(θk) + vl,

= Alp + vl, ∀l = 0, . . . ,M − 1 (4.10)

where Al = [al(θ1), . . . ,al(θK)] ∈ CM×K , p = [σ2
1, . . . , σ

2
K ]T ∈ RK×1, and vl is the

lth column of V. The matrix Al is composed of every lth column from matrices

Ḡ(θ1), . . . , Ḡ(θK). Therefore, R can be rewritten as

R = [r0, r1, . . . , rM−1] (4.11)

= [A0p,A1p, . . . ,AM−1p] + V,

which is a similar form to an MMV system in Equation (4.2). In Equation (4.11), we

have M vectors, r0, . . . , rM−1 with the same power vector p. Unlike the MMV system,

each matrix Al is different, and each column of Ai is a rotational steering vector to the

corresponding column of Aj , i.e., ai(θk) = ai+1(θk)e
jξk . Equation (4.11) will be used

to estimate the DoA support set by the proposed method in the next sections. We will

show how to extend the SR theory from SRV to MMV-like system before introducing

the proposed method.

4.4 Continuous Group Sparsity Recovery Methods

Based on the theory of super-resolution, we extend a continuous signal into the MMV

space by defining s(τ ; t), τ ∈ [−1, 1], t = 1, . . . , T as

s(τ ; t) =

K∑
k=1

bktδτk , (4.12)
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where bkt is a real or complex-valued amplitude of measurement at time t, and τk ∈

[−1, 1], ∀k is a location of kth spike. Denote T = {τk}Kk=1 as the support set and

S = [s1, . . . , sT ] as the data matrix where st = [b1t, . . . , bKt]
T . Similarly in [14], the

Fourier transform of s(τ ; t) with respect to τ is

r(n; t) =

∫ 1

−1
e−j2πnτs(dτ) =

K∑
k=1

bk,te
−j2πnτk , (4.13)

n = −fc, . . . , fc, t = 1, . . . , T.

When Gaussian noise is considered in this model, Equation (4.13) can be simplified as

rtsr = Fts(τ ; t) + et, ∀t = 1, . . . , T (4.14)

where rtsr = [r(−fc; t), . . . , r(fc; t)]T ∈ CM×1, and et denotes i.i.d. Gaussian noise vector

with CN (0, σ2I). Ft denotes the linear operator at time t. Let Rsr = [r1
sr, . . . , r

T
sr].

By using multiple measurements to estimate τk, a block total variation (BTV ) norm

for a complex meaure with multiple measurements on a set B ∈ B(T) is defined as

‖s‖TV,p = sup

∞∑
k=1

‖s(Bk; :)‖p, (4.15)

where ‖s(Bk; :)‖p = (
∑T

t=1 |s(Bk; t)|p)1/p and s(Bk; t) = bk,t if the supremum is taken

over all partitions {Bk} of B belonging to Borel σ-algebra [70] to optimally have a finite

and disjoint measurable subsets {Bk} at time t. Since at different time t, multiple con-

tinuous signals s(τ ; t) share the same spike locations, the group sparsity of s(τ ; t) can be

promoted by using the minimization of ‖s‖TV,p. This is equivalent to the minimization

of ‖S‖1,p =
∑

k ‖Sk,:‖p where Sk,: is the kth row of data matrix S by the notion of

Group Lasso [15]. Similarly in [20], based on Equation (4.12) and (4.14), the block total

variation (BTV ) minimization problem is proposed as

min
s
‖s‖TV,p s.t.

T∑
t=1

‖Fts− rtsr‖2 ≤ ε, (4.16)

where 1 ≤ p ≤ +∞.
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When considering the MMV-like model (4.11) and letting τk = sin(θk), t = l,

T = M − 1, Rsr = R and fc = (M − 1)/2, the DoA estimation problem can be

formulated in the new super-resolution framework as the following

rlsr = Fls(τ ; l) + el = Alp + vl = rl, l = 0, . . . ,M − 1,

and then solved by the proposed BTV norm minimization

min
s
‖s‖TV,1 s.t.

M−1∑
l=0

‖Fls− rl‖2 ≤ ε. (4.17)

Note that the minimization of ‖s‖TV,1 is analog to ‖S‖1,1 in this case. A theorem about

DoA resolution for MMV system can be claimed similarly by using Theorem 1.2 in [14].

Theorem 4.1. Let T = {τk}Kk=1 as the support set. If the minimum distance ∆(θ)

obeys

∆(θ) = inf
τi,τj∈T

|τi − τj | ≥
4

fc

λ

d
,

then the high resolution detail of continuous signal s can be recovered with high proba-

bility by solving block total variation norm minimization problem (4.17).

In order to estimate the support set, the dual form of (4.17) is derived as

max
U

Re{〈R,U〉} − ε

M
‖U‖F (4.18)

s.t. ‖F∗l ul(τ)‖∞ ≤ 1,∀l = 0, . . . ,M − 1,

where U = [u0, . . . ,uM−1] ∈ CM×M and F∗l ul(τ) =
∑
|k|≤fc ul,ke

j d
λ

2π(k−l)τ where ul =

[ul,−fc , . . . , ul,fc ]
T ∈ CM×1. Re{〈R,U〉} takes the real part of tr(UHR) where tr(·) takes

the sum of diagonal entries of matrix. By a generalized Slater condition [72], strong

duality holds since ul = 0,∀l, which satisfies the constraint, is contained in the feasible

set. Although this problem is still with infinite constraints, it can be reformulated as a
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semidefinite matrix and an affine hyperplane. Thus, the dual problem is rewritten as

max
U

Re{< R,U >} − ε

M
‖U‖F (4.19)

s.t.

Ql ul

uHl 1

 � 0,∀l = 0, . . . ,M − 1

M−j∑
i=1

Ql
i,i+j =


1, j = 0,

0, j = 1, 2, . . . ,M − 1

,

where Ql ∈ CM×M is a Hermitian matrix, ∀l. The derivation of (4.19) is in Appendix

A.

The following lemma is modified from [14] and used to estimate the support set by

linking a primal solution with a dual solution.

Lemma 4.1. Let sest and ul,est be a pair of primal-dual solutions to (4.16) and (4.19).

Then

(F∗l ul,est)(τ) = sign(sest(τ ; l)),∀τ ∈ T s.t. sest(τ ; l) 6= 0,

where sign(·) takes the sign of any number.

By performing the root finding procedure on the |(F∗l ul,est)(τ)|2 = 1, ∀l, we can

obtain the estimated support sets T lest = {τ lk,est}Kk=1 and its union set Test =
⋃
l T lest.

Then, the measurement matrix Gest is reconstructed based on Test. Finally in terms of

Equation (4.2), Group Lasso [15] can be used to determine the true source locations as

the following

X̂ = arg min
X

1

2
||Y −GestX||2F + γ||X||2,1, (4.20)

where ||X||2,1 =
∑|Test|

k=1 ‖Xk,:‖2, and Xk,: denotes the kth row of X and |Test| is the

cardinality of Test.
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4.5 Numerical Results

The proposed method (SR-BTV) is applied to the DoA estimation problem and com-

pared with MUSIC, ANM-MMV [65] and the CRLB. An uniform linear array (ULA) of

M = 9 sensors with half-wavelength interelement spacing is considered. The minimum

distance ∆(θ) is set to 1. Suppose K = 2 narrowband plane waves impinging on ULA

from DoAs with sin(θ) = [0.2165251, 0.4665251]. The distance of two sources is 0.25,

which is ∆(θ)
4 . Two cases of uncorrelated and correlated sources are considered. In the

uncorrelated case, two source signals are zero-mean complex-valued Gaussian random

variables with equal power. In the correlated case, the correlation coefficient of two

sources is set to 0.9. For MUSIC, the search grid of [−1, 1] is uniformly separated with

step size 0.0001. We performed one hundred realizations for each SNR. The number of

snapshots is T = 100.

The RMSE of DoA estimation for the case of uncorrelated source signals is presented

in Figure 4.1. At high SNR, the performance of SR-BTV and MUSIC are almost the

same and approach the CRLB. However, at low SNR, the SR-BTV method shows a

lower resolution threshold than MUSIC. For instance, when RMSE ≈ 10−1, the SR-

BTV method outperforms MUSIC about 2 dB. ANM-MMV has slight improvement

over MUSIC at low SNR, but does not have good performance at high SNR. In Figure

4.2, the performance for the correlated case is presented. Since the covariance matrix

of source signals is not diagonal anymore, the performance of SR-BTV, ANM-MMV

and MUSIC degrade and all are more far away from the CRLB compared with the

uncorrelated case. However, the SR-BTV and ANM-MMV are more robust to source

correlations and achieves better performance than MUSIC at low SNR. At SNR= −10

dB, the RMSE of SR-BTV is approxmately 0.0464 while the RMSE of MUSIC is about

0.4318.
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Figure 4.1: RMSE of DoA estimation versus SNR for the case of uncorrelated sources.

4.6 Summary

By reformulating the spatial covariance model into an MMV-like system, group sparsity

is exploited in the super-resolution framework. A BTV norm minimization approach is

proposed for the reformulated model. The DoAs are estimated by solving its dual. Nu-

merical results demonstrate the robust performance of SR-BTV compared wtih MUSIC

and ANM-MMV in cases of uncorrelated and correlated sources.
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Figure 4.2: RMSE of DoA estimation versus SNR for the case of correlated sources.



Chapter 5

Array Self-Calibration and

Sparsity Promoting DoA

Estimation

5.1 Introduction

DoA estimation algorithms assume perfect knowledge the array responses for all direc-

tions of interest. Such knowledge necessitates perfectly calibrated sensors in both phase

and gain. Maintenance of such calibration under varying physical conditions, and in

time is difficult, and in many cases expensive. Accordingly, algorithms that can pro-

vide calibration algorithmically and automatically are of great interest. This chapter is

concerned with the development of a self-calibration method in the context of sparsity

promoting DoA estimation.

To design an efficient self-calibration algorithm is a challenging problem. Among

the self-calibration algorithms, the maximum likelihood estimation is the most powerful

one to jointly estimate the signals of interest and the calibration parameters. But this

approach suffers from excessive computational complexity such that it is not suitable

59
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to real-time applications. Some self-calibration algorithms were developed based on

the eigendecomposition of a covariance matrix to estimate the phase and gain of the

calibration error. Examples of this lower computational complexity approach, which

is called eigenstructure-based (ES) methods, can be found in [23, 73, 74]. In [75],

the blind calibration formulation and methods were developed, and the necessary and

sufficient condition for estimating the calibration offsets is characterized. In [76], l1 norm

minimization is used to formulate the blind calibration problem, which is highly non-

convex. In [77], the approximate message passing algorithm combined with the blind

calibration problem is considered, and solved by a convex relaxation algorithm. In [78],

several convex optimization methods were proposed for solving the blind calibration of

sparse inverse problems. In [21], a self-calibration problem is introduced and solved

in the framework of biconvex compressed sensing via a SparseLift method, which is

inspired by PhaseLift [79, 80, 81] that is about the ”Lifting” technique. The notion of

”Lifting” is used for blind deconvolution [82, 83], which attempts to recover two unknown

signals from their convolution. In [11], uncertainties of measuring the sensing matrix is

investigated, especially the sensitivity of compressed sensing to mismatch between the

assumed basis and the actual basis.

In this work, we extend the Ling’s work [21] from single measurement vector (SMV)

system to multiple measurement vector (MMV) system. By taking advantage of multiple

snapshots of measurement in the self-calibration problem, a new problem is formulated

and a low-rank matrix is generated, but with larger dimension. We also give the defini-

tion of linear operator for the MMV model, and its corresponding matrix representation

so that we can generate a variant of convex optimization problem. In order to miti-

gate the computational complexity of the method, singular value decomposition (SVD)

is applied to reduce the problem size. Our proposed method is verified in the array

self-calibration and direction-of-arrival (DoA) estimation. Moreover, the off-grid effect

in the sparse array self-calibration problem is considered as well. The performance of

the proposed methods are demonstrated by numerical simulations and compared with
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Cramer-Rao Bound (CRB) [22], and the eigenstructure-based method [23].

5.2 Self-Calibration Preliminaries

Based on the equation (1.3) mentioned in Chapter 1, a generic self-calibration problem

in compressed sensing is given by

y = G(h)x + n. (5.1)

Therefore, if x is assumed sparse, an l1-norm minimization problem is proposed

(x̂, ĥ) = arg min
x,h

1

2
||G(h)x− y||22 + α||x||1, α > 0. (5.2)

This optimization problem is non-convex with associated difficulties for its solution.

The most common approach is to use the alternating method, i.e., solve x for fixed h,

and solve h for fixed x. However, (5.2) is too general to solve in an efficient numerical

framework. Thus, an important special case of (5.1) is considered

y = DGx + n, D = diag(Bh) (5.3)

where y ∈ CM×1 is the observation vector, G ∈ CM×N (M � N) is a known fat matrix,

x ∈ CN×1 is a K-sparse signal of interest, and n ∈ CM×1 is additive white Gaussian

noise vector. D ∈ CM×M is a diagonal matrix that depends on unknown parameter

h ∈ Cm×1, and B ∈ CM×m (M > m) is known. This case is based on the fact that

the unknown calibration parameters h lie in the subspace (column space or range) of B

. This type of model can be applied in many applications, such as directions-of-arrival

estimation.

5.2.1 Array Self-Calibration for DoA Estimation

Consider the direction-of-arrivals estimation problem with an array of M sensors. Sup-

pose that there are K far-field narrowband sources impinge on the array from angles
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θ1, . . . , θK . The observation vector y(t) = [y1(t), . . . , yM (t)]T ∈ CM×1 at time t is

modeled as

y(t) = D(h)As(t) + n(t), (5.4)

where the measurement matrix A = [a(θ1), · · · ,a(θK)] ∈ CM×K is composed of the

steering vectors {a(θi) = [e−j(−(M−1)/2)2π d
λ
sinθi , . . . , e−j((M−1)/2)2π d

λ
sinθi ]T }Ki=1 with wave-

length λ, and n is i.i.d. white Gaussian noise with N (0, σ2I). The vector s(t) =

[s1(t), . . . , sK(t)]T ∈ CK×1 represents the arriving stochastic signal vector with covari-

ance matrix Cs. D is parameterized by unknown parameters h, which captures the

unknown calibration of the sensors. The calibration case of interest is when D(h) =

diag(Bh) is a diagonal matrix in which its diagonal entries represent unknown complex

gains for each antennas. B is assumed to be a known matrix, which is used to model the

situation when the diagonal elements of D change slowly entry-wise. This calibrating

effect captures the condition of gain discrepancies due to the environmental temperature

or humidity changes, or position displacement of antenna arrays.

As we have done earlier, we discretized the angle space into grid of directions,

which are denoted by {φ1, φ2, · · · , φN} where N is the number of discrete directions

and N � K. Suppose that the actual DoAs {θ1, θ2, · · · , θK} belong to the grid of in-

terest represented by {φ1, φ2, · · · , φN}. Then, Equation (5.4) can be transformed into

a sparse model as:

y(t) = DGx(t) + n(t), D = diag(Bh), (5.5)

where the measurement matrix G = [g(φ1), · · · ,g(φN )] ∈ CM×N is composed of the

steering vectors {g(φi) = [e−j(−(M−1)/2)2π d
λ
sinφi , . . . , e−j((M−1)/2)2π d

λ
sinφi ]T }Ni=1. x ∈

Cm is a K-sparse signal of interest. A known B is composed of the first m columns of the

Discrete Fourier Transform (DFT) matrix, which models slow changes on calibrations

of the sensors.
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Then, a sparsity-promoting optimization problem to recover x and h is

arg min
x,h

1

2
||diag(Bh)Gx− y||22 + α||x||1, (5.6)

where α > 0 is a regularization parameter. This is still challenging to solve it efficiently,

since the objective function is non-convex. Thus, a novel method is proposed by [] to

solve it efficiently and analytically, which is called SparseLift.

5.2.2 SparseLift

In order to cope with the bilinearity of the function ||diag(Bh)x − y||22, a ”lifting”

technique [83] is applied to lift a vector-valued quadratic function to a matrix-valued

linear function. In other words, instead of estimating two vectors x,h, a low rank matrix

recovery problem is proposed to recover a rank-one matrix hxT . Let us consider the

i-th entry of y:

yi = (Bh)ig
T
i x + ni = bHi hxTgi + ni = bHi X̃gi + ni (5.7)

where bi is the i-th column of BH , gTi is the i-th row of G, and X̃
∆
= hxT ∈ Cm×N is

a rank-one matrix. Define a linear operator A : Cm×N → CM

A(X̃ )
∆
= {bHi X̃gi}Mi=1, (5.8)

such that

y = A(X̃ ) + n. (5.9)

The adjont operator A∗(u) : CM → Cm×N of A(X̃ ), and A∗A(X̃ ) are also given by

A∗(u)
∆
=

M∑
i=1

uibig
H
i (5.10)

A∗A(X̃ ) =

M∑
i=1

bib
H
i X̃gig

H
i . (5.11)



64

Then, the low rank matrix recovery optimization problem is proposed by

arg min
X

rank(X ) (5.12)

subject to ||A(X )− y||2 ≤ η,

Generally, the above problem is NP -hard, so that it is replaced by formulating a nuclear

norm minimization problem, which is more tracktable as follows

arg min
X

||X ||∗ (5.13)

subject to ||A(X )− y||2 ≤ η,

In order to solve the above problem numerically, we need matrix form Φ ∈ CM×mN of

A(X ) such that

Φvec(X ) = vec(A(X )). (5.14)

By using the Kronecker product property, i.e., for any matrix A,B,C, (BT⊗A)vec(C) =

vec(ACB), we can derive the block form of Φ, and ΦH as the following

ΦH = [ϕ1, · · · , ϕi, · · · , ϕM ] ∈ CmN×M , ϕi = g∗i ⊗ bi ∈ CmN×1, (5.15)

Φ = [ϕ̃1,1, · · · , ϕ̃m,1, · · · , ϕ̃1,N , · · · , ϕ̃m,N ] ∈ CM×mN , (5.16)

where ϕ̃i,j = diag(b̃i)g̃j ∈ CM×1,∀i = 1, · · · ,m, and j = 1, · · · , N , b̃i is the i-th

column of B, and g̃j is the j-th column of G.

Then, we can solve the following convex problem

arg min
X
||X ||∗ (5.17)

subject to ||Φvec(X )− y||2 ≤ η,

Note that x is a sparse signal. Thus, X̃ = hxT ∈ Cm×N is not only of rank-one, but

also sparse. So, low rank and sparsity property of X̃ are promoted by

arg min
X̃
||X̃ ||∗ + λ||X̃ ||1

subject to ||Φvec(X̃ )− y||2 ≤ η.
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Since finding a proper λ might be hard, minimizing nuclear norm needs high computa-

tions, and ||X̃ ||1 ≥ ||X̃ ||∗ always holds, [84] shows that it suffices to use

arg min
X̃
||X̃ ||1 (5.18)

subject to ||Φvec(X̃ )− y||2 ≤ η.

In the end, a low rank matrix can be recovered by solving the above constrained L1-

norm minimization problem. In [21], the following theorem is provided to show that

the estimation error for rank-one matrix is upper bounded under certain assumptions.

This also implies that there exists high probability of success to have upper bounded

estimation errors.

Theorem 5.1. Suppose X0 = h0x
T
0 is the true matrix. Considering y = diag(Bh)Gx+

n = A(X ) + n with ‖n‖ ≤ η, the solution X̂ given by (5.13) has the following error

bound if G is a random Fourier matrix and B is a tall DFT matrix.

‖X̂ −X0‖F ≤ (C0 + C1

√
P
√
mK)η (5.19)

with probability of success at least 1−O(M−α+1) for fixed α > 1. Both C0 and C1 are

constant. M and P satisfy M = PQ, P ≥ log(4
√

2mKγ)/log2, Q ≥ Cαµ2
maxmK(log(M)+

log(mN)), where γ =
√

2N(log(2mN) + 1) + 1 and µmax = maxi,j
√
M |Bij |.

5.3 Self-calibration DoA Estimation in MMV System

Instead of only considering the self-calibration in single measurement vector (SMV) sys-

tem in [21], a self-calibration DoA estimation in multiple measurement vectors (MMV)

system is investigated. Suppose that we have L snapshots of measurement vectors in

(5.5). Then, the MMV model is the following

Y = DGX + N, D = diag(Bh) (5.20)
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where Y = [y1, · · · ,yL] ∈ CM×L is measurement matrix, D ∈ CM×M is a diagonal

matrix that depends on unknown parameter h ∈ Cm×1, G ∈ CM×N (M � N) is

a known fat matrix, X = [x1, · · · ,xL] ∈ CN×L is a sparse matrix of interest whose

columns are all K-sparse signals and have the same sparse pattern, and N ∈ CM×L is

additive white Gaussian noise matrix whose entry is with zero-mean and σ2-variance,

and B ∈ CM×m(m < M) is composed of the first m columns of the Discrete Fourier

Transform (DFT) matrix, which models slow changes on calibrations of the sensors.

This is a generalization of a SMV system. The question is that can we get improvement

by using the MMV model? The answer is Yes. The MMV structure of (5.20) and

the group sparsity property of X will be exploited to enhance the performance of DoA

estimation.

5.3.1 Proposed Methods

In order to express our idea explicitly, the case of L = 2 snapshots for MMV system is

assumed in this section, i.e., Y = [y1,y2], X = [x1,x2]. It is easy to extend our work to

any case of L > 2. Consider Yi,:
∆
= [yi,1, yi,2], the i-th row of the measurement matrix

Y without noise first. Then,

Yi,1 = yi,1 = (Bh)ig
T
i x1 = bHi hxT1 gi = bHi X̃ 1gi (5.21)

Yi,2 = yi,2 = (Bh)ig
T
i x2 = bHi hxT2 gi = bHi X̃ 2gi (5.22)

where where bi is the i-th column of BH , gTi is the i-th row of G, and X̃ 1 = hxT1 , X̃ 2 =

hxT2 ∈ Cm×N are rank-one matrix. Thus, we reformulate Yi,: as

Yi,: = [yi,1, yi,2] = bHi [hxT1 ,hxT2 ]

gi 0

0 gi

 = bHi X̃ G̃i (5.23)

where

G̃i =

gi 0

0 gi

 ∈ CLN×L (5.24)
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and

X̃ := [X̃ 1, X̃ 2] = h[xT1 ,x
T
2 ] = h

x1

x2

T ∈ Cm×LN (5.25)

is also a rank-one matrix by concatenating two rank-one matrices.

Define the linear operator A(X̃ ) : Cm×LN → CM×L s.t.

A(X̃ )
∆
= {bHi X̃ G̃i}Mi=1 (5.26)

The adjoint operator A∗(U) : CM×L → Cm×LN of A(X̃ ), and A∗A(X̃ ) are also given

by

A∗(U)
∆
=

M∑
i=1

biuiG̃
H
i (5.27)

A∗A(X̃ ) =

M∑
i=1

bib
H
i X̃ G̃iG̃

H
i , (5.28)

where U = [uT1 , · · · ,uTM ]T ∈ CM×L,ui ∈ C1×L, ∀i.

Then, we can solve 5.20 by a nuclear norm minimization problem

arg min
X̃
||X̃ ||∗ (5.29)

subject to ||A(X̃ )−Y||2 ≤ η.

But, we still need the matrix representation Φ : ML×mNL of A such that

Φvec(X̃ ) = vec(A(X̃ )) = vec(YT ). (5.30)

We can derive the block form of ΦH as the following

ΦH = [ϕ1, · · · , ϕi, · · · , ϕM ] ∈ CmLN×ML, ϕi = G̃∗i ⊗ bi ∈ CmLN×L, (5.31)
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where ⊗: Kronecker product. And the block form of Φ is

Φ = [ϕ̆1,1, · · · , ϕ̆m,1, ϕ̆1,2, · · · , ϕ̆m,2, · · · , · · · , ϕ̆1,N , · · · , ϕ̆m,N , (5.32)

ϕ̄1,1, · · · , ϕ̄m,1, ϕ̄1,2, · · · , ϕ̄m,2, · · · , · · · , ϕ̄1,N , · · · , ϕ̄m,N ] ∈ CML×mLN ,

ϕ̆i,j =



ϕ̃i,j(1)

0L−1

ϕ̃i,j(2)

0L−1

...

ϕ̃i,j(M)

0L−1


, ϕ̄i,j =



0L−1

ϕ̃i,j(1)

0L−1

ϕ̃i,j(2)
...

0L−1

ϕ̃i,j(M)


∈ CML×1

where ϕ̃i,j = diag(b̃i)g̃j ∈ CM×1,∀i = 1, · · · ,m, and j = 1, · · · , N , b̃i is the i-th

column of B, and g̃j is the j-th column of G. ϕ̃i,j(l) represents the l-th entry of ϕ̃i,j

and 0L−1 denotes a zero vector with L− 1 dimensions.

So, we can solve the following convex problem

arg min
X̃
||X̃ ||∗ (5.33)

subject to ||Φvec(X̃ )− vec(YT )||2 ≤ η.

Note that rank-one matrix X̃ ∈ Cm×LN is of bigger size than the case in SMV. The

columns of X̃ share the same sparsity. The group sparsity of X̃ is promoted by

arg min
X̃
||X̃ ||∗ + λ||X̃ ||2,1

subject to ||Φvec(X̃ )− vec(YT )||2 ≤ η.

Since minimizing the nuclear norm has higher computational complexity, and ||X̃ ||2,1 ≥

||X̃ ||1 ≥ ||X̃ ||∗ always holds, it suffices to use

arg min
X̃
||X̃ ||2,1 (5.34)

subject to ||Φvec(X̃ )− vec(YT )||2 ≤ η.
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After the estimate of X̃ is obtained, SVD is used to obtain its eigenvector with the

largest eigenvalue, which will be the best estimate of h and x.

Recalling that the matrix size of X̃ is m×LN . If the number of snapshots L is very

large, the computational complexity will be substantial. In order to mitigate this issue,

a complexity reduction method is applied in the next subsection.

5.3.2 Complexity Reduction

Consider the general case of L� 2,

Y = DGX + N, D = diag(Bh). (5.35)

Since the matrix size of Y ∈ CM×L, X ∈ CN×L, andX̃ ∈ Cm×NL becomes larger, the

singular value decomposition (SVD) can be used to reduce problem size. Take the SVD

on Y

Y = UΣVH (5.36)

where U ∈ CM×M is an unitary matrix, Σ ∈ CM×L is a rectangular diagonal matrix

with nonnegative real numbers on the diagonal, and V ∈ CL×L is an unitary matrix.

Denote EK = [IK , 0]T where IK is a K ×K identity matrix, and 0 is a K × (L−K)

zero matrix. Then, a reduced M ×K matrix Ysv without losing the signal power can

be obtained by

Ysv = YVEK = DGXsv + Nsv, (5.37)

where Ysv ∈ CM×K , Xsv = XVDK ∈ CN×K , and X̃ ∈ Cm×NK . Then, the reduced-

sized convex optimization problem is the following

arg min
X̃
||X̃ ||2,1 (5.38)

subject to ||Φvec(X̃ )− vec(YT
sv)||2 ≤ η.
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The problem size m×NK is much lower than m× LK such that the computational

complexity is reduced significantly. However, this method works well only when there

is prior knowledge on the number of the received signals.

5.4 Self-Calibration Off-Grid DoA Estimation

When formulating the DoA estimation problem by discretizing the angle space, the off-

grid DoAs always occur in the problem formulation, as mentioned in chapter 2. Since

the self-calibration DoA estimation problem is a sparse formulation, the off-grid effect

cannot be avoided, but this is not considered in [21]. In the following sections, the

self-calibration off-grid MMV model and our proposed methods are introduced.

5.4.1 Self-Calibration Off-Grid MMV Model

Recall the self-calibration MMV model as

Y = DAS + N, D = diag(Bh) (5.39)

where Y = [y1, · · · ,yL] ∈ CM×L is measurement matrix, D ∈ CM×M is a diago-

nal matrix that depends on unknown parameter vector h ∈ Cm×1. The measure-

ment matrix A = [a(θ1), · · · ,a(θK)] ∈ CM×K is composed of the steering vectors

{a(θi) = [e−j(−(M−1)/2)2π d
λ
sinθi , . . . , e−j((M−1)/2)2π d

λ
sinθi ]T }Ki=1 with wavelength λ, S =

[s1, · · · , sL] ∈ CK×L(si ∈ CK×1,∀i) is a signal matrix of interest, and N ∈ CM×L is

additive white Gaussian noise matrix whose entry is with zero-mean and σ2-variance,

and B ∈ CM×m(m < M) is composed of the first m columns of the Discrete Fourier

Transform (DFT) matrix.

The measurement now follows the sparse array calibration model

Y = DĀS̄ + N, D = diag(Bh), (5.40)

where Ā = [a(φ1), · · · ,a(φN )] ∈ CM×N , and S̄ = [̄s1, · · · , s̄L] ∈ CN×L is a sparse matrix

whose each column s̄i ∈ CK×1 is sparse.
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Using the first order model apprximation to account for off-grid directions, we have:

Y ∼= D(Ā(φ) + B̄Γ)S̄ + N (5.41)

= D(A(φ)S̄ + B̄P) + N

= D[A(φ), B̄]X + N

= DGX + N,

where Ā ∼= Ā(φ) + B̄Γ, B̄ = [∂a(φ1)
∂φ1

, . . . , ∂a(φN )
∂φN

] ∈ CM×N , β = [β1, . . . , βN ]T , Γ =

diag(β), P = ΓS̄, G = [A(φ), B̄], and X = [S̄T ,PT ]T ∈ C2N×L whose each column is a

sparse vector xi = [s̄Ti ,p
T
i ]T ∈ C2N×1, and pi = βi� s̄i where � denotes the Hadamard

product. It’s noted that each column xi is 2K-sparse, and N �M > m.

5.4.2 Proposed Methods

By considering the off-grid array calibration model (5.41), one can refer to subsection

5.3.1 and follow the same idea to define (suppose L = 2 and noiseless)

• Yi,: = [yi,1, yi,2] = bHi [hxT1 ,hxT2 ]

gi 0

0 gi

 = bHi X̃ G̃i

• X̃ := [X̃ 1, X̃ 2] = h[xT1 ,x
T
2 ] = h

x1

x2

T ∈ Cm×2LN , G̃i =

gi 0

0 gi

 ∈ C2LN×L

• Linear operator A(X̃ ) : Cm×2LN → CM×L s.t. A(X̃ )
∆
= {bHi X̃ G̃i}Mi=1

• Matrix representation Φ : ML× 2mLN of A such that Φvec(X̃ ) = vec(A(X̃ )) =

vec(YT ), and

Φ = [ϕ1, · · · , ϕi, · · · , ϕM ]H ∈ CML×2mLN , ϕi = G̃∗i ⊗ bi ∈ C2mLN×L

Thus, a convex optimization problem is proposed as

arg min
X̃
||X̃ ||2,1 (5.42)

subject to ||Φvec(X̃ )− vec(YT )||2 ≤ η.
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Figure 5.1: Low rank matrix X̃ .

Note that SVD still can be applied to reduce computational complexity when the number

of snapshots L� 2 is used for the problem formulation.

Furthermore, we notice that each row of X̃ has joint block sparsity patterns as shown

in Figure 5.1. And we have prior information of βi, i.e., 0 ≤ |βi| ≤ r and r = |φi−φi+1|
2 is

the half size of the grid interval. Then, we define a new norm for X̃ to take advantage

of the properties as

‖X̃ ‖2,2,1 := ‖v‖2,1, (5.43)
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where v := [‖X̃ :,1‖2, ‖X̃ :,2‖2, · · · , ‖X̃ :,2LN‖2]T ∈ R2LN×1
+ is a joint-sparse vector vari-

ables. So, we can solve a new convex optimization problem as follows

arg min
X̃ ,v

‖X̃ ‖2,2,1 (5.44)

subject to ||Φvec(X̃ )− vec(YT )||2 ≤ η

v = [‖X̃ :,1‖2, ‖X̃ :,2‖2, · · · , ‖X̃ :,2LN‖2]T

v ≥ 0

vN+1:2N ≤ rv1:N

v3N+1:4N ≤ rv2N+1:3N .

The last new constraints come from the positivity property of the norm, and the prior

knowledge of pi = βi � s̄i.

After we obtain the estimate of X̃ , we take SVD to obtain its eigenvector with

the largest eigenvalue, which will be the best estimate of h and x. However, since

x = [s̄T ,pT ]T ∈ C2N×1 is complex-valued and sparse, we only compute the absolute

value of off-grid DoA |βi| = |pi|
|s̄i| for non-zero s̄i. In order to recover the sign of off-grid

deviation, we should consider all 2K cases of the sign of |β|, due to the sign of {+,−}

and prior knowledge on K sources. In order to determine the best estimate of the sign

of off-grid DoA β, one can calculate ||Φvec(X̃ ) − vec(YT )||2 of all cases, and choose

the best β with the minimum value. (Remeber that X̃ i = hxTi , xi = [s̄Ti ,p
T
i ]T , and

pi = βi � s̄i.) The drawback is that the number of source signals K has to be known

as a priori.

5.5 Numerical Results

In this section, numerical simulation is conducted to compare the performance of the

proposed methods with CRB, the eigenstructure (ES) method, and Ling’s work. A
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ULA of M = 8 or M = 64 sensors with d/λ = 0.5 is considered. There are two cases of

K = 2 far-field plane waves from the actual DoAs θ. The first one is the on grid case

with θ = [−13◦, 28◦]; the second one is the off-grid case with θ = [13.2220◦, 28.6022◦].

The steering vector is given by a(θi) = [e−j(−(M−1)/2)2π d
λ
sinθi , . . . , e−j((M−1)/2)2π d

λ
sinθi ]T .

Narrowband, zero-mean, and uncorrelated sources for the plane waves are assumed,

and the noise is AWGN with zero-mean and unit variance. The DoA search space is

discretized from −90◦ to 90◦ with 1◦ separation, so N = 180. The number of snapshots

is set to L = 100. The value of r is set to 0.5◦. Calibration error d is given by

d = Bh, where B ∈ CM×m, whose columns are the first m = 4 columns of M×M DFT

matrix. One hundred realizations are performed at each SNR. The root mean square

error (RMSE) of DoAs estimation is defined as (E[ 1
K ‖θ̂ − θ‖22])

1
2 . When solving the

optimization problem, the regularization parameters are carefully selected to achieve

the best performance.

5.5.1 The Case of On Grid

In this subsection, the performance of our proposed method for the on grid case will

be verified. In Figure 5.2, the accuracy of estimated DoAs for one realization is shown

when M = 64 sensor is used at SNR =15 dB. Since a large number of sensors are used,

the peak of signal amplitude locates on the true DoAs for our proposed method and

Ling’s work. In this scenario, the difference of accuracy is not obvious, except that

there exists some small peaks abound the true DoAs for the Ling’s work. However,

when M = 8 sensor is used at SNR =25 dB, the accuracy performance of our proposed

method is better than the Ling’s work as seen in Figure 5.3. The estimated DoAs of

our proposed method are on the true locations, while the Ling’s work are not. In fact

in the latter method one of the true DoAs is missed.

In Figure 5.4, the RMSE of DoA estimation is investigated when M = 8 sensors

is used. Our proposed method is better than the eigenstructure method and Ling’s

work. At RMSE=10, the proposed method outperforms Ling’s work about 17 dB.
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Figure 5.2: Angle space vs signal amplitude at SNR=15 dB, M = 64.

This improves a lot, especially when only one hundred snapshots is used. Figure 5.5

shows that the RMSE performance improves with increasing number of snapshots. The

most improvement occurs when the number of snapshots is between 1 and 300. In

Figure 5.6, by using the complexity-reduction technique, it shows that the computational

complexity just increases slightly even when the L = 1000 snapshots are used in terms

of cpu time consumption for each realization.
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5.5.2 The Case of Off-Grid

In this subsection, the performance of our proposed method for the off grid case will be

verified. In Figure 5.7, the proposed method (off-grid) outperforms the ES, Ling’s work

at each SNR, and is also better than the proposed method (on grid) which does not

consider the off-grid effect. However, the RMSE performance of the proposed method

(off-grid) starts to saturate when SNR ≥ 20 dB. That means that the estimate of off-

grid DoA is not stable at high SNRs. Furthermore, our proposed method is still far

away from CRB.
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Figure 5.3: Angle space vs signal amplitude at SNR=25 dB, M = 8.
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Figure 5.4: RMSE of on-grid DoA estimation versus SNR, M = 8.

5.6 Summary

In this chapter, the calibrating issue in array processing is introduced. We extended

the Ling’s work to the MMV system, and proposed a new nuclear norm minimization

problem to take advantage of the information brought by multiple measurement vectors.

The performance improvement benefits from the use of multiple snapshots is proved by

simulaitons. We also apply SVD to reduce the computational complexity of solving our

proposed problem. Furthermore, the off-grid effect is also considered in the array self-

calibration problem. We come up with a new mixed-norm to formulate a new convex
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Figure 5.5: RMSE of on-grid DoA estimation versus number of snapshots, SNR=15 dB.

optimization problem with linear inequalities constraints about prior information of

off-grid. We verified its performance by numerical results.
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

In this dissertation, several topics related to sparse recovery and its applicaitons in array

processing were studied.

First, a sparse spatial spectral model was constructed to account in its model source

directions that are off the search grid. The alternating Lasso approach achieved the

best solution, which alternately estimates the spatial powers and off-grid DoAs at the

expense of substantial computational complexity. Then, by taking advantage of group

sparsity, group-sparsity estimator and Lasso-based Least Squares were proposed with

lower computational complexity. By numerical simulations, we evaluated and verified

the performances of the proposed methods from the simulation results. ALasso can

achieve the best RMSE performance of DoA. GSE and LLS maintained similar perfor-

mances as SSFMU at higher SNRs with lower complexity.

In order to efficiently solve the sparse off-grid recovery problem presented in chapter

2, some iterative algorithms were developed to cope with the constrained nonsmooth

optimization problem. Our first method was about combining the Nesterov smoothing

with the accelerated proximal gradient. We proposed two ASPG methods to estimate

81
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the off-grid DoAs using a sparse observation model. The group-sparsity penalty was

reformulated to the max-structure. By choosing a proper smoothing parameter, the

reformulated penalty can be smoothed by the Nesterov smoothing technique to become

a differentiable function. Then, we can use the accelerated proximal gradient to solve

the unconstrained optimization problem with the smoothed objective functions plus

only one nonsmooth function. However, the smoothing parameter has to be selected

empirically. So, a variant of EGT-based primal-dual mehtod was employed since the

smoothing parameter can be chosen systematically. Instead of using BPDN-like solver

such as the previous problems we solved, a variant od SDCO method was proposed, and

its smoothing parameters can be determined by using the continuation technique. The

performance and computational efficiencies of the proposed methods were verified by a

numerical example of DoA estimation.

Then, by the super-resolution (SR) theory, the sparse recovery problems can be

fitted into the super-resolution framework without discretizing the search space. In

order to design a SR-based method and consider the complexity issue, we reformulated

the spatial covariance model into an MMV-like system, and exploited the group sparsity

in the super-resolution framework. A block total variation norm minimization approach

was proposed to formulate a convex optimization problem. The primal variables can be

estimated by solving its dual. The dual problem was derived with infinite constraints,

but it can be transformed into a SDP. A number of optimal variable candidates was

generated via performing root-finding procedure on the trigonometric polynomial of

optimized dual variables. Then, the optimal primal solution was obtained by solving

the Group Lasso. The robust performance of SR-BTV was demonstrated compared wtih

MUSIC and ANM-MMV in cases of uncorrelated and correlated sources by simulation

results.

Finally, the calibration issue in array processing was studied. In order to take

advantage of multiple measurement vectors, Ling’s work was extended to the MMV
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system, and a new nuclear norm minimization problem was proposed. The perfor-

mance improvement of our proposed problem benefits from the information of multiple

snapshots. In order to reduce the computational complexity of the proposed approach

when a large number of multiple snapshots is used, the SVD was employed to resolve

it. Furthermore, the off-grid effect, which occurs in the spare formulation model, was

also considered with the array calibration issue. In order to estimate the off-grid value,

a new mixed-norm was proposed to formulate a convex optimization problem, and its

performance was demonstrated numerically.

6.2 Future Work

• Designing A Regularization Parameter Selector

The Stein Unbiased Risk Estimator (SURE) method [85] is a scheme for regular-

ization parameter selection in the case of Gussian noise. Unlike generalized cross

validation (GCV), the SURE method requires prior information of noise variance

and provides an unbiased assessment of MSE when solving denoising problems.

Therefore, when the noise variance is assumed known in our problem setting, we

would like to investigate how SURE can be used in the MMV setting.

• Reducing the Number of Sensors in the Super Resolution Theory

In the super-resolution framework, a large number of sensors is used in order

to satisfy the smaller minimum distance in accordance with the super-resolution

theory [14]. However, large number of sensors usually imply an impractically large

array aperture. Our goal is to reduce the number of sensors without performance

degradation. Reference [86] shows that recovery of spike trains is possible provided

that ∆ > 1
fc

, but no recovery methods were proposed. In [87], by using short-

time Fourier transform (STFT) measurements in the super-resolution theory, spike

trains can be recovered if ∆ > 1
fc

so that the number of sensors can be reduced

to a half of original ones. Extending, their approach to array signal processing
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needs to be investigated to reduce the number of sensors in the continuous-domain

sparse recovery problems.

• Designing Efficient Algorithms for Continuous Sparse Recovery Meth-

ods

The continuous sparse recovery methods can achieve high estimation accuracy if

the requirement of numbers of measurement is satisfied. However, we need to

solve the semidefinite programming to estimate the dual variables. This can be

implemented by the interior point method (CVX tools), but with the cost of high

computational complexity. Thus, an efficient algorithm for solving SDP and its

convergence analysis will be a very important topic in future.

• Developing Array Self-Calibration Recovery Methods in the Super-

Resolution Framework

The accuracy performance of proposed continuous sparse recovery methods is su-

perior under certain assumptions on the number of measurements. In order to

avoid the off-grid effect, instead of discretizing the search range on array cali-

bration problems, the super-resolution framework can be applied to construct a

gridless convex optimization problem in the SMV scenario, e.g., AtomicLift [88].

The performance guarantee can be analyzed with respect to the super resolution

theory. Extending this approach from SMV to MMV will be a challenging task

that may worth pursuing.

• Dectecting the Number of Source Signals

Signal subspace methods, such as MUSIC, require knowledge of the number of

sources to estimate the signal subspace or its complement, the noise subspace.The

performance of DoA estimation is subject to such information. By exploiting

eigenvalues from the sample covariance matrix, several well-known criteria are

used to estimate the number of signals, such as AIC (Akaike Information Crite-

rion) [89], MDL (Minimum Description Length) [90], the second order statistic of
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eigenvalues (SORTE) [91], and the predicted eigen-threshold approach [92]. Un-

like the signal subspace methods, the performance of sparsity-promoting methods

heavily depends on the selection of regularization parameters. Thus, choosing a

good regularization parameter is a critical issue. However, even with the help

of good regularization parameters, the information on the number of sources is

needed to select the actual signals from the estimated ones because extra candi-

date sources might appear due to noise. In [93], SORTE is proved to have a better

detection accuracy of number of sources. Thus, SORTE can be studied further

within the framework of the current approach for DoA estimation.
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Appendix A

Derivation of the dual problem

(4.19)

Proof. First, we know S = [s1, . . . , sM ] as the data matrix where st = [b1t, . . . , bKt]
T ,

and ‖s‖TV,1 = ‖S‖1,1 =
∑

i,j |Sj,i| =
∑

j ‖Sj,:‖1 =
∑

i ‖S:,i‖1, where Sj,i is the entry of

data matrix S located on the j-th row, i-th column. Sj,: is the j-th row of data matrix

S, and S:,i is the i-th column of data matrix S.

We reformulate the optimization problem (4.17) by employing auxiliary variables

zi, ∀i = 1, · · · ,M . Then, the reformulated problem is as follows:

min
s,zi
‖s‖TV,1 (A.1)

s.t.

M−1∑
i=0

‖zi‖2 ≤ ε

ri −Fis(τ ; i) + zi = 0,∀i.
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The Lagragian function can be expressed as

L(s, zi,ui, vi) = ‖s‖TV,1 +
∑
i

vi(‖zi‖2 −
ε

M
) + Re{

∑
i

u∗i (ri −Fis(τ ; i) + zi)} (A.2)

= ‖s‖TV,1 − Re{
∑
i

u∗iFis(τ ; i)}+
∑
i

vi‖zi‖2 + Re{
∑
i

u∗i zi} (A.3)

+ Re{
∑
i

u∗i ri} −
∑
i

vi
ε

M
,

where ui ∈ CM×1, and vi ∈ R ≥ 0 are the Lagrangian multipliers for all i.

So, the dual function is

g(ui, vi) = Re{
∑
i

u∗i ri} −
∑
i

vi
ε

M
+ inf
s,zi
‖s‖TV,1 − Re{

∑
i

u∗iFis(τ ; i)} (A.4)

+
∑
i

vi‖zi‖2 + Re{
∑
i

u∗i zi}.

By using the conjugate function [94], we have

inf
s
‖s‖TV,1 − Re{

∑
i

u∗iFis(τ ; i)} = − sup
∑
i

(Re{u∗iFis(τ ; i)} − ‖si‖1) (A.5)

=

 0, ‖F∗i ui‖∞ ≤ 1,∀i

−∞, o.w.
,

and

inf
zi

∑
i

vi‖zi‖2 + Re{
∑
i

u∗i zi} = − sup
∑
i

(−Re{
∑
i

u∗i zi} − vi‖zi‖2) (A.6)

=

 0, ‖ − ui‖2 ≤ vi,∀i

−∞, o.w.
.

Note that we can choose ui = vi
zi
‖zi‖2 so that ‖ui‖2 = vi, which satisfies the constraint

in the solution of (A.6).

Thus, we have the dual problem

max
ui

Re{
∑
i

u∗i ri} −
ε

M

∑
i

‖ui‖2 (A.7)

s.t. ‖F∗i ui(τ)‖∞ ≤ 1, ∀i = 0, . . . ,M − 1.
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By stacking each column ui and ri into matrix U and R, the above optimization problem

is equivalent to (4.18). Then, theorem 4.24 in [95] is applied to recast problem (4.18)

with infinite constraints into a semidefinite programming problem (4.19).
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