
Efficient numerical algorithms for virtual design in
nanoplasmonics

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Alexandra Ortan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
Doctor of Philosophy

Fadil Santosa

March, 2017

c© Alexandra Ortan 2017
ALL RIGHTS RESERVED

Acknowledgements

I must first and foremost thank my adviser, Fadil Santosa, whose help and support were
essential in the completion of this thesis. I am also eternally grateful for the guidance of
Fernando Reitich, who first introduced me to the fascinating worlds of integral equations
and nanoplasmonics. Last but not least, I thank the Natural Sciences and Engineering
Research Council of Canada and the Fonds de recherche du Québec for their generous
financial support during my graduate studies.

i

Abstract

Nanomaterials have given rise to many devices, from high-density data storage to optical
bio-sensors capable of detecting specific biochemicals. The design of new nanodevices
relies increasingly on numerical simulations, driving a need for efficient numerical
methods. In this work, integral equations are used to efficiently solve the electromagnetic
transmission problem at the interface of a dielectric and a periodic metal nanostructure.
Derivative-free trust-region methods are then used to optimize the geometry of the
nanostructure.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures vi

1 Introduction 1

2 Preliminaries 5
2.1 Maxwell’s equations . 5
2.2 The optical characteristics of metals . 9

3 A review of numerical methods in nanoplasmonics 12
3.1 Finite-difference methods . 12
3.2 Finite Element methods . 13
3.3 Integral equation methods . 14

4 Integral equations solver: formulation and numerical implementation 18
4.1 Integral formulation . 19
4.2 Cylindrical domains . 22
4.3 Kernel decompositions . 25
4.4 Numerical solution . 26
4.5 Numerical results . 27

5 Shape derivatives 30
5.1 Differential formulation . 30

iii

5.2 Integral formulation . 34
5.3 Decomposition of the weakly singular kernels K5, K6 and K7 37

5.3.1 Numerical evaluation of weakly singular integrals I5, I6, I7, I9 . . 42
5.4 Decomposition of the hyper-singular kernel K8 43
5.5 Numerical evaluation of hypersingular singular integral I8 44
5.6 Numerical integration with smooth kernel K82 46

6 Derivative-Free Optimization 55
6.1 Derivative-Free Trust Region Algorithm 56
6.2 Implementation . 61

6.2.1 Choice of parameters . 61
6.2.2 Choice of model . 62

6.3 Validation . 62

7 Optimal Design of Nanoplasmonic Surfaces 67
7.1 Objective functions . 67

7.1.1 Maximum point-wise surface field 68
7.1.2 Minimal reflectivity . 68

7.2 Parameter search space . 69
7.3 Implementation . 70
7.4 Results . 71

7.4.1 Minimal reflectivity under normal incidence 72
7.4.2 Minimal reflectivity under oblique incidence 73

7.5 Discussion . 74

8 Conclusion 76

Bibliography 79

Appendix A. Appendix 86
A.1 Hankel functions . 86
A.2 Smoothness of sgn(t− τ)dr(t,τ)

dt . 88
A.3 Smoothness of M(t, τ) term in K8,2(t, τ) kernel 88
A.4 Evaluating I(c) . 89

iv

A.5 Guide to Variable Names . 96

v

List of Figures

1.1 Glass containing gold or silver nanoparticles has different optical properties
depending on the incidence of light. 2

1.2 A metal nanosphere subjected to an electric field will see its electrons
displaced with respect to the lattice ions. 3

2.1 An infinitely periodic metal grating is illuminated by an incident field,
giving rise to a scattered field (shown) and a transmitted field (not shown). 5

2.2 The Drude and the Drude-Lorentz models fitted to literature values of
the dielectric data for gold. Figure and data from [1]. 10

2.3 The Drude-Lorentz model along with an interpolation of the measured
values (from Palik’s handbook [2]) of the dielectric constant for silver as
a function of wavelength in microns. 11

4.1 A 2D periodic metal grating is illuminated by an incident field. 23
4.2 The total field (left) and the normal derivative (right) of the total field

on the surface of the grating. Here N = 32. 28
4.3 The error in the total field (left) and its normal derivative (right) as a

function of the number of points. The error is shown on a logarithmic scale. 28
4.4 The field above the surface of the grating. From left to right, the norm of

the field, the real part and the imaginary part. 29
5.1 The Chebyshev interpolation of kernels K5,1 and K5,2 with 32 terms is

accurate to 11 digits. Note the rapid decay of the Chebyshev coefficients
for each kernel. 39

5.2 The Chebyshev interpolation of kernels K6,1 and K6,2 with 32 terms is
accurate to 11 digits. Note the rapid decay of the Chebyshev coefficients
for each kernel. 41

vi

5.3 The Chebyshev interpolation of kernels K7,1 and K7,2 with 32 terms is
accurate to 8 digits. Note the rapid decay of the Chebyshev coefficients
for each kernel. 42

5.4 The Chebyshev interpolation of kernel K8,2 with 16 and 32 terms is
accurate only to 2 digits. The interpolations from the Chebfun package
are identical to machine precision for 16 terms, but starts to differ from
the manual interpolation with 32 terms. 47

5.5 With 64 terms, the Chebyshev interpolation of kernel K8,2 is accurate only
to 3 digits. The Chebfun overfits badly. With 128 terms, the accuracy is
still around 3 digits. 50

5.6 Convergence error for integral I8,2 using Floquet approximation of ξ′1 and
Chebyshev interpolation of kernel K8,2 (right), versus trapezoidal rule
directly on integral Wn

8,2 (left). 50
5.7 Convergence error for integral I8,2 using Floquet approximation of ξ′1 and

Matlab’s built-in adaptive quadrature quad (right), versus quadgk (left). 51
5.8 Convergence error for integral I8,2 using the trapezoidal rule. 51
5.9 Convergence error for integral I8,2 using a Chebyshev interpolation of the

kernel K8,2(t, τ)ξ′1(τ) (left), along with the interpolation error distribution
on the interval [−1, 1] (right). 52

5.10 Convergence error for integral I8,2 using a split Chebyshev interpolation
of the kernel K8,2(t, τ)ξ′1(τ) (left), along with the interpolation error
distribution on both integration intervals (right). 52

5.11 Convergence error for integral I8,2 using Matlab’s built-in adaptive quadra-
tures quad (left) and quadgk (right). 53

5.12 Numerical noise in the evaluation of the smooth kernel K8,2. 53
5.13 Convergence error for integral I8,2 using a split Chebyshev interpolation

of the kernel K8,2(t, τ)ξ′1(τ) (left), along with the interpolation error
distribution on both integration intervals (right). 54

5.14 Convergence error for integral I8,2 using Matlab’s built-in adaptive quadra-
tures quad (left) and quadgk (right). 54

vii

6.1 Convergence of the DFO algorithm on a quadratic test function in nine
dimensions. The plot on the left shows the iterates on a two-dimensional
cross-section of the contour plot of the function, while the plot on the
right shows that machine precision is reached within a single iteration,
requiring a total of 101 function calls. 63

6.2 Convergence of the DFO algorithm on a quadratic test function in two
dimensions. The plot on the left shows the iterates on a two-dimensional
cross-section of the contour plot of the function, while the plot on the right
shows that machine precision is reached within two iteration, requiring a
total of 13 function calls. 64

6.3 Convergence of the DFO algorithm on the Golstein-Price test function
in two dimensions. The plot on the left shows the iterates on a two-
dimensional cross-section of the contour plot of the function, while the
plot on the right shows that machine precision is reached within two
iteration, requiring a total of 127 function calls. 65

6.4 Convergence of the DFO algorithm on the Beale test function in two
dimensions. The plot on the left shows the iterates on the contour plot
of the function, which is mostly flat except for a sharp dip at the origin.
while the plot on the right shows that machine precision is reached with
279 function calls. 66

6.5 Convergence of the DFO algorithm on the Rosenbrock test function in
two dimensions. The plot on the left shows the iterates on a contour plot
of the function, while the plot on the right shows that machine precision
is reached with 413 function calls. 66

7.1 The DFO algorithm uses less than 600 evaluations of the objective function
to reduce the reflectivity to machine precision 0. The corresponding grating
profile, on the right, has a total height of around 40nm. 72

7.2 The field in a 1300nm band around the grating confirms the conclusion of
the DFO algorithm: most of the energy is concentrated very close to the
surface, where the field is highly enhanced. 73

viii

7.3 The DFO algorithm uses 1000 evaluations of the objective function to
reduce the reflectivity to 10−2.5. The corresponding grating profile, on
the right, has a total height of 100nm. 74

7.4 The field in a 1300nm band around the grating confirms the conclusion of
the DFO algorithm: most of the energy is concentrated very close to the
surface, where the field is highly enhanced. 75

A.1 Contour path used to compute complex integral I(c). 91
A.2 Convergence of the numerical approximation to I(0). 93
A.3 Convergence of the numerical approximation to I(−1/2), using respectively

16 and 100 digits of accuracy. 94
A.4 Convergence of the numerical approximation to I(1/2). 95

ix

Chapter 1

Introduction

The field of nanoplasmonics studies the confinement of electromagnetic fields on sub-
wavelength scales at the interface of metals and dielectrics, which is possible due to
interactions between the electromagnetic radiation and conducting electrons within the
metal surface. Though these phenomena had first been documented almost a century
ago, nanoplasmonics has generated much interest in recent years due to an increasing
number of applications such as bio-sensing, nanoscopy and optical data storage.

The interesting optical properties generated by the interactions between visible light
and the certain metal powders, such as gold or silver, have been known at least since
Roman times. They are responsible among other things for the visual effects exhibited by
the Lycurgus cup, a 4th century Roman glass cup, and the stained glass windows in the
Sainte Chapelle in Paris [3]. In the case of the Lycurgus cup (see figure 1.1a), gold-silver
alloy nanocrystals embedded within the glass cause it to appear green when light is
reflected from it, and red when light is transmitted through. Similar nanoparticles give
the stained glass windows of the Sainte Chapelle a red glow whose intensity depends on
the incident and viewing angles (see figure 1.1b).

However, it wasn’t until 1908 that Mie gave a mathematical description of light
scattering from spherical particles of sizes comparable to the wavelength [4], describing
an effect that will come to be known as localized surface plasmons in the context of
nanoplasmonics. In 1899, Sommerfeld had described surface waves (waves propagating
at the surface of metals) mathematically, and in 1902 Wood observed anomalous drops in
the intensity of light reflected by a metallic grating [5]. But theory and observation would

1

2
not be linked until 1941, by Fano [6]. Further experimental validation came in 1968,
when Kretschmann and Raether used prism coupling to excite surface waves with visible
light [7]. Thus far, surface waves had only been observed on continuous surfaces. This
changed in 1998, when Ebessen et al. [8] discovered Extraordinary Optical Transmission
(EOT) through sub-wavelength hole arrays for specific frequencies of incident light. The
link with surface waves was first established by Popov et al. [9], who used (the Fourier
modal method in) numerical simulations to successfully reproduce the experimental
results of Ebessen, and has since been validated by many others [10].

All of the phenomena mentioned above are based entirely on classical electromagnetics,
and thus can be mathematically described by Maxwell’s equations. Physically, they
can be described as the coupling of an electromagnetic field with collective charge
oscillations at the surface of a metal. If a metal nanostructure is smaller than the metal’s
skin depth, the field penetrates it throughout and causes the free electrons to oscillate
around the lattice ions, as shown in figure 1.2. The charge difference created by the
displaced electrons means there is also a restoring force, resulting in an electron oscillator,
whose quantum is called a surface plasmon (SP) [3]. When coupled to a photon, these
oscillations propagate as surface waves, known as surface plasmon polaritons (SPP).
SPPs are effectively surface charge density oscillations that decay exponentially away

(a) The Lycurgus cup in reflected light on the
left, and in transmitted light on the right.

(b) The light transmitted through the Sainte
Chapelle stained glass windows has differ-
ent intensities depending on the angle of
incidence.

Figure 1.1: Glass containing gold or silver nanoparticles has different optical properties
depending on the incidence of light.

3
from the surface [7]. When the charge oscillations are not propagating, but instead
are localized in space (as in the case of metallic nanospheres), they are called localized
surface plasmons (LSP). For both SPPs and LSPs, the resonant frequencies depend
highly on the refractive index of the surrounding material, a very important property
for a number of applications.

Figure 1.2: A metal nanosphere sub-
jected to an electric field will see its
electrons displaced with respect to
the lattice ions.

Indeed, the relevance of nanoplasmonics is
closely connected with the wealth of actual and
potential applications that they enable. For in-
stance, bio-sensors such as the home pregnancy
test use a latex substrate covered with a layer of
gold nanoparticles linked to antibodies which target
hCG, a human hormone present during pregnancy.
When the hCG binds to the antibodies, it effec-
tively changes the refractive index of the dielectric
medium above the gold nanoparticle array, thus
shifting its resonant frequency and causing a change
of the scattered color under natural incident light.
The method can be extended to detect other med-
ical conditions, such as HIV, prostate cancer and
heart attacks [3].

The transmission properties of nanohole arrays
can also be exploited for high-density optical data
storage. This application takes advantage of nanohole and nanorod arrangements with
frequency-dependent or polarization-dependent transmission. Thus, illuminating the
same area with blue or red light, or changing the polarization would show different
scattered images, leading to five-dimensional optical data storage [11].

Most applications use either gold or silver for the metallic nanostructures, due to
their low losses in the optical domain. Though silver has the lowest loss and is the least
onerous, corrosion makes it an ill-suited choice in certain environments. Oh et al. [12]
offer a more in-depth review of material choices as well as the fabrication techniques for
metallic nanostructures.

While some of the applications have already been commercialized, many are still

4
being developed, and this development relies increasingly on numerical simulations. Of
particular interest are numerical algorithms capable of optimizing relevant properties of
the nanostructure designed. The methods used so far, an overview of which will be given
in chapter 3, have been successful, but can take very long to simulate a given setup. It
is the goal of this thesis to present a integral equation-based numerical algorithm fast
enough to be used for optimization. A complete optimization package is to be developed
in the future.

The thesis is organized as follows: first some preliminary concepts and equations
describing the physics of surface plasmons are discussed in chapter 2. Chapter 3 reviews
the various numerical methods in use in the field of nanoplasmonics. The proposed
numerical algorithm is introduced in chapter 4, which also offers some of the details of
the numerical implementation and the results of a few numerical experiments, validating
the proposed numerical algorithm. Chapter 5 explores shape derivatives and efficient
ways to evaluate them, with a view to use in optimization. Chapter 6 introduces a
derivative-free optimization algorithm as an alternative to the shape derivative based
ones, and discusses practical implementation challenges and solutions. Finally, chapter 7
takes the methods introduced previously and combines them into an end-to-end virtual
design algorithm, and shows that this algorithm leads to good design outcomes with
unprecedented speed.

Chapter 2

Preliminaries

2.1 Maxwell’s equations

The setup that will be studied throughout this thesis consists of an infinitely periodic
metal surface whose period d is on the nanometer scale. The metal is assumed to extend
infinitely below this surface, while a dielectric material extends infinitely above the
surface, as shown in figure 2.1. An incident field illuminates the metal surface from
above, giving rise to scattered and transmitted fields. The goal here will be to find the
scattered and transmitted fields given information about the surface and the incident
fields.

(a) Three dimensional grating. (b) Two dimensional grating.

Figure 2.1: An infinitely periodic metal grating is illuminated by an incident field, giving
rise to a scattered field (shown) and a transmitted field (not shown).

5

6
As mentioned in the introduction, the behavior of nanoplasmonic effects falls entirely

in the realm of classical electromagnetic theory, and is thus governed by Maxwell’s
equations for the electric and magnetic fields E and H:

∇ ·E = 1
ε
ρf ,

∇×E = −µ∂H
∂t

,

∇ ·H = 0,

∇×H = Jf + ε
∂E
∂t
.

Here the equations are written for linear materials, where ε and µ are the real permittivity
and permeability of the material respectively, and ρf and Jf are the free charge and
current densities respectively [13].

In the present setup, there are two domains of interest: the region below the grating,
D (the metal scatterer), and the region above the grating, DC (the dielectric). The
corresponding quantities shall then be indicated by the superscript i on D and e on DC ,
for interior and exterior with respect to D. Both the metal and the dielectric materials
are assumed to have the permeability µ0 of free space. Since the upper region is an
insulator, it carries neither free charges nor free currents. On the other hand, the lower
region has non-zero conductivity σ and therefore will display a free current proportional
to the electric field Jf = σE. Any free charge inside the conductor will quickly dissipate
and may be assumed to be 0. To summarize, the fields interior and exterior to D obey

∇ ·Ee = 0, ∇ ·Ei = 0,

∇×Ee = −µ0
∂He

∂t
, ∇×Ei = −µ0

∂Hi

∂t
,

∇ ·He = 0, ∇ ·Hi = 0,

∇×He = εe
∂Ee

∂t
, ∇×Hi = σEi + εi

∂Ei

∂t
.

Since it depends on time, the system above is said to be in the time domain. In the
context of nanoplasmonics however, the relevant information is encoded in the frequency
response of the system. As such, it is convenient recast the equations in frequency, or
Fourier domain by assuming that each field has a e−iωt time dependence. Thus the fields

7
interior and exterior to D satisfy the time harmonic Maxwell’s equations:

∇ ·Ee = 0, ∇ ·Ei = 0, (2.3a)

∇×Ee = iωµ0He, ∇×Ei = iωµ0Hi, (2.3b)

∇ ·He = 0, ∇ ·Hi = 0, (2.3c)

∇×He = −iωεeEe, ∇×Hi = −iωεmetalEi, (2.3d)

where εmetal = εi + iσω is the complex permittivity inside D.
To completely specify the problem, note that for each of the fields, the components

parallel to the surface must be continuous, while the components normal to the surface
are continuous for H and jump by a multiple of εi − εe for E. This gives rise to the
following boundary conditions:

εen ·Ee = εin ·Ei, n×Ee = n×Ei, (2.4a)

n ·He = n ·Hi, n×He = n×Hi, (2.4b)

where n is the unit normal to the boundary surface.
Equations 2.3 can be reduced to two Helmholtz equations for the E and H fields:

∆E + k2E = 0,

∆H + k2H = 0,

where k = ke = ω
√
µ0εe outside of D and k = ki = ω

√
µ0εmetal in D. Note that this

does not imply that E and H are decoupled, since the boundary conditions are not. This
form will be more convenient to work with since the Green’s function of the Helmholtz
equation is known, allowing for the integral formulation to be used, as will be discussed
shortly.

An interesting observation at this point is the decoupling that takes place in the
special case of a 2D grating, shown in figure 2.1b. If one of the spatial dimensions (say
the ẑ direction, see figure 2.1b) in the problem is infinitely long, then the equations may
be reduced to two dimensions by assuming all quantities are constant in the ẑ direction.
In this case, the equations decouple in two systems: one for Hx, Hy and Ez (the TE

8
mode of polarization) and one for Ex, Ey and Hz (the TM mode of polarization):

∂Hx

∂x
+ ∂Hy

∂y
= 0, ∂Ex

∂x
+ ∂Ey

∂y
= 0,

∂Hy

∂x
− ∂Hx

∂y
= −iωεEz,

∂Ey
∂x
− ∂Ex

∂y
= iωµ0Hz,

iωµ0(−Hy, Hx) =
(
∂Ez
∂x

,
∂Ez
∂y

)
, −iωε(−Ey, Ex) =

(
∂Hz

∂x
,
∂Hz

∂y

)
,

where ε = εe outside D and ε = εmetal inside D. Note that in this system the x
and y components of each field are easily obtained once the z components are known.
Substituting the expressions for Ex, Ey, Hx and Hy from the last two equations into
the two equations above yields two Helmholtz equations for Ez and Hz:

∆Ez + k2Ez = 0,

∆Hz + k2Hz = 0,

Boundary conditions for Ez and Hz are obtained by observing that if the surface extends
infinitely in the ẑ direction, then n · ẑ = 0. Thus the boundary conditions (2.4a) and
(2.4b) on the parallel components of E and H imply:

Eez = Eiz,

He
z = H i

z.

Boundary conditions for ∂Ez
∂n and ∂Hz

∂n are obtained by taking the dot product of ẑ with
boundary conditions (2.4b) and (2.4a) respectively, then using equations (2.3b) and
(2.3d) respectively:

∂Eez
∂n = ∂Eiz

∂n
∂He

z

∂n = εe

εmetal
∂H i

z

∂n .

In a scattering problem, the incident (known) and the scattered (unknown) parts of
the exterior fields can be distinguished: Esz +Eincz = Eez and Hs

z +H inc
z = He

z . The field
inside the metal is referred to as the transmitted field and will be denoted by Etz, Ht

z.

9
Thus Ez (TE mode) and Hz (TM mode) both satisfy the following system

∆ut + k2
i u

t = 0 on D, (2.6a)

∆us + k2
eu

s = 0 on DC , (2.6b)

∆uinc + k2
eu

inc = 0 on DC , (2.6c)

us + uinc = ut on ∂D, (2.6d)

ν
∂

∂n
[us + uinc] = ∂ut

∂n
on ∂D, (2.6e)

where ν = 1 for the TE mode, and ν = εmetal

εe = k2
i
k2
e
for the TM mode.

To ensure the uniqueness of a solution to this system, another “boundary” condition
infinitely away from the surface is needed on us. Physically, this condition must guarantee
that the scattered field is propagating away from the surface. Mathematically, it can be
enforced by requiring that above a certain point, us be a linear superposition of upward
propagating plane waves [14, 15]. The uniqueness result for the two-dimensional problem
where =(ν2) > 0 has been proved in [16]. This condition is sufficient here, as it holds in
plasmonics applications, as shall be seen in the next section.

2.2 The optical characteristics of metals

As mentioned before, the dielectric constant of a metal is in general complex: εmetal =
εi+ iσω . For metals, the real part of εmetal is negative while the imaginary part is positive
and determines the amount of absorption. Low values of Im[εmetal] translate in low
losses, a key aspect of the material choice in nanoplasmonic applications. Silver for
example has the lowest losses in the visible and infrared, with gold coming in second for
wavelengths above 600nm [12].

Since the response of metals depends on the frequency ω, a model describing this
dependence is needed for simulation purposes. The most widely used is the Drude model,
which models the free electrons in a metal as a plasma, and gives the dielectric function
of the frequency as [7]:

ε(ω) = 1−
ω2
p

ω2 + iγω
,

10
where ωp is the plasma frequency of the free electron gas and γ is the characteristic
collision frequency. Typically, these quantities are obtained as parameter fits of experi-
mental values. For noble metals, this model is only valid up to visible frequencies, as
can be seen from figure 2.2. Beyond this point, interband transitions in the atoms
becomes significant and the Lorentz extension of the model is used instead. The Drude-
Lorentz model accounts for the interband transitions by adding for each one of them a
Lorentz-oscillator term of the form Ai

ω2
i−ω2−iγiω

, where Ai, ωi and γi are properties of the
oscillator are obtained by a fit of the data [7].

Figure 2.2: The Drude and the Drude-Lorentz models fitted to literature values of the
dielectric data for gold. Figure and data from [1].

A more straight-forward way of modeling the dielectric constant however is simply
to interpolate the experimental values. The advantage of an interpolation is that it is
not limited to a particular range of frequencies. Figure 2.3 shows that the interpolation
is in fact a better fit for the experimental values than the Drude-Lorentz model.

11

Figure 2.3: The Drude-Lorentz model along with an interpolation of the measured
values (from Palik’s handbook [2]) of the dielectric constant for silver as a function of
wavelength in microns.

Chapter 3

A review of numerical methods in
nanoplasmonics

Direct design of nanoplasmonic structures is not practical due to high fabrication costs,
particularly in terms of time. Thus successful design depends heavily on the use of
appropriate numerical methods for the simulation of electromagnetic fields in the vicinity
of the structure. A number of methods have been used so far in the field, with finite
difference methods being by far the methods of choice [12, 17, 18, 19], followed by finite
element methods [20, 21, 22, 23], and recently also by integral methods [24, 25, 26, 27].

This chapter offers a brief review of these methods in the context of nanoplasmonics.

3.1 Finite-difference methods

Finite-difference methods use a direct discretization of Maxwell’s differential equations
using difference quotients. The most popular of such methods, the Finite Difference
Time Domain Method (FDTD), was introduced in 1966 by Yee [28] and popularized by
A. Taflove a few years later[29]. It uses the Yee cell as a building block for a staggered
space-time grid for the electric and magnetic field variables. The time derivatives are
approximated by a second-order centered difference, which makes the method explicit in
time. The convergence is second order in both space and time.

While the method has an enduring popularity due to its ease of implementation and
parallelization [30], it also has important drawbacks. One of them is that Cartesian

12

13
grids must be used, which gives rise to a stair-casing effect around curved interfaces.
To maintain a desired accuracy, a fine mesh must then be used, and thus a small time-
step (in order to satisfy the Courant-Friedrichs-Levy stability condition: ∆t ≤ ∆x/c),
leading to a high computational cost. The use of conformal meshes has been observed
to decrease computational effort by a factor of 4, for a fixed accuracy ([31], [32]), and
has further been accelerated using parallel processing [33]. However this does not fully
avoid the problem, since cells near the interface must still be smaller, and thus still
reduce the global time-step. Another way to avoid the stair-casing effect is to use a
hybrid finite element/finite difference mesh, where finite elements are used around the
curved boundary, and interfaced with the finite difference grid away from the boundary.
Numerical experiments have shown this approach to yield better results than the original
FDTD[34] in some cases. No theoretical results have been proven at this time though.

Clearly an important bottle-neck of the FDTD method is the CFL stability condition.
To avoid such a strict condition on the time steps, an alternating-direction implicit (ADI)
technique for solving PDE’s was introduced in [35] and [36], yielding an unconditionally
stable version of FDTD. However, this only reduces the computational complexity of
the problems if the time-period is larger than the length scale of the object modeled,
since the time step still needs to resolve the period of the signal.

Further, since FDTD algorithms discretize Maxwell’s equations directly, they need
to compute the fields in the infinite domain outside the scatterer. As this is not feasible
numerically, the domain must be truncated. Since the new boundary thus introduced
is artificial, some effort must be made to render it effectively invisible to incoming or
outgoing waves. This is achieved by using absorbing boundary conditions [37, 38, 39].

3.2 Finite Element methods

Finite element methods (FEM) are based on the weak formulation of Maxwell’s equation.
[40] They discretize space using an irregular mesh, typically using simplices as their
building blocks. The unknowns and the test functions are expanded in terms of basis
functions with support on only a few adjacent mesh elements. This leads to a sparse
linear system, which can be solved in O(N) time, where N is the number of unknowns.

Different methods use different function spaces for the basis functions, but piecewise

14
polynomial spaces are the most common. The function spaces can have additional
continuity conditions, either for the values of the functions themselves, or other degrees
of freedom across the boundary between elements. This approach is known as the
continuous Galerkin method. Another approach, known as the discontinuous Galerkin
method, does not enforce these continuity conditions directly, but instead uses penalty
terms on the boundaries between elements. This seems to lead to more stable methods,
and can still achieve high accuracy. [41]

Both the continuous [20, 21] and discontinuous approaches [22, 23] have been suc-
cessfully used in the context of nanoplasmonics. Their popularity is due to the two
major advantages they offer over the FDTD method. The first is that FEM can achieve
higher orders of convergence than FDTD, and the order can be controlled by the degree
of the polynomial spaces used. The second and perhaps most important is that FEM
meshes can be adaptive, which means the number of unknowns can be vastly reduced,
especially in the context of nanoplasmonics where the fields are confined very close to
the nanostructures, and thus only a small region requires the use of a fine mesh [20].
Moreover, the irregular meshes can discretize complex domains much better than FDTD,
avoid stair-casing effects.

However, as with the FDTD method, FEM needs to discretize the domain exterior
to the scaterrer, leading to artificial boundaries which need to be treated with special
care. Absorbing boundary conditions have been developed for FEM, both for the wave
equation [42] and for Maxwell’s equations [43]. However, the implementation of these
conditions requires rectangular boundaries for optimal results [24], which may result in
an unnecessarily large computation domain.

3.3 Integral equation methods

Though integral equations have traditionally been developed in the context of diffraction
gratings, it is only in recent years that the nanoplasmonics community has started to use
integral methods, both on their own [24, 25] or in conjunction with FE methods [27, 26].

Integral methods are based on an integral formulation of Maxwell’s equations. Two
categories can be distinguished: volumetric and surface integral equations, depending
on whether the integrals are posed over the volume of the scatterer or only its surface.

15
In both cases, the key difficulty lies in the accurate and fast evaluation of one or more
integrals of the form ∫

Ω
K(x, y)φ(y)dy

where φ is the unknown of interest, Ω is a volume or a surface, as the case may be,
and K(x, y) is a singular kernel. One of the advantages of this approach is that the
radiation conditions are encoded in the choice of the kernel, thus avoiding the issue of
enforcing the radiation condition at the boundary of the computation domain. The other
advantage is the speed and accuracy of these methods, as shall be discussed below.

Just as with any other method, these formulations lead to linear systems which are
typically solved with the use of iterative methods. Thus the complexity is limited only
by the complexity of the matrix-vector multiplication. This can be achieve in a number
of ways, the most popular of which being divided in two classes: methods of moments
(MoM) and Nyström methods. The MoM’s involve approximating the solution by a
finite number of basis function, and requiring the integral equation to be solved in the
weak sense over the span of finitely many test functions. Depending on the basis and test
functions used, this approach leads to the collocation method (deltas for test functions)
or the Galerkin method (same basis and test functions) [44]. The Nyström methods on
the other hand rely on a numerical quadrature of the integral, leading again to a linear
system. Whenever applicable, Nyström methods are preferable, as they require the least
computational effort [45].

In the case of volumetric integral methods, the unknown solves the so-called “Lippmann-
Schwinger integral equation” over the volume of the scatterer [46]. Thus the computation
domain is reduced while still allowing for inhomogeneities in scatterer. Despite the
reduction of the computation domain however, an improved complexity is not guaranteed,
since the evaluation of the integral gives rise to a full matrix of size O(n3), where n
is the number of discretization points taken in each of the three spatial dimensions.
Naively, one might expect the complexity of the integration to be O(n6), which cannot
compete with a FEM, where the same problem takes O(n3) steps. However the cost of
the integration can be reduced to O(n3 logn3) [47], while achieving higher than second
order of convergence of the solution.

On the other hand, if the scatterer is piecewise homogeneous, as is the case in the

16
nanoplasmonic applications of interest, a surface integral formulation can be used instead.
This integral formulation can be derived from Green’s theorem or from layer potentials
[48], and can be expressed either as a first kind or a second kind integral equation. In
either case, the computation domain is reduced to the surface of the scatterer, leading
to a full matrix of size O(n2) in 3D, which a priori requires O(n4) steps to apply -
not competitive with FEM matrices. As in the case of volumetric integrals however,
this bound can be drastically improved by the use of acceleration methods such as fast
multipole methods (FMM) [49, 50] and FFT-based methods [51, 47, 52, 53].

Before discussing the different acceleration methods, a note on the choice of surface
integral formulation is necessary. Though some authors use the first kind integral equation
[54], comparisons of the two [55] clearly show that second kind integral equations are
preferable in terms of speed and accuracy. This is easily seen in the context of Fredholm
theory: the solution to a first kind integral equation requires the inversion of a compact
operator, whose eigenvalues approach 0, making numerical inversion more unstable,
while the solution to a second kind integral equation requires the inversion of the identity
plus a compact operator, whose eigenvalues approach 1.

The multi-level fast multipole method, introduced in [49] for integral equations for the
2D Laplace’s equation, was able to accelerate the integral evaluation to O(N) operations,
for a total number N of points. The idea behind these methods is to divide the domain
into clusters and treat sources in a single cluster as a single source when viewed from
far away. This is accomplished using multipole expansions of the Green’s function,
effectively reducing the full matrix representing the integral equation to a block-wise
low-rank matrix [56]. Since it has been introduced, the method has been extended to 3D
Helmholtz equation, where, together with carefully chosen preconditioners, it can achieve
O(N logN) complexity [57]. The method has also been shown to accelerate the 3D
Maxwell’s equations for a 2-dimensional periodic structure [58], using spherical harmonics
series expansion of the quasi-periodic Green’s function. However, the applicability of the
FMM is limited, since instabilities appear when the size of each cluster becomes much
smaller than the wavelength of the incident field[59] .

A popular FFT-based method is the adaptive integral method (AiM), introduced in
[51]. The method also treats near-field and far-field interactions differently, but instead
of dividing the domain into clusters, it divides it using a regular grid. The components

17
of the interaction matrix are computed using a Galerkin discretization with locally
supported basis functions, thus reducing the problem to only the interactions between
the nodes of the grid. The advantage of this procedure is that the regular grid makes
it possible to use a FFT to compute the interactions. This leads to an algorithm of
complexity O(N logN) and O(N3/2 logN) in 2D and 3D respectively. The original AIM
has been extended to the case of scattering from periodic arrays by using so-called
characteristic basis functions [60].

The idea of using regular grids in order to take advantage of the power of FFT has
also been exploited by [61, 47]. Instead of using equivalent point sources at the nodes
of the grid, the authors propose to use equivalent surface sources on the faces of the
grid in 3D. This approach reduces the computational complexity of the algorithm to
O(N4/3 log(N)), but more interestingly it has exponential convergence, an important
improvement over AiM.

Chapter 4

Integral equations solver:
formulation and numerical
implementation

Integral equations methods rely on recasting the differential equation description of
the scattering problem (system (2.6a)) as a system of integral equations, and solving
the latter. As mentioned before, the advantage of this approach is that it reduces the
dimensionality of the problem, but a drawback is that the matrix that must be inverted
is full. Further, the evaluation of the integral kernels themselves offers some challenges.
These issues, along with the approaches used to overcome them, will be addressed in
this chapter.

18

19
4.1 Integral formulation

In this section, a system of integral equations for the total exterior field u and its normal
derivative ∂u

∂n on the surface ∂D is derived from the equivalent differential system (2.6a):

∆ut + k2
i u

t = 0 on D, (2.6a)

∆u+ k2
eu = 0 on DC , (2.6b)

u = ut on ∂D, (2.6d)

ν
∂u

∂n
= ∂ut

∂n
on ∂D, (2.6e)

where ν = k2
i
k2
e
and the total exterior field u = us+uinc is the sum of the scattered field us

and an incident field uinc. Recall that D denotes the interior domain with wave number
ki, while DC denotes the exterior domain with wave number ke, and that the surface
normal ~n is taken to point away from the domain D.

For a fixed point x ∈ Rn the free space Green’s functions

Φi(x, y) = i

4H
(1)
0 (ki|x− y|) in 2D, (4.1a)

Φi(x, y) = eiki|x−y|

4π|x− y| in 3D, (4.1b)

are at least twice differentiable in y and satisfy the interior Helmholtz equation 2.6a in
Rn \ {x}. Similarly, the free space Green’s functions

Φe(x, y) = i

4H
(1)
0 (ke|x− y|) in 2D, (4.2a)

Φe(x, y) = eike|x−y|

4π|x− y| in 3D (4.2b)

are at least twice differentiable in y and satisfy the exterior Helmholtz equation 2.6b
in Rn \ {x}. Hence they can be used along with ut, us, uinc in Green’s second theorem
in a region excluding a small ball around the fixed point {x}. Taking limits as the ball

20
shrinks in around {x}, the following Helmholtz representations are obtained [46]:

ut(x) =
∫
∂D

{
Φi∂u

t(y)
∂ny

− ut(y)∂Φi

∂ny

}
ds(y) x ∈ D, (4.3a)

us(x) =
∫
∂D

{
us(y)∂Φe

∂ny
− Φe∂u

s(y)
∂ny

}
ds(y) x ∈ DC , (4.3b)

0 =
∫
∂D

{
uinc(y)∂Φe

∂ny
− Φe∂u

inc(y)
∂ny

}
ds(y) x ∈ DC , (4.3c)

where n is the unit normal to ∂D directed into the exterior of D (i.e. “upward”).
Observe that the previous set of equations explicitly give the interior and exterior

fields in their respective domains, as long as u(y) = us(y)+uinc(y) and ∂u
∂ny (y) are known

for y ∈ ∂D. Indeed, using the boundary conditions (2.6d) and (2.6e), and subtracting
the third from the second,

ut(x) =
∫
∂D

{
Φiν

∂u(y)
∂ny

− u(y)∂Φi

∂ny

}
ds(y) x ∈ D, (4.4a)

us(x) =
∫
∂D

{
u(y)∂Φe

∂ny
− Φe∂u(y)

∂ny

}
ds(y) x ∈ DC . (4.4b)

Thus it is sufficient to solve for u(y) and ∂u
∂n(y)(y) on the boundary of D from the system

of equations. To do so consider the equations (4.4) as x→ ∂D. Given that the single
layer potential is continuous across the surface, and using the jump condition for the
double layer potential (+1

2u when taking limits from the outside and −1
2u when taking

limits from the inside [46]), the following hold:

1
2u(x) =

∫
∂D

{
νΦi∂u(y)

∂ny
− u(y)∂Φi

∂ny

}
ds(y) x ∈ ∂D, (4.5a)

1
2u(x)− uinc(x) =

∫
∂D

{
u(y)∂Φe

∂ny
− Φe∂u(y)

∂ny

}
ds(y) x ∈ ∂D, (4.5b)

where the boundary condition on ut was used. A similar integral equation can be
obtained for ∂u

∂n by taking the normal derivative with respect to x in equations (4.4).
Using the boundary conditions and the jump conditions on the normal derivative of the
potentials (the normal derivative of the double layer potential is continuous across the
surface while the normal derivative of the single layer potential has a +1

2u jump when

21
the limit is taken from the inside, and a −1

2u jump when it is taken from the outside
[46]), the following hold:

ν

2
∂u(x)
∂nx

=
∫
∂D

{
ν
∂Φi

∂nx
∂u(y)
∂ny

− u(y) ∂2Φi

∂nx∂ny

}
ds(y) x ∈ ∂D, (4.6a)

1
2
∂u(x)
∂nx

− ∂uinc(x)
∂nx

=
∫
∂D

{
u(y) ∂2Φe

∂nx∂ny
− ∂Φe

∂nx
∂u(y)
∂ny

}
ds(y) x ∈ ∂D. (4.6b)

Note that one of the kernels in the previous equation is the double derivative of the
Green’s function, which has a non-integrable singularity as y → x:

∂2Φe

∂nx∂ny
∼ 1
|x− y|

in 2D, (4.7)

∂2Φe

∂nx∂ny
∼ 1
|x− y|2

in 3D. (4.8)

To avoid this singularity, it is more convenient to consider the difference of the Green’s
functions Φi − Φe. This is achieved by considering (4.5a)+(4.5b) and (4.6a)+(4.6b):

u(x) +
∫
∂D

{
u(y)∂(Φi − Φe)

∂ny
− ∂u(y)

∂ny
(νΦi − Φe)

}
ds(y) = uinc(x) x ∈ ∂D,

(4.9a)

1 + ν

2
∂u(x)
∂nx

+
∫
∂D

{
u(y)∂

2(Φi − Φe)
∂nx∂ny

− ∂u(y)
∂ny

∂(νΦi − Φe)
∂nx

}
ds(y) = ∂uinc(x)

∂nx
x ∈ ∂D.

(4.9b)

Note that the two integral equations are expressed as integrals over the infinite domain
∂D. This is inconvenient from a numerical point of view, but fortunately can be avoided
by noticing that the boundary ∂D is infinitely periodic with period d. Assuming the
incident field is a monochromatic plane wave, it is quasi-periodic, and hence the solution
u must be quasi-periodic as well. Specifically, u(x + d) = eiαdu(x). Hence, equations
(4.5) and (4.6) can be rewritten over a single period P of the surface as

u(x) +
∫

P

{
u(y)∂(Gi −Ge)

∂ny
− ∂u(y)

∂ny
(νGi −Ge)

}
ds(y) = uinc(x), (4.10a)

1 + ν

2
∂u(x)
∂nx

+
∫

P

{
u(y)∂

2(Gi −Ge)
∂nx∂ny

− ∂u(y)
∂ny

∂(νGi −Ge)
∂nx

}
ds(y) = ∂uinc(x)

∂nx
(4.10b)

22
for x ∈ P, where

G(x, y) = i

4

∞∑
m=−∞

eiαmdH
(1)
0 (k|x−mdx̂1 − y|) in 2D, (4.11)

G(x, y) = 1
4π

∞∑
m=−∞

eiαmd
eik|x−mdx̂1−y|

|x−mdx̂1 − y|
in 3D (4.12)

are the quasi-periodic Green’s functions in 2D and 3D respectively. Hence all the kernels
are weakly singular in both 2D and 3D (as shall be shown in the next section) and thus
all the integrals exist.

The system (4.10) above can be viewed as an integral operator acting on the pair
[u; ∂u∂n]:

L

 u
∂u
∂n

 =

 uinc
∂uinc

∂n

 ,
where L is the integral operator on the left hand side of (4.10). Thus, from Fredholm
theory the system has a unique solution provided that the operator is compact, and
that the only solution of the homogeneous system be the trivial one, which is true here
because in the absence of incident fields, there can be neither scattered nor interior fields.
Compactness of the integral operator follows from the assumption that the boundary
∂D is twice differentiable, and the fact that the kernels are weakly singular [62].

4.2 Cylindrical domains

The integral equations derived in the previous section hold for any domain D with C2

boundary ∂D and any incident field uinc. In this section, the focus is restricted to two
dimensional problems, that is to scattering from infinitely long cylindrical domains.

Consider a time-harmonic plane wave

uinc(x) = ei(αx1−βx2),

defined for every x = (x1, x2) ∈ R2 and incident at an angle θ from the horizontal, as
shown in figure 4.1. Thus α = ke sin(θ) and β = ke cos(θ), where ke is the wave number.
This incident field is scattered by a periodic metallic grating with period d, whose surface

23

∂D = {(t, f(t))}

d

x

ke = (α, β)

θ

Figure 4.1: A 2D periodic metal grating is illuminated by an incident field.

is described by

∂D =
{
y ∈ R2 : y = (t, f(t))

}
,

where f : R→ R is a smooth periodic function with f(t+ d) = f(t). The normal vector
to this surface is given by

n(t) = (n1, n2) = (−f ′(t), 1)
|y′(t)| , |y′(t)| =

√
1 + f ′(t)2.

In order to parametrize the system of integral equations (4.10), choose the interval of
integration P = {y = (τ, f(τ)) : τ ∈ [−d/2, d/2]}. The limits of integration are chosen
such that any potential singularities in the kernels, which occur at τ = t lies well inside
the integration interval. This is done in order to make numerical evaluations easier.
Given x(t) = (t, f(t)) also on the surface ∂D, the system (4.10) can be re-written for
t ∈ [−d/2, d/2] as

φ1(t) +
∫ t+d/2

t−d/2
{φ1(τ)K1(t, τ)− φ2(τ)K2(t, τ)} dτ = ψ1(t), (4.13a)

1 + ν

2 φ2(t) +
∫ t+d/2

t−d/2
{φ1(τ)K3(t, τ)− φ2(τ)K4(t, τ)} dτ = ψ2(t), (4.13b)

where the following notation was introduced for the unknown densities and the source

24
terms

φ1(t) = u(x(t)), φ2(t) = ∂u(x(t))
∂nx

, (4.14a)

ψ1(t) = uinc(x(t)), ψ2(t) = ∂uinc(x(t))
∂nx

, (4.14b)

and the new kernels are given by

K1(t, τ) = |y′(τ)|∂(Gi −Ge)
∂ny

(x(t), y(τ)), (4.15a)

K2(t, τ) = |y′(τ)|(νGi(x(t), y(τ))−Ge(x(t), y(τ))), (4.15b)

K3(t, τ) = |y′(τ)|∂
2(Gi −Ge)
∂nx∂ny

(x(t), y(τ)), (4.15c)

K4(t, τ) = |y′(τ)|∂(νGi −Ge)
∂nx

(x(t), y(τ)). (4.15d)

Solving this system of integral equations for the unknown densities φ1 and φ2 will be
the focus of the remaining sections in this chapter.

Once these quantities are known, recovering the transmitted and scattered fields
away from the surface can be recovered from equations (4.4), which become

ut(x) =
∫ d/2

−d/2

{
νφ2(τ)Gi(x, y(τ))− φ1(τ)∂G

i(x, y(τ))
∂ny

}
|y′(τ)|dτ x ∈ D,

us(x) =
∫ d/2

−d/2

{
φ1(τ)∂G

e(x, y(τ))
∂ny

− φ2(τ)Ge(x, y(τ))
}
|y′(τ)|dτ x ∈ DC .

using the surface parametrization introduced above. Computing the Green’s functions
Gi, Ge and their normal derivatives and evaluating the integrals is significantly easier
for x 6∈ ∂D, though numerical issues may still arise for x close to the surface ∂D. For
this reason, the same numerical techniques will be used to evaluate these integrals near
the surface as will be used for solving the integral system (4.13).

For values of x away from the surface on the other hand, the field can be computed
by using the spectral series representation of the Green’s functions

Gi(x, y) = i

2d

∞∑
n=−∞

eiαn(x1−y1)+iβin|x2−y2|

βin
, (4.16a)

Ge(x, y) = i

2d

∞∑
n=−∞

eiαn(x1−y1)+iβen|x2−y2|

βen
, (4.16b)

25
which converge uniformly on compact sets where x2 6= y2 [16], and where αn = α+2nπ/d
and βi,en =

√
k2
i,e − α2

n for the interior and exterior Green’s functions respectively. Thus
for x2 > maxx1 f(x1), the scattered field above the surface can be obtained from the
exponentially convergent Rayleigh series

us(x1, x2) =
∞∑

n=−∞
bene

i(αnx1+βenx2), (4.17)

where the Rayleigh coefficients ben are given by

ben = 1
2dβen

∫ t+d/2

t−d/2
e−i(αnτ+βenf(τ))

[
φ1(τ)(βen − αnf ′(τ))− iφ2(τ)

√
1 + f ′(τ)2

]
dτ.

(4.18)

Similarly, the transmitted field below the surface can be obtained by means of a
Rayleigh series which converges for x2 < minx1 f(x1)

ut(x1, x2) =
∞∑

n=−∞
bine

i(αnx1−βinx2), (4.19)

where the coefficients are

bin = 1
2dβin

∫ t+d/2

t−d/2
e−i(αnτ−β

i
nf(τ))

[
φ1(τ)(βin + αnf

′(τ)) + iνφ2(τ)
√

1 + f ′(τ)2
]
dτ.

(4.20)

Note the negative sign in the exponential terms in (4.19), which indicates that the
transmitted field is propagating downward away from the surface.

4.3 Kernel decompositions

In this section, the singularities in the kernels from equations (4.13) are shown explicitly
in 2D. Recall that the quasi-periodic Green’s function is given by

G(x, y) = i

4

∞∑
m=−∞

eiαmdH
(1)
0 (k|x−mdx̂1 − y|). (4.21)

Thus, for τ ∈ [t − d/2, t + d/2], G(x(t), y(τ)) has only one singularity, and can be
decomposed as follows:

G(x, y) = i

4H
(1)
0 (k|x− y|) +D(x, y), (4.22)

26
where D is an analytic function of its arguments [52].

∂

∂n(r′)G(k|r− r′|) =kG′(k|r− r′|) c(x, x′)
|r− r′|

√
1 + f ′(x′)2 (4.23)

∂2

∂n(r)∂n(r′)G(k|r− r′|) =k2G′′(k|r− r′|) c(x, x′)c(x′, x)
|r− r′|2

√
1 + f ′(x′)2

√
1 + f ′(x)2 (4.24)

− kG′(k|r− r′|) c(x, x′)c(x′, x)
|r− r′|3

√
1 + f ′(x′)2

√
1 + f ′(x)2 (4.25)

− kG′(k|r− r′|) f ′(x)f ′(x′) + 1
|r− r′|

√
1 + f ′(x′)2

√
1 + f ′(x)2 (4.26)

4.4 Numerical solution

This section gives some details about the way the Nystrom method is used to discretize
the integral system (4.10) and the solution u(x) and ∂u(x)

∂n is obtained for x ∈ ∂D.
A truncated Floquet expansion with N terms is used to approximate φ1 and φ2,

which is known to converge superalgebraically [52]:

φN1 (t) =
N∑

n=−N
ane

iαnt φN2 (t) =
N∑

n=−N
bne

iαnt (4.27)

where αn = α+ 2nπ/d and βn = βen =
√
k2
e − α2

n as before. With this approximation,
the integral system (4.13) becomes

ψ1(t) =
N∑

n=−N
an
(
eiαnt +WK1

n (t)
)
− bnWK2

n (t), (4.28a)

ψ2(t) =
N∑

n=−N
anW

K3
n + bn

(1 + ν

2 eiαnt −WK4
n

)
(4.28b)

where the weights Wn are given by

W
Kj
n (t) =

∫ d/2

−d/2
Kj(t, τ)eiαnτdτ. (4.29)

At this point, the integral system (4.13) has been reduced to a linear system (4.28) of
equations for the Floquet coefficients an and bn. To solve it, a collocation method is
used, in which equations (4.28) are evaluated explicitly at 2N + 1 equally spaced values

27
of t, thus resulting in a linear system of 4N + 2 equations in 4N + 2 unknowns, which
can then be solved via the usual methods.

Once the coefficients an and bn are solved for, the values of the field u(x) and ∂u(x)
∂n for

x ∈ ∂D can be obtained from equations (4.27), recalling the notation u((t, f(t)) = φ1(t)
and ∂u

∂n((t, f(t))) = φ2(t).

4.5 Numerical results

The algorithm described has been implemented in Matlab. The test case used in the
simulation is a metal grating, extending infinitely in one direction and infinitely periodic
in the perpendicular direction. The parameters used are in the plasmonic regime, that
is the height h, period d and wavelength λ of incident light are such that

λ

d
≈ 1 λ

h
≈ 0.01. (4.30)

In particular, the profile of the grating is given by

f(x) = h

2 sin(x2π
d

), (4.31)

where h = 24nm, d = 300nm and the dielectric constant of the metal is given by
εmetal = −3.304 + 0.577i, while that of the material above the grating is taken to be 1.
The incoming plane wave is has incident angle θ = 27◦ and wavelength λ = 226nm.

The first part of the algorithm solves for u(x) and ∂u(x)
∂n , where the upward pointing

normal was used for x ∈ ∂D. The results shown in figure 4.2 show that the field u and
its normal derivative ∂u

∂n are smooth and well resolved with N = 32. Moreover, figure
4.3 shows the maximum error in both these quantities as a function of discretization
number N . Note that on a log scale, the error decreases linearly, indicating the algorithm
does indeed converge exponentially, as should be expected. The error was computed
by comparing the results from one discretization with the next, i.e. error(N) =
maxx |u2N (x)− uN (x)|.

From the surface field, the field away from the surface can be computed by the
Rayleigh series, and the results are shown in figure 4.4. The plasmonic effect is observed
by noting that the field is confined in a region of about 100nm above the surface, a scale
smaller than the wavelength.

28

0 0.05 0.1 0.15 0.2 0.25 0.3
0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3
1

1.5

2

2.5

3

3.5

Figure 4.2: The total field (left) and the normal derivative (right) of the total field on
the surface of the grating. Here N = 32.

0 5 10 15 20 25 30 35 40 45 50
−7

−6

−5

−4

−3

−2

−1

0

0 5 10 15 20 25 30 35 40 45 50
−7

−6

−5

−4

−3

−2

−1

0

Figure 4.3: The error in the total field (left) and its normal derivative (right) as a
function of the number of points. The error is shown on a logarithmic scale.

29

Figure 4.4: The field above the surface of the grating. From left to right, the norm of
the field, the real part and the imaginary part.

Chapter 5

Shape derivatives

The solution u to the scattering problem described in the previous chapter depends on the
profile of the grating, which can be described in terms of parameters p = (p1, p2, ..., pr).
The dependence of the solution u on these parameters is described by the gradient ∇pu

in parameter space, which can be obtained at little additional cost by the same numerical
solver that yields the surface field u itself, as shall be described in this chapter.

5.1 Differential formulation

In this section, a system of differential equations is derived for the gradient ∇pu of the
field u in the space of parameters p ∈ Rr. It is shown that this system is the same as
the original system (2.6a) with new boundary conditions, and thus solving for ∇pu can
be done using the same integral methods used in solving for u.

Consider up = ∂u
∂p , the partial derivative of the field u with respect to a scalar

parameter p of the surface profile. Recall that the scattered and transmitted fields us

30

31
and ut satisfy the system of helmholtz’ equations (2.6a), thus:

∆ut(x1, x2, p) + k2
i u

t(x1, x2, p) = 0 on D, (2.6a)

∆us(x1, x2, p) + k2
eu

s(x1, x2, p) = 0 on DC , (2.6b)

ut(x1, x2, p) = us(x1, x2, p) + uinc(x1, x2, p)

≡ u(x1, x2, p) on ∂D, (2.6d)
∂ut(x1, x2, p)

∂n = ν
∂

∂nu(x1, x2, p) on ∂D. (2.6e)

Since in equations (2.6a) and (2.6b) the only dependence on p explicitly, the partial
derivative with respect to p, may be applied to either side of both, yielding

∆utp(x1, x2, p) + k2
i u

t
p(x1, x2, p) = 0 on D, (5.2a)

∆usp(x1, x2, p) + k2
eu

s
p(x1, x2, p) = 0 on DC . (5.2b)

Equations (2.6d) and (2.6e) on the other hand also have an implicit dependence on p,
through the parametrization (x1, x2) = (t, f(t, p)), so a full derivative d

dp must be taken
in order to preserve the equality. Thus, from equation (2.6d) the following is obtained

utp + fp
∂ut

∂x2
= up + fp

∂u

∂x2
,

while (2.6e) yields

d

dp

{
n · ∇ut

}
= ν

d

dp
{n · ∇u} ,

dn
dp
· ∇ut + n · ∇∂u

t

∂p
+ fpn ·

∂

∂x2
∇ut = ν

{
dn
dp
· ∇u+ n · ∇∂u

∂p
+ fpn ·

∂

∂x2
∇u
}
.

The new boundary conditions may then be written as

utp = up + ξ1 on ∂D, (5.2c)
∂utp
∂n = ν

∂up
∂n + ξ2 on ∂D, (5.2d)

where

ξ1 = fp
∂u

∂x2
− fp

∂ut

∂x2
, (5.3)

ξ2 = dn
dp
·
(
ν∇u−∇ut

)
+ fp

(
νn · ∂

∂x2
∇u− n · ∂

∂x2
∇ut

)
. (5.4)

32
Note that while the fields ut and us are known on the surface ∂D, their derivatives

in x2 are not. However, their normal derivatives are known, and the following change
of variables provides a way of going from the coordinate system (x1, x2) to the local
coordinate system (n, s), where n is the unit normal to the surface while s is the unit
tangent:

∂

∂n = n1
∂

∂x1
+ n2

∂

∂x2

∂

∂s = n2
∂

∂x1
− n1

∂

∂x2
∂

∂x1
= n2

∂

∂s + n1
∂

∂n
∂

∂x2
= −n1

∂

∂s + n2
∂

∂n .

Combining these derivatives an expression for the second derivatives appearing in (5.4)
can be obtained:

∂2

∂x1∂x2
= −n2

∂n1
∂s

∂

∂s + n2
∂n2
∂s

∂

∂n − n1n2
∂2

∂s2 + n1n2
∂2

∂n2 + (n2
2 − n2

1) ∂2

∂s∂n ,

∂2

∂x2
2

= n1
∂n1
∂s

∂

∂s − n1
∂n2
∂s

∂

∂n + n2
1
∂2

∂s2 + n2
2
∂2

∂n2 − 2n1n2
∂2

∂s∂n ,

n · ∂

∂x2
∇ = n1

∂2

∂x1∂x2
+ n2

∂2

∂x2
2

= n2
∂2

∂n2 − n1
∂2

∂s∂n .

Using these relations, equations (5.3) and (5.4) become

ξ1 = −fpn1

(
∂u

∂s −
∂ut

∂s

)
+ fpn2

(
∂u

∂n −
∂ut

∂n

)
,

ξ2 = dn
dp
·
{
ν

(
n2
∂u

∂s + n1
∂u

∂n

)
− n2

∂ut

∂s − n1
∂ut

∂n ,

ν

(
−n1

∂u

∂s + n2
∂u

∂n

)
+ n1

∂ut

∂s − n2
∂ut

∂n

}

+ fp

{
ν

(
n2

∂2

∂n2 − n1
∂2

∂s∂n

)
u−

(
n2

∂2

∂n2 − n1
∂2

∂s∂n

)
ut
}
.

From the boundary conditions, ut = u and ∂ut

∂n = ν ∂u∂n on ∂D, thus

ξ1 =fpn2(1− ν)∂u
∂n , (5.5)

ξ2 =(ν − 1)dn
dp
· (n2,−n1)∂u

∂s + n2fp

(
ν
∂2u

∂n2 −
∂2ut

∂n2

)
. (5.6)

The second normal derivative can be recovered from the Helmholtz equation ∆u = −k2u

by noticing that the Laplace operator can be written as ∆ = ∂2

∂n2 + ∂2

∂s2 . Using this fact,

33
together with the boundary condition u = ut,

ξ2 =(ν − 1)dn
dp
· (n2,−n1)∂u

∂s + n2fp

(
(k2
i − νk2

e)u+ (1− ν)∂
2u

∂s2

)
. (5.7)

Since ν = εi
εe

= k2
i
k2
e
, the u term drops out, so

ξ2 =(ν − 1)dn
dp
· (n2,−n1)∂u

∂s + n2fp(1− ν)∂
2u

∂s2 . (5.8)

Recalling further that the parametrization (x1, x2) = (t, f(t, p)) has an upward normal
given by n1 = −ft(t,p)√

1+ft(t,p)2 , n2 = 1√
1+ft(t,p)2 , then the derivatives with respect to p are

given by

dn
dp

= (−1,−ft(t, p))
(1 + ft(t, p)2)3/2 ftp(t, p) = n2

2ftp(−n2, n1).

Thus the expressions for ξ1 and ξ2 can be simplified to

ξ1 =fpn2(1− ν)∂u
∂n , (5.9)

ξ2 =n2
2ftp(1− ν)∂u

∂s + n2fp(1− ν)∂
2u

∂s2 . (5.10)

At this point, all quantities are known: f is prescribed, u and ∂u
∂n on the surface are

obtained from the integral solver. The tangential derivatives can be recast as derivatives
in the parameter t by noticing that

∂u

∂s =n2
∂u

∂x1
− n1

∂u

∂x2
= n2

∂u

∂x1
+ n2ft

∂u

∂x2
= n2

(
∂u

∂x1
+ ∂u

∂x2
ft

)
= n2

du

dt
,

∂2u

∂s2 =n2
d

dt

(
n2
du

dt

)
= n2

(
dn2
dt

du

dt
+ n2

d2u

dt2

)
= n2

(
n1n

2
2ftt

du

dt
+ n2

d2u

dt2

)
.

To summarize, the dependence of the scattering solution u on a profile parameter p
satisfies the following PDE system:

∆utp + k2
i u

t
p = 0 on D, (5.11a)

∆up + k2
eup = 0 on DC , (5.11b)

utp = up + ξ1 on ∂D, (5.11c)
∂utp
∂n = ν

∂up
∂n + ξ2 on ∂D, (5.11d)

34
where

ξ1 =fpn2(1− ν)∂u
∂n , (5.12)

ξ2 =n3
2(1− ν)

(
(ftp + fpfttn1n2)du

dt
+ fp

d2u

dt2

)
, (5.13)

and n = (n1, n2) is the upward pointing unit normal to the surface ∂D. Note that all
the quantities used in the formula for ξ1 and ξ2 are known, except for the derivatives of
u with respect to the parameter t, which can be easily computed via Fourier transforms,
since u is quasi-periodic.

5.2 Integral formulation

In this section, a system of integral equations is derived for up. This system is the same
as the integral system (4.10) with a new right-hand side, and thus solving for up will have
the same computational cost as solving for u once this new right hand side is computed.

From the system of PDE’s (5.11), expressions similar to (4.5) are obtained for uip
and up using Green’s theorem and taking limits as x→ ∂D

1
2u

i
p(x) =

∫
∂D

{
Φi(x, y)

∂uip(y)
∂ny

− uip(y)∂Φi(x, y)
∂ny

}
ds(y) x ∈ ∂D, (5.14a)

1
2up(x) =

∫
∂D

{
up(y)∂Φe(x, y)

∂ny
− Φe(x, y)∂up(y)

∂ny

}
ds(y) x ∈ ∂D. (5.14b)

Using the boundary conditions (5.11c) on utp and (5.11d) on ∂utp
∂n ,

1
2[up(x) + ξ1(x)] =

∫
∂D

{
Φi(x, y)

[
ν
∂up(y)
∂ny

+ ξ2(y)
]

−[up(y) + ξ1(y)]∂Φi(x, y)
∂ny

}
ds(y) x ∈ ∂D, (5.15a)

1
2up(x) =

∫
∂D

{
up(y)∂Φe(x, y)

∂ny
− Φe(x, y)∂up(y)

∂ny

}
ds(y) x ∈ ∂D. (5.15b)

Expressions similar to (4.6) are obtained for ∂utp
∂n and ∂up

∂n by taking the normal

35
derivative with respect to x in Green’s theorem and letting x→ ∂D:

1
2
∂utp(x)
∂nx

=
∫
∂D

{
∂Φi(x, y)
∂nx

∂utp(y)
∂ny

− utp(y)∂
2Φi(x, y)
∂nx∂ny

}
ds(y) x ∈ ∂D, (5.16a)

1
2
∂up(x)
∂nx

=
∫
∂D

{
up(y)∂

2Φe(x, y)
∂nx∂ny

− ∂Φe(x, y)
∂nx

∂up(y)
∂ny

}
ds(y) x ∈ ∂D. (5.16b)

Using the boundary conditions (5.11c) on utp and (5.11d) on ∂utp
∂n ,

1
2

[
ν
∂up(x)
∂nx

+ ξ2(x)
]

=
∫
∂D

{
∂Φi(x, y)
∂nx

[
ν
∂up
∂ny

+ ξ2

]

−[up + ξ1]∂
2Φi(x, y)
∂nx∂ny

}
ds(y) x ∈ ∂D, (5.17a)

1
2
∂up(x)
∂nx

=
∫
∂D

{
up
∂2Φe(x, y)
∂nx∂ny

− ∂Φe(x, y)
∂nx

∂up
∂ny

}
ds(y) x ∈ ∂D. (5.17b)

Adding equations (5.15) together, and equations (5.17) together, and taking advantage
of the quasi-periodicity of the unknowns up and ∂up

∂n as well as that of the auxiliary
quantities ξ1 and ξ2,

up +
∫

P

{
up
∂(Gi −Ge)

∂ny
− (νGi −Ge)∂up

∂ny

}
ds(y)

= −1
2ξ1 +

∫
P

{
Giξ2 − ξ1

∂Gi

∂ny

}
ds(y), (5.18a)

ν + 1
2

∂up
∂nx

+
∫

P

{
up
∂2(Gi −Ge)
∂nx∂ny

− ∂(νGi −Ge)
∂nx

∂up
∂ny

}
ds(y)

= −1
2ξ2 +

∫
P

{
∂Gi

∂nx
ξ2 − ξ1

∂2Gi

∂nx∂ny

}
ds(y). (5.18b)

Note the integral operator on the left-hand side of the system is the same as in
system (4.10), so it can be discretized and inverted numerically in the same way. The
system can be thus expressed compactly as

L

 up
∂up
∂n

 = rhs,

where L is the integral operator on the left hand side of (5.18), and rhs is its right hand
side. The only difference between this system and (4.10) is this new right-hand side.

36
While most of the integral terms appearing here are similar to the ones appearing in
the operator L and can be evaluated using similar numerical techniques, the normal
derivative of the double-layer potential, Tξ1 is fundamentally different:

1
2(Tξ1)(x) =

∫
P
ξ1(y)∂

2Gi(x, y)
∂nx∂ny

ds(y), x ∈ ∂D. (5.19)

This integral operator can be handled using the identity

Tξ1 = d

ds
S

(
dξ1
ds

)
+ k2

i n · S(nξ1), (5.20)

which holds as long as ξ1 ∈ C1,η for 0 < η < 1 [63], and where s is an arclength
parametrization of the surface and Sξ1 is the single-layer potential

1
2(Sξ1)(x) =

∫
P
Gi(x, y)ξ1(y)ds(y). (5.21)

Thus, given the parametrization x = x(t) = (t, f(t)), y = y(τ) = (τ, f(τ)),

(Tξ1)(x(t))
2 = 1

|x′(t)|
d

dt

∫ t+ d
2

t− d2
Gi(x(t), y(τ))ξ′1(τ)dτ

+ k2
i n(t) ·

∫ t+ d
2

t− d2
Gi(x(t), y(τ))n(τ)ξ1(τ)|y′(τ)|dτ. (5.22)

Since the integrand Gi(x(t), y(τ))ξ′1(τ) is periodic, applying Leibniz’s integral rule we
can take the derivative d

dt inside the integral:

(Tξ1)(x(t))
2 =

∫ t+ d
2

t− d2

1
|x′(t)|

d

dt
Gi(x(t), y(τ))ξ′1(τ)dτ

+ k2
i n(t) ·

∫ t+ d
2

t− d2
Gi(x(t), y(τ))|y′(τ)|n(τ)ξ1(τ)dτ. (5.23)

Thus the right hand side of system (5.18) can be expressed as

rhs1 = −1
2ξ1(t) + I5(t)− I6(t), (5.24a)

rhs2 = −1
2ξ2(t) + I7(t)− I8(t)− I9(t), (5.24b)

37
where using the same surface parametrization as before,

I5(t) =
∫ t+ d

2

t− d2
Gi(x(t), y(τ))|y′(τ)|︸ ︷︷ ︸

K5(t,τ)

ξ2(τ)dτ, (5.25a)

I6(t) =
∫ t+ d

2

t− d2

∂Gi(x(t), y(τ))
∂ny

|y′(τ)|︸ ︷︷ ︸
K6(t,τ)

ξ1(τ)dτ, (5.25b)

I7(t) =
∫ t+ d

2

t− d2

∂Gi(x(t), y(τ))
∂nx

|y′(τ)|︸ ︷︷ ︸
K7(t,τ)

ξ2(τ)dτ, (5.25c)

I8(t) =
∫ t+ d

2

t− d2

1
|x′(t)|

d

dt
Gi(x(t), y(τ))︸ ︷︷ ︸
K8(t,τ)

ξ′1(τ)dτ. (5.25d)

I9(t) = k2
i n(t) ·

∫ t+ d
2

t− d2
Gi(x(t), y(τ))|y′(τ)|︸ ︷︷ ︸

K5(t,τ)

n(τ)ξ1(τ)dτ, (5.25e)

Note that kernels K5, K6 and K7 are weakly singular, and can be evaluated using
largely the same decomposition and Chebyshev quadrature that was used for the weakly
singular kernels on the left-hand-side. As for the hypersingular kernel K8, it is possible to
integrate it efficiently using a different decomposition and exact evaluation of a complex
contour integral, as shall be discussed in the following sections.

5.3 Decomposition of the weakly singular kernels K5, K6

and K7

In this section we show that each of the kernels K5, K6 and K7 has a logarithmic
singularity and can be decomposed as K(t, τ) = K,1(t, τ) ln |t− τ | + K,2(t, τ), where
K,1(t, τ) and K,2(t, τ) are smooth functions of their arguments.

Recall that for points x, y within one period of each other, the Green’s function may
be decomposed as follows, (4.22)

G(x, y) = i

4H
(1)
0 (k|x− y|) +D(x, y), (5.26)

where D(x, y) is an analytic function of its arguments. Let r(t, τ) = |x(t) − y(τ)| =√
(t− τ)2 + (f(t)− f(τ))2. Using this decomposition of the Green’s function, together

38
with the series representation (A.7a) of the Hankel function of first kind, the logarithmic
singularity of the K5(t, τ) kernel can be isolated as follows:

K5(t, τ) = Gi(x(t), y(τ))|y′(τ)|

=
[
i

4H
(1)
0 (kir(t, τ)) +D(x, y)

]
|y′(τ)|

= i

4

[2i
π
J0(kir(t, τ)) ln

(
ki
2 r(t, τ)

)
+A0(kir(t, τ))

]
|y′(τ)|+D(x(t), y(τ))|y′(τ)|,

= −|y
′(τ)|

2π J0(kir(t, τ))
[
ln |t− τ |+ ln

(
ki
2
r(t, τ)
|t− τ |

)]
+ i

4A0(kir(t, τ))|y′(τ)|+D(x(t), y(τ))|y′(τ)|

= K5,1(t, τ) ln |t− τ |+K5,2(t, τ),

where

K5,1(t, τ) = −|y
′(τ)|

2π J0(kir(t, τ)),

K5,2(t, τ) = K5,1(t, τ) ln
(
ki
2
r(t, τ)
|t− τ |

)
+ i

4A0(kir(t, τ))|y′(τ)|+D(x(t), y(τ))|y′(τ)|.

Here, r(t,τ)
|t−τ | =

√
1 +

(
f(t)−f(τ)

t−τ

)2
goes to |x′(t)| as τ → t, and D(x, y) is a smooth function

of its arguments. Moreover, J0(z) and A0(z) are even and smooth functions of their
arguments, and sgn(t− τ)r(t, τ) is a smooth function of t and τ . Therefore both kernels
K5,1(t, τ) and K5,2(t, τ) are smooth, and their diagonal terms are

K5,1(t, t) = −|x
′(t)|

2π , (5.27a)

K5,2(t, t) =
{[−1

2π ln
(
ki
2 |x

′(t)|
)

+ i

4 −
1

2πγ
]

+D(x(t), y(t))
}
|x′(t)|. (5.27b)

To compute kernel K6(t, τ), note first that

∂

∂ny
Gi(x, y) = ∂

∂ny

[
i

4H
(1)
0 (ki|x− y|) +D(x, y)

]
= i

4
(
−H(1)

1 (ki|x− y|)
)
ki
∂|x− y|
∂ny

+ ∂D(x, y)
∂ny

, (5.28)

and that

∂|x− y|
∂ny

= ny · ∇y
√

(x1 − y1)2 + (x2 − y2)2 = ny · (y1 − x1, y2 − x2)
|x− y|

(5.29)

39

Figure 5.1: The Chebyshev interpolation of kernels K5,1 and K5,2 with 32 terms is
accurate to 11 digits. Note the rapid decay of the Chebyshev coefficients for each kernel.

for all y 6= x. Using this with points x(t) = (t, f(t)) and y(τ) = (τ, f(τ)) on the surface,
and recalling that ny = (−f ′(τ),1)

|y′(τ)| , the kernel K6(t, τ) can be written as follows

K6(t, τ) = ∂Gi(x(t), y(τ))
∂ny

|y′(τ)|

= −iki4 H
(1)
1 (kir(t, τ))(−f ′(τ), 1) · (τ − t, f(τ)− f(t))

r(t, τ) + |y′(τ)|∂D(x(t), y(τ))
∂ny

= −ik
2
i

4 c(τ, t)H
(1)
1 (kir(t, τ))
kir(t, τ) + |y′(τ)|∂D(x(t), y(τ))

∂ny
,

where c(τ, t) = f(τ)− f(t)− f ′(τ)(τ − t). Using the series representation (A.8),

K6(t, τ) = −ik
2
i

4 c(τ, t)
[−2iJ0(kir(t, τ))

π[kir(t, τ)]2 + 2iJ1(kir(t, τ))
πkir(t, τ) ln

(
ki
2 r(t, τ)

)
+A2(kir(t, τ))

]
+ |y′(τ)|∂D(x(t), y(τ))

∂ny

= −c(τ, t)J0(kir(t, τ))
2πr(t, τ)2 + k2

i

2πc(τ, t)
J1(kir(t, τ))
kir(t, τ)

[
ln |t− τ |+ ln

(
ki
2
r(t, τ)
|t− τ |

)]
− ik2

i

4 c(τ, t)A2(kir(t, τ)) + |y′(τ)|∂D(x(t), y(τ))
∂ny

= K6,1(t, τ) ln |t− τ |+K6,2(t, τ),

40
where

K6,1(t, τ) = k2
i

2πc(τ, t)
J1(kir(t, τ))
kir(t, τ) , (5.30a)

K6,2(t, τ) =K6,1(t, τ) ln
(
ki
2
r(t, τ)
|t− τ |

)
− c(τ, t)

[
J0(kir(t, τ))
2πr(t, τ)2 + ik2

i

4 A2(kir(t, τ))
]

+ |y′(τ)|∂D(x(t), y(τ))
∂ny

. (5.30b)

As can be seen from the series expansion (A.4b), J1(z)/z → 1/2 as z → 0 and is a smooth
and even function of its argument. Since sgn(t− τ)r(t, τ) is smooth, the kernel K6,1(t, τ)
must be smooth as well. Similarly, A2(z) is a smooth and even function (see (A.8)), so
the A2(kir(t, τ)) term is smooth. It remains then to show that the c(τ,t)

2πr(t,τ)2J0(kir(t, τ))
term is smooth to conclude that the kernel K6,2(t, τ) is also smooth. This can be seen
by taking the limit as τ → t and using l’Hospital’s rule:

lim
τ→t

c(τ, t)
r(t, τ)2 = lim

τ→t

f(τ)− f(t)− f ′(τ)(τ − t)
(t− τ)2 + (f(t)− f(τ))2 (5.31)

= lim
τ→t

−f ′′(τ)(τ − t)
−2(t− τ)− 2f ′(τ)(f(t)− f(τ)) (5.32)

= lim
τ→t

−f ′′′(τ)(τ − t)− f ′′(τ)
2− 2f ′′(τ)(f(t)− f(τ)) + 2f ′(τ)2 (5.33)

= −f ′′(t)
2(1 + f ′(t)2) (5.34)

Therefore both kernels K6,1(t, τ) and K6,2(t, τ) are smooth, and their diagonal terms
are

K6,1(t, t) = 0, (5.35a)

K6,2(t, t) = f ′′(t)
4π(1 + f ′(t)2) + |x′(t)|∂D(x(t), y(t))

∂ny
. (5.35b)

The kernel K7(t, τ) is very similar to K6(t, τ), and uses the normal derivative at x

∂|x− y|
∂nx

= nx · (x1 − y1, x2 − y2)
|x− y|

(5.36)

41

Figure 5.2: The Chebyshev interpolation of kernels K6,1 and K6,2 with 32 terms is
accurate to 11 digits. Note the rapid decay of the Chebyshev coefficients for each kernel.

for y 6= x. Thus the decomposition is almost identical to that of K6(t, τ):

K7(t, τ) = ∂Gi(x(t), y(τ))
∂nx

|y′(τ)|

= −ik
2
i

4 c(t, τ)H
(1)
1 (kir(t, τ))
kir(t, τ) + |y′(τ)|∂D(x(t), y(τ))

∂nx
= K7,1(t, τ) ln |t− τ |+K7,2(t, τ),

where

K7,1(t, τ) = k2
i

2πc(t, τ)J1(kir(t, τ))
kir(t, τ) , (5.37a)

K7,2(t, τ) = K7,1(t, τ) ln
(
ki
2
r(t, τ)
|t− τ |

)
− c(t, τ)

[
J0(kir(t, τ))
2πr(t, τ)2 + ik2

i

4 A2(kir(t, τ))
]

+ |y′(τ)|∂D(x(t), y(τ))
∂nx

(5.37b)

are smooth for the same reasons, noting that

lim
τ→t

c(t, τ)
r(t, τ)2 = lim

τ→t

c(τ, t)
r(t, τ)2 = −f ′′(t)

2(1 + f ′(t)2) . (5.38)

The diagonal terms in this case are

K7,1(t, t) = 0, (5.39a)

K7,2(t, t) = f ′′(t)
4π(1 + f ′(t)2) + |x′(t)|∂D(x(t), y(t))

∂nx
. (5.39b)

42

Figure 5.3: The Chebyshev interpolation of kernels K7,1 and K7,2 with 32 terms is
accurate to 8 digits. Note the rapid decay of the Chebyshev coefficients for each kernel.

5.3.1 Numerical evaluation of weakly singular integrals I5, I6, I7, I9

Recall that

I5(t) =
∫ t+ d

2

t− d2
K5(t, τ)ξ2(τ)dτ, I6(t) =

∫ t+ d
2

t− d2
K6(t, τ)ξ1(τ)dτ, (5.40a)

I7(t) =
∫ t+ d

2

t− d2
K7(t, τ)ξ2(τ)dτ, I9(t) = k2

i n(t) ·
∫ t+ d

2

t− d2
K5(t, τ)n(τ)ξ1(τ)dτ, (5.40b)

Since all the kernels here are logarithmic and similar to kernels K1 through K4, these
integrals can be evaluated using previously described methods. As ξ1(t) and ξ2(t) are
known quasi-periodic functions, they can be well approximated by truncated Floquet
expansions:

ξ1(τ) ≈
N∑

n=−N
f1
ne
iαnτ , ξ2(τ) ≈

N∑
n=−N

f2
ne
iαnτ , (5.41a)

n1(τ)ξ1(τ) ≈
N∑

n=−N
g1
ne
iαnτ , n2(τ)ξ1(τ) ≈

N∑
n=−N

g2
ne
iαnτ , (5.41b)

43
where the coefficients can be computed efficiently via an FFT. Using these approximation
in the integral expressions,

I5(t) ≈
N∑

n=−N
f2
nW

n
5 (t), I6(t) ≈

N∑
n=−N

f1
nW

n
6 (t), (5.42a)

I7(t) ≈
N∑

n=−N
f2
nW

n
7 (t), I9(t) ≈ k2

i

N∑
n=−N

(n1(t)g1
n + n2(t)g2

n)Wn
5 (t), (5.42b)

where

Wn
5 (t) =

∫ t+ d
2

t− d2
K5(t, τ)eiαnτdτ, Wn

6 (t) =
∫ t+ d

2

t− d2
K6(t, τ)eiαnτdτ, (5.43)

Wn
7 (t) =

∫ t+ d
2

t− d2
K7(t, τ)eiαnτdτ. (5.44)

Recall from the previous sections that kernels K5, K6 and K7 have a logarithmic
singularity.

5.4 Decomposition of the hyper-singular kernel K8

To isolate the singularity of kernel K8, recall that the quasi-periodic Green’s function
can be written as follows:

Gi(x, y) = i

4H
(1)
0 (ki|x− y|) +D(x, y), (5.45)

where D is an analytic function [52]. Moreover,
(
H

(1)
0

)′
= −H(1)

1 , thus the derivative of
Gi becomes:

d

dt
Gi(x(t), y(τ)) = d

dt

(
i

4H
(1)
0 (kir(t, τ)) +D(x(t), y(τ))

)
(5.46)

=−iki4 H
(1)
1 (kir(t, τ))dr(t, τ)

dt
+∇xD(x(t), y(τ)) · x′(t), (5.47)

where r(t, τ) = |x(t) − y(τ)| =
√

(t− τ)2 + (f(t)− f(τ))2. The singular part of this
expression comes from H

(1)
1 , which can be expressed as

H
(1)
1 (z) =J1(z) + iY1(z)

=J1(z)− 2i
zπ

+ 2i
π

[
ln
(
z

2

)
+ γ

]
J1(z)− i

π

∞∑
p=0

(−1)p

p!(p+ 1)!

(
z

2

)1+2p
(hp+1 + hp)

=−4
iki

(−ki
2πz + L(z)

)
,

44

where L(z) = −iki
4 H

(1)
1 (z) + ki

2πz is a smooth function of z, with limz→0 L(z) = 0 (see
appendix A.1). Kernel K8 can then be expressed as follows:

|x′(t)|K8(t, τ) = d

dt
Gi(x(t), y(τ)) (5.48)

=−iki4 H
(1)
1 (kir(t, τ))dr(t, τ)

dt
+∇xD(x(t), y(τ)) · x′(t) (5.49)

=dr(t, τ)
dt

[−1
2πr(t, τ) + L(kir(t, τ))

]
+∇xD(x(t), y(τ)) · x′(t) (5.50)

=−i
d

1
1− e

2πi
d

(τ−t)
+ dr(t, τ)

dt

−1
2πr(t, τ) −

−i
d

1
1− e

2πi
d

(τ−t)︸ ︷︷ ︸
M(t,τ)

+ dr(t, τ)
dt

L(kir(t, τ)) +∇xD(x(t), y(τ)) · x′(t), (5.51)

where M(t, τ) is smooth (see appendix A.3) with limτ→tM(t, τ) = i
2d

(
1− d

2πi
f ′′(t)f ′(t)
1+f ′(t)2

)
,

and dr(t,τ)
dt is bounded as τ → t (see appendix A.2), so limτ→t

dr(t,τ)
dt L(kir(t, τ)) = 0.

Thus the singularity in kernel K8(t, τ) can be isolated as follows

K8(t, τ) = −i
d|x′(t)|

1
1− e

2πi
d

(τ−t)︸ ︷︷ ︸
K8,1(t,τ)

+ M(t, τ)
|x′(t)| + L(kir(t, τ))

|x′(t)|
dr(t, τ)
dt

+∇xD(x(t), y(τ)) · x
′(t)
|x′(t)|︸ ︷︷ ︸

K8,2(t,τ)

(5.52)

Here, the kernel K8,2 is smooth, and the diagonal term is

K8,2(t, t) = i

2d|x′(t)|

(
1− d

2πi
f ′′(t)f ′(t)
1 + f ′(t)2

)
+∇xD(x(t), y(t)) · x

′(t)
|x′(t)| . (5.53)

5.5 Numerical evaluation of hypersingular singular inte-
gral I8

Given the decomposition of kernel K8 introduced in the previous section, the integral I8

can be written as

I8(t) =
∫ t+ d

2

t− d2
K8,1(t, τ)ξ′1(τ)dτ︸ ︷︷ ︸

I8,1(t)

+
∫ t+ d

2

t− d2
K8,2(t, τ)ξ′1(τ)dτ︸ ︷︷ ︸

I8,2(t)

, (5.54)

45
where K8,1 is hypersingular and K8,2 is smooth. To evaluate the hypersingular integral,
ξ′1 is expressed as a Floquet series:

ξ′1(τ) ≈
N∑

n=−N
hne

iαnτ , (5.55)

leading to

I8,1(t) ≈
N∑

n=−N
hn

∫ t+ d
2

t− d2
K8,1(t, τ)eiαnτdτ︸ ︷︷ ︸

Wn
8,1(t)

. (5.56)

The hypersingular integral Wn
8,1(t) is to be understood as a Cauchy principal value near

the point τ = t, and can be calculated explicitly as a complex integral over the smooth
path γ : [t− d

2 , t+ d
2]→ {|z| = 1} defined by γ(τ) = e

2πi
d

(τ−t):

Wn
8,1(t) = −i

d|x′(t)|

∫ t+ d
2

t− d2

eiαnτ

1− e
2πi
d

(τ−t)
dτ (5.57)

= −1
2π|x′(t)|e

iαnt
∫
|z|=1

z(αn d
2π−1)

1− z dz. (5.58)

Note that the singularity at z = 1 is integrable as a Cauchy principal value, and the
singularity at z = 0 is also integrable as long as the exponent c = αn

d
2π − 1 > −1, as

will be shown shortly. Recalling that αn = α+ 2π
d n, the case n > −αd

2π guarantees that
c > −1. The case n ≤ −αd

2π can be handled by considering the complex conjugate of
Wn

8,1(t):

Wn
8,1(t) = i

d|x′(t)|

∫ t+ d
2

t− d2

e−iαnτdτ

1− e
−2πi
d

(τ−t)
(5.59)

= −i
d|x′(t)|e

−2πi
d

t
∫ t+ d

2

t− d2

e−iαn−1τdτ

1− e
2πi
d

(τ−t)
(5.60)

= −1
2π|x′(t)|e

−2πi
d

te−iαn−1t
∫
|z|=1

z−αn−1
d

2π

1− z
dz

z
(5.61)

=−e
−iαnt

2π|x′(t)|

∫
|z|=1

z−αn
d

2π

1− z dz, (5.62)

where the integration path is the same as the one used for Wn
8,1(t). The exponent of z is

now c = −αn d
2π = −αd

2π − n ≥ 0, since n ≤ −αd
2π . Thus it is sufficient to evaluate

I(c) =
∫
|z|=1

zc

1− z dz (5.63)

46
for the case c > −1, which is done in appendix A.4. The value of the integral is then
given by the expression

Wn
8,1(t) = −eiαnt

2π|x′(t)|

−iπ + i sin
(
αnd

2

) [
Ψ
(

1
2 + αnd

4

)
−Ψ

(
αnd

4

)]
, if n > −αd

2π

iπ − i sin
(
αnd

2

) [
Ψ
(
1− αnd

4

)
−Ψ

(
1
2 −

αnd
4

)]
, if n ≤ −αd2π ,

where Ψ is the digamma function.

5.6 Numerical integration with smooth kernel K82

The numerical evaluation of the smooth integral

I8,2(t) =
∫ t+ d

2

t− d2
K8,2(t, τ)ξ′1(τ)dτ (5.64)

can be done either directly or by introducing a Floquet approximation:

ξ′1(τ) ≈
N∑

n=−N
hne

iαnτ , (5.65)

as was done for kernels K5,2, K6,2 or K7,2. While it is tempting to do this, here this
approach does not work so well, as will be shown below. Rather, a direct quadrature is
shown to perform better.

Floquet approximation of ξ′1

Introducing the Floquet approximation of ξ′1(t) in the integral I8,2,

I8,2(t) ≈
N∑

n=−N
hn

∫ t+ d
2

t− d2
K8,2(t, τ)eiαnτdτ︸ ︷︷ ︸

Wn
8,2(t)

. (5.66)

The weights Wn
8,2 can then be approximated by using a Chebyshev interpolant for K8,2

and the pre-computed values for Chebyshev polynomials integrated against einπx.
This approach does not yield similar accuracy as before however, despite kernel K8,2

being smooth, just like kernels K5,2, K6,2 and K7,2. Indeed, the kernel has a strong
variation near the center of the integration interval, leading the Chebyshev interpolation
to converge more slowly, as shown in figures 5.4 and 5.5. The interpolation is only

47
accurate to 3 digits even when 128 interpolation points are used. In contrast, the
Chebyshev interpolations of kernels K5,1, K5,2, K6,1, K6,2, K7,1 and K7,2 are accurate
to at least 8 digits using only 32 interpolation points. Here the accuracy was estimated
as the mean squared difference between the kernel and its interpolant at twice as many
Chebyshev nodes as were used to fit that interpolant.

Figure 5.4: The Chebyshev interpolation of kernel K8,2 with 16 and 32 terms is accurate
only to 2 digits. The interpolations from the Chebfun package are identical to machine
precision for 16 terms, but starts to differ from the manual interpolation with 32 terms.

The weights Wn
8,2(t) may also be evaluated using other quadratures. The trapezoidal

rule, as well as Matlab’s buil-in adaptive quadratures quad and quadgk were tested.
Quadgk was used since it may most efficient for high accuracy and oscillatory integrands,
as is the case here, and it can handle moderate singularities at the endpoints (Matlab
help files).

For the trapezoidal rule, the number of nodes is specified. For quad, a tolerance level
is specified, and the number of function evaluations needed to reach that tolerance is
output by quad. In the case of quadgk, the maximum number of function evaluations
is specified, and quadgk returns an error bound when it reaches either the maximum
number of evaluations or machine precision. The resulting convergence of the integral
I8,2 as a function of number of function evaluation is shown in the two figures below,
where the measured error is the difference in the integral value from one iteration to the
next.

Note that both Chebyshev interpolation and trapezoidal rule perform similarly in

48
this case, with only about 9 digits of accuracy for 4096 kernel evaluations. Matlab’s
built-in quadratures both perform worse, with quad stalling if asked for a tolerance of
less than 10−7, and quadgk losing accuracy if allowed to use more than 256 nodes. This
could be due to the oscillatory nature of the integrand, K8,2(t, τ)eiαnτ , or to the fact
that K8,2(t, τ) is hard to evaluate numerically for t ≈ τ , even though it is a smooth
function at t = τ .

Direct quadrature of K8,2(t, τ)ξ′1(τ)

Since the oscillatory integrand introduced by the Floquet approximation is completely
artificial, and seems to cause problems with the numerical integration, another approach
is to bypass the Floquet approximation and use a direct quadrature for

I8,2(t) =
∫ t+ d

2

t− d2
K8,2(t, τ)ξ′1(τ)dτ. (5.67)

This may be done since K8,2(t, τ) is known and can be easily evaluated at most points
τ , except perhaps τ ≈ t. The same is true of ξ′1(τ).

Using the trapezoidal rule, the convergence (figure 5.8) is no different than the
trapezoidal rule used in conjunction with the Floquet approximation, with 4097 function
evaluations achieving less than 9 digits of accuracy. The only advantage being that now
the quadrature must be performed only once, as opposed to 2N + 1 times for the Floquet
approximation.

Using a Chebyshev approximation with the same number of points, the accuracy
increases slightly to just over 9 digits. Looking at the distribution of the interpolation
error measured at 8192 Chebyshev nodes, it is apparent that the integrand is not
sufficiently well approximated by the interpolant near the center of the interval (τ ≈ t).
One reason for this could be that while the interpolant itself has a high variation near
τ = t, the Chebyshev nodes used for the interpolation are concentrated away from this
point. Ideally, to take full advantage of a Chebyshev quadrature, the integrand should
have the largest variation near the endpoints. However, this cannot be achieved here
by a shift of the integrand, since the integrand at τ + d/2 is in no way related to the
integrand at τ . Instead, to better resolve the large variation near τ = t, the integration
interval can be split in two: τ < t and τ > t, and a Chebyshev quadrature can be used
on each interval.

49
Using this split Chebyshev quadrature, the integration error does not improve much,

though the interpolation error seems to be even more concentrated around the point
τ = t, even though this point is now the end-point of two integration intervals, and as
such has a high concentration of Chebyshev nodes. This seems to indicate an adaptive
quadrature would be more suitable.

Using Matlab’s built-in adaptive quadrature function quad, the error does not improve
past 9 digits of accuracy, for a comparable number of function evaluations. Quadgk
diverges after 256 function evaluations.

Direct quadrature using linear interpolation of K8,2(t, τ) near τ = t

Since none of the quadrature tested above achieve an integration error below 10−9,
despite using a smooth, non-oscillatory integrand and adaptive quadratures, it could be
the case that the evaluation of K8,2(t, τ) itself near τ = t is causing the loss of accuracy.

Note that while K8,2(t, τ) itself is smooth, the expression in (5.52) is not easily
evaluated. Instead, K8,2 is evaluated numerically as K8 −K8,1. Since both K8(t, τ) and
K8,1 are singular near τ = t, their difference has a large round-off error, as can be seen in
figure 5.12, where K8,2(t, τ) is evaluated at 1000 points in the interval t+ [−10−3, 10−3].

A first-order solution to this problem is to linearly interpolate K8,2 on this interval
using the values K8,2(t, t− 10−5) and K8,2(t, t+ 10−5). Thus, for |τ − t| < 10−5,

K8,2(t, τ) ≈ K8,2(t, τ−) + (K8,2(t, τ+)−K8,2(t, τ−)) τ − τ
−

τ+ − τ−
, (5.68)

τ± = t± 10−5. (5.69)

Neither the trapezoidal rule nor the Chebyshev quadrature with up to 212 function
evaluations are affected by this, since neither evaluate points close enough to τ = t.

For the split Chebyshev interpolation, up to 30 points need to be evaluated with
the linear approximation, which improves the Chebyshev interpolation by 4 digits near
τ = t. However the integration error only improves marginally.

The biggest improvement occurs when the adaptive quadratures are used, with quad
now achieving 12 digits of accuracy with around 1200 function evaluations, and quadgk
achieving the same accuracy with only 32 function evaluations.

50

Figure 5.5: With 64 terms, the Chebyshev interpolation of kernel K8,2 is accurate only
to 3 digits. The Chebfun overfits badly. With 128 terms, the accuracy is still around 3
digits.

Figure 5.6: Convergence error for integral I8,2 using Floquet approximation of ξ′1 and
Chebyshev interpolation of kernel K8,2 (right), versus trapezoidal rule directly on integral
Wn

8,2 (left).

51

Figure 5.7: Convergence error for integral I8,2 using Floquet approximation of ξ′1 and
Matlab’s built-in adaptive quadrature quad (right), versus quadgk (left).

Figure 5.8: Convergence error for integral I8,2 using the trapezoidal rule.

52

Figure 5.9: Convergence error for integral I8,2 using a Chebyshev interpolation of the
kernel K8,2(t, τ)ξ′1(τ) (left), along with the interpolation error distribution on the interval
[−1, 1] (right).

Figure 5.10: Convergence error for integral I8,2 using a split Chebyshev interpolation of
the kernel K8,2(t, τ)ξ′1(τ) (left), along with the interpolation error distribution on both
integration intervals (right).

53

Figure 5.11: Convergence error for integral I8,2 using Matlab’s built-in adaptive quadra-
tures quad (left) and quadgk (right).

Figure 5.12: Numerical noise in the evaluation of the smooth kernel K8,2.

54

Figure 5.13: Convergence error for integral I8,2 using a split Chebyshev interpolation of
the kernel K8,2(t, τ)ξ′1(τ) (left), along with the interpolation error distribution on both
integration intervals (right).

Figure 5.14: Convergence error for integral I8,2 using Matlab’s built-in adaptive quadra-
tures quad (left) and quadgk (right).

Chapter 6

Derivative-Free Optimization

The choice of an optimization method depends on the objective function that will be
optimized. Different choices of objective function shall be discussed in detail in the
next chapter, but for now it is sufficient to observe that, for the purposes of designing
nanoplasmonic gratings, the objective function will always depend on the electromagnetic
field resulting from the illumination of the grating by some incident wave. While this field
can be obtained using the integral equations solver outlined previously, the forward solver
is a highly non-linear function of the grating profile, with no guarantees of convexity
that would greatly help with the optimization. Thus a robust optimization method must
be chosen.

Consider the following optimization problem: given a grating whose profile is described
by a function f(t,p), where p = (p1, p2, ..., pr) are parameters controlling the geometry
of the profile, and the resulting field u(t, f(t,p)), minimize a given objective function
J(u) over all parameters p in a given parameter space Ω ∈ Rr.

Optimizing the objective function would greatly benefit from information contained
in the derivatives of J(p). In the absence of accurate gradient information, this could be
approximated by finite-differences or other methods, but doing so is computationally
expensive, as it requires at least 2 function evaluations per parameter to approximate a
single gradient with second order accuracy. While the forward solver is relatively fast
(as compared to previously used methods in nanoplasmonics), repeating this at every
iteration of the optimization algorithm may still be too expensive in a virtual design
setting. In light of this observation, derivative-free methods will be used here.

55

56
6.1 Derivative-Free Trust Region Algorithm

Recalling that the objective function of interest is non-linear, a second-order optimization
algorithm is selected, as it can capture curvature information. The algorithm used here
searches for a local minimum in the objective function by approximating it with a
quadratic interpolation model, then minimizing or at least sufficiently decreasing the
latter within a trust region. If the new point also decreases the objective function
sufficiently, then it is accepted as a new iterate. This “sufficient” decrease, which shall be
made precise below, guarantees the global convergence of the algorithm to second-order
critical points.

For a point to be a minimum of a second-order model m, it is sufficient to be a
stationary point where the Hessian is positive definite. Thus finding a minimum of the
model can be achieved by minimizing both the size of the gradient and the size of the
most negative eigenvalue of the Hessian (if it exists), both captured in the following
measure of second-order stationarity [64]:

σ = max{‖∇m‖,−λmin(H(m))}.

The algorithm can be divided into six broad steps listed below [65]. The initialization
step is only done once, while the other five are repeated until some stopping criteria is
met.

0. Initialization Step. Decide on the initial point, trust region and model.

1. Criticality Step. If the stationarity of the model at the current iterate is small,
meaning that the algorithm is close to a stationary point, make sure the model is
more accurate by reducing trust-region radius and improving model.

2. Step Calculation. Use current model as a proxy for finding a trial point that may
reduce the objective function on the trust region.

3. Acceptance of Trial point. Check that the trial point indeed reduces the objective
function sufficiently.

4. Model Improvement. Update the model to include the trial point and check it is
fully quadratic on the possibly updated trust region.

57
5. Trust-Region Radius Update. Update the radius of the trust-region depending

on the reduction in objective function in step 3.

The stopping criteria may be reaching a maximum number of iterations kmax, having
the second-order stationarity σmk within some tolerance of 0, or having the value of the
objective function itself J(pk) within some tolerance of 0, when that makes sense. The
steps of the algorithm are now laid out in detail.

0. Initialization Step. Decide on the initial point, trust region and model.
1. Fix the maximum trust region radius ∆max.
2. Choose an initial point p0 and trust region radius ∆0 ∈ (0,∆max).
3. Choose an initial interpolation set Y0 with the correct dimension for the search

space. A minimal positive basis with uniform angles is chosen here as the initial
interpolation set.

4. Construct an initial fully-quadratic interpolation model m0 on the trust region
B(p0,∆0), and compute its gradient g0, its Hessian H0 at p0, as well as the
second-order stationarity

σm0 = max{‖g0‖,−λmin(H0)}.

5. Choose thresholds η0 and η1 such that 0 ≤ η0 ≤ η1 < 1 and 0 < η1 that
will determine whether the relative reduction of the objective function is good,
acceptable or unacceptable.

6. Choose trust-region radius increase and decrease factors γinc and γdec such that

0 < γdec < 1 < γinc.

7. Choose criticality threshold εc > 0 below which the second-order stationarity of
the model must be on the same scale as the trust-region radius.

8. Choose bounds µ > β > 0 for the ratio between the trust-region radius and the
stationarity of the model, in the case in which the latter is below the criticality
threshold.

9. Choose ω ∈ (0, 1) as the incremental decrease factor for the trust-region radius in
the criticality step.

58
10. Choose multiplicative factor r to allow points up to r∆k away from the current

iterate to be kept at the acceptance of trial-point step.
11. Set k = 0.

1. Criticality Step. Check that the model is fully-quadratic and that the trust-region
radius is comparable with the measure of stationarity if the latter is close to 0.

If σmk > εc keep current model and trust-region radius.

Otherwise check whether the model is already fully-quadratic or not.

If the model is certified as being fully quadratic and ∆k ≤ µσmk keep cur-
rent model and trust-region.

Otherwise gradually decrease trust region radius until it’s comparable to the
stationarity. Set i = 0. Set m(0)

k = mk and ∆(0)
k .

1. While ∆(i)
k > µσm

(i)
k :

(a) Decrease trust-region radius ∆(i+1)
k = ω∆(i)

k .
(b) Call model-improvement algorithm on the model m(i+1)

k until it is
fully-quadratic on B(pk,∆

(i+1)
k).

(c) Compute new stationarity σm(i+1)
k for model m(i+1)

k .
(d) Increment index i by 1.

2. Use the new, possibly changed model mk = m
(i)
k .

3. Set the new trust-region radius ∆k = min{max{∆(i)
k , βσ

m(i)
k },∆k}.

2. Step Calculation. Use current model as a proxy for finding a trial point that
may reduce the objective function on the trust region. Compute step sk such that
pk + sk ∈ B(pk,∆k) and that m(pk + sk) sufficiently decreases the model m.

A decrease that is sufficient for convergence to second-order critical points is one that
is bounded below by a fraction of the decrease achieved by minimizing in the direction
of the steepest descent. Moreover, since we are dealing with a quadratic model, the
decrease must also be similarly related to the decrease achieved by minimizing in the
direction of the greatest negative curvature.

These two conditions are quantified by finding the Cauchy step and the eigenstep
respectively. The find the Cauchy step, the model m is minimized in the direction of the

59
steepest descent −‖gk‖, while remaining inside the trust region B(pk,∆k):

tC = argmin
t>0

pk−tgk∈B(pk,∆k)

m(pk − tgk).

Then the Cauchy step is given by sCk = −tCgk. The eigenstep sE minimizes the model in
the direction of the most negative eigenvalue of the Hessian Hk of the model, assuming
it has at least one negative eigenvalue. Thus sE satisfies

Hks
E = λmin(Hk)sE .

To ensure that m(pk + sE) does indeed provide a decrease in the model, the direction of
sE is chosen such that sE · gk < 0. The negative curvature guarantees that the minimum
along this direction is achieved when pk + sE is on the boundary of the trust region,
therefore the magnitude of the eigenstep must be ‖sE‖ = ∆k. The best decrease provided
by either the Cauchy step or the eigenstep is called the optimal decrease, and is given
by m(pk)−min{m(pk + sC),m(pk + sE)}.

Thus a step sk is said to sufficiently decrease the model m at pk if it decreases it by
more than a constant fraction κfod ∈ (0, 1] of the optimal decrease:

m(pk + sk) ≥ κfod[m(pk)−min{m(pk + sC),m(pk + sE)}].

In practice, such a step can be calculated by computing the Cauchy step and possibly
the eigenstep if Hk has negative eigenvalues, and choosing the one that provides the best
decrease in the model.

3. Step Acceptance of Trial point. Check that the trial point indeed reduces the
objective function sufficiently. The previous step guarantees that the decrease in the
model m(pk)−m(pk + sk) is sufficiently large. This step ensures that the decrease in
the objective function itself is comparable, by computing the fraction

ρk = f(pk)− f(pk + sk)
m(pk)−m(pk + sk)

.

Depending on whether the model mk can be certified as fully-quadratic and on the value
ρk and the thresholds η0 and η1 (0 ≤ η0 ≤ η1 < 1, η1 6= 0) fixed in the initialization step,
four cases are distinguished:

60
Successful: If ρk ≥ η1, accept the new point pk + sk as the new iterate pk+1.

Acceptable: If η1 > ρk ≥ η0 and the model mk is fully quadratic, accept the new point
pk+1 = pk + sk as the current iterate, but reduce the trust-region radius in step 5.

Model improving: If η1 > ρk and the model mk is not fully-quadratic, reject the new
iterate and improve the model in the next step.

Unsuccessful: If ρk < η0 and the model mk is fully-quadratic, reject the new iterate
and decrease the trust-region radius in step 5.

In all of these cases (whether the iterate changes or not), the trial point pk + sk is added
to the sample set Yk. Even if this point is not the new iterate, its inclusion may improve
the model, and the costly function evaluation has already been done. Hence the new
point is simply added to the set Yk. The center of the trust region is moved to the new
iterate pk+1, and points outside the ball of radius r∆k around pk+1 are discarded from
the set Yk. Since the set may no longer be suitable for a fully-quadratic interpolation (it
may have too many or too few points for example), the model-improvement algorithm is
applied to obtain a new model mk+1.

4. Model Improvement. If ρk < η1, call model-improvement algorithm until model
is fully quadratic, and use this as the model mk+1 for the next iteration.

5. Trust-Region Radius Update. The radius of the trust-region is updated de-
pending on the case determined at the trial acceptance step:

Successful, i.e. ρk ≥ η1: the trust-region radius is increased by γinc up to the maximum
allowed, ∆k+1 = min{γinc∆k,∆max}.

Acceptable or unsuccessful, i.e. ρk < η1 and the model mk was found to be fully
quadratic: the trust-region radius is decreased by a fixed factor γdec, ∆k+1 =
γdec∆k.

Model improving, i.e. ρk < η1 and the model mk was not fully quadratic: the
trust-region radius remains unchanged, ∆k+1 = ∆k.

The iterate k is incremented by 1 and steps one through five are repeated until the
stopping criteria is met.

61
6.2 Implementation

The implementation of the DFO algorithm relies heavily on certain parameter choices,
as well as the choice of a starting point and starting model. Moreover, the standard
algorithm description leaves certain coding details open to interpretation. This sections
attempts to cover all such choices made in this particular implementation of the DFO
algorithm.

6.2.1 Choice of parameters

The performance of the DFO algorithm is highly sensitive to the choice of a dozen
optimization parameters fixed throughout the algorithm.

Probably the most critical parameters are the choice of a starting point and trust
region radius for the initial model. A good choice of starting point relies heavily on some
prior knowledge of the features of the objective function. Generally, when dealing with
a nanoplasmonic structure, domain knowledge usually defines a range of configuration
parameters where the minimum is expected to occur. Thus choosing starting parameters
in the middle of their ranges when known, and choosing a 0 starting point for those
parameters with no known range. A complementary approach is to use multiple random
starting point (using known ranges where possible) and see which leads to the largest
decrease in objective function after a set number of iterations.

Experience shows that the maximum trust region radius must be on the same scale
as the size of the largest feature of the objective function, while the initial trust region
should be large enough to capture both the initial guess and the true minimum. Since
these parameters effectively act as upper bounds to the step size of the algorithm,
choosing ∆’s that are too small may slow down the algorithm, while choosing ∆’s that
are too large may lead the the algorithm to miss out on smaller features of the function
in the beginning, before it has a chance to appropriately reduce the trust region radius.
Given these observations, ∆max is generally take to be on the same scale as either the
largest known feature of the objective function, or the radius of the search region. Given
∆max, the initial trust region radius is taken as half of that value: ∆0 = 1

2∆max.

62
6.2.2 Choice of model

Once an initial point is selected, a model of the objective function must be built in a
region of radius ∆0 around it. The initial model differs from subsequent models in that it
does not have any previously evaluated points to rely on. Thus a set of (n+ 1)(n+ 2)/2
points must then be chosen to interpolate a quadratic model in n dimensions. The points
are chosen so as to ensure the set is Λ-poised, for the poisedness constant Lambda fixed
in the algorithm. In order to do so, a minimal positive basis with uniform angles is used.
The points lying ∆0 away along the n + 1 basis vectors form a set that is poised for
linear interpolation, as pointed out in [65]. This set, together with the initial point, is
completed to a Λ-poised set using the model improvement algorithm.

6.3 Validation

In order to test the implementation of the DFO algorithm, a few standard optimization
test functions with known global minima is used.

First and foremost, the algorithm is tested on the sphere function in n dimensions:

fsphere(x) =
n∑
i=1

x2
i ,

for n = 2, n = 3 and n = 9, with a search range of −5 ≤ xi ≤ 5. The true minimum
being at xi = 0∀i, a random initial point in the specified range is chosen. Since the
algorithm uses a quadratic model to interpolate the underlying objective functions, it is
expected to find the true minimum within a single iteration. This is indeed observed for
all three values of n. The parameters used for these results, as well as the starting point
for all the following optimization problems are:

∆max = 20 Λ = 10

εc = 10−2 µ = 1 β = 4.5 ω = 1/2

η0 = 0 η1 = 0.5

γdec = 0.2 γinc = 2 r = 1 tol = 10−15.

In each of the three tests, the algorithm reduces the objective function to machine
precision (i.e. below the specified tolerance of 10−15 within 11, 18, and 101 function

63

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x2

x3

Iterations
Starting point
True minimum

50 60 70 80 90 100 110
−20

−15

−10

−5

0

5

Number of Function calls

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 (

lo
g

10
 s

ca
le

)

Figure 6.1: Convergence of the DFO algorithm on a quadratic test function in nine
dimensions. The plot on the left shows the iterates on a two-dimensional cross-section of
the contour plot of the function, while the plot on the right shows that machine precision
is reached within a single iteration, requiring a total of 101 function calls.

calls respectively for the sphere functions in 2, 3 and 9 dimensions. Figure 6.1 illustrates
the search path taken by the algorithm on a two-dimensional cross-section of the nine-
dimensional sphere function. It also shows the error going from an initial error around
2 to below 10−15 in a single iteration. This outcome is observed across many different
starting points in the given search range.

A slightly different test function is the Booth function in two dimensions:

fBooth(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2,

a skewed quadratic function with a 0 minimum at x = (1, 3). Using the same optimization
parameters as before, convergence to the true minimum is achieved with 13 function
calls, although as shown in figure 6.2, two iterations are needed here due to the shape
of the objective function. Note that while another iteration was needed over the two-
dimensional sphere function, only two extra function calls were made. This is because
many of the points where the objective function is computed are reused from one iteration
to another.

To test how the algorithm performs on functions with a nearly flat profile near the
minimum, the Goldstein-Price function is used. The function is given by the following

64

−10 −5 0 5 10
−10

−5

0

5

10

x1

x2

Iterations
Starting point
True minimum

8 9 10 11 12 13
−20

−15

−10

−5

0

5

Number of Function calls

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 (

lo
g

10
 s

ca
le

)

Figure 6.2: Convergence of the DFO algorithm on a quadratic test function in two
dimensions. The plot on the left shows the iterates on a two-dimensional cross-section of
the contour plot of the function, while the plot on the right shows that machine precision
is reached within two iteration, requiring a total of 13 function calls.

equation:

fGoldstein−Price(x) =(1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))

(30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2))− 3,

and has its minimum at f(0,−1) = 0, its salient features appearing in the square
−2 ≤ xi ≤ 2. The starting point is placed outside the flat region at (1.3, 1.8). The same
parameters as before are used. The search predictably takes many more iterations than
for the quadratic functions, as shown in figure 6.3, but converges steadily to the true
minimum, which it reaches within machine precision after 127 function calls.

The next test function used is the Beale, a function similar to the Goldstein-Price,
but with a much flatter profile, thus posing a greater challenge to the optimization
algorithm. The profile

fBeale(x) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x
2
2)2 + (2.625− x1 + x1x

3
2)2

is mostly flat in the square −4.5 ≤ xi ≤ 4.5, with sharp peaks at the four corners and has
a 0 minimum at (3, 0.5). To really test out the algorithm, the initial guess is placed on
one of the peaks, at (−3,−4). Since the main feature of the function is larger than either
of the functions considered before, the maximum trust region radius is increased. The

65

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Iterations
Starting point
True minimum

0 20 40 60 80 100 120 140
−20

−15

−10

−5

0

5

Number of Function calls

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 (

lo
g

10
 s

ca
le

)

Figure 6.3: Convergence of the DFO algorithm on the Golstein-Price test function in two
dimensions. The plot on the left shows the iterates on a two-dimensional cross-section of
the contour plot of the function, while the plot on the right shows that machine precision
is reached within two iteration, requiring a total of 127 function calls.

difficult flat profile also suggests the thresholds for acceptable and successful iteration be
both increased. Thus the following parameters are changed from those used previously:

∆max = 100 η0 = 0.1 η1 = 0.6.

Figure 6.4 shows the search path of the algorithm as it approaches the true minimum,
which it reaches after 279 function evaluations.

A different kind of challenge to an optimization algorithm is posed by the Rosenbrock
function, whose unique minimum lies in a steep and curved valley:

fRosenbrock(x) = 100
(
x2 − x2

1

)2
+ (x1 − 1)2 .

The unique minimum lies at (1, 1). Starting with an initial guess at (−1,−1) forces the
algorithm to follow the steep curved valley in order to converge to the correct point.
Since the valley is relatively narrow, the maximum trust-region radius is reduced, while
most other optimization parameters are kept at their default values:

∆max = 0.1 γdec = 0.5 γinc = 2.5.

The convergence is shown in figure 6.5. As expected, after a relatively quick initial
descent into the valley, convergence slows down as the algorithm follows the bottom

66

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

x1

x2

Iterations
Starting point
True minimum

0 50 100 150 200 250 300
−20

−15

−10

−5

0

5

Number of Function calls

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 (

lo
g

10
 s

ca
le

)

Figure 6.4: Convergence of the DFO algorithm on the Beale test function in two
dimensions. The plot on the left shows the iterates on the contour plot of the function,
which is mostly flat except for a sharp dip at the origin. while the plot on the right
shows that machine precision is reached with 279 function calls.

of the valley, then speeds up again as it enters the nearly-quadratic region around the
global minimum.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Iterations
Starting point
True minimum

0 100 200 300 400 500
−20

−15

−10

−5

0

5

Number of Function calls

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 (

lo
g

10
 s

ca
le

)

Figure 6.5: Convergence of the DFO algorithm on the Rosenbrock test function in two
dimensions. The plot on the left shows the iterates on a contour plot of the function,
while the plot on the right shows that machine precision is reached with 413 function
calls.

Chapter 7

Optimal Design of
Nanoplasmonic Surfaces

As discussed in Chapter 2, nanoplasmonic devices rely on the excitation of a surface
plasmon polariton (SPP) on the interface between a dielectric and a conducting material,
most often a metal. One way to excite these SPPs is to use a carefully designed, periodic
corrugation of the metal surface [66]. It is the goal of this chapter to show how gratings
that support SPPs can be designed using the integral equation methods and DFO
algorithm described in previous chapters.

7.1 Objective functions

SPPs are electromagnetic waves that arise when an incident electromagnetic field excites
the electron cloud at the surface of the metal at a critical resonant frequency. These
waves propagate along the metal/dielectric interface and decay sharply away from it.
Thus one way to design SPP-supporting grating surfaces is to directly maximize the
surface field enhancement compared to the incident field.

For another approach, notice that for an SPP, the energy of the incident field is
almost completely transferred into modes that decay in the far field, so that the reflected
field is very small away from the interface. Finding a grating that sufficiently minimizes
this reflectivity would also ensure that this grating supports SPPs.

Let’s see what these objective functions translate to in terms of the quantities

67

68
introduced so far.

7.1.1 Maximum point-wise surface field

Consider, as in chapter 4, a metallic grating whose profile is described by the function
f(t), for t ∈ [0, d]. Consider also a monochromatic wave with wavelength λ, incident at
an angle θ from the normal. This wave is described by

uinc(x1, x2) = ei(αx1−βx2),

where α = ke sin(θ) and β = ke cos(θ), and ke = 2π
λ denotes the exterior wave number.

An approximation of the resulting surface field is obtained by using the integral
equation forward solver to solve for the Floquet coefficients an:

u(t) ≈
n=N∑
n=−N

ane
iαnt

where αn = α+ 2nπ/d.
In order to maximize the point-wise enhancement of this field with respect to the

incident field, the following objective function must be minimized:

J = mint∈[0,d]

{
|uinc(t)|
|u(t)|

}
. (7.1)

7.1.2 Minimal reflectivity

Instead of maximizing the surface field, one could also minimize the reflectivity in order
to obtain a surface that supports SPPs. Recall from (4.17) the Rayleigh expansion of
the scattered field,

us(x1, x2) =
∞∑

n=−∞
bene

i(αnx1+βenx2),

valid only for x2 > maxx1{f(x1)}, where ben are the exterior Rayleigh coefficients and
βen =

√
k2
e − α2

n. Note that only those modes n for which βen > 0 propagate away from
the surface, while those where βen ∈ iR decay rapidly away from the surface. The set of
propagating modes is the set

U =
{
n : −|ke| − α <

2nπ
d

< |ke| − α
}
,

69
and the reflectivity is the sum of the energies

en = βen
β
|ben|2

for each of the propagating nodes. As discussed before, a grating that supports SPPs is
a grating where the propagating modes carry no energy away from the surface, or in
other words the reflectivity

R =
∑
n∈U

βen
β
|ben|2

must be much smaller than 1. This can be achieved by minimizing the objective function:

J = R. (7.2)

7.2 Parameter search space

Note that each of the objective functions J(u) described above depend on the grating
profile f(t) through the field u(t, f(t)). This profile f(t,p), in turn, depends on a
number of free parameters p = (p1, p2, ..., pr) that can be varied over a certain parameter
space Ω ∈ Rr in order to minimize the objective functions described above. These
parameters could be the period of the grating, its depth, as well as minimal curvature or
maximal slope. More generally, the surface of a smooth two dimensional periodic grating
considered in this work can be represented by a Fourier series, whose coefficients can be
treated as free parameters. For simplicity, the search space is restricted to surfaces that
can be represented by truncated Fourier cosine series:

f(t) =
r∑

k=1
pk cos

(
dkt

2π

)
,

where as before, d is the period of the grating, and where the vertical offset is assumed
to be 0 since it does not affect any of the objective functions of interest here. The period
d itself could be used as a search parameter, though in practice this is the parameter
that is least variable, since observation has shown that only gratings with periods close
to the wavelength of the incident field support SPPs.

70
7.3 Implementation

The Derivative-Free Optimization algorithm described in Chapter 6 is used to minimize
the objective functions described above. While the theory behind this algorithm is well-
established, the implementation is tricky: the algorithm relies on the careful selection
of more than a dozen different hyper-parameters, including a starting point, and there
is no documented way of selecting them. Moreover, a model must also be selected for
approximating the objective function within the trust-region. Based on experimentation
using the standard test functions used to test the algorithm in the previous chapter, some
of these parameters are more critical than others. The choices made for these critical
parameters are outlined below. The other parameters values are left unchanged from
those chosen in Chapter 6. Similarly, the same quadratic model, based on a Λ-poised set
of points, and outlined in the previous chapter is used.

The first implementation parameter that must be fixed is the dimension r of the
parameter search space. Since this parameters determines the complexity of the grating’s
surface profile, it must be large enough that at least one gratings described with only
r Fourier coefficients can support SPPs. On the other hand, a large r hampers the
performance of the DFO algorithm. Through experimentation with different values, it is
concluded that a value r = 5 results in both a reasonably tractable optimization problem,
and very good final values of the objective function.

The second critical choice in this or any optimization problem is the choice of a
starting point, or initial guess of a surface profile in this case. From the extensive
literature on nanoplasmonic gratings emerges a pattern that the height of the gratings
is always much smaller than their period, with heights typically no greater than 50nm
for periods in the 400 - 700nm range. This suggests that 1) a flat profile would be a
good starting point for the search space and 2) none of the 5 Fourier coefficients should
be larger than 25nm, so the optimal solution should exist in a trust region of radius no
larger than about 50nm. This conclusion informs the choice of the initial trust region
radius ∆0 and the maximum trust region radius ∆max by providing an upper bound. In
practice, setting ∆max = 50nm is too loose of a constraint, since trust region centers
can move at each iteration and end up far outside the ball of radius 50nm centered at 0.
Instead, using ∆max = 1 and ∆0 = 1/2 has proven to achieve good objective function

71
values, and not get stuck in minima.

Once the search space, the initial profile and family of models are chosen, the
optimization algorithm needs thresholds η0 and η1 for deciding between successful,
acceptable and unsuccessful iterations, as detailed in Chapter 6. The higher these values,
subject to 0 ≤ η0 ≤ η1 < 1, the closer the quadratic model must be to the underlying
objective function in order to be trusted. Since there is no reason to expect the objective
function to be quadratic, it is expected that a quadratic model may not be a very good
approximation. Therefore the threshold values for successful and acceptable iteration
cannot be very stringent. The values η0 = 0 and η1 = 0.5 are used through most of the
numerical experiments.

The last critical co ice for the path that the algorithm will take through the search
space are the trust-region radius increase and decrease factors γinc and γdec. Recall
from Chapter 6 that these are the factors used to increase the radius of the current
model’s trust region in a successful iteration, or decrease it in the case of an acceptable
or unsuccessful iteration. These largely determine the extent to which the algorithm is
greedy vs cautious. In choosing these parameters, a balance must be struck between
a greedy algorithm that can more easily be stuck in local minima and a very cautious
algorithm that converges very slowly. After experimenting with different combinations
of values, it seems that γinc = 2 and γdec = 0.2 work well for the application at hand.

7.4 Results

In this section different setups that could support SPPs are explored, and their exact
geometry is optimized for the different objective functions described above. The exact
implementation parameters vary in each case, as the complexity of the forward problem
as well as the complexity of objective landscape itself vary. The values used in each case
are found through a combination of grid-search and heuristic reasoning, as discussed
below. All the different examples share the basic setup of a silver grating with period
d = 530nm illuminated by an incoming plane wave with wavelength λ = 555nm. In all
these examples, the profile is modeled as a Fourier series (as described in section 7.2)
with 5 non-zero coefficients.

72
7.4.1 Minimal reflectivity under normal incidence

The following results arise from optimizing the grating profile when the incident field is
incoming at 0 degrees from the vertical (normal). The objective here is to minimize the
reflectivity of the surface. Since at normal incidence the forward problem is relatively
simple, using N = 64 terms in the Floquet series approximations proves to be sufficient.
The optimization landscape likewise turns out not to be very challenging. Once the max-
imum trust-region radius is reduced to ∆max = 0.1, using the relatively lax optimization
threshold values η0 = 0, η1 = 0.5 and the relatively greedy trust-region increase and
decrease parameters γdec = 0.2, γinc = 2 leads to excellent results.

Figure 7.1 shows the convergence of the DFO algorithm on the left, and the grating
profile corresponding to the optimal point achieved on the right. Note that fewer than
600 evaluations (function calls) of the expensive objective function were necessary in
order to bring the value of the reflectivity to machine precision. It is interesting to see
that the height of the grating is around 40nm, confirming the initial assumption on the
maximal height of SPP-supporting gratings.

0 100 200 300 400 500 600
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
Convergence of the DFO algorithm minimizing surface reflectivity

Number of Function calls

R
ef

le
ct

iv
ity

 (
lo

g
10

 s
ca

le
)

0 100 200 300 400 500 600
−30

−20

−10

0

10

20

30
Profile after optimization with 5 Fourier coefficients

Figure 7.1: The DFO algorithm uses less than 600 evaluations of the objective function
to reduce the reflectivity to machine precision 0. The corresponding grating profile, on
the right, has a total height of around 40nm.

Figure 7.2 shows the magnitude of the electromagnetic field in a 1300nm band around
the grating surface. It is clear from this image that the objective of the optimization was
achieved and the final grating clearly exhibits a surface plasmon polariton. Almost no

73
energy is reflected far from the surface, while most of it is instead concentrated within
the first 100nm above the surface, a scale much smaller than the 550nm wavelength. The
field near the surface is also enhanced by a factor of at least 10, another clear indicator
of an SPP.

Figure 7.2: The field in a 1300nm band around the grating confirms the conclusion of
the DFO algorithm: most of the energy is concentrated very close to the surface, where
the field is highly enhanced.

7.4.2 Minimal reflectivity under oblique incidence

Using the same setup as before, the grating’s reflectivity is optimized in the case when
the incident plane wave is incoming at 27 degrees from the normal. In this case it is
necessary to increase the accuracy of the forward solver, so a value of N = 128 is used
for the number of Floquet series approximation terms. The optimization problem itself
is also more challenging, requiring more stringent thresholds η0 = 0.25 and η1 = 0.75
for acceptable and successful iterations. The maximum trust-region radius and the
increase/decrease parameters remain the same: ∆max = 0.1, γdec = 0.2, γinc = 2.

Figure 7.3 shows the convergence of the DFO algorithm on the left, and the grating
profile corresponding to the optimal point achieved on the right. After 1000 evaluations
(function calls) of the expensive objective function, the objective function achieves only
a value of 10−2.5.

74

0 200 400 600 800 1000 1200
−3

−2.5

−2

−1.5

−1

−0.5

0
Convergence of the DFO algorithm minimizing surface reflectivity

Number of Function calls

R
ef

le
ct

iv
ity

 (
lo

g
10

 s
ca

le
)

0 100 200 300 400 500 600
−50

0

50
Profile after optimization with 5 Fourier coefficients

Figure 7.3: The DFO algorithm uses 1000 evaluations of the objective function to reduce
the reflectivity to 10−2.5. The corresponding grating profile, on the right, has a total
height of 100nm.

Figure 7.4 shows the magnitude of the electromagnetic field in a 1300nm band around
the grating surface. It is clear from this image that the objective of the optimization was
achieved and the final grating clearly exhibits a surface plasmon polariton. Almost no
energy is reflected far from the surface, while most of it is instead concentrated within
the first 100nm above the surface, a scale much smaller than the 550nm wavelength. The
field near the surface is also enhanced by a factor of at least 7, another clear indicator of
an SPP.

7.5 Discussion

This chapter has explored some ways in which the derivative-free optimization algorithm
can be combined with the efficient integral equation solver to do computer-assisted
design of nanoplasmonic gratings.

Firstly, the design problem has been inscribed within the framework of derivative-free
optimization. To do so, the objective function has been clearly defined in terms of the
output of the integral equation solver, and the optimization spaced has been defined
as the space of truncated Fourier cosine functions used to model the grating profile.
The choice of initial starting point for the optimization algorithm, as well as some
fixed geometric parameters, are informed by domain knowledge about nanpoplasmonic

75

Figure 7.4: The field in a 1300nm band around the grating confirms the conclusion of
the DFO algorithm: most of the energy is concentrated very close to the surface, where
the field is highly enhanced.

surfaces.
Once the framework has been established, experimentation with the DFO algorithm

hyperparameters leads to rapid convergence to minima of the objective functions. These
minima, while not guaranteed to be global, solve the design problem in that the cor-
responding gratings do indeed support surface plasmons, as shown in figures 7.2 and
7.4.

In light of these results, the methods described herein show clear potential in the
design of nanoplasmonic devices.

Chapter 8

Conclusion

The field of nanoplasmonics has enjoyed a rise in popularity in recent years. This
popularity is deserved in light of its many success stories, ranging from near-field optical
microscopes to nanoantennas to biosensors such as the home pregnancy test, but also
the potential it holds for a wider range of biosensors, high-density optical storage
or high-efficiency solar cells among others. Since nanodevices are highly sensitive to
specific material properties and geometry in ways that are not yet completely understood,
designing new devices relies heavily on trial-and-error. To speed up the process, numerical
simulations are often used in lieu of trials, but there is still much room for improvement
upon the state-of-the-art methods used in the field.

This thesis improves the design process in two ways: firstly by introducing a new
simulation method based on integral equation methods that is much faster than the
methods currently used in the field, and secondly by proposing the use of a derivative-free
trust-region optimization algorithm to replace the manual trial-and-error design process
itself. The overall achievement of this thesis is to show that these two methods can
indeed be successfully used in the virtual design of nanoplasmonic surfaces.

The first important contribution of this thesis towards the final objective is the
development of a new, efficient integral equation method for simulating an electromagnetic
field near a periodic, 2D metallic nano-grating in a dielectric medium. This does not
appear in the literature up to this point. As shown in chapter 4, the method relies on a
frequency-domain formulation of the transmission problem, which leads to a system of
Helmholtz equations that are in turn reformulated as a system of integral equations of

76

77
the second kind. Chapter 4 also details some of the challenges of this approach, such
as the singularities in the integral equations kernels and the balance between precision
and speed in the numerical evaluating the green’s functions involved. These challenges
are addressed by reformulating the integral equations in terms of a linear combination
of Green’s functions, and using three different Green’s functions representations for
different regions of the domain, depending on their convergence speed in that region.

The second important contribution of this thesis is the implementation of a derivative-
free optimization algorithm and its application to the design of nanoplasmonic surfaces.
While the DFO algorithm itself has been discussed in literature [65], implementation
details are left to up to the reader. Moreover, the algorithm relies on over a dozen
hyper-parameters, whose careful tuning has a large impact on performance. These
implementation details and hyperparameter tuning strategies are discussed in chapter 6.
Chapter 7 shows how the DFO algorithm can be used in conjunction with the integral
equations solver to design nanoplasmonic surfaces. To achieve this, the design problem
was recast in an optimization framework by defining an objective function and an
optimization space. A few design examples are explored, and in each case the algorithm
developed here is able to rapidly find solutions which correspond to metallic gratings
that exhibit surface plasmons, as expected. This is a clear indication of the algorithm’s
potential applications in the design of nanoplasmonic devices.

There are a number of directions in which the current algorithm can be improved
in order to make it more precisely suited to nanodevice manufacturers. Firstly, the
optimization space could be expanded by either using additional Fourier terms in the
surface representation, or using an entirely different geometric parametrization that more
closely mimics the parameters that can be controlled in a fabrication setting. For an even
larger space of feasible surfaces, the integral equations solver could to be extended to
handle non-smooth interfaces. A further natural extension of the solver would be to 3D
domains. This poses a number of challenges, such as finding a way to efficiently evaluate
3D Green’s function for Maxwell’s equations, and managing the increased computational
complexity.

As far as the design problem is concerned, another promising research direction is
the development of additional objective functions, better tailored to the real-life needs
of nanodevice builders, who may be interested in for example a large reflectivity drop

78
over varying illumination wavelengths or angles.

In a related area, adapting the methods introduced here into an inverse problem
solver is another exciting direction of future inquiry. The design problem solved here and
the inverse problem naturally have fundamental differences, notably questions around
uniqueness of solutions. But the algorithm developed in this thesis also has many of
the elements of an inverse solver. Such an inverse solver could help with nanoplasmonic
fabrication by providing a way to “see” the shape that is being built.

Finally, all the algorithms implemented thus far could benefit for an additional boost
in computational performance by taking advantage of parallel computing architecture.
Indeed this is a natural fit in many parts of the algorithm, as many of the Green’s
function or objective function evaluation, currently the performance bottlenecks, are
fundamentally independent of each other.

Bibliography

[1] Jord Cornelis Prangsma. Local and dynamic properties of light interacting with
subwavelength holes. PhD thesis, University of Twente, 2009.

[2] Edward D. Palik. Handbook of optical constants of solids II. Academic Press, 1991.

[3] Mark I. Stockman. Nanoplasmonics: The physics behind the applications. Physics
Today, 64(2):39–44, 2011.

[4] G. Mie. Contributions to the optics of turbid media, particularly of colloidal metal
solutions. 25, 3(Annalen der Physik):377–445, 1908.

[5] R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction
grating spectrum. Proc. Phys. Soc. London, 18(269), 1902.

[6] U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves
on metallic surfaces (sommerfeld’s waves). JOSA, 31(3):213–222, 1941.

[7] Stefan A. Maier. Plasmonics: Fundamentals and Applications. Springer, 2007.

[8] T. W. Ebessen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. Extraordinary
optical transmission through sub-wavelength hole arrays. Letters to Nature, 391:667–
669, 1998.

[9] E. Popov, M. Neviere, S. Enoch, and R. Reinisch. Theory of light transmission
through subwavelength periodic hole arrays. Physical Review B, 62(23):16100–16108,
2000.

[10] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers. Light passing
through subwavelength apertures. Reviews of Modern Physics, 82(1):729–787, 2010.

79

80
[11] Peter Zijlstra, James W. M. Chon, and Min Gu. Five-dimensional optical recording

mediated by surface plasmons in gold nanorods. Nature, 459:410–413, 2009.

[12] Nathan C. Lindquist, Prashant Nagpal, Antoine Lesuffleur, David J. Norris,
and Sang-Hyun Oh. Three-dimensional plasmonic nanofocusing. Nano Letters,
10(4):1369–1373, 2010.

[13] John David Jackson. Classical Electrodynamics. John Wiley & Sons, 1999.

[14] Tilo Arens and Thorsten Hohage. On radiation conditions for rough surface
scattering problems. IMA J Appl Math, 70(6):839–847, 2005.

[15] Simon N. Chandler-Wilde and Bo Zhang. A uniqueness result for scattering by
infinite rough surfaces. SIAM J. APPL. MATH., 58(6):1774–1790, 1998.

[16] Fernando Reitich and Oscar Bruno. Solution of a boundary value problem for
the helmholtz equation via variation of the boundary into the complex domain.
Proceedings of the Royal Society of Edinburgh, 122A:317–340, 1992.

[17] W. Challener, I. Sendur, and C. Peng. Scattered field formulation of finite difference
time domain for a focused light beam in dense media with lossy materials. Opt.
Express, 11(23):3160–3170, 2003.

[18] Xianshi1 Lin and Xuguang Huang. Numerical modeling of a teeth-shaped nanoplas-
monic waveguide filter. Journal of the Optical Society of America B: Optical Physics,
26(7):1263–1268, 2009.

[19] Shyamsunder Erramilli Ahmet A. Yanik, Ronen Adato and Hatice Altug. Plasmon
hybridization in nanoapertures for development of an efficient nanoantenna array.
Proc. of SPIE, 7394, 2009.

[20] R. Fikri, D. Barchiesi, F. HÕDhili, R. Bachelot, A. Vial, and P. Royer. Modeling
recent experiments of apertureless near-field optical microscopy using 2d finite
element method. Optics Communications, 221:13–22, 2003.

[21] David P. Lyvers, Jeong-Mi Moon, Alexander V. Kildishev, Vladimir M. Shalaev,
and Alexander Wei. Gold nanorod arrays as plasmonic cavity resonators. ACS
Nano, 2(12):2569–2576, 2008.

81
[22] Kai Stannigel, Michael König, Jens Niegemann, and Kurt Busch. Discontinu-

ous galerkin time-domain computations of metallic nanostructures. Opt. Express,
17(17):14934–14947, 2009.

[23] J.S Hesthaven and T Warburton. Nodal high-order methods on unstructured grids:
I. time-domain solution of maxwell’s equations. Journal of Computational Physics,
181(1):186–221, 2002.

[24] Andreas M. Kern and Olivier J. F. Martin. Surface integral formulation for 3d
simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A,
26(4):732–740, 2009.

[25] José M. Taboada, Javier Rivero, Fernando Obelleiro, Marta G Araújo, and Luis
Landesa. Method-of-moments formulation for the analysis of plasmonic nano-optical
antennas. J. Opt. Soc. Am. A, 28(7):1341–1348, 2011.

[26] Wei E. I. Sha, Wallace C. H. Choy, Yongpin P. Chen, and Weng Cho Chew.
Optical design of organic solar cell with hybrid plasmonic system. Optics Express,
19(17):15908–15918, 2011.

[27] Babak Alavikia and Omar M. Ramahi. A hybrid finite element method - surface
integral equation using quasi-periodic green’s function in solving the problem of
scattering from infinite periodic conducting grating. In Antennas and Propagation
Society International Symposium, IEEE, 2010.

[28] K.S. Yee. Numerical solution of initial boundary value problems involving maxwell’s
equations in isotropic media. IEEE Trans. Antennas and Propagation, 16:302–307,
1966.

[29] A. Taflove. Advance in Computational Electro-dynamics: The Finite Difference
Time Domain Method. Artech House, 1998.

[30] Raju R. Namburu, Eric R. Mark, and Jerry A. Clarke. Scalable electromagnetic
simulation environment. CMES: Computer Modeling in Engineering & Sciences,
5(4):443–454, 2004.

82
[31] Richard Holland. Pitfalls of staircase meshing. IEEE Transactions on Electromag-

netic Compatibility, 35(4):434–439, 1993.

[32] S. Dey and R. Mittra. A locally conformal finite-difference time-domain (fdtd)
algorithm for modeling three-dimensional perfectly conducting objects. IEEE Micro.
Guided Wave Lett., 7:273–275, 1997.

[33] Wenhua Yu, R. Mittra, Xiaoling Yang, Yongjun Liu, Qinjiang Rao, and A. Muto.
High-performance conformal fdtd techniques. IEEE Microwave Magazine, 11(4):43–
55, 2010.

[34] Agostino Monorchio and Raj Mittra. A hybrid finite-element finite-difference time-
domain (fe/fdtd) technique for solving complex electromagnetic problems. IEEE
Microwave and Guided Wave Letters, 8(2):93–95, 1998.

[35] T. Namiki. A new fdtd algorithm based on alternating-direction implicit method.
IEEE Trans. Microw. Theory Techn, 47(10):2003–2007, 1999.

[36] F. Zheng, Z. Chen, and J. Zhang. A finite-difference time-domain method without the
courant stability conditions. IEEE Microwave and Guided Wave Letters, 9(11):441–
443, 1999.

[37] GERRIT MUR. Absorbing boundary conditions for the finite-difference approxima-
tion of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn.
Compat., 23(4):377–382, 1981.

[38] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromag-
netic waves. Journal of Computational Physics, 114(2):185 – 200, 1994.

[39] BJORN ENGQUIST and ANDREW MAJDA. Absorbing boundary conditions for
numerical simulation of waves. Proc. Natl. Acad. Sci., 74(5):1765–1766, 1977.

[40] Peter Monk. Finite Element Methods for Maxwell’s Equations. Clarendon Press,
2003.

[41] Bernardo Cockburn, Fengyan Li, and Chi-Wang Shu. Locally divergence-free
discontinuous galerkin methods for the maxwell equations. J. Comput. Phys.,
194(2):588–610, 2004.

83
[42] Leonid Kucherov and Dan Givoli. High-order absorbing boundary conditions

incorporated in a spectral element formulation. International Journal for Numerical
Methods in Biomedical Engineering, 26(9):1130–1143, 2010.

[43] Seppo Matias Jarvenpaa. Implementation of PML absorbing boundary condition for
solving Maxwell’s equations with Whitney elements. PhD thesis, Helsingin Yliopisto
(Finland), 2001.

[44] A. J. Poggio and E. K. Miller. Integral equation solutions of three-dimensional
scattering problems. In Raj Mittra, editor, Computer techniques for electromagnetics,
chapter 4. Oxford, New York, Pergamon Press, 1973.

[45] Rainer Kress. Linear Integral Equations. Springer, 1988.

[46] David Colton and Kress Rainer. Inverse Acoustic and Electromagnetic Scattering
Theory. Springer-Verlag, 1992.

[47] Oscar Bruno. New high-order integral methods in computational electromagnetism.
CMES, 5(4):319–330, 2004.

[48] R. E. Kleinman and G. F. Roach. Boundary integral equations for the three-
dimensional helmholtz equation. SIAM Review, 16(2):214–236, 1974.

[49] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 73:325–348, 1987.

[50] N. Nishimura. Fast multipole accelerated boundary integral equation methods. Appl
Mech Rev, 55(4):299–324, 2002.

[51] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. Aim: Adaptive integral method
for solving large-scale electromagnetic scattering and radiation problems. Radio
Sci., 31(5):1225–1252, 1996.

[52] O. P. Bruno and M. C. Haslam. Efficient high-order evaluation of scattering by
periodic surfaces: deep gratings, high frequencies, and glancing incidences. J. Opt.
Soc. Am. A, 26(3):658–668, 2009.

84
[53] O. P. Bruno and M. C. Haslam. Efficient high-order evaluation of scattering by

periodic surfaces: vector-parametric gratings and geometric singularities. Waves in
Random and Complex Media, pages 1–21, 2010.

[54] Gunther Schmidt and Bernd H. Kleemann. Integral equation methods from grating
theory to photonics: an overview and new approaches for conical diffraction. Journal
of Modern Optics, 58(5-6):407–423, 2010.

[55] Ozgur Ergul and Levent Gurel. Comparison of integral-equation formulations for
the fast and accurate solution of scattering problems involving dielectric objects
with the multilevel fast multipole algorithm. IEEE Transactions on antennas and
propagation, 57(1):176–187, 2009.

[56] Alexander Ihler. An overview of fast multipole methods. MIT Area Exam, 2004.

[57] Nail A. Gumerov and Ramani Duraiswami. Computation of scattering from clusters
of spheres using the fast multipole method. J. Acoust. Soc. Am., 117(4):1744–1761,
2004.

[58] Yoshihiro Otani and Naoshi Nishimura. A periodic FMM for Maxwell’s equations
in 3D and its applications to problems related to photonic crystals. J. Comput.
Phys., 227(9):4630–4652, 2008.

[59] Eric Darve and Pascal Havé. A fast multipole method for maxwell equations stable
at all frequencies. Phil. Trans. R. Soc. Lond. A, 362:603–628, 2004.

[60] Li Hu, Le-Wei Li, and Raj Mittra. Electromagnetic scattering by finite periodic
arrays using the characteristic basis function and adaptive integral methods. IEEE
Transactions of Antennas and Propagation, 58(9):3086–3090, 2010.

[61] Oscar P. Bruno and Leonid A. Kunyansky. A fast, high-order algorithm for the so-
lution of surface scattering problems: Basic implementation, tests, and applications.
JCP, 169:80–110, 2001.

[62] David Colton and Kress Rainer. Integral Equation Methods in Scattering Theory.
Wiley, 1983.

85
[63] Rainer Kress. On the numerical solution of a hypersingular integral equation

in scattering theory. Journal of Computational and Applied Mathematics, pages
345–360, 1995.

[64] A. Conn, N. Gould, and P. Toint. Trust Region Methods. Society for Industrial and
Applied Mathematics, 2000.

[65] A. Conn, K. Scheinberg, and L. Vicente. Introduction to Derivative-Free Optimiza-
tion. Society for Industrial and Applied Mathematics, 2009.

[66] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm. Surface-plasmon
resonance effect in grating diffraction. Physical Review Letters, 21(22):1530–1533,
1968.

[67] Milton Abramowitz and Irene Stegun. Handbook of Mathematical Functions. Na-
tional Bureau of Standards, 1964.

Appendix A

Appendix

A.1 Hankel functions

The Hankel functions of the first kind are defined as

H(1)
α (z) = Jα(z) + iYα(z), (A.1)

where Jα(z) and Yα(z) are the Bessel functions of first and second kind respectively.
Their derivatives are given by

d

dz
H

(1)
0 (z) = −H(1)

1 (z), (A.2)

d

dz
H

(1)
1 (z) = H

(1)
0 (z)− 1

z
H

(1)
1 (z). (A.3)

Series representations for the Hankel functions can be obtained from the series
representation of the Bessel function of the first kind ([67] 9.1.10),

J0(z) =
∞∑
p=0

(−1)p

(p!)2

(
z

2

)2p
, (A.4a)

J1(z) =
∞∑
p=0

(−1)p

p!(1 + p)!

(
z

2

)1+2p
, (A.4b)

and the series representation for the Bessel function of the second kind ([67] 9.1.11),

Y0(z) = 2
π

[
ln z2 + γ

]
J0(z)− 2

π

∞∑
p=0

(−1)p

(p!)2

(
z

2

)2p
hp, (A.5a)

Y1(z) = − 2
πz

+ 2
π

[
ln z2 + γ

]
J1(z)− 1

π

∞∑
p=0

(−1)p

p!(1 + p)!

(
z

2

)1+2p
(hp+1 + hp), (A.5b)

86

87
where hp =

∑p
m=1

1
m is the pth harmonic number and γ = limp→∞[hp − ln p] is the

Euler-Mascheroni constant. Note that J0(z) is an even function of z, while J1(z) is odd.
More generally, Jn(z) is an even function of z if n is even, and odd otherwise. Neumann’s
expansion of the Bessel function of the second kind ([67] 9.1.88) may also be useful:

Y0(z) = 2
π

[
ln z2 + γ

]
J0(z)− 4

π

∞∑
p=1

(−1)p

p
J2p(z), (A.6a)

Y1(z) = − 2
πz
J0(z) + 2

π

[
ln z2 + γ − 1

]
J1(z)− 2

π

∞∑
p=1

(−1)p(2p+ 1)
p(p+ 1) J2p+1(z). (A.6b)

Thus the following expansions are obtained for the Hankel’s functions:

H
(1)
0 (z) = 2i

π
ln z2J0(z) +

(
1 + 2i

π
γ

)
J0(z)− 4i

π

∞∑
p=1

(−1)p

p
J2p(z)︸ ︷︷ ︸

A0(z)

, (A.7a)

H
(1)
1 (z) = − 2i

πz
J0(z) +

[
1 + 2i

π

(
ln z2 + γ − 1

)]
J1(z)− 2i

π

∞∑
p=1

(−1)p(2p+ 1)
p(p+ 1) J2p+1(z)

︸ ︷︷ ︸
A1(z)

,

(A.7b)

where smoothness of the functions A0 and A1 follows from the smoothness of Jn(z) for
any integer n and the smoothness of Jn(z)/z for any n ≥ 1. Note also that A0(z) is an
even function of z.

A series expansion for H(1)
1 /z is also used in this thesis and can be obtained from

the previous series

1
z
H

(1)
1 (z) =− 2i

πz

[
J0(z)
z
− ln z2J1(z)

]
+
[
1 + 2i

π
(γ − 1)

]
J1(z)
z
− 2i
π

∞∑
p=1

(−1)p(2p+ 1)
p(p+ 1)

J2p+1(z)
z︸ ︷︷ ︸

A2(z)

, (A.8)

where A2(z) is a smooth, even function of z. The functions A(z) can be evaluated at
z = 0 by taking the limit as z → 0 of their series expansions, thus obtaining

A0(z) = 1 + 2i
π
γ, A1(z) = 0, A2(z) = 1

2 + i

π
(γ − 1) . (A.9)

88

A.2 Smoothness of sgn(t− τ)dr(t,τ)
dt

Recalling the parametrization x = x(t) = (t, f(t)), y = y(τ) = (τ, f(τ)), and the
definition of the distance r(t, τ) =

√
(t− τ)2 + (f(t)− f(τ))2,

dr(t, τ)
dt

=(x1(t)− y1(τ))x′1(t) + (x2(t)− y2(τ))x′2(t)
r(t, τ)

=(t− τ) + (f(t)− f(τ))f ′(t)
r(t, τ) . (A.10)

This function is smooth except possibly at τ = t, when r(t, τ) = 0. However, the limit
τ → t of its square exists, as can be shown using l’Hopital’s rule:

lim
τ→t

[
dr(t, τ)
dt

]2
= lim
τ→t

[(t− τ) + (f(t)− f(τ))f ′(t)]2

(t− τ)2 + (f(t)− f(τ))2

l′H= lim
τ→t

[(t− τ) + (f(t)− f(τ))f ′(t)][−1− f ′(τ)f ′(t)]
−(t− τ)− (f(t)− f(τ))f ′(τ)

l′H= lim
τ→t

[−1− f ′(τ)f ′(t)]2 + [(t− τ) + (f(t)− f(τ))f ′(t)][−f ′′(τ)f ′(t)]
1 + f ′(τ)2 − (f(t)− f(τ))f ′′(τ)

=[1 + f ′(t)2]2

1 + f ′(t)2

=1 + f ′(t)2. (A.11)

Thus

lim
τ→t

dr(t, τ)
dt

= ±
√

1 + f ′(t)2 = ±|x′(t)|. (A.12)

Since dr(t,τ)
dt < 0 when t < τ and dr(t,τ)

dt > 0 when t > τ , thus

lim
τ→t

sgn(t− τ)dr(t, τ)
dt

= |x′(t)|. (A.13)

A.3 Smoothness of M(t, τ) term in K8,2(t, τ) kernel

Recall

M(t, τ) =−i
d

[
dr(t, τ)
dt

−i
δr(t, τ) −

eiδt

eiδt − eiδτ

]
,

89
where δ = 2πi

d . Thus

lim
τ→t

idM(t, τ) = lim
τ→t

(t− τ) + (f(t)− f(τ))f ′(t)
δr2(t, τ) − eδt

eδt − eδτ

= lim
τ→t

[(t− τ) + (f(t)− f(τ))f ′(t)] (eδt − eδτ)− δeδtr2(t, τ)
δr2(t, τ)(eδt − eδτ)

l′H= lim
τ→t

 − [1 + f ′(τ)f ′(t)] (eδt − eδτ)− δ [(t− τ) + (f(t)− f(τ))f ′(t)] eδτ

+2δeδt [(t− τ) + (f(t)− f(τ))f ′(τ)]

−2δ(eδt − eδτ) [(t− τ) + (f(t)− f(τ))f ′(τ)]− δ2r2(t, τ)eδτ

l′H= lim
τ→t

 −f ′′(τ)f ′(t)(eδt − eδτ)− 2δeδτ [1 + f ′(τ)f ′(t)]
−δ2eδτ [(t− τ) + (f(t)− f(τ))f ′(t)]− 2δeδt

[
1 + f ′(τ)2 − (f(t)− f(τ))f ′′(τ)

]
 2δ

[
1 + f ′(τ)2 − (f(t)− f(τ))f ′′(τ)

]
(eδt − eδτ)

+4δ2 [(t− τ) + (f(t)− f(τ))f ′(τ)] eδτ − δ3r2(t, τ)eδτ

l′H= lim
τ→t

−f ′′′(τ)f ′(t)(eδt − eδτ) + 3δf ′′(τ)f ′(t)eδτ

+3δ2eδτ [1 + f ′(τ)f ′(t)]− δ3eδτ [(t− τ) + (f(t)− f(τ))f ′(t)]
−2δeδt [3f ′(τ)f ′′(τ)− (f(t)− f(τ))2f ′′′(τ)]

2δ(eδt − eδτ) [3f ′(τ)f ′′(τ)− (f(t)− f(τ))f ′′′(τ)]

−6δ2eδτ
[
1 + f ′(τ)2 − (f(t)− f(τ))f ′′(τ)

]
+6δ3eδτ [(t− τ) + (f(t)− f(τ))f ′(τ)]− δ4r2(t, τ)eδτ

=eδt

[
−3iδ2(1 + f ′(t)2) + 3iδf ′′(t)f ′(t)

]
6iδ2eδt [1 + f ′(t)2]

=−1
2

[
1− f ′′(t)f ′(t)

δ(1 + f ′(t)2)

]
= −1

2

[
1− d

2πi
f ′′(t)f ′(t)
1 + f ′(t)2

]
.

A.4 Evaluating I(c)

In this section we derive the exact value of the following integral, which is the hypersin-
gular part of I8(t):

I(c) =
∫
|z|=1

zc

1− z dz. (A.14)

Recall that the integral over the unit circle is to be understood as a Cauchy principal
value at the point z = 1. As such, it can be computed as the limit as ε → 0 of the

90
complex integrals over the smooth paths

γε :
[
t− d

2 , t+ d

2

]
→ {|z| = 1, |z − 1| > ε}, γε(τ) = e

2πi
d

(τ−t). (A.15)

In order to use Cauchy’s theorem, define the smooth path γ1 such that γε + γ1 is closed:

γ1 :
[
π

2 + θε,
3π
2 − θε

]
→ {|z − 1| = ε, |z| ≤ 1}, γ1(τ) = 1− εe−iτ , (A.16)

where θε is such that γ1(π/2 + θε) and γ1(3π/2 − θε) lie on the unit circle, so θε → 0
as ε → 0. Moreover, the function zc

1−z is not analytic on any open ball around z = 0
(unless c is an integer). Indeed zc = ec log(z) = |z|ceic arg(z) is only analytic on a slit
complex plane, such as C\R≤0. Thus the function zc

1−z is analytic inside the closed curve
γ = γε + γ1 + γ+ + γ0 + γ−, where γε and γ1 are as before, and the other smooth paths
are defined below:

γ+ : [1, ε]→ {ε ≤ |z| ≤ 1, arg(z) = π}, γ+(τ) = τeiπ (A.17)

γ− : [ε, 1]→ {ε ≤ |z| ≤ 1, arg(z) = −π}, γ−(τ) = τe−iπ (A.18)

γ0 : [0, 2π]→ {|z| = ε}, γ0(τ) = εei(π−τ). (A.19)

Figure A.1 shows the final contour path used for the integration. To summarize, for any
ε > 0, ε < 1/2,

I(c) = lim
ε→0

∫
γε

zc

1− z dz (A.20)

=
∫
γ

zc

1− z dz − lim
ε→0

∫
γ−γε

zc

1− z dz (A.21)

= 0− lim
ε→0

∫
γ1+γ++γ0+γ−

zc

1− z dz. (A.22)

The integral over γ0 goes to 0, since its absolute value does:∣∣∣∣∫
γ0

zc

1− z dz
∣∣∣∣ =

∣∣∣∣∣
∫ 2π

0

−iεc+1ei(c+1)(π−τ)

1− εei(π−τ) dτ

∣∣∣∣∣ (A.23)

≤ εc+1
∫ 2π

0

|ei(c+1)(π−τ)|
|1− εei(π−τ)|dτ (A.24)

≤ εc+1
∫ 2π

0

1
|1− ε|dτ = 2πεc+1

|1− ε| → 0 as ε→ 0, (A.25)

91

0 ε 1

γε

γ0

γ1
γ+

γ−

Figure A.1: Contour path used to compute complex integral I(c).

since c > −1. The integral over γ1 on the other hand can be computed by splitting the
integrand in two: ∫

γ1

zc

1− z dz =
∫
γ1

1
1− z dz +

∫
γ1

zc − 1
1− z dz, (A.26)

where zc−1
1−z is a smooth function, and thus can be bounded by a constant M on γ1. Since

the length of the curve |γ1| goes to 0 as ε → 0, so does the integral of zc−1
1−z over γ1,

leaving only the integral of 1
1−z to compute:

∫
γ1

zc

1− z dz =
∫
γ1

1
1− z dz =

∫ 3π
2 −θε

π
2 +θε

iεe−iτ

εe−iτ
dτ = i(π − 2θε)→ iπ as ε→ 0. (A.27)

The integrals over γ+ and γ− are very similar:∫
γ+

zc

1− z dz =
∫ ε

1

τ ceicπ

1− τeiπ e
iπdτ = −

∫ 1

ε

τ cei(c+1)π

1 + τ
dτ (A.28)∫

γ−

zc

1− z dz =
∫ 1

ε

τ ce−icπ

1− τe−iπ e
−iπdτ =

∫ 1

ε

τ ce−i(c+1)π

1 + τ
dτ, (A.29)

92
and their sum becomes∫

γ++γ−

zc

1− z dz =
(
e−i(c+1)π − ei(c+1)π

) ∫ 1

ε

τ c

1 + τ
dτ (A.30)

=− 2i sin((c+ 1)π)
(∫ 1

0

τ c

1 + τ
dτ −

∫ ε

0

τ c

1 + τ
dτ

)
(A.31)

=− 2i sin((c+ 1)π)
(∫ 1

0

τ c

1 + τ
dτ − εc+1

∫ 1

0

τ c

1 + ετ
dτ

)
(A.32)

=− 2i sin((c+ 1)π)
(Γ(c+ 1)Γ(1)

Γ(c+ 2) 2F1(1, c+ 1; c+ 2;−1)

−εc+1 Γ(c+ 1)Γ(1)
Γ(c+ 2) 2F1(1, c+ 1; c+ 2;−ε)

)
, (A.33)

where 2F1(a1, a2; a3; z) is the Gauss hypergeometric series defined in [67], and shown to
be equal to its integral representation as long as Re(a3) > Re(a2) > 0, which is true
here since c > −1. Note that 2F1 is continuous at z = 0, so 2F1(1, c+ 1; c+ 2;−ε)→ 0
as ε→ 0. Moreover, 2F1 has a closed form in the particular case z = −1, leading to the
following limit for the path integral as ε→ 0:∫
γ++γ−

zc

1− z dz → −2i sin [(c+ 1)π] Γ(c+ 1)Γ(1)
Γ(c+ 2)

c+ 1
2

[
Ψ
(1

2 + c+ 1
2

)
−Ψ

(
c+ 1

2

)]
= −i sin [(c+ 1)π]

[
Ψ
(
c+ 2

2

)
−Ψ

(
c+ 1

2

)]
,

where Ψ is the digamma function.
Having computed the integrals over all the necessary smooth paths, the value of I(c)

is found to be

I(c) = − lim
ε→0

∫
γ1+γ++γ0+γ−

zc

1− z dz (A.34)

= −iπ + i sin((c+ 1)π)
(

Ψ
(
c+ 2

2

)
−Ψ

(
c+ 1

2

))
. (A.35)

This can now be used to evaluate the integral In1 (t), which was the objective of this
appendix:

In1 (t) = deiαnt

2πi

−iπ + i sin
(
αnd

2

) [
Ψ
(

1
2 + αnd

4

)
−Ψ

(
αnd

4

)]
, if n > −αd

2π

iπ − i sin
(
αnd

2

) [
Ψ
(
1− αnd

4

)
−Ψ

(
1
2 −

αnd
4

)]
, if n ≤ −αd2π .

(A.36)

93
Numerical validation To validate the expression in (A.35), a numerical scheme
is used to approximate the integral over . For this purpose, γε is parametrized as
γε(θ) = eiθ, where θ ∈ [−π,−θε]∪ [θε, π] and θε is such that |1− γε(±θε)| = ε. Using this
parametrization, the integral becomes

I(c) = lim
ε→0

∫
γε

zc

1− z dz (A.37)

= lim
ε→0

{∫ −θε
−π

iei(c+1)θ

1− eiθ dθ +
∫ π

θε

iei(c+1)θ

1− eiθ dθ
}
. (A.38)

The trapezoid method is used to approximate each of the two integrals, with N number
of points used for each, and evaluated for values of ε ranging from 10−1 to 10−30. Since
there is a lot of cancellation between the two integrals, the symbolic package was used
in Matlab, with the results being evaluated using 100 digits of accuracy.

The case of integer c. In this case, the exact formula (A.35) yields I(n) = −iπ, and
the numerical approximations also approach this value. Figure A.2 shows the norm
of the numerical approximation as a function of ε for c = 0. As expected from the
trapezoidal rule, the numerical convergence is second order linear. The values c = 1, 2, 3
were also tested, with identical results.

0 5 10 15 20 25 30
3.04

3.06

3.08

3.1

3.12

3.14

3.16

3.18

Log
10

 of epsilon

N
u

m
e
ri
c
a

l
a

p
p

ro
x
im

a
ti
o

n
 o

f
in

te
g

ra
l
m

a
g
n

it
u

d
e

N=10

N=100

0 5 10 15 20 25 30
−70

−60

−50

−40

−30

−20

−10

0

Log
10

 of epsilon

E
rr

o
r

in
 n

u
m

e
ri
c
a

l
a

p
p

ro
x
im

a
ti
o

n
 (

lo
g

1
0
 s

c
a

le
)

N=10

N=100

Figure A.2: Convergence of the numerical approximation to I(0).

The case c = −1/2. In this case, the exact expression (A.35) yields I(−1/2) = 0. On
the other hand, the numerical approximations are all very close to 0, as shown in figure

94
A.3, although the value is exponentially increasing with ε.

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0

Log
10

 of epsilon

E
rr

o
r

in
 n

u
m

e
ri
c
a

l
a
p

p
ro

x
im

a
ti
o

n
 (

lo
g

1
0
 s

c
a

le
)

N=10

N=100

0 5 10 15 20 25 30
−250

−200

−150

−100

Log
10

 of epsilon

E
rr

o
r

in
 n

u
m

e
ri
c
a

l
a
p

p
ro

x
im

a
ti
o

n
 (

lo
g

1
0
 s

c
a

le
)

N=10

N=100

Figure A.3: Convergence of the numerical approximation to I(−1/2), using respectively
16 and 100 digits of accuracy.

Note that the magnitude of the error, though increasing, is always well below the
precision used, and decreases as the precision increases. This suggests that it is only due
to round-off error from larger and larger cancellations as ε gets closer and closer to 0.
Indeed, looking at the parametrization of I(−1/2)

I(−1/2) = lim
ε→0

{∫ −θε
−π

ieiθ/2

1− eiθ dθ +
∫ π

θε

ieiθ/2

1− eiθ dθ
}
, (A.39)

it is clear that the two integrals cancel each other exactly for any θε, since the integrand
is anti-symmetric:

f(θ) = ieiθ/2

1− eiθ = iei(−1/2)(−θ)

1− ei(−1)(−θ) = iei(1/2)(−θ)

ei(−θ) − 1
= −f(−θ). (A.40)

Thus as long as the numerical scheme is symmetric around 0, the numerical approximation
will be exactly 0 for any θε.

The case of non-integer c 6= −1/2. Choosing c = 1/2, the exact expression (A.35)
yields I(1/2) = −4i. The numerical approximations approach the same value, and the
convergence is linear up to a certain point, as shown in figure A.4. Similar results were
obtained with c = 5/2, 3/2,±1/3,±1/10,±1/100.

95

0 5 10 15 20 25 30
3.75

3.8

3.85

3.9

3.95

4

Log
10

 of epsilon

N
u

m
e

ri
c
a

l
a

p
p

ro
x
im

a
ti
o

n
 o

f
in

te
g

ra
l
m

a
g

n
it
u

d
e

N=10

N=100

0 5 10 15 20 25 30
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Log
10

 of epsilon

E
rr

o
r

in
 n

u
m

e
ri
c
a

l
a
p

p
ro

x
im

a
ti
o

n
 (

lo
g

1
0
 s

c
a

le
)

N=10

N=100

Figure A.4: Convergence of the numerical approximation to I(1/2).

96
A.5 Guide to Variable Names

Text variable Description

an Floquet coefficients of u
bn Floquet coefficients of ∂u

∂n

br Rayleigh coefficients of us

d Period of the surface profile
e ——————————-
f(t) Function describing the profile of the surface
f1
n Floquet coefficients of ξ1

f2
n Floquet coefficients of ξ2

g1
n Floquet coefficients of n1ξ1

g2
n Floquet coefficients of n2ξ1

hn Floquet coefficients of ξ′1
hp pth harmonic number
i ——————————-
Ij Integral corresponding to kernel Kj

ki, ke Interior and exterior wave numbers
Kj Kernel used in integral Ij
Kj,1,Kj,2 Smooth parts of kernel Kj = Kj,1 log |t− τ |+Kj,2

L Compact integral operator from integral system for solution u
n = (n1, n2) Normal to the surface
r(t, τ) Euclidean distance between surface points x(t) and x(τ)
t,τ Parameters for the surface points x,y
u, us, uinc, ut Total, scattered, incident and transmitted fields
x,y Points on the surface

	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Preliminaries
	Maxwell's equations
	The optical characteristics of metals

	A review of numerical methods in nanoplasmonics
	Finite-difference methods
	Finite Element methods
	Integral equation methods

	Integral equations solver: formulation and numerical implementation
	Integral formulation
	Cylindrical domains
	Kernel decompositions
	Numerical solution
	Numerical results

	Shape derivatives
	Differential formulation
	Integral formulation
	Decomposition of the weakly singular kernels K5, K6 and K7
	Numerical evaluation of weakly singular integrals I5, I6, I7, I9

	Decomposition of the hyper-singular kernel K8
	Numerical evaluation of hypersingular singular integral I8
	Numerical integration with smooth kernel K82

	Derivative-Free Optimization
	Derivative-Free Trust Region Algorithm
	Implementation
	Choice of parameters
	Choice of model

	Validation

	Optimal Design of Nanoplasmonic Surfaces
	Objective functions
	Maximum point-wise surface field
	Minimal reflectivity

	Parameter search space
	Implementation
	Results
	Minimal reflectivity under normal incidence
	Minimal reflectivity under oblique incidence

	Discussion

	Conclusion
	Bibliography
	 Appendix A. Appendix
	Hankel functions
	Smoothness of sgn(t-)dr(t,)dt
	Smoothness of M(t,) term in K8,2(t,) kernel
	Evaluating I(c)
	Guide to Variable Names

