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Abstract 

Cardiovascular Disease is a growing public health issue in the modern world, 

with a high incidence rate that continues to increase, and poor mortality rates. 

Recent technological advances have made it possible to efficiently derive cardiac 

myocytes from human induced pluripotent stem cells (hiPSC-CMs). These have 

been seen as a model for human heart disease, as well as a potential source for 

cellular transplantation into failing diseased heart tissue. Many laboratories have 

devoted substantial effort to examining the functional properties of hiPSC-CMs, 

including electrophysiology, intracellular calcium handling, and gene/protein 

expression and force. In the first part of this thesis, we utilize traction force 

microscopy (TFM) to determine the maximum force production of isolated hiPSC-

CMs under varied culture and assay conditions. We elucidate here the 

relationship between cell morphology and force production, and find a significant 

relationship between cell size and force. HiPSC-CMs developing in culture for 

two weeks produce significantly less force than cells cultured from one to three 

months and hiPSC-CMs cultured for three months resemble the cell morphology 

of neonatal rat ventricular myocytes. Unexpectedly, hiPSC-CMs produce less 

force when assayed on increasingly stiff substrates, and generate less strain 

energy. Finally, hiPSC-CMs cultured in conditions of physiologic calcium 

concentrations are larger and produce more force than cells cultured in standard 

media. In the second part of this thesis, we address the concept of immaturity in 

hiPSC-CMs, and attempt to accelerate maturation. We use genome editing to 
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engineer hiPSC-CMs that contain an inducible gene expression cassette, in 

order to overexpress two proteins associated with maturity: SERCA2a and 

cardiac troponin I (cTnI). We find that we are able to overexpress both proteins in 

differentiated hiPSC-CMs after two weeks of treatment with doxycycline. 

SERCA2a-overexpressing cells showed significant alterations in physiologic 

function, including increased chronotropy and decreased time to peak in calcium 

transients following treatment with isoproterenol, a β-adrenergic agonist. 

Furthermore, using an impedance-measuring system to track contractility 

kinetics, we found that SERCA2a-overexpressing cells had shortened time to 

peak and time to baseline after gene induction, with continued response to 

isoproterenol. As a sign of maturation, SERCA cells also expressed increased 

cTnI, a key marker of maturity. Using RNAseq, we found that cTnI-

overexpressing cells had marked, global changes in their gene expression 

profile. Key findings include upregulation of genes associated with cardiac 

contractility and development, such as cardiac myomesin and tropomyosin and 

ryanodine receptor, and downregulation of genes associated with pacemaker 

and ventricular cell types, such as HCN and GREM2, and genes associated with 

skeletal myocytes, such as skeletal muscle actin. Overall, our findings show that 

hiPSC-CMs have physiologic function similar to that of immature cardiac 

myocytes, but that we are able to induce maturation by overexpression of genes 

associated with maturity. 
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Chapter 1 

Introduction 

Cardiovascular disease is a critical healthcare problem in the modern 

world, with a high incidence rate and poor mortality rates that have been 

improved by recent technological advances but have yet to fully address issues 

of death and, importantly, quality of life. Human pluripotent stem cells and stem 

cell-derived cardiac myocytes, recently discovered, show great promise in 

decreasing morbidity, mortality, inferior quality of life, and the economic burden of 

such a widespread chronic disease. This thesis focuses on elucidating the 

physiologic function of stem cell-derived cardiac myocytes, particularly in terms 

of force production; on elucidating the maturation status of stem cell-derived 

cardiac myocytes, in terms of physiologic function and protein expression; and on 

the use of genome editing to induce expression of physiologically significant 

genes in order to accelerate maturation and improve function.  

To aid the reader in understanding and drawing conclusions from the data 

presented, and to aid in the understanding of how the ideas presented relate to 

another, this introduction reviews the topics of cardiovascular disease and 

current therapies, cardiac myocyte function and development, stem cells and 

stem cell-derived cardiac myocytes and current experimental uses of those cells, 

and genome editing as a tool for precise genetic manipulation. The current state 

of the field is explored, with reference to both a historical understanding of 

cardiac biology and a history of techniques and experiments that have led to our 
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current understanding, as well as the most recent, cutting-edge, in-progress 

results and models and future directions. 

 

Clinical Relevance 

Epidemiology of Heart Failure 

Looming over the healthcare systems of the world, cardiovascular disease 

has been and continues to be a growing threat to public health and individuals’ 

physical, mental, and social well-being1. While “cardiovascular” is a broad 

umbrella term that includes all major disease states relating to blood flow or lack 

thereof, here I will refer predominantly to another broad category of disease 

centered around the heart itself, which is heart failure. In terms of the history of 

medicine, heart failure has been used to mean any disease where the 

myocardium is unable to adequately produce force to result in adequate cardiac 

output.  

This includes diseases that appear in childhood or adolescence, or the 

congenital cardiomyopathies; diseases that appear at various points throughout 

life, such as viral or post-partum cardiomyopathies; and diseases that occur in 

middle to old age, often referred to broadly by clinicians as congestive heart 

failure (CHF). In both the developed and the developing world, low levels of 

infectious disease and violence have resulted in an aging population with aging 

organs and aging cells, as well as prolonged exposure to environmental factors 
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that contribute to vascular disease, coronary artery disease, kidney disease, and 

obesity.  

Globally, there are currently more than 23 million adults living with heart 

failure, with 6 million in the United States alone2. Worldwide, the prevalence of 

heart failure continues to increase3, although incidence seems to have 

plateaued, and may be decreasing among certain populations1, which may be 

due to decreased incidence among younger individuals alongside increased 

incidence among older individuals4. Mortality following a diagnosis of heart failure 

is high, with estimates of 30-day mortality of 10%, 1 year mortality of 20-30%, 

and 5-year mortality of 45-60%5, and 75% 5-year mortality after the first 

hospitalization6.  

Risk factors for heart failure differ depending on subtype and clinical 

presentation- for example, CHF patients with preserved ejection fraction (HFpEF) 

are more likely to be female and have a history of hypertension7. However, 

several factors are strongly associated with adult heart failure in general, 

including ischemic heart disease, hypertension, diabetes, smoking, and obesity4. 

These often present as comorbidities in the same patient due to lifestyle or 

choices, sharing underlying common pathologies. Chronic kidney disease (CKD) 

shares many of these risk factors and frequently co-exists with CHF8. The 

combination of several chronic diseases such as these can complicate treatment 

algorithms and therapeutic regimens, sometimes confounding diagnostic and 

prognostic analysis.  
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Clinical Presentations of Heart Failure 

Clinical definitions of heart failure have varied wildly over the decades, 

and even today different definitions are put forward by distinct academic 

organizations, such as the American Heart Association, the New York Heart 

Association, and the European Society of Cardiology9. However, most definitions 

include a combination of abnormal findings of left ventricular mass index, ejection 

fraction, left atrium systolic dimension, lower extremity mobility disability, 

summary physical performance score, and 6-minute walk test10. CHF is a 

generally insidious disease, with myocardial damage accumulating slowly over 

years, except in the case of damage due to myocardial infarction. Patient present 

to clinic with dyspnea, orthopnea, paroxysmal nocturnal dyspnea, fatigue, 

edema, and limitations in physical activity, which becomes worse as the disease 

progresses. Any combination of the above symptoms is possible. The New York 

Heart Association (NYHA) classifies symptoms on a functional scale of I, 

meaning no limitation of physical activity, to IV, meaning unable to carry on any 

physical activity without discomfort11. The assessing physician examines the 

patient using physical exam, exercise testing, and imaging to classify the patient 

on the NYHA objective scale of A, meaning no evidence of cardiac disease, to D, 

meaning objective evidence of severe cardiac disease11. 

Diagnosis of heart failure is made based on symptoms and evidence of 

myocardial dysfunction. Echocardiography gives information about diastolic and 

systolic dysfunction, which can be supported by information from cardiac 
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magnetic resonance imaging, vascular imaging, and computed tomography 

imaging to distinguish variations of heart failure from each other and determine 

underlying causes, such as valve disease or vascular disease, and provide 

prognostic information as well12. Blood tests, such as N-terminal pro-brain 

natriuretic peptide (NT-proBNP), which is elevated in heart failure, can provide 

additional information.  

An important piece of the diagnosis to be made is whether ejection 

fraction (EF) is reduced (HFrEF) or preserved (HFpEF). This distinction has 

recently gained traction, as it was previously overlooked or unknown, although it 

is now known that the two versions should be treated slightly differently12. The 

distinction is made based on echocardiographic data; HFrEF is dominated by 

systolic dysfunction, while HFpEF is dominated by diastolic dysfunction, although 

significant overlap exists and may be present in an individual patient13. Heart 

failure can also be classified as high output, having a resting cardiac index of > 

2.5-4.0 L/min/m2 and low systemic resistance, or low output, having a resting 

cardiac index of < 2.5 L/min/m2 14.  

 

Pathophysiology of Heart Failure 

The pathophysiology of heart failure as a clinical syndrome is complex and 

incompletely understood. There are many precipitating events that may lead to 

heart failure, some of which are less common than others, including amyloidosis, 

radiation, constrictive pericarditis, and rare genetic disorders15; genetically-
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encoded cardiomyopathies, including hypertrophic16; pregnancy17; and stress18. 

However, most adult heart failure is precipitated by more common, long-standing 

disease states such as valve disease, hypertension, obesity, renal disease, and 

myocardial infarction following coronary artery disease14. Compensated heart 

failure can progress to acute decompensated heart failure due to ischemia or 

infarction, non-adherence to therapy, uncontrolled hypertension, arrhythmia, 

pregnancy, alcohol intoxication, thyroid conditions, COPD exacerbation, or other 

causes14. 

Underlying most forms of heart failure are pathological processes common 

to many disease states. Inflammation has been implicated as a serious player, 

including upregulation of pro-inflammatory cytokines, such as TNF-α and IL-6, 

and downregulation of anti-inflammatory cytokines; infiltration of inflammatory 

cells into the myocardium, especially macrophages, is seen, and has profound 

effects on myocardial function14. Fibrosis is present in the myocardium, as well 

as in the lungs, is likely due to hypoxia, fibroblast dysregulation, and 

inflammation, and contributes to both systolic and diastolic dysfunction13.  

Metabolic dysfunction is being recognized as an important player in the 

pathogenesis of heart failure and involves insulin resistance, defects in substrate 

utilization, and defects in energy production19. On an organismal level, we see 

enhanced neurohumoral signaling and activity, as well as volume overload in the 

pulmonary and systemic vasculature due to inability of the heart to pump. On an 

organ level, we see ventricle wall hypertrophy, alterations in calcium handling, 
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arrhythmia, and often dilatation of the ventricle and atrium20. We also see 

angiogenesis, fibrosis, autophagy, and apoptosis.  

 

Cell Intrinsic Dysfunction in Heart Failure 

On a cellular level, vast changes occur, such as the switch to fetal gene 

expression, involving troponin isoform switching, myosin heavy chain isoform 

switching, downregulation of Akt signaling and upregulation of ERK signaling, 

increased PKC signaling, increased CaMKII signaling, downregulation of β-

adrenergic signaling, and decreased SERCA2a and dysfunctional calcium 

handling20. Enhanced TGFβ signaling leading to SMAD2/3 activity affects many 

aspects of cardiac myocyte function including hypertrophy, metabolism, and 

contractility21. Stimulation of α1-adrenergic receptors plays a role in hypertrophy, 

but is also preventive against cell death in ischemia-reperfusion22.  

Additionally, autophagy, responding to increased levels of reactive oxygen 

species (ROS), as well as increased AMPK and mToR signaling, increases at 

first as a protective mechanism, but later decreases, seemingly unable to keep 

up with its task, contributing to accumulation of potentially toxic organelles and 

proteins23. Copious amounts of ROS, accumulating in the myocyte due to 

dysfunctional metabolism and energetics, contribute to hypertrophy and 

increased resting tension, and affecting mitochondrial energetics23. Dysfunctional 

calcium signaling over-activates CaMKII, which is protective during stunning, but 

harmful during ischemia-reperfusion24. The Hippo pathway can be activated by 
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ROS, GPCR signaling, and mechanical stress, all of which are present in failing 

myocardium, and can lead to hypertrophy and apoptosis, and downregulation of 

the pathway can improve cardiac regeneration25.  

 

Treatment of Heart Failure 

Treatment of heart failure is mostly symptomatic, relying on medications 

that decrease extracellular fluid volume and decrease mechanical load on the 

heart through decreased fluid volume, decreased peripheral vascular resistance, 

and decreased cardiac chronotropy and inotropy. These are frequently used 

alongside medications that treat comorbidities, such as nitric oxide donors for 

patients suffering CAD, statins for patients with high cholesterol, diuretics for 

patients with hypertension, anti-clotting agents for patients with atrial fibrillation, 

and diabetes medications26; patients on many medications simultaneously 

means there is high probability of medication interactions. First line medications 

are ACE inhibitors or angiotensin receptor blockers, which decrease 

vasoconstriction, hypertension, and cardiac and pulmonary fibrosis, although 

data from clinical trials of both drugs in HFpEF patients is not entirely 

conclusive26. Beta blockers, which block activation of β-adrenergic signaling, are 

recommended for patients with a history of myocardial infarction, hypertension, 

or atrial fibrillation14. Other classes of drugs are available, and many others, such 

as those targeting dysregulated pathways mentioned above, are in clinical trials 

or are elsewhere in the research and development pipeline.  
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Mechanical devices, known as left-ventricular assist devices (LVADs), 

have gained importance as an end-stage treatment option; outcomes can be as 

good as patients who have undergone heart transplant, providing between 2-5 

quality-adjusted life years (QALYs), although LVADs bring with them several 

major problems, including high rates of infection and prohibitive cost of device, 

implant procedure, and subsequent management27. Heart transplantation remain 

the final treatment in severe congenital cardiomyopathies, and is an option in 

other forms of end-stage heart failure in patients who are able to match with a 

donor. Heart transplant can add several QALYs to a patient’s life, but also have 

several serious, persistent issues, such as infection and allograft vasculopathy28. 

 

Uses of Stem Cells as a Therapy in Heart Failure 

More recently, a large effort has been made in both academic and 

industrial research laboratories to explore cardiac regeneration, as a more 

permanent therapy that targets the underlying pathophysiology of cardiac 

myocyte dysfunction by providing new, young cardiac myocytes to repopulate the 

myocardium and provide both systolic and systolic support. This can be done by 

either inducing native cell populations to divide and differentiate, or by utilizing 

cell therapy to transplant new cells, including stem cells and stem cell-derived 

cardiac myocytes or cardiac myocyte progenitors29-30.  

A landmark study utilizing carbon-14 dating showed some amount of 

cardiac turnover in the adult heart31. Several endogenous populations of cells in 
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the adult heart have been hypothesized to be cardiac progenitors capable of 

regenerating mature cardiac myocytes, including side population cells, c-kit+ 

cells, and other mesenchymal cell types, with potential therapies aimed at 

stimulating increased proliferation and differentiation of these cells. However, 

basic science data demonstrating clear proliferation and regeneration in native 

tissue of any of these cell types is severely lacking32. Other work has focused on 

reprogramming native non-progenitor cell populations into cardiac progenitors by 

overexpressing reprogramming factors, such as transcription factors associated 

with pluripotency33. 

As an alternative to native cell populations, stem cells could be 

transplanted into the myocardium, with the hope that they would either engraft, 

and then differentiate or mature (depending on cell type) and substantially 

contribute to mechanical function and strength of the organ, or provide paracrine 

signals that promote myocyte regeneration, ECM remodeling, and anti-

inflammatory chemicals. Several cell types have been proposed as suitable for 

cell transplant; a major divide lies along whether the cells are pluripotent, such as 

cord blood cells, bone marrow stem cells (BMSCs), mesenchymal stem cells 

(MSCs), embryonic stem cells (ESCs), or induced pluripotent stem cells (iPSCs), 

or whether they are cardiac progenitor cells (CPCs) or cardiac myocytes (CMs) 

that have been differentiated from one of the above cell types30.  

 

Stem Cell Biology 
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Definitions 

Stem cells are cells that differentiate into one or more terminal cell types, 

and self-renew during the mitotic process, distinguishing them from progenitor 

cells, which are also able to differentiate into terminal cell types but do not self-

renew34. Progenitor cells are derived from stem cells or from other progenitor 

cells. Stem cells are abundant throughout embryonic and fetal development, and 

specialized niches containing stem cells exist in the adult. Adult niches 

containing numerous stem cells include bone marrow, hair follicles, epidermis, 

intestinal crypts, gonads, liver, adipose tissue, and vasculature; these tend to be 

organs with high rates of cellular turnover and regeneration. Niches with few 

stem cells as a percentage of total organ cell number include skeletal muscle, 

brain, and bone and cartilage, where turnover rates are low and cell replacement 

is infrequent35. The existence of stem cells in the heart is a highly-contested 

topic36.  

The number of different cell types a stem cell has the capacity to 

differentiate into defines its potency. A stem cell that can be differentiated into 

one cell type is unipotent, although there is argument over whether unipotent 

stem cells exist, or whether they are, in fact, progenitor cells; an example is a 

hepatoblast. A stem cell that can differentiate into a few cell types is oligopotent, 

such as vascular stem cells. Those that can differentiate into more cell types than 

an oligopotent cell, but not all cell types, is multipotent, such as cord blood stem 

cells, BMSCs, and MSCs. A cell that can differentiate into all cell types derived 
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from any of the three embryonic germ layers is pluripotent; these include ESCs, 

iPSCs, and embryonic cells including inner cell mass (ICM) cells and epiblast 

cells. Finally, a totipotent cell can differentiate into cell type of any of the three 

germ layers, as well as cells derived from placental cytotrophoblast and 

syncytiotrophoblast. The only cells capable of this in the human are the zygote, 

cells in the morula, and cells existing in mitotic stages between zygote and 

morula37.  

Embryonic stem cells are derived from the inner cell mass of blastocysts, 

typically from blastocysts created during in vitro fertilization procedures that are 

not chosen to implant into the mother’s uterus30. They are pluripotent, capable of 

differentiating into all three embryonic germ layers, and have been successfully 

differentiated into immature cardiac myocytes. These ESC-derived cardiac 

myocytes (ESC-CMs) are characteristically immature, especially in terms of their 

ultrastructure, electrophysiological properties, and sarcoplasmic reticulum38. This 

immature phenotype presents problems for using ESC-CMs as models of human 

cardiac myocytes for studying disease, as well as potential problems for use of 

them as transplantable cell therapies, although this is not any different than 

hiPSC-CMs, which suffer from similar, if not the same, problems.  

Furthermore, ESCs bring with them two major problems when being 

considered for therapeutic use: first, a substantial proportion of the general 

public, especially in the United States, as well as some scientists, have ethical 

issues with the destruction of blastocysts for science. Second, because ESCs 
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and cells derived from them are genetically non-identical to the host that they are 

transplanted into, there is an elevated risk of a host immune response to 

transplanted cells, which has already been shown in some models39. Despite 

this, several studies have shown benefits of transplantation of ESC-CMs into 

animals with infarcted hearts, with improvements in EF, wall thickness, and 

adrenergic response38.  

Because of the challenges of ESCs, both real and perceived, and because 

of the benefits of hiPSCs, both real and perceived, the field of cardiac 

regeneration and cardiac differentiated has moved resolutely towards hiPSC-

CMs as the cell of choice. Work on reprogramming somatic cells into pluripotent 

cells began in in the 1960’s and 1970’s, when John Gurdon transferred the 

nucleus of a frog somatic cell into an enucleated egg, allowing the animal to be 

cloned40, opening an era of vertebrate cloning that has had far-reaching effects 

even until today, such as in agriculture, where somatic cell nuclear transfer 

(SCNT) is routinely performed.  

iPSCs were discovered, or rather created, by a group led by Shinya 

Yamanaka in 2006, ten years ago41. They accomplished this by overexpressing 

four crucial genes associated with a pluripotent state- Oct4, Sox2, Klf4, and c-

Myc, although it was later shown that c-Myc was not required for reprogramming, 

and slightly inhibits differentiation into hiPSC-CMs42. Initially this overexpression 

was driven by viral vectors, which can integrate and persist in the cells, 

potentially leading to immunogenicity, and potentially disrupting differentiation to 
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other cell types. Viral induction of pluripotency may also lead to oncogenicity due 

to activation of oncogenes, as well as functional mutations caused by viral 

vectors inserting into the genome43.  

Alternatively, pluripotency can be induced through non-integrating 

methods, including chemicals that mimic transcription factors44, adenovirus45, 

plasmid46, or recombinant proteins47. iPSCs have been found to be very similar 

to ESCs in terms of their chromatin structure and methylation patterns, 

morphology, cell surface markers, and differentiation capacity48.  

 

Differentiation of Pluripotent Stem Cells 

Since the discoveries of ESCs and iPSCs, efforts have been made to 

differentiate these pluripotent cells into progenitor cells or terminally differentiated 

cell types; so far, researchers have been productive in differentiating 

hepatocytes, endothelial cells, fibroblasts, neuronal cells, pancreatic cells, 

hematopoietic cells, vascular cells, and retinal pigment epithelial cells49. Each cell 

type comes about through different developmental conditions, in response to 

various environmental cues including growth factors, cytokines, chemokines, 

chemical gradients, ionic gradients, electrical signals, haptic signals involving 

different textures, passive stiffness, nutrient availability, and mechanical signals 

including stretch, compression, shear stress, and compartments filling with fluid. 

Thus, differentiation of a desired cell type means that either culture conditions 

must be tailored to that particular cell type, and must closely recapitulate the 
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conditions that the cell experiences in the embryo during development, or that 

cells must be allowed to differentiate into all cell types at once, and desired cell 

types have to be selected for afterwards.  

Early protocols for differentiation of cardiac myocytes from pluripotent 

stem cells took the second approach- adherent cells were dissociated and 

cultured in non-adherent dishes, where they proliferated into clusters of cells 

known as embryoid bodies (EBs), which contain cell types from all three 

embryonic germ layers50. Both epithelial and mesenchymal cell types appear in 

EBs, and tissue-like structures are also observed; without any additional 

manipulation of culture conditions, EB cell types have a propensity towards 

ectodermal lineages, such as neuronal and dermal cell types, although addition 

of various chemicals and growth factors can coax EBs to form predominantly 

endodermal or mesodermal cell types51. Furthermore, dissociation of EBs and 

replating of isolated cells onto adherent dishes or into methylcellulose, along with 

additional manipulations of culture media, can further direct the cells towards 

specified lineages.  

Early cardiac myocyte differentiation protocols relied on some percentage 

of embryoid bodies containing spontaneously arising, spontaneously beating 

cardiac myocytes which expressed critical cardiac myocyte progenitor markers, 

such as Nkx2.5, and had crucial ionic currents, although they lack certain 

currents as well52. The protocol has been improved significantly, with additions to 
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the media, such as Wnt inhibitors and nitric oxide, enhancing the percentage of 

cells that express cardiac markers53-54. 

Alternatively, embryoid body formation can be bypassed, and pluripotent 

stem cells can be treated with environmental factors that recapitulate the 

embryonic milieu as closely as possible. The goal is to direct the cells towards 

differentiation into the most cardiac myocyte-like cells as possible, while using 

the simplest culture conditions possible; simpler culture conditions have the 

benefits of reproducibility between labs and individuals, leading to standard cells 

that can be experimented on by different groups while still being able to compare 

results between them, as well as reduced cost, allowing more cells to be 

generated for increasing numbers of experiments or transplant. If they are to be 

used for transplant, simpler culture conditions and lower costs mean reduced 

barriers to clinical implementation for greater numbers of individuals. The 

simplest way to do this is by using chemicals that can be added to the medium at 

prescribed time points during the differentiation process; growth factors, or small 

molecules that inhibit growth factors, are easily additive and do not require the 

technical skill of genetic overexpression.  

This, however, is rather complex, as the development of the heart and of 

cardiac myocytes in the embryo relies on enormously complicated networks of 

signaling from various neighboring cell types55. The first step in producing cardiac 

myocytes is differentiation of mesoderm, which happens during gastrulation of 

the epiblast, which in turn is formed from the inner cell mass (ICM). This is 
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important because human embryonic stem cells and induced pluripotent stem 

cells resemble epiblasts in terms of gene expression patterns56, although mouse 

embryonic stem cells resemble ICM cells, and mouse epiblast cell lines can be 

derived57. Furthermore, human pluripotent stem cells can be pushed towards the 

naïve ground-state of ICM pluripotent cells through culture conditions which are 

distinct from those required for maintaining the ground state of murine ground-

state cells; ground-state pluripotent cells may differentiate more efficiently to 

cardiac myocytes than cells that retain the epiblast-like signature58. The 

conversion between the two appears to depend on the presence (in ground-

state) or absence (in epiblast-like cells) of Wnt signaling59.  

 

Cardiac Development 

Induction of mesoderm at the primitive streak during gastrulation depends 

on many factors including Nodal, bone morphogenic protein (BMP), Wnt, and 

fibroblast growth factor (FGF)60. Thus, differentiation protocols that intend to 

produce mesodermal lineages must start with a step that activates this induction. 

Thus, early protocols to differentiate ESC-CMs or iPSC-CMS began with addition 

of BMP4, bFGF, and Activin A to culture61-63. Variations on this protocol included 

one or two of the three, aforementioned growth factors, or combinations of these 

added at various times over the course of the first one to four days, enough time 

for mesoderm to fully develop.  
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Next, the mesoderm must differentiate to a cardiac myocyte; in the 

embryo, it does this through several steps and cell types- first, cardiogenic 

mesoderm progenitors develop, which express MesP155. These cells migrate to 

an anterior lateral position caudal to the head folds and form the cardiac 

crescent, which contain the first and second heart fields (FHF and SHF). The first 

heart field will contribute to the heart tube and will eventually give rise to cardiac 

myocytes and smooth muscle cells; FHF cells express Nkx2.5 and Tbx5. Second 

heart field cells will also contribute to the heart tube, and will give rise to cardiac 

myocytes, smooth muscle cells, and endothelial cells; they express Nkx2.5 and 

Isl1. The second heart field will also give rise to proepicardium, which will 

develop into the epicardium and some cardiac muscle tissue. Increased levels of 

BMP and FGF contribute to both the first and second heart fields; however, the 

first heart field is associated with decreased canonical Wnt, and the second heart 

field is associated with increased canonical Wnt signaling.  

Development of both the first and second heart fields is also associated 

with vascular endothelial growth factor (VEGF) and Dickkopf-1 (DKK1)55. So, 

early defined culture conditions for differentiation of cardiac myocytes from 

pluripotent cells by treatment with VEGF, DKK1, and FGF, or some combination 

of the three, in order to push the mesodermal cells towards a cardiac progenitor 

cell type61. From there, the first and second heart fields develop into the heart 

tube, which folds and becomes a primitive organ; further signaling, both chemical 

and otherwise, promotes development of the myocardium. For most 
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differentiation protocols, these signals are too complex and unknown to 

effectively contribute to further myocyte development, and so they rely on the 

passage of time to take the cells from cardiac progenitor to cardiac myocyte61. 

 

Small Molecules and the Matrigel Sandwich Method 

However, because growth factors are peptides or proteins, they are time-

consuming to produce, and expensive. Organic small molecules that mimic the 

effects of growth factors are significantly cheaper, and cheaper reagents mean 

that more differentiated cells can be produced, which is ideal for a lab proposing 

to study many conditions, or many drugs, or for a transplant patient that may 

require hundreds of millions or billions of cells64. Accordingly, several groups 

have developed protocols that utilize small molecules; they differ by the 

pathways activated, the specific drugs used to activate them, and timing of 

addition of small molecules to culture media (after 24 hours vs after 48 hours, 

etc.). The most widely accepted protocol has been the one called either the 

“matrix sandwich method” or “Matrigel sandwich method,” due to the first step of 

dissolving Matrigel (a collection of ECM proteins derived from mouse tumors) into 

the differentiation media on the first day of the protocol; this protocol was 

developed by researchers at the University of Wisconsin, Madison65. 

This protocol begins with iPSCs that are nearly confluent, having been 

passaged approximately 4 days beforehand. Cells are treated with a chemical 

called CHIR99021, which inhibits GSK3, thereby allowing beta-catenin to be 
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released and act as a signaling molecule, effectively activating the canonical Wnt 

pathway. This is given in conjunction with the Matrigel as mentioned above. The 

media used here is RPMI with a supplement called B27, which was originally 

designed for use in differentiation and culture of neuronal cell types, and which 

contains nutrients and is serum-free (Thermo Fisher). For the first several days, 

the media is insulin-free. Three days later, one of several molecules used to 

inhibit Wnt signaling pathways is given. Thus, the protocol uses activation of Wnt 

to differentiate iPSCs into mesoderm, and later inhibition of Wnt to push the cells 

towards a cardiac lineage. After that, cells are allowed to develop in culture until 

they begin to beat spontaneously, at which point they are fed with media 

containing insulin, which has been shown to inhibit differentiation of cardiac 

mesoderm66, but which promotes cardiac growth and hypertrophy later67-68. 

Once the stem cells are differentiated into cells that contract 

spontaneously and morphologically resemble cardiac myocytes, the issue of 

what to use the cells for remains. The two major schools of thought are that they 

could be transplanted into failing hearts, or hearts suffering cardiomyopathy, or 

hearts that have suffered infarction, with the hope that they could engraft and 

contribute mechanically to wall motion and strength64. Those that are 

unenthusiastic about the immediate use of iPSC-CMs as a transplantable 

therapy, as well as some that are, believe that they are better used as a model 

for cardiac myocyte function, or at least for myofibril function69.  
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Uses of Stem Cell-Derived Cardiac Myocytes 

Stem Cell-Derived Cardiac Myocytes as Therapy 

Pluripotent stem cells and derived cardiac myocytes have excited 

researchers with the prospect of being used as a clinical therapy. In the field of 

cardiology, there is great interest in using these cells as a potential treatment for 

heart failure and post-infarction cardiomyopathy. Pluripotent stem cell-derived 

cardiac myocytes injected directly into the myocardium are an obvious starting 

point. If these cells can engraft and electrically couple to existing myocardium 

they might provide sufficient contractile force to improve cardiac output. On the 

other hand, the cells may not survive the procedure, or may fail to couple to 

native myocytes, or may even be detrimental, as the procedure may cause 

deadly arrhythmias. These potential complications warrant extensive basic 

research before translation to human studies.  

Several groups have published results from experiments injecting stem 

cells into animal models. It was demonstrated that hESC-CMs transplanted into 

immunocompromised NOD-SCID mice that had undergone myocardial infarction, 

engrafted and transiently improved cardiac function70. Transplanted cells were 

tracked by GFP and anti-human-protein antibodies and the GFP+ cells were 

detected in the heart at least 12 weeks after transplant. The authors proposed 

functional coupling of transplanted and native cells based on connexin-43 and 

desmoplakin staining. Four weeks after transplant, transplanted mice had greater 
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EF than non-transplanted controls; however, this difference in EF was lost 12 

weeks after transplant.  

Two important caveats to these results should be considered: first, the 

population of transplanted cells, taken from beating EBs, was only 20–25% CMs. 

Second, connexin and desmoplakin staining are incomplete evidence of 

functional coupling in the absence of electrical or ionic data, especially since, as 

the authors noted, gap junctions and desmosomes were seen between hESC-

CMs and themselves, but not between hESC-CMs and native myocytes. The 

same group later published results after injecting 3 times as many cells as 

previously, but noting, again, no functional improvement 12 weeks post-

transplant71.  

In a similar study, EB-derived hESC-CMs were transplanted into male 

Sprague–Dawley rats that had undergone LAD and were treated with 

cyclosporine A and methylprednisolone to prevent rejection72. They reported 

evidence of engraftment of cells by imaging GFP or by staining for human 

markers, noting engraftment took place mostly in the border zone of the infarct 

region. Echocardiography showed decreased LV dilatation, greater fractional 

shortening (FS), and decreased pulmonary congestion in animals transplanted 

with hESC-CMs.  
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In an effort to improve engraftment, human ES-CMs were transplanted 

into infarcted rat hearts along with a “pro-survival cocktail (PSC)” that included 

Matrigel, a peptide from Bcl-XL, cyclosporine A, pinacidil, IGF-1, and a caspase 

inhibitor ZVAD-fmk63. This group detected engraftment based on human specific 

immunostaining and qPCR. Based on echocardiography, hearts transplanted 

with hESC-CMs showed decreased left ventricular end systolic diameter 

(LVESD) and increased FS, as well as increased thickening of the left ventricular 

wall in the infarct region.  

Later, they published a similar study73, this time injecting cells 1 month 

after infarction. This treatment improved cardiac function, but did not alter 

dimensions or geometry of the myocardium. In 2012, this group published a 

study74 using transplanted cells in immunosuppressed guinea pigs, wherein they 

sought to demonstrate electrical coupling between hESC-CMs and host 

myocytes using the genetically encoded calcium sensor GCaMP3. To do this, 

they correlated fluorescent transients to ECG to determine synchrony. They also 

showed fewer arrhythmias in the form of premature ventricular contractions 

(PVCs) and ventricular tachycardia (VT) in transplanted animals versus controls. 

However, in their isolated heart studies, they demonstrated heterogeneous 

calcium transients and incomplete coupling, as well as a loss of coupling at 

higher pacing frequencies.  
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In a technical tour de force, this group transplanted hESC-CMs into a non-

human primate model of infarction64. The hESC-CM transplanted animals 

responded differently to treatment; while some had improved EF after transplant, 

some had no improvement. Perhaps most concerning, all hESC-CM transplanted 

animals displayed increased arrhythmias following transplant. This important 

study represents the current state of stem cell engraftment. It will be important to 

see follow-up studies in coming years as the issues of stable, physiological 

engraftment and functional restitution are established.  

 

Stem Cell-Derived Cardiac Myocytes as a Model of Human Disease 

Pluripotent stem cells derived from individuals with genetic diseases can 

be used to illuminate disease phenotypes in an in vitro model. Here, iPSC-CMs 

derived from patients with known genetic mutations, especially monogenic 

mutations, that lead to cardiac phenotypes can be used to probe gene function 

and potential therapies. With the electrical assays readily available as mentioned 

above, an early target for disease modeling with iPSC-CMs was Long QT 

syndrome, a genetic disorder characterized by delayed repolarization of cardiac 

myocytes, a disease that places patients at risk of deadly arrhythmias including 

Torsade de Pointes and ventricular fibrillation75. In hiPSC-CMs from patients with 

Long QT Syndrome Type 3 (LQTS-3) (caused by mutations in the sodium 
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channel SCN5A) there is faster recovery from inactivation of Na+ current in 

mutant cells versus wild-type cells, and a larger tetrodotoxin (TTX)-sensitive 

current in the mutant cells75. Both of these findings are consistent with data from 

adult mouse myocyte studies76. The group also found prolonged AP duration in 

SCN5A mutant cells.  

Similar observations were made using iPSC-CMs from LQTS-3 patients, 

however with different mutations in the SCN5A gene77. Using patch clamp to 

study Na+ and Ca2+ currents, as well as whole-cell current clamp to measure AP, 

they found that LQTS cells have tendencies toward prolonged AP duration, 

smaller Na+ current density, slower time to inactivation, and increased time to 

peak.  

At least three groups have studied LQTS using pluripotent cells from 

patients with LQTS Type 2, caused by mutations in KCNH2 (hERG channel, 

responsible for inwardly rectifying potassium current IKr). One group, using cells 

from a single patient, utilized whole-cell patch clamp and found AP duration 

prolongation and reduced amplitude of peak IKr activation and tail currents78. 

Using MEA, they reported prolonged field potential duration (FPD). Importantly, 

by looking at single cell AP as well as MEA, they found significant 

arrhythmogenicity in the form of EADs and ectopic activity. The second79 and 

third groups80 found similar prolongation of APD and FPD in KCNH2 mutant 

iPSC-CMs. Furthermore, these studies demonstrated significant reduction in IKr 
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density and enhanced arrhythmogenic potential. In hiPSC-CMs from a patient 

with Timothy syndrome [caused by a mutation in the L-type Ca2+ channel 

(CaV1.2)] the QT interval was prolonged81. This study reported prolonged APD, 

arrhythmic activity, and abnormal Ca2+ transients in the patient-derived cells 

compared to control cells. 

Other models of arrhythmia have been studied using patient-derived cells. 

Catecholaminergic polymorphic ventricular tachycardia (CPVT), caused by a 

mutation in the ryanodine receptor (RYR2), is characterized by aberrant Ca2+ 

release from the SR and ventricular arrhythmia. Cells derived from patients with 

this disease indeed show elevated diastolic Ca2+ concentrations, reduced SR 

Ca2+ content, and susceptibility to DAD in patient derived cells compared to 

control82. Apart from arrhythmic disease models, other hereditary conditions have 

been studied in patient-derived iPSC-CMs. Using cells derived from a patient 

with Barth Syndrome, a mitochondrial disorder, it was observed that the cells 

closely recapitulated several hallmarks of the disease, including irregular 

sarcomere formation, irregular mitochondria, and weak contractility83. 

Furthermore, they were able to elucidate mechanisms of pathophysiology of the 

disease involving excess reactive oxygen species.  

Others have studied cells from a patient with Pompe disease, a glycogen 

storage disorder caused by mutations in acid alpha-glucosidase (GAA)84. Here 

the patient-derived hiPSC-CMs showed abnormally high levels of glycogen and 

mitochondrial dysfunction, and ultrastructural abnormalities, consistent with 
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findings from myocytes. In LEOPARD syndrome, a developmental disorder 

characterized by a cluster of abnormal findings caused by mutations in the Ras-

MAPK signaling genes, a common abnormality is hypertrophic cardiomyopathy. 

Differentiated iPSC-CMs derived from patients with a mutation in a protein 

tyrosine phosphatase encoded by PTPN11, display abnormal Ras-MAPK 

signaling, cell hypertrophy and abnormal sarcomere organization85. 

Models of cardiomyopathies, while more difficult to study due to the 

immature phenotype of iPSC-CMs, have also shown some progress. For 

example, cells have been taken from a patient with arrhythmogenic right 

ventricular cardiomyopathy (ARVC), a poorly-characterized disease associated 

with arrhythmia and sudden cardiac death, as well as fibrofatty replacement of 

the right ventricular myocardium86. This patient had a mutation in PKP2, 

encoding plakophilin 2, a desmosomal protein. The hiPSC-CMs from this patient 

showed decreased expression of desmosomal proteins and high levels of lipid 

storage.  

A separate in vitro model of dilated cardiomyopathy (DCM)87, 

characterized by eccentric ventricular hypertrophy, decreased Ca2+ sensitivity, 

and impaired force production, was derived from iPSCs from patients carrying a 

mutation in cardiac troponin T (TNNT2) and their unaffected family members. 

Mutant iPSC-CMs showed comparable cell size to control, but had deranged 

sarcomere organization. They also had smaller Ca2+ transient amplitudes and 

smaller SR Ca2+ stores, and lower force production based on an atomic force 
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microscopy assay. Overall, the immaturity of the iPSC-CMs makes more 

challenging the ability to fully assess a disease phenotype normally associated 

with mature myocytes. 

 

Genome Editing to Model Human Cardiovascular Disease 

A recent area of great research interest involves the use of genome 

editing techniques. These include such technologies as transcription activator-

like effector nucleases (TALENs) and CRISPR/Cas9. Both cleave DNA in a site-

specific manner, which may be repaired by non-homologous end-joining (NHEJ), 

potentially disrupting the gene, or, if a template is provided, by homology-directed 

repair (HDR)89. These can be used to introduce disease-specific mutations into 

an otherwise healthy cell line, reducing noise from genetic variability between 

lines. It may also be used to correct disease-causing mutations.  

Hematopoietic diseases such as Fanconi Anemia, β-thalassemia, and 

myelodysplastic syndrome have been modeled and corrected89, but the 

technology has not yet been extensively applied to cardiovascular disease. 

Together, these studies demonstrate the feasibility and wide-reaching capacity 

for modeling genetic diseases using iPSC-CMs. Emerging and advancing 

technologies will allow this capacity to increase even further, and significant 

advances may come from these studies that may not be found in rodent and 

animal models. 
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Stem Cell-Derived Cardiac Myocytes for Drug Discovery 

HiPSC-CMs express ion channels, including sodium channels, potassium 

channels, the hERG (Kv1.1) channel, and the hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channel (funny current), that have the potential to 

interact with many pharmaceutical compounds90. Pharmaceutical researchers 

have a strong interest in identifying interactions between these channels and 

potential clinical drugs due to the severe risks that such interactions entail. As 

such, iPSC-CMs present an attractive alternative for other models, such as 

isolated adult myocytes, or human embryonic kidney cells or Chinese hamster 

ovary cells that have been used to force expression of hERG channels. These 

earlier techniques, where a single channel in a non-myocyte is probed, can miss 

a potential drug interaction. A better approach is to use a cell expressing many 

types of ion channels, in order to more accurately assess all potential 

interactions.  

One group, using MEA, tested the effects of eleven reference compounds 

on electrical activity of iPSC-CMs91. Of these, 5 were hERG blockers, 2 were 

Ca2+ channel blockers, 1 was a nonselective Ca2+ channel/hERG blocker, 1was a 

KATP-channel blocker, and 2were IKs blockers. The hERG blockers all prolonged 

the FPD, as expected, and the Ca2+ blockers shortened the FPD, as expected. 

The IKs blockers had only minor effects on FPD, but there was no expected 

response for either, and the authors were able to use the iPSC-CMs to evaluate 

the potential role of these drugs as well as the role of the IKs current in cardiac 
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myocyte function. Furthermore, as mentioned above, iPSC-CMs can be useful 

models for channelopathies, including Long QT syndrome, where the risk of a 

fatal drug interaction is much higher than in a healthy individual. 

Using cells from a LQTS-2 patient, effects of three compounds including 

nifedipine, a Ca2+ channel blocker; pinacidil, a KATP-channel opener; and 

ranolazine, a Na+ channel blocker were also examined78. All three drugs had 

predictable effects on LQTS iPSC-CMs, namely antiarrhythmic effects, 

demonstrating the ability of these cells to recapitulate the in vivo effects of anti-

arrhythmic drugs in an in vitro system. A second group, used another LQTS-2 

iPSC line, and showed the ability of an IKr blocker, E4031, to prolong APD/FPD, 

and of a KATP-channel opener, nicorandil, to shorten APD and abolish EADs79. 

Furthermore, they demonstrated counteracting effects of isoprenaline, a β-

adrenergic receptor agonist, and nadolol or propranolol, both β-adrenergic 

antagonists. On the other hand, the arrhythmogenic effects of the β antagonist 

sotalol were demonstrated at high concentrations when applied to LQTS iPSC-

CMs, but not control iPSC-CMs80. Moreover, other research groups82 have been 

able to show positive effects of dantrolene on aberrant Ca2+ handling in cells 

from a patient with CPVT.  

Taken together, these studies in healthy as well as diseased cells show 

that iPSC-CMs can robustly examine the effects of current-affecting drugs on 

myocytes, and may be able to predict effects in future studies. Additionally, as 

shown above91, iPSC-CMs can be useful for examining the mechanism of action 
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of untested compounds. In this context, there is a report of altered hypertrophic 

signaling via the α-adrenergic pathway in hiPSC-CMs that should be addressed 

by detailed further study when pursuing iPSC lines for drug discovery92. 

 

Physiologic Function of Stem Cell-Derived Cardiac Myocytes 

In order for researchers to effectively use hiPSC-CMs as either a platform 

for modeling cardiovascular disease, or as a platform for drug discovery and 

testing, it is necessary to examine the physiologic function of the cells. Several 

methods have been used, to examine areas of function such as calcium 

handling, electrophysiology, and contractility.  

 

Electrical Function of Stem Cell-Derived Cardiac Myocytes 

Due to the essential role of ionic currents and electrical conduction in the 

functionality of cardiac muscle, deciphering electrical function of iPSC-CMs 

allows researchers to characterize mature versus immature, healthy versus 

diseased cells, and ventricular versus atrial cell types. However, at such an 

immature state, the last categorization may be difficult to distinguish, and 

attempting to do so may not provide realistically useful information93. Generally, 

electrical function is measured using extracellular field potential recordings, sharp 

electrode recordings, or patch clamp recordings. Perhaps the easiest electrical 

assay to perform is the recording of extracellular field potentials using a 
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multielectrode array (MEA). MEA recording does not require recording from a 

single cell, but rather measures the voltage from a population of cells in a dish94.  

In cardiac myocytes, the field potential duration (FPD) corresponds to the 

action potential duration (APD) of a single cell, which in turn corresponds to the 

QT interval on the electrocardiogram, an important parameter for researchers 

using iPSC-CMs to model arrhythmic diseases or as a platform for drug 

discovery. This technique has been well validated in hESC-CM models94-96. It has 

recently been further validated in iPSC-CMs, demonstrating that it can be used to 

reliably detect drug induced arrhythmias and repolarization delay, even across 

distinct facilities97. Recent work characterized and optimized field potential 

recordings, including in response to a drug, and included some limitations of the 

method that should be taken into consideration when performing experiments 

and data analysis98. 

In order to dissect out the role of specific currents and ions, single cell 

electrophysiology techniques are useful, including patch clamp and sharp 

electrode recording. A patch-clamp pipette can be attached to the cell in several 

configurations, including cell-attached, whole cell, and perforated-patch modes. 

Patch clamp has been used to evaluate currents in hiPSC-CMs derived from 

patients with long QT syndrome type 2. This technique was employed to examine 

the effects of various drugs on those cells, demonstrating its value in studying 

models of arrhythmia79. Patch clamp electrophysiology has also been used to 
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evaluate individual currents of iPSC-CMs, including INa, ICa, IKr, and IKs, as well as 

their ability to be blocked by known channel blockers99. It was concluded that use 

of iPSC-CMs for electrophysiology studies is feasible. Similar experiments using 

an automated patch clamp technology came to similar conclusions100.  

However, a separate group, using patch clamp to study APD, AP 

frequency, AP shape, INa, and ICa, as well as effects of channel blockers TTX and 

lidocaine, noted significant variability between cells from different sources, and 

suggest utilizing these techniques with caution101. Sharp electrode 

electrophysiology has been used in several published iPSC-CM studies. 

Intracellular recordings of APs of murine iPSC-CMs102 and human iPSC-CMs103 

have been made to examine whether the cells differentiated into atrial, 

ventricular, or nodal types. However, due to the immature nature of these cells, 

cell types can be difficult to distinguish based on AP shape alone, and caution 

should be used when drawing conclusions from these types of experiments. 

Overall, these studies show that iPSC-CMs express appropriate ion channels 

and have electrical activity similar to human cardiac myocytes, and can be 

reliably tested for action potential duration, ion currents, and drug interactions if 

appropriate precautions are taken when drawing conclusions. 

Calcium Handling in Stem Cell-Derived Cardiac Myocytes 

The adult ventricular cardiac myocyte displays a well-defined sequence of 

events with regard to Ca2+ cycling. Ca2+ influx via L-type Ca2+ channels serves as 
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an initial trigger, initiating Ca2+ release from the sarcoplasmic reticulum by 

activating Ryanodine receptor 2 (RyR2) via a process called calcium-induced 

calcium release (CICR)104-105. Phosphorylation of these channels increases 

calcium flux, increasing contractility. In general, little is known about the 

excitation contraction coupling (ECC) and Ca2+ handling properties of hiPSC-

CMs. Gene expression and immunostaining studies showed that key Ca2+ 

handling proteins are expressed in hiPSC-CMs106.  

Furthermore, hiPSC-CMs are dependent on both trans-sarcolemmal Ca2+ 

entry via L-type Ca2+ channels and on RYR2-regulated SR Ca2+ release and 

functional SERCA2a pump-based Ca2+ reuptake106. The majority of Ca2+ in the 

cytoplasm during systole is released from and then taken back up into the 

sarcoplasmic reticulum (SR)107. Release is triggered by depolarization of the cell 

membrane, and, as such, is intricately connected to AP activity of the cell as well 

as sarcomere contraction. However, it can be uncoupled from both, and it is 

necessary to measure Ca2+ activity separately. Calcium transients in myocytes 

are typically measured using fluorescent Ca2+-binding dyes on a fluorescent 

microscope107.  

Satin et al. laid the groundwork using hESC-CMs108. They loaded cells 

with the dye Fluo-4 AM and recorded intracellular Ca2+ transients with a confocal 

microscope. Using this technique, they observed both entire-cell AP-driven 

transients, as well as localized SR Ca2+ release events (sparks). They then used 
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caffeine to mobilize Ca2+ release from the SR, as well as ryanodine to inhibit 

release from the ryanodine receptor RyR. They were able to provide evidence 

that hESC-CMs have large stores of Ca2+ in the SR, a hallmark of mature cardiac 

myocytes. Moving to iPSC-CMs, several labs106,109 have imaged Ca2+ transients 

and sparks in healthy cells by loading them with fluo-4 under a confocal 

microscope, and used caffeine to probe SR stores. Fura-4F, a ratiometric 

calcium dye, has been used to observe the propagation of Ca2+ transients 

through iPSC-CM monolayers, while simultaneously measuring intracellular 

voltage with the voltage-sensitive fluorescent dye, di-8-ANEPPS110. 

Using hiPSC-CMs derived from patients with catecholaminergic 

polymorphic ventricular tachycardia (CPVT), a genetic arrhythmic defect, 

differences were shown in Ca2+ handling in diseased versus healthy cells based 

on Fluo-4 fluorescent imaging111. Furthermore, they used voltage clamping to 

directly measure the L-type Ca2+ current (ICa) and the Na+–Ca2+ exchanger 

(INCX). A combined fluorescent Ca2+ imaging with voltage-clamped ICa 

measurement can also demonstrate changes in how iPSC-CMs handle Ca2+ as 

they mature112.  

Recently, Ca2+ handling characteristics across cells derived in different 

laboratories have been compared113, using the ratiometric Ca2+ dye Fura-2 AM 

and recording transients while the cells were electrically stimulated. Using 

caffeine, SR Ca2+ stores were estimated, and ICa was measured by whole-cell 



 

 36 

patch clamp. Overall, there were comparable results between these laboratories. 

To summarize, iPSC-CMs have functional Ca2+ stores, and release and reuptake 

Ca2+ via the SR, and these events can be detected by Ca2+-sensitive fluorescent 

dyes such as a Fura or a Fluo derivative. 

 

Force Production in Stem Cell-Derived Cardiac Myocytes 

The most important parameter of a myocyte's function is its force 

production, as this determines how effectively the organ can circulate blood. An 

adult myocyte, with its well-organized sarcomeres and rectangular shape, can 

relatively easily be studied using video microscopy or force transducers114. In 

comparison, the morphology of a stem cell-derived myocyte presents some 

distinct challenges. Early on, groups used video edge detection to track 

movement of stimulated beating EBs as a percent of baseline length115. They 

were able to show increased contractility in response to β-adrenergic stimulation, 

a hallmark feature of cardiac myocytes. HiPSC-CMs derived by a monolayer 

method can also be monitored by video microscopy. Motion tracking software 

can be used to assess beating frequency, amplitude, and kinetics of a 3D tissue-

like construct formed by seeding iPSC-CMs onto a filamentous polymer matrix116. 

While video-based edge detection of contractility is very useful, the ability 

to measure force production against a load provides a more direct measure of 
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myocyte function. One approach to measuring force involves seeding beating 

clusters from iPSC-derived EBs onto 300 μm thin strips of neonatal murine 

ventricular myocardium, and then attaching the myocardial strip to force 

transducers for measurement102.  

Sun et al. used single cell-dispersed iPSC-CMs derived from a patient with 

dilated cardiomyopathy to assess single-cell force production using atomic force 

microscopy. This approach relies on the microscope for detecting changes in 

force at the cell surface caused by changes in stiffness within the cell, 

presumably due to rearrangement of sarcomeric and cytoskeletal proteins during 

contraction87. However, it should be noted that this is a technique that has not yet 

been validated in pluripotent cell-derived cardiac myocytes, neonatal cardiac 

myocytes, or adult myocytes. In the paper, the authors cite a paper exploring use 

of the technique on embryonic chicken cardiac myocytes, where the authors note 

that parameters such as beat period and pulse amplitude were observed to be 

unstable117. 

The micropost array, a technique that has been well validated in other 

myocyte cell types, has been used to measure contractile force of iPSC-CMs118. 

In this assay, an array of microposts is fabricated from polydimethylsiloxane 

(PDMS) using photolithography and the tops of the posts are coated with ECM 

proteins, and cells are seeded on top of that. As cells contract, the posts deflect 

with the cell, and video microscopy with subsequent analysis is able to convert 
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movement into force needed to move the microposts. The authors were able to 

examine different force production of cells that had been seeded on distinct types 

of ECM protein.  

In a similar vein, Sheehy et al. utilized the muscular thin film (MTF) assay, 

wherein thin strips of PDMS are fabricated and coated with ECM proteins. The 

iPSC-CMs are then seeded and stimulated119. As cells contract, the MTFs bend 

and curvature is analyzed with video microscopy, and force production is 

extrapolated from MTF displacement. These studies show that iPSC-CMs 

produce a force that is able to be measured; however, the techniques for force 

measurement are not well developed, and there is an urgent need for improved 

methods. 

Cardiac Myocyte Structure Contributing to Function 

The Sarcomere 

The main module of the myocyte that allows the cell to contract and 

produce force is the sarcomere. Sarcomeres connected in series form myofibrils, 

which run parallel to the long contractile axis of the cell. They are made up of 

thick filaments, which consist of myosin heavy chain and light chain and which 

are centered around the M line, and thin filaments, which consist of actin, 

troponin, and tropomyosin, and which connect at the Z disc, which contains 

sarcomeric actinin and several other proteins114. There are various other proteins 

involved, such as titin and nebulette, which control things such as Z disc spacing, 



 

 39 

and which contribute to elasticity. During contraction, calcium released from the 

sarcoplasmic reticulum binds to troponin, which causes movement of 

tropomyosin, allowing myosin to bind to actin and myosin ATPase activity; 

myosin moves along actin, pulling Z discs nearer each other, resulting in 

contraction of the cell when all sarcomeres in the myocyte move 

simultaneously114.  

Actin 

Actin plays a crucial role in the contraction of the myocyte, as well as in 

cytoskeletal structure, cell morphology, membrane protein localization, and 

transduction of force from the sarcomere to the cell’s environment. Actin is a 

globular protein that can be found as a monomer (G actin) or a filamentous 

polymer (F actin), which forms following nucleation when G actin has ADP 

bound. F actin is dynamic, meaning that it is elongating at the (+) end and 

shortening at the (-) end, unless there are proteins to prevent growth or 

shortening, such as CapZ, which caps the (+) end. Otherwise, for an F-actin 

filament to remain a constant length, elongation and shortening must be in 

equilibrium120.  

In the thin filament, actin is of the isoform alpha-sarcomeric actin, coded 

for by the ACTC1 gene; although the sarcomere is a fairly constant length, actin 

dynamics and CapZ capping dynamics occur in response to physiologic stimuli 

such as exercise and mechanical stimulation, which increases dynamics121. 
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Levels of alpha-sarcomeric actin in the myocyte also influence hypertrophy and 

cell size, and are influenced by regulators of hypertrophy122. 

Actin in the cytoskeleton lives just below the cell membrane and plays a 

key role in maintaining and altering the size and shape of the cell, and in motility 

in motile cells, such as epithelial cells and leukocytes. In the cardiac myocyte, 

control of cytoskeletal actin dynamics has been shown to be crucial for cell 

hypertrophy and maintenance123. Furthermore, because of connections made 

between actin and some membrane-bound proteins including channels and 

receptors, cytoskeletal actin plays a role in subcellular localization of receptors 

and channels, as well as their functional state and open-closed status, allowing 

specific microenvironments to form within the cytoplasmic compartment with 

differential concentration of ions, signaling proteins, and cytoskeletal 

components124.  

Cytoskeletal actin, along with other cytoskeletal proteins, provide a crucial 

link between the cell membrane, extracellular proteins, and contractile proteins, 

and there is considerable evidence that changes in one of those compartments, 

such as changes in extracellular matrix proteins, contribute to changes in 

contractile protein expression, with actin as an important signaling protein125. 

Mechanosensing Mechanisms 
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As all cells live in a physical environment with discrete three-dimensional 

spatial arrangements and constant, various physical forces being exerted on 

them, such as compression, stretching, or shear forces, it is crucial for cells to be 

able to respond appropriately to those stimuli, whether that entails building 

cellular structures that resist those forces, or building cellular structures that allow 

the cell to take advantage of or move with those forces, or possibly conversion of 

one cell type to another. This ability to sense requires a conversion of a 

mechanical signal to a chemical signal, and ultimately activation or inactivation or 

proteins through phosphorylation or other post-translational modifications or 

through gene upregulation or downregulation. Cells can do this through several 

methods, including mechanosensitive ion channels, which open and allow influx 

or efflux of a depolarizing or hyperpolarizing ion in response to a threshold 

stress126.  

Cells also utilize adhesions between the cell and its surrounding 

extracellular matrix, called focal adhesions; in myocytes, the costamere, or 

dystrophin-glycoprotein complex (DGC), which connects the contractile 

machinery of a striated muscle cell to the ECM, may also be involved. Focal 

adhesions contain proteins such as integrins, actin, filamin, vinculin, talin, and 

focal adhesion kinase (protein tyrosine kinase 2). In one well studied model of 

mechanosensing, ECM proteins form connections with integrins, which are 

transmembrane proteins with both extracellular and intracellular domains. 

Movement of ECM pulls on integrins, which activate talin or paxillin intracellularly. 
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Activation of paxillin can lead to activation of FAK, Rho- and ARF-GTPases, and 

the ILK/pinch/parvin complex. Talin is connected to cytoskeletal actin, which can 

activate the ILK/pinch/parvin complex, as well as membrane channels, or nuclear 

cytoskeletal proteins127. 

In a cardiac myocyte, mechanotransduction from the environment to the 

cell can open ion channels that can lead to stretch-induced arrhythmia, and can 

lead to upregulation and secretion of atrial natriuretic peptide128. Mechanical 

stress in the heart can come from various places including stretch due to 

increased ventricular or atrial blood volume, stiffness due to fibrosis and 

increased ECM deposits, or changes in the passive or active tension of 

neighboring cardiac myocytes. In the myocyte, other mechanosensing pathways 

than the focal adhesion pathways mentioned above come into play- opening of 

stretch-activated calcium channels creating calcium influx, which can in turn 

cause calcium-induced calcium release (CACR); or activation of Angiotensin II 

release, which feeds back by binding to AT receptors on the myocyte surface. 

Activation of these pathways in the myocyte can lead to altered gene expression, 

fibrosis, and cell and organ hypertrophy129.  

 

Force Transmission from the Cell to the Environment 
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The production of force by a cell on its environment is in some ways the 

reverse of mechanosensing- the cell must create an internal force that is 

transferred to its environment. In motile cells, such as migrating cells during 

embryonic development, or during dendritic or axonal growth of neurons, or in 

non-motile contractile cells such as myofibroblasts or endothelial cells whose 

contraction depends on stress fibers, this transmission of force occurs at the 

focal adhesion, through the actin-integrin-extracellular protein connection. It 

depends to a significant extent on actin motility130 and relies on feedback from 

both stretch-activated channels and mechanotransduction through the same 

focal adhesions131. 

In the myocyte, transmission of force from the sarcomere to the 

environment depends on lateral transmission through the costamere132. There 

are several steps in between- first, sarcomeric actin pulls on actinin in the Z disc; 

actinin transmits this force to the major intermediate filament protein holding Z 

discs together- in the adult cardiac myocyte this is desmin, although in the 

developing cardiac myocytes and in immature cardiac myocytes this is vimentin, 

which has different biophysical properties than desmin133.  

Disruption of desmin during extreme mechanical stress also plays a role in 

sarcomerogenesis and myofibrillogenesis, leading to cardiac myocyte 

hypertrophy134. Desmin can transmit force to a number of protein complexes at 

the cell membrane including focal adhesions; spectrin, ankyrin, crystallin, sodium 
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channels, and Na-K ATPase; and the DGC. The DGC includes proteins such as 

the transmembrane proteins sarcoglycan and dystroglycan, the extracellular 

protein laminin, and intracellular proteins dystrobrevin, syntrophin, plectin, 

utrophin, and dystrophin, which have roles in structural support, modulation of 

force transmission, and maintenance of cell and membrane elasticity and 

integrity132. 

Force Production in the Cardiac Myocyte 

Contributors to Contractility- Calcium 

When it is necessary for the cell to produce more or less force, modulation 

of contractility takes place. A cell producing more force against the same 

mechanical load will contract more in terms of length of shortening, and a cell 

with more sarcomeres will produce more force than a cell with fewer sarcomeres, 

if the individual sarcomeres are producing equal amounts of force. On the 

sarcomeric level, increasing contractility requires increasing activation and 

recruitment of filaments; meaning, more frequent attachments between myosin 

and actin. Since this attachment relies on troponin moving tropomyosin away 

from actin so that myosin can bind, increased contractility can be achieved either 

through increased calcium, which binds to troponin C and activates the complex, 

or through increased phosphorylation of the troponin complex. Increased calcium 

can occur through increased flux across the cell membrane through the L-type 

calcium channel (LTCC; dihydropyridine receptor DHPR), increased release from 
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the sarcoplasmic reticulum; or decreased uptake into the sarcoplasmic 

reticulum135.  

The amount of calcium released from the SR depends largely on the 

amount loaded into the SR during diastole through the 

Sarcoplasmic/endoplasmic reticulum ATPase (SERCA). SERCA activity is 

regulated by phospholamban (PLN); binding of PLN inhibits SERCA function, but 

when it is phosphorylated it exists in a pentameric state and cannot inhibit 

SERCA. Thus, adrenergic signaling acting through PKA and cAMP inhibits PLN 

and increases SERCA activity, thereby increasing contractility through increased 

calcium. PKA also increases the open probability of ryanodine receptors (RyR), 

which release calcium from the SR into the cytoplasm136. Several drugs aimed at 

improving cardiac function take advantage of this by inhibiting phosphodiesterase 

(PDE), which breaks down cAMP137. There is also good evidence for a role in 

myosin binding protein C (MyBP-C) in cardiac contractility. MyBP-C associates 

with the thick filament; it has PKA phosphorylation sites, and affects crossbridge 

cycling kinetics138. 

Contributors to Contractile Kinetics- Troponin 

While absolute force production is important to a myocyte’s function, 

contractile kinetics are also important- a heart that beats faster must contract and 

relax faster in order to maintain ejection fraction and increase cardiac output. 

Increasing the number of activated SERCA pumps through regulation of PLN can 
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increase the rate of removal of calcium from the cytoplasm, shifting the 

equilibrium of unbound calcium and calcium bound to TnC towards the unbound 

side and increasing the rate of deactivation of troponin and detachment of 

myosin from actin135. We have also noted that MyBP-C and its phosphorylation 

through the adrenergic-PKA pathway plays a role in crossbridge kinetics138. 

Phosphorylation of the troponin complex, such as troponin I, by PKA and 

adrenergic signaling, also plays a very significant role in a sarcomere’s ability to 

contract and relax quickly in response to sympathetic activation. Of note, 

phosphorylation of troponin I enhances the speed of both contraction and 

relaxation139. 

The isoform of troponin I expressed also influences contractility kinetics; 

cardiac troponin I (cTnI), which is expressed in adult cells, is faster than slow 

skeletal troponin I (ssTnI), which is expressed in immature cells. However, ssTnI 

is a positive inotrope, especially under acidic/hypoxic conditions, and has 

increased calcium sensitivity, although it lacks the PKA-mediated 

phosphorylation site that causes calcium desensitization in cTnI. Mutant 

isoforms, and engineered isoforms, of TnI can enhance or diminish some of 

these characteristics. Importantly, the A164H isoform of cTnI, where the alanine 

and position 164 is replaced with a histidine, maintains the increased lusitropic 

effects of cTnI, while rendering the protein more resilient to acidotic/hypoxic 

conditions140. 
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Contributors to Contractility- Mechanical Load 

The heart alters contractility in response to mechanical loads, while 

attempting to maintain homeostatic levels of cardiac output.  The heart as an 

organ experiences two types of mechanical load- preload and afterload. Preload 

affects the amount of stretch of cardiac myocytes before systole, and the amount 

of passive tension that the cardiac myocytes experience, and encompasses all 

the factors that contribute to passive wall stress, including end-diastolic volume, 

central venous pressure, end-diastolic filling pressure, chamber wall thickness 

and wall compliance. Afterload affects the amount of active tension that a cardiac 

myocyte must generate in order to produce sufficient cardiac output, and 

encompasses the factors that contribute to wall tension during systole, including 

systolic volume, systolic pressure, chamber wall thickness, outflow tract 

resistance, and systemic arterial resistance (systolic arterial pressure, diastolic 

arterial pressure, arterial compliance)141.  

In order to maintain adequate cardiac output, cardiac myocytes must 

appropriately respond to preload and afterload; by using the mechanosensing 

pathways noted above, a cardiac myocyte increases contractility in response to 

increased preload (increased stretch and sarcomere lengthening142. In response 

to increased afterload, cardiac myocytes may increase contractility due to 

adrenergic signaling through the sympathetic nervous system, or, through 

mechanosensing, cells may automatically increase force production in order to 

maintain equivalent contractile amplitude142. 
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Measuring Contractility in Stem Cell-Derived Cardiac Myocytes 

Traction Force Microscopy 

In order to explore these aspects of contractility and response to load in 

hiPSC-CMs, an appropriate assay is needed. The total force produced by an 

adult cardiac myocyte can be measured using piezoelectric force transducers; 

the unique geometry and dense sarcomeric protein structure allows quantification 

of a precise nature143. Contractile kinetics of an adult cardiac myocyte can be 

measured optically, by tracking sarcomere length and shortening, taking 

advantage of regular light-dark patterns of registered sarcomeres; this can be 

done on the same force transduction apparatus, or on a modern system such as 

the Ionoptix 144. These assays have so far been poorly suited to use in iPSC-

CMs.  

Traction force microscopy is a valuable method that utilizes the known 

mechanical properties of a deformable substrate coupled with high-resolution 

microscopy to accurately measure the developed force of contractile or motile 

cells.  Traction force microscopy allows investigation of the physiologic function 

of a single isolated hiPSC-CM by measuring force produced by a single cell 

against a load produced by a stiff substrate. Measuring the force of a single cell, 

rather than a sheet of cells, allows rigorous determination of the effects of cell 

geometry on contractility, and removes several potentially confounding effects 

that might come from sheet-based assays, including number of cells, relative 



 

 49 

orientation of cells to each other, and presence of non-cardiac myocyte cell types 

that may have differentiated in culture alongside the myocytes.  

Traction force microscopy has been utilized to measure the amount of 

stress produced by cells including fibroblasts145, keratocytes146, osteoblasts147 

and NRVMs148 and has been used to calculate the strain energy, which is the 

energy required to deform a material149. Determining stress and strain energy in 

response to changes in substrate stiffness allow modeling of both increased 

stiffness changes that may occur in the heart under various conditions, as well as 

changes in afterload that ventricular myocytes experience during systole under 

conditions of valvular disease or increased systemic mean arterial pressure. 

The rigorousness and versatility of traction force microscopy also allows 

examination of the effects of other influential factors in the development and 

differentiation of cardiac myocytes. For example, one can look at the effects of 

prolonged time in culture on contractility and morphology, or the effects of 

extracellular calcium concentrations, as it has been recently shown that calcium 

concentrations play a vital role in the development and hypertrophy of cardiac 

myocytes during development150-151. Taken together, traction force microscopy 

provides a reliable and rigorous method of determining contractile force of iPSC-

derived cardiac myocytes. 

 

Traction Force Microscopy- Methodology 



 

 50 

The technique begins with micropatterning stamps152. Single cell shapes 

are placed far enough apart to ensure contraction of one cell would not affect 

substrate deformation of neighboring cells. Stamp masters are created using 

photolithography by applying photomasks to silicon wafers coated with 

photoresist and exposing to light. Stamps are created by curing 

polydimethylsiloxane (PDMS) on the patterned silicon master (for patterned 

stamp) or on an unpatterned silanized silicon wafer (for blank stamps). Both 

patterned and unpatterned stamps are made new each time they were used. 

Stamps are coated and stamped according to the stamp-off protocol laid out by 

Desai et al153. Briefly, blank stamps are coated with laminin (50 µg/ml in 

molecular biology grade water) and incubated for 60 minutes, then dried and 

inverted onto patterned stamps which have been UV-activated. Blank stamps are 

immediately peeled off and placed onto 15 mm coverslips which have been 

plasma-activated by running through a blue flame. Cover slips are then ready for 

use with gels. 

Polyacrylamide gels are made using ratios of Acrylamide to N,N’-

methylenebisacrylamide that allow various substrate stiffness to be examined154. 

Ahead of time, 25 mm glass coverslips were UV treated, then treated with 3-

aminopropyltriethoxysilane for 3 minutes, and rinsed with ethanol. 

Polyacrylamide was made with 1x phosphate-buffered saline, and 0.2 µm 

fluorescent beads are mixed into the unpolymerized acrylamide solution. 

Ammonium persulfate and N-hydroxysuccinimide ester are added to solution. 
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Laminin-coated coverslips are inverted onto the solution and allowed to 

polymerize. hiPSCs are dissociated and replated onto polyacrylamide gels. Cells 

adhere overnight, then assayed on day 3 after plating.  

Images of fluorescent beads moving within the substrate that the cells are 

exerting a stress on are acquired using a high-resolution microscope at the 

fastest rate possible while still acquiring images suitable for analysis. Cells can 

be paced in the single cell state, or allowed to pace at their intrinsic rate, 

although pacing cells allows for rigorous comparison of cells at the same 

frequency and voltage. Images may be analyzed using any suitable TFM 

analysis software, though many people are using ImageJ code developed by 

Tseng et al155-156.  

Stacks of images of the cell and fluorescent beads before and during 

contraction are compared; the software calculates a displacement field using a 

particle image velocimetry program, by comparing movement of areas of 

interrogation with surrounding areas. It then calculates stress vectors from 

displacement vectors using the Fourier transform traction cytometry method157. A 

smoothing parameter of 1x10-9 may be applied for improved accuracy, as 

described in Stricker et al158. Stress vector magnitudes may be integrated over 

the area of interest and reported as total force. Strain energy can be calculated 

according to the equation laid out in Oakes et al149, by taking the integral of the 

product of the displacement and traction stress vectors of each cell. 
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Traction Force Microscopy on Stem Cell-Derived Cardiac Myocytes- 

Current Understandings and Results 

At least two or three research groups have performed this assay on 

hiPSC-CMs, with differing results. Most follow the steps listed above with slight 

variations in their protocols; they share themes of micropatterning and isolated 

cardiac myocytes, but they choose to examine the effects of different conditions 

of contractility and force production. One group focused heavily on the 

quantitative aspects of the data analysis; they show that iPSC-CMs have 

contractile curves with similar shapes to those of adult cardiac myocytes. They 

also increased force in response to isoproterenol, and decreased force in 

response to verapamil, which blocks the LTCC. They also use the assay to show 

cardiotoxicity of the known cardiotoxic drug dofetilide159.  

Other researchers have used the assay to show that force production 

increases with increased time in culture; they also showed a weak response to 

isoproterenol on soft substrates but not stiff ones160. In this paper, they showed 

that force increases as cells are plated on increasingly stiff substrates, although 

in their next paper they show the opposite. A collaborating group showed that 

higher aspect ratios (7:1 vs 3:1 or 5:1, which is the ratio of the length of the long, 

contractile axis over the short, perpendicular axis) produce higher force, 

presumably due to increased myofibril orientation161. 

 

Gene Expression Throughout the Life of a Cardiac Myocyte 
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Gene Expression and Isoform Switching in Fetal Development 

During the cardiac development process, as has been described in detail 

above, there are significant changes in the genes that are expressed, and 

particularly in differential expression of isoforms of proteins, such as sarcomeric 

proteins myosin heavy chain (MHC) and troponin I (TnI), as well as in beta-

adrenergic receptors, ion channels, and transcription factors; there are also 

changes in the localization of some of these proteins. In striated muscle, there 

are three isoforms that are transcribed from three separate genes in a muscle 

fiber type-specific manner162-164. These isoforms are fast skeletal troponin I 

(fsTnI/TNNI2), expressed in fast skeletal muscle fibers; slow skeletal troponin I 

(ssTnI/TNNI1), expressed in slow skeletal muscle fibers and fetal cardiac muscle; 

and cardiac troponin I (cTnI/TNNI3), expressed only in adult cardiac muscle. 

SsTnI and cTnI are the two key myofilament isoform proteins in the cardiac 

myocyte and are antithetically expressed during the transition from fetal to adult 

life164-165.  

The ssTnI isoform is expressed during neonatal or fetal life and is then 

stoichiometrically replaced by the cTnI isoform, which is exclusively expressed in 

mature adult cardiac myocytes164-169. The cTnI isoform has a unique N-terminal 

extension containing serine residues that are phosphorylated in response to 

adrenergic stimulation of the heart, making it PKA-responsive. This PKA 

responsiveness is critically required for the fast relaxation that is necessary for 
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optimal adult cardiac function139,170-171. Thus, acquisition of this key adult 

signature maturation marker by hiPSC-CMs is indispensable.  

Cardiac myosin has two cardiac myosin light chain 2 (MLC2) isoforms, 

MLC2a and MLC2v. In the developing human and mouse heart, MLC2a 

expression is detected in all chambers172. In the postnatal heart, MLC2v is 

confined to the ventricle, and this chamber specificity persists to adulthood172-173. 

MLC2v expression is also considered to be a marker of cardiac myocyte 

maturity. Thus, several groups have used the expression patterns of MLC2a and 

MLC2v to define cardiac myocyte identity and stages of development.  

hiPSC-CMs primarily express MLC2a at early time points; at later time 

points, expression of MLC2v increases and expression of MLC2a decreases, 

with the majority of hiPSC-CMs co-expressing both MLC2a and MLC2v174. Here, 

hiPSC-CMs expressing MLC2v most likely represent ventricular-like cells, while 

those expressing MLC2a may represent a range of immature cardiac myocytes, 

including atrial-like cells. Earlier reports demonstrated prevalent MLC2v/MLC2a 

double-positive cardiac myocytes, with disorganized sarcomeres and weak 

hERG channel responses, to be immature, resembling human fetal cardiac 

myocytes175. 

 

Changes in Gene Expression During Heart Failure 

During heart failure, there are significant changes in gene expression, 

including some reversions to fetal gene expression. Many genes that encode for 
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contractile proteins have a characteristic pattern of expression during 

development, and many of these are also altered by disease conditions176. The 

failing heart reactivates fetal genes and reverts to a fetal pattern of energy 

substrate metabolism176-177. For instance, in mice, levels of fetal genes such as 

ANP, BNP, βMHC, skeletal actin, and metabolic genes such as GLUT1 are 

reactivated in the failing adult heart176-178. Moreover, αMHC, SERCA2a, ion 

channels, and metabolic genes such as GLUT4 are reduced during heart 

failure178-179. So, based on what is understood about cardiac development and 

the key proteins in cardiac function, this thesis focuses on three major proteins: 

TnI, MHC, and SERCA2a. 

Crucial Genes for Cardiac Development and Function 

Troponin 

Troponin exists in a complex of three distinct proteins- inhibitory troponin I 

(TnI), troponin C (TnC), and troponin T (TnT), which binds tropomyosin. In the 

activated state, calcium binds to troponin C, causing a conformation change, 

moving TnI and tropomyosin away from actin so that myosin can bind. During 

diastole, when calcium is taken back up into the SR, the troponin complex 

returns to its inhibitory state, releasing myosin from actin and causing relaxation. 

TnC has a fast isoform (TNNC2 gene) and a slow isoform (TNNC1 gene); 

cardiac muscle only expresses the slow isoform, though skeletal muscle 

expresses both, and there is no developmental switch180. Troponin T has a slow 
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skeletal (TNNT1), cardiac (TNNT2), and fast skeletal (TNNT3) isoform, and there 

is a possibility that cardiac muscle may express some slow skeletal TnT181. As 

noted above, TnI exists in slow skeletal, fast skeletal, and cardiac isoforms. The 

mutant A164H isoform shows increased calcium sensitivity in the face of hypoxia 

or hypercapnia by a histidine in the switch region between actin binding and TnC 

binding domains182. 

Myosin 

Myosin heavy chain is part of the myosin group of proteins; it falls under 

myosin class II, which contains 15 members. It has three domains- a head, which 

binds actin; a neck, which acts the main force transducing domain; and a tail, 

which binds other myosins, including a regulatory MLC and an essential MLC. 

During systole myosin goes through crossbridge cycling; in the relaxed state 

ADP and inorganic phosphate (Pi) are bound to the myosin head, which allows it 

to bind actin when troponin is activated, forming a crossbridge. When it releases 

ADP and Pi, the myosin head bends forward producing a power stroke and 

contraction; when ATP binds to myosin it releases from actin, the myosin 

ATPase function breaks down ATP into ADP and Pi, and the cycle can start over, 

or the filament can relax183. In cardiac myocytes, there are two isoforms 

expressed; the alpha isoform has 3-fold higher ATPase activity and higher actin 

filament sliding velocity. It is expressed at low levels in the adult heart, but not in 

the developing heart, and cardiac disease such as heart failure and myocardial 

infarction decreases expression, though this may be somewhat reversed with 
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exercise. Expression is dependent on activation of thyroid hormone receptors184. 

The isoform of MHC expressed has significant effects on the function of troponin 

as well185. 

SERCA 

As has been noted above, SERCA2a, the dominant isoform of SERCA 

expressed in cardiac myocytes, plays a key role in cardiac contractility, e.g. in the 

amplitude of contractility, by regulating the amount of calcium taken up into the 

SR during diastole. Phospholamban inhibits SERCA ATPase activity, and 

phosphorylation of PLN increases SERCA activity78. Sarcolipin regulates SERCA 

activity in atrial myocytes but not ventricular186. Thyroid hormone upregulates 

SERCA expression and decreases PLN inhibition of SERCA, and adiponectin 

enhances SERCA activity, presumably by relieving oxidation and causing free-

radical scavenging, since free radicals inhibit SERCA function187. SERCA can 

also be glutathionylated or SUMOylated, both of which enhance function; 

glycosylated or O-glcNAcylated, both of which decrease function; or acetylated or 

nitrosylated, which have unknown effects on function and protein amount187.  

It is also known that heart failure decreases expression of SERCA, and 

exercise increases expression of SERCA, and there have been attempts to 

increase SERCA expression levels or decrease SERCA inhibition for therapeutic 

purposes187. It is also known that calcium handling is crucial for the development 

of cardiac myocytes, and that the amplitude and kinetics of intracellular calcium 
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transients change as cells mature, along with a shift from dependence on T-type 

calcium channels to L-type calcium channels, decreased NCX expression with 

greater dominance of Forward NCX mode, decreased response to calcium, 

increased buffering of cytosolic calcium due to increased TnC, and increasing 

SERCA expression which is paralleled by increasing SR calcium content188. 

 

Hypertrophy as a Marker of Cardiac Development and Contractility 

Pathways to Hypertrophy 

Hypertrophy is a key marker of various intracellular processes, both 

physiologic and pathologic. In a cardiac myocyte, hypertrophy essentially means 

an increased overall number of sarcomeres, although this does not always 

translate to increased force if other pathological factors are involved. There are 

several major pathways involved in cardiac myocyte hypertrophy; most of them 

are interconnected in some way, with significant cross-talk between pathways; 

some involve calcium signaling and proteins with calcium-binding sites, such as 

the nuclear factor of activated T-cells (NFAT)/calcineurin pathway, and the 

calcium/calmodulin-dependent protein kinase II (CaMKII) pathway, making them 

significant for cardiac myocytes which rely on calcium handling for physiologic 

function and which display altered calcium handling in development and 

pathology189. 
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In the calcineurin/NFAT pathway, activation of calcineurin, either through 

calcium binding or through non-calcium-mediated mechanisms such as direct 

binding of the sodium/hydrogen exchanger (NHE)190 leads to dephosphorylation 

of NFAT and translocation from the cytoplasm to the nucleus, where it interacts 

with other transcription factors such as NFκB to enhance expression of genes 

associated with hypertrophy, such as sarcomeric and cytoskeletal genes191. This 

pathway can be activated by signals such as testosterone189, Angiotensin II192, 

and beta-adrenergic signaling mediated by GPCR Kinases (GRKs)193. Sustained 

levels of increased calcium concentrations in myocytes has been shown to be 

mediated through transient receptor potential cation channels (TRPC channels), 

which are mechanosensitive and may be activated in pressure overload 

situations194. 

CaMKII is an important signaling molecule in cardiac myocytes, in that 

activation and upregulation of it leads to arrhythmia and cardiomyopathy, 

suggesting a role in homeostasis of ionic function, and leading to interest in it as 

a therapeutic target, although a role for CaMKII in the healthy heart has yet to be 

definitively found195. It is activated by calcium, although phosphorylation of the 

autoinhibitory site allows it to be active in the absence of calcium and calmodulin, 

and it can form hexameric structures that can autophosphorylate196. It depends 

on activation by calmodulin, which is a 4 EF-hand containing calcium-binding 

protein that is expressed in all eukaryotic cells197.  
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CaMKII can phosphorylate calcium-activated potassium currents198, 

ryanodine receptors199, and sodium channels200, and can be triggered by 

oxidative stress201. CaMKII can alter transcription of hypertrophy-associated 

genes by phosphorylating histone deacetylases HDAC4 and 5, exporting them 

out of the nucleus and inhibiting their inhibition of hypertrophic transcription 

factors such as MEF2, and CaMKII can work in tandem with calcineurin24. 

CaMKII can also interact with the MAPK/ERK pathway by phosphorylating ERK, 

and it has been shown that targeting CaMKII for inactivation can ameliorate 

pathologic hypertrophy and heart failure in some animal models202. 

Other paths to hypertrophy exist in the cardiac myocyte, which are not 

specific to the cardiac myocyte and have often been studied in more depth in 

other cell types; for example, the mitogen activation phosphatase (MAPK)/ERK 

pathway, which can be activated by growth factors, and can interact with NFAT, 

as well as MEK1 and GATA-4 and MEF2203. The mToR/Akt pathway is involved; 

here mToR is a downstream target of Akt (protein kinase B), which activates 

protein synthesis and inhibits autophagy, but is inhibited by low levels of ATP 

through AMP Kinase194. This pathway can be activated by such diverse signals 

as insulin, cholesterol204, inflammation205, and angiotensin II206. Finally, sirtuins 

(SIRT) play a role, including SIRT3 and SIRT6 which inhibit hypertrophy by 

acting through Akt, and SIRT1 which has a more complex role207. 
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Pathologic versus Physiologic Hypertrophy 

The differences between pathological organ hypertrophy and physiological 

organ hypertrophy can be seen clinically; for example, a patient with pathological 

left ventricular hypertrophy has impaired diastolic ventricular filling, including 

delayed relaxation and a decrease in maximal early velocity of diastolic filling, 

while a patient with physiological hypertrophy has normal filling patterns208. 

Tissue Doppler also shows decreased systolic velocities in patients with 

pathologic hypertrophy, but not in athletes with physiologic hypertrophy209. 

Molecular and cellular differences are less well-known; but several genes are 

associated with pathologic but not physiologic hypertrophy- for example, BNP, 

angiotensin converting enzyme (ACE) and vascular cell adhesion molecule-1 

(VCAM1) are overexpressed in pathologic hypertrophy but not exercise-induced 

physiologic hypertrophy210. 

 

Genome Editing to Induce Cardiac Myocyte Maturation 

Early Technological Developments 

In order to induce expression of these proteins of interest, which are 

crucial in the development, maturation, and physiologic function of cardiac 

myocytes, this project takes advantage of a fairly recent technological innovation 

known as genome editing. Before genome editing, expression of a particular 

gene or protein relied on viral vectors, which come in many flavors and are still 
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extremely useful- some viruses are able to express genes transiently, such as 

adeno-associated virus (AAV); some viruses are able to express genes for 

several months to years, such as adenovirus (AV); some viruses are able to 

integrate into the host genome and express genes long-term, such as 

lentivirus211. Issues with viral delivery include short expression times, limited size 

of DNA that viruses are able to carry, host immune response, lack of viral 

receptors on target cells, or random integration of genes into potentially 

disruptive sites in the host genome. There also exist other technologies and 

means of introducing nucleic acids into cells, such as engineered nanoparticles 

that can carry DNA or RNA into the host cell; these also result in short periods of 

expression212. 

Genome editing, however, utilizes enzymes that make either double- or 

single-stranded breaks at very precise locations in the genome of the host cell- 

this allows the cell to repair it the DNA using non-homologous end-joining 

(NHEJ), which may lead to nullification of the gene, or, if a template is provided, 

the cell may use homology-directed repair (HDR), which may lead to the cell 

incorporating the template-provided sequence into the genome permanently- this 

can be used for short changes in the sequence of a gene, including single-

nucleotide changes, or for introduction of entire genes and promoters213.  

The earliest technology used for this was zinc-finger nucleases (ZFNs), 

used since the early 2000s, which are restriction enzymes engineered to 
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recognize a specific DNA sequences through the zinc finger domain of the 

protein, and can recognize longer sequences of bases when zinc finger domains 

are tandemly repeated; a ZFN with four fingers can recognize a 24-bp sequence. 

They contain a FokI domain for DNA cleavage. ZFNs suffer from a need for 

selection of specific binding domains for a given sequence, rather than the ability 

to engineer it exactly- they rely on bacterial selection to find the most specific 

sequence, which can be a lengthy process213. 

Following on the success of ZFNs, several researchers began engineering 

DNA-binding enzymes using transcription activator-like effectors (TALEs), 

proteins from a bacterial plant pathogen Xanthomonas, which bind specific 

sequences of DNA using domains that are essentially loops with two amino acids 

at the outside of the loop that bind a particular base; so that up to 18 loops in a 

row will bind a sequence of 18 amino acids214. By attaching a FokI domain for 

nuclease activity, a TALEN is created, and TALENs can be used to efficiently 

cleave genomic DNA- they require two TALENs, one on either side of the 

cleavage site, for FokI to activate, thus improving specificity215.  

TALENs are more easily engineered than ZFNs, with a higher rate of 

success, and with comparable mutagenesis216. Protocols and kits for rapidly 

building locus-specific TALEN cDNA using bacterial cloning have also been 

developed217-218. TALENs have advantages of being modular, easy to use, and 

effective; they suffer from the fact that because each nucleotide is recognized by 
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an entire protein domain, the cDNA can be large ~3 kb compared to ~1 kb for a 

ZFN, potentially inhibiting its ability to be packaged into a viral vector or 

transfected into a cell215.  

Recent Developments: CRISPR/Cas9 

The most recent advance in genome editing has come in the form of 

clustered interspace short palindromic repeats (CRISPR) and CRISPR-

associated systems (Cas); these are bacterial defense systems that have been 

discovered in several species of bacteria, including Streptococcus pyogenes and 

Neisseria meningitides. They are comprised of a strand of mRNA that recognizes 

the locus of interest, and an enzyme with nuclease activity that binds the mRNA 

(guide RNA, gRNA) and cleaves the DNA at that site219.  

The CRISPR system has the advantages of being smaller than TALENs, 

and thus more deliverable, as well as faster and cheaper to engineer and build, 

so that several gRNAs can be tested against a particular locus to find the one 

with highest cleavage efficiency and fewest off-target effects. Additionally, many 

modifications to the Cas enzyme have been made- some optimization has been 

done in order to improve efficiency, but modifications have also been made that 

reduce nuclease activity to a single strand, or abolish it completely so that the 

system acts as a way of guiding transcription factors to the locus, or they have 

been used as designer transcription factors or repressors220. 
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Genome Editing in Stem Cells and Stem Cell-Derived Cardiac Myocytes 

Disease Modeling 

Genome editing as a way of permanently altering genomic DNA has been 

used and envisioned as a way of more effectively modeling certain diseases, 

either by making precise deletions, insertions, or point mutations to model 

genetic disease; by long-term overexpression or deletion in cell lines, including 

stem cells and stem cell-derived cells; or by efficient editing of animal model 

genomes to produce animal models more rapidly and without potentially 

disruptive random insertion of genes into the genome221. For example, TALENs 

have been used to model Hemophilia A in iPSCs by creating an inversion in the 

factor VIII gene, a genotype which is commonly seen in Hemophilia A patients, 

and furthermore, TALENs were able to correct that same inversion222. ZFNs were 

used to remove GAA repeats from the frataxin gene (FXN), since GAA repeats in 

that gene are the genotype associated with Friedrich’s Ataxia; when these cells 

were differentiated into neuronal cells, the Friedrich’s Ataxia phenotype was 

reversed, with rescued expression of frataxin223.  

In the field of cardiovascular disease, genome editing has been used to 

model Long QT syndrome; one group used ZFNs to insert voltage-gated 

potassium channels KCNQ1 and KCNH2 with dominant-negative mutations into 

the AAVS1 safe-harbor site of iPSC-derived cardiac myocytes. Their edited cells 
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displayed characteristic phenotypic markers including prolonged action potential 

duration and amelioration with LTCC blocker nifedipine224. As noted in their 

paper, isogenic genome editing allows edited cells to be compared with 

nonedited cells that have the exact same genetic background, thus removing 

potentially confounding factors of SNPs and mutations found elsewhere in the 

genome, meaning that phenotypic changes are due to the genomic edit alone. 

Elsewhere, a group has used TALENs to introduce a mutation in PLN to iPSC-

CMs in order to recapitulate dilated cardiomyopathy (DCM) associated with that 

mutation, and then TALENs were used to isogenically correct it as well. They 

showed that cells edited to contain the mutation produced low amounts of force, 

similar to cells from patients already harboring the mutation, which was corrected 

with isogenic correction225. 

Genome Editing for Therapeutic Purposes 

Beyond modeling, genome editing has begun to be studied for use in 

therapeutic settings, including cell therapy. The immunology world has quickly 

moved to take advantage of this, with the hopes of altering immune cells that can 

be phoresed from the patient’s blood, edited, and then re-transplanted back into 

the patient. A popular strategy has been the engineering of T cells to express 

chimeric antigen receptors (CARs) that recognize epitopes specific to cancer 

cells226. Many groups have continued down the path of gene editing from merely 

expressing CARs to downregulating or modifying other proteins and pathways 
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that interfere with the efficacy of CARs, such as the elimination of endogenous T 

cell receptors (TCRs)227.  

In the world of cardiovascular and muscular disease, Duchenne muscular 

dystrophy (DMD) has been an attractive target for genome editing. Several 

groups have explored using it in animal models or cell-based models to not 

correct the underlying mutation, but to excise entire groups of exons in a way that 

allows a truncated but still functional dystrophin protein to be expressed, thereby 

allowing a single set of nucleases to be effective against a group of patients with 

a range of different mutations228-229. It has been used to correct mice with the 

arrhythmic PRKAG2 cardiac syndrome phenotype by packaging the 

CRISPR/Cas9 system into AAV9 vectors to disrupt the mutant allele while 

leaving the healthy allele intact, leading to improved phenotype230.  

Conclusions 

There is significant room for growth and improvement in the fields of 

cardiovascular disease, stem cell biology, iPSC-CMs, and genome editing for the 

use of disease modeling and cell therapy. Cardiovascular disease, including 

congestive heart failure with its myriad of contributing and precipitating factors, 

remains a significant problem in the developed world and is becoming more of a 

problem in the developing world. Stem cells, including induced pluripotent stem 

cells, and cardiac myocytes derived from them have shown enormous potential 

in the treatment and research of cardiovascular disease, although there remain 
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important barriers to using them fully, including their immature physiological 

function, lack of adequate physiologic assays to probe their function, and 

immature gene expression profile.  

This thesis uses several cutting-edge technologies, including traction force 

microscopy and genome editing, to rigorously measure hiPSC-CM function under 

important conditions such as increased mechanical load and altered extracellular 

ionic concentrations. Furthermore, this thesis explores attempts to alter the 

isoforms of crucial proteins expressed, including calcium handling proteins and 

mature isoforms of sarcomeric proteins, in order to affect physiologic function 

including calcium handling and contractile kinetics, and to ultimately affect the 

gene and protein expression profile in a cell-wide level. 
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Abstract 
 

Recent technological advances have made it possible to efficiently derive 

cardiac myocytes from human induced pluripotent stem cells (hiPSC-CMs). 

These have been seen as a model for human heart disease, as well as a 

potential source for cellular transplantation into failing diseased heart tissue. 

Many laboratories have devoted substantial effort to examining the functional 

properties of hiPSC-CMs, including electrophysiology, intracellular calcium 

handling, and gene/protein expression and force. Here we utilize traction force 

microscopy (TFM) to determine the maximum force production of isolated hiPSC-

CMs under varied culture and assay conditions. We elucidate here the 

relationship between cell morphology and force production, HiPSC-CMs 

developing in culture for two weeks produce significantly less force than cells 

cultured from one to three months and hiPSC-CMs cultured for three months 

resemble the cell morphology of neonatal rat ventricular myocytes. hiPSC-CMs 

produce less force when assayed on increasingly stiff substrates, and generate 

less strain energy. Finally, hiPSC-CMs cultured in conditions of physiologic 

calcium concentrations are larger and produce more force than cells cultured in 

standard media. Collectively, these findings establish single cell TFM as a 

valuable approach to illuminate the quantitative physiological maturation of force 

in hiPSC-CMs. The demonstration here of an inverse relationship between force 

and substrate stiffness has implications for translating hiPSC-CMs into ongoing 

efforts to remuscularize diseased myocardium in vivo.  
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Introduction 

 Over the past several years it has become possible to efficiently derive 

from human induced pluripotent stem cells (hiPSCs) robust spontaneously 

contracting cardiac myocytes (hiPSC-CMs)65-66,231. Regarded as a potential 

source of virtually unlimited human cardiac muscle tissue, researchers and 

clinicians have begun utilizing these hiPSC-CMs as sources of therapeutic cell-

based repair via transplantation into host63 and for cellular and tissue models of 

cardiac disease 232-233. Since their discovery, considerable efforts have been 

underway to assess and quantify hiPSC-CM contractile function and 

development using culture conditions that may better mimic the physiological 

cues imposed on native cardiac cells and tissues in vivo. Importantly, substantial 

effort has been made to address the developmental state and physiological 

maturity of the hiPSC-CM112,174,234. 

 The central measure of the physiologic function of a cardiac myocyte, and 

the essential purpose of the cell, is force production. To date, several groups 

have optimized assays to measure force production of hiPSC-CMs, either as a 

syncytium102,235 or population of cells on a thin film148, or as single cells using 

micropost arrays236 or using traction force microscopy160.  Specific force 

production is an important quantitative index of cardiac myocyte maturity but thus 

far has been difficult to ascertain in hiPSC-CMs. It has been shown that human 

fetal cardiac myofibrils have low force compared to adult cardiac myofibrils, and 

that this increases over time in human development69.  Furthermore, isometric 
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force in skinned myocytes from mice and sheep increase as gestational age 

increases237-238.  

 Closely related to the myocyte’s ability to produce force is its morphology, 

including total cell area, length and width. The use of micropattern printing to 

manipulate the shape of neonatal ventricular cardiac myocytes, shows a range of 

aspect ratios that result in maximal force production, presumably by improved 

sarcomere and myofibril alignment148,239. Similar studies in hiPSC-CMs 

demonstrate increased force in longer cells compared to shorter ones161. 

Investigations of the relationship between cell size and force is important, as 

cardiac myocyte size changes dramatically during cardiac development with the 

transition from immature to mature cardiac myocyte involving a significant 

increase in cell area240.   

 Force production in both adult and fetal cardiac myocytes is highly 

dependent upon the load against which the cell is contracting, which includes the 

stiffness of the immediate microenvironment241. This allows the heart to adjust 

cardiac output and this may be compromised in cases where tissue stiffness 

changes drastically, as in fibrotic diseases of the heart242. The stiffness of the 

human heart changes during development in utero; however, the elastic modulus 

of the native myocardium is still being debated and varies markedly depending 

on the method of measurement. To date, most studies report that the elastic 

modulus of the myocardium increases with age243-247. Thus, the ability to produce 
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force against varying levels of stiffness is another important marker of heart 

muscle physiologic maturity. 

 HiPSC culture media composition is another critical factor in guiding 

hiPSC-CM maturation. It is well known that the physiologic extracellular calcium 

concentration in mammalian interstitial spaces is between 1.5-2.0 mM248, 

providing a strong electrochemical gradient opposite a much smaller intracellular 

calcium concentration in heart muscle104,249. However, the calcium concentration 

in RPMI, which is the basal medium used in differentiation and growth of hiPSC-

CMs in most laboratories, is sub-physiological at 0.42 mM250. It has been shown 

by numerous groups that extracellular calcium and calcium signaling play a 

significant role in cardiac development, namely in cardiac myocyte 

hypertrophy150-151. With this information, we hypothesized that physiological 

extracellular calcium concentration is necessary for the development of force 

production in hiPSC-CMs.  

 In the present study, we investigated the developmental maturation status 

of hiPSC-CMs using single cell traction force microscopy to measure force 

production of isolated myocytes. We examined force and contractility in the 

context of several physiologically relevant environmental parameters.  First, we 

tested hiPSC-CMs contractile maturation by comparing them to neonatal rat 

ventricular myocytes (NRVMs), with a focus on cell morphology and geometry. 

Then, we measured force in response to substrates of varying stiffness. Finally, 
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we tested hiPSC-CM development during culture in varied physiologic 

extracellular calcium conditions.  

 

Methods 

Culture and Differentiation of Human iPSC-Derived Cardiac Myocytes 

Human iPSC line DF 19-9-11T, which was derived from healthy donor 

fibroblasts using a vector-free episomal induction method251, was graciously 

provided to us by the laboratory of Dr. Timothy Kamp at the University of 

Wisconsin-Madison. HiPSCs were cultured according the protocol outlined in that 

paper; briefly, cells were grown in TESR-E8 media (Stemcell, Vancouver, CA), 

on Matrigel-coated (Corning, Corning, NY) 35 mm 6 well plates, and passaged 

every 4 days via EDTA with a dilution factor of 1:12.  

 HiPSCs were differentiated using a small molecule Wnt/GSK3 inhibition 

protocol66. Briefly, hiPSCs were cultured to approximately 90% confluency, then 

treated with a GSK3 inhibitor, CHIR99021 (Stemgent, Cambridge, MA) in RPMI 

supplemented with B-27 minus insulin (Thermo Fisher, Waltham, MA) and 

Matrigel, for 24 hours. Media was replaced for 48 hours. Cells were treated with 

IWP-4 (Stemgent, Cambridge, MA) in RPMI with HEPES with B-27 minus insulin 

for 48 hours, and media was replaced every 48 hours until cells began to beat 

spontaneously, at which point they were grown in RPMI with HEPES 

supplemented with insulin-replete B-27. Media was changed every 2-3 days until 

ready for assays. Higher-calcium (physiological) media was prepared by 
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supplement RPMI + B27 growth media to 1.8 mM Ca2+ using 1M CaCl, and then 

stirred to dissolve any precipitations that form. Cells grown in physiological 

calcium media had media changed every 1-2 days, as these cells produce acidic 

media more rapidly.  

 

Isolation and Culture of Neonatal Rat Ventricular Myocytes 

All methods for handling laboratory animals were approved by the 

Institutional Animal Care and Use Committee at the University of Minnesota. One 

day-old Sprague Dawley rat pups were sacrificed via decapitation and hearts 

excised through the chest. Cardiac myocytes were isolated using sequential 

trypsin and collagenase treatments according to the protocol provided with the 

Worthington Neonatal Cardiomyocyte Isolation System (Worthington 

Biochemical, Lakewood, NJ). NRVMs were plated directly onto patterned 

polyacrylamide constructs at a density of 100,000 cells per well and cultured in 

DMEM + 4% FBS. Media was changed after 24 hours, and cells were allowed to 

continue to adhere for 48 more hours until assaying. NRVMs were treated the 

same way as hiPSC-CMs during the assay procedure.  

 

Micropatterning of Polyacrylamide Constructs 

Micropatterning stamps were created according to protocols outline by 

Wang et al152. Briefly, photomasks were designed in AutoCAD (AutoDesk, Mill 

Valley, CA) and printed by Fineline Imagine (Colorado Springs, CO).  Single cell 
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shapes were placed far enough apart to ensure contraction of one cell would not 

affect substrate deformation of neighboring cells. Stamp masters were created 

using photolithography by applying photomasks to silicon wafers coated with 

photoresist and exposing to light. Stamps were created by curing 

polydimethylsiloxane (PDMS) (Dow Corning Sylgard 184, Ellsworth Adhesives) 

on the patterned silicon master (for patterned stamp) or on an unpatterned 

silanized silicon wafer (for blank stamps). Both patterned and unpatterned 

stamps were made new each time they were used. Stamps were coated and 

stamped according to the stamp-off protocol laid out by Desai et al153. Briefly, 

blank stamps were coated with laminin (50 µg/ml in molecular biology grad 

water) and incubated for 60 minutes, then dried and inverted onto patterned 

stamps which have been UV-activated. Blank stamps were immediately peeled 

off and placed onto 15 mm coverslips which had been plasma-activated by 

running through a blue flame. Cover slips were then ready for use with gels. 

 

Polyacrylamide Gel Construction 

Polyacrylamide gels were made using ratios of Acrylamide to N,N’-

methylenebisacrylamide according to Tse et al154 and then actual gel stiffness 

was measured using uniaxial stress testing. Ahead of time, 25 mm glass 

coverslips were UV treated, then treated with 3-aminopropyltriethoxysilane for 3 

minutes, and rinsed with ethanol. Polyacrylamide was made with 1x phosphate-

buffered saline, and 0.2 µm red FluoSpheres fluorescent beads (Thermo Fisher, 
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Waltham, MA) were mixed into the unpolymerized acrylamide solution at a 

concentration of 0.005% (diluted 1:200). The solution was degassed for 15 

minutes, and to the unpolymerized solution was added 

tetramethylethylenediamine (final dilution 1:1500), and the solution was brought 

to a pH of 7 via HCl. Ammonium persulfate (final concentration 0.017% w/v) and 

N-hydroxysuccinimide ester (final concentration 0.0083 mg/ml) were added to 

solution. 15 µl of solution were quickly pipetted onto APS-treated coverslips. 

Laminin-coated coverslips were inverted onto the solution and allowed to 

polymerize at room temperature for 60 minutes. Top coverslips were removed 

from the polymerized gels, and gels were incubated in 4% BSA at 37° for 45 

minutes, then rinsed 3 times with 1x PBS.  

HiPSCs were dissociated in Accutase (Thermo Fisher, Waltham, MA) for 

20 minutes, then resuspended in warm RPMI + B27 and replated onto 

polyacrylamide gels at 100,000 cells per well. Cells adhered overnight, then 

media was changed the following morning. Cells were allowed to adhere for two 

more days, then assayed on day 3 after plating.  

 

Traction Force Microscopy and Analysis 

Experiments were performed on an Olympus X81 Inverted Microscope 

using a 40x UPLSAPO40X2, NA 0.95 objective in an environmental control 

chamber at 37° C. Images were acquired using MetaMorph software (Molecular 

Devices, Sunnyvale, CA) at a rate of 3.5 frames per second. Cells were paced at 
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0.5 Hz with a 35 mV square pulse using a MyoPacer field stimulator (IonOptix, 

Westwood, MA) in RPMI + B27 with HEPES. Cells were paced for 3-5 minutes 

before recording, and data was recorded from each dish for no more than 30 

minutes to avoid recording from dying cells. Cells were given fresh media 60 

minutes before data acquisition. 3-4 contractions were acquired from each cell.  

Images were analyzed using ImageJ code developed by Tseng et al155-156. 

Stacks of images of the cell and fluorescent beads before and during contraction 

were oriented vertically and cropped to an area of 64.4 µm wide by 128.8 µm tall 

before analysis.  

Particle image velocimetry using iterative interrogation windows of 128-64-

32 pixel width was completed between the matched bead images from the same 

cell location at different time points. The noise-filtered displacement field was 

used to calculate traction stresses with a Fourier transform traction cytometry 

(FTTC) ImageJ plugin using the Fourier transform traction cytometry method157. 

A regularization factor of 1x10-9 was applied for improved accuracy, as 

described in Stricker et al158. Stress vector magnitudes were integrated over the 

area of interest and reported as total force. Strain energy of the substrate was 

calculated for each individual hiPSC-CM as149.  

 

where T is the traction stress and u is the displacement. 

 

Statistical Methods 
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All statistical analysis was performed using Prism software (GraphPad, 

San Diego, CA). Correlation analysis was done by linear regression, and 

estimation of significant non-zero slopes was determined. Significant differences 

between groups for all other experiments was estimated by one-way ANOVA 

with a Tukey’s post hoc test. Significant differences in Figure 5 were estimated 

with a Student’s T test. Spline plots were created using MATLAB (Mathworks, 

Natick, MA). 

 

Results  

HiPSC-CMs Align and Contract Along a Single Axis 

Human iPSC-CMs were transferred to polyacrylamide (PA) gels that had 

been micropatterned with laminin rectangles with an area of 2000 µm2 and an 

aspect ratio of 7:1, which has been reported as an ideal aspect ratio for NRVM 

force production148. This allowed individual hiPSC-CMs to adhere to the 

substrate and occupy an area of up to 2000 µm2. Here, hiPSC-CMs formed a 

rectangular shape aligned along the direction of the long axis of the patterned 

area (Figure 2.1A).  Most hiPSC-CMs formed geometries with an area smaller 

than 2000 µm2 and an aspect ratio slightly smaller than 7:1 (Figure 2.1F).  

 Patterned single hiPSC-CMs were paced via field stimulator at 0.5 Hz and 

35 mV. Paced myocytes contracted along their long axes, creating visible 

deformations in the fluorescent bead-containing substrate. Particle image 

velocimetry analysis showed greatest substrate displacement towards the ends 
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of the hiPSC-CMs, as well as in areas surrounding the ends of the cells (Figure 

2.1B). Traction force analysis showed that the largest traction stress was 

developed in the substrate at these same locations (Figure 2.1C). Averaged 

contractions showed a force development curve resembling that of adult cardiac 

myocytes (Figure 2.1D, E)252. hiPSC-CM calculated force measurements were 

on the order of 10-8 N, which is in line with measurements previously reported by 

others161. 

 

Heterogeneous Cell Geometry Affects Contractility 

In general, current practice differentiation protocols result in the 

development of a heterogeneous population of contractile cells, as evidenced by 

varied electrophysiological parameters253, calcium handling254 and gene 

expression profiles255. We thus sought to examine the potential effects of 

geometric heterogeneity on physiologic force production. Micropatterned PAA 

constructs were designed as a rectangle with a 7:1 aspect ratio and a 2000 µm2
 

surface area. HiPSC-CMs that have been cultured on the constructs are able to 

occupy an area of up to 2000 µm2, in their preferred aspect ratio, which ranged 

from 4:1 to as long as 10:1, with a mean of 6.6:1 (Figure 2.1F).  

Based on this outcome, we examined the effects of cell geometry on 

contractility. We first measured total force production of d90 hiPSC-CMs on a 5 

kPa substrate. There was a significant positive correlation between cell size and 

total force produced (Figure 2.2A, R2 = 0.21, P = 0.02). However, we found no 
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correlation between long axis (length), short axis (width), or aspect ratio and 

force. Based on these findings, for the remainder of this paper we report total 

force, as well as force per unit area, which we refer to here as normalized force. 

 

Development of hiPSC-CMs under Prolonged Culture Conditions 

It is widely accepted that hiPSC-CMs phenotypically resemble immature 

cardiac myocytes and, depending on the studied characteristics, resemble 

embryonic cardiac myocytes256, fetal cardiac myocytes69,234, or neonatal cardiac 

myocytes119. Furthermore, with increased culture time, a more mature phenotype 

can be obtained. Accordingly, we examined TFM-based force production of 

hiPSC-CMs after 14 days, 30 days, or 90 days in culture and compared to 

NRVMs. 

 At d14, hiPSC-CMs produce small but detectable amounts of force, 

whereas d30 cells produce significantly more total force and normalized force 

(one-way ANOVA p < 0.0001) (Figure 2.3A-C). At d90, single hiPSC-CMs 

produce more total force than at d30. However, as they are also larger, 

normalized force is not significantly different (Figure 2.3D). However, d90 cells 

produce significantly more total force (p < 0.0001) and normalized force (p < 

0.0001) than d14 cells. D90 cells were significantly larger than d14 cells (P = 

0.01). NRVMs showed similar cell size and total force produced compared to d90 

hiPSC-CMs; however, they had significantly higher normalized force (P < 0.05).  
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Effects of Substrate Mechanics on Contractility 

Cardiac myocyte work adapts significantly during development20.  

Furthermore, cardiac myocytes produce different amounts of traction in response 

to altered mechanical environments160,257. To investigate whether this holds true 

for hiPSC-CMs, we cultured hiPSC-CMs for 30 days under normal growth 

conditions, then transferred isolated hiPSC-CMs to PAA gels with a defined 

modulus of 3.1, 9.8, or 13.5 kPa. hiPSC-CMs produced decreased total force 

(one-way ANOVA, P < 0.0001) (Figure 2.4A) and normalized force (one-way 

ANOVA P < 0.0001) (Figure 2.4C) as a function of increased substrate stiffness. 

HiPSC-CMs on 3.1 kPa modulus substrate produced significantly more force 

than on 9.8 or 13.5 kPa (Figure 2.4A, C). Cell area was not significantly different 

between conditions, indicating the range of substrate stiffness tested was not 

enough to induce changes in cell spreading, and that cell spreading was not the 

cause of differential force production (Figure 2.4B). At a substrate modulus 

higher than 13.5 kPa, bead displacement was very small, resulting in a poor 

signal-to-noise ratio (data not shown). We also calculated strain energy 

generated by each cell during a full contraction and found a decrease in strain 

energy with increasing stiffness. This correlated to decreased force production, 

with cells on a substrate with a modulus of 3.1 kPa substrates generating 

significantly more energy than those on substrates with a modulus of 9.8 or 13.5 

kPa substrates (one-way ANOVA P < 0.0001).  
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Effects of Extracellular Calcium on hiPSC-CM Development 

Typical hiPSC-CM growth medium contains sub-physiological levels of 

calcium (~0.42 mM), whereas physiologic extracellular calcium concentrations 

are much higher, ranging from 1.3 mM258 to 2.0 mM254,259-260. To examine the 

effects of media calcium concentrations on hiPSC-CMs, we cultured hiPSC-CMs 

in growth media that had been supplemented with CaCl up to 1.8 mM Ca2+, 

beginning on the day that they began spontaneously contracting (d7), and 

continuously until they were tested (d30). hiPSC-CMs in media with physiologic 

calcium levels produced greater total force than cells grown in standard growth 

medium, when assayed in standard growth medium (P = 0.0073) (Figure 2.5A). 

Additionally, these hiPSC-CMs were significantly larger (P = 0.0004) (Figure 

2.5B). However, specific force was not significantly different between the two 

groups (p = 0.75) (Figure 2.5C). 

 

Discussion 

Human induced pluripotent stem cell-derived cardiac myocytes are an 

attractive model system for experimental therapeutic discovery and as a potential 

cell/tissue source for regenerative therapy in diseased hearts. However, a 

significant obstacle to realizing this potential is the physiologic immaturity of 

hiPSC-CMs relative to adult cardiac myocytes. In this study, we utilized traction 

force microscopy to rigorously investigate absolute force production in isolated 

single hiPSC-CMs. Relative to other methods of assaying cardiac myocyte 
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contractility, single cell traction force microscopy eliminates potential confounding 

effects of neighboring cells, including myocytes and fibroblasts. Here, our study 

has several main findings, including establishing an inverse relationship between 

force and substrate stiffness. This is potentially significant for ongoing and future 

studies attempting to translate hiPSC-CMs for regenerative therapies for the 

diseased myocardium in vivo. 

Additional new findings include guiding hiPSC-CM area and aspect ratio to 

adopt a rectangular shape with a single contractile axis force vector to 

demonstrate that force production correlates with overall cell area but not length, 

width, or aspect ratio. This led us to normalize all force measurements to cell 

area in order to obtain a more accurate representation of cellular contractile 

performance, termed here as normalized force. While aspect ratio did not 

correlate to total force, aspect ratios were distributed normally around with a 

mean between 6:1 - 7:1, which is very close to the aspect ratio that other groups 

have determined for hiPSC-CMs and NRVMs to produce maximal force148,161. 

Data further shows that hiPSC-CMs progress along a timeline similar to 

the natural embryonic development of cardiac myocytes, wherein normalized 

force increases as myocytes mature69,238. Results show hiPSC-CM normalized 

force increases as a function of time in culture, which is in line with results from 

other research groups160. Analysis of single hiPSC-CMs, as compared to 

neonatal rat ventricular myocytes using identical assay conditions, show that 

hiPSC-CMs produce comparable total force as NRVMs. While instructive, these 
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results also show that it is not yet possible to achieve physiologic maturation in 

terms of force output approaching that of adult cardiac myocytes. 

The stiffness of the human heart increases during development243-244, 

prompting us to investigate the ability of hiPSC-CMs to produce force against 

substrates of varying elastic moduli. We implemented here three moduli that are 

in line with the range that a cardiac myocyte encounters as the heart develops 

from an embryonic state to adult244. Data show that both total force and 

normalized force decrease as substrate modulus increases from 3.1 kPa to 9.8 

kPa - 13.5 kPa, in agreement with a recent report161. These findings are in 

contrast to another earlier study; however, it is difficult to directly compare 

findings due to the higher force variability in that work160. This discrepancy may 

be due to different methods of creating polyacrylamide constructs, or potentially 

to different methods of measuring the stiffness of the hydrogel. 

Another new finding of this study is the elucidation of strain energy applied 

by hiPSC-CMs to the surrounding environment. Strain energy characterizes the 

work done by the cell on the underlying substrate, which is important to 

contractile cells, including hiPSC-CMs. It has been shown that fibroblasts 

generate similar amounts of strain energy on substrates of different stiffness149. 

However, as shown here, hiPSC-CMs generate less strain energy in the 

deformation of stiffer substrates. We posit that in hiPSC-CMs, due to their 

immaturity, they are better able to produce force against a substrate that more 

closely mimics the stiffness of an embryonic heart than that of an adult or fibrotic 
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heart. We speculate that an understanding of strain energy in hiPSC-CMs can 

help decipher the basis of the difficulties encountered by groups attempting to 

transplant immature hiPSC-CMs in diseased adult myocardium63.   

Finally, we discovered that ionic content of media for long-term hiPSC-CM 

culture has important outcomes in terms of cellular maturation and force output. 

The effects of extracellular calcium on the developing heart has been explored 

recently150-151, with evidence that cells with sub-physiological calcium influx are 

smaller than those with normal calcium gradients and signaling. With hiPSC-CMs 

in vitro, a unique opportunity is present to track force development while 

modifying extracellular calcium levels directly. Data show increases in hiPSC-

CMs normalized force during culture with physiologic calcium levels (1.8 mM) 

compared to widely used standard RPMI calcium levels (0.4 mM). This is 

important because calcium signaling is crucial for cardiac myocytes in terms of 

excitation-contraction coupling104,261 as well as signaling through calcium binding 

proteins, such as calmodulin262 and calcineurin263. Collectively, this is evidence 

that differentiation and development protocols that attempt to recapitulate 

embryonic development should take into consideration the concentrations of all 

electrolytes, including calcium.  

Taken together, these new data show that the functionality of hiPSC-CMs, 

as determined by their ability to produce force against a substrate via single cell 

TFM, closely resembles that of an immature cardiac myocyte. Specifically, in 

terms of the impact of geometry on hiPSC-CM contractility, total normalized force 
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production by single myocyte TFM is similar to that of neonatal rat cardiac 

myocytes. As hiPSC-CMs perform more optimally working on less stiff 

substrates, we report hiPSC-CMs function is comparable to neonatal cardiac 

myocytes. Ultimately, quantitative analysis of hiPSC-CM contractile performance 

as done here via traction force microscopy will be critical toward optimization of 

culture content and cell environment, including matrices, to advance the  

maturation state of hiPSC-CM toward human adult myocardium. 
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Figure 2.1. HiPSC-CMs and measurement of force by TFM. A, Representative 

cell, 30 days post-differentiation on a 9.8 kPa substrate. B, Heat map showing 
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magnitudes of deformation strain of the substrate under the representative cell. 

C, Heat map showing magnitudes of stress of the representative cell calculated 

from strain of the substrate. D, total force of a single cell over time with respect to 

baseline at the point t = 0 seconds, over four contractions paced at 0.5 Hz, fitted 

with a smoothed spline curve. E, total force of a single cell over time, average of 

four contractions, fitted with a smoothed spline curve. F, histograms showing 

distribution of cell geometries. 
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Figure 2.2. Effects of single cell hiPSC-CM morphology on force production. A, 

peak force versus cell area, R2 = 0.21, P<0.03   B, peak force versus long axis 

(axis of contraction). C, peak force versus short axis (perpendicular to axis of 

contraction). D, peak force versus aspect ratio (long axis/short axis).  
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Figure 2.3. Effects of length of hiPSC differentiation on force production. A, 

representative hiPSC-CMs from day 14, day 30, and day 90 post-differentiation, 

and representative NRVM. B, total force versus length of differentiation (mean = 

0.012 ± 0.001 µN, n = 17; 0.083 ± 0.013 µN, n = 15; 0.103 ± 0.011 µN, n = 24; 

0.113 ± 0.016 µN, n = 12). C, cell area versus length of differentiation (mean = 

605.7 ± 47.1 µm2, 702.3 ± 63.2 µm2, 898.2 ± 64.4 µm2, 741.9 ± 61.4 µm2). D, 

normalized force versus length of differentiation (mean = 2.12 ± 0.23 mN/mm2 x 

10-5, 13.0 ± 2.14 mN/mm2 x 10-5, 11.4 ± 1.4 mN/mm2 x 10-5, 15.3 ± 1.5 mN/mm2 

x 10-5). 
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Figure 2.4. Effects of substrate stiffness on hiPSC-CM force production. A, total 

force versus substrate elastic modulus (mean = 0.236 ± 0.02 µN, n = 21; 0.083 ± 

0.01 µN, n = 15; 0.075 ± 0.01 µN, n = 22). B, area versus substrate elastic 

modulus (mean = 754.9 ± 31.5 µm2, 702.3 ± 63.2 µm2, 851.6 ± 43.7 µm2). C, 

normalized force versus substrate elastic modulus (mean = 32.4 ± 3.5 mN/mm2 x 

10-5, 13.0 ± 2.1 mN/mm2 x 10-5, 9.1 ± 1.0 mN/mm2 x 10-5). D, strain energy 

versus substrate elastic modulus (mean = 29.7 ± 4.3 fJ, 5.5 ± 1.7 fJ, 3.1 ± 0.6 fJ). 
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Figure 2.5. Effects of calcium concentration in growth media on hiPSC-CM force 

production. A, total force versus calcium concentration (mean = 0.083 ± 0.013 

µN, n = 15; 0.147 ± 0.02 µN, n = 14). B, cell area versus calcium concentration 

(mean = 702.3 ± 63.2 µm2, 1130.3 ± 86.2 µm2). C, normalized force versus 

calcium concentration (mean = 13.0 ± 2.14 mN/mm2 x 10-5, 14.0 ± 2.0 mN/mm2 

x 10-5). 
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Chapter 3 

Inducible Expression of Mature Cardiac Markers Improves the Maturation 

Status of hiPSC-CMs 
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Abstract 

 Cardiovascular medicine and regenerative biology have benefited greatly 

from recent advances in the ability to differentiate cardiac myocytes from human 

induced pluripotent stem cells (hiPSC-CMs). hiPSC-CMs have the benefit of 

being human cells, being virtually unlimited in supply, and being readily 

propagated in a short period of time. They have the potential to be a valuable 

model for studying cardiovascular physiology. However, hiPSC-CMs have been 

shown to exist in an immature state, more closely resembling embryonic cardiac 

myocytes than adult cardiac myocytes, limiting the amount of information that 

can be applied from hiPSC-CM studies to adult cardiac physiology. Here, we 

used genome editing to create hiPSC-CMs that can be induced to express one of 

two genes closely associated with cardiac maturation- SERCA2a or cardiac 

troponin I (cTnI). We found that overexpression of SERCA2a leads to enhanced 

physiologic function in terms of calcium handling and contractility kinetics, 

especially in response to isoproterenol. Additionally, SERCA2a expression leads 

to upregulation of other markers of maturation, such as cTnI. Expression of cTnI 

in iPSC-CMs leads to global changes in the gene expression profile as measured 

by RNAseq, including upregulation of important cardiac and developmental 

genes, and downregulation of genes associated with non-ventricular phenotypes. 

Overall, expression of proteins associated with maturity results in enhanced 

maturation of hiPSC-CMs. 
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Introduction 

The fields of cardiovascular physiology, regenerative biology, and clinical 

medicine have benefited significantly from recent advances in the ability to 

differentiate cardiac myocytes from pluripotent cells. Notably, the ability to 

reprogram a human somatic cell to an induced pluripotent stem cell state 

(hiPSC)41, and then to differentiate these cells into cardiac myocytes (hiPSC-

CMs)66. In this setting, the investigator has exclusive control over the 

environment of the cell in its earliest stages of differentiation. This approach 

provides an almost unlimited source of human cardiac cells for experimentation 

and for potential use as a therapeutic agent.  

One promising use of hiPSC-CMs has been as a model for myocardial 

disease and dysfunction. To date, research groups have used hiPSC-CMs to 

study electrophysiological parameters, including studies examining the effects of 

mutations in sodium channels75,77. In addition, investigations of calcium handling 

defects have been conducted by examining the effects of mutations in calcium 

handling proteins82. Futhermore, mitochondrial dysfunction has been studied by 

examining the effects of mutations in mitochondrial proteins83. These examples 

emphasize a significant strength of hiPSC-CMs, which is, they express human 

isoforms of proteins implicated in disease states. Furthermore, mutations in these 

proteins can be precisely isolated, and either introduced or potentially corrected 

by genome editing, given the pliable developmental state of the pluripotent 

cells224-225.  
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However, it has been demonstrated by several groups that hiPSC-CMs, 

differentiated according to current protocols, exist in an immature developmental 

state, and that they more closely resemble neonatal myocytes than adult cardiac 

myocytes. For example, action potentials and pharmacology show increased 

susceptibility to arrhythmia93, ultrastructure shows less-developed sarcoplasmic 

reticulum and myofibrillar patterns264, isoforms of critical sarcomeric proteins are 

predominantly immature174, and calcium currents show immature contributions of 

extracellular versus intracellular transporters113. Thus, attempts to study effects 

of dysfunctional proteins in hiPSC-CMs lead to conclusions that must necessarily 

be interpreted in the context of an immature myocyte.  

To address this limitation, we investigated here the roles of two genes 

associated with a mature developmental state on the function of hiPSC-CMs. 

First, we addressed the role of induced overexpression of the sarco/endoplasmic 

reticulum calcium ATPase SERCA2a, the calcium pump of the sarcoplasmic 

reticulum (SR) membrane. SERCA2a is the major protein responsible for 

removal of calcium from the cytoplasm during diastole and reuptake into the SR 

to be stored for the next calcium release. It is known that the amplitude and 

kinetics of intracellular calcium transients change during cardiac development, 

with increasing SERCA2a expression in more mature cardiac myocytes188. In 

addition, it is known that SERCA2a expression declines in failing myocardium187.  

Second, we investigated troponin I, the key molecular switch of the 

troponin complex responsible for regulating myosin binding to actin for 
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contraction and relaxation of the sarcomere. Specifically, since hiPSC-CMs 

express almost exclusively the immature isoform of troponin I, slow skeletal 

troponin I (ssTnI), we studied the effects of expression of the adult isoform, 

cardiac troponin I (cTnI), which has important effects on sarcomere mechanics 

and kinetics140,165. Collectively, by employing genome editing platforms with 

inducible functionality, we tested here whether targeted expression of key adult 

genes can advance maturation in hiPSC-CMs. 

 

Methods 

hiPSC Culture and Differentiation 

The human induced pluripotent stem cell line used in this paper was the 

DF 19-9-11 line, graciously gifted to us by the Timothy Kamp lab, which is 

derived from foreskin dermal fibroblasts and is transgene- and vector-free251. 

hiPSCs were cultured as previously described; cells were grown in TeSR-E8 

media (Stemcell, Vancouver, CA) in plastic dishes coated with Matrigel (Corning, 

Corning, NY) and passaged by 0.5 mM EDTA in PBS when they reached 90% 

confluency, and replated with Rho kinase inhibitor 10 µM Y-27632 (Selleckchem, 

Houston, TX).  

hiPSCs were differentiated at 90-95% confluency in 35 mm dishes 

according to the small molecule Matrigel sandwich method published 

previously66. At day 0, cells were treated with Matrigel dissolved in RPMI + B27 

supplement minus insulin (Thermo Fisher, Waltham, MA) with 10 µM CHIR99021 
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(Stemgent, Lexington, MA), which is a GSK3 inhibitor. On day 2, media was 

changed without addition of small molecules. On day 3, cells were treated with 

10 µM IWP-4 (Stemgent, Lexington, MA), an inhibitor of Wnt signaling, in RPMI + 

B27 supplement minus insulin. On day 5 and every 2 days after that, media was 

changed until cells started to beat vigorously, approximately day 7-10, at which 

point media was switched to RPMI plus B27, insulin-replete.  

For all assays that involved dissociation and replating of cells, cells were 

dissociated with Accutase (Thermo Fisher, Waltham, MA) for 30 minutes at room 

temperature, followed by mechanical dissociation with a P1000 pipet and 

centrifugation for 3 minutes at 800 rpm.  

 

Genome Editing 

Genome editing was carried out by a pair of TALENs specific to the 

AAVS1 locus on chromosome 19, with a template plasmid containing homology 

arms specific to the targeted site and a tetracycline-inducible promotor-effector 

system265. The genes of interest (SERCA2a or cTnI) human cDNAs were 

designed with restriction sites to fit into the template plasmid and constructed by 

Integrated DNA Technologies (Coralville, IA), and then cloned into digested 

template plasmids.  

All three plasmids (forward TALEN, reverse TALEN, and template) were 

transfected into undifferentiated hiPSCs at a concentration of 15 µg per 400 µl 

cuvette volume by electroporation using the Bio-Rad Gene Pulser Xcell (Bio-Rad, 
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Hercules, CA), using an exponential waveform with parameters of 250 V, 400 µF, 

and infinite resistance. hiPSCs were replated onto 25 mm wells coated with 

Matrigel and allowed to recover for 3-4 days. Puromycin selection was done 

starting with 0.2 µg/ml and increasing to 1 µg/ml over the course of 5-7 days. 

Individual surviving colonies were dissociated and replated, and continued to be 

passaged as in the above methods. Undifferentiated hiPSCs collected for RNA 

samples were treated with doxycycline on days 1 and 2 after passaging. In order 

to express the gene of interest in hiPSC-CMs, differentiated cells were treated 

with doxycycline from day 42 to day 60, so that experiments were carried out on 

d60 cells after 2 weeks of gene induction. 

 

RNA Isolation and Real-Time PCR 

RNA was collected from undifferentiated hiPSCs before doxycycline and 

after 24 or 48 hours of treatment with doxycycline. hiPSCs were isolated with 

EDTA as in the passaging protocol mentioned above, then spun at 800 RPM for 

3 minutes and treated with the RNEasy Plus kit (Qiagen, Hilden, Germany) and 

quantified by NanoDrop spectrophotometry (NanoDrop, Wilmington, DE). In 

parallel studies, RNA was collected from differentiated hiPSC-CMs by 

dissociation with Accutase (Thermo Fisher, Waltham, MA) for 25 minutes at room 

temperature, then spun at 800 RPM for 3 minutes and treated with the RNEasy 

Plus kit and quantified by NanoDrop spectrophotometry. 
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Next, cDNA libraries were created using the Superscript Vilo kit (Thermo 

Fisher, Waltham, MA) and quantitative real-time PCR was performed using the 

Bio-Rad SYBR Green qPCR Master Mix Bio-Rad, Hercules, CA) on an 

Eppendorf Mastercycler machine (Eppendorf, Hamburg, Germany). Primers were 

designed using the Integrated DNA Technology PrimerQuest tool (IDT, Coralville, 

IA) and synthesized by IDT. Analysis of expression and fold change was carried 

out using the ddCt method266, with GAPDH used as a housekeeping gene.  

 

Western Blot and Protein Quantification 

Protein was extracted by mechanical dissociation in RIPA buffer and 

quantified by Pierce BCA protein assay (Thermo Fisher, Waltham, MA). All 

samples were denatured by boiling and β-mercaptoethanol. 20 µg of protein in 

Laemmli buffer was loaded into each lane, and samples were run on 12% SDS-

PAGE gels at 120 V until the dye front reached the end of the gel. Protein was 

transferred to PVDF membranes. Membranes were stained for SERCA2a (2A7-

A1, Abcam, Cambridge, UK), ssTnI (MAB1691, Millipore, Billerica, MA), pan-TnI 

(1E7, Novus, Littleton, CO), and cardiac actin (5C5, Santa Cruz Biotechnology, 

Dallas, TX). Membranes were imaged on the LI-COR Odyssey (LI-COR, Lincoln, 

NE). 

 

Calcium Imaging 
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Differentiated hiPSC-CMs grown in a monolayer were loaded with Fura-2 

AM (Thermo Fisher, Waltham, MA) at 1 µM in RPMI + B27 supplement with 1.8 

mM calcium for 10 minutes at room temperature, then allowed to de-esterify for 

10 minutes at 37°C. Isoproterenol was used at a concentration of 10 nM, as 

previously described267. Experiments were carried out at 37°C using the IonOptix 

myocyte calcium and contractility system (IonOptix, Westwood, MA). Ratiometric 

calcium transients were curve-fitted and analyzed using the IonOptix software. 

We measured spontaneous transient rate, time to peak, and time to 75% 

baseline in d14 unedited cells (soon after spontaneous beating begins in culture), 

d60 unedited cells treated with doxycycline, and d60 SERCA2a overexpressing 

cells treated with doxycycline for 2 weeks. These measurements were made at 

baseline and in response to 100 nM isoproterenol, a β-adrenergic agonist. 

  

Impedance Measurement and Contractility 

Here, 35 day old differentiated hiPSC-CMs were dissociated and replated 

at a density of 80,000 cells per well into a 96-well Nanion Sensor Plate (Nanion, 

Munchen, Germany) that had been coated with Matrigel, and allowed to adhere 

18 hours. Media was changed after 18 hours and then every 2 days after that. 

Cells generally began beating again 7 days after replating, at which point 

baseline impedance measurements were recorded. hiPSC-CMs were treated 

with doxycycline for 2 weeks after that, so that cells were 2 months old in culture 

at the time of post-induction measurements. Impedance was measured on the 
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Nanion CardioExcyte 96. Measurements were taken at 5 minute intervals over 

the course of 1 hour in an environmentally-controlled chamber at 37°C and 5% 

CO2. Isoproterenol was used at a concentration of 10 nM. hiPSC-CMs formed 

syncytia after several days in culture and contracted simultaneously. hiPSC-CMs 

were not electrically stimulated, as attempts to do so interfered with the ability of 

this platform to collect accurate data. We measured at baseline and in response 

to isoproterenol, before and after 2 weeks of treatment with doxycycline. We 

measured time from 10% to 90% peak and time from 90% to 10% return to 

baseline 

Data was exported to a txt file and transients were analyzed using 

Clampfit™ software (Molecular Devices, Sunnyvale, CA) to normalize to baseline 

and to fit a sum of exponents curve to raw impedance data. 

 

RNA Sequencing 

RNA sequencing was performed by the Bioinformatics group at the 

Morgridge Institute for Research, at the University of Wisconsin Madison. hiPSC-

CMs were cultured and dissociated as above and RNA was extracted from 

dissociated cells using the RNEasy Plus kit (Qiagen, Hilden, Germany) and 

quantified by NanoDrop spectrophotometry (NanoDrop, Wilmington, DE). 

Samples were processed for quality control on an Agilent Bioanalyzer (Agilent, 

Santa Clara, CA) and a Qubit Fluorometer (Thermo Fisher, Waltham, MA). 

Libraries were created using Ligation Mediated RNA sequencing (LM-seq)268 and 
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sequenced on a HiSeq 2500 (Illumina, San Diego, CA). Transcript counts 

reported as transcripts per kilobase million (TPM) were compared between 

groups for each gene and Bonferroni statistical tests were performed using CLC 

Sequence Viewer (Qiagen, Hilden, Germany). 

 

Statistical Analysis 

All statistical analysis other than that done on RNA sequencing data was 

performed using Prism (GraphPad, San Diego, CA). All groups of data were 

analyzed by ANOVA. Paired data was analyzed by Student’s t test. RNA 

sequencing data was analyzed as above. 

 

Results 

Genome Editing Results in Long-term Expression of Inducible Genes 

Undifferentiated hiPSC-CMs were edited, as outlined in the methods, 

using a pair of TALENs directed against the AAVS1 locus on chromosome 19 

(Figure 3.1a). The gene of interest, either SERCA2a or cTnI, was cloned into a 

template plasmid containing sequences homologous to the AAVS1 site, allowing 

the gene of interest and tetracycline-inducible promoter system to be introduced 

to the site via homology-directed repair. Cells that had undergone HDR were 

selected for by puromycin-resistant selection. 

In order to establish the kinetics of the tetracycline-inducible promoter 

system, expression of SERCA2a RNA transcripts was examined in 
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undifferentiated hiPSCs before doxycycline treatment and after 24 and 48 hours 

of doxycycline treatment. Here, qPCR showed increased expression after 24 and 

48 hours of treatment, indicating rapid responsivity of the system (Figure 3.1b). 

In hiPSC-CMs that had been edited to contain an exogenous SERCA2a gene, 

Western blot analysis showed a 5.6-fold increase in SERCA2a expression 

compared to edited cells without doxycycline at the same time point (P = 0.05) 

(Figure 3.2a). In hiPSC-CMs that had been edited to express the adult cTnI 

gene, Western blot analysis showed increased of expression of cTnI after 

induction with tetracycline for 2 weeks; quantification shows a 4.3-fold increase in 

the ratio of cTnI: ssTnI (P = 0.16) (Figure 3.2b).  

 

Induced expression of SERCA2a Enhances Calcium Handling and 

Adrenergic Responsivity 

To examine the role of induced SERCA2a on the physiology of hiPSC-

CMs, we used the ratiometric calcium indicator Fura-2 AM to visualize and 

quantify spontaneous calcium transients (Figure 3.3). At baseline, spontaneous 

transient rate was not significantly different between among unedited and edited 

cells with or without doxycycline. However, while d14 and d60 unedited cells do 

not display a chronotropic response to isoproterenol, the d60 SERCA cells had a 

significant (P < 0.05) response, indicating increased adrenergic responsivity.  
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The d60 unedited cells did not have a response to isoproterenol in time to 

peak; however, d60 SERCA cells show marked decrease in time to peak after 

isoproterenol treatment compared to baseline (P < 0.05). 

 

Induced Expression of SERCA2a Leads to Improved Contractility Kinetics 

and Adrenergic Responsivity in hiPSC-CMs 

Induction of SERCA2a expression in hiPSC-CMs would be expected to 

display altered cell contractility. We utilized here an impedance measurement 

system to track contractility of a syncytium of spontaneously beating d60 hiPSC-

CMs (Figure 3.4). Prior to doxycycline, there were no significant differences 

between unedited and edited hiPSC-CMs, wherein each exhibited similar 

decreased time to peak and decreased time to baseline in response to 

isoproterenol. However, after treatment with doxycycline, SERCA2a hiPSC-CMs 

showed shortened time to peak at baseline compared to doxycycline-treated 

unedited cells (Figure 3.4a). 

 

Induced Expression of SERCA2a Results in Increased Expression of 

Mature Cardiac Genes 

By Western blot, markers of improved maturity or physiologic function 

were examined in hiPSC-CMs. In the SERCA edited iPSC-CMs, we tested 

whether increased expression of SERCA2a could induce developmental 

maturation of the hiPSC-CMs, including proteins not directly associated with 
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intracellular Ca2+ handling. We found that upregulation of SERCA2a in hiPSC-

CMs for two weeks with doxycycline treatment significantly increased the cTnI: 

ssTnI ratio compared to hiPSC-CMs of the same age without doxycycline (P < 

0.05) (Figure 3.5). 

 

Induced Expression of cTnI Alters hiPSC-CM Gene Expression Profiles 

TnI is a physiologically crucial protein that shows a robust switch from 

ssTnI to cTnI in the development of immature to mature cardiac myocytes165. 

There is some evidence that in some tissues, some TnI isoforms may localize to 

the nucleus and facilitate gene transcription269. Thus, we speculated that turning 

on production of cTnI may have far-reaching effects on the gene expression 

profile of the cell.  To study this, we performed RNAseq on cTnI overexpressing 

cells that had been induced with doxycycline, and compared results with 

unedited cells that had been treated with doxycycline. In order to account for 

potential effects of heterogeneity of differentiated cell populations (cardiac 

myocyte versus other cell types) as well as proliferation or death of cardiac 

myocytes, we normalized transcripts per kilobase million (TPM) values of each 

gene to TnC TPM values for that group.  

After filtering for genes with a Bonferroni test statistic p < 0.05 and 

normalizing to cardiac troponin C (cTnC), we found 586 genes upregulated and 

41 genes downregulated in cTnI hiPSC-CMs compared to unedited cells at the 

same time point after treatment with doxycycline (Figure 3.6a, b). Importantly, we 
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found that the mRNA ratio of cTnI: ssTnI was higher in cTnI overexpressing cells 

compared to unedited cell, or edited cells without doxycycline, indicating 

appropriate induction of cTnI (Figure 3.6b).  

Using DAVID pathway analysis software, we analyzed pathways and gene 

clusters that were upregulated or downregulated in cTnI hiPSC-CMs. 

Downregulated clusters included genes associated with early development and 

BMP signaling, as well as genes associated with non-cardiac or early-cardiac 

calcium signaling and muscle contraction (Figure 3.7a). Upregulated pathways 

included many clusters associated with cardiac muscle contraction, calcium 

signaling, and late development. Additionally, genes associated with cell 

migration, morphogenesis, cell-cell contact, and regulation of ROS were highly 

expressed (Figure 3.7b).  

The list of upregulated genes included several genes crucial to the 

development and maturation of cardiac myocytes, and ventricular cardiac 

myocytes in particular, including MYH6, MYOM3, TTN, and MYL9, which are 

cardiac-specific sarcomeric genes. Calcium handling genes such as RYR2, 

CACNB2, and CALML4, which are important for cardiac calcium handling were 

upregulated; also, developmental genes including GATA4 and HAND2 were 

expressed. Downregulated genes included Grem2270, coding for the protein 

Gremlin, which is important for atrial myocyte development; HCN4, which is 

associated with pacemaker cells; NKX2.5, which is an early cardiac development 
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gene; and several skeletal muscle-specific genes, including ACTA1 and MB 

(Figure 3.7).  

 

Discussion 

In this paper, we examined the effects of induced overexpression of two 

key proteins involved in cardiac myocyte maturation, SERCA2a and cardiac TnI. 

We found that induced expression of SERCA2a led to altered physiologic 

function of hiPSC-CMs, including increased responsiveness of calcium transients 

to adrenergic signaling, and faster contractile kinetics. Furthermore, induced 

expression of cTnI resulted in widespread changes in the gene expression profile 

of hiPSC-CMs as seen by RNAseq, including upregulation of genes and 

pathways associated with ventricular myocyte development and regulation. 

SERCA2a is critical for removal of calcium from the cytoplasm during 

diastole104, allowing the cell to relax while loading the SR with calcium for release 

during the next contraction. It communicates with other calcium handling proteins 

and sarcomeric proteins, and its function is modulated by adrenergic signaling 

pathways187. Expression of SERCA2a increases as cardiac myocytes mature into 

adult myocytes; decreased SERCA2a is also associated with myocardial failure, 

and restoration of SERCA2a can improve myocardial performance188. 

Furthermore, hiPSC-CMs have altered calcium handling properties compared to 

adult myocytes188, making SERCA2a an attractive target for overexpression.  
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cTnI is an important marker of the switch from immaturity to maturity, as 

immature cardiac myocytes express nearly 100% ssTnI, and mature cardiac 

myocytes express nearly 100% cTnI, and this does not change in heart failure238. 

cTnI has profound effects on the contractile kinetics of the myocyte, namely in its 

ability to respond to adrenergic signaling and allow the sarcomere to experience 

increased chronotropy while maintaining sarcomere length shortening140. 

The choice to introduce genes that are associated with cell maturity, but 

that have important roles in the physiologic function of the myocyte, allows us to 

probe the ways that these proteins have effects in both areas. Both are crucial for 

researchers using hiPSC-CMs to study human myocardial disease and function. 

Additionally, our data showed important feedback and communication between 

the two genes of choice- induced expression of SERCA results in increased 

expression of cTnI, as well as changes in contractility kinetics. Also, RNAseq 

showed that induced expression of cTnI resulted in increased expression of 

genes associated with cardiac calcium handling, including CALML4 and RYR2. 

Thus, both systems, sarcomeric and calcium handling, seem to be both 

necessary and sufficient for induction of maturation in hiPSC-CMs.  

The maturation status of the hiPSC-CM affects proteins that are involved 

in calcium handling, contractility, and other physiologic function, as well as 

proteins that are less directly involved, such as proteins involved in development, 

metabolism, hypertrophy, transcription, and cell motility and survival. Here, our 

RNAseq data demonstrated that overexpression of cTnI can lead to global 
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changes in gene expression in line with increased maturity. This includes a shift 

towards ventricular cardiac myocytes, as seen by the increased expression of 

cardiac genes such as MYOM3, MYL9, CALML4, RYR2, and TPM2. 

Furthermore, there was a shift away from atrial cardiac myocytes, which 

predominate at earlier developmental time points, shown by the downregulation 

of Grem2, and from pacemaker cells, shown by the downregulation of HCN4. 

Interestingly, the data showed evidence of a shift away from skeletal muscle 

lineages, seen by the downregulation of CASQ1, ACTA1, and ENO3, suggesting 

that either these genes are important in the early development of cardiac 

myocytes, or that the current differentiation protocol may not be specific to 

cardiac myocytes. 

Our data demonstrates that overexpression of mature cardiac proteins 

addresses both the immediate- and long-term physiologic functionality of hiPSC-

CMs. With only 2 weeks of overexpression of SERCA2a, we saw changes in the 

calcium handling and contractile properties of hiPSC-CMs. SERCA-

overexpressing hiPSC-CMs calcium transients, while unchanged at baseline, had 

significantly increased responsivity to isoproterenol, including shortened time to 

peak and increased chronotropy. On the other hand, SERCA-overexpressing 

cells at baseline had improved contractile kinetics in terms of time to peak at 

baseline, as well as in response to isoproterenol, compared to unedited cells. 

Our results suggest that overexpression of a critical regulator of physiologic 

performance, especially one involved in the transport of calcium, which is an 
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important signaling ion, may have additional downstream effects on other 

calcium handling, sarcomeric, and adrenergic signaling proteins, either through 

direct activation or inactivation, or through altered transcriptional regulation of 

those genes. 

These results emphasize the importance of studying the function and 

effects of wild-type cardiac proteins in hiPSC-CMs, especially those involved with 

a mature cardiac myocyte phenotype. A complete understanding of their effects 

on maturation and physiology may lead to a better understanding of the basic 

physiology of hiPSC-CMs, and may allow us to more rigorously study disease-

causing mutations in cardiac genes, as well as pathology-inducing environmental 

conditions. Ultimately, this will lead to a better and more efficient model of heart 

disease and failure that may lead to improved therapies and clinical benefit. 
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Figure 3.1. A, genome editing schematic. Forward and reverse TALENs make a 

DSB at the AAVS1 safe harbor site, and template DNA containing the inducible 

gene of interest is inserted by HDR. B, quantification of SERCA2a mRNA in 

undifferentiated hiPSCs in response to doxycycline (mean 1.0-fold, 5.57 ± 5.84-

fold, 26.49 ± 15.02-fold, p < 0.05). C, quantification of cTnI mRNA in 

undifferentiated hiPSCs in response to doxycycline (mean 1.0-fold, 71221 ± 

68248-fold, 77543 ± 68208-fold). 
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Figure 3.2. A, Western blot and quantification of SERCA2a in SERCA2a-

overexpressing cells in response to doxycycline, normalized to sarcomeric actin 

(mean 0.06 ± 0.09, n = 4, 0.34 ± 0.6, n = 4). B, Western blot and quantification of 

cTnI in cTnI-overexpressing cells in response to doxycycline, expressed as a 

ratio of cTnI: ssTnI (mean 0.03 ± 0.02, n = 4, 0.13 ± 0.10, n = 4).  
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Figure 3.3. Calcium transients in hiPSC-CMs, unedited at day 14 and day 60 

post-differentiation, and SERCA-overexpressing hiPSC-CMs at day 60 post-

differentiation, at baseline and in response to isoproterenol. A, calcium 
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transients per minute (mean 61.22 ± 11.89, 61.5 ± 8.08, 53.67 ± 13.03, 62.91 ± 

7.44, 54.23 ± 11.60, 111.5 ± 11.2, p < 0.05). B, magnitude of transient peak as a 

percent of baseline ratio (mean 6.26 ± 1.30, 8.15 ± 1.22, 3.20 ± 1.09, 4.61 ± 1.31, 

3.47 ± 1.64, 5.11 ± 1.81). C, time to peak of transient from baseline (mean 0.14 ± 

0.32, 0.15 ± 0.39, 0.09 ± 0.02, 0.10± 0.03, 0.13 ± 0.04, 0.05 ± 0.008, p < 0.05). 

D, time from transient peak to 75% baseline (mean 0.40 ± 0.08, 0.47 ± 0.10, 0.23 

± 0.05, 0.24 ± 0.07, 0.37 ± 0.10, 0.26 ± 0.04). E, representative traces in 

unedited cells before and after isoproterenol. F, representative traces in SERCA-

overexpressing cells before and after isoproterenol.  
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Figure 3.4. Impedance measurements in unedited and SERCA-overexpressing 

hiPSC-CMs, before and after treatment with doxycycline, with response to 

isoproterenol. A, time from 10% to 90% peak (mean in Unedited 170.2 ± 35.2, 

124.7 ± 69.7, 170.5 ± 80.9, 118.3 ± 47.3, mean in SERCA 180.7 ± 124.7, 141.0 ± 

159.0, 140.0 ± 110.2, 121.1 ± 52.7). B, time from 90% to 10% baseline (mean in 

Unedited 263.5 ± 69.5, 221.4 ± 55.7, 280.8 ± 84.8, 258.8 ± 37.6, mean in SERCA 

231.2 ± 90.1, 197.9 ± 65.8, 209.1 ± 86.7, 191.9 ± 48.7). C, representative traces 

of impedance measurements of unedited and SERCA-overexpressing hiPSC-

CMs after treatment with doxycycline, no isoproterenol.  
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Figure 3.5. A, Western blot for cTnI and ssTnI in SERCA-edited hiPSC-CMs with 

and without doxycycline. B, quantification of Western blot (mean 0.04 ± 0.05, 

0.16 ± 0.03, p < 0.05). 
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Figure 3.6. A, Venn diagram showing genes with significantly different (P < 0.05) 

read counts in cTnI-overexpressing hiPSC-CMs versus unedited hiPSC-CMs 
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after treatment with doxycycline. 627 genes in the left-most region were used for 

the analysis. B, Of the 627 genes, 41 were downregulated and 586 were 

upregulated.  
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Figure 3.7. A, major pathways involved in downregulated genes. B, major 

pathways involved in upregulated genes. C, important genes that were 

upregulated or downregulated. 
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Chapter 4 

General Discussion 

 

Conclusions 

The experiments in this thesis have focused heavily on the physiological 

function of human induced pluripotent stem cell-derived cardiac myocytes. 

Broadly, this thesis focuses on two major topics- first, the force-producing 

properties of hiPSC-CMs in their native state, that is, without marked genetic, 

pharmacologic, electrical, or mechanical modifications, utilizing the state of the 

cells as they are grown and differentiated according to the current commonly-

used protocols66. Second, we focused on changes to physiological function of 

hiPSC-CMs that occur in response to a major, but conceptually simple, 

modification to the cell, which is the overexpression of a wild-type, 

developmentally important protein that has an immediate role in either the 

calcium handling or contractile properties of the myocyte.  

The first major project utilized traction force microscopy (TFM), a 

technique that has been in use for several years now to examine contractile 

properties of various cell types including fibroblasts145, keratocytes146, 

osteoblasts147, and neonatal rat ventricular myocytes148. TFM allows us to 

optically determine the amount of force a cell produces against a substrate of 

known elastic modulus. We have implemented TFM here to determine the peak 

force of single isolated hiPSC-CMs, paced at a physiologic frequency of 1 Hz, 
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against physiologic substrate stiffness of between 2.5 to 9.3 kPa244, normalized 

to cell area, based on the finding that peak force positively correlates with cell 

size.  

In this part of the project, the emphasis was on determining the contractile 

function of hiPSC-CMs that had been differentiated according to the most 

commonly used protocol by current labs66, a protocol that is fairly straightforward 

and simple, and that efficiently produces high numbers of cardiac myocytes. This 

was important to us, because we had felt that while some researchers had 

characterized aspects of their function79,112, a fundamental understanding of 

force development, which is the central physiologic function underlying the very 

existence of myocytes, was lacking. Force output in hiPSC-CMs should be 

established before extrapolating results of more complex experiments, such as 

disease modeling by introduction of genetic mutations, to human physiology. 

Furthermore, we wished for other researchers to be able to use the results of our 

experiments to guide their own work.  

These experiments provided us with evidence of physiology that was 

mostly in line with what we would expect, with some important caveats. First, that 

force production correlates with cell size- this is unsurprising, given the structure-

function of a cardiac myocyte. However, unlike adult cardiac myocytes, we did 

not find force to correlate with cell width. We found that force production 

increased as hiPSC-CMs mature in culture. This relationship was evident to a 
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point where they plateau no matter whether they are continued to be kept in 

culture, and force normalized to cell area never reaches that of a NRVMs.  

We found that hiPSC-CMs produce less force on stiffer substrates, which 

is in line with what some groups have found with hiPSC-CMs161, but different 

than others160. A critical finding of this project was that the extracellular calcium 

concentration is crucial for cardiac myocyte development, with hiPSC-CMs that 

are grown in physiologic levels of extracellular calcium producing more force than 

those grown in RPMI + B27, which is the accepted growth media for hiPSC-

CMs66.  

The second major project involved overexpression of critical cardiac proteins in 

hiPSC-CMs to modulate physiology and maturation. We chose two proteins that 

play important roles in the physiology and development of cardiac myocytes, and 

that would be likely to have significant effects on hiPSC-CM function. SERCA2a, 

responsible for removal of calcium from the cytoplasm during diastole, and for 

loading the SR with calcium104, has effects on calcium handling, cell contractility, 

adrenergic responsivity, and cardiac myocyte development188. Next, we targeted 

cTnI, which is the adult isoform of troponin I and part of the thin filament. It is 

exclusively expressed in adult cardiac myocytes, and is partially responsible for 

the sarcomere’s ability to accelerate contractility kinetics in response to 

adrenergic signaling140.  

The driving idea behind this part of the project was that we could use 

these proteins to modulate both the immediate physiology of the cell, as well as 
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the developmental status of the cell. With both genetically-engineered cell lines, 

those that had been edited to contain an inducible exogenous SERCA2a gene, 

and those that had been edited to contain an inducible exogenous cTnI gene, we 

found both cases to be true. Using a fluorescent calcium reporter, we found 

evidence that overexpression of SERCA led to enhanced calcium transient 

activity in the face of adrenergic stimulation (isoproterenol). Furthermore, these 

hiPSC-CMs had increased spontaneous transient rate and faster time to peak 

after isoproterenol challenge. Using an impedance measuring system, we were 

able to track contractility of syncytia of cells at baseline and in response to 

isoproterenol, and found that although both edited and unedited cells had faster 

contraction in response to isoproterenol, overexpression of SERCA led to 

shortened contraction times at baseline, as well as further response to 

isoproterenol.  

Western blot of SERCA overexpressing cells showed increased 

expression of key markers associated with a switch to maturity, including cTnI, 

indicating cell-wide changes in gene expression involving genes not directly 

involved in calcium handling. Similarly, RNAseq analysis of cTnI overexpressing 

cells showed global changes in gene expression in edited cells treated with 

doxycycline compared to unedited cells treated with doxycycline for a month. 

Changes included upregulation of genes important to the maturation and 

development of cardiac myocytes, including cardiac myosin heavy chain, and 

downregulation of genes involved in earlier stages of cardiac myocyte 
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development, such as Gremlin, which is important for atrial myocyte 

differentiation but not ventricular270.  

This series of experiments, progressing from more descriptive analysis of 

baseline cellular function to advanced genomic engineering, depict hiPSC-CMs 

as an innovative and powerful research tool. Here, with intact physiologic and 

genomic function that in many ways resemble mature cardiac myocytes, we find 

evidence that hiPSC-CMs are able to produce force and contract with vigor, 

which is the ultimate purpose of a cardiac myocyte. Additionally, these hiPSC-

CMs are able to appropriately respond to adrenergic stimulation, as seen by 

increased chronotropy and accelerated kinetics.  

Alongside the similarities, these experiments reveal some significant 

insights that we believe should be taken into consideration by researchers in 

future experiments. For example, force production never quite reaches the same 

level as an NRVMs. Thus, any experiments involving mutations that decrease 

contractility should take this into account. In terms of gene and protein 

expression, we here confirm previous findings by us and other groups112 that 

immature isoforms of certain proteins, such as troponin I, are predominantly 

expressed versus mature isoforms. Finally, the understanding that the standard 

differentiation and growth media used for hiPSC-CMs, RPMI + B27 supplement, 

has an extremely low calcium concentration, and that this significantly impacts 

the development of hiPSC-CMs compared to media with physiologic calcium 
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levels. This finding should be an important technical consideration for future 

experiments. 

The most important takeaway from these experiments, though, is the 

power of hiPSC-CMs as a genetically malleable system for human cardiac 

muscle research. The immaturity of hiPSC-CMs, and the fact that, only several 

weeks previously, they were derived from pluripotent cells, is a boon to the field 

in that their genomes are amenable to editing by genome editing technologies, 

such as TALENs, as shown here. Furthermore, because we have access to and 

control over the developmental environment of the cells the entire way from 

pluripotency to terminally differentiated cardiac myocyte, there are seemingly 

endless possible ways of manipulating hiPSC-CMs in order to study factors that 

are important to cardiac development.  

Genome editing provides a precise and permanent way of introducing 

genetic modifications to the cell. Genome editing can be used to introduce 

mutations, or correct mutations in an already-mutated cell line. It can be used to 

knock out a gene that may be developmentally important, but that may result in 

embryonic lethality, limiting its ability to be studied in vivo. It can also be used to 

overexpress a gene of interest that may have significant impacts on myocyte 

function. Here, we have used genome editing to permanently introduce an 

inducible gene expression system. Our data demonstrate that genome editing 

can be used effectively and efficiently to implement hiPSC-CMs as a tool for 
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studying physiologically relevant genes and their role in human cardiac muscle 

function and development.   

 

Clinical Implications 

hiPSC-CMs have several potential roles in clinical medicine. First, hiPSC-

CMs can be used as a model of disease. Second, hiPSC-CMs can be used for 

drug discovery. Third, hiPSC-CMs can be used as a transplantable therapy. As a 

model system, as mentioned earlier, there have been attempts to utilize hiPSC-

CMs for drug testing and drug discovery. For example, they have been proposed 

as an alternative to other cell types overexpressing the hERG channel. There 

have been some encouraging results, including validation of several previously-

validated drugs91. hiPSC-CMs are an attractive tool for drug discovery because, 

unlike other cell types, they express not only hERG, but other ion channels that 

may be potentially arrhythmogenic90. Furthermore, hiPSC-CMs have action 

potentials, which are a sum of currents through several ion channels, rather than 

a single channel, and which can be measured using electrical recording.  

However, hiPSC-CMs can have considerable variability of action potential 

waveform, presumably from differential contribution of ion channels253 and from 

reduced currents compared to adult cardiac myocytes, such as the inwardly 

rectifying IK1 current, and spontaneous activity due to unopposed funny current 

If271. To improve hiPSC-CMs as a model of drug discovery, it may be beneficial to 

utilize genome engineering to overexpress channels that are poorly expressed, 
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such as IK1, or to use siRNAs to reduce If. Also, because intracellular calcium 

concentrations75 have effects on membrane currents, such as by influencing the 

NCX, or by signaling through calmodulin, overexpression of SERCA2a may have 

important effects on the action potential, and may result in an action potential that 

more closely resembles that of an adult cardiac myocyte. 

As a model of cardiac disease, hiPSC-CMs have shown the potential to be 

used to study mechanisms of disease, as well as potential therapeutic 

treatments. Here, several examples have already been mentioned of researchers 

that have used hiPSC-CMs derived from patients with various cardiovascular 

diseases, such as long QT75, Timothy syndrome81, and catecholaminergic 

polymorphic ventricular tachycardia82. While most of these studies have so far 

served to corroborate findings found in mouse models of the disease or in human 

patients, some of these studies have discovered additional findings that may be 

relevant to disease mechanisms. Thus, the CPVT study was able to show that 

dantrolene, shown to have beneficial effects in mouse model of CPVT272, also 

has positive effects on the phenotype of the derived hiPSC-CMs.  

Our genome editing and gene induction data highlights the potential of 

using hiPSC-CMs as a model of disease. While it can be convenient to derive 

pluripotent cells from patients that are known to have a disease-causing 

mutation, it is not possible to do so for every disease. It is also quite difficult to 

separate the effects of the mutation from the effects of potentially confounding 

factors, such as SNPs present in other genes, although these biases may be 
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mitigated by comparing cells from patients with a disease against cells from their 

siblings. However, because hiPSC-CMs can be modified according to the desires 

of the researcher, mutations that are desirable to study, but may not be found in 

patients, could be introduced precisely into the genome of the pluripotent stem 

cell. Furthermore, entire genes could be transiently upregulated or 

downregulated at any point in the development of the cell, such as at the 

beginning of differentiation, in order to model congenital diseases and 

abnormalities, or farther along in the differentiation process, in order to model 

diseases in more mature cardiac cells.  

However, as has been repeatedly stated above, our data shows that 

hiPSC-CMs are still quite immature regardless of how long the cells have been in 

culture, and this affects the quality of data the comes out of physiologic studies. 

Studies on the effects of mutated genes in the context of their effects on 

contractility and calcium handling give us only hypothetical scenarios of how 

those mutations might affect an adult cell. To counteract this, it may be useful to 

upregulate a gene associated with maturity, such as SERCA2a or cTnI, and then 

examine the effects of the mutation or disease-causing gene. In this way, results 

from those experiments will be more relevant to adult cardiac disease, especially 

in the study of congestive heart failure, which is one of the most critical health 

problems facing the world today2. 

Finally, hiPSC-CMs may prove to be an important and powerful 

therapeutic agent in heart failure, ischemic heart disease, and cardiac infarction. 
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It has been proposed that hiPSC-CMs injected into a diseased myocardium may 

provide mechanical support, electrical support, metabolic support, or paracrine 

signaling support to the native cardiomyocytes30. The desired maturity of the 

transplanted cells may depend on the desired outcome. For example, an 

immature hiPSC-CM may be more likely to promote cardiac regeneration in the 

native tissue due to secretion of developmentally important growth factors or 

secretion of immature extracellular matrix proteins. On the other hand, a more 

mature cardiac myocyte may be more likely to provide structural support through 

increased force development, or increased electrophysiological support through 

mature calcium handling or action potentials. Furthermore, our modified cells 

show a greatly enhanced response to isoproterenol. This, along with mature 

calcium handling and ionic currents, may make mature transplanted cells less 

prone to arrhythmia, and may make them less prone to causing re-entrant circuit 

arrhythmias in the native heart64.  

 

Future Directions 

This project, while a substantial effort, barely scratches the surface of 

possibilities of what we can learn from hiPSC-CMs. Utilizing traction force 

microscopy, we have shown that it is possible to precisely measure contractility 

by measuring the peak force production of a single, isolated hiPSC-CM. We have 

begun to investigate factors that affect force production, such as length of 

differentiation, substrate stiffness, cell geometry, and extracellular calcium 
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concentration. This is a powerful tool, and has the potential to be used to explore 

additional force-modulating factors. These could be divided into elements that 

are present in the embryo, factors that are present in the adult heart, external 

factors such as drugs and chemical modulators, and individual genes, along with 

their isoforms and splice variants. 

As hiPSC-CMs most closely resemble embryonic or immature cardiac 

myocytes, factors that affect an embryonic cardiac myocyte’s ability to produce 

force may be examined using traction force microscopy. For example, it has 

been shown that the stiffness of the extracellular environment that the cell 

senses affects things such as development of action potentials273, and likely has 

an impact on the amount of developed force produced by a myocyte. Factors that 

affect hypertrophy, such as insulin and IGF274, as well as other maternal and fetal 

hormones, may affect contractility, as may growth factors that affect cardiac 

patterning and growth55. Electrical stimulation has been shown to have effects on 

hiPSC-CM development275 as well. All of the above treatments are easily 

implementable in hiPSC-CM culture and may be valuable sources of improved 

maturity in terms of contractility and force. 

In the adult heart, many of the same factors that affect the embryonic 

heart are also present, except that in this case, alterations in these environmental 

factors may cause improved function, as in an exercised heart, or decreased 

function, as in a failing heart. Extracellular stiffness “felt” by the myocytes has 

already been noted to have a key role on myocyte function, as failing hearts are 
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significantly stiffer than non-failing hearts244. Electrical abnormalities, as 

arrhythmias, are strongly linked to heart failure, although it is currently hard to 

say whether arrhythmias have as much effect on contractility as cardiac myocyte 

derangement has on arrhythmogenesis276; hiPSC-CMs may serve to elucidate 

this. Hormones, such as insulin277 or cortisol278, have been shown to have crucial 

effects on cardiac function, and may be easily introduced into hiPSC-CM culture 

to probe their effects. 

As mentioned above, a particularly promising medical application of 

hiPSC-CMs is in drug discovery and testing. There are numerous drugs either 

available clinically or tested experimentally that have been shown to modulate 

cardiac myocyte contractility. Drugs such as digoxin, which increases intracellular 

calcium279; levosimendan, which increases calcium sensitivity280; and omecamtiv 

mecarbil, which activates myosin281, are all considered either full or partial 

positive inotropes, and might be expected to increase force production. These 

applications highlight hiPSC-CMs as a potential template for drug discovery. 

Conversely, negative inotropes, such as milrinone, which is a PDE3 inhibitor283, 

would be expected to have negative effects on force production. 

We have shown that genetic engineering and overexpression of 

physiologically important genes such as SERCA2a and cTnI have significant 

effects on contractility and gene expression. An important next step is to 

determine whether cells that overexpress either of these genes also have altered 

force development. Genome engineering and gene transfection can be used to 
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over- or under-express a wide variety of genes. These might fall into the category 

of sarcomeric proteins that have direct effects on force development, such as 

myosin heavy chain and myosin light chain isoforms283-284 or myosin binding 

protein C285, or proteins that modify the function of sarcomeric proteins, including 

the adrenergic signaling pathway, including adrenergic receptors and protein 

kinase A286. Other potentially force-modifying genes include those involved in 

hypertrophy, such as Akt194, or genes involved in ion handling, such as the 

sodium potassium ATPase or dihydropyridine receptor287.  

Additionally, TFM can and should be modified to keep up with current 

technological developments in the field. For example, the assay used in its 

current form in this thesis suffers from the classical imaging trade-off between 

resolution and image capture speed- because the PIV algorithm relies on high-

resolution images of small 0.2 µm fluorescent beads with a high signal-to-noise 

ratio, images were captured at a rate of 3-4 frames per second. Because the time 

to peak and time to relaxation of an isolated contracting myocyte are on the order 

of hundreds of milliseconds267, the absolute peak contraction may be missed by 

the assay. Utilization of a faster microscope would allow peak to be captured 

precisely, and may allow contractility kinetics to be explored by the assay as well, 

assuming images are captured at constant intervals. High resolution microscopy 

is improving to the point where this may be possible in the near future288. Other 

improvements may come in the form of improved microcontact printing or 

hydrogel formation that may reduce the amount of labor involved in each assay, 
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or may improve survivability of hiPSC-CMs during the process of dissociation 

and replating onto hydrogels.  

In the second part of the thesis, we have demonstrated the enormous 

potential of hiPSCs and hiPSC-CMs to be modified and manipulated in order to 

modulate maturity and manage physiologic function. By introducing two genes, 

cTnI and SERCA2a, using an inducible promoter, we have shown proof-of-

principle of real-time modulation of physiology. Knowing this, one can envision 

and almost unlimited number of experiments using genome editing to modulate 

function and maturity in hiPSC-CMs. Furthermore, having a permanently-inserted 

genetic system would allow us to examine the effects of gene induction alongside 

other techniques that may induce maturity, such as electrical stimulation or 

cyclical stretch, with the hope that they would work in synchrony to produce 

adult-like cardiac myocytes. 

In this thesis, we used an inducible promoter, which has the benefit of 

allowing us to turn on in a time-dependent manner and when we believe it will 

have the most impact. For our purposes, this was at 42 days after the start of 

differentiation, a time point where the cells have reached some level of maturity 

compared to earlier time points, as based on traction force microscopy, but 

where the cells are still far from behaving like mature cardiac myocytes. 

However, it could be particularly useful to induce maturity genes at various time 

points, such as early in development, later in culture, or even before the 

differentiation process began, while the cells were undifferentiated pluripotent 
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stem cells. Furthermore, removing induction by removing doxycycline leading to 

a decrease in expression of the exogenous gene, would inform whether the 

effects are transient, lasting only as long as the protein is present, or whether it 

leads to permanent changes in the cell, indicating a more terminally mature cell 

type.  

Tissue-specific promoters or developmental stage-specific promoters 

would be useful to study the effects of a gene without having to continuously 

expose the cell to doxycycline, which may potentially have unexpected effects on 

the cell, and which would be difficult to utilize in cells that were transplanted into 

a patient. Cardiac specific promoters, though, could be driven by a promoter 

such as the β-MHC promoter, which is present in both immature and mature 

cardiac myocytes185. The promoter could be used to drive additional genes 

associated with maturity, such as myosin light chain 2v172, or it could be used to 

drive expression of siRNAs that inhibit translation of genes associated with 

immaturity, such as ANP, skeletal actin, or GLUT178. Alternatively, immature 

transcription factors and promoters could be used to induce expression of a more 

mature gene; for example, the transcription factor Nkx2.5, which is highly 

expressed in developing embryonic cardiac myocytes289, could be used to drive 

expression of cTnI or α-MHC. One could envision a series of genes, each slightly 

more mature than the previous, and driven by a slightly less-mature promoter, 

leading to a chain reaction of gene expression that closely recapitulates cardiac 

development in the embryo. This might allow for testing that important 
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checkpoints along the path of differentiation from pluripotent cell to adult 

cardiomyocyte are met. 

Physiologic function should be rigorously assessed after each 

modification, utilizing TFM or similar assays, in order to ensure that results from 

each experiment are directly comparable to each other. We have outlined several 

assays, including calcium handling, traction force microscopy, and impedance 

measurements for contractility, that are reliable and rigorous, and that test three 

essential functions of a myocyte: calcium, force, and kinetics. Other assays, 

including patch clamp and extracellular field potential, should be considered. 

Additionally, assays that measure the force of a syncytium of cells, rather than a 

single cell, should be used, as cells may behave differently in a syncytium than 

they do as isolated cells235.  

While we have used RNA sequencing, which is a powerful method of 

examining the complete set of genes expressed by the cell, to probe the 

developmental state and maturity of our cells, at the very least, important 

markers of maturity should be looked for by Western blot. Immunofluorescence 

or electron microscopy could also be used to study the structure of the cells. 

Immunofluorescence can provide indications of cell size and hypertrophy, as well 

as myofibril number and organization290. Electron microscopy can provide 

information about the ultrastructure of sarcoplasmic reticulum and T-tubules291, 

mitochondria292, and sarcomeres, including sarcomere size and shear angle293. 
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Finally, mutations and genetic causes of disease should be studied and 

can be highly informative regarding human disease, once it is understood what 

role the wild-type protein plays in the physiology of an hiPSC-CM. For example, 

once we understand how the composition of the troponin complex in hiPSC-CMs 

affects the cell’s contractility and adrenergic response, then it is appropriate to 

perform experiments using mutations in troponin T or troponin C. It may be that it 

is necessary to overexpress cTnI to a sufficient level before introducing 

mutations into other troponins, in order to be able to extrapolate results of those 

experiments to diseases in the adult or even childhood heart. It may turn out that 

modification of a wild-type protein, including overexpression of a mature protein, 

has no effect on the physiology of the cell. In this case, it would be reasonable to 

draw conclusions from experiments using mutations or modifications of that 

protein that could be relevant to human disease or modeling.  

Taken together, this thesis demonstrates the vast significance of stem 

cells and stem cell-derived cardiac myocytes in the future of cardiovascular 

medicine. We have demonstrated that, while stem cell-derived cardiac myocytes 

represent an immature state, they have enormous potential for both scientific 

discovery and for therapeutic use in cardiovascular disease. We have shown that 

physiologically-relevant assays are available to measure important functional 

parameters, including force development, which are sensitive to physiologic 

stimuli including substrate stiffness and extracellular calcium concentration. A 

major advantage of hiPSC-CMs over mouse models is that they express human 
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proteins, which can be examined in the context of a human cell. A major 

advantage of hiPSC-CMs over primary human cardiac myocytes, though, is the 

incredible genetic malleability of the cells. Here we have shown precise genetic 

control over the cells as they develop from pluripotent stem cells to a terminally 

differentiated cell type. We have been able to examine the role of wild-type, 

physiologically important proteins on both the short-term function of the cell, as 

well as the long-term gene expression profiles. Human stem cell-derived cardiac 

myocytes are therefore a powerful tool for the future of cardiovascular health. 
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