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Abstract 

This thesis investigates tissue-engineered cardiovascular devices for pediatric 

patients and their function and growth potential in preclinical testing. Specifically, 

engineered tissue tubes were fabricated by entrapping dermal fibroblasts in a fibrin gel 

and allowing them to replace it with circumferentially-aligned extracellular matrix. 

Following in vitro culture, the engineered tubes possessed physiological strength and 

were decellularized to increase their shelf-life and reduce their immunogenicity. An 

allogeneic tubular heart valve was fabricated by inserting one engineered tube inside of 

another and attaching them together using degradable sutures.  

Extensive hemodynamic testing was performed in order to optimize and verify 

valve design. The growth potential and in vivo function of a single engineered tube (as a 

pulmonary artery replacement) and pulmonary heart valve were evaluated in a growing 

lamb model. We observed extensive host cell invasion and growth of the valve 

root/single tube, but to a lesser degree in the leaflets, which resulted in diminished valve 

function. A modified animal model is proposed and proof-of-concept studies were 

performed in order to address this shortcoming.   
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Chapter 1. Introduction to Heart Valves and Tissue Engineering 

Approaches 
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1.1 Summary 

Tissue engineered heart valves are being developed in order to provide an 

alternative prosthetic valve to patients suffering from valvular heart disease. They aim to 

address the limitations of currently existing bioprosthetic and mechanical heart valves, 

which have a limited functional life or require lifelong anticoagulation, respectively. 

Tissue engineered valves generally consist of three parts: a biodegradable polymeric 

scaffold for initial structural integrity and cell attachment sites, entrapped or seeded cells 

that remodel that biodegradable scaffold, and stimulation paradigms to direct cellular 

activity (especially production of a functional extracellular matrix).  In vitro functional 

testing is useful to assess valve designs based on their hydrodynamic performance under 

physiologic pressure and flow conditions. However, in vivo testing is crucial since tissue 

engineered heart valves aim to provide a living valve capable of cell-mediated repair, 

remodeling, and growth. The aforementioned considerations comprise the focus of this 

chapter. 

Keywords: heart valve engineering, tissue engineered heart valves, biopolymer scaffold, 

synthetic polymer scaffold, animal model, pulse duplicator 
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1.2 Background 

Valvular heart disease, a widespread disease that has been estimated to afflict 

~2.5% of the US population, limits the efficient flow of blood through the heart due to 

improper valve opening or closing [1]. Incomplete valve opening due to reduced leaflet 

mobility is referred to as valve stenosis. Valve regurgitation occurs when the leaflets fail 

to coapt, such as leaflet prolapse, during diastole; this allows blood to flow backward 

through the valve. Valve dysfunction (regurgitation and/or stenosis) can occur 

progressively or result from a specific event. Most commonly, patients undergo 

progressive valve deterioration as they age due to leaflet calcification, hypertension, 

and/or atherosclerosis. A subset of patients suffers from congenital cardiovascular 

defects, which affect valve performance at a much younger age.  

Congenital cardiovascular defects are estimated to affect at least 40,000 infants 

each year in the US alone and ~25% of these patients (240 / 100,000 live births [LBs]) 

require an invasive treatment within their first year of life [1,2]. Defects affecting heart 

valves include bicuspid aortic valves (1,370 / 100,000 LBs), Tetralogy of Fallot (40 / 

100,000 LBs), pulmonary stenosis (60 / 100,000 LBs), pulmonary atresia (7-8 / 100,000 

LBs), truncus arteriosus (7 / 100,000 LBs), and tricuspid atresia/stenosis (6.7 / 100,000 

LBs) [1,3,4]. Tetralogy of Fallot encompasses multiple defects including a ventricular 

septal defect, pulmonary stenosis, an overriding aortic valve to the right, and right 

ventricular hypertrophy [5]. Atresia is a more extreme version of stenosis in which the 

valve opening is abnormally closed or absent.   

Dysfunctional valves can sometimes be repaired (nearly 19,000 in the U.S. in 

2011 alone), but are more commonly replaced, ~83% of the time (nearly 92,000 in the 

U.S. in 2011), with prosthetic valves to restore heart function. The aortic valve most 

commonly requires intervention, followed by the mitral, pulmonary, and tricuspid valves.  

The total number of heart valve procedures – stratified by procedure type, age, and valve 

position – can be seen in Table 1-1. For younger patients, congenital defects (such as 

Tetralogy of Fallot) can sometimes be repaired, but pulmonary regurgitation may persist. 
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This is typically well tolerated initially, but late pulmonary valve replacement is 

increasingly used due to the effects of prolonged pulmonary insufficiency [6-9]. These 

patients present a unique challenge for replacement valves as the child undergoes 

anatomical growth during their maturation.  

1.2.1 Existing Therapies  

Two general heart valve replacement options exist currently: bioprosthetic and 

mechanical heart valves [10,11]. These replacement valves are differentiated by their 

materials and design. There are two standard replacement procedures for prosthetic 

valves: surgical and transcatheter. Each valve and procedure type has advantages and 

disadvantages, which affect their selection for use in diseased patients [12-18].  

1.2.1.1 Replacement Procedures 

Surgical valve replacement, first developed in the early 1960’s, traditionally 

includes opening the patient’s chest cavity, putting the patient on bypass, and replacing 

the afflicted valve.  More recently, transcatheter valve replacement has been developed, 

which utilizes specially designed, expandable bioprosthetic valves. This technique is 

much less invasive than traditional surgical valve replacement. Access to the defective 

valve is most commonly made through the femoral artery, but transapical and transaortic 

approaches have also been described. Since transcatheter valve replacement is relatively 

new, it is not yet indicated for all patient subsets despite some promising outcomes. 

Longer term patient monitoring to collect additional data will be needed in order to better 

understand the safety and efficacy of transcatheter versus surgical valve replacement. 

1.2.1.2 Existing Replacement Valves 

Bioprosthetic heart valves are derived from biological tissues whereas mechanical 

valves utilize inert materials such as pyrolytic carbon or titanium. Mechanical heart 

valves are thus typically very durable, and can maintain function after 30 years, but 

require aggressive anticoagulation to remain patent and to prevent thromboembolism 

[19]. Current anticoagulation regimens require patient lifestyle changes – such as routine 
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blood tests and dietary restrictions (avoiding vitamin K) – to ensure that therapeutic 

levels are maintained [14,19,20]. Furthermore, anticoagulation is associated with 

numerous side effects, including bleeding or hemorrhaging [13,16,19]. 

Bioprosthetic heart valves are generally more hemocompatible, but tend to 

perform adequately for only 10-20 years [13,21]. Tissue sources for bioprosthetic heart 

valves include bovine tissue, porcine tissue, and a limited supply of human cadaveric 

valves [22]. Tissues obtained for bioprosthetic heart valves are typically rendered inert by 

chemical fixation (non-human tissues) or cryopreservation, which can negatively affect 

the tissue’s microstructure and in vivo durability [23-25]. Specifically, these treatments 

can limit host cell invasion, which is necessary for matrix repair and regeneration [23]. 

This deficiency limits the functional life of bioprosthetic heart valves and makes it more 

likely that patients younger than 65 will likely to require a reoperation to replace a worn 

out prosthetic heart valve. 

The tissues for bioprosthetic valves are often sewn onto a rigid frame or an 

expandable stent (transcatheter valves), but can also be implanted without either. The 

tissues for transcatheter valves are the same as those used for traditional bioprosthetic 

valves and are thus not expected to have a longer functional lifetime. Given that 

transcatheter valves are relatively new, they have been more extensively used in patients 

who are considered at higher risk for traditional surgical valve replacement. However, the 

use of transcatheter valves is expected to grow in the future, pending continued 

demonstration of their safety and efficacy.  

Reoperations to replace defective prosthetic valves are associated with a number 

of risks, including mortality [13,17,26]. Addressing bioprosthetic valve failure is 

challenging, although valve-in-valve procedures have been reported in which a second 

valve is inserted within the defective bioprosthetic valve [27-29]. However, concerns 

remain regarding the valve positioning, coronary obstruction, and higher pressure 

gradients due to a narrowed valve orifice [29]. 

1.2.1.3 Replacement Heart Valve Selection 
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The particular prosthetic valve and replacement procedure used depends on 

factors such as current disease status, expected patient lifespan, co-morbidities, patient 

preferences, and associated costs [13,19]. In general, mechanical valves are selected 

when the patient is expected to outlive the functional life of bioprosthetic valves or 

unable to withstand the anticoagulation regimen required for mechanical heart valve 

replacement. Valve selection for pediatric patients is especially problematic since neither 

mechanical nor bioprosthetic valves are capable of growth. Thus, these patients often 

must undergo one or more reoperations to replace outsized prosthetic valves. 

Additionally, the chemically-treated and cryopreserved tissues used are prone to 

calcification in children, which can result in valve failure. 

1.2.1.4 Emerging Replacement Valves 

Decellularization has also been extensively explored as a way to reduce the 

immunogenicity of allogeneic (human) and xenogeneic (non-human) tissues without 

cryopreservation or chemical fixation [24,25,30-33]. There are several published clinical 

trials that evaluated the use of decellularized, non-cryopreserved human heart valves in 

the pulmonary or aortic position [24,34-36]. Although the initial results have been 

promising, their long term function remains unproven and they are limited in supply due 

to donor shortage [22,25,31,32,35,37,38]. Decellularized xenogeneic valves have also 

been investigated extensively in animal models [31,33,39]. Although some human data 

has been reported, the study noted a high incidence of conduit failure within two years of 

implantation [40]. Furthermore, explant histology showed minimal host cell invasion, 

apart from the presence of inflammatory giant-type cells on the lumenal surface. 

Providing various sizes of decellularized native valves can be challenging, particularly 

for allogeneic valves where there are a limited number of donors. 

A more detailed description of decellularized xenogeneic or allogeneic valves will 

not be discussed in this chapter, despite considering them to be tissue engineered heart 

valves (TEHVs). Additional information on these approaches can be found elsewhere and 
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in the citations provided above. Instead, the remainder of this chapter will focus on 

TEHVs that are not derived from native valves.  

1.3 Tissue Engineered Heart Valves 

Tissue engineered heart valves are being developed to address the shortcomings 

of current and emerging replacement options. In order to be a viable replacement option, 

TEHVs must first demonstrate excellent valve function (i.e. minimal regurgitation and 

low systolic pressure drops) under physiological pressures and flowrates. Additional 

design criteria include high durability, hemocompatibility, immunocompatibility, and 

capacity for growth (for pediatric applications). To date, most TEHV designs have 

focused on imitating the function rather than the form of native heart valves. For 

example, most tissues used for TEHVs consist of a single layer as opposed to the tri-layer 

tissue found in native heart valve leaflets.  

Various approaches have been described to generate an engineered tissue suitable 

for a heart valve application. TEHVs typically consist of a degradable scaffold and cells, 

which are often exposed to chemical and/or mechanical stimulation to produce a desired 

response, such as collagen secretion. Although differing in various aspects, these 

approaches all aim to generate a “living” tissue capable of repairing and remodeling itself 

in vivo. The hope for such TEHVs is a longer functional life and/or somatic growth 

(pediatric patients). Reported studies have utilized various cell types, scaffold materials, 

mechanical/chemical stimuli, and valve designs [41]. Components reported in 

development of engineered tissues for TEHVs are discussed below. 

1.3.1 Cell Sources 

The primary responsibility for cells in heart valve tissue engineering is to remodel 

the starting polymer scaffold and secrete extracellular matrix components such as 

collagen, elastin, and/or proteoglycans. The cells’ specific roles within the engineered 

tissue guide their selection. A universal cell type has yet to be identified or adopted for 

heart valve tissue engineering applications, though most researchers use a cell type that is 
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easily sourced and can be easily expanded in vitro. Commonly used cell types include 

smooth muscle cells (SMCs), myofibroblasts, dermal fibroblasts, and mesenchymal stem 

cells (MSCs) [42,43].  

The cells generally fall into one of three categories depending on how they are 

obtained: autologous (from the same patient), allogeneic (from the same species), or 

xenogeneic (from a different species). Another method avoids isolating cells altogether 

and instead relies on in situ cell invasion and extracellular matrix deposition [44,45]. In 

one specific approach, valve molds were implanted subdermally for several weeks, 

during which time host cells invaded and secreted extracellular matrix proteins [46]. 

Another group implanted an electrospun scaffold into the designated valve position and 

allowed host cells to repopulate this matrix [47]. This non-traditional method avoids 

prolonged in vitro culture but is dependent on appropriate cell recruitment and tissue 

formation, which may vary between individuals. Other challenges include recruiting 

circulating cells, guiding their cell fate and behavior, and controlling tissue formation 

[45].  

Historically for cardiovascular tissue engineering, and heart valve tissue 

engineering in particular, it has been important to consider the thrombogenicity and 

immunogenicity of the engineered tissue. These risks can be attenuated by using 

autologous cell sources. However, obtaining and expanding autologous cells can be a 

lengthy and arduous task, especially considering that these cells could behave differently 

depending on the individual and they may express a diseased phenotype. This process can 

be further complicated if a valve replacement is needed quickly, as can be the case for 

pediatric patients suffering from congenital defects.  

1.3.1.1 Decellularization 

The advent of decellularization has had an impact on heart valve tissue 

engineering. This process enables researchers to effectively remove the cellular 

components from a tissue, while leaving the extracellular matrix intact [48]. Acellular, 

non-fixed TEHVs offer several advantages over their cellularized counterparts. First, 
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decellularization allows TEHVs to be stored for longer periods of time prior to use, 

which is important for commercialization. Additionally, decellularization, if performed 

properly, removes the antigenic cellular components and would enable researchers to use 

allogeneic and possibly xenogeneic cells to batch-produce heart valve tissues.  An in-

depth description of decellularization protocols is outside the scope of this report, but 

there are several literature reviews that can provide more detail [49]. In general, these 

protocols use a combination of zwitterionic, ionic, or non-ionic detergents in addition to 

extensive rinsing or perfusion.  

1.3.1.2 Recellularization 

TEHVs rely on cells to remodel the matrix and respond to physiological growth 

cues over time. One factor to consider is that decellularized TEHVs must rely on host cell 

invasion and proliferation for tissue regeneration and growth. This recellularization 

process takes time and thus the acellular engineered tissue must also be able to withstand 

the in vivo environment without cells until sufficient cell invasion occurs. The invaded 

cells also must not grossly remodel the tissue such that the valve geometry and/or its 

function are compromised. The recruitment of endothelial cells to cover the blood 

contacting surfaces is particularly important, as this will reduce the thrombogenicity of 

the TEHVs. 

1.3.2 Scaffold Materials 

Polymeric scaffolds are an integral part of engineered tissues and provide initial 

mechanical support, an initial geometry, and attachment sites/cues for cells. These 

scaffolds are typically temporary and degrade as the cells secrete their own extracellular 

matrix. It is important to consider the initial mechanical strength of the scaffold and its 

degradation rate so that physical support for the cellular component of the engineered 

tissue is maintained during maturation. Additionally, the scaffold should be non-

immunogenic and non-thrombogenic. It must also promote cellular attachment and 

interaction, and its degradation by-products should not elicit an inflammatory response 

[42,50]. The two most common sources of scaffold materials for TEHVs are grouped into 
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two categories: synthetic polymers and biopolymers. Recently, a hybrid scaffold has also 

been described that is unique from the two traditional categories.  

1.3.2.1 Synthetic Polymer Scaffolds 

Synthetic polymers are frequently used for heart valve tissue engineering. Primary 

advantages of this scaffold type are that they are widely available and can be configured 

to nearly any microscopic morphology and macroscopic geometry. Additionally, 

synthetic polymers can have a large range of mechanical and chemical properties based 

on how they are synthesized. Fabrication methods include salt-leaching, rapid 

prototyping, electrospinning, and phase-separation [42]. 

Synthetic polymers do not inherently contain biological signaling components 

like those found in biological polymers, although researchers have the ability to 

incorporate bioactive components [50]. Cell engraftment can be achieved by directly 

seeding cells onto the synthetic scaffold or using a cell carrier, such as fibrin. Controlling 

the polymer degradation rate is also important since it provides mechanical support and 

attachment sites for cells. Accelerated or slow degradation can affect the in vitro 

remodeling and maturation of the tissue. Additionally, if polymer degradation isn’t 

completed prior to implantation, its degradation byproducts must not cause deleterious 

effects on adjacent cells [51]. 

One of the first reports of a TEHV made from a synthetic scaffold used a 

polyglycolic acid (PGA) – polylactic acid (PLA) copolymer layered between non-woven 

PGA [52]. Later, the use of polyhydroxyoctanoate (PHO) was explored to remedy 

problems associated with high scaffold stiffness, but ultimately proved to be less than 

ideal because of its slow degradation profile [53,54]. PGA coated with poly-4-

hydroxybutyrate (P4HB) has a more favorable degradation profile and has seen more 

extensive use [55,56]. In general, most synthetic scaffolds for heart valve tissue 

engineering have been derived from aliphatic polyesters, polyhydroxyalkanoates, or 

combinations of the two [42,57].  

1.3.2.2 Biopolymer Scaffolds 
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Biopolymer scaffolds naturally incorporate biological signaling components, 

which are important to modulate cell attachment and activity [42,50]. These materials can 

be obtained autologously to minimize immunocompatibility concerns, but this can 

introduce variability among the scaffolds, including purity and degradation rate, and it 

could limit commercialization and clinical use. For these reasons, xenogeneic sources of 

biopolymers are more commonly used in cardiovascular tissue engineering approaches. 

Another challenge associated with biopolymers is that they lack the initial mechanical 

strength required to withstand physiologic conditions. This has prompted researchers to 

explore various culture conditions and bioreactors (which will be discussed in more detail 

later), to improve the mechanical properties of the TEHVs. 

Several biopolymer sources, particularly collagen and fibrin, have been explored 

for use in heart valve tissue engineering [42,50,57]. Unlike with synthetic polymers, cells 

can be directly entrapped into these scaffolds because polymerization occurs in an 

aqueous solution at physiological pH and temperature. The cell and monomer solutions 

are mixed together prior to polymerization to facilitate cell distribution throughout the 

resulting hydrogel. This method of cell seeding is advantageous because it enables 

researchers to incorporate cells directly, and homogeneously, into their nascent 

engineered tissue. 

Type I collagen is a natural choice as a biological scaffold because it is a major 

extracellular matrix protein found in cardiovascular tissues, including heart valves. 

Collagens are homologous across species and thus are biocompatible and weakly 

immunogenic [58,59]. However, cells cultured in type I collagen gels exhibited lower 

collagen synthesis and cell proliferation compared to fibrin gels [59-61].   

Fibrin has been an attractive biopolymer for heart valve tissue engineering 

because cells are able to proliferate more and produce more collagen and total protein 

than in collagen gels [62-64]. One challenge for the use of fibrin is controlling its 

degradation rate, as it can be enzymatically degraded rapidly depending on the cell type 

and in vitro conditions [62]. This degradation must be matched with the deposition of 
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cell-produced collagen to provide sufficient mechanical properties to the maturing 

engineered tissue. 

1.3.2.3 Hybrid Scaffolds 

Hybrid scaffolds are an alternative source to synthetic and biopolymeric scaffolds. 

These scaffolds have been recently described and are a combination of nitinol and cells 

seeded with [65] or without [66] a biological material (collagen). Other reports have 

previously demonstrated the capability of fabricating nitinol-based heart valves [67,68].  

The hybrid scaffolds are fabricated by coating the metal meshes with cell-seeded 

collagen gels, which produce matrix proteins over a period of multiple weeks. These 

scaffolds are inherently strong and are capable of withstanding physiological pressure 

gradients due to the incorporation of the metal mesh [67,69]. Although the biological 

scaffold material or the cells are not the primary load bearing component, they serve to 

improve the biocompatibility of the TEHV [70].  

One of the major issues using this type of scaffold is cell-metal interface and 

ensuring that there is proper attachment and cellular responses to these materials. Hybrid 

scaffolds are also not optimal for pediatric patients since they are inert and lack the 

ability to grow with the patient. Apart from these concerns, the in vivo function of 

TEHVs with hybrid scaffolds has yet to be assessed [41]. 

1.3.3 Stimulation Paradigms 

The conditions imposed upon the nascent tissue have a significant impact on 

cellular function and ultimately tissue development. Most engineered tissues undergo 

some sort of mechanical conditioning to generate a mechanically robust and mature tissue 

in order to withstand physiologic conditions. This maturation process, particularly for 

approaches that use biopolymer scaffolds to grow connective tissues, often focuses on 

biochemical and mechanical stimulation paradigms to enhance cellular collagen 

synthesis. Biochemical agents are most commonly added to the culture medium 

periodically and have demonstrated the ability to stimulate collagen synthesis in vitro. 
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These agents include fibroblast growth factor (FGF), transforming growth factor (TGF), 

plasmin, insulin, and ascorbic acid [71-73]. 

Cells are able to sense mechanical stimuli via mechanotransduction, which can be 

utilized in order to induce a desired cellular response [74,75]. Most commonly, 

researchers mechanically stretch the engineered tissue to stimulate cellular collagen 

production. These systems are often capable of applying complex strain and shear stress 

patterns in the constructs. Regardless of the design, bioreactors must meet certain 

requirements such as adequate gas exchange, nutrient delivery, and sterility. For heart 

valve tissue engineering, bioreactors that replicate physiological pulsatile pressures or 

utilize controlled cyclical stretch have been described [76-88]. The most suitable system 

depends on a number of factors such as the desired level of control on the regimen, 

bioreactor complexity, and valve design. 

Bioreactors require a number of components in order to replicate physiologic 

pulsatile pressure waveforms. Common features amongst the different designs include: a 

pump to induce fluid motion, a mounting chamber for the TEHV, a culture medium 

reservoir, compliance chambers for energy dissipation, and a tunable element to control 

system pressure [43]. These systems condition the whole valve during the entire cardiac 

cycle (systole and diastole). Another iteration of these systems is to simulate only 

diastolic pressure conditions by exposing the leaflets to cyclic back pressure [81]. An 

example system and its components are described in more detail in Figure 1-1.  

Although the aforementioned systems can replicate physiological pressure 

conditions, the strain magnitude depends on the tissue properties and is not controlled. 

There have been published reports demonstrating the advantages of using incremental 

strain regimens and/or transmural flow [76-78]. Syedain and colleagues designed a cyclic 

stretch bioreactor capable that had a defined strain magnitude by mounting a TEHV 

within a latex tube [77]. Since the latex tube was much stiffer than the engineered tissue, 

strain magnitudes could be prescribed throughout the culture period independent of the 

tissue properties. 
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1.4 Valve Design 

Traditional TEHVs, those using synthetic or biopolymeric scaffolds, must be 

fabricated into the heart valve geometry. The inherent properties of synthetic and 

biopolymeric scaffolds allow researchers to fabricate TEHVs in ways not possible with 

traditional bioprosthetic valves or decellularized native tissues. Almost all TEHV designs 

incorporate distinct leaflets that open and close in response to pressure gradients. 

Valvular function also can be achieved by attaching an engineered tissue tube to a three-

pronged frame or to create a tubular valve [89] that is the functional equivalent of a 

trileaflet valve [90-92]. Some valve designs for pediatric patients also incorporate a root, 

or flow conduit, since cardiovascular congenital defects can affect the outflow tract as 

well as the leaflets [88,93].  

Biopolymeric and synthetic scaffolds are easily moldable since they often begin 

as an aqueous solution or typically incorporate a thermoplastic polyhydroxyalkanoate 

(such as P4HB), respectively [42,55,94,95]. This has enabled researchers to use casting 

molds (as shown in Figure 1-2) that integrate the valve root and leaflets together. This 

allowed researchers to create valves with leaflets directly attached to the root from the 

onset of valve fabrication [73,83].  

While these molds were innovative and provided a proof of concept, there are 

several challenges associated with this approach. First, machining the molds is 

challenging given the unique geometries utilized. Additionally, the presence of sharp 

corners and high stress points in these molds can lead to tissue thinning and tearing. 

Another major challenge is ensuring that valve geometry and coaptation is maintained 

throughout the culture period. Although cell induced compaction can be exploited to 

generate anisotropic tissues [73,96], over-compaction can result in geometrical changes 

that compromise the valve. For example, over-compaction in the leaflet channels results 

in loss of coaptation.  

A simpler approach is based on a tubular valve design [89]. Instead of using a 

complex mold to define the heart valve root and leaflet geometries, tissue tubes are 
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constrained such that they collapse inward under back pressure at three equi-spaced 

positions (commissures) around the circumference that anchor the tube (Figure 1-3). This 

creates the equivalent of three leaflets, which respond to dynamic pressure gradients 

across a tubular heart valve. These principles have been applied to heart valve tissue 

engineering as researchers have reported tubular TEHVs using tubular tissues based on 

synthetic and biopolymer scaffolds [88,90,92,93]. Most tubular TEHVs utilize a single 

tube that is attached to a frame, an expandable stent, or designed to be implanted within 

the native vasculature.  

The use of inert frames, stents, chemically fixed tissues, or embedded synthetic 

materials preclude them from growing and are thus suboptimal for pediatric patients. One 

new approach avoids these components and might be more suitable for pediatric valve 

replacements [93]. It consists of two completely biological, decellularized engineered 

tubes (primarily cell-produced collagen) that are attached using a degradable suture line 

and does not incorporate any inert materials, frames, or stents. It relies on host cell 

invasion and matrix production to fuse the two engineered tubes along the degradable 

suture line and subsequently respond to physiologic growth cues in vivo. However, it 

remains to be seen whether this, or other, TEHVs are amenable to long term function and 

growth. 

1.5 In Vitro Functional Testing 

Functional testing systems in the laboratory are invaluable in validating and 

improving valve designs for TEHVs prior to expensive animal studies. These pulsatile 

flow testing systems are similar to some of the aforementioned bioreactor systems in 

terms of components required. They are not exclusive to TEHVs, but instead are useful 

for testing all types of valves (including mechanical and bioprosthetic valves). They 

typically include pressure and flow probes, a pump to induce fluid motion, compliance 

chambers, a valve housing chamber, and a fluid reservoir [85].  

The primary goal of functional testing is to elucidate the TEHV’s function under 

physiologic pressure and flow conditions [97]. Important hydrodynamics include systolic 
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pressure drop, regurgitation, and effective orifice area (EOA). Detailed descriptions of 

these metrics and other valve testing requirements can be found in ISO 5840. A high 

speed camera is typically placed end-on to visualize and record leaflet motion during the 

cardiac cycle. This allows researchers to visualize any fluttering, prolapse, or asymmetry 

in the valve leaflets. An additional camera can be used to visualize root motion if it is 

incorporated into the prosthetic heart valve and the test system allows for it. 

Accelerated wear testing (AWT) is a type of functional testing designed to 

evaluate the fatigue properties of prosthetic heart valves under pulsatile flow and 

physiologic loading. Complete valve opening and physiologic diastolic pressure gradients 

are the only requirements for AWT. This allows researchers to utilize higher frequency 

pumps to evaluate a heart valve’s durability after a large number of cycles. Traditional 

mechanical and bioprosthetic heart valves must withstand 600 million or 200 million 

cycles per ISO 5840, respectively. Often valves undergo full functional testing 

(physiologic flow and pressure conditions) periodically during AWT to assess their 

hydrodynamic performance.  

The appropriate number of test cycles for TEHVs is unclear since engineered 

valves are designed on the premise that cells will repair and remodel the extracellular 

matrix following implantation [42]. These cells can be either transplanted with the valve 

or host cells that repopulate the acellular valve, or a combination of both. The complex in 

vivo environment cannot be completely mimicked with in vitro systems. The ideal 

number of cycles depends on the timeline necessary for cellular production of matrix 

proteins needed to sustain valve function following implantation. Discussions with the 

FDA on these points will be crucial to ensure that the protocols for appropriate in vitro 

functional tests and their duration are established as TEHVs become closer to 

commercialization. 

1.6 In Vivo Testing 

Large animal testing is a requirement for the preclinical assessment of prosthetic 

heart valves. These tests allow researchers to assess the performance of the surgical 
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procedure and valve’s hydrodynamic performance in a beating heart over an extended 

period of time. These studies are highly regulated and require approval by a standard 

governing body known as the Institutional Animal Care and Use Committee, or IACUC. 

The following sections highlight the animal models and results with TEHVs to date. 

1.6.1 Animal Models for TEHVs 

Chronic in vivo TEHV studies are conducted primarily in sheep, which are the 

current “gold standard” for preclinical prosthetic heart valve replacement studies [98]. 

Studies with TEHVs are often performed in the pulmonary position of sheep due to the 

lower pressure gradients associated with this position compared to the aortic valve. 

Congenital defects also often affect this valve. Sheep are advantageous because they have 

similar normal cardiovascular physiological parameters (blood pressure, cardiac output, 

heart rate, and intracardiac pressure) and valve diameters that are similar to humans. The 

ovine model is also an aggressive calcification model, particularly in juvenile animals, 

compared to other large animal models.  

Canine models were common historically since they have good temperaments and 

can be trained easily. However, they are not as common now due to the occurrence of 

leaflet fusion and high collateral coronary circulation [98]. Swine models are 

advantageous since they have very similar cardiac anatomy to humans in terms of their 

valves, coronary arteries, and conduction system. However, they have a high incidence of 

postoperative mortality and arrhythmias which limits their widespread use. There has also 

been a report of a non-human primate model being used, but this is currently not very 

common [99]. 

Heart valve replacement studies, particularly those with TEHVs, are conducted 

using healthy animals and primarily aim to assess valve function. Naturally occurring and 

reproducible valvular defects have been described in rats and mice, but are much less 

common in larger animal models [100]. Researchers have described large animal models 

with iatrogenic valve stenosis, regurgitation, and anatomical abnormalities [98,100].  

However, these are not commonly used, particularly for TEHV studies. 
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The animal model’s growth rate is also important to consider when conducting 

chronic animal studies, particularly if the desired valve orifice sizes and study aims 

necessitate using immature animals. Growing animal models are intriguing for TEHV 

studies since they aim to assess somatic growth of the TEHV, which is an unmet clinical 

need for pediatric valve replacement patients. Accelerated growth rates compared to 

human can result in “prosthesis-patient mismatch” and valve stenosis if the animal 

outgrows its prosthetic heart valve [18]. The aforementioned animal models all reach full 

maturity within 12-18 months of age, which is substantially faster than in humans 

[98,101-103]. This timescale can be challenging for TEHVs, especially pediatric valves, 

which rely on transplanted or invaded cells to dictate growth in response to physiological 

cues. 

1.6.2 Preclinical Testing Results with TEHVs 

Shinoka et al. [104] was one of the first to demonstrate the feasibility of TEHVs 

for valve replacement. A single sheep pulmonary valve leaflet was replaced with 

autologous or allogeneic tissue engineered leaflets, which were fabricated by seeding a 

combination of fibroblasts, smooth muscle cells, and endothelial cells seeded onto 

polyglactin/PGA mesh sheets. Lambs with one of these allogeneic leaflets experienced 

leaflet retraction and an acute inflammatory response despite receiving 

immunosuppression therapy, whereas those with an autologous leaflet did not. While the 

single leaflet approach has limited applications, this study demonstrated the feasibility of 

tissue engineering in heart valve replacements. 

The same research group soon developed a complete trileaflet TEHV by seeding 

autologous (ovine) myofibroblasts and endothelial cells onto a PGA/P4HB scaffold [55].  

Following pulsatile bioreactor culture, the TEHVs were implanted into the pulmonary 

position of sheep for up to 20 weeks and valve function was monitored via 

echocardiography. The tensile strength of the engineered leaflets were initially higher 

than those of the native leaflets, but was comparable after 20 weeks in vivo. Histology 

showed increased organization and layering similar to native leaflets after 20 weeks with 
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presence the presence of collagen, glycosaminoglycans, and elastin. Although the TEHV 

leaflets remained functional throughout the duration of the study, significant regurgitation 

was observed after 16 and 20 weeks. Authors attributed this loss of valve function to the 

enlarging flow conduit and/or shrinkage of the TEHV leaflets.  

A minimally invasive TEHV was fabricated by seeding myofibroblasts or stem 

cells onto a PGA/P4HB scaffold using fibrin as a cell carrier [105]. Following bioreactor 

culture, the TEHVs were transapically implanted into the pulmonary position of sheep for 

either 4 or 8 weeks. Examination following explantation revealed thickened and non-

coapting leaflets. A similar approach, but without bioreactor culture, demonstrated valve 

function up to 4 weeks in the pulmonary position of primates [106]. Substantial cellular 

remodeling and endothelial cell coverage was observed without tissue thickening. 

However, structural shortening of the TEHV leaflets was detected after explantation. 

Autologous pulmonary and aortic TEHVs have been explored in canine and goat 

models. Using a custom mold and in situ fabrication, these “Biovalves” were highly 

collagenous with a small amount of elastin [107]. Early generations of this TEHV 

allowed substantial regurgitation in dogs [108], which ultimately led to design changes in 

the valve mold. The most recent Biovalve incorporated a 3D printed mold and were 

implanted in the aortic position for one month [107]. Another group implanted an 

electrospun supramolecular polymer scaffold that was functionalized with biological 

components to recruit circulating host cells [47]. They reported sustained mechanical and 

biological function of their TEHV up to 6 month in their preliminary report. 

Two different groups have described the fabrication of TEHVs using fibrin 

scaffolds with complex molds. Flanagan et al. used autologous cell populations (smooth 

muscle cells and fibroblasts) and bioreactor culture for 4 weeks to generate TEHVs 

sufficient for implantation [109]. The mature TEHVs were seeded with autologous 

endothelial cells prior to implantation into the pulmonary position of mature sheep for 3 

months. Extensive in vivo remodeling resulted in the replacement of the fibrin scaffold 

with cell-produced extracellular matrix. An endothelium was observed on the valvular 
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surfaces and there was no evidence of thrombi, calcification, stenosis, or aneurysms. 

Despite these promising results, valvular function was not maintained due to cell-

mediated leaflet shortening. 

Another fibrin-based TEHV was fabricated by using human dermal fibroblasts 

and a cyclic stretch bioreactor [73,110]. Cell-mediated fibrin gel contraction was 

exploited by this group to dictate collagen fiber alignment and mechanical anisotropy 

similar to the native heart valve root and leaflets [73,96]. These bileaflet TEHVs were 

implanted interpositionally into the pulmonary position of sheep after comprising the 

native pulmonary valve leaflets [110]. A concentric sleeve was placed along the entire 

root length to mitigate the risk of suture pullout or root rupture.  

Echocardiography immediately following implantation showed coapting leaflets 

with regurgitation, orifice area, and pressure gradients comparable to the native 

pulmonary valve. However, echocardiography at 4 weeks revealed moderate 

regurgitation due to significant leaflet shrinkage. Only one shortened leaflet was observed 

in each of the two valves explanted after 8 weeks. Extensive tissue remodeling and 

endothelialization was observed following implantation. Elevated collagen and elastin 

concentrations and minimal calcification were observed.  

These studies demonstrated the feasibility of TEHVs, but ultimately failed to due 

progressive leaflet contraction in vivo. Syedain et al. demonstrated that the transplanted 

fibroblasts maintained a contractile phenotype following implantation. Flanagan et al. 

also reported that cells in the explanted leaflets expressed alpha smooth muscle actin. 

Proposed solutions included fabricating TEHVs with additional coaptation area, utilizing 

stiffer polymers to prevent over compaction, or cell removal following in vitro tissue 

remodeling [55,109,110]. 

Decellularization has been explored recently as a means to eliminate in vivo 

leaflet shortening by removing the cellular components. It also reduces the 

immunogenicity of the TEHVs. However, this approach relies on rapid host cell invasion 

to repopulate the TEHVs so that cell-mediated repair and remodeling (and potentially 
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growth) can occur. It is imperative that the acellular TEHVs can withstand this initial 

phase prior to recellularization in vivo. Decellularization was first performed on TEHVs 

fabricated using synthetic polymer scaffolds attached to expandable nitinol stents [94], 

and subsequently in TEHVs fabricated using a fibrin gel [90].  

Decellularized TEHVs implanted into the pulmonary position of sheep exhibited 

extensive host cell invasion and matrix remodeling. Recellularization was fastest in the 

valve root, followed by the root/leaflet attachment area and the leaflets. However, mild 

central regurgitation appeared after 8 weeks and progressed to moderate after 24 weeks 

[91]. This loss of function was attributed to fusion of the leaflets to the valve root at the 

leaflet base, as shown in Figure 1-4. Similar results were reported in a senescent non-

human primate model [99]. However, the appearance of mild to moderate regurgitation 

after 8 weeks was attributed to the passive retraction of the extracellular matrix in the 

primate study.  

Another decellularized TEHV has also been reported recently using engineered 

tubes derived from a sacrificial fibrin scaffold [90]. Following in vitro maturation and 

decellularization, the engineered tubes consisted primarily of cell-produced collagen, 

which was preferentially aligned in the circumferential direction. The engineered tubes 

were sewn onto a three-pronged frame to create a tubular heart valve and tested under 

aortic conditions in an in vitro pulse duplicator system [90]. The TEHVs were 

subsequently implanted into the aortic position of adult sheep for up to 24 weeks [111]. 

Although there has been one other aortic TEHV study in sheep, it was designed to assess 

valve delivery, position, and function immediately after implantation [112]. The study by 

Syedain et al. was the first long term aortic valve study with a traditional TEHV (derived 

using synthetic or biopolymeric scaffolds) reported.  

 Full leaflet motion, laminar flow, and maintained effective orifice area were 

observed throughout the entirety of the implant period [111]. Two of the four valves 

implanted exhibited trivial to mild aortic insufficiency immediately after implantation. 

The insufficiency grade in three of the valves increased after 12 weeks, which was 
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attributed to small matrix tears near the top of the frame struts. However, the aortic 

insufficiency did not progress further between 12 and 24 weeks. No evidence of 

calcification was reported in any of the explanted TEHVs. Extensive recellularization 

was observed near the base of the leaflets after 12 weeks. After 24 weeks, the cells in 

these regions expressed vimentin and lacked alpha smooth muscle actin, similar to native 

valve interstitial cells. Increased cell invasion was observed near the leaflet free edge at 

this time point as well. The invaded cells deposited proteoglycans, elastin, collagen IV, 

and laminin. An endothelium was similarly forming from the base of the leaflets towards 

the free edge. 

1.7 Remaining Challenges 

The prospect of using tissue engineering principles to generate a living heart valve 

capable of repairing and remodeling itself is promising and exciting. However, there are 

numerous challenges remaining before a tissue engineered heart valve can be safely 

translated to the clinic. These heart valves must demonstrate both short and long term 

function in dynamic mechanical and flow environments. In order to respond to these 

environments and other biological cues, the correct cells must reside in the TEHV and 

maintain a homeostatic functional state over an extended period of time [113]. This 

challenge is exacerbated in pediatric patients who are also undergoing somatic growth.  

Due to the breadth of valve fabrication methods (scaffolds, cells, cell stimulation, 

etc.) continued research is needed to identify the optimal TEHV. The use of animal 

models will be crucial in order to elucidate the host response to TEHVs and their various 

components in regards to thrombosis, inflammation, infection, and calcification. 

Demonstrating repeatable and long term valve function has been a challenge for the field 

to date.  

Since TEHVs depend on resident cells to confer remodeling and somatic growth 

in response to physiologic cues in vivo, it will be crucial to assess their presence and 

phenotype following implantation. Ensuring cellularity is essential for decellularized 

valves, which are reliant on host cell invasion to provide durability (via secretion of new 
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matrix proteins) and hemocompatibility.  Demonstrating success in these areas will be 

critical to the success of the heart valve tissue engineering field. 

1.8 Conclusions 

There are numerous approaches to developing a TEHV, each with their own 

advantages and disadvantages. Various cell sources, scaffold materials, and cell 

stimulation paradigms have been explored with varying levels of success. Ensuring the 

safety and efficacy of a tissue engineered valve prosthesis will require well designed in 

vitro and in vivo studies. Translating tissue engineered heart valves into the clinic is 

promising, but also challenging, as evidenced by outcomes of in vivo TEHV studies to 

date. 
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1.9 Chapter 1 Figures and Tables 

Table 1-1. Valvular heart disease statistics in 2011 

2011 valvular heart disease hospital discharges stratified by procedure type (repair or 

replacement) and patient age. Bold numbers = Total number of patients for a given 

subset. Percentages = Number of given subset to the total number of valve procedures 

(repair & replacement). Adapted from 2011 HCUPnet data. 

Note: sum of all age groups does not necessarily equal “all ages” group due to the 

associated standard errors. 
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Figure 1-1. Diastolic pulse duplicator system schematic 

System consists of (A) bioreactor and a (B) medium chamber. The medium is pumped 

through the (C) tubing connecting the two chambers using (D) roller pumps. Compressed 

air is introduced into a (E) polycarbonate cylinder, which encases part of the tubing, 

using a (F) magnet valve. Compliance is incorporated into the system using a (G) syringe 

and pressure is measured using (H) sensors on either side of the TEHV. With kind 

permission from Springer Science+Business Media: <Annals of Biomedical Engineering, 

Tissue Engineering of Human Heart Valve Leaflets: A Novel Bioreactor for a Strain-

Based Conditioning Approach, 33, 2005, 1778-1788, A. Mol, N.J. Driessen, M.C. Rutten, 

S.P. Hoerstrup, C.V. Bouten, and F.P. Baaijens, Figure 2, [81].   
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Figure 1-2.  Bileaflet valve mold and fabrication procedure 

Machined Teflon mold with a leaflet channel for use with a biopolymeric (fibrin) scaffold 

[73].  
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Figure 1-3. Tubular valve concept schematic  

Schematic showing the tubular valve design and modification of the Medtronic 3F 

bioprosthetic valve. During implantation, the fabricated tube is attached around the base 

and at the three commissural tabs. Exposure to back pressure collapses the tube in the 

regions in between the commissural tabs, resulting in the formation of leaflets [89]. 

Reprinted from Journal of Thoracic and Cardiovascular Surgery, Volume 130 / edition 2, 

James Cox, Niv Ad, Keith Myers, Mortiz Gharib, and R.C. Quijano, Tubular heart 

valves: A new tissue prosthesis design—Preclinical evaluation of the 3F aortic 

bioprosthesis, 520-527, Copyright (2005), with permission from Elsevier. 
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Figure 1-4. Macroscopic appearance of a TEHV before and after implantation 

Macroscopic appearance of a decellularized TEHV (derived using synthetic polymers), 

(A-C) before and after implantation for (D-F) 8, (G-I) 16, and (J-L) 24 weeks. Leaflet 

coaptation was (D) maintained for 8 weeks, but (G,J) was not evident thereafter. 

(E,F,H,I,K,L) Leaflet fusion to the root (arrows) progressed upward over time, resulting 

in smaller leaflets. Reprinted from the Journal of American College of Cardiology, 

Volume 63/Issue 13, A. Driessen-Mol, M.Y. Emmert, P.E. Dijkman, L. Frese, B. 

Sanders, B. Weber, N. Cesarovic, M. Sidler, J. Leenders, R. Jenni, J. Grunenfelder, V. 

Falk, F.P. Baaijens, and S.P. Hoerstrup, Transcatheter Implantation of Homologous “Off-

the-Shelf" Tissue-Engineered Heart Valves with Self-Repair Capacity: Long-Term 

Functionality and Rapid In Vivo Remodeling in sheep. Pages 1320-1329, 2014, with 

permission from Elsevier. [91].  
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Chapter 2. Pediatric Tubular Pulmonary Heart Valve from 

Decellularized Engineered Tissue Tubes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reprinted from Biomaterials, 62, J. Reimer, Z. Syedain, B. Haynie, and R. Tranquillo, 

Development of a Tubular Biological Tissue-Engineered Heart Valve with Growth 

Potential, Pages 88-94, Copyright (2015), with permission from Elsevier. 
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2.1 Summary 

Pediatric patients account for a small portion of the heart valve replacements 

performed, but a pediatric pulmonary valve replacement with growth potential remains an 

unmet clinical need. Herein we report the first tubular heart valve made from two 

decellularized, engineered tissue tubes attached with absorbable sutures, which can meet 

this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal 

fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous 

matrix, which was subsequently decellularized. Previously, these engineered tubes 

became extensively recellularized following implantation into the sheep femoral artery. 

Thus, a tubular valve made from these tubes may be amenable to recellularization and, 

ideally, somatic growth.  

The suture line pattern generated three equi-spaced “leaflets” in the inner tube, 

which collapsed inward when exposed to back pressure, per tubular valve design. Valve 

testing was performed in a pulse duplicator system equipped with a secondary flow loop 

to allow for root distention. All tissue-engineered valves exhibited full leaflet opening 

and closing, minimal regurgitation (< 5%), and low systolic pressure gradients (< 2.5 

mmHg) under pulmonary conditions. Valve performance was maintained under various 

trans-root pressure gradients and no tissue damage was evident after 2 million cycles of 

fatigue testing.  

Keywords: Tubular Heart Valve; Fibrin; Cardiac Tissue Engineering; Pulse Duplicator; 

Decellularization  
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2.2 Introduction  

Valvular heart disease affects ~2.5% of the U.S. population and there were more 

than 110,000 heart valve procedures in 2011 [114,115]. There is a clinical need for a new 

prosthetic pulmonary valve (PV) despite the fact that this valve accounted for only ~1.3% 

of all heart valve procedures in the U.S. in 2011 [114]. Current PV prostheses are not 

ideal for “pediatric patients” (younger than 18 years old) due to their inability to grow. 

Current commercially-available PV prostheses include homograft valves (cryo-preserved 

or decellularized) and a chemically-fixed bovine jugular vein graft (trileaflet) [34,116]. 

Glutaraldehyde-fixation eliminates the immunogenicity of xenogeneic tissue, but also 

limits cell invasion and ultimately somatic growth [117]. Thus, young patients typically 

undergo multiple operative procedures in order to replace outgrown PV prostheses during 

maturation.  

Numerous tissue-engineered heart valves (TEHVs) have been explored in hopes 

of developing “living” valves capable of in vivo tissue remodeling and growth 

[72,77,81,83,109,118]. Various strategies have been used for tissue fabrication, including 

the use of cell-seeded hydrogels with or without a polymeric co-scaffold. Although 

initially functional, many of these TEHVs exhibited progressive leaflet retraction during 

preclinical animal studies [109,119]. This has been attributed to sustained contraction of 

the transplanted cells, leading researchers to decellularize the tissue prior to implantation 

[90,91]. Although somatic growth has not yet been demonstrated, there have been several 

reports of decellularized tissue being recellularized [99,120], which is a necessary 

precursor to tissue remodeling and growth. 

Earlier valve iterations focused on mimicking the shape of natural valve leaflets 

and often utilized complex molds [83,121,122]. More recently, TEHVs with a tubular 

leaflet design have been explored that do not rely on complex molds. To date, these 

tubular TEHVs have all used a single tube – attached to a stent, frame, or within an inert 

conduit – to generate a valve-like action [88,90,92]. Our group has previously reported a 

tubular TEHV using a single tube, generated by entrapping fibroblasts in a sacrificial 
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fibrin gel, onto a PEEK frame [123]. Despite the promising functional performance of 

this TEHV, its inert frame precludes it from growing and thus renders it suboptimal for 

pediatric PV replacements.  

In this study we report a frameless, tubular TEHV generated from two 

decellularized engineered tissue tubes (referred to as “engineered tubes” hereafter) sewn 

together in a specified pattern using degradable sutures. The outer tube serves as the flow 

conduit and provides the mechanical constraints needed for the inner tube to function as 

“leaflets”, as in classic tubular valve design. The regions of the inner tube not 

mechanically constrained by the outer tube collapse inward when exposed to back 

pressure. The engineered tubes were fabricated by entrapping ovine dermal fibroblasts in 

a tubular fibrin gel, as previously discussed [90]. The entrapped cells replaced the fibrin 

with a collagenous matrix, which is anisotropic due to the mechanical constraints 

imposed during the culture period. Collagen production was stimulated by stretching the 

constructs in a pulsed flow-stretch bioreactor following an initial static culture period. 

Decellularization in sequential detergent treatments was then used to remove the cellular 

components. 

Following engineered tube and valve fabrication, the TEHVs were functionally 

tested in a custom pulse duplicator system to assess valve performance and root 

distention under pulmonary conditions. The durability of the suture line was assessed by 

fatiguing one TEHV for two weeks. Macroscopic appearance and valve performance 

metrics were compared before, during, and after fatiguing to assess the TEHV’s 

durability. Valve performance and mechanical properties were compared to those from a 

commercially-available, pulmonary valve prosthesis (Medtronic Contegra valve). 

2.3 Materials and Methods 

2.3.1 Tissue Fabrication 

A cell-entrapped, isotropic fibrin gel was formed by mixing bovine fibrinogen 

(Sigma), ovine dermal fibroblasts (Coriell), thrombin (Sigma), and calcium chloride. 
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Final component concentrations of the gel were as follows: 4 mg/mL fibrinogen, 1 

million cells/mL, 0.38 U/mL thrombin, and 5 mM CaCl2. This solution was injected into 

a tubular mold, formed by inserting a 19 mm glass rod into a concentric, polycarbonate 

tube (Figure 2-1a). The glass rods were pre-fitted with Dacron
©

 cuffs on either end to aid 

in handling and pretreated with 5% Pluronic F-127 (Sigma) in double-distilled water.  

Following gelation, the glass molds were removed from the polycarbonate outer 

casings and cultured in DMEM supplemented with 10% fetal bovine serum (FBS, 

HyClone), 100 U/mL penicillin, 100 μg/mL streptomycin, 0.25 μg/mL amphotericin B, 2 

μg/mL insulin, and 50 μg/mL ascorbic acid. After two weeks, the tissue tubes were 

transferred onto 16 mm latex tubes, attached to custom manifolds, and cyclically 

stretched in a pulsed-flow-stretch bioreactor for 5 weeks [124]. Construct stretching 

began at 3% strain and was increased weekly by 1% until a 5% maximum strain was 

achieved. 

2.3.1.1 Tissue Tube Decellularization 

The tissue tubes were treated with 1% sodium dodecyl sulfate (SDS, Sigma) in 

distilled water for 6 hours (replaced after 1, 3, and 5 hours) at room temperature with 

continuous shaking. Following SDS treatment, the tubes underwent 3 x 10 minute washes 

in 1% Triton X-100 (Sigma) in distilled water at room temperature. The tubes were 

extensively rinsed in phosphate buffered saline (PBS) for one week at 4° Celsius before 

and after overnight incubation in DMEM supplemented with 10% FBS and 2 U/mL 

deoxyribonuclease (Worthington Biochemical).  

2.3.2 Valve Fabrication 

Four TEHVs were fabricated, each of which used two 16 mm inner diameter 

engineered tubes, which were trimmed to an axial length of either ~15 mm or ~12 mm. 

The tubes were sewn together, with the shorter tube inside of the longer tube, using 

absorbable 7-0 Maxon CV (Covidien) sutures. The pattern of the first suture line (Figure 

2-2a, green dashed line) defined commissure and “leaflet” regions. Independent, 
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crosshatched suture lines were then added to reinforce each commissure (Figure 2-2a, 

purple dashed line) on the three subsequent TEHVs.  

2.3.3 Pulse Duplicator Testing 

Four TEHVs and one commercial pediatric pulmonary valve (Medtronic 

Contegra, 18 mm ID) were tested in a custom pulse duplicator system. One TEHV (no 

cross-hatching pattern) was used to assess root strain at different trans-root pressure 

gradients. These pressure gradients were prescribed by adjusting the ablumenal pressure 

on the TEHV, while maintaining the lumenal pressure and waveforms (by keeping the 

pump displacement constant). One TEHV was fatigued at pulmonary pressure conditions 

for two weeks real-time at 100 cycles/minute and was functionally characterized (with a 

higher flowrate) before, after 1 week, and at the conclusion of the fatiguing regimen. Two 

other TEHVs and the Contegra valve were functionally characterized, but not fatigued.  

The pulse duplicator system consisted of a pulse generator, compliance chambers, 

and two flow loops (Figure 2-3a). The pulse generator pumped fluid through an 

electromagnetic flowmeter (Carolina Medical) and test valve before being returned to the 

reservoir in the primary flow loop, as previously described [123]. Unidirectional flow 

was ensured by placing a bileaflet, mechanical valve downstream of the reservoir. For 

these tests, a secondary flow loop was added that exited from the top of the fluid-filled 

chamber where the test valve was mounted (Figure 2-3a). A downstream needle valve 

controlled the trans-root flow and was used to regulate the pressure on the ablumenal 

surface of the test valve. System compliance, for both flow loops, was modulated by 

changing the fluid level in air-filled chambers upstream and downstream of the test valve. 

Additional information on the pulse duplicator system setup can be found in Appendix A. 

Transducers (Vivitro Systems) were placed downstream, upstream, and on the 

ablumenal surface of the test valve to record system pressures. Instantaneous flowrates 

were measured using an electromagnetic flowmeter (Carolina Medical) placed between 

the pulse generator and test valve. Flowrates and system pressures were recorded using a 

custom LabVIEW program and analyzed using a custom Matlab script (see Figure 2-3b 
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for a representative waveform and Appendix A for the code). All pressure and flow 

metrics reported in Table 2-2 & Table 2-3 were averaged over 3 cycles for each valve. 

Diastolic pressure drop was defined as the average difference between the inflow and 

outflow pressures over the period of the cycle when the flowrate was less than or equal to 

zero.  Systolic pressure drop was defined as the average pressure difference over the 

period of the cycle when the inflow pressure exceeded the outflow pressure. Mean 

forward flowrate is the average of the forward flow portion of the flow trace. 

Regurgitation refers to ratio of total negative flow to the stroke volume, or positive flow, 

for each cycle. Additional information on these metrics can be found in ISO 5840.  

There was a “water hammer” effect during valve closure that resulted in a 

substantial pressure spike on the inflow side of the valve, though it is noticeable in all 

three pressure traces (Figure 2-3b). This pressure spike was noticeably larger in one of 

the TEHVs, which resulted in a higher diastolic pressure drop at the desired mean 

forward flowrate. The magnitude of the spike was reduced by increasing the ventricular 

compliance of the system. However, this resulted in a second positive flow pulse after the 

TEHV closed. Therefore, only the regions before this secondary pulse were used to 

calculate the mean diastolic pressure drop and regurgitation for this TEHV.  

Lumenal and ablumenal videos of the test valve were recorded during testing at 

50 fps (Canon Rebel T3i) and analyzed in ImageJ to assess geometric orifice area (GOA) 

and maximum root strain. GOA is defined as the ratio of the open area during systole to 

the maximum cross-sectional area of the valve leaflets. For this study, the maximum 

(viewable) cross-sectional area is dependent on the inner diameter of the silicone tubes 

(16 mm), which are attached to each end of the test valve and prevent paravalvular leak. 

Maximum root strain was taken as the natural logarithm of the maximum over the 

minimum root diameter, as determined in ImageJ. 

2.3.4 Macroscopic Tissue Imaging & Histology 

Valves were macroscopically visualized using a stereoscope (Leica StereoZoom 

4) outfitted with a digital camera (Canon Rebel T3i). Images of the suture lines, as seen 
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from the ablumenal and lumenal surfaces, were captured before, during, and after valve 

testing. For histology, tissue strips were cut and fixed in 4% paraformaldehyde at 4° 

Celsius and frozen in OCT (Tissue-Tek) using liquid nitrogen. 9 μm cross-sections were 

sliced and stained with Lillie’s trichrome and picrosirius red. Images were taken using a 

color CCD camera from an Olympus IX70 microscope at 4X magnification. For 

picrosirius red staining, the samples were placed between crossed plane polarizers during 

imaging.  

2.3.5 Tensile Mechanical Testing 

Strips, parallel (“circumferential”) and orthogonal (“radial”) to the circumference 

of the tubes, were cut (~2 mm x 12 mm) from the engineered tubes and mechanically 

characterized. Strips from the Contegra valve’s leaflets and root were also characterized. 

The engineered tubes used for the TEHV were fundamentally the same, so separate 

“root” and “leaflet” mechanical properties were not reported. Sample dimensions were 

measured prior to testing using a digital caliper.  

The strips were mounted in custom grips attached to the tester’s actuator arms and 

straightened with a 0.005 N tensile load. Six preconditioning cycles were performed (0-

10% strain) before the samples were strained to failure at 3 mm/min using an Instron 

MicroBionix (Instron Systems). Strain was calculated by taking the natural logarithm of 

the sample’s deformed length over its initial length. Stress was defined as the force 

divided by the undeformed, cross-sectional area of the strip. Modulus and ultimate tensile 

strength (UTS) were taken as the slope of the linear region of the stress-strain curve and 

the maximum stress recorded, respectively.  

2.3.6 Suture Retention Testing 

The suture tension properties were also evaluated for the engineered tubes, in 

accordance with ISO 7198. Briefly, a 6-0 prolene suture was passed through the 

circumferential strips (~5 mm x 10 mm) 2 mm from the free edge. The suture was tied 

into a loop and then pulled at a rate of 50 mm/min axially, or orthogonal to the presumed 

fiber direction, through the strips using the Instron MicroBionix tester. 



 

37 

 

2.4 Results 

2.4.1 Tissue Fabrication and Characterization 

Engineered tissue tubes were fabricated by allowing entrapping ovine dermal 

fibroblast in a cylindrical fibrin gel (Figure 2-1a). The entrapped cells replaced the fibrin 

(Figure 2-1b, red stain) with circumferentially-aligned, cell-produced collagen (Figure 

2-1b, green stain). Decellularization removed cell components, leaving a matrix-only 

engineered tube, as shown in Figure 2-1b. Collagen fibers were visualized by staining 

with picrosirius red and imaged under crossed plane polarizers (Figure 2-1c). The 

intensity of red is directly related to collagen packing and alignment [125]. 

The engineered tubes were tested for their tensile mechanical properties and 

compared to those for the Contegra valve, a commercial pediatric pulmonary valve 

(Table 2-1). The engineered tubes exhibited anisotropy, which is characteristic of native 

cardiovascular tissues. The thickness of the Contegra valve’s leaflets (0.21 ± .03 mm) and 

root (0.76 ± 0.10 mm) were different than the thickness of the engineered tubes (1.35 ± 

0.05 mm). The suture retention strength of the engineered tissue was 175 ± 54 grams 

force.  

2.4.2 Tubular TEHV Fabrication and Characterization 

TEHVs were fabricated by sewing 2 concentric, engineered tubes together using 

absorbable sutures in a prescribed pattern (Figure 2-2a). The geometry of the sewing 

pattern dictated the behavior of the inner tube when exposed to forward and reverse flow. 

The tubes were attached around their entire circumference by the first sewing pattern 

(purple line in Figure 2-2a). The three commissure regions (one is shown in Figure 2-2b) 

mechanically constrained the inner tube from collapsing near its free edge, analogous to 

the posts on a framed valve. The three commissure regions were reinforced with a second 

sewing pattern (green line in Figure 2-2a) to increase the number of anchor points. The 

three “leaflets”, or regions between adjacent commissures on the inner tube, were not 

mechanically constrained at their free edge and collapsed inward to close the TEHV 
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when exposed to back pressure (Figure 2-2c). The outer tube functioned as the flow 

conduit of the valve and provided structural support for the inner tube (Figure 2-2a).   

2.4.3 In Vitro Performance Testing 

Three TEHVs and a control valve (Contegra valve) were tested in a pulse 

duplicator system (Figure 2-3a) at pulmonary conditions with a mean forward flowrate of 

3.6 ± 0.2 L/min. A representative pressure and flow waveform is shown in Figure 2-3b 

and their line colors correspond with the pressure and flow sensors shown in Figure 2-3a. 

Each of the TEHVs tested had lower regurgitation and mean systolic pressure drop 

compared to the Contegra valve, as seen in Table 2-2. Additionally, the GOA for the 

Contegra valve (52%) was substantially lower than for the TEHVs (76% ± 15%) despite 

the Contegra valve’s leaflets being much thinner. Representative still frames of the 

TEHV opening are shown in Figure 2-4. The TEHV fully closed (Figure 2-4a) during 

diastole and then began to symmetrically open (Figure 2-4b-d) before achieving 

maximum opening (Figure 2-4e) at peak systole.  

2.4.4 Trans-Root Pressure Manipulation 

TEHV root distention and valve function were assessed under various trans-root 

pressure gradients, ranging from 27.2 to 39.1 mmHg (Figure 2-5). Mean diastolic 

pressure drop and mean forward flowrate were ~15 mmHg and ~1.7 L/min for all cases, 

respectively. Maximum circumferential root strain ranged from 0.8% to 2.7% and was 

linearly dependent on the trans-root pressure gradient (Figure 2-5a). TEHV regurgitation 

and maximum GOA were maintained independent of trans-root pressure gradients 

(values remained within 4% of each other for all of the test cases reported) as shown in 

Figure 2-5b and 5c, respectively. These valve performance metrics were normalized by 

their respective values at maximum root distention (2.7%). 

2.4.5 TEHV Fatiguing 

One TEHV was fatigued in the pulse duplicator system for 2 weeks at 100 

cycles/minute and a mean diastolic pressure drop of 7.4 – 8.7 mmHg. The mean forward 
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flowrate was only ~1.9 L/min, but the testing conformed to ISO 5840 in that the valve 

was able to fully open and close during each cycle. The entire TEHV was visually 

inspected using a stereoscope, but particular attention was given to the commissure 

regions as seen from the ablumenal and lumenal surfaces (Figure 2-6a). Macroscopic 

tissue damage was not detected before (Figure 2-6b-c), during (Figure 2-6d-e), or after 

(Figure 2-6f-g) fatiguing. It did appear that the suture lines, particularly the cross-hatched 

pattern, became looser over the course of fatiguing (Figure 2-6b, d, and f). However, the 

inner tube remained firmly attached to the outer tube (Figure 2-6c, e, and g). 

TEHV GOA increased from 81% before fatiguing to 89% and 87% after 1 and 2 

weeks, respectively (Table 2-3). One leaflet of the TEHV developed a slight prolapse 

during diastole after the first week of fatiguing. This development was represented by the 

increase in regurgitation from 3.9% to 12.9% (Table 2-3). However, the prolapse and 

regurgitation did not progress over the final week of fatiguing and did not lead to any 

observable tissue damage on the suture line.  

2.5 Discussion 

We have previously developed a TEHV using a single engineered tube attached to 

a frame [123]. This valve had characteristic anisotropic leaflet stiffness and performance 

at physiological conditions with a small systolic pressure drop and trivial regurgitation. 

However, the engineered tube was mounted onto a non-degradable frame, which made it 

suboptimal for pediatric patients since it precludes somatic growth. In this iteration of our 

TEHV, we have developed a frameless valve that is more suitable for pediatric patients 

since it has the potential to grow and remodel. It consists of two engineered tubes that 

were sewn together using degradable sutures. Since the sutures will completely degrade, 

host cell invasion will be critical to the TEHV’s in vivo growth and remodeling potential. 

Previous attempts at developing a valve from a single mold, with fibrin as the 

scaffold, have been reported by our group and others [81,83,121]. While these valve 

designs provided a proof of concept, there are several challenges associated with the 

single mold approach. One major challenge is creating leaflets with the appropriate initial 
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thickness while ensuring that coaptation and mechanical strength are maintained as the 

fibrin gel is contracted by the entrapped cells. Further challenges included machining 

complex molds and high stress on sharp corners of the mold, leading to thinning and 

tearing in the engineered tissue.  

While tubular valve design addresses many of the challenges associated with the 

single mold design, it relies on the two engineered tubes fusing during in vivo 

remodeling. The sutures in the proposed design were selected based on their slow 

degradation rate, which will allow them to provide mechanical support during in vivo 

recellularization and tissue remodeling. In previous studies by our group using similarly 

decellularized tissue implanted as arterial grafts, we showed recellularization spanning 

the entire length (2-3 cm) of the graft after 8 weeks [126,127]. If the valve leaflets have 

similar host cell invasion and matrix deposition, then the timing of suture degradation and 

recellularization would match fairly well.  

Demonstrating somatic growth by replacing the pulmonary artery using a vascular 

graft made from degradable polymers has been tested in a lamb model. In the study by 

Hoerstrup et al., a degradable polymer graft was seeded with autologous cells from a 

lamb and evaluated for growth and remodeling [128]. The graft was harvested after 100 

weeks and it showed progressive growth, complete degradation of the synthetic polymer, 

and host tissue replacing the entire structure of the graft. Another study reported 

remodeling and an increase in size of a synthetic polymer graft seeded with bone marrow 

mononuclear cells over 6 months implanted into the inferior vena cava of a lamb [129].  

Based on these two studies and our previous arterial graft study [126,127], we 

expect our tissue to be amenable to host cell invasion. To ensure that our proposed valve 

design is capable of withstanding the initial phase of cellular ingrowth and suture 

degradation, we performed several in vitro tests to assess its durability. The most relevant 

test was to fatigue the TEHV at pulmonary pressure conditions (i.e. physiologic end-

diastolic pressure drop with complete valve opening and closing). This testing was 

performed for more than 2 million cycles and there was no noticeable change in the 
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sutures, tearing, or tissue damage. However, one leaflet developed a slight prolapse, 

possibly due to asymmetry in the “leaflets” as sewn or prolonged exposure to the water-

hammer effect, which led to increased regurgitation after 1 week. While longer testing 

could have been performed, we consider this number of cycles to be sufficient to assess 

the TEHV’s current design. Important questions regarding the TEHV’s growth, 

remodeling, and tissue fusion cannot be answered with in vitro fatigue testing.  

While this is the first tubular valve design using two completely-biological 

engineered tubes, other groups have explored tissue-engineered valves with various 

designs. One design from Weber et al. embedded a knitted, non-degradable, synthetic 

polymer tube within a cell-containing fibrin gel in a tubular geometry [88,92]. These 

proof of concept studies were done by connecting the fibrin/polymer mesh to a silicone 

outer tube or nitinol stent to generate “leaflets”. The advantage of this approach is that the 

initial strength of the synthetic polymer provides a durable anchor for attachment, while 

still providing a biological matrix for cellular remodeling. However, mechanical 

anisotropy similar to native leaflets was a critical design criterion in our approach and the 

inclusion of any polymer mesh would preclude fibrin gel compaction and associated 

mechanical anisotropy. The suture retention strength of our engineered tissue allowed us 

to sew the tubes together without synthetic polymer reinforcement. Compliance 

mismatch in a composite structure could also have detrimental effects during fatigue 

testing or during in vivo testing, which was not reported. Moreover, their design using a 

non-degradable, synthetic polymer tube or inert stent would not be suitable for pediatric 

applications. 

Functionally, we evaluated the tissue-engineered valve in a pulse duplicator and 

compared the values to a commercial pediatric pulmonary valve (Contegra 18 mm 

diameter conduit, Medtronic). One of the critical parameters for a pulmonary valve 

replacement is its systolic pressure drop. While the engineered (ovine) tissue used in this 

study was much thicker than the Contegra valve’s leaflets, the systolic pressure drop of 

the TEHV was lower than the Contegra’s under similar testing conditions. This was 
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potentially due to the non-fixed, compliant nature of the engineered matrix. Regurgitation 

(including closing volume) is another critical parameter and was also lower in our TEHV 

compared to the Contegra valve.  

We also evaluated the effects of variable trans-root pressure gradients to ensure 

that valve coaptation, maximum valve opening, and regurgitation were not adversely 

affected. This is relevant because certain congenital defects can lead to pulmonary artery 

hypertension, which is defined as when the mean pulmonary pressure exceeds 25 mmHg 

in vivo [130,131]. Theoretical outer diameters were calculated (data not shown) using the 

Law of Laplace for thick-walled right cylinders [132], but did not fully agree with the 

measured values. Several aspects of the test system could account for these differences, 

such as the “wall” being non-continuous due to the presence of separate inner and outer 

tubes. Additionally, the relatively small axial length to diameter aspect ratio of the TEHV 

and the presence of suture lines could account for some of the differences observed.  

Overall, the pulse duplicator testing and fatigue testing provide strong evidence 

that the current valve design will exhibit excellent initial performance in the pulmonary 

position. Whether the valve remodels to same extent as seen previously in arterial 

position remains to be seen and will be the focus of a subsequent in vivo study.  
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2.7 Chapter 2 Figures and Tables 

 

Figure 2-1. In vitro tissue fabrication and histology 

(a) Tissue tube fabrication schematic. The entrapped dermal fibroblasts replace the initial 

fibrin gel with an aligned, collagenous matrix. The cell-produced matrix is left intact 

following decellularization. (b) Trichrome staining showing collagen (green) and non-

collagen (fibrin, red) after decellularization. (c) Picrosirius red staining under crossed 

plane polarizers showing collagen fiber organization. Both scale bars are 500 μm. 
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Figure 2-2. Valve fabrication schematic and macroscopic images 

(a) Schematic of a frameless tubular heart valve made from two concentric, engineered 

tissue tubes. They are attached using a degradable suture line (purple) that defines belly 

and commissure regions. (b) The commissure regions are reinforced with a secondary 

crosshatching pattern (see also green dashed line in (a)). (c) The inner tube collapses 

inward between the three commissures when the valve is exposed to back pressure, which 

generates three “leaflets” and a valve-like action.  
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Figure 2-3. Pulse duplicator schematic and waveform 

The TEHVs were tested using (a) a custom pulse duplicator system, which allows valve 

root distention and trans-root flow. The valve test chamber is fluid-filled and is connected 

to the reservoir through a secondary flow loop.  (b) A representative flow-pressure trace 

is shown under pulmonary conditions. The locations of pressure probes and 

corresponding pressure traces are color coded in the panels.  A water hammer effect 

typical in pulse duplicator systems affects all of the pressure traces, but is most evident in 

the inflow pressure (at time = ~1.15s). 
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Figure 2-4. Leaflet motion during pulse duplicator testing 

Images of leaflet motion during valve testing in a pulse duplicator system under 

pulmonary flow conditions. (a) Leaflet coaptation is maintained during diastole, but (b-d) 

rapidly opens as systole begins. (e) Full valve opening is achieved before the leaflets 

begin to close.  
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Figure 2-5. In vitro TEHV function versus trans-root pressure gradient 

Ablumenal pressure was manipulated to assess TEHV performance under various trans-

root pressure gradients. (a) TEHV root strain shown as a function of the trans-root 

pressure gradient. TEHV (b) regurgitation and (c) geometric orifice area are normalized 

to their respective values using the maximum trans-root strain/pressure gradient case. 
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Figure 2-6. Macroscopic images from TEHV fatiguing 

Macroscopic images of a TEHV fatigued in the pulse duplicator system for 2 weeks at 

100 cycles/minute. Images were taken near the commissures on the (a, rectangle) 

ablumenal or (a, circle) lumenal surface. The TEHV was macroscopically analyzed at the 

same locations (b-c) before fatiguing, (d-e) after 1 week, and (f-g) following completion 

of testing at 2 weeks. 
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Table 2-1. Tensile mechanical properties of a bioprosthetic commercial valve and 

engineered tubes 

Property Contegra Valve Engineered Tubes 

Leaflet Thickness (mm) 0.21 ± 0.03 1.35 ± 0.05 

Leaflet Circumferential UTS (MPa) 3.3 ± 1.1 1.5 ± 0.4 

Leaflet Circumferential Modulus (MPa) 12.6 ± 1.8 5.2 ± 0.6 

Leaflet Modulus Anisotropy N/A 3.8 ± 0.9 

Root Thickness (mm) 0.76 ± 0.10 1.35 ± 0.05 

Root Circumferential UTS (MPa) 3.4 ± 0.3 1.5 ± 0.4 

Root Circumferential Modulus (MPa) 6.5 ± 0.1 5.2 ± 0.6 

Root Modulus Anisotropy 1.0 ± 0.1 3.8 ± 0.9 

 

Table 2-2. Pulse duplicator testing of TEHVs compared to a commercial 

bioprosthetic valve 

Property Contegra Valve TEHVs (n=3) 

Mean Diastolic ∆P (mmHg) 16.5 14.5 ± 3.7 

Mean Systolic ∆P (mmHg) 3.3 2.4 ± 0.1 

Mean Ablumenal Pressure (mmHg) 4.3 3.5 ± 0.7 

Mean Forward Flow Rate (L/min) 3.4 3.6 ± 0.2 

Regurgitant Fraction 7.3% 4.8% ± 0.8% 

Geometric Orifice Area 52% 76% ± 15% 

 

Table 2-3. Pulse duplicator testing before, during, and after TEHV fatiguing 

Property T = 0 weeks T = 1 Week T = 2 weeks 

Mean Diastolic ∆P (mmHg) 13.2 11.9 11.4 

Mean Systolic ∆P (mmHg) 2.5 1.8 3.1 

Mean Ablumenal Pressure (mmHg) 4.0 3.0 1.4 

Mean Forward Flow Rate (L/min) 3.6 3.2 3.8 

Regurgitant Fraction 3.9% 12.9% 13.8% 

Geometric Orifice Area 81% 89% 87% 
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Chapter 3. Somatic Growth of “Off-the-Shelf” Tissue-Engineered 

Pediatric Conduit in the Lamb 
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3.1 Summary 

Treatment of congenital heart defects requiring right ventricular outflow tract 

(RVOT) reconstruction typically involves multiple open-heart surgeries for growing 

patients. We developed an “off-the-shelf” (acellular) tissue-engineered vascular graft to 

address this critical unmet need.  The grafts were implanted as a pulmonary artery 

replacement in young lambs and evaluated to adulthood. Longitudinal ultrasounds 

showed dimensional growth with laminar flow, no pressure gradient, and normal right 

heart function. Body weight increased 366%, while graft diameter and volume increased 

by 56% and 216%, respectively. Explanted grafts had physiological strength and stiffness 

with anisotropic mechanical properties due to designed circumferential matrix alignment. 

The total collagen content increased by 465%, with substantial elastin deposition. Grafts 

developed complete endothelialization of the lumen and were extensively populated by 

mature smooth muscle cells. Further, the grafts showed no evidence of calcification, 

aneurysm, or stenosis.  Collectively the data support somatic growth of this completely 

biological graft grown from cells.  

  



 

52 

 

3.2 Introduction 

Surgical correction of congenital heart defects has increased dramatically over the 

last several decades. These defects, considered fatal just 30 years ago, can now often be 

successfully corrected with overall operative mortality of less than 2 % [133,134]. 

Reconstruction or replacement of blood vessels, valves, and cardiac chambers is often 

required to repair or reform the appropriate anatomic configuration. The use of synthetic 

materials, with zero growth potential and unpredictable durability, is often the only way 

to achieve these operative goals.  The availability of tissue-engineered material, with the 

ability to grow, heal, and provide long-term durability, would revolutionize the practice 

of congenital heart surgery.  

Tetralogy of Fallot and pulmonary atresia with ventricular septal defect are just 

two examples of cardiac defects that, although long-term survival is excellent, will often 

require multiple operative procedures to replace the reconstructed connection between the 

right ventricle and pulmonary artery (PA). Currently, homograft pulmonary artery 

conduits or bovine jugular vein grafts are the only materials sufficient to create this 

connection. These conduits have zero ability to grow and remodel with the somatic 

growth of the child. Additionally, an intense inflammatory reaction to these materials 

often occurs, resulting in early calcification and failure [135]. Thus, these patients will 

sometimes require 5 to 7 operative procedures during their lifetimes even with a 

“successful” corrective procedure [136].  While a valved conduit would benefit a larger 

patient population, and several researcher groups are working on such grafts 

[93,99,118,137-139], a conduit with the ability to grow somatically would suffice for 

many patients with competent valves but requiring cardiopulmonary vascular 

reconstruction.  It might also possibly be a compromise solution for patients in need of a 

valved conduit absent the availability of one with growth potential. 

The application of a competent, readily available conduit, with the ability to grow 

with the child, would eliminate the need for multiple operations and the morbidities 

associated with these procedures.  It could benefit more than 1,000 pediatric patients 
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annually in the US [136].  It would also dramatically reduce the financial burden on the 

health care system associated with currently used conduits that require periodic 

replacement to accommodate child growth.  

Pioneering research in this field has been conducted by Shin’oka, Breuer, and 

colleagues with the landmark report of reconstruction of an occluded pulmonary artery in 

a 4-year old patient with a degradable synthetic polymer tube (PLA/PCL) seeded with 

autologous cells [140].  In a subsequent clinical trial, similar grafts seeded with 

autologous bone marrow mononuclear cells were implanted into 42 patients (median age 

5.5 years) [141]. There was no graft-related mortality with mean follow-up of 5.8 years 

although one patient had a partial mural thrombosis, and four patients had graft stenosis 

[142].  Recently, they reported histological examination of one graft evaluated after 12 

years in a patient (implanted at age 4 years), showing graft remodeling with complete 

lumen endothelialization and a mature smooth muscle wall [143]. In addition, 

investigators have conducted extensive research in the mouse model to elucidate the role 

of the seeded cells and the host response [129,144-150].  

In another sheep study, again using autologous cells seeded on a synthetic 

polymer scaffold, Hoerstrup and colleagues implanted 18 mm diameter PGA/P4HB tubes 

seeded with autologous myofibroblasts into lambs as arterial replacements for up to 240 

weeks [128,151]. Longitudinal CT imaging and explant histology revealed extensive 

remodeling and graft growth. 

Both of the above approaches, while successful in pre-clinical and clinical studies, 

respectively, require autologous cells to be isolated from the patient and expanded prior 

to implantation. An “off-the-shelf” graft that is both acellular and possesses growth 

potential via host cell invasion post-implantation, as reported herein would be a 

significant clinical advancement. In addition, an acellular graft would eliminate the need 

to develop a manufacturing process to isolate autologous cells and reliably seed them 

onto the scaffold in order to translate the technology into the clinic.  
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The goal of this study was to demonstrate proof-of-principle for an “off-the-shelf” 

graft that is capable of somatic growth. The completely-biological tubular grafts, 

consisting primarily of cell-produced collagen, were derived from a sacrificial fibrin gel, 

which was remodeled in a bioreactor by entrapped dermal fibroblasts. Following this 

remodeling, the tubes were decellularized, which, when done effectively, removes the 

need for immunosuppression, but maintains the cell-produced matrix. The graft was 

grown to be strongly aligned in the circumferential direction in order to mimic the 

mechanical anisotropy associated with native arteries.  These 16 mm diameter acellular 

allografts were characterized, stored, and then implanted into 3 lambs (average age 8 

weeks), tracked longitudinally with ultrasound, and then explanted after the lambs 

reached adult size (age 50 weeks) for mechanical, biochemical, and histological 

characterization. 

3.3 Methods 

3.3.1 Engineered Tissue Tubes 

Ovine dermal fibroblast (oDF)-seeded fibrin gels were formed by adding 

thrombin (Sigma) and calcium chloride in 20 mM HEPES-buffered saline to a suspension 

of cells (oDF from Coriell) and bovine fibrinogen (Sigma). The final component 

concentrations of the suspension were as follows: 4mg/ml fibrinogen, 0.38U/ml 

thrombin, 5.0 mM Ca
++

, and 1 million cells/ml. The suspensions were mixed and injected 

into a tubular glass mold. The tubular grafts were cultured statically for 2-weeks and then 

transferred to custom pulsed-flow-stretch bioreactors for an additional 5-week maturation 

period as previously described [124]. 

Following bioreactor conditioning, the tubes were decellularized. First the tubes 

were placed on an orbital shaker at room temperature for 6 hr with 1% sodium dodecyl 

sulfate (SDS, Sigma) followed by 1% Triton X-100 (Sigma) for 30 min, extensively 

washed with PBS for 2 weeks at 4C, and then incubated at 37C in 2U/ml 
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deoxyribonuclease (Worthington Biochemical, DR1) in DMEM supplemented with 10% 

FBS overnight. Grafts were sterilely stored at 4C until use in phosphate buffer solution.  

3.3.2 Graft Implant in Growing Lamb Model 

Tissue-engineered ovine grafts were implanted as pulmonary artery replacements 

in n=3 Dorset lambs (average weight 15.3 kg, age at implant: 8.4 weeks). All protocols 

were approved by the Institutional Animal Care and Use Committee of the University of 

Minnesota and conform to NIH guidelines on Care and Use of Laboratory Animals.  The 

surgeries were performed by the University of Minnesota’s Experimental Surgical 

Services. For all animals, anesthesia was induced by administering 10mg/kg Ketamine 

(IM) and 2-6 mg/kg propofol (IV). Animals were then intubated and maintained on 

isoflurane at 1-3% for the duration of surgery and monitored for heart rate, mean blood 

pressure, fixed pupil location, corneal reflex absence, and oxygen saturation to ensure 

proper anesthesia.  The heart was exposed by a left lateral thoracotomy with dissection 

through the intercostal space.  The animal was heparinized (250IU/kg, IV) and placed on 

cardiopulmonary bypass. The grafts were implanted interpositionally using continuous 5-

0 Maxon CV (Covidien) degradable sutures after excising a similar length of the native 

main pulmonary artery. The native pulmonary valve was left intact. In addition, prolene 

sutures were used to attach two silver clips on the native pulmonary artery near the 

anastomoses to serve as markers (Fig 1f).  

Post-surgery, animals received subcutaneous 750IU heparin BID for the duration 

of the study. For pain, animal received ketoprofen 1-2mg/kg (IM) every 12-24 hours as 

directed by the post-operative veterinarian. Additionally slow release buphenorphine 0.27 

mg/kg (SQ) was given prior to induction of anesthesia. Animals for the study were 

numbered as PAC1, PAC2, and PAC3. The first ultrasound was performed 8 weeks 

following implantation. The second and third ultrasounds were done when the animals 

were 30 weeks old and prior to euthanasia at 50 weeks of age, respectively Conduit 

dimensions, pressure drop, flow velocity and flow profile (laminar or turbulent 

characteristics) were measured from the ultrasound. Animals were heparinized 
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(300IU/kg, IV) and then euthanized with beuthanasia given intravenously at 87-90 

mg/kg. Explanted grafts were photographed, and then dissected into strips for 

histological, biochemical, and mechanical characterization.   

3.3.3 Mechanical Testing 

Tissue strips were cut from the engineered tissue tube and native pulmonary 

artery prior to implant and following explant with dimensions of ~2 mm x 10 mm in both 

the circumferential and axial directions. Following explant, additional axial strips were 

cut that consisted of half native pulmonary artery and half engineered tissue from the 

anastomotic regions. All samples were measured for dimensions and then tested for 

tensile mechanical properties using an Instron mechanical testing system and 

compression grips. The tangent modulus (E) was defined as the slope of the linear region 

of the stress-strain curve prior to failure. The peak stress was defined as ultimate tensile 

strength (UTS). Mechanical anisotropy was defined as the ratio of the modulus of tissue 

samples cut in the circumferential direction to the modulus of samples cut from the tissue 

in the axial direction. 

3.3.4 Tissue Composition and DNA Analysis 

The collagen mass content was quantified using a hydroxyproline assay 

previously described [152] assuming 7.46 mg of collagen per 1 mg of hydroxyproline. 

Insoluble elastin was measured by dissolving tissue samples in NaOH and using a 

modified ninhydrin assay to measure elastin [153]. The total protein content was 

measured using the ninhydrin assay [121]. The tissue volume was calculated using the 

measured length, width, and thickness of the samples. For total collagen content of the 

graft, length, width and thickness of implanted and explanted construct were used to 

measure total volume of the graft. Average collagen concentration for each graft, 

obtained from the tissue strips, was used to estimate total collagen, protein and elastin 

contents.  The DNA content was quantified with a modified Hoechst assay for total DNA 

[154].  
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3.3.5 Histology and Immunostaining 

Each explanted graft was histologically and immunologically stained; multiple 

strips were cut to cover all regions of interest. Circumferential and axial tissue strips of 

pre-implant and explanted grafts were fixed in 4% paraformaldehyde, embedded in OCT 

(Tissue-Tek), and frozen in liquid N2. Cross sections of 9-µm thickness were stained with 

Lillie’s trichrome, Verhoeff-Van Gieson elastin stain, and picrosirius red stain. 

Histological sections were also immunostained for SMA (Sigma, A5228), Calponin 

(Abcam ab46794), vimentin (Abcam, ab80667), Von Willebrand Factor vWF (Abcam 

ab6994), CD45 (US Biological C2399-07B), elastin (Abcam ab21599), and collagen IV 

(Abcam, ab6586). All samples were blocked with 5% normal donkey serum, incubated in 

primary antibody at 2.5-5ug/ml and stained with a Cy5-conjugated, species-matched 

secondary antibody (Jackson Immunoresearch). Nuclei were counterstained with Hoechst 

33342 (Invitrogen H3570).  

3.3.6 Statistics 

Statistical significance for differences between two groups was determined using 

Student’s t-test when comparing two groups and ANOVA with tukey post-hoc analysis 

for more than two groups.  Paired symbols are used in figures to represent statistical 

difference. Any reference to a difference in the Results and Discussion sections implies 

statistical significance at the level p< 0.05. 

3.4 Results 

3.4.1 Tissue-engineered Arterial Graft 

Decellularized tissue-engineered tubes (16mm inner diameter), were evaluated for 

tensile mechanical and biochemical properties. The resulting tubular grafts had 

thicknesses of 1.21±0.03 mm, which was comparable to the pulmonary artery (1.15±0.20 

mm). A representative end and side view of the graft are shown Figure 3-1a,b. 

Histologically, the grafts were predominantly collagen with a layer of residual fibrin on 

the lumenal surface (Figure 3-1c). Stretch-to-failure testing showed the grafts possessed 
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an ultimate tensile strength of 1.9±0.2 MPa and stiffness of 3.6±1.2 MPa (Figure 3-1d) in 

the circumferential direction.  The tissue tubes also possessed mechanical anisotropy, 

with stiffness being 4.5-fold higher in the circumferential direction than the axial 

direction. All of these values compared favorably to the ovine pulmonary artery. The 

total collagen concentration prior to implantation was 38±5 mg/ml (Figure 3-1e). The 

DNA content after decellularization was less than 99% compared to the graft before 

decellularization.   

The grafts were implanted interpositionally into to the pulmonary artery (Figure 

3-1f), following resection of a similar length of native artery, in three lambs. 5-0 

Maxon™ CV biodegradable sutures (in vivo strength half-life of 4 weeks) were used to 

attach the graft to the pulmonary artery at the anastomoses. In addition, to ensure 

anastomoses could be identified at explant, silver clips were sewn on top of the native 

artery near each anastomosis (Figure 3-1f).   

3.4.2 Growth Evaluation of Pulmonary Artery Graft with Ultrasound  

All animals were first evaluated with ultrasound at 8 weeks following 

implantation to access graft diameter, graft length, blood velocity in the graft, and right 

heart function. Figure 3-2a shows a representative image of the graft 8 weeks after 

implant with red arrows indicating the anastomoses.  The grafts, although originally 

implanted as straight tubes, showed curvature similar to the native pulmonary artery after 

8 weeks.  The second and third ultrasounds were performed when the lambs reached the 

age of 30 and 50 weeks, respectively. Figure 3-2b shows a representative image of the 

grafts at 50 weeks, with prominent curvature, no indication of calcification (speckles in 

ultrasound), and no evidence of graft stenosis or aneurysm.  This was true for all three 

grafts (Supplemental Figure 3-1).  All animals had healthy weight gains with an increase 

of 340% over the course of study (Figure 3-2c).  The mid-graft diameter increased over 

the course of implantation by 56% (Figure 3-2d) and total volume  of the graft increased 

by 216%, as determined by measurements in ultrasound (Figure 3-2e).  There was no 

pathological increase in flow velocity measured within the graft during the study 
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duration, indicating a lack of stenosis (Figure 3-2f).  The flow though the graft was 

laminar throughout the course of the study with no pressure gradient across the graft.  

The right heart function was also normal with no change in wall motion or pulmonary 

valve function.  

3.4.3 Explanted Graft Gross Pathology 

All grafts were explanted when the animals were anatomically mature at age of 50 

weeks. Grossly, the explanted grafts looked larger in both diameter and length when 

compared to the pre-implant graft. Figure 3-3a,b shows the pre-implanted and explanted 

rafts at the same scale (Supplemental Figure 3-2 shows images of all grafts at implant and 

explant). The measured diameter and length of each graft at implant and explant is 

reported in Table 3-1.  

The explanted grafts had a diameter consistent with the adjacent pulmonary artery 

(Figure 3-3b).  The average wall thickness of the right ventricle was 6.3±0.6 mm (Figure 

3-3c). Cross-sections of the explanted graft showed homogeneous thickness across the 

length (Figure 3-3d, red arrows indicating lumenal and ablumenal surfaces). The 

anastomotic regions had no scarring or stenotic tissue and the lumenal surface 

transitioned smoothly from the native artery to the engineered graft.  

3.4.4 Explanted Graft Mechanical and Biochemical Properties 

The explanted grafts were cut into strips and stretched-to-failure. Graft thickness 

was 0.85±0.09 mm as compared to pulmonary artery thickness of 1.15±0.2 mm.  The 

explanted graft stress-strain curves in the circumferential and axial directions, along with 

the pre-implant graft curves, are shown in Figure 3-3e. The graft UTS and modulus in the 

circumferential direction were 1.5-2 fold higher than pulmonary artery (Figure 3-3f,g) 

with UTS in the circumferential direction of 1.6±0.5 MPa and modulus of 3.3±0.8 MPa. 

The modulus was 1.8 fold higher in the circumferential direction compared to the axial 

direction. In order to assess how mechanically robust the fusion at the anastomoses was 

and any influence of scar tissue formation, axial strips from this region were compared to 

axial strips from the graft and the adjacent pulmonary artery (Figure 3-4a). UTS, 
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maximum tension, and modulus were not different between the three regions (Figure 

3-4b-d). 

The explanted graft DNA content was 58% of the pulmonary artery value, 

corresponding to a cell concentration of 119±15 million cells/ml (Figure 3-4e). The total 

collagen and elastin content in the grafts were 180% and 49% of the pulmonary artery, 

respectively (Figure 3-4f). The total protein content was 80% of the pulmonary artery 

(Figure 3-4f). Based on collagen concentration, total surface area, and thickness 

measured for implanted and explanted grafts, the total collagen content of the explanted 

grafts was 224±51 mg, which was 465% higher than total collagen content of the pre-

implanted grafts (40±7 mg). There was also 277% increase in total protein content of 

tissue. Compared with pre-implant grafts, which had no detectable level of elastin, 

explanted grafts contained substantial elastin (Figure 3-4g).  

3.4.5 Explanted Graft Histological Analysis 

The explanted graft and pulmonary artery sections were stained to visualize the 

matrix composition.  Trichrome staining showed complete remodeling of the lumenal 

fibrin layer into a dense collagen network and evidence of recellularization along the 

entire graft’s length (Figure 3-5e).  Further characterization with picrosirius red staining 

imaged under polarized light showed crimped collagen fibers similar to the pulmonary 

artery (Figure 3-5b,f). Elastin was present throughout the entire pulmonary artery (Figure 

3-5i) and graft (Figure 3-5j), with evidence of mature elastin near the lumenal surface of 

the graft (Figure 3-5g), The basement membrane protein collagen IV was strongly 

expressed at the lumenal surface of the pulmonary artery (Figure 3-5d) and the graft 

(Figure 3-5h). Von Kossa staining showed no evidence of calcification along the entire 

length of the grafts (Figure 3-5k), except at localized sites near the anastomoses in the 

adjacent pulmonary artery where the sutures had degraded.  

Immunostaining was performed in order identify the phenotype of the invaded 

host cells and then counterstained with Hoechst. Complete recellularization across the 

entire thickness and length of the grafts was observed (Figure 3-6). The absence of 
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CD45-expressing cells indicated a lack of immune cell types in the pulmonary artery 

(Figure 3-6a) and the explanted graft (Figure 3-6b).  

The majority of the cells present stained positive for -smooth muscle actin (-

SMA) and calponin (Figure 3-6c-f), which are two markers for smooth muscle cells. The 

grafts had a complete endothelial cell layer, as evidenced by the uniform expression of 

Von Willebrand factor (vWF) along both the pulmonary artery (Figure 3-6g) and the 

entire length of the graft (Figure 3-6h). Further evidence of native-like tissue organization 

was observed when cells were imaged for calponin in both the circumferential and axial 

directions, showing elongated cells aligned in the circumferential direction (Supplemental 

Figure 3-3).  

3.5 Discussion 

Tissue engineering has the potential to overcome the limitations of existing 

treatments for congenital cardiovascular defects.  An ideal treatment option would be 

durable, not prone to calcification, and possess the potential to somatic growth.  To this 

end, two groups have previously demonstrated growth potential of synthetic 

biodegradable grafts seeded with autologous cells [128,129,151,155].  The studies by 

Shin’oka et al led to a clinical trial in which 24 patients were enrolled [141]. While they 

have shown promising results, their approach relies on isolating and seeding the conduits 

with autologous cells prior to implantation. If growth and remodeling could be 

demonstrated with an “off-the-shelf” (acellular) conduit, this would simplify the 

procedure and the GMP-regulated manufacturing processes to prepare the grafts for 

clinical use. 

Herein, we report an “off-the-shelf” pulmonary artery replacement capable of 

growing and remodeling. This study builds on our prior research, which used 

decellularized engineered tissue tubes as femoral artery grafts and tubular aortic heart 

valves in an adult sheep model. Both studies demonstrated excellent graft remodeling and 

function out to 24 weeks [111,126]. Based on the complete recellularization and 

mechanical durability of the completely biological matrices found in these studies, we 
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undertook this study to investigate the growth potential of the matrix by implanting 

anatomically-matched 16 mm diameter grafts as a pulmonary artery replacement in 

lambs. The animals were evaluated from average ages of 8 weeks to 50 weeks, with 

maximum graft implant duration of 44 weeks.  

Over the course of the study, all animals were asymptomatic and showed healthy 

weight gain. To reduce the risk of clotting as a potential failure mode in our assessment 

of somatic growth potential of our tissue-engineered matrix, subdermal heparin was 

utilized for the duration of this study, based on our prior aortic valve implant experience 

[111]. No complications, bruising, or bleeding were seen in any animal with 

anticoagulant therapy for the duration of study. Normal right heart function was observed 

with ultrasound 8 weeks post-surgery and at animal ages of 30 and 50 weeks.   

Since we used biodegradable sutures that have a 4 week half-life, rapid host cell 

invasion and subsequent matrix deposition were necessary to fuse the anastomoses.  

Since we saw a uniform flow tract in all animals at all time points, it was apparent that 

the matrix fused with the pulmonary artery at the anastomoses prior to suture 

degradation. Although the exact timeline of cell invasion and fusion isn’t known for this 

study, we have previously shown that grafts harvested after 8 weeks in the femoral artery 

position had complete endothelial coverage near the anastomoses and invasion of -SMA 

positive cells from the surrounding tissue [126].  Hence, it was not surprising in this 

study that sufficient extracellular matrix was deposited to ensure fusion at the 

anastomoses before the critical suture degradation point.   

While the grafts were implanted as straight tubes, curvature around the aorta (as 

seen in the native pulmonary artery) was observed in the first ultrasound following 

implantation (8 weeks).  Initially, this would most likely be due to physical forces on the 

graft; however, the cells invading the matrix remodeled the graft over time, while 

maintaining this physiological geometry.   

Importantly, graft diameter and length increased over the duration of implantation 

to the same degree as seen in the adjacent pulmonary artery.  The uniform growth of the 
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graft in all three animals contributed to the laminar flow profiles and no pathological 

pressure gradient across the grafts based on ultrasound examination. For comparison, in a 

growing lamb study using synthetic PTFE conduits, a 20 mmHg increase in pressure 

gradient developed within one year of implantation [156]. At the 50 week ultrasounds, it 

was challenging to visually discern the actual anastomotic locations as there was no 

narrowing, dilation, or other markings to differentiate the graft and pulmonary artery, 

which had indistinguishable diameters. Evaluation of the explanted grafts confirmed 

uniform growth with diameters matching the adjacent artery and no difference in axial 

mechanical properties between the native artery above the graft, the anastomotic region, 

and the graft.   

The explant graft volume increased by 216% over the course of implant, which 

was comparable to 244% volumetric increase of the pulmonary artery measured by 

Gottlieb et al with MRI [101].  For animal weight gains from 15 kg to 65 kg, they also 

reported cross-sectional area of the pulmonary artery increased from ~300mm
2
 to 

~600mm
2
, or a ~42% increase in diameter, which is also comparable to the 56% increase 

in diameter observed for our graft.  

The strongest evidence of growth was seen when evaluating the mechanical 

property measurements and total collagen content together. No substantial change in 

mechanical properties between pre-implant and post-implant graft was seen even though 

the graft volume increased by 216%.  This was most likely due to 465% more collagen 

measured in the explanted grafts, which appeared highly organized. Additionally, the new 

collagen was apparently deposited with the same circumferential alignment as the pre-

implant graft, since strong mechanical anisotropy existed in the explanted tissue.  In 

comparison, autologous cell-seeded polymeric grafts implanted by Hoerstrup et al 

showed significantly higher stiffness of explanted grafts compared with pulmonary 

artery; however, no anisotropic properties were reported [128].   

Histologically, the graft exhibited substantial host cell invasion and deposition of 

matrix proteins comparable to the pulmonary artery. Although the pulmonary artery had 
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~42% more cells, histological comparisons showed that the explanted grafts also 

contained mature, circumferentially-aligned smooth muscle cells and a complete 

endothelium and basement membrane. 

In our explanted grafts, elastin content was at 49% compared to pulmonary artery, 

with mature elastic fibers visible with Verhoeff’s stain. In a previous growing lamb 

model, Hoerstrup et al did not measure elastin and detected none via histology [128]. 

Brennan et al showed 47.2% more elastin deposition when synthetic polymer scaffold 

was pre-seeded with autologous cells compared to a cell-free scaffold [129].  In 

comparison to pulmonary artery, Brennan et al reported elastin content at 51% in their 

pre-seeded grafts after 26 weeks of implantation [129]. Taking mature elastin as a marker 

for positive growth and remodeling, this acellular cell-produced matrix tube can thus 

remodel similar to pre-cellularized polymer grafts reported in previous studies.    

Overall, this is the first report of an “off-the-shelf’” tissue-engineered vascular 

graft implanted in a growing lamb model that exhibited somatic growth and normal 

physiological function for nearly one year.  All three implanted grafts were extensively 

recellularized (including complete endothelialization), with organized collagen and 

elastin deposition, and no evidence of calcification or aneurysm.  They may thus serve as 

permanent conduits for RVOT repair.   
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3.8 Chapter 3 Figures and Tables 

 

Figure 3-1. Engineered tissue tube in vitro characterization 

(a) End-on view and (b) side view images of decellularized tissue-engineered graft. (c) 

Trichrome stained cross-section image of the graft (200 m scale bar in black). (d)  

Tensile mechanical properties of the graft in the circumferential (solid) and axial (dashed) 

directions. (e) Collagen and total protein concentrations of the graft prior to implantation.  

(f) Image of graft implanted in the ovine pulmonary artery with biodegradable sutures 

and silver clip markers near the anastomoses.  
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Figure 3-2. Representative ultrasound images and quantified data 

Representative ultrasound image of the grafts after (a) 8 weeks implantation and (b) at 

animal age of 50 weeks, with red arrows pointing to the anastomoses and the ‘A’ 

indicating the cross-section of the aorta. (c) Animal weights and ultrasound 

measurements for (d) mid-graft diameter, (e) graft volume, and (f) peak blood velocity in 

the graft as a function of animal age.  
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Figure 3-3. Macroscopic and mechanical characterization at explant 

Macroscopic images at the same magnification scaled (a) after implantation and (b) after 

explantation showing anatomical growth. (c) Cross-section of the explanted heart 

showing normal right ventricular wall thickness. (d) Side view of the explanted graft 

showing uniform thickness (red arrows point to the lumenal and ablumenal surfaces).  (e) 

Stress-stain plots of representative pre-implant (black line) and explanted grafts in the 

circumferential (solid) and axial (hashed) directions, and (f) UTS and (g) Modulus for the 

three explanted grafts and the adjacent pulmonary artery in the circumferential (solid) and 

axial (dashed) directions. 
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Figure 3-4. Tensile mechanical properties at explant 

Tensile mechanical properties in the axial direction with strips tested from (a) adjacent 

pulmonary artery (white), region encompassing the anastomosis (green), and engineered 

graft (black).  Measured properties from all three grafts are averaged for (b) UTS, (c) 

Maximum tension, and (d) Modulus.  Comparison between the native pulmonary artery 

and the explanted grafts of (e) cellularity and (f) Extracellular matrix (ECM) protein 

concentrations. (g) Total protein, collagen, and elastin content in the engineered grafts 

before and after implantation.   
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Figure 3-5. Histological characterization of the explanted tissue 

Histological images of the engineered graft and adjacent pulmonary artery following 

explant. Trichrome images of the (a) artery and the (e) graft showing uniform cell density 

and abundant collagen staining. Picrosirius red staining imaged under polarized light 

shows collagen crimping both in the (b) artery and (f) graft. Verhoeff stain for elastin 

showing mature fibers near the lumenal surface in black both for (c) artery and (g) graft. 

Collagen IV immunostaining at the lumenal surface both for the (d) artery and (h) graft.  

Elastin immunostaining showing the presence of elastin across the entire thickness of 

both the (i) artery and (j) graft. (k) No calcification was observed in the graft as 

visualized by Von Kossa staining. 200 m scale bar in black or white is shown. Lumenal 

surface is marked with ‘*’.  
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Figure 3-6. Immunostaining for cell marker in the explanted tissue 

Immunostaining for cell markers in the (a,c,e,g) pulmonary artery and the (b,d,f,h) 

explanted engineered graft. Specific cell markers stained include (a,b) CD45, 

(c,d)SMA, (e,f) calponin, and (g,h) Von Willebrand factor (vWF). 200 m scale bar in 

white is shown. Lumenal surface is marked with ‘*’. 

 

 

Table 3-1. Measured dimensions of grafts at implant and explant 

Graft 
Implant 

Diameter (mm) 

Explant 

Diameter (mm) 

Implant 

Length (mm) 

Explant Length 

(mm) 

PAC1 16 24.7 19 41 

PAC2 16 24.1 16 39 

PAC3 16 24.0 16 37 
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Supplemental Figure 3-1. Ultrasound images of the implanted grafts 

Ultrasound images of the graft for PAC1 (top panel), PAC2 (middle panel) and PAC3 

(bottom panel) at 8 weeks after surgery and at animal age of 30 and 50 weeks. White 

arrows mark the anastomotic positions. ‘A’ marks the lumen of the aorta.  
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Supplemental Figure 3-2. Macroscopic images of the grafts 

Images of the grafts at implant (a) PAC1, (b) PAC2, and (c) PAC3, at explant (d) PAC1, 

(e) PAC2 and (f) PAC3. 
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Supplemental Figure 3-3. Immunohistochemical images of cell elongation 

Calponin immunostaining of the explanted graft in the (a) circumferential and (b) axial 

directions showing elongated cells in the circumferential direction. 200 m scale bar 

shown and ‘*’ marks the lumenal side. 
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Chapter 4. Implantation of a Tissue-Engineered Tubular Heart Valve in 

Growing Lambs 
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4.1 Summary 

Current pediatric heart valve replacement options are suboptimal because they are 

incapable of somatic growth. Thus, children typically have multiple surgeries to replace 

outgrown valves. In this study, we present the in vivo function and growth potential of 

our tissue-engineered pediatric tubular valve. The valves were fabricated by sewing two 

decellularized engineered tissue tubes together in a prescribed pattern using degradable 

sutures and subsequently implanted into the main pulmonary artery of growing lambs. 

Valve function was monitored using periodic ultrasounds after implantation 

throughout the duration of the study. The valves functioned well up to eight weeks, four 

weeks beyond the suture strength half-life, after which their insufficiency index 

worsened. Histology from the explanted valves revealed extensive host cell invasion 

within the engineered root and commencing from the leaflet surfaces. These cells 

expressed multiple phenotypes, including endothelial, and deposited elastin and collagen 

IV. Although the tubes fused together along the degradable suture line as designed, the 

leaflets shortened compared to their original height. This shortening is hypothesized to 

result from inadequate fusion at the commissures prior to suture degradation.  With 

appropriate commissure reinforcement, this novel heart valve may provide the somatic 

growth potential desired for a pediatric valve replacement.  
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4.2 Introduction 

The pulmonary valve is the heart valve most frequently afflicted by congenital 

heart defects, and there is a clinical need for a pulmonary valve replacement in pediatric 

patients. While this patient population is relatively small (~600/year in the U.S.) [1,114], 

the need is dire because treatment can require multiple surgeries until adulthood to 

replace degenerated or outgrown valves [136]. Current replacement options for these 

children include glutaraldehyde-fixed xenografts, as well as decellularized or cryo-

preserved homografts [34,116]. Although there have been some improved preclinical and 

clinical outcomes [30,157], these valve replacement options traditionally have been prone 

to valve failure due to calcification, structural degeneration, and limited availability [22]. 

Additionally, these prosthetic valves are unable to grow with the patient and, 

consequentially, multiple valve replacements are often needed [158]. 

Numerous tissue-engineered heart valve (TEHV) approaches have been explored 

that aim to produce a “living” valve capable of in vivo remodeling, repair, and ultimately 

somatic growth [41]. Although initially functional, most of these valves eventually failed 

due to leaflet shortening or fusion with the valve root, leading to an unacceptable level of 

regurgitation [91,105,109,110,118]. Most TEHV studies have utilized adult sheep, but 

studies with juvenile sheep have been reported [55,118]. Two of these TEHVs contained 

cells at implant and ultimately failed due to leaflet shortening [118] and/or too much 

enlargement of the valve root [55]. Decellularization has been investigated as a way to 

reduce cell-mediated leaflet shortening and to increase their shelf-life [88,90,91]. 

Significantly, these approaches have demonstrated the feasibility of host cell invasion and 

matrix remodeling in both the pulmonary and aortic position [91,111]. However, long 

term function and growth of a TEHV has not yet been demonstrated. 

Our group previously reported excellent hemodynamic performance of our 

decellularized TEHV in a pulse duplicator [93]. It is a tubular heart valve, comprised of 

two tubes of cell-produced matrix grown in vitro held together with degradable sutures 

[93]. These sutures are reported to maintain 50% of their initial strength after 4 weeks in 
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vivo [159]. We have recently shown that single tubes implanted into young lambs as a 

pulmonary artery replacement with this suture exhibit somatic growth [160]. Thus, if the 

two tubes fuse with one another along the degrading suture line on a sufficient time scale 

by invading host cells, this valve should remain competent and possess growth potential. 

The goal of this study was to evaluate the valve function and growth potential in a 

growing lamb model. Periodic ultrasounds were performed to evaluate valve function and 

growth before and after the expected time of suture degradation. Explanted valves were 

macroscopically, mechanically, histologically, and biochemically analyzed to assess tube 

fusion, recellularization, and new extracellular matrix deposition. 

4.3 Materials and Methods 

4.3.1 Tissue Fabrication 

Tubular, cell-seeded fibrin gels were fabricated by mixing aqueous solutions of 

ovine dermal fibroblasts (ODFs, Coriell), bovine fibrinogen (Sigma), thrombin (Sigma), 

and calcium chloride. The final component concentrations were as follows: 1 million 

ODFs/mL, 4 mg/mL fibrinogen, 0.38 U/mL thrombin, and 5.0 mM Ca
++

. The mixed 

solutions were injected into tubular glass molds which had a 19 mm inner diameter 

mandrel, a 4.5 mm annulus, and were ~9 cm in total length.  

Following gelation, the tubular fibrin gels and glass mandrels were cultured in 

DMEM + 10% fetal bovine serum (FBS, Hyclone), 100 U/mL penicillin, 100 μg/mL 

streptomycin, 0.25 μg/mL amphotericin B,2 μg/mL insulin, and 50 μg/mL ascorbic acid. 

Culture medium was changed 3X per week for 2 weeks while allowing the longitudinal 

shortening of the gels. The tissue tubes were then removed from the glass rods and 

transferred onto 16 mm diameter latex tubes, which were attached to custom manifolds. 

Additional details on this pulsed-flow-stretch bioreactor have been previously reported 

[124]. Construct strain began at 3% and was incremented weekly by 1% until a 5% 

maximum strain was reached.  
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Following maturation, the engineered tubes were decellularized by immersion in 

1% sodium dodecyl sulfate (SDS, Sigma) and 1% Triton X-100 (Sigma) for 6 hours and 

30 minutes, respectively, at room temperature with continuous shaking. The tubes were 

then extensively rinsed in 1X phosphate buffered saline before and after overnight 

incubation in culture medium plus 2 U/mL deoxyribonuclease (Worthington 

Biochemical).  

4.3.2 Valve Fabrication 

Valves were fabricated using two 16 mm diameter engineered tubes, as previously 

described [93]. Briefly, the tubes were sutured together using 7-0 degradable sutures 

(Covidien Maxon CV) in 2 distinct patterns. The first suture line encompassed the entire 

circumference of the tubes and defined leaflet and commissure regions. A second suture 

line was added to reinforce each of the three commissure regions. On some valves, a 

single permanent suture (7-0 prolene) was then added to each commissure near the free 

edge. 

4.3.3 Implantation Procedure in a Growing Lamb Model 

The fabricated valves were implanted as pulmonary valve replacements in n=8 

Dorset lambs (average age = 5.5 ± 0.8 weeks, average weight = 12.7 ± 0.5 kg). All 

protocols were approved by the Institutional Animal Care and Use Committee (IACUC) 

and performed by the University of Minnesota’s Experimental Surgical Services. All 

animals were anesthetized using 10 mg/kg Ketamine and 2-6 mg/kg propofol and 

maintained on 2-4% isoflurane for the duration of the procedure. The heart was exposed 

via a left lateral thoracotomy with dissection through the intercostal space. Following 

surgery, animals received subcutaneous injections of 750IU heparin BID for the duration 

of the study. Animals were euthanized with beuthanasia given intravenously at 87-90 

mg/kg. 

Animals for the study were numbered as PACV1-8. The valves implanted in 

PACV1-2 did not utilize the single permanent sutures near the commissures, while 

PACV3-8 did. All tissue engineered valves were implanted interpositionally using 5-0 
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degradable sutures (Maxon CV, Covidien) in the main pulmonary artery after 

compromising the native pulmonary valve.  A segment of the native pulmonary artery 

that matched the length of the implanted valve was also excised.  Silver clips were 

attached on the ablumenal surface of the native pulmonary artery near the distal and 

proximal anastomoses to serve as markers (Figure 4-4a).  

Valve function, flow velocity and profiles, pressure drop, and conduit dimensions 

were assessed from periodic transthoracic echocardiograms. The echocardiograms were 

first performed approximately 1 week after implantation and then monthly for the 

duration of the study. Explanted valves were photographed and then dissected into strips 

for histological, biochemical, and mechanical characterization.  

4.3.4 Tensile Mechanical Testing 

Strips parallel (“circumferential”) and orthogonal (“axial”) to the circumference 

of engineered tubes and the native pulmonary artery were cut (~2 mm x 12 mm) and 

mechanically characterized using an Instron Biaxial tester. Strips were tested prior to 

implantation and after explantation. Strips were mounted in custom grips and 

straightened with a 0.005 N tensile load. Following 6 preconditioning cycles (0-10% 

strain), the samples were uniaxially strained to failure at 3 mm/min. Strain was calculated 

as the natural logarithm of the sample’s deformed length divided by its initial length. 

Ultimate tensile stress (UTS) and modulus were defined as the maximum stress recorded 

and the slope of the linear region of the stress-strain curve, respectively. Representative 

stress-strain curves for the engineered tissue prior to and following implantation are 

shown in Supplemental Figure 4-1. Sample dimensions for calculating stress were 

measured using a digital caliper prior to testing. 

4.3.5 Tissue Composition and DNA Quantification 

The collagen mass content was determined using a hydroxyproline assay 

assuming 7.46 mg of collagen per 1 mg of hydroxyproline, as previously described [161]. 

Insoluble elastin was measured by dissolving the samples in NaOH and quantified using 

a modified ninhydrin assay [153]. The cell content was measured using a modified 
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Hoechst assay for DNA assuming 7.6 pg of DNA per cell and reported as cell 

concentration [154]. Tissue volume for these tests was calculated using measured length, 

width, and thickness using a digital caliper. 

4.3.6 Histology and Immunohistochemistry 

Explanted valves were histologically and immunohistochemically stained using 

longitudinal strips that included the root, leaflets, and native pulmonary artery at each 

end. All samples were fixed in 4% paraformaldehyde, embedded in OCT (Tissue-Tek), 

frozen in liquid Nitrogen, and cut into 9 µm thick sections. Images were taken at 4x, 10x, 

or 20x magnification. Histological sections were stained with Lillie’s trichrome, 

Verhoeff-Van Gieson, and Von Kossa stains. Immunohistochemical samples were 

blocked with 5% normal donkey serum, incubated in the primary antibody (2.5-5 

µg/mL), and stained with a Cy5-conjugated, species-matched secondary antibody 

(Jackson Immunoresearch). Primary antibodies for this study included -smooth muscle 

actin (α-SMA, Sigma, A5228), Von Willebrand Factor (vWF, Abcam ab6994), CD45 

(US Biological C2399-07B), elastin (Abcam ab21599), and collagen IV (Abcam, 

ab6586). Nuclei were counterstained with Hoechst 33342 (Invitrogen H3570). 

4.3.7 Statistics 

Statistical significance was determined between two groups using Student’s t-test 

and between multiple groups using ANOVA with a Games-Howell post-hoc test. Paired 

symbols in figures are used to represent statistical difference and a p-value < 0.05. All 

error bars are represented as the standard deviation of the group. 

4.4 Results 

4.4.1 Tissue Engineered Heart Valve  

Completely biological heart valves (n=8, Figure 4-1a) were fabricated by sewing two 

decellularized engineered tubes together using 7-0 Maxon
TM

 degradable sutures, as 

previously described [93]. The suture pattern was designed such that there were three 
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commissures and three leaflets that collapse inward and close the valve when exposed to 

backpressure (Figure 4-1b), utilizing the principle of tubular heart valve design [89]. The 

engineered tubes used to make the valve consisted primarily of cell-produced collagen 

and other extracellular matrix proteins, although a residual fibrin layer remained on the 

lumenal surface following in vitro culture, as revealed by trichrome staining (Figure 

4-1c).  

Uniaxial strain-to-failure tests showed that the engineered tubes possessed an 

ultimate tensile stress (UTS) and modulus of 1.33 ± 0.16 MPa and 4.41 ± 0.82 MPa in the 

circumferential direction, respectively (Figure 4-1d,e). Mechanical tests in the orthogonal 

direction revealed that the engineered tubes were mechanically anisotropic, with the 

modulus being ~4 times stiffer in the circumferential direction. For comparison, 

mechanical testing was performed on excised native pulmonary valve leaflets and 

pulmonary artery (Figure 4-1d,e). The UTS and modulus of the engineered tissue were 

similar to values for the native pulmonary valve leaflets in both the circumferential and 

axial directions at the time of implant. The UTS and modulus of the native pulmonary 

artery were ~2.5 times lower compared to the engineered tissue values in the 

circumferential direction.  

4.4.2 Valve Implantation 

The valves were implanted into the main pulmonary artery of lambs (average 

weight = 12.7 ± 0.5 kg, average age = 5.5 ± 0.8 weeks) after resecting the native 

pulmonary valve leaflets and a length-matched section of the pulmonary artery (Figure 

4-4a). The first two valves implanted contained only degradable sutures, while the 

subsequent 6 incorporated a single 7-0 prolene suture near the top of each commissure. 

The degradable suture lines used to fabricate the valve and the anastomoses are visible in 

Figure 4-4a.  

All animals survived the implant procedure and no perioperative deaths occurred, 

although three of the studies were ended prematurely. One animal did not recover well 

following surgery due to an atrial-septal defect. Two other valves were explanted due to 
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inadequate initial valve function. In one animal, one leaflet was immobile immediately 

after implantation; the other animal developed extensive calcific nodules along the 

degradable suture line shortly after implantation. Since these studies were ended 

prematurely, and the purpose of this study was to assess long term valve function and 

remodeling, their outcomes will not be discussed further.  

4.4.3 Valve Performance Evaluation with Ultrasound 

Valve function and geometrical dimensions were assessed longitudinally using 

monthly ultrasounds (Figure 4-2). The first was performed 1.3 ± 0.3 weeks after 

implantation; full valve opening (Figure 4-2a) and closing (Figure 4-2b) were observed. 

Representative images at 8.1 ± 0.6 weeks (Figure 4-2c) and 21.1 weeks (Figure 4-2e) also 

demonstrated full leaflet opening. Coaptation was adequate after 8 weeks (Figure 4-2d), 

but had decreased at the later time points based on regurgitant flow (Figure 4-2f).  

All animals exhibited healthy weight gain over the course of the study (Figure 

4-3a). In general, the insufficiency index increased over the duration of the study, 

particularly after the 8 week follow up time point (Figure 4-3b). A value of 1 on the 

insufficiency index indicates trivial regurgitation and higher values correlate to increased 

levels of regurgitation (2 = mild, 3 = moderate, 4 = severe). The diameter of the valves 

also increased over time (Figure 4-3c) and generally matched the neighboring pulmonary 

artery well. The mean and maximum (~1 week post implant = 11.6 ± 12.8 mmHg; ~16 

weeks = 16.3 ± 11.0 mmHg) transvalvular pressure gradients also measured from the 

pulmonary valve velocity-time integral (PV VTI, Supplemental Figure 4-2). 

The endpoint for each animal was dependent on animal health and overall valve 

function. Thus, the numbers of data points are not equal across all of the study time 

points; there are less data points at the later time points due to deteriorated valve function. 

The shortest and longest implantation periods included in the data quantification were 

11.9 and 21.9 weeks, respectively. The other valves were explanted after 16.1, 19.1, and 

19.4 weeks when adequate leaflet motion and coaptation was no longer apparent and the 

insufficiency index increased.  
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4.4.4 Explanted Valve Gross Pathology 

At the endpoints, the explanted hearts and valves were analyzed to determine their 

integration and pathological abnormalities. Representative images of a valve at implant 

(Figure 4-4a) and explant (Figure 4-4b) are shown, with the clips demarcating the initial 

anastomoses, which became indistinguishable from the native pulmonary artery. All 

explanted valves were well integrated with the native pulmonary artery and excessive 

overgrowth or encapsulation was not present on the ablumenal surface (Figure 4-4b). The 

pre- and post-implant images are shown using the same scale to demonstrate the increase 

in root diameter and length during implantation. As observed at implantation (Figure 

4-4a) and in subsequent ultrasounds, the valve diameter matched that of the surrounding 

native pulmonary artery well (Figure 4-4b). Further investigation of the heart revealed 

normal thickness and appearance of the right ventricle (Figure 4-4c).  

The valves were excised from the pulmonary artery and cut longitudinally so that 

the lumenal surface could be visualized (Figure 4-4d). The lumenal surface was generally 

clean, although isolated nodules were present near one commissure on two of the five 

reported valves near the degradable suture line. As observed from the ablumenal surface, 

there was no clear anastomotic region; rather the native pulmonary artery and engineered 

root were seamlessly integrated. Importantly, there was also fusion along the original 

suture line between the two engineered tubes that formed the valve root and leaflets. 

However, the commissures were not stable relative to their position at implantation, 

indicated by the asterisks in Figure 4-4d. This instability allowed the leaflets to shorten 

by 43.3 ± 13.3% compared to their lengths at implantation (Figure 4-3d).  In two of the 

valves, this instability resulted in the complete disappearance of the leaflet. One inspected 

valve also exhibited some fusion from the leaflet belly towards the free edge. The 

remaining leaflets generally were thin, pliable, and maintained the initial geometry 

prescribed by the suture pattern (Figure 4-4e). 

4.4.5 Explanted Valve Mechanical Characterization 
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Strips cut from the explanted valve root, leaflet, and pulmonary artery were 

strained to failure to assess their tensile mechanical properties (Table 4-1). The 

thicknesses of the leaflet (0.58 ± 0.12 mm) and root (0.93 ± 0.12 mm) showed a reduction 

compared to the native pulmonary artery (1.30 ± 0.23 mm). The UTS and modulus in the 

circumferential direction were 1.75-4 times higher than the orthogonal (axial) direction. 

The circumferential UTS of the explanted valve root and leaflet were 1.27 ± 0.20 MPa 

and 2.54 ± 0.77, respectively, compared to the native pulmonary artery (0.28 ± 0.03 

MPa). Additionally, strips incorporating both the pulmonary artery and root were taken in 

order to assess the strength of fusion and any influence of scar tissue at the anastomoses. 

UTS and modulus were comparable in the axial direction between these strips, the 

explanted valve root and leaflets, and native pulmonary artery (Table 4-1).  

4.4.6 Explanted Valve Histological & Biochemical Analysis 

Longitudinal strips were fixed, frozen, and included the proximal and distal 

pulmonary artery, root, and leaflet. The cross-sections in Figure 4-5 were taken from the 

middle of the leaflet free edge and stained with Lillie’s trichrome, Von Kossa, and 

Verhoeff’s stain. Following implantation, the leaflet and root tubes fused along the 

degradable suture line, as visualized in the trichrome image near this junction region 

(Figure 4-5a). Trichrome staining also revealed a cellular, collagenous matrix throughout 

the entire root and leaflet (Figure 4-5a-c). Immunostaining revealed Collagen IV 

deposition in the valve root and leaflets after 12 and 22 weeks (Figure 4-6e-h). 

Calcification was not observed in the engineered root or leaflets (Figure 4-5d-f), though 

small regions were observed near some anastomoses in proximity to the degraded 

sutures. Elastin was detected by immunostaining after 12 and 22 weeks in the root and 

leaflet sections (Figure 4-6a-d). Mature elastin can be detected using Verhoeff’s stain and 

is manifested by black coloration (Figure 4-5g). Mature elastin was not observed in the 

leaflet sections (Figure 4-5h), but there were some mature fibers near the lumenal surface 

of the explanted root (Figure 4-5i).   
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Immunostaining was performed in order to identify the degree, location, and 

phenotypes of the invaded host cells at the shortest (~12 weeks) and longest (~22 weeks) 

time points. Complete recellularization of the root was observed at both time points as 

evidenced by the presence of nuclei (blue) throughout the entire length and thickness. 

Leaflet recellularization was sparser at both time points, although more nuclei were 

observed within the leaflets after 22 weeks. The majority of cells after 12 weeks, both 

within the root and on the leaflet surfaces, stained positive for α-SMA (Figure 4-6i,k). 

After 22 weeks, α-SMA was primarily expressed near the lumenal surface (indicated by 

the stars in Figure 4-6) of the root (Figure 4-6j) and partially on the leaflet surfaces 

(Figure 4-6l).  

A complete endothelial layer, as evidenced by positive vWF staining, was 

observed on the lumenal surface of the root after both 12 and 22 weeks (Figure 4-6m,n). 

The leaflets were incompletely endothelialized after both 12 and 22 weeks (Figure 

4-6o,p), though positive staining was observed up to the leaflet free edge. Evidence of 

inflammatory and/or immune cells by CD45 expression was observed in the valves. 

CD45-positive cells were evident throughout the entire thickness of the root after 12 and 

22 weeks (Figure 4-6q,r). Fewer CD45-positive cells were observed in the leaflets 

(Figure 4-6s,t). DNA quantification confirmed the presence of cells in the explanted 

engineered tissue, though not to the same degree as in the surrounding pulmonary artery 

(Table 4-1).  The cell density in the explanted root was ~5.3 times higher compared to the 

leaflets (Table 4-2). 

Collagen, elastin, and cellularity of the pre-implant tissue, explanted root, leaflet, 

and native pulmonary were quantified and compared (Table 4-2). Higher collagen and 

elastin density were observed following implantation compared to pre-implant tissue. 

Although higher than values at implantation, the elastin concentration in the engineered 

tissue was lower than that in the native pulmonary artery (Table 4-2). Prior to 

implantation, we previously reported a collagen concentration of 38 ± 4 mg/cm
3
 for 

similar engineered tubes, which possessed negligible elastin content [111]. Total collagen 
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content was estimated using the average collagen concentrations for the engineered root 

and leaflet regions. The total collagen was higher in the explanted root (81.2 ± 26.5 mg) 

compared to implant (49.1 ± 2.04 mg). The total collagen content in the leaflets was 15.2 

± 0.5 mg and 4.2 ± 1.8 mg before and after implantation, respectively.  

4.5 Discussion 

A pediatric heart valve capable of growth and remodeling has long been a goal of 

heart valve tissue engineering, but it has not yet been demonstrated. An ideal valve would 

be durable, hemocompatible, not prone to calcification, and possess the potential to grow 

with the patient. All of these characteristics functionally extend the life of a pediatric 

prosthetic valve and thus limit the need for subsequent surgeries to replace defective or 

outgrown valves. In light of this clinical need, we have developed a completely biological 

pediatric pulmonary valve using two decellularized, engineered tubes and degradable 

sutures. We previously reported the material and hemodynamic properties of these valves 

under simulated pulmonary valve conditions in vitro [93].  

Herein, we report the results of an in vivo study designed to assess long term 

valve function, tissue remodeling, and growth potential. All valves were implanted into 

the main pulmonary artery of lambs (average age = 5.5 ± 0.8 weeks) after excising the 

native pulmonary valve leaflets and a length-matched segment of the pulmonary artery. 

Although no perioperative deaths occurred, the implant procedure was refined over time. 

This included sewing the proximal anastomosis first and keeping the valve hydrated in 

order to better purge bubbles and avoid tissue sticking, respectively. The animals were 

evaluated monthly after implant using ultrasound until valve function deteriorated. The 

minimum and maximum implant durations of the 5 lambs studied were 11.9 and 21.9 

weeks, respectively. 

Overall, the valves performed well immediately and up to 8 weeks after 

implantation. This sustained function indicated that the critical process of fusion between 

the two engineered tubes had occurred along the degrading suture line given that it 

reportedly retains 50% of its original tensile strength after 4 weeks in vivo. However, 



 

87 

 

valve function deteriorated thereafter as evident from the insufficiency index (Figure 

4-3b). The reasons for declining valve function are convoluted due to the fact that the 

root was enlarging (Figure 4-3c) and the sutures were further degraded and do not 

provide indefinite support. Thus, valve incompetence could arise from the enlargement of 

the root, without corresponding growth of the leaflets, or leaflet shortening due to 

inadequate fusion between the two tubes at the commissures prior to suture degradation.  

Discerning between these two causes is complicated by animal growth, as 

Hoerstrup et al. also concluded [55]. In order to mitigate leaflet shortening, a single 

permanent suture was added to each commissure to provide long term support in these 

regions in the event that inadequate fusion was achieved. However, this approach did not 

prove successful (Figure 4-3d).  

The engineered root diameter increased over time and matched the native 

pulmonary artery well, as observed from ultrasound. The engineered root diameter 

increased 126.3% from the first (age = 6.9 ± 1.0 weeks, weight = 15.3 ± 1.9 kg) to the 

last (age = 25.4 weeks, weight = 47.0 kg) echocardiogram. The lack of elevated mean and 

maximum transvalvular pressure gradients supports this observation (Supplemental 

Figure 4-2). In comparison, Gottlieb et al. studied the growth of the main pulmonary 

artery and reported an increase of only 31.4% for the pulmonary sinus diameter over the 

same weight range in Dorset sheep [101]. Interestingly, the percent increase in diameter 

of our TEHV root was comparable to the main pulmonary artery, as reported by Gottlieb 

et al., at earlier time points. The engineered root diameter increased only 6.9% and 18.2% 

from 1.4 to 4.3 and 8.0 weeks, respectively. Gottlieb et al. reported an increase of ~6.2% 

and ~12.8% in sheep between the same weight ranges [101]. The divergence of the 

increases in the diameter at longer time points is likely related to the elevated pulmonary 

insufficiency observed in the engineered valves at later time points. Pulmonary root 

dilation is known to result from pulmonary hypertension and abnormal hemodynamics, 

which are often byproducts of pulmonary insufficiency [162]. Notably, our group has 
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previously reported somatic growth of a single engineered tube when implanted as a 

pulmonary artery replacement, without compromising the native pulmonary valve [160]. 

After the valves became incompetent, they were explanted and subjected to 

macroscopic, mechanical, and histological analysis. There was no excessive overgrowth 

on the ablumenal surface of the valve and its diameter matched that of the surrounding 

vasculature, both of which were larger than at the time of implant (Figure 4-4a,b). The 

valves became integrated into the heart and were generally indistinguishable from the 

native pulmonary artery despite the degradation of the anastomotic sutures. Additionally, 

the two engineered tubes also fused along the degradable suture line and thereby formed 

leaflets in situ (Figure 4-4e). Significantly, tissue integration at the anastomoses appeared 

mechanically robust, based on their similar tensile failure mechanics compared to the 

surrounding tissue (Table 4-1). 

Leaflet shortening (Figure 4-3d) was observed after implantation (Figure 4-4d), 

regardless of whether a permanent suture at the commissures was used or not.  Since the 

leaflets were not extensively repopulated by α-SMA-positive cells, this shortening is 

likely due to commissure instability resulting from diastolic forces disrupting tissue 

fusion at the commissures. Leaflet fusion to the root from the belly region upwards, as 

reported by Driessen-Mol et al. [91], was only observed once in our study. Valve failure 

due to leaflet shortening has been reported previously, especially for pre-cellularized 

TEHVs [55,91,106,109,110,118]. Gottlieb et al. reported elevated pulmonary 

insufficiency after 12 and 20 weeks [118]. They observed dimensional leaflet changes 

and reported that leaflet heights decreased by ~47% and 78.5% after implantation for 12 

and 20 weeks, respectively. We observed shortening by 43.3 ± 13.3% compared to pre-

implant values with no clear temporal dependence.  

 Recellularization is a crucial requirement for this approach, since the engineered 

tubes are acellular prior to valve fabrication and implantation. Although the integration of 

the tissue tubes along the degradable suture lines provide evidence of host cell invasion, 

more extensive characterization was necessary. Histology revealed uniform and complete 
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recellularization throughout the engineered root and partial recellularization in the leaflet. 

Total cell number was quantified and was ~5.3 times higher in the engineer root 

compared to the leaflet (Table 4-2). Inflammatory and/or immune cells were observed by 

positive CD45 staining (Figure 4-6). It is expected that these cells would be absent after 

longer implantation times as seen in a study previously published by our group [111]. 

However the expected time scale is unknown since the current study was performed in a 

growing, as opposed to an adult animal. Other cell types present included endothelial 

cells on the surface and interstitial cells within the matrix. Driessen-Mol et al. reported 

similar recellularization patterns with their TEHV in adult sheep [91]. They also reported 

repopulation of endothelial and α-SMA positive cells in the root, and subsequently in the 

leaflets, over time. After 24 weeks, however, they reported that DNA content in their 

TEHV was similar to the native ovine valve leaflets, with homogeneous recellularization 

of the leaflets. In contrast, we observed cells primarily on the leaflet surfaces, but with an 

increasing number of cells within the leaflet matrix from 12 to 22 weeks of implantation.  

The recellularization pattern observed in this study contrasts with our 

observations from our aortic valve study in adult sheep. Previously, leaflet 

recellularization appeared to proceed with cells invading the base from the adjacent root 

and then migrating towards the leaflet free edge [111]. There were few cells present near 

the free edge even after 22 weeks [111]. In the present study, however, cells were 

observed on surface of the leaflets, including the free edge, as early as 12 weeks after 

implantation. These cells on were distributed fairly uniformly from the base to the free 

edge, with more cells invading from the leaflet surfaces at 22 weeks. These observations 

suggest that, in this study, the majority of cells repopulating the leaflets originated from 

the blood instead of the adjacent root. However, we cannot discount the possibility that 

cells from the root very rapidly migrated over the surface and more slowly invaded from 

the surface. 

In an attempt to distinguish between passive stretching and tissue growth, the total 

collagen content in the root and leaflets were compared before and after implantation. 
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The total collagen content increased ~65% in the root while decreasing ~72% in the 

leaflets. The decrease in the leaflets is attributed to the decrease in leaflet height (and thus 

smaller volume) since the collagen concentration increased in both the root and leaflet 

regions (Table 4-2) [111]. Histology revealed that the invading cells deposited elastin and 

collagen IV, which weren’t present prior to implantation (Figure 4-6).  The presence of 

the new matrix proteins, along with the maintenance of tissue mechanical properties 

(Figure 4-1d,e, Table 4-1), and the increase in total collagen in the root suggest that the 

invaded cells conferred true growth, not passive stretching of the engineered tube over 

time. 

 We have demonstrated the in vivo function and remodeling of our decellularized 

TEHV in a growing lamb model after previously reporting its in vitro tissue and 

hemodynamic properties [93]. In this study, we observed fusion of the two engineered 

tubes along the degradable suture line, by design. The valves functioned well for the first 

8 weeks, but pulmonary insufficiency increased over time due to the enlargement of the 

valve root and/or shortening of the leaflets. Extensive host cell invasion was observed 

following implantation in the engineered root, while the leaflets were partially 

recellularized. Importantly, host cell invasion and matrix remodeling occurred without 

large-scale calcification, although isolated regions were observed near the anastomoses.  

Future studies will be needed to address the pulmonary insufficiency, the results 

demonstrate the feasibility of this approach to heart valve tissue engineering. One area 

that will be further explored relates to the most appropriate animal model to use since it 

grows much faster than in humans. The pulmonary artery grows at a rate of 

approximately 0.7 mm per year in humans [103] during childhood compared to 

approximately 8.5 mm per year in lambs [101]. Identifying a more suitable growth model 

will allow the recellularization process to occur on the time scale needed for the cells to 

respond to physiologic growth cues and allow for leaflet growth.  



 

91 

 

4.6 Acknowledgements 

The authors acknowledge technical assistance from Sandy Johnson, Naomi Ferguson, 

Susan Saunders, the UMN Medical Devices Center, and the staff of the UMN 

Experimental Surgical Services and funding from NIH R01 HL107572 to R.T.T. Annals 

of Biomedical Engineering, Implantation of a Tissue-Engineered Tubular Heart Valve in 

Growing Lambs, 2016, pages 1-13. J. Reimer, Z. Syedain, B. Haynie, M. Lahti, J. Berry, 

and R. Tranquillo. With permission of Springer". 

  



 

92 

 

4.7 Chapter 4 Figures and Tables 

 

Figure 4-1. Preimplant valve pictures and tissue characterization 

Images of the tubular tissue-engineered valve (a) showing the leaflets, root, and (b) short 

axis view of the valve showing leaflet coaptation under physiologic backpressure. (c) 

Trichrome stained cross-section of the engineered tissue showing collagen (green) and 

non-collagen proteins (red); the scale bar is 250 μm. (d) Ultimate tensile stress and (e) 

tangent modulus of the engineered issue (n=4 for circumferential and axial), pulmonary 

valve leaflets (circumferential: n=3, axial: n=2), and the pulmonary artery 

(circumferential: n=4, axial: n=3) in the circumferential and axial directions at the time of 

implant. Paired symbols indicate a p-value < 0.05 between the two groups. 
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Figure 4-2. Long axis ultrasounds at periodic time points 

Long axis ultrasound images of the valve (a,b) 1 week, (c,d) 8 weeks, and (e,f) 20 weeks 

after implantation. Representative images during (a, c, e) systole and (b, d, f) diastole 

show valve opening and closing, respectively. For all images, the right ventricle is on the 

left-hand side and the arrows point to the visible leaflets. Doppler scale bars for each time 

point are shown on the right. 
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Figure 4-3. Animal and valve metrics over time 

(a) Animal weight, (b) valve insufficiency index, and (c) valve diameter midgraft as a 

function of study time point. (d) Leaflet length before and after implantation. N=5 for all 

panels. Paired symbols indicate a p-value < 0.05. Error bars in the x- and y-directions 

represent the standard deviation in the study time point and the measured values, 

respectively. 
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Figure 4-4. Macroscopic valve appearance following implantation 

Images of the valve (a) immediately after implantation and (b) explantation after 21.9 

weeks at the same scale and in the same orientation. The “L” and “H” refer to the lung 

and heart end of the valve, respectively. In both images, the clips are visible on the 

ablumenal surface of the native pulmonary artery. (c) Cross-section of the heart showing 

normal right ventricle thickness after 21.9 weeks. (d) An explanted valve cut open to 

show its lumenal surface and leaflets. Stars indicate the original position of the 

commissures. (e) End-on view of a leaflet. 
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Figure 4-5. Histological characterization of valve matrix following implantation 

Reconstructed cross-sectional images of the explanted valves (a, d, g), with the proximal 

side on the left and the distal side on the right. (a) Trichrome staining revealed collagen 

(green) throughout the entire valve (b) leaflet and (c) root. (d) Von Kossa staining 

revealed no apparent calcification in the valve (e) leaflet and (f) root, except near some of 

the degradable sutures where calcific nodules formed in three animals. Arrow points to 

calcification present near anastomosis in the pulmonary artery (g) Verhoeff-Van Gieson 

staining to detect mature elastin (black) in the valve (h) leaflets and (i) root. Scale bars 

for all images are 250 μm.  
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Figure 4-6. Extracellular matrix and cell marker staining following implantation 

Comparison of cell markers and matrix proteins in the valve root and leaflet after 

implantation for 12 or 22 weeks.  Immunostaining for matrix proteins revealed the 

presence of (a-d) elastin and (e-h) collagen IV in the valve root and leaflets. Cell markers 

included (i-l) α-SMA, (m-p) vWF, and (q-t) CD45. All primary antibodies are pseudo-

colored in red and counterstained with Hoechst to visualize cell nuclei. Asterisks indicate 

the lumenal surface of the valve root.   
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Table 4-1. Tensile mechanical properties of the explanted engineered root, leaflets, 

native pulmonary artery, and anastomoses 

Sample 

Description 

Sample 

Orientation 

Thickness 

(mm) 

UTS        

(MPA) 

Modulus 

(MPA) 

Explant Root  
Circumferential 

0.93 ± 0.12 
1.27 ± 0.20 4.11 ± 1.76 

Axial 0.68 ± 0.27 2.32 ± 1.06 

Explant Leaflet 

Circumferential 

0.58 ± 0.12 

2.54 ± 0.77 7.93 ± 2.71 

Axial 0.87 ± 0.28 1.94 ± 0.92 

Anastomosis Axial 1.59 ± 0.14 0.48 ± 0.29 1.43 ± 0.90 

Native Pulmonary 

Artery 

Circumferential 
1.30 ± 0.23 

0.28 ± 0.03 0.93 ± 0.34 

Axial 0.24 ± 0.12 0.64 ± 0.30 

 

 

Table 4-2. Biochemical properties and DNA concentration of the explanted 

engineered root, leaflets, and native pulmonary artery 

Property 
Explanted 

Root 

Explanted 

Leaflet 

Pulmonary 

Artery 

Total Collagen (mg/mL) 63.0 ± 23.7 56.8 ± 15.2 20.5 ± 8.6 

Elastin (mg/mL) 9.9 ± 5.0 1.6 ± 0.8 19.6 ± 12.1 

Cellularity (Million cells/mL) 170.2 ± 37.0 31.9 ± 25.2 297.9 ± 109.6 
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Supplemental Figure 4-1. Stress-strain curves for the engineered tissue 

Representative stress-strain curves for the engineered tissue (a,b) before and (c-f) after 

implantation in the (a,c,e) circumferential and (b,d,f) axial directions. Explant samples 

include those taken from the valve (c,d) root and (e,f) leaflet. The regions where the 

modulus (black line) and UTS (arrow) were taken from are also identified.  
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Supplemental Figure 4-2. Valve systolic pressure gradients over time 

(a) Mean and (b) maximum valve pressures were measured from the PV VTI. Error bars 

in the x- and y-directions represent the standard deviation in the study time point and the 

measured values, respectively. No error bars are provided for the ~21 week time point 

since n=1.  
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Chapter 5. Ongoing Work and Future Directions 
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5.1 Ongoing and Future Studies 

Although we achieved many positive outcomes from our in vivo pediatric TEHV 

valve study, we observed diminished valve function at later time points. The functional 

deterioration that we observed was due, in part, to the absence of leaflet growth. 

Interestingly, we observed structural leaflet shortening compared to their initial length. 

Historically this process has been was cell-mediated and spawned a generation of 

decellularized TEHVs (Chapter 1). In this case, however, we believe that shortening 

resulted in large part from inadequate fusion at the commissures prior to suture 

degradation.  

Stabilizing the commissure regions with a modified sewing pattern might remedy 

leaflet shortening. However, valve function would have deteriorated even if the leaflet 

length was preserved since a rapidly growing animal model was used. The initial leaflet 

length was not sufficient to accommodate the change in expected range of diameter 

increase. As we demonstrated in Chapters 3 and 4, this growth is dependent on host cell 

invasion and their subsequent response to physiological growth cues. Previously in our 

lab, we demonstrated that host cell invasion proceeded predominantly from the adjacent 

tissue rather than from blood-born cells [111]. However, the mechanism of 

recellularization was unclear in this pediatric valve study. While the root was fully 

recellularized, there was no clear progression of host cell invasion from the leaflet belly 

towards the free edge. Instead the cellularization in the leaflets was spatially uniform with 

invasion progressing from the leaflet surfaces.  

5.1.1 Human versus Animal Growth  

Regardless of the recellularization mechanism, it is clear that additional time is 

required for the leaflets to more extensively recellularize and thus grow. In the sheep 

model, time before the leaflets no longer coapt is limited due to how quickly the lambs 

reach adulthood (within 1 year). Thus, a more suitable animal model is needed in order to 

study leaflet growth. Ideally, the new animal model would have a growth rate of the main 

pulmonary artery (MPA) similar to that of humans, while enlarge over the same diameter 
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range. However, human growth occurs on the time scale of years, whereas sheep fully 

mature in a matter of months (Figure 5-1a). Growth data for humans and sheep were 

obtained from published reports and compared to empirical sheep data from the studies 

described in Chapters 3 and 4 [101,102,163]. The data adapted from Gottlieb et al. [101] 

is particularly useful because the authors used healthy sheep (no intervention) in order to 

characterize normal growth.  

While Figure 5-1a clearly shows that sheep physically grow much faster 

compared to humans, it does not directly address differences in organ-level growth. The 

main pulmonary artery diameter increases on the time scale of years in humans (Figure 

5-1b, [103]). The diameter of the MPA in sheep (Figure 5-1c) was adapted from MPA 

volume and length data reported by Gottlieb et al. [101]. Not surprisingly, the MPA 

growth is directly related to the physical growth for both sheep and humans. That is, full 

growth of the sheep MPA occurs in months in sheep, but over the course of years in 

humans. The MPA growth rate can be reduced in sheep (Figure 5-1d) by utilizing an 

older animal. However, it will still be faster than in humans even if a 50-60 kg sheep 

were used. Furthermore, these animals are near adulthood and growth of the pulmonary 

artery is reduced. Reliably measuring these smaller changes (~1 mm) in diameter can be 

challenging given the imaging modalities. Thus, our approach to increase the length of 

time for leaflet recellularization and growth does not rely on drastically reducing the 

MPA growth rate. 

5.1.2 Modified Animal Model 

We utilized a valve design that will remain functional following growth of the 

TEHV root. This design is predicated on eliminating structural leaflet shortening and 

having a leaflet coaptation length that approaches zero when the maximum MPA 

diameter is reached. In order to achieve this, we reduced the expected increase in MPA 

diameter range from ~16-23 mm to ~20-23 mm while keeping the initial leaflet 

coaptation length the same. Based on the MPA diameter data in Figure 5-1, the native 

sheep pulmonary artery is 20 mm when it weighs ~30 kg. Although leaflet 
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recellularization is not expected to occur faster, it will be afforded a longer period of time 

to occur without the valve becoming insufficient. Furthermore, the invading cells will 

also be exposed to physiological growth cues for a longer period of time without 

compromised valve function.  

Alternatively, one could utilize the same animal model (12-15 kg), but 

significantly increase the initial leaflet coaptation length. While leaflet coaptation would 

be maintained despite root growth, large coaptation lengths can deleteriously affect the 

valve’s hemodynamic performance. This includes abnormal leaflet motion and elevated 

systolic pressure gradients based on pulse duplicator testing in our lab. 

5.1.3 Pulse Duplicator Testing of 20 mm Diameter TEHV 

TEHVs were fabricated using 20 mm (Figure 5-2a,b) diameter tubes instead of 16 

mm, as described in Chapter 2. In order to validate adequate hemodynamic performance, 

two TEHVs were tested under pulmonary conditions in the pulse duplicator system. Test 

conditions (pressure and flowrates) were similar to the testing performed for the 16 mm 

diameter TEHVs (Table 5-1). A representative flow and pressure waveform is shown in 

Figure 5-2e.  

Leaflet motion, regurgitation, effective orifice area, and systolic pressure gradient 

were among the metrics recorded for the TEHVs.  Three symmetric leaflets were visible 

when the TEHV was closed (Figure 5-2c) . The leaflets opened rapidly during systole, as 

evidenced by a minimal systolic pressure gradient (1.5 ± 0.5 mmHg). When fully opened 

(Figure 5-2d), the TEHVs had a geometric orifice area (GOA) of 75.2% ± 0.9% (Table 

5-1). These results were comparable to the 16 mm diameter TEHVs and better than the 

Contegra valve discussed in Chapter 2. 

5.1.4 In Vivo Study with 20 mm Diameter TEHVs 

A future preclinical study is planned in order to assess TEHV function and growth 

potential, as discussed above. Since the range of growth is reduced in the older animal 

model, it is imperative that the TEHV dimensions can be accurately measured prior to, 
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during, and after implantation. The graft dimensions will be utilized to determine whether 

the TEHV root and leaflets grew during implantation.  

Two different methods or comparisons will be made. First, TEHV dimensions 

will be measured using macroscopic images prior to and after explanation. TEHV 

dimensions will also be determined via ultrasound in order to confirm the dimensional 

changes. While it is possible to track some dimensions (diameter, leaflet length) using 

transthoracic echocardiograms, image quality often deteriorates as the animal ages and if 

other organs obscure the view. In order to more reliably compare TEHV dimensions, 

epicardial echocardiograms will be performed immediately after TEHV implantation and 

prior to euthanization. 

Characterization of the engineered tissue will also be necessary to confirm 

somatic growth as opposed to stretching. Our approach will rely on characterization 

methods described in Chapters 3 and 4. The total collagen content in the TEHV root and 

leaflets will be particularly useful to discern between growth and stretching. Ultimately, 

these methods aim to confirm and phenotype host cell invasion as well as characterize 

new extracellular matrix proteins production to support the hypothesis that the invaded 

cells confer our TEHV with the ability to grow and remodel in vivo.  
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5.2 Chapter 5 Figures and Tables 

 

Figure 5-1. Animal versus human growth trends 

(a) Weight versus age for humans and sheep using data from the Tranquillo lab and 

published reports [101,102,163]. Diameter of the main pulmonary artery (MPA) versus 

(b) age in humans and (c) weight in sheep (adapted from Gottlieb et al. [101]). 

Comparative data from the Tranquillo lab is also shown (green dots). (d) Diameter 

growth rate (tangent slope of the curve in panel c) of the MPA versus weight in sheep. 
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Figure 5-2. Pulse duplicator testing of 20 mm diameter TEHVs 

20 mm diameter TEHVs were (a) sewn and hemodynamically characterized in the pulse 

duplicator system. The (b) leaflet and root tubes were firmly attached when viewed from 

the lumen after sewing. The TEHV (c) fully closed and (d) open in response to 

pulmonary pressure and flow conditions as shown in the (e) representative waveform.  
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Table 5-1. Pulse duplicator testing of 20 mm diameter TEHVs  

Property TEHVs (n=2) 

Mean Diastolic ∆P (mmHg) 12.8 ± 4.4 

Mean Systolic ∆P (mmHg) 1.5 ± 0.5 

Mean Ablumenal Pressure (mmHg) 4.7 ± 0.4 

Mean Forward Flow Rate (L/min) 3.6 ± 0.4 

Regurgitant Fraction (%) 8.2 ± 0.3 

Geometric Orifice Area (%) 75.2 ± 0.9 
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Appendix A. Pulse Duplicator System and Waveform Analysis Code  
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A.1 Motivation 
Pulse duplicator testing is an integral method to characterize heart valve 

hemodynamics in the laboratory. The International Organization for Standardization 

(ISO) 5840 outlines the applicable testing for prosthetic heart valves and their 

components [1]. Although ISO 5840 was not written specifically for tissue engineered 

heart valves, its contents are highly relevant. Of particular interest are the descriptions of 

appropriate in vitro testing and relevant metrics for hydrodynamic valve function.  

A.2 Pulse Duplicator Test Chamber 

The Tranquillo laboratory’s custom pulse duplicator system (Appendix Figure 

A-1.a) utilizes a Vivitro pump, fluid reservoir, valve mounting chamber, and compliance 

chambers [2]. Prior to the studies described in Chapter 2, hemodynamic valve testing 

focused only on leaflet motion with a rigid root. Since the pediatric TEHV described in 

Chapter 2 incorporated an outer tissue tube, it was necessary to consider the effect of root 

motion on valve performance. This was achieved by modulating the pressure on the 

ablumenal surface of the valve (i.e. in the fluid-filled valve mounting chamber) using a 

second flow loop equipped with a downstream needle valve (Appendix Figure A-1.b). 

Next, an “open” valve holder was fabricated using 3D printing (Appendix Figure A-1.c) 

so that root motion was uninhibited (Appendix Figure A-1.d). A tubular silicon mold was 

used to insert the valve within the holder. 
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A.3 Appendix A Figures and Tables 

 

Appendix Figure A-1. Pulse duplicator testing apparatus 

Pulse duplicator system showing the (a) primary flow loop, data acquisition system, fluid 

reservoir, and lumenal compliance chamber. The (b) valve mounting chamber houses the 

(c) valve holder and (d) does not inhibit TEHV root motion. Silicon tubes are attached to 

the ends of the TEHV to connect it to the valve holder. 
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A.4 Pulse Duplicator Analysis Code 

TEHV designs were modified based on the outcomes observed in pulse duplicator 

testing. In order to accelerate the design iteration process, a custom Matlab script was 

written to analyze pulse duplicator test data. Metrics such as regurgitant fraction, 

effective orifice area, systolic and diastolic pressure gradients, and mean forward flow 

rate were tabulated in a spreadsheet. The code for this analysis is included below. 

%% Pulse Duplicator Analysis Code 
% PDWaveformanalysis.m is written to automatically analyze labview 
% generated files for constructs tested in a pulse duplicator system. 
% Outputs include: flow & pressure traces, regurgitant fraction, mean 
% systolic DP, and average forward flowrate 
  
% Written by Jay M. Reimer (June 2014) with components adapted from J. 
% Bjork, L. Black, and P. Robinson 
% Written with Matlab R2014a 
  
%IMPORTANT NOTES 
% 1. This program is written for Labview generated files (.LVM) with a 23 line 
% header 
% 2. Data in labview files is organized into 5 columns; Col 1 = time, Col 
% 2=pressure 1, Col 3 = pressure 2, Col 4 = flowrate, Col 5 = ablumenal 
% pressure 
  
%%Initialize Workspace 
clear all 
close all 
clc 
  
Xcelname='dVRE26 - Pulmonary & Aortic PD Testing.xls'; % specify the name of the file 
that it will export 
%% Obtain File(s) 
cd('Z:\Jay Reimer\Tube in Tube Work\dVRE26 - 1-27-16 Sewing\Pulse Duplicator 
Testing\Waveforms (aortic_lower flow - 3.7.2016)'); 
  
[fname,fpath] = uigetfile('*.LVM','Select data file(s) to analyze.',... 
    'MultiSelect','on');        %%%%%USE FOR INSTRON CSV FILESC:\Documents and 
Settings\JanR\My Documents\Mechanical Testing\Biaxial Testing\VE Casting 03.13.2012 
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[a,b] = size(char(fname)); 
  
if fpath == 0 
    errordlg('File not specified.'); 
    return 
end 
cd(fpath); 
  
fname = cellstr(fname); 
headerlines = 23;        % Number of non-data rows for data. 
  
%Pressure Head Offset for Ablumenal Pressure Sensor - IMPORTANT -THIS ASSUMES 
THAT IT IS NOT ACCOUNTED FOR by the sensor calibration 
head=.05;%in meters - distance the ablumenal pressure gauge is above the lumenal 
pressure gauges 
h2oDensity=1000;%kg/m^3 
g=9.81;%m/s^2 
Pa2mmHg=0.00750061683;%1 Pa=0.00750061683 mmHg 
AbPhead=(h2oDensity*g*head)*Pa2mmHg; % in mmHg 
  
%%PreAllocating Vectors 
regurg=zeros(a,1);reg_std=zeros(a,1);fflowrate=zeros(a,1);fflowrate_std=zeros(a,1);stro
kevolume=zeros(a,1);strokevolume_std=zeros(a,1);closingvolume=zeros(a,1);closingvolu
me_std=zeros(a,1);leakagevolume=zeros(a,1);leakagevolume_std=zeros(a,1);cycletime=
zeros(a,1);cycletime_std=zeros(a,1);closingtime=zeros(a,1);closingtime_std=zeros(a,1);le
aktime=zeros(a,1);leaktime_std=zeros(a,1);abPressure=zeros(a,1);abPressure_std=zeros
(a,1);peakflow=zeros(a,1);peakflow_std=zeros(a,1);Qv_rms=zeros(a,1);Qv_rms_std=zero
s(a,1);avg_sysDP=zeros(a,1);avg_sysDP_std=zeros(a,1);max_sysDP=zeros(a,1);max_sysD
P_std=zeros(a,1);systime=zeros(a,1);systime_std=zeros(a,1);EOA=zeros(a,1);EOA_std=ze
ros(a,1);avg_diasDP=zeros(a,1);avg_diasDP_std=zeros(a,1);max_diasDP=zeros(a,1);max_
diasDP_std=zeros(a,1);min_diasDP=zeros(a,1);min_diasDP_std=zeros(a,1);diastime=zero
s(a,1);diastime_std=zeros(a,1);abPressure2=zeros(a,1); 
for i=1:a; 
    fileID = fopen(char(fname(i))); 
    C = textscan(fileID,'%f32 %f32 %f32 %f32 %f32', 'HeaderLines', headerlines); 
    fclose(fileID); 
    time=C{1}; 
    pressure1=C{2}; 
    pressure2=C{3}; 
    flow=C{4}; 
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    TP=C{5}+AbPhead; %Adds in the pressure that is not accounted for by the sensor due 
to the difference in height in relation to the lumenal pressure sensors (above the 
lumenal sensors) 
    array=[time pressure1 pressure2 flow TP]; 
     
    %% Detect and eliminate data associated with negative time (due to LabVIEW code 
malfunction) 
    if any(time<0) 
        index=find(time<0); 
        time(1:max(index))=[]; 
        pressure1(1:max(index))=[]; 
        pressure2(1:max(index))=[]; 
        flow(1:max(index))=[]; 
        TP(1:max(index))=[]; 
    else 
    end 
   
    %% Filtering the data: 7 window moving average filter 
    for z=5:length(time)-4; 
        time(z)=mean(time(z-4:z+4)); 
        pressure1(z)=mean(pressure1(z-4:z+4)); 
        pressure2(z)=mean(pressure2(z-4:z+4)); 
        flow(z)=mean(flow(z-4:z+4)); 
    end 
  
    %% Waveform Traces 
    figure(i); 
    set(gcf,'color','w', 'units','normalized','outerposition',[.1 .1 .6 .8],'PaperPositionMode', 
'auto'); % specify location and size of figure ==[left, bottom, width, height] 
     
    % Subplot 1 
    %subplot(2,2,1:2); 
    [haxes,hline1,hline2] = plotyy(time,pressure1,time, flow,'plot'); 
    ylabel(haxes(1),'Pressure (mmHg)', 'FontSize', 20, 'Color', 'k') % label left y-axis 
    ylabel(haxes(2),'Flowrate (L/min)', 'FontSize', 20, 'Color','k') % label right y-axis 
    xlabel(haxes(2),'Time (s)', 'FontSize', 20) % label x-axis 
    filename=strrep(char(fname(i)),'.lvm',''); 
    title(filename,'FontSize', 18) 
  
    % Modifying Axis Values 
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    if min(TP)<=min(pressure1); 
        if min(TP)<=min(pressure2); 
            set(haxes(1),'Ylim', [(min(TP)-10), (max(pressure2)+10)],'Xlim', [0 2],'FontSize', 16, 
'ycolor','k') % Set properties for left axis  
        else 
            set(haxes(1),'Ylim', [(min(pressure2)-10), (max(pressure2)+10)],'Xlim', [0 
2],'FontSize', 16, 'ycolor','k') % Set properties for left axis  
        end 
    elseif min(TP)>min(pressure1); 
        if min(pressure1)<=min(pressure2); 
            set(haxes(1),'Ylim', [(min(pressure1)-10), (max(pressure2)+10)],'Xlim', [0 
2],'FontSize', 16, 'ycolor','k') % Set properties for left axis 
        else 
            set(haxes(1),'Ylim', [(min(pressure2)-10), (max(pressure2)+10)],'Xlim', [0 
2],'FontSize', 16, 'ycolor','k') % Set properties for left axis  
        end 
    end 
  
    set(haxes(1),'YTick', [-40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70]); % sets tick marks 
for left axis 
    box(haxes(1),'off') 
    set(haxes(2), 'Ylim',[(round(min(flow)-1)),(round(max(flow)+2))],'Fontsize', 16,'Xlim', 
[0 2], 'ycolor','k'); 
    set(haxes(2),'Ytick',[-6,-4,-2,0,2,4,6,8,10]); 
    set(hline1, 'LineWidth', 2); % change thickness of line for pressure1 
    set(hline2, 'LineWidth',2); % change thickness of line for flow 
  
    hold on 
    hline3=plot(time,pressure2, 'k', 'LineWidth', 2); 
    hold on 
    hline4=plot(time, TP, 'm', 'LineWidth', 2); 
    legend([hline1;hline2;hline3; hline4],'Inflow Pressure', 'Flowrate', 'Outflow 
Pressure','Ablumenal Pressure','Location', 'SouthWest'); 
    hold on 
    xlim([0 2]); 
  
    %% Subplot 2 
%     subplot(2,2,3) 
%     [haxes,hline1,hline2] = plotyy(time,pressure1,time, flow,'plot'); 
%     title('Lumenal Pressures & Flow Traces','FontSize', 16) 
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%     ylabel(haxes(1),'Pressure (mmHg)', 'FontSize', 14,'Color','k') % label left y-axis 
%     ylabel(haxes(2),'Flowrate (L/min)', 'FontSize', 14,'Color','k') % label right y-axis 
%     xlabel(haxes(2),'Time (s)', 'FontSize', 14) % label x-axis 
%  
%     if min(pressure1)<min(pressure2); 
%         set(haxes(1),'Ylim', [(min(pressure1)-10), (max(pressure2)+10)],'Xlim', [0 
2],'FontSize', 12, 'ycolor','k') % Set properties for left axis 
%     else 
%         set(haxes(1),'Ylim', [(min(pressure2)-10), (max(pressure2)+10)],'Xlim', [0 
2],'FontSize', 12, 'ycolor','k') % Set properties for left axis 
%     end 
%     set(haxes(1),'YTick',[-20,-10, 0, 10, 20, 30, 40, 50, 60, 70], 'FontSize', 12, 'ycolor', 'k'); 
% set tick marks for left axis  
%     set(haxes(2), 'Fontsize', 12,'Xlim', [0 2], 'ycolor', 'k'); 
%     set(hline1, 'LineWidth', 2); % change thickness of line for pressure1 
%     set(hline2, 'LineWidth',2); % change thickness of line for flow 
%      xlim([0 2]); 
%     box off 
%  
%     hold on 
%     hline3=plot(time,pressure2, 'k', 'LineWidth', 2); 
%     legend([hline1;hline2;hline3],'Inflow Pressure', 'Flowrate', 'Outflow 
Pressure','Location', 'SouthWest'); 
  
%     %% Subplot 3 
%     subplot(2,2,4); 
%     plot(time, pressure1,time,pressure2,'k',time,TP,'m','LineWidth', 2); 
%     ylabel('Pressure (mmHg)', 'FontSize', 14, 'Color','k'); 
%     xlabel('Time (s)', 'FontSize', 14, 'Color','k'); 
%     set(gca,'FontSize', 12); 
%      xlim([0 2]); 
%     legend('Inflow Pressure','Outflow Pressure','Ablumenal Pressure', 'Location', 
'SouthWest'); 
%     title('Pressure Traces', 'FontSize', 16) 
     
    %% Export Figures to file 
    filename=strrep(char(fname(i)),'.lvm',''); 
    saveas(gcf,filename, 'tif') 
  
    %% Select Points to calculate regurgitation & Mean Ablumenal Pressure 
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    figure (i+1) 
    set(gcf,'color','w', 'units','normalized','outerposition',[0 0 .9 .9],'PaperPositionMode', 
'auto' ); % specify location and size of figure ==[left, bottom, width, height] 
    plot(time, flow, 'LineWidth', 4); 
    title('Click 1: beginning of cycle - Click 2: end of closing volume - Click 3: end of cycle --
-> Repeat 3 times (9 total clicks)') 
    ylabel('Flowrate(L/min)', 'FontSize', 14, 'Color','k'); 
    xlabel('Time (s)', 'FontSize', 14, 'Color','k'); 
    xlim([0 4]);  
    points = 9; %total number of points to select (3 points per cycle) (Point 1: right at 
beginning of forward flow; Point 2: end of closing volume; Point 3: end of the cycle) 
    [x] = ginput(points); 
     
    % Find indices associated with selected times 
    for j=1:points 
        for t=1:length(time) 
            tol=.001; % gives the tolerance for how much difference there can be for the 
index associated with the user-selected time 
            if abs(x(j)-time(t))<tol 
                index(j)=t; 
            else 
                'Error - no corresponding point could be found'; 
            end 
        end 
        %temp=abs(time-x(j)); 
        %temp=temp-min(temp); 
        %index(j)=find(~temp); 
    end 
     
    %Preallocating vectors 
    
cycletime1=zeros(points);peakflow1=zeros(points);abPressure1=zeros(points);fflowrate
1=zeros(points);Qv_rms1=zeros(points);strokevolume1=zeros(points);closingtime1=zero
s(points);closingvolume1=zeros(points);leaktime1=zeros(points);leakvolume1=zeros(poi
nts);regurg1=zeros(points);abpressurestd=zeros(points); 
     
    for k=3:3:points % runs a loop to calculate regurgitant fraction - starts at k=2 and runs 
to k=points by skipping 2 
        timestep=.001/60;%timestep of data acquisition in minutes 
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        %Total Cycle Time& Max Flow 
        flowtemp=flow(index(k-2):index(k)); %populates the vector with flowrates for the 
entire cycle 
        cycletime1(k)=length(flowtemp)*timestep*60; %gives the total cycle time - 
(seconds) 
         
        %Peak Flow for given cycle 
        peakflow1(k)=max(flowtemp); 
         
        %Mean Ablumenal Pressure 
        abPtemp=TP(index(k-2):index(k)); %populates the vector with ablumenal pressures 
for the entire cycle 
        abPressure1(k)=mean(abPtemp); % calculates the mean ablumenal pressure for the 
entire cycle 
        abpressurestd(k)=std(abPtemp); %calculates the standard deviation associated 
within each cycle 
         
        %Cardiac Output & Stroke Volume 
        flowtemp1=flow(index(k-2):index(k-1)); %populates vector with flowrates for the 
beginning of the cycle to the end of the closing volume (stroke volume & closing 
volume) 
        positiveflow1=flowtemp1(flowtemp1>=0); % populates a vector with only the 
positive flow rate points (or zeros) 
        posflow_time=length(positiveflow1)*timestep;%gives the amount of time for the 
stroke volume - units in minutes 
        fflowrate1(k)=mean(positiveflow1); %gives the average forward flowrate (cardiac 
output) through the valve in one cycle 
        Qv_rms1(k)=sqrt(sum((positiveflow1.^2)*timestep)/posflow_time)*1000; % units 
must be in mL per ISO 5840 for the equation to be valid  
        strokevolume1(k)=sum(positiveflow1*timestep)*1000; %volume of fluid moved 
through the valve in forward direction in one cycle (ISO 5840) 
        
        %Calculate Closing Volume 
        closing=flowtemp1(flowtemp1<0); % populates vector of negative flowrate values 
during specified time period 
        closingtime1(k)=length(closing)*(timestep*60); %Gives the time associated with the 
closing volume - (units in seconds) 
        closingvolume1(k)=sum(closing*timestep)*1000; % gives the total amount of 
negative flow during valve closure - (Units in mL) 
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        % Calculate Leakage Volume 
        flowtemp2=flow(index(k-1):index(k));   %populates vector with flowrates from the 
end of the closing volume through the end of the cycle (leakage) 
        leakage=sum(flowtemp2);%(flowtemp2<0); % populates vector of negative flowrate 
values during specified time period 
        leaktime1(k)=length(flowtemp2)*timestep*60; %gives time after closing until the 
end of the cycle - (units in seconds) 
        leakvolume1(k)=sum(leakage*timestep)*1000; %gives the total volume of negative 
flow after valve closure - (units in mL) 
         
        %Calculating Regurgitation (Closing volume + leakage volume) 
        regurg1(k)=abs((closingvolume1(k)+leakvolume1(k))/strokevolume1(k)); 
  
    end 
     
    %populate vectors with regurgitation and standard deviations 
    regurg(i)=mean(regurg1(regurg1~=0)); %gives the average regurgitation for the 3 
cycles  
    reg_std(i)=std(regurg1(regurg1~=0)); % gives the standard deviation for the 3 cycles of 
the given plot 
    fflowrate(i)=mean(fflowrate1(fflowrate1~=0)); % '>' symbol is there because the 
vector is populated with zeros because the indices skip by 3 
    fflowrate_std(i)=std(fflowrate1(fflowrate1~=0)); 
    strokevolume(i)=mean(strokevolume1(strokevolume1~=0)); % gets rid of the data 
points that are 0 because the indices increased by 3 for strokevolume1 
    strokevolume_std(i)=std(strokevolume1(strokevolume1~=0)); 
    closingvolume(i)=mean(closingvolume1(closingvolume1~=0)); 
    closingvolume_std(i)=std(closingvolume1(closingvolume1~=0));%takes the average of 
a vector populated only of the data points; gets rid of the zeros that come from the 
indexing 
    leakagevolume(i)=mean(leakvolume1(leakvolume1~=0));%takes the mean of the 
values not equal to zero 
    leakagevolume_std(i)=std(leakvolume1(leakvolume1~=0));%(abs(leakvolume1)>0)); 
    cycletime(i)=mean(cycletime1(cycletime1~=0));  
    cycletime_std(i)=std(cycletime1(cycletime1~=0)); 
    closingtime(i)=mean(closingtime1(closingtime1~=0));  
    closingtime_std(i)=std(closingtime1(closingtime1~=0)); 
    leaktime(i)=mean(leaktime1(leaktime1~=0));  
    leaktime_std(i)=std(leaktime1(leaktime1~=0)); 
    abPressure(i)=mean(abPressure1(abPressure1~=0)); 
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    %abPressure_std(i)=std(abPressure1(abs(abPressure1)>0)); 
    abPressure_std(i)=mean(abpressurestd(abpressurestd~=0)); 
     
    peakflow(i)=mean(peakflow1(peakflow1~=0)); 
    peakflow_std(i)=std(peakflow1(peakflow1~=0)); 
    Qv_rms(i)=mean(Qv_rms1(Qv_rms1~=0)); 
    Qv_rms_std(i)=std(Qv_rms1(Qv_rms1~=0)); 
     
    close(figure(i+1)); %closes the regurgitation calculation figure 
     
    %% Select Points to Calculate Average Systolic DP 
    figure (i+2) 
    set(gcf,'color','w', 'units','normalized','outerposition',[0 0 .9 .9],'PaperPositionMode', 
'auto' ); % specify location and size of figure ==[left, bottom, width, height] 
    plot(time, pressure1, time, pressure2, 'k', 'LineWidth', 3); 
    title('Calculate Average Systolic Pressure Drop (Pventricle>Paorta) - click at beginning, 
then end of desired zone ---> Repeat 3 times (6 total clicks)') 
    ylabel('Pressure (mmHg)', 'FontSize', 14, 'Color','k'); 
    xlabel('Time (s)', 'FontSize', 14, 'Color','k'); 
    xlim([0 4]); 
    Ppoints = 6; %total number of points to select (2 points per cycle) 
    [a] = ginput(Ppoints); 
  
 Pindex=zeros(Ppoints); 
    % Find indices associated with selected times 
    for l=1:Ppoints 
        for t2=1:length(time) 
            tol=.001; % gives the tolerance for how much difference there can be for the 
index associated with the user-selected time 
            if abs(a(l)-time(t2))<tol 
                Pindex(l)=t2; 
            else 
                'Error - no corresponding point could be found'; 
            end 
        end 
        %Ptemp=abs(time-a(l)); 
        %Ptemp=Ptemp-min(Ptemp); 
        %Pindex(l)=find(~Ptemp); 
    end 
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avg_sysDP_temp=zeros(Ppoints);max_sysDP_temp=zeros(Ppoints);systime1=zeros(Ppoi
nts); 
    for m=2:2:Ppoints % runs a loop to calculate average systolic DP - starts at k=2 and 
runs to k=points by skipping 2 
        Ptimestep=.001;%timestep of data acquisition - in seconds 
        p1temp=pressure1(Pindex(m-1):Pindex(m)); 
        p2temp=pressure2(Pindex(m-1):Pindex(m)); 
        sysDP=p2temp-p1temp; 
        avg_sysDP_temp(m)=abs(mean(sysDP)); % mmHg 
        max_sysDP_temp(m)=max(abs(sysDP));  % mmHg 
        systime1(m)=length(p1temp)*Ptimestep; % gives time for 2 pressures to equilibrate 
- in seconds 
    end 
    %populate vectors with regurgitation and standard deviations 
    avg_sysDP(i)=mean(avg_sysDP_temp(avg_sysDP_temp>0)); %gives the average 
systolic DP for the 3 cycles  - in mmHg 
    avg_sysDP_std(i)=std(avg_sysDP_temp(avg_sysDP_temp>0)); % gives the standard 
deviation for the average systolic DP for the 3 cycles of the given plot 
    max_sysDP(i)=mean(max_sysDP_temp(max_sysDP_temp>0)); 
    max_sysDP_std(i)=std(max_sysDP_temp(max_sysDP_temp>0)); 
     
    systime(i)=mean(systime1(systime1>0)); 
    systime_std(i)=std(systime1(systime1>0)); 
     
    %%Calculate Effective Orifice Area  
    rho=.9982;% grams/mL 
    b=Qv_rms1(Qv_rms1>0)/60; % converts the Qv_rms to mL/sec 
    c=avg_sysDP_temp(avg_sysDP_temp>0); 
    EOA_1=b./(51.6*sqrt(c/rho)); 
    EOA(i)=mean(EOA_1); 
    EOA_std(i)=std(EOA_1); 
     
    close(figure(i+2)); %closes the systolic DP calculation figure 
     
      %% Select Points to Calculate Average Diastolic DP 
    figure (i+3) 
    set(gcf,'color','w', 'units','normalized','outerposition',[0 0 .9 .9],'PaperPositionMode', 
'auto' ); % specify location and size of figure ==[left, bottom, width, height] 
     



 

136 

 

    [haxes,hline1,hline2] = plotyy(time,pressure1,time, flow,'plot'); 
    ylabel(haxes(1),'Pressure (mmHg)', 'FontSize', 14, 'Color', 'k') % label left y-axis 
    ylabel(haxes(2),'Flowrate (L/min)', 'FontSize', 14, 'Color','k') % label right y-axis 
    xlabel(haxes(1),'Time (s)', 'FontSize', 14) % label x-axis 
    set(haxes(1),'Ylim', [min(pressure1), max(pressure2)],'Xlim', [0 4],'FontSize', 12, 
'ycolor','k') % Set properties for left axis 
    set(haxes(1),'YTick', [-40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70]); % sets tick marks 
for left axis 
    box(haxes(1),'off') 
    set(haxes(2), 'Ylim',[(round(min(flow)-1)),(round(max(flow)+2))],'Fontsize', 12,'Xlim', 
[0 4], 'ycolor','k'); 
    set(haxes(2),'Ytick',[-6,-4,-2,0,2,4,6,8,10]); 
    set(hline1, 'LineWidth', 3); % change thickness of line for pressure1 
    set(hline2, 'LineWidth',3); % change thickness of line for flow 
    hold on 
    hline3=plot(time,pressure2, 'k', 'LineWidth', 3); 
    xlim([0 4]); 
     
    title('Calculate Average Diastolic Pressure Drop - click at beginning, then end of 
desired zone ---> Repeat 3 times (6 total clicks)') 
     
    Dpoints = 6; %total number of points to select (2 points per cycle) 
    [d] = ginput(Dpoints); 
  
 Dindex=zeros(Dpoints); 
    % Find indices associated with selected times 
    for l=1:Dpoints 
        for t3=1:length(time) 
            tol=.001; % gives the tolerance for how much difference there can be for the 
index associated with the user-selected time 
            if abs(d(l)-time(t3))<tol 
                Dindex(l)=t3; 
            else 
                'Error - no corresponding point could be found'; 
            end 
        end 
    end 
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avg_diasDP_temp=zeros(Dpoints);max_diasDP_temp=zeros(Dpoints);min_diasDP_temp
=zeros(Dpoints);diastime1=zeros(Dpoints); 
    for n=2:2:Dpoints % runs a loop to calculate average systolic DP - starts at k=2 and 
runs to k=points by skipping 2 
        Dtimestep=.001;%timestep of data acquisition - in seconds 
        dp1temp=pressure1(Dindex(n-1):Dindex(n)); 
        dp2temp=pressure2(Dindex(n-1):Dindex(n)); 
        diasDP=dp2temp-dp1temp; 
        avg_diasDP_temp(n)=abs(mean(diasDP)); % mmHg - Gives mean  
        max_diasDP_temp(n)=max(abs(diasDP));  % mmHg 
        min_diasDP_temp(n)=min(abs(diasDP)); % mmHg 
        diastime1(n)=length(dp1temp)*Dtimestep; % gives time for 2 pressures to 
equilibrate - in seconds 
    end 
    %populate vectors with regurgitation and standard deviations 
    avg_diasDP(i)=mean(avg_diasDP_temp(avg_diasDP_temp>0)); %gives the average 
systolic DP for the 3 cycles  - in mmHg 
    avg_diasDP_std(i)=std(avg_diasDP_temp(avg_diasDP_temp>0)); % gives the standard 
deviation for the average systolic DP for the 3 cycles of the given plot 
    max_diasDP(i)=mean(max_diasDP_temp(max_diasDP_temp>0)); 
    max_diasDP_std(i)=std(max_diasDP_temp(max_diasDP_temp>0)); 
    min_diasDP(i)=mean(min_diasDP_temp(min_diasDP_temp>0)); 
    min_diasDP_std(i)=std(min_diasDP_temp(min_diasDP_temp>0)); 
    diastime(i)=mean(diastime1(diastime1>0)); 
    diastime_std(i)=std(diastime1(diastime1>0)); 
  
    close(figure(i+3)); %closes the diastolic DP calculation figure 
end 
  
%% Writing data to an excel file 
%name=strrep(char(fname),'.lvm',''); 
%name=cellstr(name); 
summary_data=[regurg,EOA,fflowrate,Qv_rms,peakflow,strokevolume,closingvolume,le
akagevolume,cycletime,closingtime,leaktime,avg_sysDP,max_sysDP,abPressure,systime,
diastime,avg_diasDP,max_diasDP,min_diasDP]; 
st_deviations=[reg_std,EOA_std,fflowrate_std,Qv_rms_std,peakflow_std,strokevolume_
std,closingvolume_std,leakagevolume_std,cycletime_std,closingtime_std,leaktime_std,
avg_sysDP_std,max_sysDP_std,abPressure_std,systime_std,diastime_std,avg_diasDP_st
d,max_diasDP_std,min_diasDP_std]; 
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header1a= {'Filename', 'Regurg.','EOA','[Forward','Qv_rms','Peak','Stroke', 
'Closing','Leakage','Cycle', 'Closing', 'Leak','[Systolic','Max Sys','Mean 
Ab.','Systolic','Diastolic', '[Dia. DP]','Max','Min Dia.'}; 
header1b={'','','','Flowrate]','','Flow','Volume', 'Volume','Volume','Time','Time', 'Time', 
'DP]','DP', 'Pressure', 'time','time','', 'Dia. DP','DP'}; 
header2={'','','cm^2','L/min','mL/min','L/min','mL','mL','mL','sec','sec','sec','mmHg','mm
Hg','mmHg','sec','sec','mmHg','mmHg','mmHg'}; 
header3={'Standard Deviations','','','','','','',''}; 
xlswrite(Xcelname, header1a, 1); 
xlswrite(Xcelname,header1b,1,'A2') 
xlswrite(Xcelname,header2,1,'A3') 
xlswrite(Xcelname,transpose(fname),1,'A4'); 
xlswrite(Xcelname, (summary_data),1, 'B4'); 
xlswrite(Xcelname,header3,1,'A12'); 
xlswrite(Xcelname,transpose(fname),1,'A13'); 
xlswrite(Xcelname, (st_deviations),1,'B13'); 
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Appendix B. TEHV Implant Procedure Modifications 
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B.1 Motivation 

The method to surgically implant TEHVs on the right side of the heart is fairly 

well defined. The pulmonary artery was accessed via a lateral thoracotomy with 

dissection through the intercostal space. The TEHVs were implanted interpositionally 

with resection of a length-matched segment of the native pulmonary artery. Over the 

course of the study, several specific aspects of the implant procedure were modified and 

are discussed in more detail below.  

B.2 Hydration of the TEHV Leaflets  

It is also important to ensure that the TEHV remains hydrated during implantation 

and especially prior to closing the anastomoses. If the engineered tissue becomes dry, the 

root and leaflet tubes can adhere to one another and compromise valve function. This was 

implicated in two different instances for the animal study discussed in Chapter 4. In one 

animal, epicardial echocardiography revealed minimal leaflet motion immediately 

following TEHV implantation. In order to remedy this situation, a catheter was 

introduced distal to the TEHV and was used to physically adjust the leaflet.  

Leaflet immobility was observed in another animal approximately 1 week after 

implantation. It was not detected at implantation since an epicardial echocardiogram was 

not performed (due to the limited resolution provided by the available machine). 

Following animal euthanization, leaflet adhesion was clearly visible as seen in Appendix 

Figure B-1.a. After the leaflet was detached, full leaflet opening and closing (Appendix 

Figure B-1.b,c) was observed under simulated pulmonary pressure and flow conditions in 

the pulse duplicator system.  

B.3 Order of Anastomosis Sewing 

Resection of the native pulmonary artery imparts an axial stress on the TEHV 

since it interpositionally implanted. This situation is particularly relevant when the 

second anastomosis is being sewn since the axial stress is distributed through the sutures. 

Thus, the first suture throw will bear all of stress. While this stress is typically well-



 

141 

 

tolerated by the engineered and native tissue, it can result in tissue tearing if the stress is 

too high. This risk was initially mitigated by sewing the proximal anastomosis last, which 

is twice as thick as the distal anastomosis (2 tubes at the proximal anastomosis versus 1 at 

the distal anastomosis). While the stress can be distributed better when sewing the distal 

anastomosis first, it is challenging to adequately hydrate the TEHV. Thus, the distal 

anastomosis was sewn last so that the access to the area between the leaflets and the root 

could be accessed.  

B.4 Appendix B Figures and Tables 

 

Appendix Figure B-1. Pulse duplicator testing of TEHV with an adhered leaflet 

The (a) leaflet was clearly adhered to the root wall upon valve explantation. After 

detaching it, valve (b) opening and (c) closing was observed under pulmonary conditions. 

The black arrows indicate the adhered leaflet in all panels. 
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Appendix C. Protocols 
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C.1 Engineered Tube Fabrication Procedure 

1. Autoclave (or otherwise sterilize) mold components and necessary tools 

a. Glass rods (with the desired diameter), polycarbonate outer shell, 

Dacron cuffs (2 per construct), culture jars, Teflon tape 

b. 20 mm diameter final = start with ~22 mm diameter rods 

c. 16 mm diameter final = start with ~18 mm diameter rods 

2. Soak all components (except culture jars) in sterile 5% Pluronic F-127 for 0.5 

– 3 hours 

3. Dry mold components on a sterile drape for ~1 hour in a biosafety cabinet 

4. Assemble molds sterilely, utilizing Teflon tape to eliminate fluid leaks 

5. Prepare intermediate gel (fibrinogen, thrombin, and cell) solutions 

a. Fibrinogen = 6 mg/mL diluted in 20 mM HEPES buffer 

b. Thrombin = 2.27 units/mL & 30 mM CaCl2  diluted in DMEM + 

HEPES 

c. Cells (passage 7) = 6 million ovine dermal fibroblasts (ODFs)/mL 

diluted in DMEM + HEPES 

6. Mix intermediate gel solutions in a 4:1:1 ratio (Fibrinogen:cells:thrombin) 

a. First add cells to fibrinogen and mix well,then add thrombin and mix 

again 

b. Prepare enough solution to fill one VRE mold at a time 

c. Final fibrinogen concentration = 4 mg/mL 

d. Final thrombin concentration = 0.38 units/mL 

e. Final cell concentration = 1 million cells/mL 

7. Inject the solutions using a syringe and needle, being careful to avoid bubbles 

8. Let mold/solution sit for 8 minutes to ensure adequate gelation 

9. Place in incubator for 24 additional minutes of gelation (using a sterile 1 L 

beaker covered with sterile aluminum foil 
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10. Add culture medium (DMEM + 10% FBS + 1% antibiotic/antimycotic + 2 

μg/mL insulin + 50 μg/mL ascorbic acid) 

11. Eject the glass rods and gels from the outer casing and place into the culture 

jars 

12. Culture in incubator (37°C, 5% CO2, 95% humidity)  

a. Jars sit statically until the first feeding (3-4) days and then sit on a 

rocker until they are mounted in the bioreactor 

13. Engineered tubes are manually shortened and returned to their original length 

using sterile gloves to ensure that the gel does not adhere to the glass 

a. This process should be repeated as needed until the desired length is 

reached 

NOTE: the desired length is dependent on the its application; common dimensions 

of use for the TEHV project are listed below 

14. Constructs are fed 3x/week; 30% of medium is sterile filtered and placed back 

in the container 

a. Fresh medium consists the rest of it 

1. Leaflet tube 

a. 20 mm diameter = >15 mm 

b. 16 mm diameter = >13 mm 

2. Root tube 

a. 20 mm diameter = >19 mm 

b. 16 mm diameter = >15 mm 
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C.2 Mounting Tubular Constructs in Bioreactors 

1. Wash polymer sleeves by sonicating in Branson diluted in distilled water, then 1 

hour in distilled water 

a. 20 mm diameter final = 20 mm diameter silicone tube 

b. 16 mm diameter final = 16 mm diameter latex tube 

2. Sterilize components 

a. Autoclave Ultem end pieces, 3 way valves, scissors, tweezers, Teflon tape, 

cable ties, silk sutures, nylon sutures, male luer lock caps, and bioreactor 

lids and jars 

b. Latex tubes are soaked in 70% isopropanol for at least 4 days 

c. Silicone tubes can be autoclaved 

3. Lay down a sterile drape and empty sterilized components onto it 

a. If using latex tubes, be sure to let the isopropanol to evaporate 

4. Using sterile gloves place latex/silicone tube on one Ultem manifold, secure it 

with a zip tie, and hydrate it with culture medium 

5. Remove VRE from its mandrel carefully and place it over the latex/silicone tube 

6. Fasten it with a silk and/or nylon suture to the Ultem manifold  

7. Cut the latex/silicone tube to the appropriate length, insert the other Ultem 

manifold, and secure it with a zip tie 

8. Secure the engineered tube with sutures 

9. Use a syringe to fill the lines and lumen of the latex/silicone tube (try to remove 

air bubble) 

10. Fill bioreactor jar with culture medium (as described above) and screw on the lid 

11. Cap the 3 way valve, place a sterile syringe filter to the port on the lid, and place 

the bioreactor jar in the incubator 

12. Fill bioreactor lines using a large syringe and cap one end; place an appropriate 

sized syringe  
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13. Insert bioreactor line into the incubator side port and connect it to the 3 way valve 

on the bioreactor lid 

14. Secure syringe in a reciprocating syringe pump and start the pump, watching for 

leaks 

NOTE: Set the syringe pump stroke volume based on the desired strain for the 

engineered tubes (get calibration curve using laser micrometer)  

Appendix Table C-1. Reagents and equipment for bioreactors 

Name Company Product Number 

PharMed Tubing  US Plastics 57318 

Bioreactor jar (Tall 250 mL)  US Plastics 71301 

ULTEM rods  McMaster Carr (machined) 8686K76 

Cable ties McMaster Carr 70215K62 

3 way valves Nordson Medical DCV125-001 

Sterile syringe filter Millex SLGP033RS 

Luer lock caps 
Value Plastics Female: FTLLP-1 

Male: LP4-1 

Syringe pump Various, modified  
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C.3 Decellularization Protocol 

1. Aspirate medium off of VRE 

2. 3 x 10 minute rinses in 1X PBS on shaker at room temperature (RT) 

3. 1% SDS (in ddH2O) washes – all steps done at RT on shaker 

a. 1 hour with VRE still on the mandrel 

b. 1 x 5 minute rinse in PBS 

c. 2 hours (still on mandrel) in fresh SDS 

d. 1 x 5 minute rinse in PBS 

e. Remove VRE from the mandrel and place it back in the original 

container; NOT A 50 CC CONICAL 

f. 2 hours in fresh SDS 

g. 1 x 5 minute rinse in PBS 

h. 1  hour SDS wash 

4. 3 x 10 minute rinses in 1X PBS on shaker at RT OR overnight at 4 degrees 

Celsius 

5. 3 x 10 minute wash in 1% Triton X-100 (in ddH2O) at RT 

6. 3 x 1 hour rinse in PBS or overnight 

7. DNase in DMEM + 10% FBS overnight at 37 degrees Celsius 

a. DNAse was dissolved in sterile filtered 100 mM Tris pH 7.5 @ 2000 U/ml.  It was 

added at 1:1000 in DMEM C (10% FBS) low Fz, and sterile filtered. 

8. 3 x 1 hour wash in PBS  

9. Move to a smaller container or 50 cc conical and store at 4 degrees C in 1X PBS 

Appendix Table C-2. Reagents for decellularization 

Name Company Product Number 

Phosphate Buffered Saline (PBS)  Corning 21-031-CM 

Sodium dodecyl sulfate (SDS)  ThermoFisher Scientific 15525017 

Triton X-100 Sigma Aldrich T9-284-1L 

Deoxyribonuclease I, recombinant 

(DNAse) 
Worthington Biochemical LS006361 
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C.4 Mechanical Testing Protocol 

1. Cut tissue strips using a razor blade to the desired dimensions  

a. Uniaxial strain to failure: ~12 mm long x ~2 mm wide) 

b. Suture retention testing: ~10 mm wide x ~ 5 long 

i. Tie suture knot 2 mm from the tissue free edge orthogonal to the 

direction it will be pulled (per ISO 7198) 

2. Measure and record sample dimensions using a digital calipers prior to testing 

3. Set up Instron testing machine, calibrate load cells and arm position, and storage 

location 

4. Attach custom grips to opposing arms and immerse in a 1X PBS bath 

5. Place tissue in the grips, straighten it with a 0.005 N load, and commence testing 

a. Uniaxial strain to failure 

i. 6 preconditioning cycles at 0-10% strain 

ii. Displace arms at a rate of 3 mm/min until strip failure 

b. Suture retention 

i. Displace arms at a rate of 50 mm/min until failure 
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C.5 Freezing and Fixing Tissue 

Modified from Katie Ahmann 

Procedure 

1. Rinse the sample 3 x 10 min in PBS at room temperature on orbital shaker if 

possible or mix occasionally by hand. 

2. Fix the sample for 3 hours at 4
o
C in 4% para-formaldehyde on orbital shaker. 

3. Rinse the sample 3 x 10 min in PBS at RT, orbital shaker if possible. 

4. Place samples in infiltration solution 1 overnight at 4
o
C on a shaker. 

5. Place samples in infiltration solution 2 for 4 hours at room temperature on a 

shaker. 

6. Place samples in dry sample block cup and carefully side/transfer sample.  

Top off with OCT. Freeze in pre-chilled isopentane in liquid N2.  Freeze until 

opaque.  Store samples at -20
o
C. 

Infiltration Solution 1 

30% w/v sucrose + 5% w/v DMSO in 1X PBS 

e.g. for 100 ml: 30 g sucrose + 5 ml DMSO + 10 ml 10X PBS  

Dilute to 100 ml with ddH2O 

Infiltration Solution 2 

50% v/v infiltration solution 1 and 50% v/v OCT 

e.g. for 40 ml: Place 20 ml of Infiltration Solution 1 in a 50 cc conical 

Dilute to 40 ml with OCT 

Mix well, avoid bubbles.  If you get bubbles, centrifuge briefly to remove. 
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C.6 Lillie’s Trichrome Staining Protocol 

Solutions 

1. Weigert’s Iron Hematoxylin  

Solution A 

Hematoxlyin: 5.0 g   

95% alcohol: 500 ml 

Mix well, label with initial and date.  Stable for 1 year.  Caution:  Flammable, 

avoid contact and inhalation.    

Solution B 

ferric chloride (iron III chloride): 5.8 g 

dd H20: 495 ml 

conc. HCl (12 N, 37%): 5.0 ml 

Mix well, label with initial and date.   

Stable for 1 year.  Caution:  Corrosive, avoid contact and inhalation. 

2. Weigert’s Hematoxylin Working Solution 

Combine equal parts Solution A and Solution B and mix well.  Stable for 3-4 

days. 

For staining dish:  160 ml total = 80 ml of each 

For Coplin jar:  50-60 ml total, depending on number of slides  = 25-30 ml of 

each 

3. Beibrich Scarlet 

Biebrich scarlet (a.k.a. Ponceau BS): 2.5 g 

Acetic Acid, glacial: 5.0 ml 

Dilute to 500 ml with ddH2O.  Stir 20 minutes 

Store in dark bottle.  Solution stable for 6 months. 

4. PMA-PTA: 

Phosphomolybdic Acid Solution (PMA), Sigma HT153  

Phosphotungstic Acid Solution (PTA), Sigma HT152 
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1 part PMA: 1 part PTA : 2 parts ddH2O 

For 1 full staining dish:  40 ml PMA + 40 ml PTA + 80 ml ddH2O 

Can use 2x in 1 day.  Prepare fresh each day (i.e. do not store used solution). 

5. Fast Green: 

Fast Green FCF: 12.5 g 

Acetic Acid, glacial: 10.0 ml 

Dilute to 500 ml with ddH2O.  Stir 20 minutes.  Filter through Whatman #1.  

Store in dark bottle.  Solution stable for 6 months. 

Use 2x.  Can store as used solution in staining dish.   

6. 1% Acetic Acid: 

Acetic Acid, glacial: 5.0 ml 

ddH2O 

Procedure 

1. Warm Bouin’s fixative to 56 C in water bath while slides warm to RT and are 

formalin fixed (see below). 

2. Remove OCT slides from freezer.  Let warm to room temperature (about 10 

min).   

3. Place in neutral buffered formalin 20 min to further fix cells.  Can use 

formalin 2x.  Dispose of spent formalin in hazardous waste. 

4. Rinse slides with running tap distilled water for 5 min. 

5. Bouin’s should now be at 56 C.  Transfer Bouin’s to fume hood and add 

slides.  Seal with parafilm and place in 56 C bath.  Incubate 1 hr. 

6. Transfer slides and Bouin’s to fume hood and remove slides to clean staining 

dish or Coplin jar. 

7. Rinse slides with tap water until no color remains on sections, about 5 min. 

Discard used Bouin’s (hazardous waste). 

8. Weigert’s Hematoxylin Working Solution: 5 min.   
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9. Rinse with running tap water for 5 min. (need tap to get proper bluing of 

stained nuclei).   

10. Rinse in ddH2O (good distilled water from lab purifier). 

11. Beibrich Scarlet: 5 min.   

12. Rinse with tap distilled H2O until rinse water is colorless.   

13. Rinse once with ddH2O.14. PMA/PTA solution: 5 min. 

14. Fast Green (no rinse in between PMA/PTA and Fast Green):  5 min 

15. 1% Acetic Acid: 1 min. (start timer and walk slides to hood with dehydration 

pots, when timer goes off immediately place slides into first alcohol) 

16. Dehydrate and coverslip with Permount: 

a. 95% EtOH 2 x 3 min 

b. 100% EtOH 2 x 3 min 

c. Xylene 3 x 3 min 

d. Permount hardens within about 20 minutes or so and then slides can 

be viewed.  No need to keep slides as protected from light as for 

fluorescence, but avoid excess light.  Store slides at RT.   
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C.7 Von Kossa Staining Protocol for Calcium 

From IHCWorld: http://www.ihcworld.com/_protocols/special_stains/von_kossa.htm 

Description: This technique is for demonstrating deposits of calcium or calcium salt so it 

is not specific for the calcium ion itself. In this method, tissue sections are treated with a 

silver nitrate solution and the silver is deposited by replacing the calcium reduced by the 

strong light, and thereby visualized as metallic silver. 

Fixation: formaldehyde, formalin fixed, paraffin embedded tissue sections or alcohol 

fixed, frozen sections.  

Solutions and Reagents: 

1. 1% Aqueous Silver Nitrate Solution: 

a. Silver nitrate ------------------------- 1 g 

b. Distilled water ---------------------- 100 ml  

2. 5% Sodium Thiosulfate: 

a. Sodium thiosulfate ---------------- 5 g 

b. Distilled water  -------------------- 100 ml 

3. 0.1% Nuclear Fast Red Solution: 

a. Nuclear fast red ------------------- 0.1 g 

b. Aluminum sulfate------------------ 5 g  

c. Distilled water ----------------------100 ml 

d. Dissolve aluminum sulfate in water. Add nuclear fast red and slowly heat 

to boil and cool. Filter and add a grain of thymol as a preservative. 

Procedure:  

1. Deparaffinize paraffin sections and hydrate to water. 

2. Rinse in several changes of distilled water. 

3. Incubate sections with 1% silver nitrate solution in a clear glass coplin jar placed 

under ultraviolet light for 20 minutes (or in front of a 60-100 watt light bulb for 1 

hour or longer). Note: If stain was weak or rinsed off in washing steps, it 
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indicated the UV light was not strong enough. Longer staining is required for up 

to several hours.  

4. Rinse in several changes of distilled water 

5. Remove un-reacted silver with 5% sodium thiosulfate for 5 minutes. 

6. Rinse in distilled water. 

7. Counterstain with nuclear fast red for 5 minutes. 

8. Rinse in distilled water. 

9. Dehydrate through graded alcohol and clear in xylene. 

10. Coverslip using permanent mounting medium. 

Results: 

Calcium salts ------------------------ black or brown-black 

Nuclei -------------------------------- red 

Cytoplasm --------------------------- pink 

Positive Controls 

      16-18 days mouse embryo, calcium containing tissues or undecalcified bone. 

Notes: 

UV light usually gives stronger reaction so the calcium salts are often stained black. The 

regular 60-100 watt light bulb usually gives weaker reaction so the calcium salts are often 

stained brown-black. 

Oxalate salts are usually believed to give a negative von Kossa staining. 

A negative control may be needed when there is any doubt that the resulting black 

deposits are calcium. This is done by treating a test slide in 10% formic acid for 10 

minutes prior to step 3. The test slide should show negative reaction. 

  

References 

Sheehan D, Hrapchak B, Theory and Practice of Histotechnology, 2nd Ed, 1980, pp 226-

227, Battelle Press, Ohil. 
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C.8 Verhoeff-Van Gieson (VVG) Staining for Elastic Fibers 

From IHCWorld: http://www.ihcworld.com/_protocols/special_stains/vvg.htm 

Description: This method is used for identifying elastic fibers in tissues such as skin, 

aorta, etc. on formalin-fixed, paraffin-embedded sections, and may be used for frozen 

sections as well. The elastic fibers will be stained blue-black and background will be 

stained yellow. 

Fixation: 10% formalin or 4% PFA 

Section: paraffin sections at 5 um or OCT at 9 um. 

Solutions and Reagents: 

1. 5%  alcoholic hematoxylin 

a. Hematoxylin ---------------------------------- 5 g 

b. 100% alcohol ---------------------------------- 100 ml 

c. Mix to dissolve with the aid of gentle heat. Filter. 

2. 10% aqueous ferric chloride (prepare fresh, not necessary) 

a. Ferric chloride -------------------------------- 10 g 

b. Distilled water -------------------------------- 100 ml 

3. Weigert’s iodine solution 

a. Potassium iodide ------------------------------ 2 g 

b. Iodine ------------------------------------------- 1 g 

c. Distilled water --------------------------------- 100 ml 

d. Use 4 ml of distilled water to dissolve potassium iodide. And then add 

iodine. Once iodine is dissolved, dilute this solution by adding 96 ml of 

distilled water. This solution may be prepared fresh as needed or made in 

larger quantities and stored in brown bottle in the dark at room 

temperature. 

4. Verhoeff’s Working Solution 
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a. The working staining solution should be made up fresh for best results. It 

will not stain  satisfactorily if it is kept more than one working day. 

Prepare the working solution by adding in order the following reagents: 

b. 5% alcoholic hematoxylin -------------------- 20 ml 

c. 10% ferric chloride ---------------------------- 8 ml 

d. Weigert’s iodine solution ------------------- 8 ml 

e. Mix the above amounts (or needed proportions thereof) well. Solution 

should be jet black. Use immediately and discard after use. 

5. 2% aqueous ferric chloride (prepare fresh, not necessary) 

a. 10% ferric chloride from above ------------ 10 ml 

b. Distilled water ------------------------------- 50 ml 

6. 5% aqueous sodium thiosulfate 

7. Van Gieson’s counterstain 

a. 1% aqueous acid fuchsin --------------------- 5 ml 

b. Saturated aqueous picric acid -------------- 100 ml 

For nervous tissues may be prepared as follows: 

      1% aqueous acid fuchsin  ------------------- 15 ml 

      Saturated aqueous picric acid ------------- 50 ml 

      Distilled water ------------------------------- 50 ml  

Procedure: 

1. Deparaffinize and hydrate slides to distilled water. 

2. Stain in Verhoeff’s solution for 1 hour. Tissue should be completely black. 

3.  Rinse in tap water with 2-3 changes.  

4. Differentiate in 2% ferric chloride for 1-2 minutes 

5. Stop differentiation with several changes of tap water and check microscopically 

for black elastic fiber staining and gray background. It is better to slightly under 

differentiate the tissue, since the subsequent Van Gieson’s counterstain can 

extract the elastic stain somewhat. 



 

157 

 

6. Wash slides in tap water. 

7. Treat with 5% sodium thiosulfate for 1 minute. Discard solution. 

8. Wash in running tap water for 5 minutes. 

9. Counterstain in Van Gieson’s solution for 3-5 minutes.  

10. Dehydrate quickly through 95% alcohol, 2 changes of 100% alcohol.  

11. Clear in 2 changes of xylene for 3 minutes each. 

12. Coverslip with resinous mounting medium. 

Results: 

      Elastic fibers --------------------- blue-black to black 

      Nuclei ----------------------------- blue to black 

      Collagen -------------------------- red 

      Other tissue elements ---------- yellow  

Positive Controls: 

     Aorta, Kidney, Myometrium.   
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C.9 Immunostaining Protocol & Antibody Information 
Modified from Sandy Johnson and Katie Ahmann 

1. Warm slides to room temperature and rinses in 1X PBS 2 x 2’ 

2. Permeabilize using .1% Triton in PBS for 5’ at room temperature  

3. For elastin staining: Hyaluronidase unmasking for 30’ at 37 C  

a. Sigma H3884 

4. Wash 3 x 3’ in 1X PBS 

5. Block in 5% normal donkey serum (to match secondary antibody host) for 30 

minutes – 2 hours at room temperature 

6. Incubate in 1° antibody for 1 hour at room temperature or overnight at 4°C 

Appendix Table C-3. Immunostaining suppliers, product numbers, and dilutions 

Name Supplier Product Number Dilution 

CD45 US Biological 214696 1:200 

SMA Sigma 5228 1:200 

Ki67 Abcam 15580 1:400 

VwF (endothelial) Abcam  6994 1:200 

Vimentin Abcam 80667 1:1000 

Elastin Sigma E4013 1:2000 

Collagen IV Abcam 6586 1:200 

Collagen I Novus NB600-408 1:1000 

7. Rinse 3 x 3’ in PBS 

8. Incubate in 2° antibody in PBS for 1 hour at room temperature 

a. Stock solutions of secondary antibodies are stored at 4C for short 

durations (recommended <6 weeks) in PBS; stock solutions can be diluted 

1:2 in glycerol and stored at -20 C (1 year or greater) 

b. Jackson DyLight at 1:200  

9. Rinse 3 x 3’ in PBS 

10. Hoescht at 1:10,000 for 10 minutes at room temperature 

a. Hoescht 33342 (H3570) 

11. Rinse 3 x 3’ in PBS 

12. Remove last PBS rinse with vacuum to dry surface  

13. Place drop of Dako Mounting medium on slide and place coverslip  


