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Abstract

A single treatment may have a different effect on different patients. In particular,

some patients may benefit from a given treatment while others do not. Often, some of

the variation in effect among patients can often be explained by characteristics of those

patients that are observable before treatment. Widespread acknowledgment of treat-

ment effect variation due to observable patient characteristics has increased the health

science community’s interest in a broad field referred to as personalized or precision

medicine. Among the aims of precision medicine are identifying the set of treatments

that would benefit a given patient, and conversely, identifying the population of patients

who would benefit from a given treatment. We treat the latter problem in the context

of clinical trials run by treatment developers (e.g., pharmaceutical companies), with

special attention paid to interactions between those developers and the relevant regula-

tory agencies (e.g., the US Food and Drug Administration). The primary difficulty in

estimating the benefiting population in such settings is controlling the frequency with

which at least one type of patient is incorrectly determined to benefit, and doing so in

a way that does not render the approach excessively conservative.

As a motivating application throughout this dissertation, we consider a battery of

related clinical trials of treatments for Alzheimer’s disease carried out by the pharma-

ceutical company AbbVie. These trials contain a small number of continuous and binary

baseline patient characteristics that may influence the treatment effect. We apply stan-

dard and more novel regression models to the supplied data and develop methods of

inference to accommodate the varied features of the datasets, such as nonlinear effects,

multiple important endpoints, more than two treatments, and regions of the covariate

space that are sparse in observations or lacking common support among treatment arms.

We also discuss topics in practical implementation of these methods. Our approaches

yield reliable and easily interpretable inferences regarding the population that benefits

from treatment.
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Chapter 1

Identifying the Benefiting

Subgroup

1.1 Addressing treatment effect heterogeneity

It is well known that different patients suffering from a given ailment will have different

outcomes. In fact, this understanding is central to the usefulness of statistics in the

health sciences, for if it were not the case, then we could determine the effect of an

intervention by applying it to a single patient and withholding it from another. The

earliest clinical trials addressed this variability in outcomes by randomly assigning sub-

jects to one of two groups, one to which the treatment is applied and another from

which it is withheld, and comparing the average outcomes between the two groups.

The difference between the observed mean outcomes is then an estimate of the average

treatment effect (ATE) ∆ ≡ E[Y |t = 1] − E[Y |t = 0], where Y denotes a numerical

summary of the outcome and t = 0, 1 indicates the test treatment being withheld or

applied, respectively. The ATE can then be interpreted as the expected difference in

outcomes for a randomly selected patient if the treatment were to be given to versus

withheld from them.

It has also long been recognized that some of the variation in outcomes can be

attributed to prognostic covariates, patient characteristics observable before treatment

that provide information about how those patients will fare regardless of treatment

1
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choice. Thus linear regression becomes useful through models of the form1

E[Y |x; t] = xᵀβ + tγ, (1.1)

where x is a vector of prognostic covariates, β is a vector of prognostic effect parameters,

and γ = ∆ is the average treatment effect. Such a model can yield substantially more

precise estimates of the treatment effect if the included covariates are in fact correlated

with outcomes.

Given that variation exists in patient outcomes and can be partially explained by

baseline characteristics, it does not require a great leap of the imagination to suspect

that the same might hold for the treatment effect, i.e., that there is treatment effect

heterogeneity with respect to those characteristics, which we term predictive covari-

ates. Prognostic and predictive covariates (which may overlap) then enter the regression

model as main effects and interaction effects with the treatment, respectively:

E[Y |x, z; t] = xᵀβ + tzᵀγ, (1.2)

where z is a vector of predictive covariates and γ is a vector of predictive effect pa-

rameters. Now, rather than relying on the average treatment effect, the personalized

treatment effect (PTE) may be defined as ∆(z) ≡ E[Y |x, z; t = 1]−E[Y |x, z; t = 0]. In

the case of (1.2), ∆(z) = zᵀγ. The PTE has the more clinically useful interpretation of

the expected difference in outcomes for a randomly selected patient with specific baseline

characteristics z, if the treatment were given to versus withheld from them.

Acknowledgment of treatment effect heterogeneity has led to increased interest in

precision medicine (also called personalized medicine), an approach to treatment that

takes into account individual patients’ characteristics such as demographics, genetics,

lifestyle, environment, and more. Of course, in order for practitioners to take individual

patients’ characteristics into account for individualized care, information on how those

characteristics determine the treatment effect must exist in a useful and accessible form.

The first step in providing practitioners with the information necessary to personal-

ize care is to collect data that can be used to produce it. Specifically, studies must enroll

a diverse cohort of subjects. To this end, the 2012 Food and Drug Administration Safety

1 The variable t is separated from x with a semicolon to indicate that it is set by the experimenter,
as opposed to being observed as a characteristic of the patient.
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and Innovation Act (FDASIA) Section 907, Reporting of Inclusion of Demographic Sub-

groups in Clinical Trials and Data Analysis in Applications for Drugs, Biologics, and

Devices, required the FDA to publish a report “addressing the extent to which clinical

trial participation and the inclusion of safety and effectiveness data by demographic

subgroups including sex, age, race, and ethnicity, is included in applications submitted

to the Food and Drug Administration.” [1] As part of the report, the FDA presented the

FDA Action Plan to Enhance the Collection and Availability of Demographic Subgroup

Data, which aimed to improve the completeness and quality of demographic subgroup

data, to identify barriers to subgroup enrollment in clinical trials and employ strate-

gies to encourage greater participation, and to make demographic subgroup data more

available and transparent [2]. Although the act and subsequent report only address de-

mographic factors and leave out genetic, lifestyle, and environmental ones, demographic

factors are a natural starting point due to their relative ease of collection, public ac-

cessibility, and potential to partially address health disparities. To expand the range

of studied characteristics, President Obama in 2015 announced the Precision Medicine

Initiative [3], which in part aims to expand the use of genetically-based clinical trials

for cancer treatments and form a national research cohort of over one million American

volunteers. The cohort will contribute data including “medical records; profiles of the

patient’s genes, metabolites, and microorganisms in and on the body; environmental

and lifestyle data; patient-generated information; and personal device and sensor data.”

Finally, the 21st Century Cures Act [4] passed in 2016 seeks to streamline clinical tri-

als, including by means of Bayesian methods, and focuses on cancer and Alzheimer’s

disease, areas of intense interest within personalized medicine.

1.2 Modes of inference for personalized medicine

Once data usable for investigating treatment effect heterogeneity is available, we may

choose from several inferential goals, depending largely how many patients and how

many interventions are under consideration, as well as whether the focus is on screening

or optimization. In all of these contexts, many quantities are estimated (the treatment

effect for each combination of type of patient and intervention), and as a result many

hypotheses are tested (whether or not there is a benefit under such a combination).
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Thus the idea of multiple testing is often relevant.

The multiple testing problem refers to the statistical phenomenon that when many

questions are asked and answered, each with a small probability of being wrong, indi-

vidually, the probability of producing at least one wrong answer (the familywise error

rate) may still be quite large. In the context of personalized medicine, a Type I error

usually refers to identifying a type of patient as benefiting from an intervention when in

fact they do not, while a Type II error refers to failing to recognize that a type of patient

benefits from an intervention. In the same context, we take screening to mean deter-

mining whether a given patient-intervention combination is acceptable in some sense,

and optimization to mean determining the best intervention to apply to each patient, or

the patients for which a given intervention is most effective. Screening usually requires

careful attention to multiple testing considerations, while optimization often does not.

1.2.1 One patient, many interventions

The most familiar case of one patient, many interventions is likely the patient-practitioner

interaction. In this situation, a patient presents an ailment to a practitioner (e.g., pri-

mary care physician), and the practitioner must consider several possible interventions

(e.g., the set of all drugs approved to treat a presented illness). While the practitioner

may draw on his or her experiences with other patients as well as published informa-

tion, the practitioner makes decisions regarding only the current patient. However, the

practitioner must make decisions regarding many interventions.

In the screening problem, the practitioner must identify which among the available

interventions would benefit the patient. In the pharmaceutical context, this problem

is not often treated statistically, since ideally comparing the patient against the guide-

lines on the label would be sufficient to determine whether the treatment is acceptable

according to regulators.

The optimization problem, in which the patient may leave it up to the practitioner

to recommend the best treatment, has been studied in much greater detail. In partic-

ular, the field of dynamic treatment regimes (DTRs) [5] seeks methods to identify the

optimal processes in which a sequence of interventions are applied to a single patient,

taking into account that patient’s baseline characteristics as well as responses to previ-

ous treatments. For example, a simple process for treating patients with hypertension
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would be to prescribe drug A to males and drug B to females, try the opposite treat-

ment if the first does not lower blood pressure sufficiently, and finally return to the first

treatment if the second performs even worse. In most approaches to the optimization

problem, the procedure is unbiased in the sense that the most effective treatment is

most likely to be identified as such. However, unadjusted estimates of the magnitude of

the effect of that treatment are biased upward due to selection bias.

1.2.2 Many patients, one intervention

Situations in which only one intervention is under consideration occur commonly during

the treatment development, evaluation, and regulatory approval processes. For exam-

ple, once a potentially therapeutic compound has been identified, it may be compared

exclusively to the present standard of care for the rest of its development cycle (and in

this case the experimental treatment is the only one being evaluated, as long as the stan-

dard of care is well understood). In these processes, it is the responsibility of regulators

to ensure that patients for whom a treatment is approved benefit from the treatment.

This places the burden of proof for safety and efficacy on the treatment developers,

though in the past it seems that the required proof has been that the broad population

benefits on average. However, assuming that regulators are proficient in screening pro-

posed treatments, it may also be in the best interests of developers to identify early the

types of patients who benefit, or benefit most, from an experimental treatment. Such

foreknowledge could allow developers to focus their resources and efforts on populations

in which they are more likely to succeed. Formally, we pose the benefiting subgroup

identification problem as estimating B ≡ {z : ∆(z) > 0}.
Strictly speaking, standard clinical trials generally consider many patients (or types

of patients), but often make their primary conclusions by conflating these differing types

in order to infer an average treatment effect in the entire population. Although average

treatment effects can be used to infer that some subgroup of patients benefits from

treatment, they can only be used to identify the benefiting subgroup (i.e., everyone or

no-one) under the assumption that there is no heterogeneity sufficient to cause the per-

sonalized treatment effect to change sign. Such an assumption is implicit in the United

States regulatory guidance. The FDA’s 1998 Guidance For Industry, E9 Statistical
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Principles for Clinical Trials [6] (also called ICH-E9)2 states in Section 5.7, Subgroups,

Interactions, and Covariates,

The treatment effect itself may also vary with subgroup or covariate. For

example, the effect may decrease with age or may be larger in a particular

diagnostic category of subjects. In some cases such interactions are antici-

pated or are of particular interest (e.g., geriatrics); hence a subgroup analysis

or a statistical model including interactions is part of the planned confirma-

tory analysis. In most cases, however, subgroup or interaction analyses are

exploratory and should be clearly identified as such; they should explore the

uniformity of any treatment effects found overall. In general, such analyses

should proceed first through the addition of interaction terms to the sta-

tistical model in question, complemented by additional exploratory analysis

within relevant subgroups of subjects, or within strata defined by the co-

variates. When exploratory, these analyses should be interpreted cautiously.

Any conclusion of treatment efficacy (or lack thereof) or safety based solely

on exploratory subgroup analyses is unlikely to be accepted.

Thus in most cases the detection of a positive ATE and lack of overwhelming evidence of

heterogeneity is sufficient to warrant acceptance in a large population. Such skepticism

of subgroup analyses is understandable, as they have frequently misled investigators

due to the inherent multiple testing problem and associated inflated Type I error rate:

as more subgroups are examined without adjustments for multiplicity, the likelihood of

observing a transient difference in treatment effect approaches certainty.

In the hope of mitigating the propensity of subgroup analyses to produce false pos-

itives, it has been recommended to carry them out only after identifying effect het-

erogeneity by means of an interaction test [7]. This recommendation comes with the

acknowledgment that in trials designed to detect an ATE, such interaction tests are

underpowered. This is presented as a strength of the approach, with the argument

that such interactions are uncommon, and that the lack of power in interaction tests

accurately reflects the scant evidence of heterogeneity. Others [8] consider this to be a

2 The guidance was developed at the International Conference of Harmonization of Technical Re-
quirements for Registration of Pharmaceuticals for Human Use (ICH).



7

deficiency and recommend data mining methods for variable selection and model build-

ing as exploratory techniques. We argue that such lack of power, and in fact the general

strategy of assuming homogeneity in the absence of compelling evidence to the contrary,

is backwards when attempting to identify the benefiting subgroup. As the burden of

proof lies with the treatment developer, this strategy creates an incentive to design

studies with enough power to identify an ATE but not treatment effect heterogeneity.

It is relatively easy to achieve such a “sweet spot” due to the gap in power between

ATE and interaction tests for a given sample size.

Instead, the treatment effect should not be assumed homogeneous without prior

evidence, and when present, the assumption must be explicit. Statistically, developers

should allow for the presence of heterogeneity and model accordingly. For example, it

has been proposed to analyze the response variable via a Bayesian linear model with

skeptical (informative and centered around zero) priors on treatment-covariate interac-

tion parameters [9]. Alternatively, tree-based regression methods have been proposed.

Structures related to classification and regression trees (e.g., CART, BART) [10, 11, 12]

have advantages of straightforward “flowchart-style” interpretation often used by clini-

cians and the ability to capture complex and nonlinear relationships. Finally, concerns

about Type I error inflation should be addressed formally rather than swept under the

rug through ad hoc use of underpowered tests. Adaptive signature designs and ex-

tensions [13, 14] take an approach of constructing via general classification models a

subgroup thought to benefit and then perform a single test for the average treatment

effect in that subgroup, however the inferential statements available from such pro-

cedures do not directly correspond to identification of the benefiting subgroup. This

dissertation focuses on a confirmatory approach to benefiting subgroup identification

that allows treatment effect heterogeneity in the absence of explicit assumptions to the

contrary, and directly addresses multiplicity concerns.

Substantial attention has also been given to the various optimization problems for

many patients and one treatment. Methods have been proposed that aim to partition

the types of patients into two groups that show the greatest difference in treatment

effect [15], and to search for subgroups with enhanced treatment effects relative to the

general population [16, 17]. In these cases, multiplicity corrections are not as critical

because they are meant to be used as exploratory tools rather than confirmatory.
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1.2.3 Many patients, many interventions

The case of many patients, many interventions arises most naturally in the context of

policymaking by entities intermediate to regulators and practitioners, e.g., hospitals,

payers, and practitioner associations.

The screening problem often retains elements of both the one patient, many inter-

ventions and many patients, one intervention cases. In particular, multiplicity control

may be important both in terms of types of patients and different interventions: a

Type I error is incorrectly declaring that some patient-treatment combination is benefi-

cial. However, the details of the multiplicity correction for multiple treatments may be

flexible, especially when treatments have already been approved as generally safe and

effective by regulators and each treatment has its own study arm, so that the notion

that the comparisons all come from the same trial arises solely from a common control

arm and, e.g., common organizational infrastructure. We consider this case in more

detail in Chapter 4.

Recent work has also addressed the optimization problem, especially in the context

of clinical trials for developing treatment policy. For example, the SUBA design [18]

provides a tree-based algorithm for constructing subgroups and allocating patients adap-

tively to the best subgroup-specific treatments. Additionally, methods in network meta

analysis [19] often seek to identify the best among a variety of treatments already on

the market, sometimes acknowledging treatment effect heterogeneity [20].

1.2.4 Frequentist or Bayesian?

Because this dissertation deals primarily with interactions between developers and reg-

ulators, inference must ultimately be frequentist in that the familywise Type I error

rate must be controlled. However, many aspects of the Bayesian inferential frame-

work prove to be both natural and expedient. Bayesian hierarchical models provide

an intuitive conceptualization of effect heterogeneity, and careful choice of priors on

treatment-covariate interaction effects can be used to tune the level of heterogeneity of

the treatment effect among different types of patients to either reflect prior information

or elicit desired operating characteristics. Additionally, Bayesian computation schemes

which provide Monte Carlo samples from the joint posterior distribution of the PTEs
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substantially simplify methods for multiple comparisons. Thus our approach will be

to model the treatment effect in a Bayesian framework but require certain frequentist

properties, achieved by asymptotic correspondence between the parameter posterior and

estimator sampling distributions, and verified via simulation studies.

In addition to the familywise Type I error, we will pay special attention to the

average sensitivity and specificity of estimators for the benefiting subgroup, which play

roles analogous to power and Type I error control. For an estimate B̂ of the benefiting

subgroup B and a measure µZ on the predictive covariate space, we define the sensitivity

and specificity of B̂ as µZ(B̂∩B)/µZ(B) and µZ(B̂{∩B{)/µZ(B{), respectively, and take

the frequentist expectation of these quantities over the distribution of B̂. We take the

measure µZ to be uniform over some restriction of the covariate space, though empirical

estimates of the population covariate density may also be useful.

1.3 Clinical motivation and plan of dissertation

1.3.1 Alzheimer’s disease

Our motivating datasets stem from several clinical trials of Alzheimer’s disease (AD)

treatments carried out by AbbVie, Inc. While effective treatment strategies for AD are

in their infancies, a number of risk factors for the disease are known. For example,

advanced age and the presence of the Apolipoprotein E4 (ApoE4) allele dramatically

increase the risk of AD, while longer education and higher intelligence appear somewhat

protective [21].

One of the current standard of care (SOC) treatments for AD is Donepezil (trade

name Aricept), a palliative medication approved in the United States for the treatment

of mild to severe dementia resulting from AD [22]. It is not thought to alter the course

or progression of AD itself, and sometimes causes nausea, diarrhea, and vomiting [23].

Donepezil was the SOC used in all of the trials described below.

In some trials, a test treatment was compared to both the SOC and placebo. The

primary endpoint was the 12- or 24-week improvement in cognitive function as measured

by the eleven-point Alzheimer’s Disease Assesment Scale–Cognitive Subscale (ADAS-

Cog 11) [24]. Here improvement is defined as the severity score at baseline minus the

severity score at the individual ends of follow-up. The test treatments under study in



10

these trials were abandoned before completion of the regulatory process, and conse-

quently the full details of the trials are not publicly available.

1.3.2 Simple add-on therapy dataset

The first dataset is from a trial of a compound we refer to as ATT-1 at three dose

levels. The compound was evaluated as an add-on therapy to the SOC, and evaluated

to the SOC plus a placebo. We present a comparison of the low-dose test treatment

to the placebo on a subset of patients of the sponsor’s interest. There are 41 such pa-

tients, 25 receiving the placebo and 16 receiving the treatment. The primary endpoint

is 12-week improvement, and the potential predictive covariates are the baseline sever-

ity on the ADAS-Cog 11 scale, age, sex, and carrier status of the ApoE4 biomarker.

This dataset provides a simple, introductory example for an analysis using a standard

Bayesian formulation of the multiple linear regression model in Chapter 2.

1.3.3 Multi-endpoint dataset

The second dataset is from a trial of three dose levels of ATT-1 as a monotherapy

versus the SOC and placebo as separate control arms. Data from all five arms are

presented, totaling 331 patients. Responses are available for both the efficacy endpoint

(24-week ADAS-Cog 11 improvement) and the safety endpoint (reporting of at least one

adverse event indicated by the physician to be possibly related to the treatment). The

same predictive covariates are available as in the add-on therapy dataset. This dataset

provides an example application of our approach to the generalized linear model in

Chapter 3 and the multi-endpoint, multi-treatment setting in Chapter 4.

1.3.4 Multi-trial dataset

The final dataset is the combination of four clinical trials of different test treatments

as monotherapies versus the SOC and placebo. The four trials were carried out in

the same set of centers in short succession. In all four trials the primary endpoint is

12-week improvement, and the potential predictive covariates are baseline severity, sex,

ApoE4 carrier status, and the rate of decline in cognitive function as measured by the

Mini–Mental State Exam (MMSE) from the onset of first symptoms to study baseline.
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We present data from the SOC and placebo arms totaling 369 patients to illustrate the

application of our approach using semiparametric and nonparametric regression models

in Chapter 3.

1.3.5 Implementation and future work

While Chapters 2–4 describe primarily theoretical work, later chapters address more

practical considerations, including topics in implementation for clinical trials and im-

plications for future research. In particular, Chapter 5 considers power computations,

Monte Carlo precision, diagnostics, reporting of results, and software usage, while Chap-

ter 6 concludes by summarizing the work contained in the dissertation, discussing its

significance both in clinical trials and in a broader range of topics, and presenting pos-

sible avenues for future work.



Chapter 2

Credible Subgroups

This chapter introduces the foundational ideas of credible subgroups as an estimator for

the benefiting subgroup. The case treated in Section 2.1 is that of a single, condition-

ally normally distributed response in a standard Bayesian formulation of the multiple

linear regression model. Later chapters extend these ideas to more general regression

techniques (Chapter 3) and inferential goals (Chapter 4), and provide additional tools

for practical implementation of the approach (Chapter 5). Section 2.2 provides a sim-

ulation study of the operating characteristics of the credible subgroups approach, and

Section 2.3 applies the method to the simple add-on therapy dataset.

We will use the descriptions “types of patients” and “covariate points” interchange-

ably, and use “benefit” to mean a personalized treatment effect (PTE) or conditional

average treatment effect greater than some threshold δ, rather than a causal or potential

outcomes conception of benefit for individuals.

2.1 Bounds as estimators

Recall the linear regression model

E[Y |x, z; t] = xᵀβ + tzᵀγ, (2.1)

where Y is the response, x is a vector of prognostic covariates with corresponding

parameter vector β, z is a vector of predictive covariates with corresponding parameter

vector γ, and t is the treatment indicator. Each of x and z may contain an intercept

12
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S\D: Insu cient Evidence
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: True Bene ters (Unknown)

D: Evidence of Bene t

SC: Evidence of No Bene t

Figure 2.1: Interpretation of the trichotomy of the covariate space induced by the
credible subgroup pair (D,S) relative to the true benefiting subgroup B.

term, and covariates may appear in both. The existing methods for estimating the

benefiting subgroup B described in Section 1.2.2 provide a single estimate, B̂ of B that

is meant to be a “best guess.” Even when B̂ is constructed based on a statistical test

or bound, such as B̂ = {z : P [∆(z) > δ|y] ≥ 1− α}, the single estimate is analogous to

a point estimate of a univariate quantity. For such estimators the illustration of global

uncertainty is not straightforward, as the basic inferences in such processes concern the

inclusion or exclusion of covariate points from the benefiting subgroup individually. We

instead propose a “bound” estimator analogous to credible (or confidence) intervals: a

credible subgroup pair (D,S)1 for which D aims to contain only types of patients who

benefit and S aims to contain all types of patients who benefit.

The pair (D,S) defines a trichotomy of the predictive covariate space, from which we

may conclude that all patients in D have a treatment effect greater than a threshold δ,

and that those in the complement S{ of S have treatment effect at most δ, while deferring

conclusions about patients in the uncertainty region S \ D (S remove D) until more

information is available. This partition of the predictive covariate space is illustrated in

Figure 2.1.

1 The choice of symbols D and S arises from set-theoretical language describing intersections
(German, Durchschnitte) and unions (French, sommes) of collections of sets, which are relevant to their
construction in Section 2.1.2. The nomenclature may be most familiar from discussion of Gδ and Fσ
sets.
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Formally, we require a 1− α credible subgroup pair (D,S) to be such that

P(D ⊆ B ⊆ S|y) ≥ 1− α (2.2)

in the Bayesian sense, with B as the random quantity. In most cases, we will additionally

construct (D,S) so that P(D ⊆ B ⊆ S) ≥ 1 − α in the frequentist sense, with (D,S)

as the random quantity. We term D the exclusive credible subgroup, since the posterior

probability that D contains only z for which ∆(z) > δ is at least 1 − α. Similarly, we

call S the inclusive credible subgroup, since the posterior probability that S contains all

z such that ∆(z) > δ is at least 1−α. While there are many ways of satisfying these two

conditions, taking the credible subgroups D ≡ {z : P [∆(z) > δ|y] > 1− α′/2} and S ≡
{z : P [∆(z) > δ|y] > 1− α′/2} is intuitive and yields unique pairs up to specification

of α′ ≤ α. The two-sided threshold α′/2 is used here because we will construct our

credible subgroups using symmetric simultaneous confidence bands: roughly, covariate

points for which the lower bound is greater than δ are included in D and those for

which the upper bound is greater than δ are included in S. We discuss three methods

for choosing α′.

First, for some level α ∈ (0, 1), let Gα,y be the 1 − α highest posterior density

credible region for the interaction parameters γ|y. To every element γ̂ ∈ Gα,y there

corresponds a half-space Bγ̂ of the predictive covariate space with ∆̂(z) ≡ zᵀγ̂ > δ for

all z ∈ Bγ̂ . Let B be the collection of all Bγ̂ corresponding to γ̂ ∈ Gα,y. Let D and

S be the intersection and union, respectively, of all member sets of B. Then (2.2) is

satisfied. We further describe this highest posterior density (HPD) method of finding

credible subgroups in Section 2.1.2.

The HPD method assumes that the entire covariate space is of interest, and is thus

underpowered when only a subset of the covariate space is considered. Examples of

restrictions include indicator variables that can only take values 0 or 1, and numerical

covariates for which investigators are only concerned with values that lie within some

finite range. The restriction of the entire unbounded covariate space to a bounded one

can dramatically reduce the size of simultaneous credible bands for treatment effects,

and thus the exclusive credible subgroup can often be expanded and the inclusive cred-

ible subgroup contracted. We discuss a restricted covariate space (RCS) procedure for

handling these cases in Section 2.1.3.
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The HPD and RCS methods take advantage of the fact that credible regions for

the regression parameters asymptotically agree with the corresponding frequentist con-

fidence regions under an uninformative prior. Thus not only is there at least 1 − α

posterior probability that D ⊆ B ⊆ S, but treating B as fixed, 1− α is an approximate

lower bound on the frequency with which D ⊆ B ⊆ S, often a desirable frequentist

property. When such a frequentist property is not necessary, a larger exclusive credible

subgroup and a smaller inclusive credible subgroup may be obtained for which the pos-

terior probability that D ⊆ B ⊆ S is closer to 1−α. We discuss such a purely Bayesian

(PB) approach in Section 2.1.4.

2.1.1 A normal hierarchical linear model

We now review a normal hierarchical linear model setting for which we will develop

examples of our benefiting subgroup selection tools. Let φ = (β,γ) be the combined

vector of effect parameters. For each patient i, let Yi be the response, xi be the prog-

nostic covariate vector, zi be the predictive covariate vector, and ti ∈ {0, 1} indicate

assignment to the control or treatment arm, respectively. Let X be the n×p prognostic

design matrix with the xᵀ
i as rows, Z be the n× q predictive design matrix with the zᵀi

as rows, and T be the n × n diagonal treatment matrix diag(t1, . . . , tn). Consider the

model
Y |X,Z,T,β,γ, σ2 ∼ Normal

[
Xβ + TZγ, σ2Σ

]
,

φ|σ2 ∼ Normal
[
ν, σ2R

]
,

σ2 ∼ InverseGamma [a0, b0] ,

(2.3)

where Σ, ν, R, a0, and b0 are hyperparameters assumed known. The variance σ2 is

included in the prior scale for φ for conjugacy. With W = (X TZ) as the full design

matrix, the first line of (2.3) becomes Y |W,φ, σ2 ∼ Normal
[
Wφ, σ2Σ

]
.

The posterior distribution of φ conditioned on σ2 is then [25]

φ|y,W, σ2 ∼ Normal
[
Hφhφ, σ

2Hφ

]
,

H−1
φ = WᵀΣ−1W + R−1,

hφ = WᵀΣ−1y + R−1ν,

(2.4)
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and the posterior distribution of σ2 is

σ2|y,W ∼ InverseGamma [a, b] ,

a = a0 +
n

2
,

b = b0 +
1

2

(
yᵀΣ−1y + νᵀR−1ν − hᵀ

φHφhφ

)
.

(2.5)

Thus the marginal posterior of φ is the multivariate Student’s t distribution

φ|y,W ∼ Student

[
Hφhφ,

b

a
Hφ

]
, (2.6)

and the marginal posterior of γ is

γ|y,W ∼ Student

[
Hh,

b

a
H

]
, (2.7)

where H is the submatrix of Hφ and Hh = sγ is the subvector of Hφhφ corresponding

to the coordinates of γ only.

2.1.2 Highest posterior density credible subgroups

Let Gα,y be the highest posterior density (HPD) 1 − α credible set for γ. We define

D to be the intersection all sets Bγ ≡ {z : zᵀγ > δ} for all γ ∈ Gα,y, and S to be the

union of all such sets. Equivalently, a given predictive covariate vector z is in D if and

only if zᵀγ > δ for all γ ∈ Gα,y, and in S if and only if zᵀγ > δ for any γ ∈ Gα,y.

Under the marginal posterior distribution (2.7), the boundary of Gα,γ is the ellipsoid

(γ − sγ)ᵀ
(
b

a
H

)−1

(γ − sγ) = qF (1− α, q, 2a), (2.8)

where F (1−α, q, 2a) is the 1− α quantile of the F distribution on q numerator and 2a

denominator degrees of freedom. It can be shown [26] that for a given z,

zᵀγ ∈ zᵀsγ ±
√
qF (1− α, q, 2a)

√
zᵀ
(
b

a
H

)
z (2.9)

for precisely the γ ∈ Gα,y. Thus D is the set of z for which the lower bound of (2.9) is

greater than δ, and S is comprised of those for which the upper bound is at least δ. These

bounds correspond to the Scheffé simultaneous confidence bands for the frequentist

normal linear model, though with a slightly underestimated variance parameter due to

its denominator of n versus n − 1. The formulation in terms of simultaneous credible

bands will be the basis for subsequent constructions of credible subgroups.
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2.1.3 Restricted covariate spaces

The HPD method uses bands that are exact when z ranges over all of Rq and is con-

servative when only a subset C of the covariate space is of interest. In such cases, the

narrower band

zᵀγ ∈ zᵀsγ ±W ∗α,C

√
zᵀ
(
b

a
H

)
z (2.10)

may be used in the same manner [27], where W ∗α,C is the 1−α quantile of the distribution

of

WC = sup
z∈C

|zᵀ (γ − sγ)|√
zᵀ
(
b
aH
)
z
. (2.11)

The distribution of WC is usually analytically intractable, but W ∗α,C may be estimated

via Monte Carlo methods by drawing a sample from the posterior (2.7) of γ and com-

puting the corresponding values of WC. When continuous covariates are present, a grid

may be used for approximation. This restricted-space approach to constructing simul-

taneous credible bands will be our choice for most extensions to the credible subgroups

method.

2.1.4 Purely Bayesian credible subgroups

The HPD and RCS methods leverage the frequentist properties of estimates of pa-

rameters and linear combinations of those parameters to make frequentist coverage

guarantees, but are conservative in terms of posterior probabilities only. Exact credible

subgroups may be obtained by replacing
√
qF (1− α, q, 2a) in (2.9) with some smaller

value r. This yields a larger exclusive credible subgroup and a smaller inclusive credible

subgroup.

Given a sample from the posterior of γ and a finite set C of points in the predictive

covariate space, Algorithm 1 provides a Monte Carlo method for estimating an appro-

priate value of r via binary search to yield P (D ⊆ B ⊆ S) within some margin ε of 1−α:

When the set C or the posterior sample size are small, the algorithm may not reach the

target precision for p̂, in which case the smallest p̂ > 1− α may be used.
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Algorithm 1 Pure Bayes credible subgroup construction

1 Set search bounds rL = 0 and rU = qF (1− α, q, 2a);

2 repeat

3 Set the working value for r to R̂ = (rL + rU )/2;

4 Substitute r̂ for
√
qF (1− α, q, 2a) in (2.9) to produce a working credible sub-

group pair (D̂, Ŝ);

5 Use the posterior sample of γ to produce a sample of B and estimate p̂ =

P
(

D̂ ⊆ B ⊆ Ŝ
)

;

6 If p̂ > 1− α set rU = r̂, and if p̂ < 1− α set rL = r̂;

7 until p̂ is in [1− α, 1− α+ ε)

8 Set r = r̂.

2.1.5 Asymptotic properties of credible subgroups

The highest posterior density (HPD) regions and restricted covariate space (RCS) si-

multaneous credible bands share asymptotic properties with the corresponding Wald

confidence regions and simultaneous confidence bands, respectively, based on maximum

likelihood estimates. For the parametric model with parameter vector θ, we know that

under certain regularity conditions, as the number n of independent and identically

distributed observations grows,

√
n
(
θ̂MLE − θ0

)
d→ Normal

[
0,J(θ0)−1

]
, (2.12)

where J(θ0) is the Fisher information matrix. Similarly [28], the transformed posterior

√
n ([θ|y]− θ0)

d→ Normal
[
0,J(θ0)−1

]
. (2.13)

Thus under the regularity conditions for (2.12) and (2.13), the HPD regions and RCS

simultaneous credible bands (2.10) may also be interpreted as Wald confidence regions

and simultaneous confidence bands over the same domain, allowing frequentist asymp-

totic interpretations of the credible subgroups so derived. The pure Bayes (PB) method

fails to have a similar frequentist interpretation because it is based on the relationship
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not of well-behaved estimates to parameters, but of D̂ and Ŝ to B, which is dependent

on the true value of B.

2.1.6 A step-down multiple testing procedure

The construction of credible subgroups by the single-step multiple testing procedure

comparing RCS credible bands to a threshold may be improved upon by a sequential,

step-down testing procedure similar to the Holm-Bonferroni step-down procedure [29],

which is well-known in the multiple hypothesis testing literature. For a set of M hy-

potheses, the Holm-Bonferroni procedure first tests all hypotheses using an M -way

Bonferroni correction, and if the hypothesis with the lowest adjusted p-value [30] can

be rejected, proceeds to test the remaining M − 1 hypotheses using an (M − 1)-way

Bonferroni correction, and so on. The procedure may also be specified to reject all

hypotheses with sufficiently low adjusted p-values at each step.

An analog for constructing credible subgroups follows the same strategy, replacing

the Bonferroni-corrected testing step with one comparing the bounds of the RCS credible

bands to the threshold for benefit. Let C be a subset of interest of the covariate space,

θ be the vector of all model parameters (or, later, PTEs for nonparametric models),

and Hz = {θ : ∆(z) = δ}. Then Algorithm 2 controls the overall Type I error rate at

level α.
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Algorithm 2 Step-Down Procedure

1 Let M = 1, T0 = C, and R0 = ∅ be the starting iteration, base test set, and base

rejection set, respectively;

2 repeat

3 Let TM = TM−1 \ RM−1 = C \
(⋃

m<M Rm

)
be the new test set;

4 Construct the two-sided 1−α restricted covariate space simultaneous confidence

band (2.10) for ∆(z) over all z ∈ TM ;

5 Let RM be the set of z for which the band does not contain δ;

6 Increment M ;

7 until RM = ∅;

8 Reject Hz for all z ∈
⋃
m<M Rm.

The proof of validity for this procedure relies on showing that it is a closed testing

procedure [31], in part by noting that W ∗α,V ≤ W ∗α,U for V ⊂ U. The full proof is

available as the proof to Theorem 4 in Appendix A.2. If Hz is rejected, we may place z

in D when the posterior mean s∆(z) > δ or S{ when s∆(z) < 0, and if Hz is not rejected,

we leave z in S \D.

2.1.7 Maximum credible levels

In general, adjusted p-values are computed such that if individual hypotheses are re-

jected if and only if the adjusted p-value for that hypothesis is less than α, then the

familywise Type I error rate is controlled at the level α [30]. A Bayesian counterpart

in the context of credible subgroups is the maximum credible level for a point z—the

highest credible level at which that covariate point is either included in D or excluded

from S. Uses for maximum credible levels include communicating a more specific level of

confidence for individual covariate points than a single credible level for the entire space,

and allowing consumers of the statistical results to easily choose at which level they wish

to construct credible subgroups while avoiding onerous additional computations.

For the single-step RCS credible subgroup procedure, the 1−α simultaneous credible
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band at z given by (2.10) may be written more generally as

∆(z) ∈ s∆(z)±W ∗α,C
√

Var [∆(z)]. (2.14)

Thus the highest credible level for which the band does not include δ at z is

1− αmin = max

{
FWC

(
±

s∆(z)− δ√
Var [∆(z)]

)}
, (2.15)

where FWC
is the cumulative distribution function of WC, estimated from the joint

posterior of the ∆(z) in the same way as W ∗α,C.

When computing maximum credible levels for the step-down procedure, the basic

idea is to iterate as in Algorithm 2 and adjust (2.15) to account for the fact that

the maximum credible level at a covariate point cannot exceed that of the covariate

point in the previous iteration. Algorithm 3 produces for each z ∈ C the maximum

credible level lz at which the hypothesis that ∆(z) = δ is rejected, and may be used

to quickly construct credible subgroups at various credible levels after performing a

single expensive computation. The credible subgroups for any level 1 − α are then

D =
{
z : s∆(z) > δ, lz ≥ 1− α

}
and S{ =

{
z : s∆(z) < δ, lz ≥ 1− α

}
.

Algorithm 3 Maximum Credible Levels

1 Let M = 1, T0 = C, and r0 = ∅, similar to Algorithm 2;

2 repeat

3 Let TM = TM−1 \ rM−1 = C \
(⋃

m<M rm
)

be the new test set;

4 Compute a sample of the WTM as in equation (2.11) (only the draws for which
the absolute Z-score was maximized at rM−1 change, allowing a computational
shortcut);

5 Compute qi = max
{
F̂WTM

(
±s∆(xi)/

√
Var[∆(xi)]

)}
for xi ∈ TM ;

6 Let I = arg maxi qi, rM = xI , and record lI = min
{
qI , qrM−1

}
as the maximum

credible level for the test at rM ;

7 Increment M ;

8 until M > |C|.
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2.2 Simulations

We perform a simulation study to evaluate certain frequentist properties of each method

for constructing credible subgroup pairs. The property of primary interest is the fre-

quency with which D ⊆ B ⊆ S under a fixed parameter vector. We term this frequency

as the coverage rate, in parallel with the usual coverage rate of, e.g., credible intervals.

We also wish to have a notion of the generalized width, or size, of the credible

subgroup pair. A natural choice is to consider µZ (S \D), where µZ is some measure

on the covariate space. For example, if µZ is an estimate of the population covariate

distribution, then the corresponding credible subgroup pair size is an estimate of the

proportion of the population in the uncertainty region S \D.

We are also able to treat each of the credible subgroups as a diagnostic test and

compute sensitivities and specificities for D and S. These quantities measure how

well the credible subgroups align with the benefiting subgroup. The sensitivity of D,

µZ (D ∩ B) /µZ (B), is displayed here, and other related quantities in Appendix B.

In addition to comparing the three methods of constructing credible subgroups,

we include in our simulations a nonsimultaneous method of identifying benefiting sub-

groups, which we call the pointwise method. The pointwise method uses the same

normal linear model as the rest of this chapter, but does not account for multiplicity in

constructing the credible subgroups; i.e., it sets D = {z : P [∆(z) > δ|y] ≥ 1− α}.
We simulate 1000 datasets each containing n = 40 subjects to reflect the size of the

example dataset used in the next section. Analogous results with n = 100 and n = 350

are presented in Appendix B. Each subject i has a covariate vector xi = (1, xi2, xi3)

with xi2 = 0, 1 with equal probability and xi3 continuously uniformly distributed on

[−3, 3], a binary treatment indicator ti taking values 0 and 1 with equal probability,

and a normally distributed conditional response yi. The covariates are used as both

prognostic and predictive covariates and denoted xi and zi in the respective roles. The

response has mean ηi = xᵀβ + tiz
ᵀγ and variance σ2 = 1. We fix β = 0 and use

six different values for γ. We also present three simulations in which the effects of

x2 are nonlinear in order to evaluate the effects of misspecification. The “near-linear”

configuration uses effects linear in x′2 =
√
x2 + 3−

√
3, “threshold” uses x′2 = x

1/3
2 , and

“non-monotone” uses x′2 = 1/2− (x2/3)2.
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We use a vague InverseGamma
[
10−3, 10−3

]
prior for σ2 and a Normal

[
0, σ2R

]
prior on φ|σ2 with R = diag

(
104, 104, 104, 104, 1, 1

)
, which is conservative with respect

to interaction terms and vague with respect to other regression parameters. For each

dataset, we compute credible subgroup pairs using each of the four methods at the

80% credible level (without the step-down procedure for the RCS method to retain

comparability). To determine credible subgroups we use a grid search in which z1 = 1,

z2 = 0, 1, and z3 ranges from −3 to 3 in steps of 0.1 and include or exclude each

covariate point on the grid from the subgroups as they satisfy or fail to satisfy the

conditions specified in Section 2.1. Where a sample from the posterior of γ is needed,

we use a sample of size 1000 drawn directly (not from a Markov chain). Finally, we also

track how often an F test for treatment effect heterogeneity is significant at the 80%

confidence level.

Table 2.1 displays the average summary statistics for 80% credible subgroup pairs

under nine generating models (n = 40). Moving from the PB to RCS to HPD methods,

coverage rate, pair size, and specificity of D increase, while sensitivity of D decreases.

For both linear and nonlinear data generating mechanisms, the RCS and HPD methods

have consistently conservative (≥ 80%) coverage rate, while the PB method is sometimes

conservative and at other times anticonservative.
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Truth Method Coverage
Rate

Pair
Size

Sensitivity
of D

Specificity
of D

Heterog.
Tests

γ = (0, 0, 0) PB 0.46 0.75 − 0.87 0.18
RCS 0.88 0.95 − 0.97 0.18
HPD 0.91 0.97 − 0.98 0.18
PW 0.43 0.59 − 0.79 0.18

γ = (0, 0, 1) PB 0.82 0.25 0.76 0.99 1.00
RCS 0.94 0.34 0.67 1.00 1.00
HPD 0.96 0.38 0.64 1.00 1.00
PW 0.46 0.13 0.87 0.98 1.00

γ = (0, 1, 0) PB 0.55 0.55 0.68 0.83 0.45
RCS 0.87 0.78 0.38 0.95 0.45
HPD 0.91 0.82 0.33 0.96 0.45
PW 0.47 0.39 0.79 0.71 0.45

γ = (0, 1, 1) PB 0.77 0.25 0.81 0.99 1.00
RCS 0.92 0.35 0.75 1.00 1.00
HPD 0.95 0.38 0.72 1.00 1.00
PW 0.41 0.14 0.89 0.97 1.00

γ = (1, 0, 0) PB 0.99 0.25 0.75 − 0.18
RCS 1.00 0.50 0.50 − 0.18
HPD 1.00 0.56 0.44 − 0.18
PW 0.97 0.13 0.87 − 0.18

γ = (1, 1, 1) PB 0.73 0.24 0.87 0.97 1.00
RCS 0.92 0.33 0.82 0.99 1.00
HPD 0.94 0.35 0.80 0.99 1.00
PW 0.43 0.15 0.92 0.93 1.00

Near-linear PB 0.64 0.62 0.28 0.98 0.56
RCS 0.92 0.84 0.13 1.00 0.56
HPD 0.94 0.87 0.10 1.00 0.56
PW 0.38 0.42 0.45 0.95 0.56

Threshold PB 0.76 0.44 0.56 0.99 0.92
RCS 0.93 0.61 0.40 1.00 0.92
HPD 0.95 0.65 0.35 1.00 0.92
PW 0.42 0.24 0.74 0.97 0.92

Non-monotone PB 0.20 0.73 0.21 0.81 0.18
RCS 0.80 0.93 0.06 0.95 0.18
HPD 0.85 0.95 0.04 0.96 0.18
PW 0.16 0.56 0.33 0.71 0.18

Table 2.1: Average summary statistics for 80% credible subgroup pairs as well as
pointwise (PW) method (n=40). Statistics are averaged without undefined values, e.g.
sensitivity of D when B is empty. Coverage rates at or above 80% and low pair sizes
(analogous to interval lengths for interval estimation) are desired.
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Figure 2.2: Diagnostic measure comparison in a case with a binary covariate-treatment
interaction. Sensitivity (left) and specificity (right) of D in the case γ = (0, 1, 0) (treat-
ment effect is determined by a binary covariate). The multiplicity-correcting methods
(HPD, RCS, and to a lesser extent PB) maintain extremely high specificity at the ex-
pense of sensitivity, especially for small sample sizes. Because the benefit is positive in
one group and zero in its complement, the sensitivities of all methods approach 100%
for large sample sizes while the specificities remain approximately constant.

The pointwise method yields generally tighter credible subgroups (smaller credible

pair sizes) than the simultaneous methods, resulting in poorer coverage and specificity of

D, but improved sensitivity of D. The primary advantage of the multiplicity-correcting

methods is the extremely high specificity of D (and sensitivity of S), which are 100%

whenever the coverage goal D ⊆ B ⊆ S is met. However, the high specificity of D and

sensitivity of S come at the price of lower sensitivity of D and specificity of S, especially

for small samples. This trade-off may be favorable when extreme specificity is preferred

over sensitivity (e.g., in a regulatory setting). Figure 2.2 illustrates the trade-off for D in

the particularly interesting case of γ = (0, 1, 0), a dichotomous predictive covariate for

which one group has a constant positive benefit while the other has no benefit. Here, the

PB method is nearly as sensitive as the uncorrected method, but only the fully corrected

HPD and RCS methods deliver the extreme specificities desired by regulators.



26

Although the PB method is valid within a purely Bayesian context, we recommend

against its use when strict frequentist guarantees are desired, and instead prefer the

RCS or HPD methods. Further, we recommend the RCS method over the HPD method

when the covariate space of interest is restricted, as the RCS method produces less

conservative credible subgroup pairs and thus greater sensitivity of D. This advantage

lessens as the covariate space becomes large and less discretized. In practical terms,

the RCS method detects the most members within the benefiting population among

methods that maintain the frequentist coverage guarantee. The step-down modification

to the RCS method yields a 3–4% increase in the size of the exclusive credible subgroup

over the displayed values under the linear data generating mechanisms. Though modest

in payoff, this modification costs only additional computing time. Finally, the linearity

assumption should be carefully considered, especially at larger sample sizes that can

support the nonparametric models to be described in Chapter 3.

2.3 Analysis of simple add-on therapy dataset

We illustrate the credible subgroups approach on the add-on therapy dataset described

in Section 1.3.2. We compare a low-dose treatment to a placebo on a subset of pa-

tients of the sponsor’s interest. There are 41 such patients, 25 receiving the placebo

(treatment = 0) and 16 receiving the treatment (treatment = 1).

In addition to the intercept, four baseline measurements are of interest. The severity

variable measures the progression of the disease at study baseline, so that high values

indicate severe cognitive impairment. The age variable ranges from 58 to 90 at base-

line, and sex is approximately 37% male (sex = 1) and 63% female (sex = 0). The

carrier variable indicates the presence (carrier = 1) or absence (carrier = 0) of the

ApoE4 allele, which 56% of the patients carry. The response of interest is improvement,

defined as severity score at baseline minus end of follow up, so that a positive value of

improvement indicates a positive outcome (decreased cognitive impairment). We as-

sume that the responses are independent conditional on the covariates and that there

is no heteroskedasticity (Σ = I). We search for a population for which the personalized

treatment effect ∆(z) is greater than zero for all members simultaneously at the 80%

credible level (α = 0.20).
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We use all of the above baseline covariates as both prognostic and predictive vari-

ables. We also include the sex:carrier and treatment:sex:carrier interactions due

to prior information that they may be important. The continuous covariates severity

and age are standardized for computation and presentation of regression coefficients

but are plotted in their original scales. An intercept and main treatment effect are also

modeled.

Table 2.2 gives the posterior mean and standard deviation of effect parameters. Note

that the overall treatment effect and only the interaction of treatment and age would

be identified as significant at the 95% credible level with no multiplicity adjustment.

The conclusion we wish to avoid is that the only treatment interaction is with age (see,

e.g., treatment:sex). We consider this conclusion specious because a lack of evidence

for strong interactions with sex, carrier status, and baseline severity does not imply a

homogeneous treatment effect among levels of those covariates, and thus some patients

may benefit from treatment while others may not. Instead, we wish to directly identify

the baseline characteristics of patients for whom there is sufficient evidence of benefit

from treatment, even when treatment–covariate interactions are weak.

We restrict our interest to the region of the covariate space where severity and

age are within the ranges observed in the study participants, and proceed with the

RCS method of identifying credible subgroups, including the step-down procedure. In

order to estimate W ∗α,C, we construct four integer grids in which severity and age span

5–45 and 55–90, respectively, one for each of the four combinations of levels of sex and

carrier. We then simulate 100,000 draws from the joint posterior distribution (2.7) of

the treatment–covariate interaction parameters, and use the 80th percentile as Ŵ ∗α,C.

Figure 2.3 (left) displays the 80% credible subgroups with a threshold of δ = 0.

There is at least 80% posterior probability that the treatment effect is positive for all

patients with covariate points in D, fully accounting for multiplicity and thus supporting

regulatory approval for that subgroup. The observed covariate points are overlaid as the

symbols × (control arm) and + (treatment arm). We see that we only have enough evi-

dence to show that the oldest female patients with low-to-moderate severity benefit from

the treatment versus control (at the 80% credible level). The PB and HPD methods

yield similarly shaped exclusive credible subgroups that are larger and smaller, respec-

tively, and the RCS method without the step-down procedure yields marginally smaller
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Posterior Posterior
Effect Mean SD Sig.

(Intercept) −2.45 1.72
severity 0.64 1.03

age −2.18 1.36
sex 4.04 2.35

carrier 1.07 2.04
sex:carrier −4.60 3.29
treatment 5.92 2.38 ∗

treatment:severity −0.88 1.33
treatment:age 3.49 1.61 ∗
treatment:sex −4.28 2.66

treatment:carrier −1.50 2.46
treatment:sex:carrier −0.65 3.26

Table 2.2: Posterior summaries of selected effect parameters. Continuous covariates
are standardized. Estimates greater than 1.96 posterior standard deviations from 0 are
marked significant.

subgroup than the one displayed. The uncertainty region S \D indicates characteristics

of patients who may or may not benefit and for whom more evidence is needed. Pa-

tients in this region may be the focus of subsequent trials using enrichment designs [32].

A sensitivity analysis of a0 and b0 ranging from 1 to 105 resulted in nearly identical

credible subgroups. Modifying R to set prior variances for interaction parameters to

a vague 100 also produced similar results, while shrinking interaction estimates even

more strongly toward zero with prior variances of 1/100 resulted in a larger exclusive

credible subgroup. Additionally, placing a vague inverse-Wishart prior on R centered at

the value originally used gave results nearly identical to those obtained by using vague

prior variances for interactions.

The right side of Figure 2.3 illustrates the results of a contrived analysis at the 50%

credible level with benefit threshold δ = 2 that includes, in addition to D and S \ D,

the complement S{ of the inclusive credible subgroup. There is at least 50% posterior

probability that the treatment effects for patients with covariate vectors in this region

(here, younger male carriers with moderate-to-high severity) are simultaneously at most



29
Primary Credible Subgroups

Severity

A
g
e

Female NonȂCarriers

5 10 15 20 25 30 35 40 45

5
5

6
5

7
5

8
5

Severity

A
g
e

Female Carriers

5 10 15 20 25 30 35 40 45
5
5

6
5

7
5

8
5

Severity

A
g
e

Male NonȂCarriers

5 10 15 20 25 30 35 40 45

5
5

6
5

7
5

8
5

Severity

A
g
e

Male Carriers

5 10 15 20 25 30 35 40 45

5
5

6
5

7
5

8
5

Contrived Credible Subgroups

Severity

A
g
e

Female NonȂCarriers

5 10 15 20 25 30 35 40 45

5
5

6
5

7
5

8
5

Severity

A
g
e

Female Carriers

5 10 15 20 25 30 35 40 45

5
5

6
5

7
5

8
5

Severity
A

g
e

Male NonȂCarriers

5 10 15 20 25 30 35 40 45

5
5

6
5

7
5

8
5

Severity

A
g
e

Male Carriers

5 10 15 20 25 30 35 40 45

5
5

6
5

7
5

8
5

Figure 2.3: Step-down RCS credible subgroups at the 80% level with δ = 0 (left), and
at the 50% level with δ = 2 (right). Patients in the control arm are represented by ×
and those in the treatment arm by +.

δ, and investigators may consider abandoning efforts to show a beneficial treatment

effect in this subgroup. However, note that S{ does not contain any data points, and

is thus an extrapolation in this sense. Additionally, D contains only one patient in the

treatment arm, and thus likely lacks sufficient common support between arms. These

extrapolation issues arise primarily from the small sample size and rigidity of the linear

model, and will be addressed in Chapters 3 and 5.

Figure 2.4 shows the contours of the posterior mean and standard deviation of

the PTE surface. The linear contours of the mean surface and elliptical contours of

the standard deviation surface combine to form the curved boundaries of the credible

subgroups. Note that the mean surface continues to change at the same rate at the edges

of the considered covariate space, while the standard deviation increases. Qualitatively,

it is intuitive that the degree of certainty in any treatment effect decreases away from the

primary mass of observed covariate points, though in the normal linear model the rate of

change in the standard deviation may not be large enough to prevent the aforementioned

problematic extrapolations.
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Figure 2.4: Contours of posterior mean and standard error surfaces, which combine to
produce credible subgroups.

2.4 Discussion

The key advantage of the method of credible subgroups over existing methods for ben-

efiting subgroup identification is the simultaneity of its conclusion: that there is high

posterior probability that all members of the exclusive credible subgroup D have a per-

sonalized treatment effect exceeding δ, and no patients who are not members of the

inclusive credible subgroup S have such a treatment effect. Such conclusions differ from

those of the overall test: that the overall treatment effect exceeds δ, and, if the treat-

ment effect is assumed to be homogeneous, it exceeds δ for everyone. The conclusions

reached using credible subgroups are not necessarily more restrictive than those of the

overall test: it may be the case that the overall treatment effect is not positive, but there

is a substantial subgroup which benefits from treatment. Additionally, deferring clas-

sification of the uncertainty region until more evidence is obtained allows for stronger

statements about the classifications already made.

Due to the two-step regression-classification procedure for determining credible sub-

group pairs, the methods described in this chapter are extensible to non-normal and

nonlinear models as long as it is possible to obtain a sample from the joint posterior of

the predictive effect regression parameters or the personalized treatment effects directly,
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though closed-form criteria for the HPD credible subgroups may not be available.

Another advantage of the credible subgroups approach is that it does not require

prespecification of subgroups for testing, but only a list of covariates which may have

predictive value. Additionally, the credible subgroups method more fully and naturally

accounts for the dependence structure of the implicit hypothesis tests than do many

methods of prespecified subgroups relying on Bonferroni or similar multiplicity adjust-

ments, which are usually conservative in this context. However, credible subgroups are

not as simple to describe as most prespecified subgroups, especially when there are mul-

tiple continuous predictive variables. Furthermore, the inclusion of a large number of

predictive variables reduces power and makes interpretation and summarizing difficult.

The example analysis shows that although the sample sizes needed to detect bene-

fiting populations are higher for credible subgroups methods than for analyses assuming

homogeneous treatment effects, they are not as high as those typically needed for de-

tecting heterogeneities as in traditional subgroup analysis. The example data of size

n = 41 are sufficient to form a nonempty exclusive credible subgroup at the 80% level,

but requires a level near 50% to identify effect heteroeneity in the form of the presence

of both nonempty exclusive an nonuniversal inclusive credible subgroups. Significantly

larger sample sizes may be necessary for meaningful results with confidence levels high

enough to satisfy regulatory authorities. For example, in Section 3.3.2 a sample of size

369 yields a large exclusive credible subgroup at the 95% credible level, even under a

more flexible semiparametric regression model.



Chapter 3

Credible Subgroups for General

Regression Models

In the development of credible subgroups in Chapter 2, a normal linear model was used

to provide some concrete expressions related to their construction. However, all three

methods of construction generalize to arbitrary regression models as long as a sample

from the joint posterior of all of the personalized treatment effects ∆(z) for z in the

covariate space C, denoted ∆(C), can be obtained. Highest posterior density (HPD)

credible subgroups may be constructed from a model parameterized by θ by taking D

and S to be the intersection and union, respectively, of all sets Bθ ≡ {z : ∆θ(z) > δ} for

θ in the HPD region of the appropriate credible level. However, the HPD region may

need to be estimated from a Monte Carlo sample. Alternatively, the HPD region of the

joint posterior of ∆(C), may be used instead of that of θ. Such an approach is more

computationally intensive, but allows nonparametric regression models to be used.

The restricted covariate space (RCS) and pure Bayes (PB) methods are based on

simultaneous credible bands, for which we present generalized forms in Section 3.1.

Next, Section 3.2 presents a general approach to estimating the benefiting subgroup

using parametric models, including generalized linear models and models with variable

selection, and Section 3.3 for semiparametric and nonparametric models. It will be seen

that this variety of models can be used with identical machinery for constructing credible

subgroups from a posterior sample of ∆(C). Each of the discussions of GLMs, variable

32
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selection, and semiparametric/nonparametric regression contain an example analysis

using the RCS approach on one of our Alzheimer’s disease treatment trial datasets.

3.1 General forms of simultaneous credible bands

The simultaneous credible bands used to construct RCS credible subgroups (and in part

for PB credible subgroups) for the normal linear model in Chapter 2 are given by

zᵀγ ∈ zᵀsγ ±W ∗α,C

√
zᵀ
(
b

a
H

)
z, (3.1)

where W ∗α,C is the 1− α quantile of the distribution of

WC = sup
z∈C

|zᵀ (γ − sγ)|√
zᵀ
(
b
aH
)
z
. (3.2)

Since ∆(z) = zᵀγ, we can rewrite (3.1) and (3.2) as

∆(z) ∈ s∆(z)±W ∗α,C
√

Var [∆(z)], (3.3)

and

WC = sup
z∈C

∣∣∆(z)− s∆(z)
∣∣√

Var [∆(z)]
, (3.4)

respectively. Intuitively, (3.3) defines the pre-image of
{
WC ≤W ∗α,C

}
, and therefore

defines a 1 − α simultaneous credible band for ∆(C) produced by an arbitrary model.

When the marginal posteriors of the ∆(z) belong to a location-scale family (as is often

the case asymptotically), the particular form of the argument to the supremum in (3.4)

standardizes the marginal posteriors to be identical but retains the dependence in the

joint distribution, similarly to probabilistic copulae [33, 34].

In cases in which the marginal posteriors of the ∆(z) are not from a location-scale

family, or location and scale otherwise poorly describe the distributions (e.g., discrete or

highly asymmetric distributions), (3.3) is sub-optimal. An example of such a case will be

considered in Chapter 4 with Bernoulli marginal posteriors. When (3.3) is not desirable,

a quantile-based simultaneous credible band may be used. Let FΘ(θ) = P[Θ ≤ θ] be

the cumulative distribution function of θ, GΘ(θ) = P[Θ < θ] be its left-continuous
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counterpart, and F−1
θ (p) = inf{θ : p ≤ FΘ(θ)}, G−1

Θ (p) = sup{θ : p ≥ GΘ(θ)} be their

inverses. We may then use the simultaneous credible band

∆(x) ∈
[
F−1

∆(x)|y(1−W ∗α,C), G−1
∆(x)|y(W ∗α,C)

]
, (3.5)

with W ∗α,C set to be the 1− α quantile of the distribution of

WC = sup
x∈C

max
{

1− F∆(x)|y[∆(x)], G∆(x)|y[∆(x)]
}
. (3.6)

The distribution and quantile functions of WC may be estimated from the posterior sam-

ple. Detailed proofs of the correctness of (3.3) and (3.5) are presented in Appendix A.

3.2 Parametric regression

3.2.1 Generalized linear models

Generalized linear models (GLMs) are perhaps one of the simplest extensions of the

normal linear model theory for credible subgroups. Although the conditional distribu-

tion of the responses is no longer necessarily normal, the underlying specification of the

linear predictor can remain unchanged. This allows, for example, the model to retain

the form

η = xᵀβ + tzᵀγ, (3.7)

with vague priors on main effects and conservative priors on interaction terms. Then

∆(z) = zᵀγ, and the general location-scale simultaneous credible band (3.3) may be

used to construct credible subgroups from MCMC output or other methods of sampling

the joint posterior of ∆(C).

We turn to the adverse event data in the multi-endpoint dataset, concentrating on

a comparison of Donepezil to the placebo. An analysis constructing credible subgroups

according to what we propose as best practices (fixing a credible level a priori, using

conservative priors for interaction parameters) yields an uncertainty region encompass-

ing the entire covariate space, so we proceed with an example of the mechanism alone by

using vague priors and computing maximum credible levels. Because the safety outcome

is the presence or absence of at least one adverse event indicated by the physician to be

possibly related to treatment, we use a logistic GLM. For patient i with prognostic and
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Figure 3.1: Observed covariate points (left, + for Donepezil, × for placebo) and
maximum credible level contours for a non-inferiority (right, δ = −0.18).

predictive covariate vectors xi and zi (including leading 1’s) and treatment indicator

ti = 1 for the active control and 0 for the placebo control,

Yi|ηi
iid∼ Bernoulli

[
logit−1(ηi)

]
,

ηi = xᵀ
iβ + zᵀi γ,

βp, γp
iid∼ Normal

[
0, 104

]
.

(3.8)

If conservative priors were to be used, they would likely need to have smaller variances

than those used for the normal linear model, as the inverse logit function approaches

its supremum relatively quickly: logit−1(2.2) is already greater than 0.90. We fit the

model using the NIMBLE [35] R package, retaining 100,000 draws after 10,000 burn-

in iterations, and compute the maximum credible levels for inclusion in the exclusive

credible subgroup for non-inferiority (δ = −0.18, i.e., a 1.20 odds ratio).

Figure 3.1 (right) shows contours of the maximal credible level that permits assign-

ment of covariate points to the exclusive credible subgroup. The figure indicates that

the credible level must fall to near 40% in order for the exclusive credible subgroup for

non-inferiority to be non-empty. Broadly speaking, the patients with low severity scores
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are the first to be identified as not being unacceptably harmed, but the maximum cred-

ible levels are so low that it is questionable whether a non-empty “benefiting” subgroup

exists at all.

3.2.2 Variable selection

Bayesian variable selection and model averaging may be incorporated into credible sub-

groups by using a regression model implementing such selection and either using the

full posterior output (for model averaging), or selecting the most probable model and

refitting the selected model (for strict selection). For example, stochastic search variable

selection (SSVS) [36] specifies for each regression parameter a normal-normal mixture

model with components chosen via a latent indicator variable. One high-variance com-

ponent of the mixture represents a parameter that is included in the model, and the

other, low-variance component represents a parameter being excluded. Other popular

Bayesian variable selection methods include the least absolute shrinkage and selection

operator (LASSO) [37] in its Bayesian form [38], an L1-penalized joint shrinkage esti-

mator of the regression parameters.

As an example, we re-analyze the simple add-on therapy dataset from Chapter 2

via a modification of the SSVS model. For the likelihood and error variance, we use

the same formulation as in Chapter 2, but define a spike-and-slab (or spike-and-bump)

mixture prior for the treatment-covariate interactions:

Y |X,Z,T,β,γ, σ2 ∼ Normal
[
Xβ + TZγ, σ2Σ

]
,

βp, γ1|σ2 iid∼ Normal
[
0, 104σ2

]
,

γp>1|σ2, λp>1
iid∼ (1− λp)Dirac [0] + λpNormal

[
0, 10σ2

]
,

λp
iid∼ Bernoulli [1/2] ,

σ2 ∼ InverseGamma [a0, b0] ,

(3.9)

where the Dirac [0] distribution is the point mass at zero. This formulation differs

slightly from the original SSVS formulation, which uses a very low-variance normal dis-

tribution instead of the Dirac function to maintain conjugacy, which is unnecessary here

given the availability of modern MCMC tools. The conditional prior variance for the

interaction terms is 10σ2 rather than the previously used σ2 because the point mass
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Figure 3.2: Credible subgroups using stochastic search variable selection and model
averaging (left) and using the most frequently selected model only (right).

Posterior Probability Predictive Covariates Exclusive Credible Subgroup (80%)

0.15 age, sex females 73–90
0.11 sex females
0.09 age ages 77–90
0.08 none all
0.07 sex × carrier status females

Table 3.1: Top five models.

component replaces some of the shrinkage previously effected by the smaller variance.

Sampling from the marginal posterior yields a Bayesian model-averaged result, while

conditioning on the modal λ yields the result under the most frequently selected model.

We use 100,000 MCMC samples after 10,000 burn-in iterations to produce the marginal

model, and for each conditional model, 100,000 directly sampled draws from the poste-

rior. Credible subgroups are produced at the 80% level using the RCS method with the

step-down procedure. For the marginal model we use the quantile-based simultaneous

credible bands (3.5) due to multi-modalities caused by the mixture priors.

Figure 3.2 shows the posterior probabilities of selected models in descending order.

The most frequently selected model accounts for roughly a third more posterior prob-

ability than the runner-up, and the first five models (shown in Table 3.1) account for

half of the posterior probability. The top five models tell a broadly consistent story that

is also consistent with the all-variables credible subgroups produced in Section 2.3: the

average treatment effect is driven by strong PTEs among older females.
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Figure 3.3: Credible subgroups (80%) using stochastic search variable selection and
model averaging (left) and using the most frequently selected model only (right).

Figure 3.3 shows the model-averaged 80% credible subgroups from the marginal

posterior (left) and from the most frequently selected model (using age- and sex-by-

treatment interactions). The two plots tell the same broad story, though the conditional

model yields a simpler and larger exclusive credible subgroup due to the smaller set

of variables and resulting smaller variability in the PTE posterior. From a purely

statistical standpoint, we would generally recommend using the marginal model, as it

most faithfully represents the totality of uncertainty in the results. However, in this

case the combination of consistency in the most probable models and much greater

parsimony possible in reporting the credible subgroup results may warrant conditioning

on the few most highly a posteriori probable models for “public” use.

3.3 Semiparametric and nonparametric regression

When making inferences about personalized treatment effects rather than average treat-

ment effects, it is potentially much more important to allow sufficient flexibility in the

regression model so as to ensure consistent estimation of the PTEs. To this end, several
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nonparametric and semiparametric regression approaches for PTEs have been proposed,

including random forests [39] in the virtual twins approach [16], Bayesian additive re-

gression trees (BART) [12] in modeling for causal inference [40], and a hybrid approach

defining linear treatment and baseline models using tree-based methods [41]. This sec-

tion presents an approach for using such semiparametric and nonparametric models

within the credible subgroups inferential framework, with special attention to penalized

splines and BART. Section 3.3.1 provides a simulation study comparing the performance

of linear, spline, and BART models, and Section 3.3.2 presents an example analysis using

the multi-trial Alzheimer’s disease dataset.

This chapter focuses on normal-likelihood regression models, though the methods

may be straightforwardly adapted to other likelihoods, such as GLM or proportional

hazards survival models. Previously, a linear model of the form

E[Y |x, z; t] = xᵀβ + tzᵀγ, (3.10)

has been used, so that ∆(z) = zᵀγ. We first generalize to a semiparametric model

based on the additive penalized spline model with factor-by-curve interactions [42]:

E[Y |x, z; t] = β0 +

p∑
j=1

fj(xj) + t

γ0 +

p∑
j=1

gj(zj)

 , (3.11)

where the fj and gj are penalized cubic splines with radial bases and no intercepts:

fj(xj) = βj1x1 + βj2x
2
j + βj3x

3
j +

Kfj∑
k=1

ufjk|xj − κfjk|3, (3.12)

and the κfjk are fixed knots. The penalty is implemented by placing a Normal
[
0, σ2

fj

]
prior on the ufjk and a vague InverseGamma

[
10−4, 10−4

]
prior on the σ2

fj for conditional

conjugacy. The gj are specified similarly, using γ instead of β. We place flat priors on

the β and γ, as specifying conservative priors on interaction terms that include knot

random effect parameters is not as straightforward or interpretable as the corresponding

priors in linear models. Models adding fixed effects or group-level random slopes and

intercepts are straightforward to specify.

Model (3.11) can suffer from poorly identified parameters; however, the resulting

E[Y |x, t], as well as quantities of the forms E[Y |x, z; t = 1] − E[Y |x, z; t = 0] (the
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PTE) or E[Y |x1, z1; t] − E[Y |x0, z0; t], are typically stable. This stability, along with

the tendency of software packages for other regression techniques to supply quantities

of the form E[Y |x, z; t], make ∆(z) ≡ E[Y |x, z; t = 1] − E[Y |x, z; t = 0] a convenient

definition of the PTE even when there cannot be an explicit separation of the treatment

variable t from x and z in the model. For example, using the R package BayesTree to

obtain a BART fit, we may concatenate the treatment indicator onto the covariate vector

for each patient and fit Y ∼ Normal
[
µ(w), σ2

]
where w = (x1, . . . , xp, z1, . . . , zp, t) with

redundant entries removed. However, fully nonparametric models for which the PTE

surface must be stored at every point in C present challenges with respect to memory,

as a sample from the posterior joint PTE distribution must be stored in an often very

large (number of draws by number of covariate points) matrix.

3.3.1 Simulations

We perform a simulation study to evaluate certain frequentist properties of the credible

subgroups generated by linear, spline, and BART models. A necessary property is valid

(including conservative) coverage, i.e., D ⊆ B ⊆ S at least 100(1 − α)% of the time.

Given valid coverage, we compare regression models primarily by the sensitivity of D

(i.e., how much of B is contained in D). We also evaluate the sensitivity of D under the

step-down procedure relative to that under the single-step procedure.

We simulate 1000 data sets with n = 100 patients in each treatment arm. Results for

simulations with n = 25, n = 50, and n = 75 are presented in Appendix B. Each subject

i has covariate vectors xi = zi = (1, zi2, zi3) with zi2 = 0, 1 with equal probability and

zi3 continuously uniformly distributed on [−3, 3], a deterministic treatment assignment

ti, and a conditionally normally distributed response yi. The covariates are used as both

prognostic and predictive variables.

The outcomes are generated as Normal [0 + ∆(zi), 1] with ∆(zi) specified in the

following six cases. In the null case, ∆(zi) = 0. In the binary case, ∆(zi) = zi2.

In the linear case, ∆(zi) = zi3. In the near-linear case, ∆(zi) = 2(
√
zi3 + 3 −

√
3).

In the threshold case, ∆(zi) = sign(zi3)(zi3/3)1/3 + 1/4. In the non-monotone case,

∆(zi) = 1/2−3(zi3/3)2. Table 3.2 includes graphical representations of these scenarios.

To each data set we fit a linear, spline, and BART model. For the linear and spline

models, we place a vague InverseGamma
[
10−4, 10−4

]
prior on the error variance and
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Data
Generating
Mechanism

Diagram
of ∆(x)

Model Coverage
Sensitivity

of D
Step-Down
Efficiency

Null Effect

0

Linear 0.89 − −
Spline 0.92 − −
BART 0.99 − −

Binary

0

Linear 0.91 0.97 1.01
Spline 0.95 0.56 1.05
BART 0.98 0.82 1.05

Linear

0

Linear 0.88 0.90 1.02
Spline 0.94 0.77 1.09
BART 1.00 0.70 1.08

Near-Linear

0

Linear 0.75 0.71 1.04
Spline 0.97 0.39 1.19
BART 1.00 0.27 1.25

Threshold

0

Linear 0.61 0.85 1.03
Spline 0.96 0.52 1.07
BART 0.99 0.48 1.07

Non-Monotone

0

Linear 0.23 0.52 1.10
Spline 0.96 0.63 1.05
BART 0.97 0.46 1.08

Table 3.2: Simulation study results. Operating characteristics of 80% credible sub-
groups with n = 100 patients in each study arm. Struck-through sensitivities indicate
insufficient coverage and should be treated with caution.

flat priors on fixed effect coefficients. For the spline model we place InverseGamma [2, 1]

shrinkage priors on the random effect variances. The BART model is fit using the default

settings in the R package BayesTree. All Gibbs samplers are run for 100 burn-in and

1000 retained iterations, which appears to be acceptable for these simple models.

To determine credible subgroups at the 80% credible level, we use as the covariate

space the grid in which z1 = 1, z2 = 0, 1, and z3 ranges from −3 to 3 in increments of

0.1. We compute the result under both the single-step and step-down procedures using

the location-scale simultaneous credible band (3.3).

Table 3.2 displays the average summary statistics for 80% credible subgroups for

each model and data generating mechanism (DGM) at n = 100 patients per arm. Each
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model has sufficient coverage, except for the linear model in the non-linear cases. Given

sufficient coverage, the sensitivity of D will usually be the driving factor in choosing

a model. In this regard, the spline model performs better than BART in all cases

except when the binary covariate drives the treatment effect heterogeneity, but the spline

model’s advantage is small in the “threshold” case in which the continuous covariate

behaves similarly to a binary one. When the true treatment effect heterogeneity is

linear, the linear model outperforms both with respect to sensitivity of D. Generally, we

recommend the spline model when continuous predictive covariates are present, as even

a small departure from linearity can render the coverage of the linear model insufficient

(see the “near-linear” case). Finally, the step-down method consistently improved the

sensitivity of D, sometimes to a large extent (nonparametric fits in the near-linear case).

In the absence of model mis-specification, all methods appear to have conservative

coverage. In fact, the realized error rate does not rise far past α/2. The relevance of α/2

as an error rate here is that credible subgroups can only make an error in one direction

at each covariate point: if the true PTE is positive, the only error is under-estimation,

while if the true PTE is non-positive, the only error is over-estimation; however, we

cannot know a priori the sign of the PTE. Thus the apparent conservatism is due to

the fact that none of the displayed simulations represent the worst-case scenario that

the procedure protects against: a small-magnitude treatment effect that crosses zero

frequently.

3.3.2 Semiparametric example analysis

We consider data from a sequence of four clinical trials for Alzheimer’s disease (AD)

treatments carried out by AbbVie, all of which include arms for a placebo and the

same “standard of care” treatment. We compare the standard of care to the placebo

with respect to change in disease severity over 12 weeks, using data from all four trials.

Combined, the studies are comprised of 369 complete-case patients from 9 countries.

We consider six baseline patient characteristics: disease severity, change in disease

severity during run-in, long-term cognitive decline rate, age, carrier status of the ApoE4

allele, and sex. The change in severity score in the 3–4 week run-in period between

screening and randomization, which we call prechange, is included as a main effect

in an attempt to adjust for the “learning effect” in which patients become familiar
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with the ADAS-Cog 11 instrument; however it is not included as a predictive covariate

because it is not thought to be useful for practitioners due to its high variability and

delaying of treatment. We do include as a predictive covariate the long-term cognitive

decline rate, drate, which is defined as the total drop in score on the Mini Mental State

Examination (MMSE) divided by the time, in years, since onset of first symptoms.

Since age was highly correlated with drate, and the inclusion of age in the model for

the present analysis was detrimental to penalized model fit as evaluated by DIC and

LPML, we excluded it from our analysis. The outcome, improvement, is the negative

change in severity (baseline minus end-of-study), so that a positive value represents a

good outcome.

Our outcome model may be broadly summarized (in R-like syntax) as

improvement ∼ Intercept + r(country) + sex + carrier

+ f(prechange) + f(severity) + f(drate)

+ treatment + treatment:r(country)

+ treatment:sex + treatment:carrier

+ treatment:f(severity) + treatment:f(drate)

(3.13)

where r(·) represents a traditional centered, normally-distributed random intercept or

slope, f(·) represents a penalized cubic spline, colons denote interactions, and errors

are normally distributed. We place knots for spline terms at increments of 2 across

the observed ranges of prechange and severity, and at increments of 1 for drate.

Variances for error, random effects, and penalized spline coefficients are given vague

InverseGamma(0.001, 0.001) priors. Fixed effects are given flat priors. We report results

only in a subset of the covariate space which has sufficient observation density and

common support, discussed further in Section 5.1.2. Restricting severity to [9, 49] and

drate to [0, 8] we include this entire region and exclude less than 9% of patients, while

reducing the size of the covariate space by more than half.

The model was fit by Gibbs sampling using 100,000 iterations after 1000 burn-in

iterations. Convergence appears near-immediate and mixing good from trace plots,

and the time series–based effective sample sizes for most coefficients are above 75,000.

Effective sample size was lowest for some country random effects with few patients, and

for certain random effect variances.
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Figure 3.4: Estimated nonlinear effects and 95% pointwise credible bands on standard-
ized covariate scale, relative to sample mean. Rug plot represents observed covariate
distribution.

Figure 3.4 displays the nonparametrically fitted effect curves. The posterior mean

effects display substantial nonlinearity and even nonmonotonicity, though only the cred-

ible band for the prognostic effect of severity gives convincing evidence of nonlinearity at

the 95% credible level, and none are convincingly nonmonotone by the same criterion.

Figure 3.5 displays the credible subgroups at the 95% level, using the step-down

testing procedure (Algorithm 2). The exclusive credible subgroup generally contains

patients with high severity and rate of decline. The exclusive credible subgroup in this

case includes approximately 17% more cells than the corresponding exclusive credible

subgroup when the full observed ranges of severity and d-rate are used, and approxi-

mately 3% more than when the single-step procedure is used.

We also fit two other models: a version of (3.13) in which the penalized spline terms

were replaced with linear effects, and the default implementation of BART from the

R package BayesTree for 100,000 iterations, thinned to 10,000 iterations due to mem-

ory considerations, after 1000 burn-in iterations. Figure 3.6 displays the 95% credible
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Figure 3.5: Credible subgroups at the 95% level. Green points represent the exclusive
credible subgroup, and yellow the remainder of the inclusive credible subgroup.

subgroups for the linear and BART models, and Figure 3.7 compares the posterior

mean PTE surface between (3.13) and its linear counterpart. Such visualizations of the

estimated PTE surface may be useful to trialists who wish to more fully understand

possible nonlinear features of the surface that would be lost under a linear model. As

may be expected, the linear model simplifies the estimated PTE surface, which, along

with the variances of the PTEs, yield a smoother exclusive credible subgroup. By con-

trast, BART, which divides the covariate space into rectangular cells having constant

PTE in each cell, yields a more rectangular exclusive credible subgroup. Due to the

superior performance of the spline-based model in the simulation study for the nonlin-

ear continuous effect case, we promote those Figure 3.5 credible subgroups (which are

intermediate to those in Figure 3.6) as the best choice. The resulting credible subgroups

are consistent with the observation that the linear model fits poorly while the BART

fit is too conservative in similar situations.
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Figure 3.6: Credible subgroups at the 95% level for the linear (left) and BART (right)
models.
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Figure 3.7: Posterior mean PTE surfaces for the semiparametric (left) and linear (right)
models.
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3.4 Discussion

Because of the relative independence of the credible subgroups inferential tools and the

selected regression method—all that is needed is a sample from the joint posterior of

the personalized treatment effects—the choice of parametric, semiparametric, or non-

parametric methods may be made with full focus on flexibility and applicability to the

problem, rather than being muddled by technical considerations about the associated

inferential process. Such freedom may make “black box” nonparametric methods such

as BART appealing for their flexibility, but also allows the use of more interpretable

models such as additive spline models if desired. However, increased flexibility of semi-

parametric and nonparametric regression models come at a cost in terms of power, due

to the looser dependencies of the PTEs across the covariate space.

Variable selection techniques do, however, raise some important inferential questions.

Within the Bayesian inferential framework the analysis often naturally yields a marginal

posterior or model-averaged result, incorporating information from many models at once

rather than conditioning on a most probable model. In a “purist” sense, the marginal

posterior and the credible subgroups produced from them constitute the most faithful

representation of uncertainty in the analysis. Such exact results may be desired for

use in a computer program, but conditional models incorporating only a few variables

may be more practical when attempting to provide parsimonious recommendations to

non-statisticians or even the general public.



Chapter 4

Subgroup Inference with Multiple

Endpoints and Many Treatments

Previous chapters have dealt with benefiting subgroup identification under the assump-

tion that it is straightforward to define what “benefit” actually means. This is generally

the case when one test treatment is being compared to one control with respect to a

single endpoint. However, many treatments affect more than one facet of patient well-

being, and it is not always possible or even desirable to fix one definition of benefit for all

patients. Additionally, treatment developers may be interested in testing the treatment

effect with respect to multiple endpoints in a way that would pass regulatory review.

Finally, some studies aim to evaluate multiple test treatments or doses of a single test

treatment, and multiple control arms may be used when the standard of care is not

well-established or non-inferiority is being tested.

This chapter develops subgroup analysis methods to handle cases in which more

than two treatments are being compared with respect to multiple endpoints. This

multivariate problem setting admits several ways of defining a treatment effect and

benefiting subgroup, as well as strategies for choosing the multiplicities for which to

adjust. The initial discussion is general and can be applied with any method that reports

(or can potentially yield) an estimate for a benefiting subgroup B, especially when

inference includes posterior probabilities P [D ⊆ B|y]. Here D is the reported estimate,

together with the posterior probability that the reported subset does indeed characterize

48
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covariate combinations with a substantially higher treatment effect (or one exceeding

some other threshold). The discussion can also apply to methods which produce some

subgroup by any means and then tests for a within-subgroup treatment effect, though

these methods will not be our focus here. Eventually, in the implementation we will

incorporate the credible subgroups approach.

A related course of research is underway in the area of dynamic treatment regimes

(DTRs), which infers optimal processes in which sequences of treatments are given to a

single patient in a response-adaptive manner. Several methods have been developed to

select the best from among many previously vetted treatments for individual patients in

the presence of multiple relevant endpoints. Response, non-response, and death may be

treated as levels of an ordinal outcome, with the trade-off between response and death

quantified using a real-valued utility function elicited from experts [43]. Additionally, a

trial in which four treatments were tested in a two-stage regime has been reported [44].

More general treatments of multi-endpoint approaches have been considered, including

using patient preferences among various endpoints in addition to clinical characteristics

in the estimated treatment rule [45], methods for identifying optimal treatment regimes

for all linear combinations of endpoints [46], and reporting treatment regimes with sets

of non-inferior treatment choices [47, 48]. Since research in DTRs focuses on providing

optimal care to a given patient, attention is not generally paid to Type I error control.

In contrast, our work focuses on single-stage, population-level inferences for a given

treatment, and owing to our focus on the regulatory process, attention must be paid to

Type I error and its control under multiplicity of endpoints, treatments, and covariate

profiles.

The remainder of the chapter is organized as follows. Section 4.1 develops an in-

ferential framework for trials with more than two arms and multiple endpoints, with

Section 4.1.3 extending the concept of credible subgroups in this setting. Section 4.2

evaluates the proposed methods with respect to sensitivity, specificity, and Type I error

via a simulation study, while Section 4.3 illustrates the use of a subset of the methods

on the multi-endpoint trial dataset. Finally, Section 4.4 offers closing remarks.
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4.1 Subgroup inference

4.1.1 Multiple endpoints

Results regarding the effect of a treatment on a specific endpoint are generally not con-

sidered in a vacuum. For example, an experimental treatment may have approximately

the same effect as the standard of care on the primary endpoint (cognitive function

score in our example), but have a lower instance of adverse side effects such as nausea.

In such a situation, it would be useful to know not only who benefits from the experi-

mental treatment with respect to the primary endpoint, but also who is likely to avoid

side effects.

Suppose that there are K ≥ 2 endpoints by which the test treatment is being

compared to the control, and let ∆k(z) be the treatment effect at covariate point z

with respect to the kth endpoint. It is possible to construct subgroup inferences for

the treatment effect corresponding to each endpoint, either independently or adjust-

ing for the multiplicity of endpoint inferences. For a set of independently estimated

subgroups {Dk}Kk=1, we have that for each endpoint k and covariate point z ∈ D,

P [z ∈ Bk|data] ≥ 1 − α. A set of subgroups is simultaneous (adjusting for endpoint

multiplicity) if P [{k : z ∈ Dk} ⊆ {k : z ∈ Bk}|y] ≥ 1− α for each z. Both methods re-

sult in K subgroup estimates, and may be used when each of the endpoints is of interest

separately, rather than in combination.

A way to construct a single subgroup estimate that incorporates information about

each of the endpoint effects is through a utility function, e.g., trading off probability of

response and risk of death. Let u be some utility function of all the endpoints, and define

the treatment effect ∆u(z) as E[u|z, t = 1]−E[u|z, t = 0], where t = 1 indicates the test

treatment and t = 0 the control. The benefiting subset B and the subgroup estimate

D may then be defined in the same way as in the single-endpoint case. Constructing a

single subgroup estimate may simplify interpretation, but it is often difficult for multiple

parties to agree on a single, often stylized utility function, especially for diseases such

as Alzheimer’s that affect quality of life in complex ways and drugs that frequently

have uncomfortable side effects. If a range or distribution U of utility functions is to be

considered, ∆U (z) may be constructed to reflect some summary of the distribution of

the ∆u(x) as u varies, such as the mean, median, or minimum.
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We can also construct a joint subgroup report motivated by the decision-theoretic

concept of admissibility. Recall that a decision rule is admissible if there are no other

rules that always perform at least as well and better in at least one case. Here we would

like to call a test treatment admissible at z if the control treatment does not perform

at least as well with respect to every endpoint and better with respect to at least one

endpoint for a patient with covariate vector z. Strictly speaking, the formalization of

this definition is that a treatment is admissible at z unless ∆k(z) ≤ 0 for all k and the

inequality is strict for at least one k.

Next, we generalize to allow for thresholds of clinical significance and noninferiority.

In addition to the δk, the thresholds for clinical significance, let εk ≤ δk be thresholds

for non-inferiority, i.e., a treatment is considered “just as good” if εk ≤ ∆k(z) ≤ δk.

Introducing these thresholds allows for multiple formulations of criteria. We call a

treatment weakly admissible at z if ∆k(z) > δk for at least one k or ∆k(z) ≥ εk for

all k. This is the generalization of our previous definition of admissibility most directly

related to the decision-theoretic concept. However, a treatment may be undesirable if

it is demonstrably inferior with respect to one endpoint, even if it is superior in others,

or if it is not superior in any. Thus we call a treatment strongly admissible at z if

∆k(z) > δk for at least one k and ∆k(z) ≥ εk for all k. A related method is to require

only noninferiority at z, i.e., that ∆k(z) ≥ εk for all k.

The decision-theoretic criteria described above may be written in notation unified

with the previous formulations of individual-endpoint and utility function treatment

effects. For example, if we define I(condition) to be 1 if the condition is true and 0

otherwise, an indicator of strong admissibility may be written as

∆sa(z) = I
[
max
k
{∆k(z)− δk} > 0

]
I
[
min
k
{∆k(z)− εk} ≥ 0

]
(4.1)

and compared to δsa = 0 (with sa indicating strong admissibility) in the same fashion

as the treatment effects above. We may similarly define the indicator ∆wa(z) for weak

admissibility (wa), which would then be compared to δwa = 0. We can then define B

as the set of z for which the treatment is admissible, and construct the desired joint

subgroup report in the usual fashion. We term this approach the direct method for

estimating admissibility.

A multiplicity problem arises when constructing subgroup reports from ∆sa or ∆wa.
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As more endpoints are included in an analysis, the frequentist probability of identifying

at least one endpoint with respect to which the test treatment is superior or inferior

increases, even when treatments are equivalent with respect to every endpoint. This

makes it more likely for a treatment to be classified as weakly admissible or not strongly

admissible. To avoid these biases, we may construct admissibility inferences via a fully

adjusted method as follows. Let {Dk}Kk=1 be a simultaneous set of subgroup reports for

superiority with respect to the K endpoints such that for all z, P({k : z ∈ Dk} ⊆ {k :

z ∈ Bk}|data) ≥ 1 − α, and {D′k}
K
k=1 be similarly defined for non-inferiority. Then for

weak and strong admissibility, respectively,

Dwa =

{
K⋃
k=1

Dk

}
∪

{
K⋂
k=1

D′k

}
, and Dsa =

{
K⋃
k=1

Dk

}
∩

{
K⋂
k=1

D′k

}
. (4.2)

4.1.2 Multiple endpoints and many treatments

Suppose now that there are M > 2 treatments being considered. It may not be desired

to compare every treatment to every other. For example, we may envision a scenario in

which there are three test treatments and one control, and it is desired to determine for

each test treatment which patients benefit relative to the control. Consider a competition

graph (V, E) where V = {t = 1, . . . ,M} is the set of treatment arm vertices and E =

{(t, c)} is the set of directed edges where (t, c) is present if treatment t is being compared

to control c. Let E(t) be the set of edges which originate at t. Let ∆tc
k (z) be the effect

of treatment t relative to treatment c for endpoint k, and δtck be a threshold of clinical

significance such that ∆ct
k (z) = −∆tc

k (z) but δctk is not necessarily the same as δtck . We

generalize each of the two-arm methods to the many-arm multiple-endpoint case.

A subgroup inference may be constructed for each of the K|E| endpoint-comparison

combinations, either independently or simultaneously (adjusting for multiplicity among

endpoints and comparisons). For a set of independently generated inferences {Dtc
k },

we have that for each endpoint-comparison pair (k, (t, c)) and covariate point z ∈ Dtc
k ,

P
[
z ∈ Btc

k |y
]
≥ 1 − α. For a simultaneous set of inferences we require that for each

z, P
[
{(k, (t, c)) : z ∈ Dtc

k } ⊆ {(k, (t, c)) : z ∈ Btc
k }|y

]
≥ 1−α, where (t, c) varies over E .

These methods may be useful when each of the endpoints and treatment-comparisons

are of interest separately.

Alternatively, inferences may be constructed for each of the KM endpoint-treatment
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combinations, in which each treatment t is compared against the totality of its com-

petition, the comparison being denoted as t∗. Again, the estimates Dt∗
k may be deter-

mined independently or simultaneously. Let ∆t∗
k (x) = minc∈E(t)

{
∆tc
k (z)− δtck

}
be the

treatment effect versus the totality of competition and δt∗k = 0 be the corresponding

threshold, so that t is considered beneficial if it outperforms all of its competition by

the corresponding margins. For independent sets of pairs, we require that for each (k, t)

and z ∈ Dt∗
k , P

[
z ∈ Bt∗

k |y
]
≥ 1 − α. For a simultaneous set of inferences, we would

require for each z, P
[
{(k, t) : z ∈ Dt∗

k } ⊆ {(k, t) : z ∈ Bt∗
k }|y

]
≥ 1− α.

Utility functions may be used to reduce the effective number of endpoints to one,

and either |E| inferences may be constructed for pairwise treatment effects ∆tc
u , or M

may be constructed for the treatment effects ∆t∗
u . Alternatively, inferences for weak

and strong admissibility or noninferiority may be constructed, either for a treatment

against each of its competitors separately (e.g. with respect to each ∆tc
sa), or for a

treatment against the totality of its competition (e.g. with respect to ∆t∗
sa). Again,

sets of credible subgroup pairs may be constructed independently or simultaneously. If

using admissibility inferences corrected for multiplicity as in (4.2), a similar multiplicity

adjustment may be made for many arms by taking, for weak and strong admissibility,

respectively,

Dt∗
wa =

⋂
(t,c)∈E(t)

Dtc
wa, and Dt∗

sa =
⋂

(t,c)∈E(t)

Dtc
sa. (4.3)

4.1.3 Credible subgroups

We now develop in detail the implementation of the general approach for the adjust-

ment for multiple endpoints and multiple treatment comparisons when the underlying

model is the report of credible subgroup pairs as proposed previous chapters. This

implementation is particularly interesting because it simplifies the form of certain prob-

ability statements by adjusting for multiplicity not only of endpoints and treatments,

but covariate points as well.

Recall that an exclusive credible subgroup D and an inclusive credible subgroup S

constitute a credible subgroup pair (D, S) if the posterior probability that D ⊆ B ⊆ S is

at least 1− α, i.e. P [D ⊆ B ⊆ S|y] ≥ 1− α. When considering multiple endpoints and

many treatments, the appropriate probability statements satisfied by the construction
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of credible subgroups are P
[
Dtc
k ⊆ Btc

k ⊆ Stck |y
]
≥ 1 − α for independent pairs, and

P
[
∀(k, (t, c)) ∈ {1, . . . ,K} × E , Dtc

k ⊆ Btc
k ⊆ Stck |y

]
≥ 1− α for simultaneous pair sets.

A simultaneous set of credible subgroup pairs is derived from the joint distribution

of many treatment effects corresponding to various covariate points, endpoints, and

treatment comparisons. Let s∆tc
k (z) = E

[
∆tc
k (z)

∣∣y]. Simultaneous credible bands for

the ∆tc
k (z) on C may be constructed as

∆tc
k (z) ∈ s∆tc

k (z)±W ∗α,C
√

Var[∆tc
k (z)] (4.4)

where W ∗α,C is the 1− α quantile of the distribution of

W = sup
(z,k,(t,c))

∣∣∆tc
k (z)− s∆tc

k (z)
∣∣

Var[∆tc
k (z)]

. (4.5)

and (z, k, (t, c)) ranges over C × {1, . . . ,K} × V. The value of W ∗α may be estimated

from a sample from the joint posterior of the ∆tc
k (z).

The use of (4.4) is most appropriate when the posterior distributions of the ∆tc
k (z)

are continuous and differ only by a scale parameter. When discontinuous posterior

distributions are present, for instance that of ∆sa(z) in (4.1), a quantile-based credible

band may be more appropriate. Let F (y) = P[Y ≤ y], F−1(p) = inf {y : p ≤ F (y)},
G(y) = P[Y < y], and G−1(p) = sup {y : p ≥ G(y)}. If W ∗α is the 1− α quantile of the

distribution of

W = sup
(z,k,(t,c))

min
{

1− F∆tc
k (z)

[
∆tc
k (z)

]
, G∆tc

k (z)

[
∆tc
k (z)

]}
, (4.6)

then

∆tc
k (z) ∈

[
F−1

∆tc
k (z)

(1−W ∗α) , G−1
∆tc
k (z)

(W ∗α)
]

(4.7)

is a 1−α simultaneous credible band. Distribution functions and W ∗α may be estimated

from a sample from the joint posterior of the ∆tc
k (z).

Given simultaneous credible bands such as those in (4.4) and (4.7), the exclusive

credible subgroups Dtc
k and inclusive credible subgroups Stck are constructed by compar-

ing the upper and lower bounds of the bands to δtck . In the case of (4.4), the exclusive

credible subgroup Dtc
k and inclusive credible subgroup Stck are given by

Dtc
k =

{
z ∈ C : s∆tc

k (z)−W ∗α,C
√

Var
[
∆tc
k (z)

]
> δtck

}
,

Stck =

{
z ∈ C : s∆tc

k (z) +W ∗α,C

√
Var

[
∆tc
k (z)

]
≥ δtck

}
,

(4.8)



55

and P
[
Dtc
k ⊆ Btc

k ⊆ Stck |y
]
≥ 1 − α. The loose inequality is used for Stck so that if

δtck = 0 = δctk then Dct
k =

(
Stck
){

, the complement of the opposite comparison’s inclusive

subgroup. Credible subgroups derived from the form (4.7) are constructed similarly.

Once the (Dtc
k , S

tc
k ) are available, credible subgroups for admissibility may be con-

structed through the following analogs of equations (4.2) and (4.3):

(Dwa,Swa) =

({
K⋃
k=1

Dk

}
∪

{
K⋂
k=1

D′k

}
,

{
K⋃
k=1

Sk

}
∪

{
K⋂
k=1

S′k

})
,

(Dsa, Ssa) =

({
K⋃
k=1

Dk

}
∩

{
K⋂
k=1

D′k

}
,

{
K⋃
k=1

Sk

}
∩

{
K⋂
k=1

S′k

})
;

(4.9)

(
Dt∗
wa,S

t∗
wa

)
=

 ⋂
(t,c)∈E(t)

Dtc
wa,

⋃
(t,c)∈E(t)

Stcwa

 ,

(
Dt∗
sa,S

t∗
sa

)
=

 ⋂
(t,c)∈E(t)

Dtc
sa,

⋃
(t,c)∈E(t)

Stcsa

 .

(4.10)

4.2 Simulations

We perform a simulation study to evaluate certain frequentist properties of each method

for finding credible subgroup pairs. We are primarily concerned with the properties of

our four different types of admissibility: weak and strong, each estimated via the fully

adjusted and direct methods. Our operating characteristics of primary interest are the

average sensitivity and specificity of the exclusive credible subgroup D under increasing

numbers of endpoints and treatment arms.

Each simulated data set is produced with A arms, N = 100 patients per arm, K

endpoints, and P = 3 covariates. For patient i in arm a, xai = (1, xai2, xai3) is a

prognostic covariate vector where xai2 and xai3 are discrete covariates randomly drawn

from {−2,−1, 0, 1, 2} with probabilities {1/16, 1/4, 3/8, 1/4, 1/16}, respectively. The

same vector is used as the predictive covariate vector: zai = xai. The following model

is used to produce the simulated data:

Yaik|ηaik, σ2
k ∼ Normal

[
ηaik, σ

2
k

]
, ηaik = x′aiβk + z′aiγ

(a)
k , (4.11)



56

where Yaik is the response in the kth endpoint for patient i in arm a, βk ≡ (1, 1, 1)

for all k, and the γ
(a)
k are determined as follows: γ

(a)
1 = (0, 1/3, 0) for 1 < a < A,

γ
(A)
1 = (0, 1, 0), all other γ

(a)
k = (0, 0, 0). The scenarios tested were A = 2–8 with K = 1,

and K = 1–8 with A = 2. We simulated 1000 data sets per scenario, constructing 50%

credible subgroup pairs.

The model used to fit the simulated data is the same, with vague priors σ2
k ∼

InverseGamma
[
10−4, 10−4

]
, βkp ∼ Normal

[
0, 104

]
for all k, p, and γ

(1)
kp = 0, γ

(a)
k1 ∼

Normal
[
0, 104

]
, and conservative interaction priors γ

(a)
kp ∼ Normal [0, 1] for a > 1 and

all k, p. The model was fit using the NIMBLE R package [35] for 100 burn-in iterations and

an additional 1000 recorded iterations for each simulated data set. Credible subgroups

were constructed using (4.7).

We also compare the fully adjusted and direct methods to a “naive” method for

determining admissibilities. We use the above regression model without treatment-

covariate interactions to estimate an average treatment effect independently for each

endpoint-treatment combination. For each draw from the joint posterior of the average

treatment effects we compute draws of weak and strong admissibility, then use the

posteriors of the admissibilities to make inferences at the 50% level. The direct method

reduces to the naive method when there are no treatment-covariate interactions.

The results of the simulation study are displayed in Figure 4.1. In most cases, sen-

sitivity falls and specificity remains high as the number of arms or endpoints increases,

with the exception that the specificity of direct weak admissibility decreases as end-

points are added. Additionally, detection of strong admissibility is more difficult than

detection of weak admissibility, and adjusting for multiplicity in the estimation of ad-

missibilities (i.e. using the fully adjusted instead of direct method) reduces sensitivity.

The naive approach retains very high sensitivity and very low specificity for weak ad-

missibility in all presented scenarios, and very low sensitivity and very high specificity

for strong admissibility in all presented scenarios.
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Figure 4.1: Simulated sensitivity (left column) and specificity (right column) for a study
with A = 2 arms and varying number of endpoints (top row) and a study with K = 1
endpoints and a varying number of arms (bottom row). In most cases, sensitivity falls
and specificity remains high as more arms or endpoints are added.
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4.3 Analysis of multi-endpoint dataset

We illustrate the extended credible subgroups methods on the multi-endpoint Alzheimer’s

disease dataset. Three doses (low, medium, high) of an experimental treatment are to

be compared to active control and to a placebo. Baseline measurements for disease

severity, age, sex, and carrier status of a genetic biomarker constitute covariates. After

24 weeks of treatment, two endpoints are of interest: improvement (negative change

in disease severity) as the efficacy endpoint, and the reporting of at least one adverse

event indicated by the attending physician to be possibly related to the treatment. The

dataset includes a total of 331 patients across all arms. All covariates and the efficacy

outcome are standardized for the analysis and displayed in their original units.

Let a = 0, 1, 2, 3, 4 denote the placebo, low, medium, and high doses of the test

treatment, and active control treatment arms, respectively. For patient i, let Yik for k =

1, 2 denote the change in severity (continuous) and adverse event occurrence (binary)

endpoints, respectively, and xi1 = xi2 = zi1 = zi2 be the prognostic and predictive

covariate vectors for each endpoint (including intercept, all considered as equal here).

Let βk be the vector of prognostic effects for the kth endpoint, and γ
(a)
k be the vector

of predictive effects for the kth endpoint and treatment arm a, with γ
(0)
k = 0. Also let

d(a) be a scalar representing the level of activity of the drug dose in arm a compared to

the maximum dose of the same drug, with 0 = d(0) ≤ d(1) ≤ d(2) ≤ d(3) = d(4) = 1 and

γ
(1)
k = γ

(2)
k = γ

(3)
k , so that, for example, the effect of treatment a = 2 for a patient with

predictive covariate vector z is d(2)z′γ
(2)
k . Assuming the outcomes are conditionally

independent between patients, we use the endpoint likelihoods

Yi1|ηi1, σ2 ∼ Normal
[
ηi1, σ

2
]
, Yi2|ηi2 ∼ Bernoulli

(
[logit−1ηi2

]
, (4.12)

with ηik = xᵀ
ikβk∗ + d(ai)zᵀikγ

(ai)
k∗ . We use the prior σ2 ∼ InverseGamma

[
10−4, 10−4

]
,

βkp ∼ Normal
[
0, 104

]
, γ

(a)
k1 ∼ Normal

[
0, 104

]
for a > 0, γ

(a)
kp ∼ Normal [0, 1] for a > 0

and p > 1, d(2) ∼ Uniform[0, 1], and d(1)|d(2) ∼ Uniform
[
0, d(2)

]
. Here we modestly

shrink the treatment-covariate interactions toward zero to reflect the common prior

belief that such interactions are usually small, and to obtain less variable estimates

of conditional treatment effects; however we leave the priors for the prognostic effects

and baseline treatment effect vague. As mentioned in the GLM example analysis, the

Normal [0, 1] prior is not as conservative in the logistic case as in the normal case,
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though we leave the priors identical for illustration, as a more conservative prior on the

treatment-covariate interactions for safety yield trivial credible subgroups (S \D = C).

A sensitivity analysis without any shrinkage did not yield qualitatively different results.

Before using our proposed methods, we analyze the data through a more standard

approach. We use a Bayesian model and analysis, though with non-informative priors

that correspond to a frequentist analysis. Because our aim is to discuss treatment-

covariate interactions, which the study was not powered to detect, we decrease the

nominal credible level to 50%. To make the approaches comparable, we will use the

same credible level for our proposed analysis. All models are fit with 10,000 Gibbs

sampler iterations after 1000 burn-in iterations. We first test the overall effects by

removing all γ parameters from the model except the γ
(a)
k1 , which then correspond to the

overall treatment effects versus the placebo. In this analysis, there emerge significant

overall efficacy differences between the active control and placebo, and between the

test treatment and placebo. However, no significant safety differences nor an efficacy

difference between the active control and the test treatment are uncovered.

We continue with a standard subgroup analysis, returning all γ parameters to the

model and using minimally informative priors. At the 50% nominal credible level we

find significant interactions between the test-placebo efficacy difference and all covari-

ates; and between the test-placebo safety difference and baseline severity and age. We

also find significant interactions between the test-active control efficacy difference and

baseline severity and carrier status; and between the test-active control safety differ-

ence and sex and age. Using a Bonferroni-corrected α-level of 0.50/4 to account for

the four treatment-by-covariate interaction tests per treatment and endpoint (we aren’t

concerned with multiplicity of endpoints or treatments), we are left with only the inter-

action of the test-placebo efficacy difference with baseline severity and sex as significant.

We now estimate the average treatment effect of the test treatment versus the

placebo in subgroups produced according to the significant interactions (post-Bonferroni)

we identified. The treatment effect remains significant in a high-severity (> 22, sample

median) subgroup and a low-severity (≤ 22) subgroup, but when grouping by sex, there

is a significant effect in males but not females. When the population is divided into

four subgroups according to sex × severity, both male subgroups and neither female

subgroup show a significant effect. From this standard subgroup analysis, we get the
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general idea that the male patients are the primary drivers of the treatment effect versus

placebo. However, it is difficult to precisely determine who benefits from the treatment

over the placebo, and especially what treatment effect exists between the test treatment

and the active control.

We now compare the high dose test treatment to the placebo and active control

simultaneously with respect to the weak and strong admissibility criteria, e.g. ∆a∗
wa(zi)

and ∆a∗
sa(zi). In the former case, the benefiting subgroup is the population for which the

test treatment is superior to both the placebo and active control with respect to at least

one endpoint or is inferior to neither the placebo nor the active control with respect to

either endpoint. In the latter case, the benefiting subgroup is the one for which the test

treatment is superior to both the placebo and active control with respect to at least one

endpoint and is inferior to neither the placebo nor the active control with respect to any

endpoint. The criteria we select for superiority are a difference in expected change in

disease severity of greater than δ1 = 0 and a log odds ratio of adverse event occurrence

of less than −δ2 = 0. The criteria for noninferiority are a difference in expected change

in disease severity of greater than ε1 = −0.5 (standard deviations of the response) and

a log odds ratio of adverse event occurrence of less than −ε2 = 0.18 (corresponding to

an odds ratio of approximately 1.20). Signs are switched for δ2 and ε2 because we want

reductions in risk. The model is fit using 100,000 MCMC iterations after 10,000 burn-in

iterations. Because of the high memory requirements of constructing credible subgroups

over a continuous covariate space, every 10th iteration is used for the computation.

Figure 4.2 shows individual single-arm single-endpoint credible subgroups plots for

each treatment-endpoint combination using α = 0.50 for illustration. Because the

thresholds for benefit differ from the thresholds for noninferiority, there are in fact

two pairs of credible subgroups for each treatment-endpoint combination—one for ben-

efit and one for noninferiority. Letting (D,S) and (D′,S′) be the pairs for benefit and

noninferiority, respectively, we have D ⊆ D′ ⊆ S ⊆ S′. The upper-left sub-figure shows

that males with high disease severity tend to benefit from the test treatment versus the

placebo, but in the bottom left sub-figure we detect more non-inferiority in female and

low severity patients versus the active control. This hints that the active control and the

test treatment may both favor male and high-severity patients relative to the placebo,

but that the active control does so to a larger degree, perhaps due to more activity
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Figure 4.2: Credible subgroups for individual endpoint-competitor combinations at the
50% level.
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Figure 4.3: Credible subgroups for individual endpoint-competitor combinations at the
50% level.

of a similar biopharmaceutic mechanism. The right-hand side of the figure indicates

mostly uncertainty in the relative safety profiles of the treatments, though it appears

that female carriers are the most promising for non-inferiority to the active control.

Figure 4.3 shows credible subgroup pairs for weak and strong admissibility (via the

direct methods) against both the placebo and active control. The left sub-figure shows

that the exclusive credible subgroup for weak admissibility primarily contains younger

patients, and is more present in females and carriers. The features of the weak admissi-

bility credible subgroup plot appear (judging by Figure 4.2) to come primarily from the

efficacy endpoint. The right sub-figure shows that the test treatment is not strongly ad-

missible over an area generally opposite to that over which the test treatment is weakly

admissible: older patients, especially males and non-carriers. Though the credible level

used is too low to claim conclusive results (e.g., for a regulatory submission), the re-

sults provide evidence that the treatment effect is not homogeneous, and indicate which

subgroups show promise for appropriately-powered studies in the future.
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The model was also fit with spike-and-slab priors as in Section 3.2.2 for variable se-

lection: the Normal[0, 1] priors for the treatment-covariate interactions were exchanged

for 1
10Dirac[0] + 9

10Normal
[
0, 104

]
mixture distributions, where Dirac[0] is a point mass

at 0. The resulting individual credible subgroups by endpoint and arm as in Figure 4.2

exhibited much more homogeneity: the test treatment was superior to the placebo for

all patients with respect to efficacy and indeterminate with respect to safety. Against

the active control, the test treatment was noninferior with respect to efficacy for patients

with baseline severity < 31, and for women younger than 80 and men younger than 70

with respect to safety. The test treatment was weakly admissible for all patients, and

strong admissibility was indeterminate for most patients, and negative for the patients

with the highest baseline severity (near 45).

4.4 Discussion

The medical community recognizes the need to consider the characteristics of individual

patients when deciding avenues of treatment. In addition to baseline covariates that are

predictive of treatment effects with respect to single endpoints, it is also necessary

to consider differences in individuals’ preferences that may lead different patients to

differentially value endpoints. For example, one patient may pursue the most efficacious

treatment while another prefers a treatment with side effects that minimally affect

quality of life.

The concept of admissibility provides a utility function–free approach to summariz-

ing treatment effects with respect to multiple endpoints, and admits a natural extension

to trials with more than two arms. In this paper we have also examined multiple defi-

nitions of admissibility in the clinical trial context, as well as estimators which do and

do not adjust for the multiplicity of endpoints so that Type I error may be controlled.

Finally, the credible subgroups method of earlier chapters provides a natural implemen-

tation for admissibility ideas by also adjusting for the multiplicity of covariate points,

and we generalize an earlier method to handle settings outside of the normal linear

model by requiring only a sample from the joint posterior of personalized treatment

effects, allowing the consideration of generalized linear and other more sophisticated

models.
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While the confidence levels used in Figures 4.2 and 4.3 are too low for our results

to be considered definitive, it is important to note that they are based on data from

a study not powered to deliver simultaneous inference on multiple endpoints across

arbitrary subgroups defined by up to four different covariates. So while these results are

far from convincing for final regulatory approval, they do provide valuable information

about the sort of enrollees that should be sought for future, more focused subgroup-

confirmatory trials. For instance, the weak admissibility portion of Figure 4.3 suggests

younger females with more severe dementia would make good candidates, whereas the

strong admissibility portion discourages enrollment of older patients, particularly those

with less severe dementia. Used in this way, our methods essentially become a useful

tool for enrichment designs [32].

Finally, the relationship between identifying admissible treatments in the develop-

ment and regulatory context treated here, and the single-patient focus of the dynamic

treatment regime context, present an interesting duality between decisions made in re-

lation to a given treatment versus a given patient. For example, developer-sponsored

clinical trials may aim to secure regulatory approval for therapies in specific subpopula-

tions, and optimal treatment regimes may subsequently be constructed on a per-patient

basis from available treatments using the concepts of admissibility, which are similar to

the non-domination criteria used in [47]. Attempts toward unifying development, regu-

latory, and patient-care contexts may represent a promising avenue for future research.



Chapter 5

Considerations for Practical

Implementation

Previous chapters have focused primarily on developing the theory of credible subgroups,

discussing implementation only through providing example analyses. This chapter more

thoroughly addresses several, somewhat disjoint considerations that arise when imple-

menting these methods in their originally intended scenario: design and analysis of

clinical trials. Section 5.1 considers power computations for simple cases both a priori

(for trial design) and post hoc for choosing the restriction of the covariate space of in-

terest. Section 5.2 and Section 5.3 treat issues connected to final data analyses: Monte

Carlo precision and diagnostics, respectively. Section 5.4 presents an option for report-

ing credible subgroups by building an easy-to-use calculator to determine the credible

subgroup conclusion (or lack of one) for a given patient, aimed at clinical practitioners.

Finally, Section 5.5 details essential software for the inference step of the credible sub-

groups approach, given a sample from the joint posterior of the personalized treatment

effects or the parameters needed to compute them. Although the topics of most of these

sections require substantial further investigation, it seems useful to record their states

of development at this time.

65
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5.1 Power computations

A crucial clinical trial design parameter that must be determined ahead of time is the

sample size, which is typically selected to provide a targeted amount of power to detect

a specified treatment effect while controlling Type I error. In planning trials for overall

treatment effects, sample size estimations for a fixed power level generally boil down

to deciding on a clinically relevant effect size ∆ and a sensible corresponding outcome

variance σ2. We will not consider complications such as time-to-event endpoints, drop-

out, etc.

Benefiting subgroup identification trials immediately present the complication that

∆ is not assumed to be constant across the covariate space. While the minimum clin-

ically relevant effect size may be constant across the covariate space, it must be kept

in mind that the estimated personalized treatment effect at one covariate point may be

strongly affected by the true value of the PTE at nearby points, and the shape of the

PTE surface affects the dependency of the posterior distribution of the PTE across the

covariate space, and thus W ∗α,C. However, absent specific prior information about how

the PTE might vary, a constant hypothesized PTE seems a reasonable starting point.

The distribution of covariates in the study sample also has a greater effect on cred-

ible subgroups analyses than on tests for overall treatment effects. This dependency

turns out to be part headache and part opportunity: if the covariate distribution is

not controlled at enrollment, an understanding of the population covariate distribution

and any enrollment biases is essential for accurate power calculations; however, con-

trolling the covariate distribution through targeted enrollment, quotas, or enrichment

designs can target specific populations while the credible subgroups methods provide a

principled approach to determining the extent of generalizability.

5.1.1 Local power

Given a covariate space of interest, a sample of covariate points, and a hypothesized PTE

function ∆0, and under the assumption of asymptotic normality of the joint posterior

of the ∆(z), Algorithm 4 may be used to estimate the local power (power to detect an

effect of size ∆0(z) at z).

The local power estimate is derived by assuming asymptotic joint normality of
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Algorithm 4 Local (conditioning on x) Power Simulation

1 Simulate outcomes for patients under the assumed ∆0;

2 Fit planned model and compute simultaneous credible band (3.3), including esti-
mating W ∗α,C;

3 Estimate posterior standard errors SE{∆(z)} for PTEs;

4 Estimate power as 1−Φ
[
W ∗α,C −∆0(z)/SE{∆(z)}

]
, where Φ is the standard normal

distribution function and ∆0(z) is the hypothesized effect to be detected.

s∆(z), the posterior mean of the PTE at z, and evaluating the frequentist probabil-

ity P
[

s∆(z)−W ∗α,C
√

Var
[

s∆(z)
]
> δ

∣∣∣ ∆(z) = ∆0(z)
]

with the intention of determin-

ing the power to detect benefit. Other PTE surfaces may be assumed and power es-

timated for them, but without prior information, the constant surface computations

are perhaps most easily interpreted. Additionally, the above algorithm may depend on

nuisance parameters such as error variances. It may be possible to estimate these nui-

sance parameters through empirical Bayesian methods (e.g., using restricted maximum

likelihood to estimate the hyperparameters from their marginal distributions) using the

observed data without introducing significant bias.

Although simulations of multiple sample covariate distributions and hypothesized

PTE surfaces are still necessary, Algorithm 4 negates the need to simulate multiple

sets of outcomes for each configuration, and can be used after data collection to choose

the restriction of the covariate space to be tested, as in the following subsection. Note

also that the algorithm yields a conservative power estimate because it is based on the

single-step procedure rather than the step-down one.

5.1.2 Choice of covariate space

The example analysis in Section 2.3, specifically the contrived 50% credible subgroups,

highlighted a problem in which inferences could be made that were valid within the

model but were dubious in practice due to being outside the portion of the covariate

space with observations and common support between arms. The semiparametric anal-

ysis of Section 3.3.2 illustrated the rapid increase in the standard error of the PTE
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estimates from the penalized spline model, which can be interpreted as partially ad-

dressing the observation density and common support problems [49]. However, relying

on high standard errors to address the support problems can result in excessively con-

servative inferences due to the inclusion of unnecessary covariate points in the restricted

covariate space.

A combination of conditional local power simulations and direct examination of the

observation density and common support in the covariate space may be used to choose

the appropriate restriction of the covariate space for analysis. Figure 5.1 displays the

sample distribution of covariate points and shades the region over which the 95% credible

subgroups have at least 5% power to detect a uniform benefit of 1 standard deviation

(5 points). Restricting severity to [9, 49] and d-rate to [0, 8] we include this entire

region and exclude less than 9% of patients, while reducing the size of the covariate

space by more than half. It can be seen that observations, and especially observations

from different treatment arms, are hopelessly sparse in much of the excluded region.

The restricted region was used in the example analysis in Section 3.3.2 and yielded an

exclusive credible subgroup with approximately 17% more cells than the corresponding

exclusive credible subgroup when the full observed ranges of severity and d-rate are

used.
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Figure 5.1: The shaded region is the region for which the power to detect a 1 standard
deviation (5-point) benefit at the 95% credible level is at least 5% when the entire
empirical covariate space is used. Patients receiving placebo are represented by ×, and
those receiving the standard of care by +.
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5.2 Monte Carlo precision

Several aspects of credible subgroup construction conspire to make estimation of Monte

Carlo precision challenging. First, the variability of credible subgroup estimates (D,S)

cannot be directly described in terms of standard errors: unlike scalar estimators, they

vary in terms of covariate points being included in or excluded from constructed sub-

groups. Second, the bounds on the personalized treatment effect at each covariate point

used to construct the credible subgroups are functions of three Monte Carlo–estimated

quantities with complex dependencies, one a maximum of a large but fixed number of

dependent variables. Third, there are no apparent dramatic shortcuts to implementing

computational techniques for estimating Monte Carlo variability, such as cheap jack-

knife [50, 51, 52] or bootstrap [53] estimators. Finally, the step-down procedure adds

complexity on top of that already present in estimating the Monte Carlo variability of

the single-step procedure. In this section we discuss approximations that can be used

in estimating the Monte Carlo variability of the single-step procedure. The discussion

will explicitly treat the exclusive credible subgroup, though all points apply to the in-

clusive credible subgroup as well, with straightforward modifications. Throughout, all

distributions are in the posterior, with conditioning on observed data suppressed in the

notation.

The single-step classification of a covariate point z with respect to the exclusive

credible subgroup is determined entirely by the posterior quantity

L(z) = s∆(z)−W ∗α,C
√

Var [∆(z)], (5.1)

where s∆(z) and Var [∆(z)] are the posterior mean and variance of ∆(z), and W ∗α,C is

the 1− α quantile of

WC = sup
z∈C

∣∣∆(z)− s∆(z)
∣∣√

Var [∆(z)]
. (5.2)

Given a finite, discrete covariate space C and a sample of size M from the joint posterior
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of ∆(C) indexed by m, define the Monte Carlo estimates

∆̂(z) =
1

M

M∑
m=1

∆(m)(z),

V̂ar [∆(z)] =
1

M − 1

M∑
m=1

[
∆(m)(z)− ∆̂(z)

]2
,

Ŵ
(m)
C = max

z∈C

∣∣∣∆(m)(z)− ∆̂(z)
∣∣∣√

V̂ar [∆(z)]

,

Ŵ ∗α,C = min
1≤m≤M

{
Ŵ

(m)
C : 1− α ≤ 1

M

M∑
l=1

I
(
Ŵ

(l)
C ≤ Ŵ (m)

C

)}
.

(5.3)

Then (5.1) can be approximated by the Monte Carlo estimate

L̂(z) = ∆̂(z)− Ŵ ∗α,C
√

V̂ar [∆(z)]. (5.4)

Note that when ∆(C) is asymptotically multivariate normal, the Monte Carlo variances

of ∆̂(z) and V̂ar [∆(z)] have analytical expressions. However, that of Ŵ
(m)
C and therefore

that of Ŵ ∗α,C remain intractable.

The intractability of Ŵ ∗α,C suggests using further Monte Carlo methods to estimate

its variance. However, the resources spent performing such a simulation may be better

spent simply drawing a larger posterior sample to increase precision, unless doing so is

substantially more expensive. One possible approach to lowering the cost of estimating

the Monte Carlo variance of L̂(z) is to assume loose dependence of Ŵ ∗α,C on ∆̂(z) and

V̂ar [∆(z)] for each z individually, and then use Ṽ = Var
[
Ŵ ∗α,C

∣∣∣∆̂(z), V̂ar [∆(z)]
]

as an

approximation to Var
[
Ŵ ∗α,C

]
. The conditional variance may be estimated cheaply by

resampling the Ŵ
(m)
C directly, instead of the ∆(m)(z). We then have

Var
[
L̂(z)

]
= Var

[
∆̂(z)− Ŵ ∗α,C

√
V̂ar [∆(z)]

]
,

≈ Var
[
∆̂(z)

]
+ Var

[
Ŵ ∗α,C

]
Var

[√
V̂ar [∆(z)]

]
+ Var

[
Ŵ ∗α,C

]
E

[√
V̂ar [∆(z)]

]2

+ E
[
Ŵ ∗α,C

]2
Var

[√
V̂ar [∆(z)]

]
,

≈ 1

M
V̂ar [∆(z)] + Ṽ

V̂ar [∆(z)]

2(M − 1)
+ Ṽ V̂ar [∆(z)] +

(
Ŵ ∗α,C

)2 V̂ar [∆(z)]

2(M − 1)
.

(5.5)
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Figure 5.2: Direct and mean-aligned conditional bootstrap sample of Ŵ ∗α,C (left) and

direct and conditional approximations of L̂(z) (right).

To evaluate this approximation, we produced 1000 samples of 100,000 independent

draws from the posterior distribution of the normal linear model fit in Section 2.3,

and for each sample computed all ∆̂(z), V̂ar [∆(z)], and Ŵ ∗α,C. We also drew 10,000

bootstrap samples of Ŵ ∗α,C from the Ŵ
(m)
C produced from one of the above samples,

holding ∆̂(z) and V̂ar [∆(z)] fixed. The correlation between the ∆̂(z) and Ŵ ∗α,C was

very small (range -0.07–0.07), and between V̂ar [∆(z)] and Ŵ ∗α,C was approximately

0.33 (range 0.26–0.41), and we expect the dependency to weaken with the dependence

among the ∆(z) in, e.g., semiparametric models. Figure 5.2 compares the bootstrapped

conditional approximation to the true Monte Carlo distribution of Ŵ ∗α,C (left), and

the approximated variances of all the L̂(z) to their true counterparts (right). In this

example the conditional approximation for the variance of Ŵ ∗α,C is conservative and

those of the L̂(z) appear adequate. Using the asymptotic conditional variance of Ŵ ∗α,C,

α(1 − α)/
[
Mf̂

(
Ŵ ∗α,C

)]
, where f̂ is the Gaussian kernel density estimate using the

Sheather & Jones [54] bandwidth, in this case yields a less conservative estimate of

Var
[
Ŵ ∗α,C

]
but a slightly less accurate estimate of Var

[
L̂(z)

]
.

Once Monte Carlo variances of the lower bounds have been estimated, they may be

used to check which covariate points may change membership status in the exclusive
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Figure 5.3: Uncertainty in credible subgroups. Orange points are part of the estimated
exclusive credible subgroup but not part of the 0.5th percentile of exclusive credible
subgroups, and blue points are not part of the estimated exclusive credible subgroup
but are part of the 99.5th percentile of exclusive credible subgroups.

credible subgroup. Figure 5.3 marks the covariate points whose membership changes

when using the endpoints of the 99% Monte Carlo confidence intervals for the lower

bounds instead of the original estimates. As may be expected, these points lie at the

boundary of the exclusive credible subgroup. It is likely very difficult to draw a large

enough posterior sample to avoid such variation, even at modest levels of confidence,

when the boundary of a credible subgroup contains many points along high-resolution

continuous covariates, as by definition the upper and lower simultaneous credible bands

at the boundary are very close to the threshold between benefit and lack of it.



74

5.3 Diagnostics

We have found useful several diagnostic tools for the credible subgroups approach. Many

have already been exhibited in the example analyses of previous sections, though we

include them in the following list for completeness.

1. Standard diagnostic tools for the underlying regression model, to evaluate model

fit;

2. Histograms and quantile plots of personalized treatment effect posteriors to eval-

uate normality assumptions, if applicable;

3. Trace plots of the same, to evaluate Markov chain Monte Carlo convergence, if

applicable;

4. Decomposition of credible subgroups into posterior means and standard deviations

of personalized treatment effects, to determine whether failure to classify covariate

points into D or S{ is the result of neutral treatment effects estimates or high

standard errors;

5. Posterior mean–standard deviation plots (or funnel plots), to show trends between

estimates and standard errors as they relate to credible subgroups;

6. Comparison of sample covariate distribution to credible subgroups and decompo-

sitions, to detect uncomfortable extrapolations;

7. Maximum credible level computations, to give a fuller picture of possible credible

subgroups;

8. Plots showing Monte Carlo uncertainty in the credible subgroups construction, to

determine whether they are tolerable.

The tool which is neither previously displayed nor obvious in construction and interpre-

tation is the funnel plot. The remainder of this section describes it in some detail.

Since the credible subgroups are determined by comparing the posterior quantities

s∆(z)±W ∗α,C
√

Var [∆(z)] against the treatment effect threshold δ, with W ∗α,C possibly

determined by the step-down procedure, we can plot
√

Var [∆(z)] versus s∆(z) − δ
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Figure 5.4: Funnel plots for two previously analyzed datasets. Green points are members
of the exclusive credible subgroup, and yellow points are part members of the inclusive
but not exclusive credible subgroup.

across z ∈ C, and determine points’ credible subgroup memberships by examining their

positions in relation to the lines through the origin with slopes ±1/W ∗α,C. While the

spatial information among the covariate points is lost, such a plot can be produced

regardless of the dimension of the covariate space and the number of levels of each

covariate.

Figure 5.4 presents the funnel plots for two previously analyzed datasets: the simple

add-on dataset analyzed with the basic linear model in Section 2.3, and the multi-trial

dataset analyzed with the additive penalized cubic spline model in Section 3.3.2. As

also shown by the contour plots in Figure 2.4, the lower personalized treatment effect

estimates in the first dataset correspond to higher posterior standard deviations. At

least two points are deducible from both the contour and mean–standard deviation

plots, but are more apparent from the latter:

1. For these data, the reliability of estimates below the treatment effect threshold

is generally lower than that of those above the threshold, thus as more data are

collected so that the standard errors decrease everywhere, points on the plot tend

to be more likely to cross the vertical axis from left to right than the reverse;
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2. As the credible level is lowered (i.e., the sloped lines approach the vertical axis),

many more points join the exclusive credible subgroup before any exit the inclusive

credible subgroup.

The plot corresponding to the multi-trial dataset consists of a dense region in which

the standard errors are mostly uncorrelated with the estimates, and bands of relatively

constant high standard errors over a wide range of estimates. These bands correspond

to edges of the covariate space and continue well above standard errors of 20 units. In

this case we can be even more confident that most covariate points have a positive PTE,

which in order to detect we must collect more data.

5.4 Reporting

Throughout the previous chapters, example analyses investigated the personalized treat-

ment effect in relation to two continuous and two binary predictive covariates. As

a result, we were able to present the credible subgroups graphically. Such graphical

summaries are likely possible if the only predictive covariates used are the standard

demographic variables sex, age, race, and ethnicity. When more than two continuous

covariates are predictive, or when there are a large number of categorical predictive

covariates, such graphical displays are likely impossible or too cumbersome to produce,

disseminate, and use.

One way of presenting results of credible subgroups analyses with (almost) arbitrarily

many covariates and levels is via a calculator. When the threshold defining clinically

significant benefit is fixed, the maximum credible level computation of Algorithm 3,

along with a data frame representing the corresponding covariate space, may be used

to produce a calculator such as that shown in Figure 5.5. The calculator presented was

produced using the R package shiny [55], and can be deployed as a webpage. Software

for producing such a calculator is included in Appendix C, and its usage demonstrated in

Section 5.5. Other options include locally hosted computer or smartphone applications.

Such a calculator would enable a clinician or other interested party to input a real or

hypothetical patient’s predictive covariate profile and receive an explanation of what

determination can be made about that covariate profile, and at what credible level it

can be made. To prevent misuse, a lower limit on the credible level may be implemented
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Credible Subgroups
Calculator
Baseline Severity

Rate of Decline

Sex

Carrier Status

Result
A conclusion of benefit for patients with the

above predictive covariate profilemay be made at

a maximum credible level of 92.38%. At higher

credible levels, no conclusion may be drawn.

27

5

M

NON-CARRIER

Figure 5.5: Example of calculator for reporting credible subgroup results, using the
results of the multi-trial dataset analysis.
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so that if the maximum credible level falls below it, the output does not include whether

a lower credible level would result in a conclusion of benefit or no benefit.

Such calculators are in fact simply user-friendly front-ends to large tables, which

could in theory be presented statically. For example, the table of maximum credible

levels for the analysis of the simple add-on therapy dataset presented in Section 2.3

would need to contain entries corresponding to 5904 covariate points, determined by four

factors. Whether presented in tabular or electronic form, the maximum credible levels

presented could be interpreted as a predictive “score” for the purposes of drug labeling,

which is used to advise practitioners on prescribing medications. The label summary

could include a statement that recommends use in populations with sufficiently high

predictive scores (the maximum credible levels) by defining a threshold and directing

prescribers to a full table or online calculator, provided by the FDA, for computing the

score for an individual patient. While this arrangement would be more complex than

labels currently used, precedent exists in using risk scores to guide treatment decisions

by practitioners. For example, the Canadian Cardiovascular Society advocates using the

Framingham Risk Score [56] for cardiovascular disease to stratify patients into groups

for which different therapies are recommended [57]. While the Framingham Risk Score

is linear in its component risk factors and can therefore be computed by adding up

“points” associated with different levels of those individual risk factors, full risk tables

and online calculators are often used, especially for adjusted variants of the score.

If more concise guidelines are a high priority, modeling choices can be made that

yield more easily expressible credible subgroups. For example, using a variable selec-

tion method and conditioning on one or a few of the most probably models, as in

Section 3.2.2, may yield credible subgroups that depend only on categorical covariate,

or at most one continuous covariate. However, in the interest of principled inference,

we recommend avoiding modeling choices that serve only to make summaries shorter,

and if such simplified summaries are needed to build and communicate intuition, they

should be presented as such with the caveat that a calculator should be used for final

decisions.
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5.5 Software

This section describes the use of several R functions that, given a description of the

covariate space and a sample from the posterior distribution of the posterior treatment

effects, produce credible subgroups and a calculator as described in Section 5.4. The

full code is reproduced in Appendix C.

The three functions related to the construction of credible subgroups themselves are

• sim.cred.band, which constructs a restricted covariate space simultaneous cred-

ible band for the PTEs;

• credsubs, which determines the membership of each covariate point in the ex-

clusive and inclusive credible subgroups using the sequential testing procedure

described by Algorithm 2;

• credsubs.level, which determines via Algorithm 3 the maximum credible level

at which each covariate point is not a member of S \D, and attaches an attribute

"sign" which is 1 for covariate points in D and −1 for those in S{ at that level.

Each of the above functions relies on the same three major input objects:

• params, a matrix whose rows are draws from the joint posterior of the PTEs, or

of the parameters necessary to compute them;

• design, a matrix whose rows represent the points in the covariate space of interest;

• FUN, a function which takes as arguments a row of design and the entirety of

params and returns the corresponding sample from the posterior of the PTE at

the covariate point corresponding to that row of design.

By default, design is set to NULL, in which case params is taken to be a sample from

the joint posterior of the PTEs and FUN is ignored. Also by default, FUN is set to

function(x, params) { params %*% t(x) } so that a linear model is assumed when-

ever design is provided. The outputs are aligned with the rows of design if not NULL,

and with the columns of params otherwise.
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sim.cred.band credsubs credsubs.level

cred.level ! !

threshold ! !

method ! ! !

step.down ! !

Table 5.1: Applicability of behavior arguments to primary functions.

Four arguments determine the behavior of the above functions in ways that may

affect the primary outputs:

• cred.level, the credible level 1−α (default 0.95) at which simultaneous credible

bands or credible subgroups are constructed;

• threshold, the threshold δ (default 0) above which a PTE is considered clinically

beneficial;

• method, either "asymptotic" (default) or "quantile", specifying which simulta-

neous credible band construction is used;

• step.down, whether or not the step-down procedure should be used (default TRUE).

Table 5.1 displays the applicability of each of the above arguments to the primary

functions.

A fourth function, build.shiny.object, packages and saves an R data file contain-

ing the output of credsubs.level and a formatted description of the covariate space

cov.space, which may then be automatically loaded by the shiny app provided to

produce a calculator as in Section 5.4 by placing it in the same directory as the app.

The distinction between design and cov.space is that design is a matrix intended to

be used in numerical computations while cov.space is a data frame meant to describe

the covariate space in a human-readable form. For example, it is easiest to represent

factors in design according to whichever parameterization was used in the regression

model that produced params (e.g., dummy variables), but factors in cov.space should

be factor objects so that textual level names are displayed.
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5.5.1 A nonparametric example

We first present an example using a nonparametric (BART) fit of the multi-trial dataset.

This displays the simplest usage of the software.

Assuming the credible subgroups functions have already been loaded, we proceed by

loading the BayesTree package, which fits the BART model, and the data, then setting

the random seed:

require(BayesTree)

data <- read.csv("data-simplified.csv")

set.seed(1)

Next, we build the training data and test set for BART. The bart function uses x.train

as the covariates and y.train as the observed response to fit the model, then includes in

its output yhat.test, a matrix whose rows are posterior estimates at covariate points

described by x.test, which can be thought of as our design matrix. Because bart

naturally handles factors, we do not need to reparameterize them.

x.train <- data[, c("Treatment",

"Baseline.Severity", "Rate.of.Decline",

"Sex", "Carrier.Status")]

y.train <- data[, "Improvement"]

design <- expand.grid("Treatment"=factor(c("Placebo", "Standard of Care")),

"Baseline.Severity"=9:49,

"Rate.of.Decline"=0:8,

"Sex"=factor(c("F", "M")),

"Carrier.Status"=factor(c("NON-CARRIER", "CARRIER")))

Here the design matrix has contains two rows for each covariate point: one in each

treatment arm. The covariate points form a regular grid across the restricted covariate

space, with baseline severity and rate of decline changing in increments of one.
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> head(design)

Treatment Baseline.Severity Rate.of.Decline Sex Carrier.Status

1 Placebo 9 0 F NON-CARRIER

2 Standard of Care 9 0 F NON-CARRIER

3 Placebo 10 0 F NON-CARRIER

4 Standard of Care 10 0 F NON-CARRIER

5 Placebo 11 0 F NON-CARRIER

6 Standard of Care 11 0 F NON-CARRIER

We can then fit the BART model and produce our params object. Since bart outputs

two predictions at every covariate point, we compute the PTE by subtracting the pre-

diction at each covariate point with Treatment equal to "Placebo" from the prediction

of the corresponding covariate point with Treatment equal to "Standard of Care".

fit <- bart(x.train=x.train, y.train=y.train, x.test=design,

ndpost=10000, nskip=1000, printevery=1000)

predict.ctl <- bart$yhat.test[, design$Treatment == "Placebo"]

predict.trt <- bart$yhat.test[, design$Treatment == "Standard of Care"]

params <- predict.trt - predict.ctl

rm(predict.trt, predict.ctl)

Since the params object is a matrix of posterior PTE draws, we do not need to pass

design or FUN to any of the credible subgroups functions:

scb <- sim.cred.band(params=params, cred.level=0.80)

cs <- credsubs(params=params, cred.level=0.80)

csl <- credsubs.level(params=params)

The primary outputs of each function are two vectors aligned with the columns of

params, representing a result at each of the covariate points:
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> head(scb$lower)

[1] -2.916278 -2.803885 -2.746283 -2.643345 -2.585534 -2.523565

> head(scb$upper)

[1] 5.299417 5.215144 5.188561 5.108275 5.034181 4.982117

> head(cs$exclusive)

[1] FALSE FALSE FALSE FALSE FALSE FALSE

> head(cs$inclusive)

[1] TRUE TRUE TRUE TRUE TRUE TRUE

> head(csl)

[1] 0.2324 0.2324 0.2324 0.2324 0.2324 0.2324

> head(attr(csl, "sign"))

[1] 1 1 1 1 1 1

Finally, to produce the data file used by the calculator, we build the cov.space

object, which here differs from the design object in that the Treatment variable is not

included and the column names do not have to exactly match those in the dataset.

cov.space <- expand.grid("Baseline Severity"=9:49,

"Rate of Decline"=0:8,

"Sex"=factor(c("F", "M")),

"Carrier Status"=factor(c("NON-CARRIER", "CARRIER")))

build.shiny.object(csl, cov.space)

Note that the rows of cov.space correspond to the columns of params and therefore

the elements of csl:

> head(cov.space)

Baseline Severity Rate of Decline Sex Carrier Status

1 9 0 F NON-CARRIER

2 10 0 F NON-CARRIER

3 11 0 F NON-CARRIER

4 12 0 F NON-CARRIER

5 13 0 F NON-CARRIER

6 14 0 F NON-CARRIER
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In order to set up the calculator app, the user must then move the produced file

credsubs-shiny.RData to the same directory as server.R and ui.R if it is not there

already. The app server will then load the data file automatically when it is run.

5.5.2 A parametric example

We present also a more involved, parametric model fit using the package nimble. This

example exhibits differences between design and cov.space, the default linear behavior

when design is provided as an argument, and usage of FUN.

In this case, the data must be reparameterized to be entirely numeric:

library(nimble)

data <- read.csv("data-simplified.csv")

# Reparameterize factors so that reference=0, other=1

data$Treatment <- as.numeric(relevel(data$Treatment,

ref="Placebo")) - 1

data$Sex <- as.numeric(relevel(data$Sex,

ref="F")) - 1

data$Carrier.Status <- as.numeric(relevel(data$Carrier.Status,

ref="NON-CARRIER")) - 1

data$Baseline.Severity <- scale(data$Baseline.Severity)

data$Rate.of.Decline <- scale(data$Rate.of.Decline)

set.seed(1)



85

Next we must define the NIMBLE model, set constants, data, and initial values,

compile, and run the sampler for 110,000 iterations, the first 10,000 of which will later

be ignored as burn-in.

nimble.code <- nimbleCode({

### Likelihood ##

for (i in 1:N) {

# Linear predictor, expanded for clarity

mean[i] <- beta[1] +

beta[2] * Baseline.Severity[i] + beta[3] * Rate.of.Decline[i] +

beta[4] * Sex[i] + beta[5] * Carrier.Status[i] +

beta[6] * Sex[i] * Carrier.Status[i] +

gamma[1] * Treatment[i] +

gamma[2] * Baseline.Severity[i] * Treatment[i] +

gamma[3] * Rate.of.Decline[i] * Treatment[i] +

gamma[4] * Sex[i] * Treatment[i] +

gamma[5] * Carrier.Status[i] * Treatment[i] +

gamma[6] * Sex[i] * Carrier.Status[i] * Treatment[i]

# Outcome

Improvement[i] ~ dnorm(mean[i], tau) # tau = 1 / sigma ^ 2

}

# Vague priors for prognostic and baseline treatment effects

# Conservative priors for treatment-covariate interactions

for (j in 1:6) {

beta[j] ~ dnorm(0, 10E-4)

gamma[j] ~ dnorm(0, ifelse(j == 1, 10E-4, 1))

}

# Vague prior for error variance

tau ~ dgamma(10E-4, 10E-4)

})
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nimble.constants <- list(N=nrow(data))

nimble.data <- list(Treatment=as.numeric(data$Treatment),

Baseline.Severity=as.vector(data$Baseline.Severity),

Rate.of.Decline=as.vector(data$Rate.of.Decline),

Sex=as.numeric(data$Sex),

Carrier.Status=as.numeric(data$Carrier.Status),

Improvement=as.vector(data$Improvement))

nimble.inits <- list(beta=rep(0, 6),

gamma=rep(0, 6),

tau = 1)

nimble.model <- nimbleModel(code=nimble.code,

name = ’example’,

constants = nimble.constants,

data = nimble.data,

inits = nimble.inits)

nimble.spec <- configureMCMC(nimble.model)

nimble.mcmc <- buildMCMC(nimble.spec)

C.model <- compileNimble(nimble.model)

C.mcmc <- compileNimble(nimble.mcmc, project = nimble.model)

C.mcmc$run(110000)

mcmc.trace <- as.matrix(C.mcmc$mvSamples)

Note that mcmc.trace is the trace of all of the parameters, of which we only need a few:

> colnames(mcmc.trace)

[1] "beta[1]" "beta[2]" "beta[3]" "beta[4]" "beta[5]"

[6] "beta[6]" "gamma[1]" "gamma[2]" "gamma[3]" "gamma[4]"

[11] "gamma[5]" "gamma[6]" "tau"
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Thus we will keep only the interaction parameters (gamma) and construct design so

that the PTE sample for each covariate point is the matrix product of params and a

transposed row of design.

# Discard burn-in

keep <- 10001:110000

# Only some parameters needed for personalized treatment effect

pte.params <- mcmc.trace[keep, c("gamma[1]", "gamma[2]", "gamma[3]",

"gamma[4]", "gamma[5]", "gamma[6]")]

# Create data frame describing covariate space

design <- expand.grid(Treatment=1,

Baseline.Severity=9:49,

Rate.of.Decline=0:8,

Sex=c(0, 1),

Carrier.Status=c(0, 1))

# Since the model input was scaled, the covariate space must also be

design$Baseline.Severity <- scale(design$Baseline.Severity,

center=attr(data$Baseline.Severity,

"scaled:center"),

scale=attr(data$Baseline.Severity,

"scaled:scale"))

design$Rate.of.Decline <- scale(design$Rate.of.Decline,

center=attr(data$Rate.of.Decline,

"scaled:center"),

scale=attr(data$Rate.of.Decline,

"scaled:scale"))

# Add Sex-by-Carrier interaction

design$Sex.by.Car <- design$Sex * design$Carrier.Status
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The design argument is then included in the call of credsubs.level:

csl <- credsubs.level(params=pte.params, design=design)

If we wish to define benefit as an effect greater than one conditional standard deviation

of the outcome, we can append the error standard deviation draws (σ = 1/
√
τ) to

pte.params, instruct FUN to divide the previous matrix product by σ, and set threshold

to 1:

pte.params.sd <- cbind(pte.params, 1 / sqrt(mcmc.trace[keep, "tau"]))

FUN <- function(x, params) {

sd.col <- ncol(params)

params[, -sd.col] %*% t(x) / params[, sd.col]

}

csl.sd <- credsubs.level(params=pte.params.sd, design=design,

FUN=FUN, threshold=1)

In preparing the shiny calculator, the same cov.space object as in the previous example

may be used here. Compare to the design object, in which continuous covariates have

been standardized, factors converted to indicators, and extraneous columns (Treatment,

Sex.by.Car) are present:

> head(design)

Treatment Baseline.Severity Rate.of.Decline Sex Carrier.Status Sex.by.Car

1 1 -1.613593 -1.283438 0 0 0

2 1 -1.525112 -1.283438 0 0 0

3 1 -1.436632 -1.283438 0 0 0

4 1 -1.348151 -1.283438 0 0 0

5 1 -1.259670 -1.283438 0 0 0

6 1 -1.171190 -1.283438 0 0 0



Chapter 6

Conclusion

6.1 Summary of developments

In this thesis we have developed an approach identifying subgroups that benefit from

treatment, which we believe can be used as a flexible confirmatory analysis. Specifically,

the credible subgroups approach does not require pre-specification of subgroups, yet

allows inferences that are not at inflated risk of producing false positive identifications.

Thus a single trial may be used to both identify types of patients who benefit from

treatment, and test the the personalized treatment effect throughout that benefiting

subgroup with a controlled familywise Type I error rate.

Our approach, as first presented in Chapter 2, uses a Bayesian linear regression

model to efficiently share information across the covariate space in an easily under-

standable way, and constructs simultaneous credible bands which take advantage of the

induced dependencies among the posteriors of the PTEs to reduce the loss of power

due to multiple testing adjustments. Furthermore, we presented an argument for in-

terpreting credible subgroups from a frequentist prospective, and provided a sequential

testing procedure for increased power. Chapter 3 generalized the method to arbitrary

regression models, requiring at most a sample from the posterior distribution of the

PTEs. Examples of use with generalized linear models, variable selection models, and

semiparametric and nonparametric regression models are given.

Chapter 4 developed a framework for identifying benefiting subgroups in the presence

of multiple endpoints and many treatments using adaptations of the decision-theoretic

89
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concept of admissibility, which allows “benefit” to be defined without explicitly quan-

tifying trade-offs via utility functions. While the discussion does not apply exclusively

to credible subgroups, the credible subgroups method was the primary focus of the

developments.

Chapter 5 gave details on implementation, including power calculations, standard

error approximations, and diagnostics. Additionally, the chapter illustrated how soft-

ware (provided in Appendix C) could be used to construct credible subgroups from

the output of standard regression packages, and discussed possibilities for presenting

the results of credible subgroups analyses, as well as using those results to implement

treatment labeling and recommendations.

6.2 Significance of the work

A method that combines the steps of exploratory and confirmatory analysis is significant

by virtue of negating the usual need for at least two separate trials to reliably identify

and test a benefiting subgroup. However, this work also touches on and has the potential

to influence wider areas: formalizing assumptions about treatment effect homogeneity

or heterogeneity, evaluation of external validity, and general consideration of multiple

testing in regression settings.

Initially, our aim was to discard the assumption of treatment effect homogeneity

and begin identifying benefiting subpopulations from scratch. However, the choices of

regression model (e.g., linear) and priors (how much shrinkage) constitute assumptions

about the nature of heterogeneity in the treatment effect, though these assumptions

are generally less stringent than that of total homogeneity. These mechanisms provide

an opportunity to inject assumptions into analyses aiming to identify the benefiting

population, but require that such assumptions be somewhat explicit: investigators must

state that the regression model is linear or that the treatment-covariate interaction prior

is tightly concentrated around zero, rather than rely on a shared implicit assumption of

homogeneity. In fact, the assumption of treatment effect homogeneity is mathematically

equivalent to specifying a linear interaction model with the priors for all interaction

terms set to point masses at the origin, clearly a very strong assumption when stated

explicitly. While the distinction between the two assumptions is primarily psychological,
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we believe it is important to keep the consideration of effect heterogeneity at the front

of investigators’ minds.

Related to the formalization of assumptions is partial evaluation of external validity,

the validity of causal inferences made from one study to non-study populations and sit-

uations. In context: does the treatment effect observed in the study hold outside of the

study? Moving from an overall treatment effect to personalized treatment effects allows

some treatment of external validity, at least with respect to variables included as pre-

dictive covariates in the study, and the assumptions made to share information across

the predictive covariate space could arguably be used to make statements across a wider

range of covariate values than that observed within the study. However, the strength

of the credible subgroups with respect to this problem is negative rather than positive:

the assumptions needed to generate conclusive inferences significantly outside of the

observed covariate range (or even the observation-dense region of it) are likely immedi-

ately dubious. Thus investigators operating within the credible subgroups framework

would be quantitatively compelled to include sufficiently diverse patients in the study in

order to make convincing inferences about their target population. Of course, we must

not mistake diversity with respect to observed predictive covariates for balance with

respect to unobserved confounders that may otherwise jeopardize the external validity

of a study.

This work does not exclusively increase the burden of evidence for proving bene-

fit in populations, but also presents new opportunities to make the regulatory process

more efficient, a primary aim of the 21st Century Cures Act. The credible subgroups

approach, when used by treatment developers for in-house Phase II trials, can aid in

identifying target populations for confirmatory trials in a principled manner. Confidence

in such knowledge ahead of larger Phase III trials might greatly increase the odds of

success. Additionally, using the credible subgroups approach in Phase III pharmaceuti-

cal trials and using the exclusive credible subgroup to label the drug allows regulators

to approve treatments for populations for which sufficient evidence of benefit has been

accumulated, while reserving judgment on usage in other populations until further study

has been conducted. With appropriate advances in the method, such decisions could

potentially even be made when clear evidence of benefit in certain subgroups is available

in an ongoing long-term trial. Without heterogeneity-aware methods of analysis, trials
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of treatments that are effective in a subset of the population may fail to detect that

effect because it is attenuated by lack of effect in the rest of the population.

Finally, although the development of credible subgroups methods is motivated by

a recurring problem in clinical trials, the approach itself is not restricted to such set-

tings. Even beyond non-randomized studies of treatment effects, the general technique

of constructing inclusion-exclusion pairs of bounding sets to estimate a subset may find

uses in widely varied fields. In neuroimaging, a frequent task is to identify which voxels

in a brain scan are active. In more computational data science fields such as network

analysis, identifying which edges or entries of a spares graph or matrix are non-zero is a

common problem. In big data problems with a large number of covariates, identification

of important subsets of variables is a primary concern. Though many methods exist for

addressing these situations and others like them, these problems may benefit from the

general credible subgroups approach, especially when multiplicity control is a concern

or tests are highly correlated in a manner adequately described by regression models.

6.3 Future work

Several possible avenues for future work are discussed in this section. The first two

deal with improvements to the approach as currently used, while the last two discuss

situations not previously considered.

6.3.1 A “2α conjecture”

The simulation studies presented in Table 2.1 and Table 3.2 indicate that even though

the nominal credible level is 80%, the restricted-space credible subgroups construction

provide approximately 90% coverage when the underlying regression model is correctly

specified. To understand why, recall that the most basic level, a 1−α credible subgroup

pair is constructed by inverting a 1−α simultaneous credible band. That is, the posterior

probability (and frequency, by the asymptotic argument) with which the true value of

at least one personalized treatment effect lies outside of the band is at most α. However,

a true PTE value lying outside of the simultaneous credible band does not necessarily

result in a coverage failure by the credible subgroup pair: an error is made if the lower

credible bound is greater than δ and the true PTE is not greater than δ, or if the upper
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bound is less than δ and the true PTE greater. If the true PTE value is near δ at some

covariate point and the credible band is unbiased there, the probability of a credible

subgroup coverage failure there is approximately half the probability of a credible band

coverage failure at the same location.

Unfortunately, the solution is not as simple as constructing 1−α credible subgroup

pairs from a 1 − 2α simultaneous credible band, even when α is small. The reason

is that there is generally some probability that the simultaneous credible band will

miss the true PTE value at more than one covariate point. Suppose that we have N

independent signed tests each with a magnitude error rate of α′ and an independent

sign error rate of 1/2. A credible band miss occurs when there is a magnitude error,

and a credible subgroup miss occurs when there is both a magnitude and sign error.

Thus the probability of any credible band miss (a simultaneous credible band miss) is

1 − (1− α′)N and that of a credible subgroup miss is 1 − (1− α′/2)N . If we were to

instead assume that the probability of a credible subgroup miss is half the probability

of a simultaneous credible band miss, the ratio of the true credible subgroup miss rate

over the assumed rate would be

2
1− (1− α′/2)N

1− (1− α′)N
N→∞−−−−→ 2, (6.1)

showing that in the limit as N → ∞, the actual credible subgroup coverage rate ap-

proaches the nominal rate rather than 1− α/2.

Despite the theoretical danger of using a 1 − 2α simultaneous credible band to

construct a 1−α credible subgroup pair, our “2α conjecture” is that in many situations

encountered in practice, the approximation works well. In particular, we expect that this

would be the case when α is small (e.g., ≤ 0.05) and the effective number of independent

tests is also small (e.g., ≤ 10) due to strong dependence among tests induced by the

assumed regression model. The exact cases in which this approximation is reasonable,

as well as how useful approximate familywise Type I error “guarantees” are, may be

illuminated by a combination of analytical study, simulations, and practical experience.

6.3.2 A bootstrap counterpart

The theoretical underpinnings of a bootstrap counterpart to credible subgroups are

straightforward: if the sample from the joint posterior of the PTEs is replaced by a
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bootstrap sample representing the sampling distribution of estimates of those PTEs,

many of the same approaches may be valid in the frequentist sense in a way that relies

on the asymptotic justification of the bootstrap method rather than the asymptotic

equivalence of the joint posterior and joint sampling distributions presented in this

thesis. It remains to be seen whether the different asymptotic justification yields reliable

credible subgroups at smaller sample sizes or with different modeling requirements.

Furthermore, it would likely be necessary to employ certain shortcuts to reduce the

computational burden to acceptable levels.

6.3.3 Large numbers of binary covariates

Much of the advantage of the credible subgroups approach over previous approaches to

subgroup identification relate to the handling of continuous covariates. In addition to

not requiring discretization of such covariates, our methods leverage the strong depen-

dence of nearby PTEs using regression assumptions such as parametric forms for their

variation over the covariate space. On the other hand, situations in which there are

large numbers of binary covariates may require an approach focusing more on variable

selection than common regression. Although some variable selection was discussed in

Section 3.2.2, we have not attempted analyses on massive scales. It remains to be seen

if the methods already presented can adequately handle these cases, or if new modeling

or multiple testing techniques need to be developed.

6.3.4 Sequential and adaptive trial designs

Except for a brief discussion of sample size estimation, this thesis has focused entirely on

the post-hoc analysis of clinical trials. However, there is ample opportunity to design

trials from the start to take advantage of the credible subgroups approach through

Bayesian adaptive designs [58]. One possible design is a special implementation of group

sequential designs [59], in which the accumulated data are analyzed at pre-specified

interim analyses throughout the course of the trial, and the trial may be stopped early

either for clear evidence of benefit or futility in continuing. Incorporating credible

subgroups could allow the trial to be stopped for regions of the covariate space at

interim analyses, if those regions are contained in either D or S{. Variations on this
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theme include adaptive enrichment designs [60] in which recruitment quotas are altered

over the course of the trial to more efficiently obtain information about regions where

the distinction between benefit and no benefit has not yet been made, and adaptive

randomization designs [61, 44] in which randomization ratios are varied according to

the results of interim credible subgroup analyses. In all of these cases, maintaining Type

I error control (especially familywise) likely becomes substantially more difficult than

when either credible subgroups or sequential/adaptive designs are used alone.
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Appendix A

Proofs of theorems

A.1 Theorems for simultaneous credible bands

Theorem 1. For a possibly infinite-dimensional vector of random variables Y and

vector of corresponding strictly increasing functions g indexed by ω ∈ Ω,

P
[
∃ω ∈ Ω : Yω > g−1

ω {F−1
supΩ gω(Yω)(1− α)}

]
= α. (A.1)

Proof.

P
[
∃ω ∈ Ω : Yω > g−1

ω {F−1
supΩ gω(Yω)(1− α)}

]
,

= P
[
∃ω ∈ Ω : gω(Yω) > F−1

supΩ gω(Yω)(1− α)
]
,

= P

[
sup

Ω
gω(Yω) > F−1

supΩ gω(Yω)(1− α)

]
,

= 1− P

[
sup

Ω
gω(Yω) ≤ F−1

supΩ gω(Yω)(1− α)

]
,

= 1− FsupΩ g(Yω)

[
F−1

supΩ gω(Yω)(1− α)
]
,

= 1− (1− α),

= α.
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Corollary 1. Simultaneous credible bands for the ∆tc
k (x) may be constructed as

∆tc
k (x) ∈ E[∆tc

k (x)]±
√
W ∗α Var[∆tc

k (x)] (A.2)

where W ∗α is the 1− α quantile of the distribution of

W = sup
(x,k,(t,c))

{∆tc
k (x)− s∆tc

k (x)}2

Var[∆tc
k (x)]

.

Proof. Let ω = (x, k, (t, c)), Yω =
{

∆tc
k (x)− E

[
∆tc
k (x)

]}2
, and gω(Yω) = Yω/E[Yω].

By Theorem 1 we have

P
[
∃(x, k, t, c) :

{
∆tc
k (x)− E

[
∆tc
k (x)

]}2
> W ∗α Var

[
∆tc
k (x)

]]
= α.

The validity of (A.2) follows immediately.

Lemma 1. If g in Theorem 1 is such that the gω(Yω) identically distributed, then

P
[
Yω > g−1

ω

{
F−1

supΩ gω(Yω)(1− α)
}]

(A.3)

is constant over Ω.

Proof. Apply gω to both sides of the relation.

Theorem 2. If gω = FYω for all ω ∈ Ω then

P
[
Yω > g−1

ω

{
F−1

supΩ gω(Yω)(1− α)
}]

(A.4)

is constant over Ω.

Proof. If gω = FYω for all ω ∈ Ω then gω(Yω) ∼ Uniform(0, 1) for all ω ∈ Ω, and

Lemma 1 yields the result.
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Theorem 3. Suppose Y is a possibly infinite-dimensional vector of random variables

indexed by ω ∈ Ω. Let FYω(y) = P[Yω ≤ y], GYω(y) = P[Yω < y], F−1
Yω

(p) =

inf {y ∈ R : p ≤ FYω(y)}, and G−1
Yω

(p) = sup {y ∈ R : p ≥ GYω(y)}. If W ∗α is the 1− α
quantile of the distribution of

W = sup
ω∈Ω

max {1− FYω (Yω) , GYω (Yω)} , (A.5)

then

P
[
∀ω ∈ Ω, F−1

Yω
(1−W ∗α) ≤ Yω ≤ G−1

Yω
(W ∗α)

]
≥ 1− α. (A.6)

Proof.

P
[
∀ω ∈ Ω, F−1

Yω
(1−W ∗α) ≤ Yω ≤ G−1

Yω
(W ∗α)

]
,

= P

[
sup
ω∈Ω

max
{
F−1
Yω

(1−W ∗α)− Yω, Yω −G−1
Yω

(W ∗α)
}
≤ 0

]
,

= P

[
sup
ω∈Ω

max
{
FYω

[
F−1
Yω

(1−W ∗α)
]
− FYω(Yω), GYω(Yω)−GYω

[
G−1
Yω

(W ∗α)
]}
≤ 0

]
,

= P

[
sup
ω∈Ω

max {1−W ∗α − FYω(Yω), GYω(Yω)−W ∗α} ≤ 0

]
,

= P

[
sup
ω∈Ω

max {1− FYω(Yω), GYω(Yω)} ≤W ∗α
]
,

= P [W ≤W ∗α] ,

= 1− α.
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A.2 Theorems for sequential testing procedures

Theorem 4 (Batch Step-Down Testing Procedure). Let C be the restricted covariate

space, θ be the vector of all model parameters, and Hz = {θ : ∆(z) = δ}. The following

testing procedure controls the familywise Type I error rate at level α.

1 Let M = 1, T0 = C, and R0 = ∅ be the starting iteration, base test set, and base

rejection set, respectively;

2 repeat

3 Let TM = TM−1 \ RM−1 = C \
(⋃

m<M Rm

)
be the new test set;

4 Construct the two-sided 1−α restricted covariate space simultaneous confidence

band (2.10) for ∆(z) over all z ∈ TM ;

5 Let RM be the set of z for which the band does not contain zero;

6 Increment M ;

7 until RM = ∅;

8 Reject Hz for all z ∈
⋃
m<M Rm.

The proof of Theorem 4 relies on showing that the batch step-down testing procedure

is a closed testing procedure [31]. Let H be a collection of hypotheses closed under

intersection: Hz,Hζ ∈ H implies Hz∩Hζ ∈ H. Furthermore, let φz be an α-level test of

Hz so that φz = 1 if and only if it rejects Hz locally (independent of other hypotheses

and tests). Then a closed testing procedure is a procedure which rejects Hz if and only

if φζ = 1 for all ζ such that Hζ ⊆ Hz ∈ H. Any closed testing procedure controls

the family-wise Type I error rate at level α because in order to reject at least one true

hypothesis the procedure must reject the intersection of all true hypotheses, which is

tested by an α-level test.

Proof of Theorem 4. Let HU =
⋂
z∈U Hz be the hypothesis that ∆(z) = δ for all z ∈ U,

and φU be the local test of that hypothesis which rejects if and only if exists an z ∈ U

for which the band does not include δ. We first show that if φU = 1 and the band over
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U did not include δ at z ∈ V ⊂ U, then φV = 1. Suppose φU = 1 and the band over U

did not contain δ at z ∈ V ⊂ U. Let W ∗α,U be the 1− α quantile of the distribution of

WU = sup
z∈U

∥∥s∆(z)−∆(z)
∥∥√

Var
[

s∆(z)
] .

Note that since V ⊂ U, we have WV ≤WU, and thus W ∗α,V ≤W ∗α,U. Then the band over

V is nowhere wider than the band over U, and since the band over U did not contain

zero at z, the band over V also does not contain zero at z, so φV = 1.

We now show that when a point z is marked for rejection, it is rejected by all

intersections inH involving Hz. Let z ∈ R1, i.e., a point whose null-effect hypothesis was

marked for rejection on the first iteration. Since Hz was marked on the first iteration,

there is at least one z (itself) in C for which the band does not include zero; thus

φC = 1. Additionally, any other hypothesis in H which is an intersection involving Hz

is a hypothesis HV with z ∈ V ⊂ C, and thus is also rejected by the corresponding local

test. Thus Hz may be globally rejected.

Consider now z ∈ RM , M > 1. Every ζ ∈ C \TM has previously had its hypothesis

globally rejected, thus any local test of a hypothesis for a set containing that point has

already been locally rejected. Therefore we need only consider hypotheses HU such that

U ⊆ TM . The argument for points in R1 may then be reused, replacing C with TM .

Thus the procedure is a closed testing procedure, and therefore controls the family-wise

Type I error rate at α.

Remark 1. Theorem 4 applies to posterior credible bands insofar as they correspond to

the confidence band via the asymptotic joint normality of the posterior of ∆(z).



Appendix B

Expanded simulation results

B.1 Additional simulations for basic credible subgroups

B.2 Comparison of parametric, semiparametric, and non-

parametric regression
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Truth Method Total
Coverage

D
Coverage

S
Coverage

Pair
Size

Heterog.
Tests

γ = (0, 0, 0) PB 0.46 0.46 1.00 0.75 0.18
RCS 0.88 0.88 1.00 0.95 0.18
HPD 0.91 0.91 1.00 0.97 0.18
PW 0.43 0.43 1.00 0.59 0.18

γ = (0, 0, 1) PB 0.82 0.87 0.94 0.25 1.00
RCS 0.94 0.95 0.99 0.34 1.00
HPD 0.96 0.97 0.99 0.38 1.00
PW 0.46 0.67 0.77 0.13 1.00

γ = (0, 1, 0) PB 0.55 0.55 0.99 0.55 0.45
RCS 0.87 0.87 1.00 0.78 0.45
HPD 0.91 0.91 1.00 0.82 0.45
PW 0.47 0.47 0.97 0.39 0.45

γ = (0, 1, 1) PB 0.77 0.84 0.93 0.25 1.00
RCS 0.92 0.93 0.98 0.35 1.00
HPD 0.95 0.96 0.99 0.38 1.00
PW 0.41 0.61 0.76 0.14 1.00

γ = (1, 0, 0) PB 0.99 1.00 0.99 0.25 0.18
RCS 1.00 1.00 1.00 0.50 0.18
HPD 1.00 1.00 1.00 0.56 0.18
PW 0.97 1.00 0.97 0.13 0.18

γ = (1, 1, 1) PB 0.73 0.79 0.94 0.24 1.00
RCS 0.92 0.93 0.99 0.33 1.00
HPD 0.94 0.95 1.00 0.35 1.00
PW 0.43 0.62 0.80 0.15 1.00

Near-Linear PB 0.64 0.86 0.77 0.62 0.56
RCS 0.92 0.97 0.95 0.84 0.56
HPD 0.94 0.98 0.97 0.87 0.56
PW 0.38 0.74 0.61 0.42 0.56

Threshold PB 0.76 0.85 0.90 0.44 0.92
RCS 0.93 0.95 0.98 0.61 0.92
HPD 0.95 0.96 0.99 0.65 0.92
PW 0.42 0.65 0.74 0.24 0.92

Non-Monotone PB 0.20 0.41 0.70 0.73 0.18
RCS 0.80 0.82 0.96 0.93 0.18
HPD 0.85 0.86 0.98 0.95 0.18
PW 0.16 0.30 0.60 0.56 0.18

Table B.1: Coverage and model fit statistics for 80% credible subgroup pairs (n=40).
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Truth Method Total
Coverage

D
Coverage

S
Coverage

Pair
Size

Heterog.
Tests

γ = (0, 0, 0) PB 0.45 0.45 1.00 0.75 0.18
RCS 0.88 0.88 1.00 0.95 0.18
HPD 0.92 0.92 1.00 0.97 0.18
PW 0.43 0.43 1.00 0.59 0.18

γ = (0, 0, 1) PB 0.79 0.85 0.93 0.14 1.00
RCS 0.94 0.95 0.99 0.19 1.00
HPD 0.96 0.97 0.99 0.21 1.00
PW 0.45 0.64 0.77 0.08 1.00

γ = (0, 1, 0) PB 0.53 0.53 1.00 0.41 0.77
RCS 0.89 0.89 1.00 0.58 0.77
HPD 0.92 0.92 1.00 0.62 0.77
PW 0.53 0.53 1.00 0.31 0.77

γ = (0, 1, 1) PB 0.76 0.83 0.92 0.14 1.00
RCS 0.92 0.94 0.98 0.20 1.00
HPD 0.95 0.96 0.99 0.22 1.00
PW 0.45 0.63 0.76 0.08 1.00

γ = (1, 0, 0) PB 1.00 1.00 1.00 0.04 0.18
RCS 1.00 1.00 1.00 0.17 0.18
HPD 1.00 1.00 1.00 0.21 0.18
PW 1.00 1.00 1.00 0.02 0.18

γ = (1, 1, 1) PB 0.76 0.84 0.92 0.16 1.00
RCS 0.93 0.95 0.98 0.22 1.00
HPD 0.96 0.96 0.99 0.24 1.00
PW 0.44 0.64 0.77 0.09 1.00

Near-Linear PB 0.68 0.92 0.76 0.50 0.89
RCS 0.90 0.98 0.92 0.68 0.89
HPD 0.93 0.99 0.94 0.72 0.89
PW 0.37 0.77 0.55 0.29 0.89

Threshold PB 0.78 0.87 0.91 0.26 1.00
RCS 0.93 0.95 0.98 0.35 1.00
HPD 0.96 0.97 0.99 0.39 1.00
PW 0.42 0.65 0.72 0.14 1.00

Non-Monotone PB 0.20 0.34 0.77 0.70 0.18
RCS 0.77 0.79 0.97 0.92 0.18
HPD 0.83 0.84 0.98 0.94 0.18
PW 0.14 0.24 0.68 0.53 0.18

Table B.2: Coverage and model fit statistics for 80% credible subgroup pairs (n=100).
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Truth Method Total
Coverage

D
Coverage

S
Coverage

Pair
Size

Heterog.
Tests

γ = (0, 0, 0) PB 0.43 0.43 1.00 0.76 0.21
RCS 0.88 0.88 1.00 0.95 0.21
HPD 0.91 0.91 1.00 0.97 0.21
PW 0.41 0.41 1.00 0.59 0.21

γ = (0, 0, 1) PB 0.79 0.84 0.95 0.07 1.00
RCS 0.96 0.96 0.99 0.10 1.00
HPD 0.97 0.97 0.99 0.11 1.00
PW 0.56 0.66 0.87 0.04 1.00

γ = (0, 1, 0) PB 0.48 0.48 1.00 0.34 1.00
RCS 0.92 0.92 1.00 0.48 1.00
HPD 0.93 0.93 1.00 0.48 1.00
PW 0.54 0.54 1.00 0.29 1.00

γ = (0, 1, 1) PB 0.77 0.82 0.95 0.07 1.00
RCS 0.95 0.96 0.99 0.10 1.00
HPD 0.96 0.97 0.99 0.11 1.00
PW 0.54 0.64 0.87 0.04 1.00

γ = (1, 0, 0) PB 1.00 1.00 1.00 0.00 0.21
RCS 1.00 1.00 1.00 0.00 0.21
HPD 1.00 1.00 1.00 0.00 0.21
PW 1.00 1.00 1.00 0.00 0.21

γ = (1, 1, 1) PB 0.77 0.82 0.94 0.08 1.00
RCS 0.93 0.94 0.99 0.12 1.00
HPD 0.96 0.96 1.00 0.13 1.00
PW 0.52 0.65 0.87 0.05 1.00

Near-Linear PB 0.72 0.97 0.74 0.26 1.00
RCS 0.87 0.99 0.87 0.36 1.00
HPD 0.92 1.00 0.92 0.39 1.00
PW 0.37 0.88 0.43 0.14 1.00

Threshold PB 0.79 0.86 0.93 0.12 1.00
RCS 0.96 0.96 0.99 0.17 1.00
HPD 0.97 0.98 0.99 0.18 1.00
PW 0.50 0.66 0.80 0.07 1.00

Non-Monotone PB 0.15 0.18 0.90 0.61 0.22
RCS 0.61 0.62 0.98 0.86 0.22
HPD 0.70 0.70 0.99 0.89 0.22
PW 0.08 0.10 0.82 0.43 0.22

Table B.3: Coverage and model fit statistics for 80% credible subgroup pairs (n=350).
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Truth Method Sensitivity
of D

Specificity
of D

Sensitivity
of S

Specificity
of S

γ = (0, 0, 0) PB − 0.87 − 0.12
RCS − 0.97 − 0.02
HPD − 0.98 − 0.01
PW − 0.79 − 0.20

γ = (0, 0, 1) PB 0.76 0.99 1.00 0.74
RCS 0.67 1.00 1.00 0.64
HPD 0.64 1.00 1.00 0.61
PW 0.87 0.98 0.99 0.84

γ = (0, 1, 0) PB 0.68 0.83 1.00 0.05
RCS 0.38 0.95 1.00 0.01
HPD 0.33 0.96 1.00 0.00
PW 0.79 0.71 0.99 0.13

γ = (0, 1, 1) PB 0.81 0.99 1.00 0.64
RCS 0.75 1.00 1.00 0.52
HPD 0.72 1.00 1.00 0.48
PW 0.89 0.97 0.99 0.78

γ = (1, 0, 0) PB 0.75 − 1.00 −
RCS 0.50 − 1.00 −
HPD 0.44 − 1.00 −
PW 0.87 − 1.00 −

γ = (1, 1, 1) PB 0.87 0.97 1.00 0.39
RCS 0.82 0.99 1.00 0.25
HPD 0.80 0.99 1.00 0.21
PW 0.92 0.93 0.99 0.59

Near-Linear PB 0.28 0.98 0.96 0.41
RCS 0.13 1.00 1.00 0.19
HPD 0.10 1.00 1.00 0.15
PW 0.45 0.95 0.92 0.58

Threshold PB 0.56 0.99 0.99 0.54
RCS 0.40 1.00 1.00 0.38
HPD 0.35 1.00 1.00 0.34
PW 0.74 0.97 0.98 0.72

Non-Monotone PB 0.21 0.81 0.94 0.07
RCS 0.06 0.95 0.99 0.01
HPD 0.04 0.96 1.00 0.01
PW 0.33 0.71 0.89 0.14

Table B.4: Diagnostic properties of 80% credible subgroup pairs (n=40).
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Truth Method Sensitivity
of D

Specificity
of D

Sensitivity
of S

Specificity
of S

γ = (0, 0, 0) PB − 0.88 − 0.13
RCS − 0.98 − 0.02
HPD − 0.98 − 0.02
PW − 0.80 − 0.21

γ = (0, 0, 1) PB 0.87 1.00 1.00 0.85
RCS 0.82 1.00 1.00 0.79
HPD 0.81 1.00 1.00 0.78
PW 0.92 0.99 0.99 0.90

γ = (0, 1, 0) PB 0.93 0.83 1.00 0.08
RCS 0.78 0.96 1.00 0.01
HPD 0.73 0.97 1.00 0.01
PW 0.96 0.73 1.00 0.16

γ = (0, 1, 1) PB 0.89 0.99 1.00 0.80
RCS 0.85 1.00 1.00 0.73
HPD 0.84 1.00 1.00 0.71
PW 0.93 0.98 0.99 0.87

γ = (1, 0, 0) PB 0.96 − 1.00 −
RCS 0.83 − 1.00 −
HPD 0.79 − 1.00 −
PW 0.98 − 1.00 −

γ = (1, 1, 1) PB 0.91 0.99 1.00 0.61
RCS 0.88 1.00 1.00 0.49
HPD 0.87 1.00 1.00 0.45
PW 0.95 0.96 0.99 0.74

Near-Linear PB 0.39 0.99 0.98 0.58
RCS 0.24 1.00 0.99 0.40
HPD 0.20 1.00 1.00 0.35
PW 0.60 0.98 0.94 0.75

Threshold PB 0.75 0.99 1.00 0.73
RCS 0.66 1.00 1.00 0.64
HPD 0.62 1.00 1.00 0.60
PW 0.86 0.98 0.98 0.83

Non-Monotone PB 0.26 0.79 0.95 0.06
RCS 0.08 0.94 1.00 0.01
HPD 0.06 0.96 1.00 0.00
PW 0.39 0.67 0.91 0.11

Table B.5: Diagnostic properties of 80% credible subgroup pairs (n=100).
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Truth Method Sensitivity
of D

Specificity
of D

Sensitivity
of S

Specificity
of S

γ = (0, 0, 0) PB − 0.88 − 0.12
RCS − 0.98 − 0.02
HPD − 0.98 − 0.02
PW − 0.80 − 0.21

γ = (0, 0, 1) PB 0.94 1.00 1.00 0.92
RCS 0.91 1.00 1.00 0.89
HPD 0.91 1.00 1.00 0.88
PW 0.96 0.99 1.00 0.94

γ = (0, 1, 0) PB 1.00 0.81 1.00 0.12
RCS 1.00 0.97 1.00 0.02
HPD 1.00 0.98 1.00 0.01
PW 1.00 0.76 1.00 0.17

γ = (0, 1, 1) PB 0.95 1.00 1.00 0.90
RCS 0.93 1.00 1.00 0.86
HPD 0.92 1.00 1.00 0.85
PW 0.97 0.99 1.00 0.93

γ = (1, 0, 0) PB 1.00 − 1.00 −
RCS 1.00 − 1.00 −
HPD 1.00 − 1.00 −
PW 1.00 − 1.00 −

γ = (1, 1, 1) PB 0.96 0.99 1.00 0.80
RCS 0.94 1.00 1.00 0.72
HPD 0.93 1.00 1.00 0.70
PW 0.97 0.98 1.00 0.86

Near-Linear PB 0.63 1.00 0.99 0.83
RCS 0.53 1.00 0.99 0.75
HPD 0.49 1.00 1.00 0.72
PW 0.76 1.00 0.96 0.91

Threshold PB 0.89 1.00 1.00 0.86
RCS 0.84 1.00 1.00 0.82
HPD 0.83 1.00 1.00 0.81
PW 0.93 0.99 0.99 0.91

Non-Monotone PB 0.39 0.69 0.99 0.02
RCS 0.15 0.89 1.00 0.00
HPD 0.12 0.92 1.00 0.00
PW 0.55 0.55 0.96 0.06

Table B.6: Diagnostic properties of 80% credible subgroup pairs (n=350).
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Data
Generating
Mechanism

Model Coverage
Sensitivity

of D
Step-Down
Efficiency

Null Effect Linear 0.88 − −
Spline 0.93 − −
BART 1.00 − −

Binary Linear 0.92 0.51 1.04
Spline 0.95 0.13 1.04
BART 0.96 0.25 1.12

Linear Linear 0.89 0.72 1.04
Spline 0.97 0.32 1.07
BART 1.00 0.12 1.08

Near-Linear Linear 0.87 0.37 1.08
Spline 0.98 0.07 1.10
BART 0.98 0.01 1.06

Threshold Linear 0.84 0.40 1.05
Spline 0.97 0.11 1.04
BART 0.97 0.06 1.12

Non-Monotone Linear 0.60 0.07 1.10
Spline 0.96 0.20 1.05
BART 0.88 0.12 1.19

Table B.7: Simulation study results. Operating characteristics of 80% credible sub-
groups with n = 25 patients in each study arm. Struck-through sensitivities indicate
insufficient coverage and should be treated with caution.
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Data
Generating
Mechanism

Model Coverage
Sensitivity

of D
Step-Down
Efficiency

Null Effect Linear 0.86 − −
Spline 0.92 − −
BART 0.99 − −

Binary Linear 0.91 0.81 1.03
Spline 0.95 0.28 1.04
BART 0.96 0.52 1.08

Linear Linear 0.87 0.84 1.03
Spline 0.96 0.60 1.12
BART 1.00 0.50 1.11

Near-Linear Linear 0.81 0.58 1.06
Spline 0.97 0.18 1.15
BART 0.99 0.05 1.16

Threshold Linear 0.76 0.66 1.04
Spline 0.96 0.26 1.05
BART 0.97 0.16 1.08

Non-Monotone Linear 0.46 0.29 1.08
Spline 0.96 0.40 1.06
BART 0.91 0.21 1.12

Table B.8: Simulation study results. Operating characteristics of 80% credible sub-
groups with n = 50 patients in each study arm. Struck-through sensitivities indicate
insufficient coverage and should be treated with caution.
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Data
Generating
Mechanism

Model Coverage
Sensitivity

of D
Step-Down
Efficiency

Null Effect Linear 0.89 − −
Spline 0.92 − −
BART 1.00 − −

Binary Linear 0.90 0.92 1.02
Spline 0.94 0.41 1.05
BART 0.97 0.67 1.07

Linear Linear 0.88 0.87 1.02
Spline 0.97 0.71 1.10
BART 1.00 0.65 1.08

Near-Linear Linear 0.78 0.67 1.05
Spline 0.98 0.29 1.18
BART 1.00 0.16 1.22

Threshold Linear 0.69 0.79 1.03
Spline 0.98 0.39 1.07
BART 0.99 0.33 1.07

Non-Monotone Linear 0.32 0.41 1.09
Spline 0.97 0.54 1.06
BART 0.95 0.34 1.09

Table B.9: Simulation study results. Operating characteristics of 80% credible sub-
groups with n = 75 patients in each study arm. Struck-through sensitivities indicate
insufficient coverage and should be treated with caution.



Appendix C

Software Code

C.1 credsubs.R

if (!require(ff)) {

warning("Package ’ff’ required to use function ’credsubs.level’",

"with option z.store=’disk’")

}

to.Fx <- function(x) {

# A faster version of ecdf(x)(x)

rank(x, ties.method="max")/length(x)

}

sim.cred.band <- function(params, design=NULL,

FUN=function(x, params) { params %*% t(x) },

est.fun=mean,

var.fun=sd,

return.w=TRUE,

cred.level=0.95,

method=c(’asymptotic’, ’quantile’),

verbose=TRUE) {

117
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# Validate and shape input

params <- as.matrix(params)

M <- nrow(params)

if (is.null(design)) {

N <- ncol(params)

nonpar <- TRUE

} else {

design <- data.matrix(design)

N <- nrow(design)

nonpar <- FALSE

}

method <- method[1]

sim.cred.band <- list(upper=rep(NA, N),

lower=rep(NA, N),

est=rep(NA, N),

est.fun=est.fun,

var=rep(NA, N),

var.fun=var.fun,

cred.level=cred.level,

method=method,

W.crit=NA)

class(sim.cred.band) <- ’sim.cred.band’

est <- var <- numeric(N)

if (method == ’asymptotic’) {

m <- numeric(N)

s <- numeric(N)

} else if (method == ’quantile’) {} else {

warning("method must be one of ’asymptotic’ or ’quantile’. Given: ",

method)

return(sim.cred.band)

}
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# Compute W

W <- rep(-Inf, M)

# This is iterative to avoid storing an NxM matrix (or two)

for (i in 1:N) {

if (verbose && (i %% 100 == 0)) {

cat(i, "/", N, "\n")

}

if (nonpar) {

fx <- params[, i]

} else {

fx <- FUN(design[i, , drop=FALSE], params)

}

est[i] <- est.fun(fx)

var[i] <- var.fun(fx)

if (method == ’asymptotic’) {

m[i] <- mean(fx)

s[i] <- sd(fx)

z <- abs(fx - m[i]) / s[i]

} else {

Fx <- to.Fx(fx)

Gx <- 1 - to.Fx(-fx)

z <- pmax(1-Fx, Gx)

}

W <- pmax(W, z)

}

if (return.w) {

sim.cred.band$W <- W

}
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# Estimate W.crit

W.crit <- quantile(W, cred.level, type=1)

sim.cred.band$W.crit <- W.crit

# Compute bounds

if (method == ’asymptotic’) {

sim.cred.band$upper <- m + W.crit * s

sim.cred.band$lower <- m - W.crit * s

} else {

if (nonpar) {

bounds <- apply(params, 2, function(fx) {

upper <- -quantile(-fx, prob=1-W.crit, type=1)

lower <- quantile(fx, prob=1-W.crit, type=1)

c(lower, upper)

})

} else {

bounds <- apply(design, 1, function(x, params) {

fx <- FUN(t(x), params)

upper <- -quantile(-fx, prob=1-W.crit, type=1)

lower <- quantile(fx, prob=1-W.crit, type=1)

c(lower, upper)

}, params=params)

}

sim.cred.band$lower <- bounds[1, ]

sim.cred.band$upper <- bounds[2, ]

}

sim.cred.band$est <- est

sim.cred.band$var <- var

sim.cred.band

}
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credsubs <- function(params, design=NULL,

FUN=function(x, params) { params %*% t(x) },

cred.level=0.95,

threshold=0,

method=c(’asymptotic’, ’quantile’),

step.down=TRUE,

verbose=TRUE) {

# Validate and shape input

params <- as.matrix(params)

M <- nrow(params)

if (is.null(design)) {

N <- ncol(params)

nonpar <- TRUE

} else {

design <- data.matrix(design)

N <- nrow(design)

nonpar <- FALSE

}

if (verbose) {

cat("Computing credible subgroups over", N, "points using",

M, "posterior draws.\n")

}

method <- method[1]

credsubs <- list(exclusive=rep(NA, N),

inclusive=rep(NA, N),

cred.level=cred.level,

threshold=threshold,

method=method,

step.down=step.down,

W.crit=NA)

class(credsubs) <- ’credsubs’
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if (method == ’asymptotic’) {

m <- numeric(N)

s <- numeric(N)

} else if (method == ’quantile’) {} else {

warning("method must be one of ’asymptotic’ or ’quantile’. Given: ",

method)

return(credsubs)

}

credsubs$exclusive <- rep(FALSE, N)

credsubs$inclusive <- rep(TRUE, N)

test.set <- 1:N

reject.set <- numeric(0)

repeat {

test.set <- setdiff(test.set, reject.set)

if (nonpar) {

test.par <- test.set

} else {

test.par <- 1:ncol(params)

}

sim.cred.band <- sim.cred.band(params=params[, test.par, drop=FALSE],

design=design[test.set, , drop=FALSE],

FUN=FUN,

cred.level=cred.level,

method=method,

verbose=verbose)

over.set <- test.set[sim.cred.band$lower > threshold]

under.set <- test.set[sim.cred.band$upper < threshold]

credsubs$exclusive[over.set] <- TRUE

credsubs$inclusive[under.set] <- FALSE

reject.set <- union(over.set, under.set)
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if (verbose) {

cat(length(test.set), "hypotheses tested,",

length(reject.set), "rejected.\n")

}

if (!step.down ||

length(reject.set) == 0 ||

length(test.set) == length(reject.set)) {

break

}

}

credsubs

}

credsubs.level <- function(params, design=NULL,

FUN=function(x, params) { params %*% t(x) },

threshold=0,

method=c(’asymptotic’, ’quantile’),

W.probs=NULL,

step.down=TRUE,

verbose=TRUE,

z.store=c("ram", "recompute", "disk")) {

# Validate and shape input

params <- as.matrix(params)

M <- nrow(params)

if (is.null(design)) {

N <- ncol(params)

nonpar <- TRUE

} else {

design <- data.matrix(design)

N <- nrow(design)

nonpar <- FALSE

}
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if (verbose) {

cat("Finding maximum credible level at", N, "points using",

M, "posterior draws.\n")

}

method <- method[1]

if (method == ’asymptotic’) {

m <- numeric(N)

s <- numeric(N)

} else if (method == ’quantile’) {

Fxt <- Gxt <- numeric(N)

} else {

warning("method must be one of ’asymptotic’ or ’quantile’. Given: ",

method)

return(sim.cred.band)

}

if (z.store[1] == "ram") {

z.store <- matrix(0, nrow=M, ncol=N)

recompute.z <- FALSE

} else if (z.store[1] == "disk") {

if (!require(ff)) {

warning("Package ’ff’ required to use function ’credsubs.level’",

"with option z.store=’disk’")

return(sim.cred.band)

}

z.store <- ff(0, dim=c(M, N))

recompute.z <- FALSE

} else if (z.store[1] == "recompute") {

recompute.z <- TRUE

} else {

warning("option z.store must be one of ’ram’, ’recompute’, or ’disk’.",

"Given: ", z.store[1])

return(rep(NA, N))

}
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W <- rep(-Inf, M)

max.i <- numeric(M)

m <- s <- est <- numeric(N)

q <- sgn <- rep(NA, N)

if (!is.null(W.probs)) {

W.quantile <- matrix(Inf, nrow=length(W.probs), ncol=N)

rownames(W.quantile) <- paste0(W.probs * 100, "%")

}

test.set <- 1:N

for (i in 1:N) {

if (verbose & i %% 100 == 0) {

cat("prep", i, "/", N, "\n")

}

if (nonpar) {

fx <- params[, i]

} else {

fx <- FUN(design[i, , drop=FALSE], params)

}

if (method == ’asymptotic’) {

m[i] <- mean(fx)

s[i] <- sd(fx)

est[i] <- m[i]

z <- abs(fx - m[i]) / s[i]

} else {

est[i] <- median(fx)

Fxt[i] <- mean(fx <= threshold)

Gxt[i] <- mean(fx < threshold)

Fx <- to.Fx(fx)

Gx <- 1 - to.Fx(-fx)

z <- pmax(1-Fx, Gx)

}
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if (!recompute.z) {

z.store[, i] <- z

}

sgn <- ifelse(est > threshold, 1,

ifelse(est < threshold, -1, 0))

max.i <- ifelse(z > W, i, max.i)

W <- pmax(W, z)

}

first.max.i <- max.i

prev.q <- 0

recompute.m <- numeric(0)

while (length(test.set) > 0) {

if (verbose & (N - length(test.set)) %% 1 == 0) {

cat("compute", N - length(test.set), "/", N,

"recompute", length(recompute.m), "\n")

}

# Update W values

if (length(recompute.m) > 0) {

if (recompute.z) {

if (method == ’asymptotic’) {

rcm <- recompute.m

} else {

rcm <- 1:M

}

if (nonpar) {

fx <- params[rcm, test.set, drop=FALSE]

} else {

fx <- t(FUN(X[test.set, , drop=FALSE],

params[rcm, , drop=FALSE]))

}
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if (method == ’asymptotic’) {

Z <- t(abs(t(fx) - m[test.set]) / s[test.set])

} else { # method == quantile

Fx <- t(apply(fx[recompute.m, , drop=FALSE], 1,

function(x, m) {

colMeans(t(t(m) <= x))

}, m=fx))

Gx <- 1-t(apply(-fx[recompute.m, , drop=FALSE], 1,

function(x, m) {

colMeans(t(t(m) <= x))

}, m=-fx))

Z <- pmax(1-Fx, Gx)

}

} else {

Z <- z.store[recompute.m, test.set, drop=FALSE]

}

max.i[recompute.m] <- apply(Z, 1, function(z) { test.set[which.max(z)] })

W[recompute.m] <- apply(Z, 1, max)

}

# Update empirical distribution of W

FW <- ecdf(W)

if (!is.null(W.probs)) {

W.quantile[, test.set] <- quantile(W, probs=W.probs)

}

# Compute adjusted p-values

if (method == ’asymptotic’) {

lower <- 1 - FW((m[test.set] - threshold) / s[test.set])

upper <- 1 - FW((threshold - m[test.set]) / s[test.set])

} else {

lower <- 1-FW(1 - Fxt[test.set])

upper <- 1-FW(Gxt[test.set])

}
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p <- pmin(lower, upper)

if (step.down) {

lowest.p.i <- test.set[which.min(p)]

q[lowest.p.i] <- prev.q <- max(prev.q, p[which(test.set == lowest.p.i)])

} else {

q <- p

break

}

# these are the MCMC draws of W that change

# when the selected covariate point is removed

recompute.m <- which(max.i == lowest.p.i)

test.set <- test.set[which(test.set != lowest.p.i)]

i <- N - length(test.set)

if (verbose && i %% 100 == 0) {

cat("step", i, "/", N, "(", length(recompute.m), "/", M, ")\n")

}

}

max.cred <- 1-q

attr(max.cred, "sign") <- sgn

if (!is.null(W.probs)) {

attr(max.cred, "W.quantile") <- W.quantile

}

attr(max.cred, "threshold") <- threshold

attr(max.cred, "step.down") <- step.down

attr(max.cred, "first.max.i") <- first.max.i

class(max.cred) <- "credsubs.level"

max.cred

}
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build.shiny.object <- function(credsubs.level, cov.space, location=".") {

# Validate input

stopifnot(length(credsubs.level) > 0)

stopifnot(is.numeric(credsubs.level))

stopifnot(!is.null(attr(credsubs.level, "sign")))

stopifnot(length(credsubs.level) == length(attr(credsubs.level, "sign")))

stopifnot(is.data.frame(cov.space))

stopifnot(length(credsubs.level) == nrow(cov.space))

# Save file

cat(paste0("Saving shiny object as ",

location, "/credsubs-shiny.RData", "\n"))

cat("Place file in same directory as shiny app.\n")

save(credsubs.level, cov.space,

file=paste0(location, "/credsubs-shiny.RData"))

}
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C.2 Shiny Calculator App

C.2.1 server.R

library(shiny)

shinyServer(function(input, output) {

# should contain data frame ’cov.space’ with rows representing

# tested points in covariate space,

# and vector ’credsubs.level’ of maximum credible level at which

# each covariate point is rejected, along with attribute ’sign’

# which is a vector indicating whether the covariate point would be

# in the exclusive group (1) or the complement of the inclusive group (-1)

load("credsubs-shiny.RData")

for (j in 1:length(cov.space)) {

if (!is.factor(cov.space[, j]) &&

(is.null(attr(cov.space[, j], "scaled:scale")) ||

is.null(attr(cov.space[, j], "scaled:center")))) {

attr(cov.space[, j], "scaled:scale") <- 1

attr(cov.space[, j], "scaled:center") <- 0

}

}

output$predictors <- renderUI({

inputs <- list()

for (predictor in colnames(cov.space)) {

if (is.factor(cov.space[, predictor])) {

inputs[[predictor]] <-

selectInput(predictor,

predictor,

unique(cov.space[, predictor])

)



131

} else {

inputs[[predictor]] <-

selectInput(predictor,

predictor,

unique(cov.space[, predictor]) *

attr(cov.space[, predictor], "scaled:scale") +

attr(cov.space[, predictor], "scaled:center")

)

}

}

inputs

})

output$status <- renderText({

matches <- 1:nrow(cov.space)

for (predictor in names(input)) {

if (is.factor(cov.space[, predictor])) {

matches <-

intersect(matches,

which(cov.space[, predictor] == input[[predictor]]))

} else {

matches <-

intersect(matches,

which(cov.space[, predictor] *

attr(cov.space[, predictor], "scaled:scale") +

attr(cov.space[, predictor], "scaled:center") ==

input[[predictor]]))

}

}
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if (length(matches) == 0) {

return("Predictor combination untested.")

} else {

return(paste0("A conclusion of <b>",

ifelse(attr(credsubs.level, "sign")[matches] == 1,

"<font color=\"#00AA00\">benefit</font>",

"<font color=\"#AA0000\">no benefit</font>"),

"</b> for patients with the above predictive covariate profile",

"may be made at a maximum credible level of <b>",

round(credsubs.level[matches] * 100, digits=2),

"%</b>. ",

"At higher credible levels, no conclusion may be drawn."))

}

})

})

C.2.2 ui.R

shinyUI(fluidPage(

titlePanel("Credible Subgroups Calculator"),

uiOutput("predictors"),

h3("Result"),

htmlOutput("status")

))



Appendix D

Acronyms and Symbols

D.1 Acronyms

ATE average treatment effect

PTE personalized treatment effect

AD Alzheimer’s disease

SOC standard of care

DRate rate of decline

HPD highest posterior density

RCS restricted covariate space

PB purely Bayesian

BART Bayesian additive regression trees
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D.2 Symbols

a, . . . , z, α, . . . , ω scalars

a, . . . ,z,α, . . . ,ω vectors

A, . . . ,Z matrices

A, . . . ,Z sets

A, . . . ,Z collections of sets

x prognostic covariate vector

z predictive covariate vector

t treatment indicator

Y outcome

µZ probability law for Z

E expected value

∆ average treatment effect

∆(z) personalized treatment effect at z

B benefiting subgroup

D exclusive credible subgroup

S inclusive credible subgroup
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