
Development of Modal Analysis for the Study of Global
Modes in High Speed Boundary Layer Flows

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Joseph Michael Brock

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Graham V. Candler, Advisor

May, 2017



c© Joseph Michael Brock 2017

ALL RIGHTS RESERVED



Acknowledgements

The work presented in this dissertation represents the study, work, and experience over

the past 8 years as a student at the University of Minnesota. The majority of my success

is owed to the many individuals, whom I have had the pleasure of meeting and working

with over the course of “extended” graduate career. I would like to take a moment to

recognize them now.

I must first thank Doctor Darrel F. Untereker. His taking a chance on me as a young

intern at Medtronic, and continued mentoring was most certainly the transitioning point

in my life. I arrived at Medtronic with an interest in science, and left with an obsession.

I cannot thank him enough for having faith and pushing me to continue my studies,

leading to my application to graduate school. I owe my appreciation for science and

research to his influence.

I must thank my advisor, Professor Graham Candler, for also taking a chance on

me so early on in my academic career. His influence, expertise, and will to always be

learning has been inspirational over the years. I am hopeful that this work lives up to

his expectations and am truly honored to have an association with such a successful

and respected expert.

Much of this work was motivated by the many discussions with Professor Mihailo

Jovanovic. His expertise in the complicated mathematical concepts and his willingness

to guide me through the details to the big picture implications of this work is very

i



appreciated. I am very grateful for all of his help and guidance.

I must thank Professor Joseph Nichols for his incredible amount of expertise and

enthusiasm for this work. The many one-on-one sessions and countless emails show

his professionalism and greatness as a teacher. I am grateful for his seemingly endless

patience and continued help throughout all of this work.

I consider Doctor Pramod Subbareddy to be one of personal advisors, and a great

friend. I am very appreciative of his tenacity in research and compassion in personal

relationships. I owe much of my success along the way to his teachings and insight. I

will forever appreciate the academic help and personal breaks which helped me keep my

sanity.

I am grateful to the people in Graham’s research group at the University of Min-

nesota. The many students that are part of Graham’s research group are some of

the best, brightest, and most friendly people I have ever had the pleasure of working

with. I must thank; Ioannis Nompelis, Matt Bartkowicz, Ross Wagnild, Dave Peterson,

Travis Drayna, Heath Johnson, Pietro Ferrero, Vladimyr Gidzak, Erik Tylczak, Loretta

Trevino, Kyle Boe, Jason Bender, Alan Schwing, Aaron Neville, Stephanie Jenson, Ross

Chaudhry, Sidharth GS, Anand Kartha, and Jeffrey Komives. A special thank you to

Derek Dinzl for all of the late nights, early lunches, and countless hours discussing life

and transition. Finally, to my best friend throughout my entire graduate career, Eric

Stern, I must extend a very special thank you. From the early days of hipster living and

pizza, to the later lessons in billiards, wine, politics, and life, I have always appreciated

and been thankful for our friendship. I have great respect for your professionalism and

greatness. Here is to many more years of friendship with all of you.

Finally, and most importantly, I would like to thank my family. To my father and

roll model, Michael Brock; my mother, an unyielding pillar of support, Laura Brock;

my sister and greatest ally, Heather Brock, I thank all of you. This could not have been

done without you. To my amazing wife, Stefanie, for her endless patience, support, and

ii



my constant motivation. My family is my greatest gift and I love you all.

iii



Dedication

For my amazing wife, Stefanie.

iv



Abstract

Boundary layer transition for compressible flows remains a challenging and unsolved

problem. In the context of high-speed compressible flow, transitional and turbulent

boundary-layers produce significantly higher surface heating caused by an increase in

skin-friction. The higher heating associated with transitional and turbulent boundary

layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper

understanding of the mechanisms that drive transition is crucial to the successful design

and operation of the next generation spacecraft.

Currently, prediction of boundary-layer transition is based on experimental efforts

and computational stability analysis. Computational analysis, anchored by experimen-

tal correlations, offers an avenue to assess/predict stability at a reduced cost. Classi-

cal methods of Linearized Stability Theory (LST) and Parabolized Stability Equations

(PSE) have proven to be very useful for simple geometries/base flows. Under certain

conditions the assumptions that are inherent to classical methods become invalid and

the use of LST/PSE is inaccurate. In these situations, a global approach must be

considered.

A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D),

has been developed and implemented into the unstructured solver US3D. A discussion

of the methodology and implementation will be presented. Two flow configurations

are presented in an effort to validate/verify the approach. First, stability analysis for

a subsonic cylinder wake is performed and results compared to literature. Second, a

supersonic blunt cone is considered to directly compare LST/PSE analysis and results

generated by GMAUS3D.
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Chapter 1

Introduction

1.1 The Transitional Boundary Layer

A primary concern for hypersonic vehicle design is aerodynamic heating the vehicle

experiences due to the skin friction imposed by the attached near wall region known

as the boundary layer. The levels of skin friction for a turbulent boundary layer are

higher compared to laminar boundary layers, resulting in an increase of the heat flux

at the surface of the vehicle. The mechanisms responsible for transition in high-speed

compressible flow are not fully understood. Due to a poor understanding of the many

mechanisms by which a boundary layer may become turbulent, many engineering designs

of thermal protection systems (TPS) employ conservative margins. This results in

additional weight added to the vehicle, which affects the payload margins, stability

characteristics in flight, as well as fuel required during ascent and descent. Proper

understanding and characterization of the mechanisms responsible for laminar-turbulent

transition will help counter the negative side-effects on high-speed vehicle design. For

engineering purposes, the boundary layer can be characterized as one of three states;

laminar, turbulent, or transitional.

1
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The laminar boundary layer is aptly named due to fluid having several layers (lam-

ina) of constant flow values (i.e. density, momentum, energy, etc) in the wall normal

direction with fairly uniform values in the stream- and span-wise direction. Because the

flow paths are separated into lamina, any exchange of flow quantities (such as mass or

momentum) occurs only through molecular diffusion.

In contrast to the laminar boundary layer, turbulent boundary layers exchange mass

and momentum through molecular diffusion as well as mixing produced by chaotic

motion of eddies (vortical fluid structures) within the boundary layer. Large scale

mixing distributes high-momentum fluid down towards the wall, increasing the wall-

normal gradients significantly. Small scale mixing dissipates energy into heat. The

effect of large and small scale mixing produces a boundary layer that contains hot high

gradient fluid near the wall, which ultimately increases the surface heating.

The state between a laminar and turbulent boundary layer is called transitional.

The transitional boundary layer is characterized by the sporadic nature in which a

laminar profile is disrupted due to the presence of disturbances. The augmentation of

the laminar profile is due to disturbances amplifying to high enough energy levels to

affect the steady flow. Once the steady-state is augmented and the boundary layer profile

begins to deviate from that of a laminar one, the disturbances and augmented laminar

state begin to interact non-linearly. Given sufficient interaction time and/or distance,

interactions between the augmented boundary layer profile and amplified disturbances

may continue to increase in strength and breakdown to turbulence will occur.
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Figure 1.1: Schematic of different environmental forcing types

Figure 1.1, taken from Zhong et al. [7], shows a graphical representation of a blunt

body in supersonic flow in the presence of free stream and surface disturbance forc-

ing. The region upstream of the solid surface, is dominated by a strong bow shock.

Close to the wall, a boundary layer develops due to the effect of a “no slip” condition

on the individual fluid molecules and their interaction with the surface. Under super-

sonic/hypersonic conditions, the interaction of free stream disturbances with the stand-

ing bow shock produces entropy, vorticity, and acoustic waves which radiate inwards

towards the surface. These disturbance are often referred to as natural disturbances.

Additionally, surface roughness on the vehicle can contribute to the disturbance forc-

ing. Surface roughness may be characterized as either isolated or distributed. Isolated

roughness elements correspond to individual surface features, typically on the order of

the boundary layer height (such as bolts, mold lines, etc), while distributed roughness
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describes unpolished rough surfaces (such as paint coatings, post ablated surfaces, etc).

For small disturbances, the initial interaction with the boundary layer can result in a

preferred disturbance type and frequency to be selected and enter the boundary layer

region. This is known as the receptivity process and is the first stage in the many paths

by which a boundary layer can become turbulent.

1.2 Paths to Transition

Morkovin was the first to simplify all the processes by which transition my occur into

a graphical road map [8]. The road map was later edited to include transient growth

[9]. The graphical representation of the many paths to transition is shown in Figure

1.2. The top portion of the graphic represents disturbance forcing. The energy of the

incoming disturbances can range from small to large levels (depicted by the shaded

arrow from left to right). As disturbances are introduced to the boundary layer, a selec-

tion process known as receptivity takes place. Receptivity is a physical mechanism by

which a preferred disturbance shape and frequency is selected and enters the boundary

layer. Due to the convective nature of high-speed boundary layers, the disturbance will

travel downstream. The disturbance may amplify or decay depending on the features

of the underlying base flow1 and disturbance type. The individual ways by which a

disturbance may amplify is represented by the individual paths a-e.

1 The term base flow does not refer to the mean flow. The term mean flow is reserved only to
describe time averaged states
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Figure 1.2: Graphic showing the various paths to transition

Path A represents disturbances that are governed by eigenmode 2 growth (1st mode,

2nd mode, Görtler instability, and crossflow instability). These disturbances are able to

2 The term eigenmode growth corresponds to the fact that the amplification or decay of the dis-
turbance is governed the solutions to an eigenvalue problem. The disturbance shapes themselves are
eigenvectors or eigenmodes.



6

amplify from infinitesimal amplitudes to amplitudes on the order of the underlying base

flow quantities. The influence of these disturbances may lead to an augmentation of the

base flow profile. The new, augmented, base state may develop additional instabilities

(referred to as secondary instability) that allow additional disturbances to amplify. The

amplification of the disturbance to large enough levels to augment the base state and

nonlinearly interact with each other can result in the breakdown of laminar profile. The

flow eventually develops into a fully turbulent boundary layer shortly thereafter.

Paths B-D represent special cases of disturbance amplification known as transient

growth. These disturbances (typically ones that have higher initial amplitudes com-

pared to the Path A disturbances) may interact with one another (linearly) to cause

brief periods of disturbance energy amplification. Path B represents a passing of the,

now higher in amplitude, disturbances into an unstable region of the flow where their dy-

namics can be described by eigenmode growth. Path C represents the case in which the

energy amplification of the disturbance is significant enough to augment the base flow

profile, resulting in secondary instabilities and nonlinear interactions. Finally, path D

is the first of the bypass mechanisms. Modes that follow this path typically originate in

flows with moderate levels of free stream turbulence. The laminar boundary layer then

contains a weak turbulence spectrum of disturbances, which grow significantly. This

growth occurs fast enough such that mode-mode interactions and secondary instabili-

ties are ‘bypassed’ and the laminar base flow breaks down purely due to the fluctuations

of these disturbances.

Path E represents free stream disturbance levels so large that disturbance amplifi-

cation leads directly to bypass mechanisms. These situations are likely due to strong

free stream turbulence.
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1.3 Historical Overview of Transition Research

The entire history of hydrodynamic stability is vast and can arguably be dated back

to the early drawings of Leonardo De Vinci where he illustrated complex patterns in

the wakes of rocks in a stream. Since that time, many have sought to explain the

dynamic behavior of fluids in all regimes. While there have been many accomplishments,

discoveries, and theory formation/alterations throughout the years, only a brief overview

of a few historical milestones will be given here. For a more thorough explanation of

each of the discoveries, the reader is referred to the cited works within this chapter.

Published work on the study of hydrodynamic stability and transition starts with the

early experimental studies of Reynolds[10]. The results of these experiments produced

one of the first non-dimensional parameters (the Reynolds number: Re) intended as a

criterion of stability. Flows whose Reynolds number were below some critical value were

deemed stable while flows that exceeded the critical value were characterized as unstable.

The non-dimensional parameter (Re) is still used today as a broad characterization of

flow regime and many non-dimensional parameters are related to or based off of the

Reynolds number.

Early numerical analysis of hydrodynamic stability relied on heavily simplified as-

sumptions of the underlying base flow in addition to asymptotic behavior of the dynam-

ics [11]. The first formulation of the viscous stability problem was by Orr in 1907 [12],

followed by Sommerfeld in 1908 [13]. The result of which led to the famous Orr-Som-

merfeld equations which describe locally parallel incompressible viscous flow. However,

it would take over 60 years for numerical analysis using the Orr-Sommerfeld equations

to first be performed by Orzag in 1971 [14]. The Orr-Sommerfeld equations provided

new insight which led to many physical discovers such as the prediction and discover of

Taylor rolls in 1929[15].
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Numerical analysis continued to increase in complexity and the discovery of fun-

damental mechanisms followed. The first theoretical prediction of viscous instabilities

for incompressible boundary layers were known as Tollmien-Schlichting waves, named

after Tollmein 1929 [16] and Schlichting 1933 [17]. Experimental observation of T-S

waves didn’t occur until 1962 by Klebanoff et al. [18]. The extension of T-S waves and

discovery of additional disturbances in the compressible boundary layer is attributed to

the work by Mack in 1963 [19].

The fist derivation of the mathematical framework for spatial stability analysis was

performed by Gaster in 1964 [20]. In 1976 Joseph defined bounds on maximum energy

growth within boundary layers [21].

Secondary instabilities, as they relate to T-S waves, were discovered by Orszag

and Patera in 1983 [22]. Elliptical instabilities were discovered by Bayly [23], and

Pierrehumbert [24] in 1986.

Absolute instabilities were first described by the works of Huerre and Monkewitz in

1990 [25].

Finally, the derivation of the Parabolized Stability Equations (PSE) was put forth

in 1992 by Bertolotti [26] and first applied by Chang and Malik in 1994 [27]. The use of

the PSE has since become very popular in the stability analysis of high speed boundary

layers for simple geometries. Today, PSE and linear stability analysis (LST) are the

main approaches when preforming stability analysis.

1.4 Motivation for Current Research

Given the long history and advancements in the study of hydrodynamic stability, there

is still much to learn about the vast field of boundary layer transition. Much of the

computational analysis is performed using the classical approaches of LST and PSE.
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These computational tools, when used alongside experimental/flight observations, pro-

vide excellent a priori characterization of high speed boundary layers. While these

approaches are computationally efficient, and have been verified and validated against

many different flow regimes, the underlying mathematical assumptions can break down

resulting in poor or incorrect predictions.

Transition prediction using LST and PSE rely on the eN method[28]. An overview

of the eN method is available by Reed et al.[29]. The total growth of a disturbance “N -

factor”, as computed by LST/PSE, is compared to an empirically obtained quantity

(typically based on some set of experiments). When the growth exceeds the values from

experimental observations, transition is said to occur.

The study of boundary layer transition performed by Gosse [1] et al. on the Hy-

personic International Flight Research Experimentation 5 (HIFiRE 5) shows a specific

example where LST and PSE can produce poor stability estimations. Figure 1.3 shows

the base flow contours of the elliptic cone geometry for HIFiRE 5. The bottom edge

of the cone is referred to as the attachment line, while the top of the image (near the

symmetry plane) is referred to as the centerline. Due to the asymmetry in the azimuthal

direction, the fluid flow around the cone produces a three-dimensional boundary layer

profile. This profile results in the production of a “crossflow” profile. At the leading

edge of the geometry the boundary layer is thin and attached, while at the centerline of

the geometry, the boundary layer is lifted and often separated due to the coalescence of

fluid from the influence of crossflow velocity profiles pushing fluid toward the centerline.
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Figure 1.3: International Flight Research Experimentation 5 (HIFiRE 5) geometry with

contours of fluid density. Gosse [1]

Gosse et al. performed LST and PSE analysis on the leading edge as well as the

centerline of the geometry. Figures 1.4 (a)-(d) show the results for LST and PSE

analysis for the leading edge and centerline planes. The red, orange, and purple lines

represent the results obtained by LST as estimations for the maximum amplification

for a given frequency. The contours are the solutions obtained by PSE. The black

line in each plot is the maximum N -factor frequency curve. This curve represents the

envelope over all frequencies and is the total N -factor. What is important to note is the

relative smoothness in the solutions between (a) the leading edge as compared to (b)

the centerline plane. This is due to the lifted boundary layer providing difficulty for the

solver due to a breaking of the underlying assumptions inherent in the mathematical

approaches.
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(a) LST results for leading edge (b) LST results for centerline

(c) PSE results for leading edge (d) PSE results for centerline

Figure 1.4: LST and PSE analysis for HIFiRE 5 21km case. [1]

It was concluded by Gosse et al. that although the geometry is a relatively simple

configuration, the resulting three-dimensionality of the boundary layer provided a diffi-

cult flow configuration resulting in inaccurate/unreliable stability estimations in certain

regions of the flow.

The difficulty of these classical methods to provide accurate/reliable estimations
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motivates the development of more advanced tools to compliment the current method-

ologies. Space vehicles are inherently three-dimensional and possibly more complex

than the configuration shown previously. With increasing computational power, ad-

vancements in large sparse linear solvers, and the current capabilities of unstructured

parallel Navier-Stokes solvers, we can develop fully three-dimensional linear stability

analysis tools that will provide accurate/reliable linear stability estimation for complex

three-dimensional flows.

1.5 Overview of Dissertation

• Chapter 2 presents an overview and background into the basics of linear stability

analysis for fluid systems. The Navier-Stokes equations for compressible flow are

introduced. The Navier-Stokes equations are the mathematical basis for fluid

dynamics, and are thus the basics of hydrodynamic stability. Modal analysis

is first introduced. Assumptions and consequences of the approach are discussed.

The overview of the several analysis procedures under the modal analysis approach

is introduced and relevant literature is provided. The chapter is completed with a

discussion of two solution methodologies that are prominent in literature, one of

which is implemented in the code developed in this work.

• Chapter 3 the finite volume formulation is introduced. Formulation for inviscid

and viscous spatial fluxes along with explicit and implicit time integration is cov-

ered. A brief discussion of the code used to obtain base flows, US3D, follows

and relevant numerics are discussed. Next, Linear analysis of the Navier-Stokes

operator is introduced. A method on how to obtain the linear operator from a

non-linear base flow, known as matrix extraction, using parallel perturbation is

introduced. Finally, the global modal analysis solver, GMUAS3D, developed to

study three-dimensional complex flows is discussed.
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• Chapter 4 presents the results to verify the computation tools. First, a subsonic

cylinder case is introduced. This configuration is considered to be a canonical

case for global stability analysis. The results generated by GMAUS3D and their

comparison to literature are discussed. Next, a supersonic blunt cone is consid-

ered. This case enables a direct comparison of global methods against classical

LST/PSE approaches. The chapter ends with a discussion of the implication of

global methods and how they can be used as a predictive tool.

• Finally, Chapter 5 discusses the findings from Chapter 4. Conclusions about the

performance of the codes developed are presented and future work is proposed.



Chapter 2

Modal Stability Analysis

Small amplitude disturbances, when superimposed onto a steady base state, can amplify

or decay. The amplification of these disturbances can become significant such that they

begin to interact with the underlying steady base state, resulting in augmentation or

transition of the steady laminar boundary layer profile. Several mathematical techniques

have been employed to characterize the behavior of small amplitude disturbances. One

of the most widely used approaches relies on the assumption of “normal mode” behavior

of the disturbances. The result of this assumption is an eigenvalue system which is solved

to produce eigenvalues and eigenvectors. The measure of instability is determined by

the sign and magnitude of the eigenvalue. This amplification/decay is assumed to have

an exponential time dependence, resulting in what is classically known as Lyapunov

stability. The associated eigenvector is then a shape of the disturbance.

This chapter presents an overview of the analysis techniques used to study boundary

layer stability within a linear analysis context. The first section focuses on the lineariza-

tion of the governing equations. Next, modal analysis is introduced with a discussion

of the various assumptions and associated terminology common in literature. Finally,

various solution methodologies are presented and discussed.

14
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2.1 Linear Analysis

Linear analysis is concerned with the dynamics of small perturbations that are superim-

posed onto a steady or time periodic flow known as the base state. The amplitudes of the

disturbance fluctuations are significantly small such that their behavior is governed by

a linear equation. To derive the governing equation for small amplitude perturbations,

we first start with an initial value problem that describes the nonlinear system,

∂Q

∂t
= MQ. (2.1)

Here, M represents a nonlinear operator that acts on the vector of variables Q.

The operator M may represent any nonlinear global operator such as Burger’s equa-

tion, the nonlinear wave equation, or the Navier-Stokes equations. In the case of the

Navier-Stokes equations, dynamics of small perturbations that are superimposed upon

a base flow will be governed by the Linearized Navier-Stokes Equations (LNSE). Linear

stability analysis first starts with the decomposition of the vector Q into a basic state

(QB) plus a perturbation (q),

Q(x, t) = QB(x) + ε q(x, t). (2.2)

The vector x represents the vector of space-coordinates (x, y, z), t is time, and ε << 1

scales the perturbations to be much smaller than the base flow quantities. This ensures

that products of q will be negligibly small, resulting in a linear system of equations

for the dynamics of small amplitude perturbations. Substituting 2.2 into the nonlinear

governing equation 2.1, subtracting off the base flow terms, and neglecting the nonlinear

terms (order ε2), results in an initial value problem for a disturbance q,

∂q

∂t
= A(QB) q. (2.3)
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The operator A(QB) depends only on the base state QB, while the vector q rep-

resents the vector of disturbances. Equation 2.3 may be considered a linear initial-

boundary-value-problem (IBVP). From here, linear analysis requires a base state. With

sufficient resolution, the analysis of stability can be obtained by running a set of initial

conditions and tracking the energy amplification over time. Although a DNS resolution

of the linear dynamics will give the most insight into individual disturbances, the fea-

sibility of performing a computation for many initial conditions becomes cumbersome

and computationally expensive. Assessment of the behavior of the global operator A

can be extracted through modal analysis.

2.2 Governing Equations

The flow fields considered within this thesis are best described by thermally and calor-

ically perfect air within the continuum regime. Specifically, the compressible Navier-

Stokes equations best approximate the Mach numbers of which we are interested.

2.2.1 Compressible Navier-Stokes Equations

Below are the relevant conservation equations using standard summation convention.

Continuity

∂ρ

∂t
+

∂

∂xj
[ρuj ] = 0. (2.4)

Momentum

∂ρui
∂t

+
∂

∂xj
[ρuiuj ] = − ∂p

∂xi
+

∂

∂xj
[τij ] . (2.5)
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Energy

∂E

∂t
+

∂

∂xj
[(E + p)uj ] = − ∂qi

∂xi
+

∂

∂xj
[uiτij ] . (2.6)

In these equations ρ is the fluid density, ρui is the momentum in the i-th direction,

and E is the total energy of the fluid. The variable p defines the pressure of the fluid.

Using Stokes assumption (λ = −2
3µ), the viscous stress, τij , is defined as,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(2.7)

where Sutherland’s Law is used to define the viscosity.

µ = µref
T

3
2

T + S
. (2.8)

Here the constants are defined as µref = 1.458×10−6, and S = 110.3. Using Fourier’s

Law of heat conduction the heat transfer variable q, and is given as

qi = −κ ∂T
∂xi

, (2.9)

where κ is related to the Prandtl number by Pr = cpµ/κ. For most conditions in air, the

Prandtl number may be given as a constant of 0.72. Closure of the system of equations

is given with an ideal gas assumption, p = ρRT , where R is the specific gas constant.

2.2.2 Linearized Euler Equations

The previous section introduced the Navier-Stokes equations for a perfect gas. The

behavior of small amplitude disturbances, which govern linear stability behavior, is

obscured within the full non-linear Navier-Stokes equations. In order to extract the
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governing equations, we must linearize the above set of equations. This is done by in-

troducing Eq. 2.2 into the Navier-Stokes equations (Eq. 2.4 - 2.6, with associated consti-

tutive relations). The result is a set of equations known as the Linearized Navier-Stokes

Equations (LNSE). To show a simple example, we will linearize the Euler equations

(inviscid Navier-Stokes equations) with respect to the variables (ρ, u, v, w,E). It is im-

portant to note that the choice of variables to linearize with respect to will have certain

consequences in the implementation of boundary conditions and numerical switches.

Linearized Continuity

∂ρ′

∂t
+

∂

∂xj

[
ρ′ūj

]
+

∂

∂xj

[
ρ̄u′j
]

= 0. (2.10)

Linearized Momentum

∂ρ′ūi + ρ̄u′i
∂t

+
∂

∂xj

[
ρ′ūiūj + ρ̄u′iūj + ρ̄ūiu

′
j

]
= − ∂p

′

∂xi
. (2.11)

Linearized Energy

∂e

∂t
+

∂

∂xj

[
(e+ p) ūj (E + P )u′j

]
= 0. (2.12)

We can write an explicit relation between the pressure and energy with the assump-

tion of perfect gas by

P = (γ − 1)

(
E − 1

2
ρ (UiUi)

)
.

The linearization of the equation then gives a closure to the above equations,

p′ = (γ − 1)

(
e− 1

2
ρ (ūiūi))− ρ̄

(
u′iūi)

))
.
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2.3 Modal Analysis of the Navier-Stokes Equations

Modal analysis characterizes the behavior of disturbances using eigenvalue analysis. The

scope of the derivations here will focus on the LNSE. The growth of a disturbance is

determined when an eigenvalue crosses the complex half plane (from a negative value

to positive). The derivation of modal analysis given in this chapter will follow a similar

definition as given by Juniper et al. [30]. Starting from Eq. 2.3, we first make an

assumption of the physical characteristics of the underlying base flow which will allow

the exploitation of spatial invariances and reduce the size of the corresponding eigenvalue

system to be solved. The vector q can be expressed in “normal mode” form,

q (x, t) = q̂ (x∗) exp [Θ (x∗, t)]

The resulting transformation is called a modal assumption. The vector q̂ is called

the shape function. This is the spatial shape of the disturbances that are resolved by the

computational domain. The term in the exponential, Θ, is known as the phase function.

The phase function assumes harmonic behavior of disturbances in directions for which

the base flow is assumed to be spatially invariant and thus not resolved numerically.

This is similar to a Fourier decomposition. The main point of this assumption is the

separation of the space and time dependance of the disturbances. Depending on the

character of the underlying base flow, the choice for Θ produces eigenvalue problems

that vary in numerical accuracy as well as computational cost.
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(A) q (x, y, z, t) = q̂ (y) eı(αx+βz−ωt) LST (Local)

(B) q (x, y, z, t) = q̂ (ξ, y) eı(
∫
α(ξ)dξ+βz−ωt) PSE (Semi-Local)

(C) q (x, y, z, t) = q̂ (y, z) eı(αx−ωt) BiGlobal (Global)

(D) q (x, y, z, t) = q̂ (ξ, y, z) eı(
∫
α(ξ)dξ−ωt) PSE3D (Global)

(E) q (x, y, z, t) = q̂ (x, y, z) e−ıωt TriGlobal (Global)

Table 2.1: Hierarchy of the normal mode assumption. (A) local stability analysis (often

referred to as simply LST analysis). (B) Parabolized Stability Equations in 2D. (C)

BiGlobal Stability Analysis. (D) Parabolized Stability Equations in 3D. (E) TriGlobal

Stability Analysis. NOTE: The choice of coordinate space directions (x, y, z) need not

be exactly as stated here.

The progression from local to global analysis shown in Table 2.1 follows from the

simplest form of linear analysis (A), to the most general form (E). Depending on the

assumptions made for the underlying base flow, the stability analysis can be categorized

as either ‘local’ or ‘global’ analysis approaches.

2.3.1 Local Approaches

The first two approaches shown in Table 2.1 are considered to be ‘local’ analysis ap-

proaches. The term local refers to the assumption of locally parallel or weakly non-

parallel flow for the base flow quantities. These assumptions result in a restriction for

the direction in which the disturbances are allowed to propagate. Spatially invariant

directions are then represented by spatial wave numbers.
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Local Stability Analysis

The top level in Table 2.1, represents the most drastic assumptions of the underlying

base flow. This approach is considered to be the most common approach and was

popularized by Mack [31]. Here the base flow is assumed to be spatially invariant in two

coordinate directions. The assumption here is that the dynamics of the disturbance in

the two spatially invariant directions may be assumed to be periodic and described by

wave numbers, while in the third spatial direction, a computational mesh is used to fully

resolve the spatial structure. This approach is known as Linear Stability Theory and is

often referred to in literature as LST. The advantage of this method is the reduction of

the spatial behavior of the disturbance to a single coordinate direction, which in turn

results in large computational savings. Application of LST has been successfully applied

to flows which exhibit locally parallel behavior such as channel flows, and shear layers.

However, the assumptions that go along with this type of analysis can become in-

valid. In the case of fast growing boundary layers, separated/re-circulatory flow, or base

flows which exhibit strong three-dimensionality.

Parabolized Stability Equations

To account for the case of one weakly varying spatial direction as is seen for bound-

ary/shear layers, the introduction of “semi-local” analysis (method B) provides a more

appropriate representation. By augmenting the Navier-Stokes equations through the as-

sumptions of downstream propagating waves, a set of equations are introduced known

as the parabolized stability equations. Similar to LST, these equations consist of a fast

oscillatory part and a shape function that varies slowly in the streamwise direction.

This decomposition results in a system that is parabolic in the streamwise direction

which is amenable to marching solutions. For a detailed explanation of the underlying

mathematical approach, the reader is referred to the work of Herbert et al [32].
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The application of the parabolized stability equations has provided computationally

efficient results for boundary stability estimation. The work of Balakumar et al. [2]

show good agreement with DNS results.

(a) DNS Results (b) Comparisons between DNS and PSE

Figure 2.1: PSE analysis compared to DNS results for a flat plate boundary layer.

(Balakumar et al.[2])

2.3.2 Global Approaches

Approaches (C)-(D) are considered global approaches. The term global refers to at least

two spatial directions in which the disturbance is computationally resolved. Depending

on which approach is considered, the final spatial direction can be assumed spatially

invariant, slowly varying, or can be fully resolved. These global approaches are referred

to as BiGlobal, PSE3D, and TriGlobal analysis, respectively. An brief overview of the

global approaches is described below.
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BiGlobal

The first of the global approaches is known as BiGlobal stability. The term BiGlobal

refers to the shape function being dependent on two spatial directions. This results in a

plane for which the disturbance must be computationally resolved. The disturbances are

able to propagate in two dimensions (characteristics allowing), while the third dimension

is prescribed a wave number. This approach has been successfully implemented for a

range of flows.

(a) BiGlobal planes (b) Three-dimensional reconstruction of unstable

mode

Figure 2.2: BiGlobal stability analysis performed by Theofilis et al. for HIFiRE 5 [3]

PSE3D

Similar to the extension from LST to PSE, PSE3D extends the BiGlobal approach to

contain a weakly varying spatial direction normal to the BiGlobal plane. This allows

marching solutions of entire BiGlobal planes in the downstream direction, which allows

for a coupling of convecting disturbance quantities. While this method allows cou-

pling of disturbances in the two-dimensional plane, the marching methodology restricts

the disturbances to only be coupled in the downstream direction (i.e., preventing any
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upstream traveling waves).

Figure 2.3: PSE3D stability analysis performed by Theofilis et al.[4] for counter rotating

vortex pair

TriGlobal

The most general approach to modal analysis is known as TriGlobal analysis. TriGlobal

analysis makes no assumption of spatial invariance for the underlying base flow. Instead,

the shape functions are fully resolved by the computational mesh. The resulting eigen-

values describe only the long-time dependence of the disturbances (i.e. amplification or

decay) as well as oscillations (frequencies).



25

(a) Base flow (b) Three-dimensional unstable mode

Figure 2.4: TriGlobal analysis performed by Gianneti et al. [5]

2.4 Solution Methodology

2.4.1 QR Decomposition

The most widely used method for computing eigenvalues is the QR algorithm [33]. The

name of the algorithm comes from the use of an orthogonal matrix ‘Q’ and a triangular

matrix ‘R’. While the QR method will work, the convergence can be slow. Instead we

will outline the algorithm which depends on the shifted QR method. The QR method

itself is the second part of a two-step process. Given a standard eigenvalue problem

defined by,

λx = Ax, (2.13)

where A ∈ Cn×n. The first step is to bring the matrix A into upper Hessenberg form

(i.e. a matrix with zeros below the first subdiagonal). Introducing a unitary matrix V
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and a Hessenberg matrix H,

AV = VH, (2.14)

where V ∈ Cn×n and H ∈ Cn×n. This can be done using a Householder technique.

The second step is to iteratively apply QR decompositions on H to reduce the lower

diagonal elements to zero. The result is then a system that is converged to Schur form,

AQ = QU. (2.15)

The matrix A is thus decomposed into a unitary matrix Q and an upper Hessenberg

matrix U. The diagonal entries of U contain the eigenvalues of A.

While this method results in the exact extraction of the eigenvalues of the operator

A, the cost of the Q-R decomposition can be prohibitively expensive to perform. The

total work required for the standard Q-R decomposition is O(n3) flops. For large prob-

lems (matrices exceeding dimensions n ≈ 105), direct methods cannot be applied and

one must resort to iterative techniques.

2.4.2 Arnoldi Method

Alternative to the direct method of QR, one may employ an iterative technique such

as the Krylov based approach known as the Arnoldi Method [34]. The Arnoldi method

is considered an iterative technique and can be thought of as a truncated or partial

reduction of matrix A to Hessenberg form. This method makes use of the stabilized

Gram-Schmidt procedure for a small subset of m vectors, where m << n for a matrix

A ∈ Cn×n

AVm = VmHm + rme
T
m (2.16)
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Again, our global operator is sill A ∈ Cn×n, while now we express the m-dimensional

orthonormal basis Vm = [v1,v2, ...,vm] as Vm ∈ Cn×m. The upper Hessenberg matrix

is also truncated Hm ∈ Cm×m. The terms on the right represent the residual vector,

rm ∈ Cm×1, and the unit vector eTm.

Algorithm 1 The m-step Arnoldi Iteration

1: Let A ∈ Fn×n.

2: q1 = x/‖x‖;

3: z = Aq1 (Provided by the user);

4: α1 = q∗1z;

5: r1 = w − α1q1;

6: Q1 = [q1];

7: H1 = [α1]

8: for j = 1, ...,m− 1 do

9: βj := ‖rj‖; qj+1 = rj/βj ;

10: Qj+1 := [Qj ,qj+1]; Ĥj :=

 Hj

βje
T
j

 ∈ F(j+1)×j ;

11: z = Aqj (Provided by the user);

12: h := Q∗j+1z; rj+1 := z−Qj+1h;

13: HJ+1 :=
[
Ĥj ,h

]
14: end for



Chapter 3

Numerical Methods

3.1 The Finite Volume Method

We first begin with Eqs. 2.4-2.6 equations in vector form. Let U be the vector of con-

served variables and the convective, (·)c, and viscous, (·)v, flux vectors be; Fc, Gc, Hc,

Fv, Gv, Hv. The vector form of the governing equations becomes

∂Ui
∂t

+
∂Fc
∂x

+
∂Gc
∂y

+
∂Hc

∂z
=
∂Fv
∂x

+
∂Gv
∂y

+
∂Hv

∂z
, (3.1)

where the vectors are defined as

U =



ρ

ρu

ρv

ρw

ρE


,

28
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Fc =



ρu

ρuu+ p

ρuv

ρuw

(ρE + p)u


, Gc =



ρv

ρvu

ρvv + p

ρvw

(ρE + p) v


, Hc =



ρw

ρwu

ρwv

ρww + p

(ρE + p)w



Fv =



0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx


, Gv =



0

τyx

τyy

τyz

uτyx + vτyy + wτyz − qy


,

Hv =



0

τzx

τzy

τzz

uτzx + vτzy + wτzz − qz


.

Combining the terms into a single vector function F (U) as

~F (U) = (Fc − Fv)~i+ (Gc −Gv)~j + (Hc −Hv)~k, (3.2)

we can rewrite Eq. 3.1 in a more compact form:

∂Ui
∂t

+∇ · ~F (U) = 0. (3.3)

The finite volume method discretizes space into small control volumes. The change
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in the solution vector U is then described by fluxes across the surface of the control

volume. To derive the finite volume form used in US3D, we first start by taking Eq. 3.3

and integrating over an arbitrary control volume. The resulting expression is known as

an integral form.

∫
V

∂Ui
∂t

dV +

∫
V

∂ ~Fi
∂xj

dV = 0 (3.4)

The integral containing the vector of conserved variables U represents the conserved

variables within a control volume. The integral can instead be rewritten as simply the

volume average of the conserved quantities U → Ū . Whereas flux ~F term is responsible

for changes within the volume. Applying the divergence theorem to this term results in

a change from a volume integral into a surface integral.

Vi
∂Ūi
∂t

+

∮
S

~Fi · ~dS = 0 (3.5)

Here, Vi represents the volume of cell i. Eq. 3.5 now connects internal changes to

the conserved variables U to fluxes across its surface. Discretizing this equation can

be achieved by changing the continuous surface integral across the volume bounding

surface, into a sum of fluxes across discrete faces. Dropping the over-bar, and applying

the volume dependence to the flux term, we get,
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∂Ūi
∂t

+
1

Vi

∑
faces

(
~Fi · ~n

)
~S = 0 (3.6)

where, S = sx′ + sy′ + sz′ is the normal for each face.

Eq. 3.6 is the discretized finite volume form and can be used to solve the Navier-

Stokes equations for arbitrary flow domains that are discretized by discrete elements.

The conserved quantities are stored at the cell centers, whereas the fluxes are computed

across the faces of an fluid element. Note that the discretizing step does not denote

a specific type of volumetric element. This means the equations are valid for various

types of computational elements (i.e. hexahedral, tetrahedral, prisms, or combinations

therein).

3.2 Spatial Fluxes

Spatial Integration is named such because we are extrapolating data stored at the

cell centroid (Ūi), to the cell faces. While there are many spatial integration schemes

available within the finite-volume framework, we will be focusing on the methods used

to generate the base states presented. When evaluating the spatial portion of Eq. 3.6,

the treatment of the viscous and inviscid contributions are handled differently. We will

decompose the flux vector Fi into the inviscid convective flux, Fc, and a viscous diffusion

flux, Fv.

~Fi = ~Fc + ~Fv (3.7)
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3.2.1 Inviscid Fluxes

The inviscid portion of the flux describes convection of fluid in and out of an element.

When the fluid is supersonic, the inviscid portion of the flux is considered hyperbolic

in nature (information travels along characteristics). The method of characteristics has

been a powerful tool to to solving hyperbolic sets of equations in two dimensions. In

the mid-1970s (corresponding to the rapid increase in computing power), characteristic

theory became the basis for many algorithms such as Moretti’s “Lambda” [35], Roe’s

flux difference vector splitting [36], and Steger-Warming flux splitting methods [37].

3.2.2 Steger-Warming Flux Vector Splitting

Steger and Warming performed flux vector splitting based on characteristic theory in

conservation law form. Steger and Warming discovered that the flux vector for the

Euler equations are homogeneous with respect to the vector of conserved quantities. In

terms of the flux vector Fc this means the flux vector can be rewritten exactly using a

Jacobian,

F =
∂F

∂U
U = AU

Here, A represents the Jacobian. Since we are dealing with a characteristic based

method, it is convenient to express the Jacobian in the form of primitive variables. We

first introduce a vector of primitive variables V = (ρ, u, v, w, T ). From here we can

rewrite the Jacobian matrix A as,

A =
∂F

∂U
=
∂F

∂V

∂V

∂U

Next, we introduce the Jacobians representing transformations from conservatives

to primitives, ∂U
∂V , and primitives and conservatives,∂V∂U . Noting the product ∂U

∂V
∂V
∂U = I,

we can premultiply the above expression by unity to get;
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A =
∂F

∂U
=
∂U

∂V

∂V

∂U

∂F

∂V

∂V

∂U

We will represent the transformation matrix to and from primitive space as S = ∂V
∂U

and S−1 = ∂U
∂V , and the central portion as the Matrix M .

A = S−1MS

This is known as a similarity transformation. The similarity matrix, M = ∂V
∂U

∂F
∂V ,

shares the same eigenvalues as A. The final step before splitting is diagonalizing the

matrix M to find its eigenvalues Λ;

M = C−1ΛC

Here, C is the matrix containing columns of eigenvectors associated to the diagonal

matrix Λ of eigenvalues. For the Euler equations, the eigenvalues will only have 3 unique

values; u′, u′ + c, u′ − c, where u′ = u · sx′ + v · sy′ + w · sz′ is the velocity component

normal to the face and c is the speed of sound. Rewriting the inviscid flux now as,

Fc = AU =

(
∂U

∂V
C−1ΛC

∂V

∂U

)
U

We can now performing the splitting of the inviscid flux into “left” (positive) and

“right” (negative) moving components based on the sign of the eigenvalues in Λ.

Fc = F+ + F−

F+ =

(
∂U

∂V
C−1Λ+C

∂V

∂U

)
Ui

F− =

(
∂U

∂V
C−1Λ−C

∂V

∂U

)
Uii
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F+
c and F−c represent the upwinded inviscid flux running parallel and antiparallel

to the face normal, respectively. To first-order, the Steger-Warming method for the

inviscid flux is solved numerically by;

F+
i+ 1

2

= A+
i Ui

F−
i+ 1

2

= A−iiUii

Where A+
i and A−ii are evaluated using the values from the left and right cells of

face i + 1
2 , respectively. This method, while robust, produces a significant amount

of numerical dissipation. An improvement to this method is available through the

Modified Steger Warming approach and produces less dissipation. The formulation is

very similar but with the difference being the values in the Jacobian are evaluated from

the face average;

F+
i+ 1

2

= A+
i+ 1

2

Ui and F−
i+ 1

2

= A−
i+ 1

2

Uii (3.8)

High Order Upwind Flux Schemes

The previous section derived the first order Steger-Warming and Modified Steger-Warming

methods. To achieve high-order, more accurate extrapolations of variables to the face

can be done. This is done by representing the left and right states of the face i+ 1
2 using

a function dependent on a number of cells. For a structured one dimensional grid, this

would look something like,

UL = f (Ui, Ui−1, ...)
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UR = f (Ui, Ui+1, ...)

Replacing the variables Ui and Uii in Eq. 3.8 with UL and UR,

F+
i+ 1

2

= A+
i+ 1

2

UL and F−
i+ 1

2

= A−
i+ 1

2

UR (3.9)

Results in the more general form of the Modified Steger-Warming flux scheme. High-

order MUSCL reconstruction of UL and UR is often used. Alternatively, one can use

gradient-based reconstruction methods which provide an advantage on unstructured

meshes. Higher-order flux methods provide higher resolution around discontinuities, but

also are susceptible to spurious oscillations near such points. It is advisable to invoke

flux limiters to switch between the more dissipative (and stable) first order upwind

schemes near strong discontinuities, and high-order (high resolution) schemes in regions

of importance.

Flux Limiters

Flux limiters provide a means to switch between high-resolution flux reconstruction

schemes such as the popular MUSCL extrapolation, and stable first-order upwind schemes,

to avoid spurious oscillations, thus “limiting” the spatial derivatives to physically realiz-

able and meaningful values. Representing high-resolution fluxes as H and low resolution

fluxes as L, a general flux limiter is implemented as

Fi+ 1
2

= Li+ 1
2
− φ (ri)

(
Li+ 1

2
−Hi+ 1

2

)
, (3.10)

where the limiter φ is a function of the smoothness parameter ri. The smoothness

parameter is a measure of the local rate of change in the gradient, and is evaluated as
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ri =
Ui − Ui−1

Ui+1 − Ui
.

The flux limiter function is constrained to be φ (ri) ≥ 0. When φ = 0, strong

gradients are present in the flow and Eq. 3.10 reverts to the stable low-resolution flux

schemes. Alternatively, when φ = 1, the solution gradients are smooth and a high-

resolution flux can be recovered. There are many ways to define the limiter function

φ and its switching characteristics, with no one limiter proving to work well for all

problems. Examples of some popular limiters are;

φ (r) = max [0,min (1, r)] Min-Mod (symmetric) [36]

φ (r) = max [0,min (2r, 1) ,min (r, 2)] Superbee (symmetric)[36]

φ (r) =
r + |r|
1 + |r|

Van-Leer (symmetric) [38]

(3.11)

The way in which these limiters switch between low and high-resolution schemes

differ. The Min-mod limiter is considered to be the most conservative in switching,

while the Superbee is the most aggressive, and Van-Leer represents a smooth function

somewhere between the two. The importance of their differences will be highlighted in

a later section when discussing their effect on the evaluation of the numerical Jacobian

in relation to stability analysis. All of the above examples are considered symmetric.

Mathematically this means φ(r)
r = φ

(
1
r

)
. Specifically, this means the limiter function

behaves the same for gradients in both directions. A desirable feature of the above

limiters is that they are all second order Total Variation Diminishing (TVD). In order

for a limiter to be TVD, Sweby [6] showed that it must pass through the shaded region

displayed in Figure 3.1. It becomes clear that all formulations of limiter functions must

pass through the φ(1) = 1 point and lie within the shaded region to be considered



37

second order TVD.

φ
=

2r

φ
=
r

φ = 2

φ = 1

Figure 3.1: Admissible limiter region for second-order TVD Sweby [6]

Central Schemes

The previous section introduced the concept of flux limiting to allow high and low-

resolution upwind fluxes to be applied to flows with strong gradients. Flux limiting

allows high-resolution upwind fluxes to be used in smooth regions of the flow to increase

accuracy, and low-resolution upwinded fluxes where stability is required. For both high

and low-resolution upwinded flux schemes, the amount of dissipation is higher than a

corresponding central scheme of the same order. The increased amount of numerical

dissipation requires higher mesh resolution in order to capture important flow physics.

To counter this, we look to augment the fluxes presented in Eq. 3.8. Taking the total

flux to be F = F+ + F− and expanding the Jacobian matrices A+ and A−, we first

write;

F =

(
∂U

∂V
C−1Λ+C

∂V

∂U

)
Ui +

(
∂U

∂V
C−1Λ−C

∂V

∂U

)
Uii (3.12)

We can manipulate the above expression as;
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F =

(
∂U

∂V
C−1Λ+C

∂V

∂U

)
Ui +

(
∂U

∂V
C−1Λ−C

∂V

∂U

)
Uii

=

(
∂U

∂V
C−1 Λ+ + |Λ|

2
C
∂V

∂U

)
Ui +

(
∂U

∂V
C−1 Λ− + |Λ|

2
C
∂V

∂U

)
Uii

=

(
∂U

∂V
C−1ΛC

∂V

∂U

)
Ui + Uii

2
+

(
∂U

∂V
C−1 |Λ|C∂V

∂U

)
Ui − Uii

2

= A
Ui + Uii

2
+ |A| Ui − Uii

2

Similar to the previous section, we now have a flux that is split into a stable but

dissipative upwind portion, Fdissipative = |A| Ui−Uii2 , and a symmetric lower-dissipation

central part, Fsymmetric = AUi+Uii
2 . Both terms may be evaluated separately and added

together with the upwinded portion being modulated by a function α, such that it is

only active in regions where additional dissipation is needed for stability,

F = Fsymmetric + α · Fdissipative.

Here, α is a function that is equal to 1 in regions where dissipation is needed (such

as strong shocks), and equal to 0 in regions where no dissipation is required.

3.2.3 Viscous Fluxes

The viscous portion of the fluxes rely on gradient information at each face. There are

a few ways to compute the gradients at the face. One way would involve storing the

local, unique, stencil for each face and compute the gradients using this stencil at each

time-step. This would be the most accurate, but also the most expensive both in terms

of computational-efficiency and memory overhead. Another way is to leverage the cell-

centered gradients that are used for high-order inviscid methods. These gradients are

then reconstructed to face-centered gradients.

There are many ways to perform gradient reconstruction. Methods such as Green-

Gauss provide an inexpensive way to reconstruct the gradients but are prone to errors
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[39, 40]. Another approach is using Weighted-Least-Squares. This approach solves for

the gradient reconstruction by minimizing the sum of the squares of the differences

between stencil neighbor values and the values extrapolated from the cell of interest to

said neighboring values. A final example of face gradient reconstruction is known as the

deferred correction approach [41] which provides face-centered gradients. This approach

uses the average of the left and right cell gradients in the face normal and face parallel

directions.

3.3 Temporal Integration

Time integration of the governing equations can either be performed in an explicit or

implicit formulation. Explicit time integration limits the time step such that it obeys

the Courant Friedrichs Lewy (CFL) condition to be less than 1. In practical terms, this

means information may not travel faster than characteristic time for a perturbation to

travel from one cell to an adjacent cell. Implicit time integration allows for much larger

time steps, CFL >> 1. Implementation of explicit and implicit schemes have their own

advantages and disadvantages.

3.3.1 Explicit

We first start with the governing Eq. 3.6,

∂Ūi
∂t

+
1

Vi

∑
faces

(
~Fi · ~n

)
~S = 0.

the time derivative may be evaluated to first order as,

∂Ū

∂t
=
Ūn+1 − Ūn

4t
.



40

where n represents the current time and n+ 1 is the future time.

Implementing this expression into the above equation results in the most simple and

cheapest (per iteration) explicit scheme is known as the explicit Euler scheme.

Ūn+1 = Ūn − 4t
Vi

∑
faces

(
~Fni · ~n

)
~S = Ūn + δŪ (3.13)

where δŪ represents the residual (change) to the conserved variables.

For higher-order approximations, one can extend Eq. 3.13 to have several sub-

iterations. A popular method which uses this approach is the Runge-Kutta schemes.

These schemes are more expensive as they require several residual evaluations per time

step.

3.3.2 Implicit

Implicit time integration allows for larger time steps to be taken. This is advantageous

on computational meshes with large ranges in cell size (such as meshes with clustering

near walls to resolve viscous gradients). The large time step comes at the cost of solving

a linear system of equations. The explicit formulation from the previous section can be

made implicit simply by evaluating the fluxes at the n+ 1 time step.

Ūn+1 = Ūn − 4t
Vi

∑
faces

(
~Fn+1
i · ~n

)
~S (3.14)

We must now find a way to evaluate ~Fn+1
i . This will require the inviscid and viscous

parts to again be treated in a separate manner.
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Inviscid Terms

Starting with the flux vector at the future time level, n + 1, we will perform a Taylor

series expansion about a small time perturbation 4t,

~Fn+1
i = ~Fni +

∂ ~Fni
∂Ui

(
Ūn+1
i − Ūni

)
+O (4t)

= ~Fni +Ani δŪi +O (4t)

It is important to note here that the linearized split flux uses the same split Jacobians

A as was seen in Eq. 3.9. This means we can write the flux at face i+ 1
2 as,

~F+n+1
i+ 1

2

= An
+,i+ 1

2

Un+1
i +An−,i+ 1

2

Un+1
ii +An

+,i+ 1
2

δUi +An−,i+ 1
2

δUii

replacing Eq. 3.14 with the above expression and rearrange results in a general form of

the implicit system for the inviscid part of the flow,

δŪ +
4t
Vi

∑
faces

(
An+,fδUi +An−,fδUii

)
· ~nf ~Sf = −4t

Vi

∑
faces

(
Fnf · ~nf

)
~Sf (3.15)

δU is now the implicit update to the conserved variables with i representing the current

cell, and ii the corresponding cell neighbor at face f .

Viscous Terms

Linearization of the viscous fluxes about the state vector is needed to complete the

implicit form of the equation set. As mentioned in the previous viscous spatial fluxes

section, explicit storage of the stencil is not computationally efficient. Instead the

viscous fluxes are computed using one of several different gradient reconstruction meth-

ods. Because of this, the viscous Jacobians are not computed and stored, a fact that

will become important later in the numerical Jacobian. To remedy this, we take an
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approximate form of the viscous Jacobians, M , and assume derivatives that are not in

the face-normal direction can be neglected. We then rewrite the fluxes as,

Fv = M
∂

∂η
V

Where η represents the face-normal direction, and V is the vector of primitive variables.

A change of variables is introduced to map back to the conservative set U resulting in,

Fv = M
∂

∂η

(
∂V

∂U
δU

)
.

The above equation may now be evaluated at the n+ 1 time level creating an implicit

system for the viscous contributions. Adding the viscous portion to Eq. 3.15, the final

form of the general implicit set of equations is expressed as,

δŪ+
4t
Vi

∑
faces

(
An+,fδUi +An−,fδUii +M

∂

∂η
N (δUi − δUii)

)
·~nf ~Sf = −4t

Vi

∑
faces

(
Fnf · ~nf

)
~Sf

(3.16)

where N represents the Jacobian matrix ∂V
∂U . Eq. is now the fully implicit set of the

Navier-Stokes equations. With the addition of a linear solver, and appropriate treatment

of the boundary conditions, the system may be iterated in time with global time-steps

that exceed CFL= 1. Depending on the spatial stencil choice, the resulting linear

operator is often large and sparse allowing for a range of linear solvers to be implemented

for fast and efficient solutions.

3.4 US3D Flow Solver

The solver used to obtain base flows of interest is a three-dimensional unstructured

finite volume Navier-Stokes solver, US3D, that was developed at the University of Min-

nesota [42]. The unstructured implementation allows for a wide variety of complex mesh
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topologies to be used to leverage local refinement and complex geometry simulations.

Spatial integration is computed using either the second or third-order upwind, mod-

ified Steger-Warming (MacCormack and Candler [43]), or low-dissipation kinetic energy

consistent (KEC) method developed by Subbareddy et al [44] flux scheme for the invis-

cid convective portion. Viscous fluxes are formed using a central, second-order accurate

method.

Time integration methods within US3D allow for explicit and implicit solutions.

Explicit temporal integration is available through the first-order Explicit Euler scheme.

Higher order explicit schemes are available in the form of Runge-Kutta schemes and

are up to third-order TVD accurate. Implicit integration is available in either first or

second-order accurate Backwards Difference Formulation (BDF). First and second-order

accurate Crank-Nicholson type scheme is also available.

3.5 STABL software suite

When assessing local and non-local stability, the Stability and Transition Analysis for

hypersonic Boundary Layers (STABL) tool provides an efficient, parallel LST and PSE

solver. Developed at the University of Minnesota by Heath Johnson, STABL is a soft-

ware suite containing grid-generation, 2-D axisymmetric Navier-Stokes solver based on

Data-Parallel Line Relaxation (DPLR) method [45], mean-flow analysis tools, and a PSE

solver (PSE-Chem) which includes the effects of finite-rate chemistry and translational-

vibrational exchange. The power of the STABL suite comes from its ability to quickly

script and perform PSE analysis in parallel allowing for rapid assessment of linear sta-

bility for boundary layers for various axisymmetric and plane symmetric flows. Addi-

tionally, the software has the ability to extract mean-flow profiles to compare computed

results against canonical transition correlations.

A typical workflow using STABL goes as follows. For conical flows, a grid is first
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generated using the suite’s automatic grid generation tools. A base flow is then obtained

using the built-in Navier-Stokes solver. Once a mean flow is obtained, stability analysis

is performed using the PSE-Chem solver. The modular nature of the STABL suite

allows for solutions to be imported from other solvers or more complex flow fields for

stability analysis.

3.6 Global Mode Analysis in US3D (GMAUS3D)

Certain flow configurations break the underlying assumptions that are essential to local

and non-local approaches. For these cases, global mode analysis may be beneficial

in assessing flow stability. In this work, A fully three-dimensional solver has been

developed within the US3D framework for this reason. The software is named Global

Mode Analysis in US3D (GMAUS3D). In addition to the exploiting the underlying data

structures within the US3D solver, additional external libraries have been included for

the solution to large sparse linear systems as well as iteratively solving for eigenvalues.

The result is the ability to solve for global modes on structured, unstructured, and

hybrid mesh topologies. Fig. 3.2 shows an unstructured mesh topology containing both

hexahedral and tetrahedral elements and a global mode obtained on the unstructured

mesh.
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(a) Unstructured Mesh (b) Resolved Unstable Global Mode

Figure 3.2: Unstructured mesh topology for cylinder wake flow.

GMAUS3D solves for the eigenvalues and eigenvectors of the global linear operator

describing the Linearized Navier-Stokes disturbance equations. The global operator can

be constructed in many ways. Building the global operator and associated boundary

conditions explicitly can be cumbersome and prohibitively complex when linearizing

limiters and switches within the non-linear code. Instead one may wish to use the

linearized fluxes and associated face Jacobians to build the linear operator. Referring

back to section 3.3.2, we found that the Modified Steger-Warming fluxes produced

inviscid face Jacobians. This linearization is similar in fashion to what we wish to

derive for the global linear operator, however an issue arises from the approximate

nature of the viscous Jacobians (depending on what form of gradient reconstruction one

uses). Linear stability analysis is highly sensitive to numerical dissipation (eigenvalues

may be artificially damped/amplified due to poor approximations in the Jacobians).

Additionally, no information on limiter and flux scheme switching functions is built

directly into the face Jacobians, but rather it comes as a secondary step.

A remedy to these issues is to construct the linear operator through the computation

of what is known as a numerical Jacobian. For small enough problems, explicit extrac-

tion and storage of the global operator is possible. The advantage of the explicit storage
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of the operator is the ability to perform shift-invert strategy to probe specific portions

of the eigenspectrum (reducing the overall number of operations to extract eigenvalues

within a frequency range). Additionally, direct access to the adjoint through the def-

inition of an inner-product allows for non-modal analysis as a natural extension. Due

to the discretization scheme used for the work presented here, the global operator is

sparse. With a plethora of sparse solver libraries available to the public, it was chosen

that the matrix be extracted and stored explicitly for the work presented in this thesis.

3.6.1 Extraction of the Numerical Jacobian

The computation of the numerical Jacobian provides a means to extract the global linear

operator (and associated limiter-influences) out of a non-linear CFD code. The process

is straightforward. If we consider our CFD code to be a black box which produces

residual vectors at each time step, we can write the governing equation (Eq. 3.6) as ,

dU

dt
= R(U) (3.17)

Here R(U) represents the residual vector that is produced by the code. This vector

represents the change in the fluid system at the current time. We can linearize this vector

by performing a Taylor-Series expansion about a small perturbation in the conserved

vector U ,

R(U + εu) = R(U) + ε
∂R
∂U

u+O(ε2)

Rearranging the above equation and neglecting nonlinear terms (O(ε2)), we arrive

at an expression for the linear operator to first order,

A =
∂Ri
∂Uj

=
Ri(Uk + εuj)−Ri(Uk)

εuj
(3.18)
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and second order,

A =
∂Ri
∂Uj

=
Ri(Uk + εuj)−Ri(Uk − εuj)

2εuj
(3.19)

The resulting equations show how to obtain the numerical Jacobian using small

perturbations to the base flow. The non-linear solver is called with an additional per-

turbation for each degree of freedom at a time, and the entries in the Jacobian matrix are

filled. Once completed, the global linear operator is consistent with the discretization,

boundary conditions, and numerical schemes that were used to converged the under-

lying base flow. This approach is straight forward to implement, but has two main

challenges. First, the choice of ε must be carefully selected to ensure the accuracy of

the approximate Jacobian. Choosing too small of an ε can corrupt the approximation

due to round-off errors, while values too large will violate the assumption of negligible

nonlinear terms. Typically, we define ε = 10−6Uref , where Uref is a baseflow quantity.

Second, the approach as defined is prohibitively expensive to compute (order N2 CFD

residual vectors required to build the matrix, where N is the total number of degrees

of freedom). Instead, one can exploit the underlying sparsity of the operator due to the

discretization of the underlying numerics.1

Given a single element i, Fig. 3.3 shows in two dimensions the cells for which the

solution in cell i depends. This is known as a stencil. We can use this information

to perturb multiple cells at a given time as long as the stencils of the cells for which

we perturb are non-overlapping. The method is similar to Nielsen et al. [47] greedy

algorithm.

1 This approach will work for compact stencils but will not work for “compact” schemes such as
ones proposed by Lele [46]
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(a) Stencil for cell i (b) Non-overlapping cells to be perturbed

Figure 3.3: Local stencil for cell i and 2-D mesh of non-stencil-overlapping cells that

are allowed to be simultaneously perturbed.

Parallelization of the algorithm is straight forward, although the relative efficiency as

compared to the method described by Nielsen et al.[47] is somewhat diminished. In the

current case, each processor is allowed to fill the its domain with non-overlapping cells

to be perturbed. The boundaries are then looped over to search for cells that overlap

across processor boundaries. In the event a cell’s stencil overlaps another stencil located

on a different processor, the lower rank processor removes this cell from the current

perturbation level and will be added in the next level. This approach is displayed in

Fig. 3.4 a) and b), which shows the initial filling and correction for overlapping cells on

8 processors. The resulting total number of residual evaluations required is anywhere

between 30 and 50 perturbations per equation for a given three-dimensional grid.
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(a) Initial filling of domain for each processor (b) Resulting allowable perturbations after re-

moval of offending cells across processor bound-

aries

Figure 3.4: Two-dimensional computational grid.

3.6.2 Effect of limiters

When evaluating the numerical Jacobian, strong gradients in the flow variables can cause

limiters to flip between low and high-order flux schemes sporadically. The underlying

limiter must be smooth in order to prevent discontinuities in the Jacobian. This effect

is most pronounced for supersonic flows. Consider the generic blunt body in supersonic

flow seen in Fig. 3.5, with freestream conditions in Table 3.1. The computational mesh,

Fig. 3.5 (a), contains roughly 22,000 elements (138x158 cells in the streamwise and wall-

normal directions, respectively). Fig. 3.5 (b) shows the freestream-velocity (streamwise)

component. The flow is dominated by a strong detached bow-shock.
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Table 3.1: Freestream Conditions

Mach V∞ (m/s) ρ∞ kg/m3) T∞ (K)

8.00 1207.9 2.5926× 10−2 56.739

(a) Mesh (b) V -Velocity

Figure 3.5: Blunt body geometry in supersonic flow. This geometry serves as an example

of a flow where limiters are active.

To assess the smoothness of the resulting Jacobian matrix, one can employ row-

summation to see the effect of each row contribution on a solution vector. Consider

the matrix below. Row summation is performed by adding the contribution from each

column in an individual row (highlighted in red). The result is then a scalar contribution

from the sum of
∑

(ai,1 + · · ·+ ai,i + · · ·+ ai,N ) to the degree of freedom vi.
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v1

...
vi

...
vN




=

a1,1 · · · a1,N

...
. . .

...∑
(ai,1 · · · ai,i · · · ai,N )

...
. . .

...
aN,1 · · · aN,N




Fig. 3.6 a) and b) show two limiters implemented in US3D (Min-Mod and Van-

Albada 1, respectively). We can see that the first derivative of the Min-Mod limiter

function is not smooth. This can create problems when evaluating the numerical Ja-

cobian using the perturbation method described in the previous section. If the small

ε value is large enough, or the solution region is sensitive enough, the addition of the

perturbation can cause the limiter to become active in a localized region creating non-

smooth Jacobian contributions. Fig. 3.6 c) and d) show the U-momentum contribution

to a solution vector. The effect of the limiter switching between high and low-resolution

schemes can be seen in the shock layer for the Min-Mod case, while the Van-Albada

produces a smoothly varying function within the shock layer. Both limiters are active

within the shock causing non-smooth variations. This can be due to shock misalignment.
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(a) Min-Mod limiter
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(b) Van-Albada limiter

(c) U-Momentum using Min-Mod (d) U-Momentum using Van-Albada

Figure 3.6: U-momentum contribution of linear operator.

3.6.3 Solution Methodology

Returning to the governing equation for linear disturbances 2.3, we cast the system

as an eigenvalue problem using the TriGlobal decomposition described in the previous
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chapter. The resulting Ansatz becomes,

ωq = Aq (3.20)

Here, ω is a complex eigenvalue of global linear operator A, and q is the complex

eigenvector. Eq. 3.20 can be solved using either direct or iterative methods. three-

dimensional hypersonic base flows often require large resolved meshes. This results

in a large eigenvalue problem to be solved. For this reason, GMAUS3D uses the Im-

plicitly Restarted Arnoldi Method (IRAM) implemented in the open-source software

PARPACK (parallel version of ARPACK) [48]. The effect of compressibility in addition

to three-dimensional base flows can produce rich/complex eigenvalue spectra. In order

to efficiently probe the eigenvalue spectra, the use of the shift-invert mode available in

the software is chosen to converge a small subset of the global spectrum. The eigenvalue

problem (Eq. 3.20) is augmented by a shift value σ,

(ω − σ)q = (A− σI)q (3.21)

Eq. 3.21 is then inverted resulting in,

µq = (A− σI)−1q (3.22)

This operation results in eigenvalues ω near the shift value σ to have the largest

magnitude µ. The shift-invert mode allows for different regions of a given spectrum to

converged rapidly when using an iterative Arnoldi method. The requirement for this

type of approach is either a direct inversion or a linear solve of the operator (A−σI)−1.

The formulation of Eq. 3.22 results in linear solver step per Arnoldi vector. For small

enough problems, the matrix can be formed explicitly and factored allowing for a direct

solve. This results in fast linear solves but large memory overhead. For the smaller

problems presented in this thesis, direct solves were carried out using SUPERLU DIST
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software [49], with the parallel symbolic factorization [50]. The total memory overhead

for a full three-dimensional solve results in a memory cost around 50 times that required

to store the original sparse matrix due to the fill-in for the LU factorization. This limits

the size of the problems to be less than 107 degrees of freedom. Larger problems will

need to be solved using iterative solvers.



Chapter 4

Code Verification

Before we can move forward with the stability analysis of relevant base flow configura-

tions, we must first verify the global linear operator within GMAUS3D.

The first case presented will be the global stability analysis of a super critical

Reynolds number cylinder wake flow. This test case is considered a fundamental config-

uration. The geometry results in a base flow that is not consistent with the underlying

assumptions of local/nonlocal stability approaches and is considered ideal for global

stability analysis. Results obtained by GMAUS3D will be presented and the leading

unstable eigenvalue will be compared against values in literature.

The second configuration will be a supersonic blunt cone. The resulting base flow

is consistent with the underlying assumptions of the parabolized stability equations

(PSE). The goal is not to out perform the simplified (less computationally expensive)

linear analysis techniques of LST and PSE, but rather to compare the results obtained

by the TriGlobal analysis approach implemented in GMAUS3D. Key differences in the

obtained eigenvalue-spectra and overall meaning will be discussed.

55
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4.1 Cylinder Wake

The vortex shedding behind a circular cylinder is considered a canonical base flow in

the considerations of global-instability analysis. Early analysis of this problem dates

back to the early works of Jackson [51], Zebib [52], and Hill [53]. In order to verify

the extracted matrix contains the correct global matrix that represents the base flow

physics, we compare the computed unstable eigenvalues obtained using GMAUS3D to

the results published by Crouch et al. [54] for 5 mesh sizes.

4.1.1 Computational Mesh

The various mesh sizes used can be seen in Fig. 4.1. The computational meshes are

constructed such that the refinement is localized to the wake region and stretched as

you move away from the cylinder. Because the baseflow is subsonic, we need to ensure

there will be no reflections of disturbances within the domain. This can either be done

by imposing a numerical sponge layer or stretching the computational mesh to reduce

the resolution in the far-field regions. For all cases here, the outer boundary is stretched

approximately 125 diameters away from the cylinder with cell sizes many times larger

than the cylinder. This produces a sponge region due to the coarseness of the mesh.
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(a) 80x80 (b) 160x160

(c) 240x240 (d) 320x320

(e) 400x400

Figure 4.1: Various mesh sizes used in verification.
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4.1.2 Baseflow

Contours of u-velocity can be seen in Fig. 4.2 for a Reynolds number of 60 and Mach

number of 0.2.

Figure 4.2: Base flow of cylinder wake with contours of streamwise velocity. M = 0.2

Re= 60

The free-stream conditions for the cylinder base flow can be seen in Table 4.1 below;

Table 4.1: Cylinder Baseflow Freestream Conditions

Re U∞ (m/s) ρ∞ (kg/m3) T∞ (K) Mach

60.0 69.4377 1.200 300.0 0.2

In order to achieve a Reynolds number of 60 with the above free-stream conditions, one

must augment the chosen viscosity model. The viscosity model used in the calculation of

the base flows here is the Blottner viscosity curve fit model[55]. The model is expressed

as an exponential function with coefficients A, B, C and translational temperature Ttr.
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µ = 0.1 exp [(A ln Ttr +B) ln Ttr + C]

Setting coefficients A and B to zero and C ≈ 2.631 results in a viscosity that yields

a free-stream Reynolds number of 60. The Reynolds number for this flow is considered

super-critical meaning the flow will become unstable due to small perturbations and

vortex shedding will occur. To prevent this, the baseflow was initialized with dissipative

numerics in both the spatial and temporal sense to damp out any perturbations.

4.1.3 Global Mode Analysis

As mentioned earlier in section 3.6, the construction of the global linear operator can

have significant consequences on the approximated eigenvalues. A comparison of the

linear operator constructed using the face Jacobians consistent with those from the

Modified Steger Warming approach described in section 3.2.1 and one built using the

numerical Jacobian approach can be seen in Fig. 4.3. There are many factors con-

tributing to the large differences between the resolved eigenvalue spectra (approximate

viscous Jacobians, numerical switches, boundary conditions, etc). Because the numer-

ical Jacobian is consistent with the numerical methods and boundary conditions used

in obtaining the underlying baseflow, it is able to reproduce the unstable wake mode as

seen by the eigenvalue that lies above the complex half-plane (ωi > 0).
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Figure 4.3: Comparisons of resolved eigenvalues for face-Jacobian vs numerical Jacobian

matrices

A comparison of the unstable eigenvalue computed with GMAUS3D against the re-

sults of Crouch et al. can be seen in table 4.2. The values for the single unstable mode

are within a reasonable range with literature. However, the results for GMAUS3D do

not seem to converge to a specific value as they do in the cited literature. A potential

reason may be due to the dissipative numerics used to force a stable solution. As the

mesh becomes more refined, there is a competing effect between the numerics and mesh

resolution of disturbances which can affect the convergence of the base flow. Addition-

ally, further investigation is needed for the sensitivity of the eigenvalue spectra on the

choice of ε used in the numerical Jacobian extraction, the number of Arnoldi vectors

used in the IRAM methodology, and numerics used for the base flow solution.
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Table 4.2: Unstable Eigenvalues for Cylinder at Re=60

Mesh Least Stable ω [54] (Upwind) Least Stable ω (Current)

80x80 0.7564, 0.0277 0.7789, 0.0154

160x160 0.7425, 0.0418 0.7427, 0.0387

240x240 0.7396, 0.0433 0.7637, 0.0402

320x320 0.7386, 0.0437 0.7526, 0.0385

400x400 0.7382, 0.0439 0.7697, 0.0469

Figure 4.4 shows the streamwise and spanwise velocity disturbances (u and v). The

asymmetrical pattern in the streamwise velocity coupled with the oscillating spanwise

velocity disturbance in the streamwise direction creates vorticity which acts to disrupt

the smooth lamina of the shear layer and would contribute to the initiation of vortex

shedding. Comparisons to literature and visualization of the unstable mode provide

verification of the implemented linear operator for this subsonic case.

(a) Unstable û-disturbance (b) Unstable v̂-disturbance

Figure 4.4: Global Modes for Cylinder Wake at Re = 60.
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4.2 Supersonic Blunt Cone

Laminar-turbulent boundary layer transition for supersonic and hypersonic speeds presents

consequences in addition to drag. Many high-speed vehicles are designed as long slender

bodies to reduce drag, however at high-speeds the skin-friction and mixing of a turbu-

lent boundary layer can greatly increase the acreage heating of the surface. Prediction

of boundary layer transition can improve vehicle design.

To model high-speed transition on a simplified geometry, a blunt 75-degree cone will

be used for the baseflow configuration. This geometry has been extensively studied using

both local and non-local techniques described in section 2.3. The results are presented

first for the STABL software suite. These results are presented within a spatial stability

framework. The implications of this will be made clear once the results from GMAUS3D

are presented. The comparison will be discussed.

4.2.1 Base Flow

The base flow for this geometry was obtained using US3D. As noted in literature,

supersonic blunt cones with cold walls are often susceptible to boundary layer transition

due to Mack’s second mode [19] [56] [57]. Freestream conditions chosen to exemplify

this are shown in Table 4.3.

Table 4.3: Blunt Cone Baseflow Freestream Conditions

U∞ (m/s) ρ∞ (kg/m2) T∞ (K) Mach

1956.81 1.44× 10−3 255.56 7.99

Accurate LST and PSE analysis requires high quality meshes [58]. The mesh chosen

for this work contains approximately 700, 000 cells. The domain extends from the blunt

nose with radius approximately 2.5 mm centered at 0 to 1.7 meters downstream, pre-

senting a problem of significant ranges in scale. Fig. 4.5 shows contours of temperature
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and streamwise velocity for the blunt cone base flow. Similar to the cylinder case pre-

sented in the previous section, dissipative numerics have been chosen to model this base

flow to ensure smooth laminar flow. Temporal integration was performed using first

order DPLR with second order, upwinded Modified-Steger-Warming fluxes for spatial

integration.

(a) Temperature Contours (b) Streamwise Velocity Contours

Figure 4.5: Supersonic Blunt Cone Case.

4.2.2 STABL

Local (LST) and non-local (PSE-2D) modal stability analysis is implemented in the suite

Stability and Transition Analysis for hypersonic Boundary Layers (STABL) [59]. The

solver contains a two-dimensional finite-rate chemically reacting Navier-Stokes solver for

producing the base flow. It can also handle 2-dimensional laminar base flows extracted

from other solvers (US3D in this case). When invoking the PSE-method, the modal

set of equations is solved in a similar fashion as described in Section 2.3.1. The result

is amplification rates of disturbance frequencies known in literature as ”N factors”.

For all results, an assumption of β = 0 has been made due to the primary instability
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being acoustic planar waves. Additionally, when employing global analysis on a two-

dimensional plane, an implicit assumption of β = 0 is made. Therefore these results

will be better compared to global results later in the section.

Fig. 4.6 shows the stability analysis generated by STABL. The figure on the left

shows results generated using LST. Plotted are contours of amplification rates, αi. The

narrow band of positive αi indicates an unstable mode at the given downstream location

for the given frequency. The graph on the right is the result of PSE analysis. The plot

shows curves of N -factors (for a given frequency) vs downstream distance. Highlighted

in red is the first N -factor to achieve a value greater than 7 (an engineering correlation

assumed to be the onset of transition).

(a) LST Diagram (b) N-Factor Results from PSE

Figure 4.6: STABL Results.

Together, these results tell us the frequency range for which small amplitude dis-

turbances grow and where they become unstable. Additionally, the N -factor curves

give insight into the downstream evolution of a disturbance for a given frequency. This

methodology has proven useful and efficient for assessing stability on slender bodies.
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4.2.3 GMAUS3D

STABL offers the computational advantage over GMAUS3D for simple two-dimensional

flow fields due to the lower computational cost of the implemented LST and PSE meth-

ods as compared to the TriGlobal method. It is important to note that the comparison

between the TriGlobal analysis of GMAUS3D for a two-dimensional mesh is similar to

a BiGlobal approach with a spanwise wave number equal to zero. This section is not

meant to show an improvement over the current tool. Instead we focus on showing how

can global modes can be used in a predictive sense for stability.

Modal Results

Modal analysis of the supersonic base blunt body flow results in the eigenvalue spectra

shown in Fig. 4.7. The low-frequency range results in two distinct branches that coalesce

as the frequency increases. All eigenvalues lie below the complex half plane ωi = 0,

indicating stable global disturbances. The structure of the global modes can differ

greatly between the frequency ranges.
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Figure 4.7: Eigenvalue spectra for supersonic blunt cone.
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Fig. 4.8 shows the low frequency (indicated by the red arrow above) and a moderate

frequency mode (indicated by the dashed green arrow above). Both modes appear at

the downstream end of the domain.

(a) low-frequency û-mode (b) moderate-frequency û-mode

Figure 4.8: Global modes.

The high-speed boundary layer produces instabilities which travel in the flow direc-

tion. Unlike the spatial stability analysis used in STABL, global modes are defined in

a temporal stability fashion. Due to the convective nature of the high-speed boundary

layer, disturbances may amplify in space, but in time are convected out of the domain

and are thus stable in the long time (Lyapunov) stability sense. In terms of (Bi)Global

stability, the present flow is stable to the resolved frequency range.

Non-Modal Analysis

For the given baseflow configuration, the temporal formulation of global stability anal-

ysis produces stable global modes due to the convective nature of the baseflow. In an

effort to directly compare computed global modes with the spatial stability analysis of

classical methods, we can leverage the computed global modes to solve for the short

time amplification due to their non-normal character. The short-time amplification can

produce a wave packet with a spatial structure consistent with the N -factor results from

the previous section.

We first derive a method to solve for the short time amplification for a superposition
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of global modes. This method is similar to the one defined by Ehrenstein et al [60].

Consider the eigenvalue problem

λq = Aq.

We can define a set of eigenvectors q as a large matrix of eigenvaluesQ with an associated

diagonal matrix Λ containing individual eigenvalues.

ΛQ = AQ

Defining a Hermitian matrix based on the L2 inner product of the global modes, M =

Q′Q, we can perform a Cholesky decomposition of M as,

M = FHF

Taking the product of F and F−1 with the matrix exponential of the diagonal matrix

of eigenvalues Λ, we can define a superposition of global modes by,

B = F exp (tΛ)F−1

Taking the singular value decomposition, B = UHΣV , and taking the v1 input mode,

which corresponds to the largest singular value, σ, results in an optimal initial dis-

turbance for the superposition set B. Maximizing the initial condition v1 over a time

interval produces the maximum possible growth for the given set of global modes. The

optimal superposition of global modes is expressed as, qopt = QBv′1. Fig. 4.9 shows the

energy amplification for an optimal superposition of global modes.
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Figure 4.9: Energy amplification.

The spatial structure of the optimal superposition exhibits spatial growth of the

amplitude in the downstream direction due to the convective nature of the boundary

layer. The amplitude of the optimal structure at a given downstream location may be

defined as,

A(x) =

√∫ H

0
Q′WQdy

Where W is the weight matrix which defines the norm. In this case, we take W = I and

the resulting norm is the L-2 norm. This function may be compared to the classical eN

method as,

A(x)

A(0)
≈ eN .

Fig. 4.10 shows the comparison between the computed N -factors of STABL and the
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streamwise optimal global mode growth computed with GMAUS3D. The shape of the

N -factor curve shows a similar “s”-shape for both STABL and GMAUS3D. Given the

underlying dissipative numerics used to obtain the smooth baseflow, and the difference

between optimal input-disturbances from GMAUS3D versus the frequency response

envelope provided by STABL, the comparison between the two methods is highly en-

couraging.
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Figure 4.10: Maximum N-Factor produced by STABL vs non-modal energy amplifica-

tion of optimal disturbance from superposition of global modes produced by GMAUS3D.

4.3 Review

Development and application of Global mode Analysis in US3D (GMAUS3D) has been

applied to a subsonic cylinder test case. Comparison of the linear operator built with

face Jacobians from the Modified-Steger-Warming fluxes and the extracted numerical
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Jacobian showed significant differences in the resolved eigenvalue spectra. The numeri-

cal Jacobian was able to recover the unstable eigenvalue for this canonical flow, while the

face Jacobian matrix was significantly damped. When comparing the unstable eigen-

value for 5 different mesh resolutions, results showed good agreement as compared to

literature.

Global mode analysis was also applied to a supersonic blunt cone. The eigenvalues

produced were all stable. It was reasoned that the convective nature of the high-speed

boundary layer acts as an amplifier to disturbances in a spatial framework, but will

convect the instability out of the domain and thus be stable in a temporal view. In

order to obtain good comparison with spatial stability analysis, non-modal analysis was

introduced to assess the short-time amplification of disturbances. The result was able

to recover the spatial behavior of disturbances in global modes with a similar profile as

STABL.



Chapter 5

Conclusion and Discussion

Understanding the physics of small scale disturbances with the capability to amplify

can lead to a better understanding of transition mechanisms. Geometries with rel-

atively simple/smooth OML can produce complex three-dimensional boundary-layer

profiles which render classical approaches invalid. With the increase in computational

power over the past decade, global methods are now a feasible approach to stability

analysis. This dissertation introduced a triglobal analysis tool GMAUS3D, developed

within the unstructured Navier-Stokes solver US3D. This section will summarize the

results/discussion presented in previous chapters as well as propose extensions to this

research and introduce new software which is already in development.

Chapter 1 introduced and motivated the study of transition in high speed boundary

layers. With poor understanding of transition mechanisms, the use of thermal protec-

tions systems (TPS) can result in over conservative designs and greatly increase cost

or reduce scientific payload. A history of classical methods was briefly introduced and

a few of the many great papers were referenced. A seemingly simple geometry was

introduced to exemplify a geometry for which the resulting base flow contained regions

in which classical stability approaches failed.

72
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Chapter 2 introduced the basic concepts for performing linear stability analysis.

First the governing equations for fluid flow, the Navier-Stokes equations, were intro-

duced. The equations were then modified by assuming a base state (which is assumed

steady throughout this dissertation, but need not be) plus a perturbation. With this

modification, the linear disturbance equations are then introduced. These equations are

the basis of linear analysis. A range of modal assumptions and their resulting nomen-

clature, physical meaning, and numerical consequences were introduced. Classical local

and nonlocal approaches were discussed (LST and PSE, respectively). Global analysis

was then introduced starting first with BiGlobal analysis, then PSE3D, and ending with

the most general modal analysis technique TriGlobal analysis.

The system of equations resulting from the modal assumption results in an eigenvalue

problem. A standard technique for solving an eigenvalue problem is first presented as a

mathematical baseline. Due to the large computational cost of direct methods associated

to the global linear operator, the popular iterative approach provided by the Arnoldi

method is introduced and discussed.

With an understanding of the resulting system of equations needed to be solved in

an EVP form and the presentation of a solution methodology available in the Arnoldi

method, Chapter 3 introduces the numerical approach. The first part of the chapter

discusses the finite volume method. The finite volume method is the numerical dis-

cretization that is used for both US3D and GMAUS3D. The capabilities of US3D are

briefly presented. Then a description of how the linear analysis is performed within the

US3D framework is presented.

A method for obtaining the global linear operator is first introduced. Obtaining

the global linear operator is achieved by the evaluation of a numerical Jacobian. This

approach is similar to a central differencing scheme. The consequence of this approach

is the seemingly arbitrary choice of the perturbation scaling parameter ε. For values

too small, the approximation is corrupted by round-off errors, while large values result
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in poor approximation. Following the mathematical derivation, a brief explanation of

the implementation of the method and its extension to multiple processors is presented

and discussed.

Following the description of the matrix extraction approach, the linear modal anal-

ysis solver, GMAUS3D is introduced. GMAUS3D stands for Global Modal Analysis

in US3D. This code exploits the underlying data structures present within US3D to

perform stability analysis on a given base flow. An overview of the included libraries

and code structure follows.

Chapter 4 covers the verification cases chosen for this analysis. The subsonic cylinder

wake is considered a classic base flow chosen for stability analysis due to the unstable

wake for flows above a critical Reynolds number. This is known as Hopf bifurcation and

is due to an amplification of an unsteady disturbance mode in the wake of the cylinder.

The result is a break down of the steady symmetric wake resulting in the Von-Karman

vortex street downstream. An assessment on the matrix formulation was made in order

to motivate the usage of the numerical Jacobian procedure described in earlier sections.

Global stability analysis was performed on 5 different levels of mesh refinement. The

resulting unstable eigenvalue was compared against literature and found to be in good

agreement.

The second case considered was a supersonic blunt cone. This geometry represents

many slender bodies which experience high-speed boundary layer transition. It has also

been extensively studied with classical techniques such as LST and PSE. This section

presents LST and PSE analysis performed with the boundary layer transition suite

STABL. Global mode analysis is then presented. All eigenvalues recovered are found to

be stable. An explanation for this is given and non-modal analysis is introduced as an

extension to current findings. After manipulation, non-modal analysis using the global

modes generated by GMAUS3D recover similar behavior in the predicted N -factor for

the cone as compared to STABL.
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5.1 Extensions to Current Research

The development of the global mode analysis software GMAUS3D opens the way for the

study of more complex flows where classical methods break down. The use of this tool

will enable additional avenues of investigation of transition mechanisms. This section

illuminates some potential areas of future investigation and attempt to identify possible

difficulties therein.

5.1.1 BiGlobal Analysis on HIFiRE-5

As mentioned in the introduction, three-dimensional boundary layer transition offers a

complex and interesting problem to the study of boundary layer stability. Where clas-

sical methods are limited, such three-dimensional boundary layers, global analysis can

provide the capability to predict stability. The elliptic cone geometry studied here is

be based off the Hypersonic International Flight Research Experimentation (HIFiRE)

5 flight experiment configuration. The HIFiRE program was developed jointly between

the United States Air Force Research Laboratory (AFRL) and the Australian Defense

Science and Technology Organization as the primary drivers. Several universities, pri-

vate companies, and NASA have contributed greatly to the research of the program.

The HIFiRE program couples flight experimentation to basic hypersonic transition re-

search concepts. While the HIFiRE-1 program focused on an axisymmetric vehicle, the

HIFiRE 5 program relies on an elliptical geometry.

Base Flow

The base flow is obtained using the US3D flow solver described in Chapter 3. The solu-

tion was obtained using second-order accurate Modified Steger-Warming fluxes. Time

integration was carried out using second-order backward differencing formula. For the

given trajectory, freestream enthalpy was insufficient to produce chemical or gas effects
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allowing for single species perfect-gas to be used. The computational mesh contains 200

finite volume cells in the wall normal direction with complex mesh refinement in the

streamwise direction to produce nearly isotropic cells in the spanwise and streamwise

directions. The resulting computational mesh contains slightly more than 25 million

elements. The flow can be seen in Figure 5.1 The reader is referred to Dinzl et al. [61]

for more detail on mesh generation topology.

Freestream conditions are shown in Table 5.1 and correspond to High Reynolds

number condition from Ref. [61].

Table 5.1: HiFIRE 5 Freestream Conditions

Re U∞ ρ∞ T∞

11.8× 106/ m 869.7 m/s 4.6× 10−2 kg/m2 52.3 K
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Figure 5.1: HIFiRE-5 Baseflow. Centerline and cross-plane slices show solid contour

and contour lines of Temperature, respectively. The surface of the vehicle is contoured

by heat flux.

Global Mode Analysis of HIFiRE-5 Geometry

Global mode analysis using direct solvers for the full 25 million element three-dimensional

ellipse cone exceeds current computational capabilities. Since the current mesh level is

already considered coarse, as compared to the DNS results by Dinzl et al. [61], reducing

the mesh density further could affect the accuracy of the baseflow representation.

A potential solution to the memory requirement of direct solvers would be the so-

lution of the linear system using an iterative approach. The solution to large sparse

linear systems has been an active area of research in computer science. “Finding a good
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preconditioner to solve a given sparse linear system is often viewed as a combination

of art and science.” -Saad [62]. While iterative solvers provide a lower computational

cost, selecting an appropriate pre-conditioner remains a difficult task and is considered

an important step in future development efforts.

An alternative to performing stability analysis on the full geometry, global mode

analysis can be carried out on two dimensional planes within the base flow and three-

dimensional subsection. This section serves as an example of the application of GMAUS3D

to subdomains of complex geometries/flow configurations.

Cross Planes

Modal analysis for the cross plane sections produced zero frequency damped distur-

bances. These disturbances are considered to be stationary in time. It is interesting to

plot the disturbances and the baseflow to see mode shapes/locations in response to base-

flow structures. Fig. 5.2 shows two cross planes at locations x/L = 0.7 and x/L = 0.9

with contours of v̂-disturbance (wall normal velocity perturbation). The positive (up-

ward) and negative (downward) maxima appear to coincide with the streaks seen in the

wall heat flux. These locations have streamwise vorticity which pushes hot fluid down

into the boundary layer creating a hot region, or lift cool fluid up from the boundary

layer producing cold regions. The streamwise vortices themselves lie between the max-

imum and minimum wall heat flux streaks. The perturbations are located between two

adjacent streamwise vortices.
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Figure 5.2: Centerline temperature and wall heat-flux contours of the baseflow with

cross-sectional planes showing the v̂-disturbance at x/L = 0.7 and x/L = 0.9.

A comparison of the disturbance profiles from the global results and the physical

streaks seen in the experimental results by Juliano et al. [63] can be seen in Figure 5.3

(a) and (b). While the conditions are not exactly identical, the global analysis results

are promising in their qualitative comparison to experimental results.
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(a) Close up of the wall-normal-disturbance at lo-

cations x/L = 0.7 and x/L = 0.9.

(b) Experimental Results for HIFiRE-5 by Juliano

et al. [63].

Figure 5.3: Global Modes for cross sectional planes compared to streaks seen in exper-

iment.

Three-Dimensional Subdomain TriGlobal Analysis

BiGlobal analysis offers an advantage over classical local approaches by solving for

disturbance modes two-dimensional slices allowing for the mode shapes to cover more

complex geometry. However, the third dimension is assumed to be described by parallel

flow. This is not the case for the HIFiRE-5 base flow. Instead, significant changes can

occur in the streamwise location motivating a TriGlobal analysis approach. TriGlobal

analysis solves for three-dimensional disturbance modes. As mentioned earlier, the cost

of doing TriGlobal direct methods can be prohibitively expensive and properly applying

a pre-conditioner for iterative methods is a challenge unto itself. As a proof-of-concept,

TriGlobal analysis has been performed for three-dimensional subdomain located along

the centerline of the cone at an approximate location x/L = 0.4. Figure 5.4 shows

iso-surfaces of the streamwise velocity disturbance. We can see the mode shape highly

three-dimensional appears to correspond tot he lifted boundary layer profile along the

centerline.
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Figure 5.4: Results of TriGlobal analysis for a small sub-domain located along the

centerline of the HIFiRE-5 geometry approximately x/L = 0.4. Iso-surfaces are of

streamwise disturbance velocity.
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5.1.2 Input-Output Analysis

With access to the numerical Jacobian, we are able to define the adjoint of the opera-

tor as defined in the Appendix section B.1. This allows us to express the disturbance

behavior using Input-Output(I/O) formalism from the Appendix section B.4 allowing

for additional insight into the behavior of disturbances. Just like the modal methods

described in Chapter 2, I/O analysis is based on linearized dynamics of small distur-

bances. Using the extracted numerical Jacobian technique allows for this methodology

to be applied to complex flows as well. Casting the system into an eigenvalue problem

for input/output disturbances (Appendices B.4 and B.3, respectively) or applying ad-

joint looping to converge to an optimal input/output, we can investigate the frequency

response of the fluid system.

An unstructured Input-Output analysis tool has been developed to exploit the ex-

tracted numerical Jacobian. The software is named Global 3-Dimensional Input-Output

analysis (G3DIO) and is part of the US3D software much like GMAUS3D. An I/O

analysis using G3DIO has been applied to the unstable frequency for the cylinder flow

described in 4. Figure 5.5 (a) and (b) shows the streamwise and spanwise velocity com-

ponents of the unstable (output) mode. The associated input mode can be seen in figure

(c) and (d). This type of analysis shows locations in the flow where the minimal amount

of forcing can be applied to achieve the maximum amplification and associated output.

While the example case is not physically realizable (i.e. it is not possible to realistically

impose the velocity disturbances in the manner that is shown), the capability of this

software can be extended to complex flows and input locations restricted to physically

relevant regions.
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(a) U modal disturbance (b) V modal disturbance

(c) Input U disturbance (d) Input V disturbance

Figure 5.5: Input-Output Analysis for unstable cylinder wake mode.
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Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but

this cannot always be achieved. This appendix defines jargon terms in a glossary, and

contains a table of acronyms and their meaning.

A.1 Glossary

• Mode – A vector solution to an eigenvalue or singular value problem

• Linear Stability – Response of a fluid system to small amplitude disturbances.

If the flow is perturbed but returns to its initial state, the fluid system is deemed

stable. If the flow is augmented resulting in transition to either turbulence or

another, laminar state, the flow is deemed unstable.

• Transient Growth – Interaction between two or more decaying modes in a sys-

tem the results in a brief amplification of disturbance energy.

• Hessenberg Matrix – A matrix whose elements below the first subdiagonal are

zero.
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A.2 Acronyms

Table A.1: Acronyms

Acronym Meaning

TPS Thermal Protection System

CFD Computational Fluid Dynamics

LST Linear Stability Theory

PSE Parabolized Stability Equations

EVP Eigenvalue problem

IBVP Initial Boundary Value Problem

US3D Unstructured Solver 3-Dimensional

GMAUS3D Global Mode Analysis for US3D

G3-DIO Global 3-Dimensional Input-Output

Mode Eigenvector resulting from solution of an EVP



Appendix B

Key Aspects of Non-Modal

Analysis

B.1 Definition of Adjoint

Formal definition of Adjoints

Starting with the linear system of equations,

ψt = Aψ + Bd

φ = Cψ

which define an input forcing of d onto the state-space vector ψ, and a measured

output vector phi. Here B maps input disturbances d onto the state-space. The linear

evolution state-space vector psi evolves according to the linear system ψt = Aψ, and C

maps state-space variables to an output.

It is useful to think of the operators A,B, C as projection operators between the

state, input, and output spaces. More formally,
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A :Sψ → Sψ

B :Sd → Sψ

C :Sψ → Sφ

are the forward mappings between spaces. Whereas,

A† :Sψ → Sψ

B† :Sψ → Sd

C† :Sφ → Sψ

are backward mappings (adjoint operators).

If we define an operator as the projection from some space to another, (say 1→ 2)

then the adjoint of that operator is the reverse projection (as in 2 → 1). The formal

definition of an adjoint requires the use of a norm.

A† : 〈ψ1,AΨ2〉Sψ =
〈
A†ψ1, ψ2

〉
Sψ

B† : 〈ψ,Bd〉Sψ =
〈
B†ψ, d

〉
Sd

C† : 〈φ, Cφ〉Sφ =
〈
C†φ, ψ

〉
Sψ

The definition of a norm/inner-product requires some sort of inner product operator.

For example,

〈ψ1, ψ2〉Sψ =

∫
V
ψ∗1(x)Qψψ2(x)dx

Where Qψ is the inner-product matrix and will be different depending on the choice

of the norm (i.e. L2, Mack-Energy, etc..)
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Discrete Adjoints

Let us now define the discrete operators of A, B, and C as A, B, and C respectively.

What are A†, B†, and C†? Numerically we can write,

A: 〈ψ1, Aψ2〉Sψ =
〈
A†ψ1, ψ2

〉
Sψ

ψ1QψAψ2 =
(
A†ψ1

)∗
Qψψ2

= ψ∗1

(
A†
)∗
Qψψ2

or,

ψ1QψAψ2 = ψ∗1

(
A†
)∗
Qψψ2

This relationship must hold for all ψ1 and ψ2. so,

QψA =
(
A†
)∗
Qψ → QψAQ

−1
ψ =

(
A†
)∗
→ A† = Q−1

ψ A∗Qψ

similarly,

B†: ψ∗QψBd = ψ∗
(
B†
)∗
Qdd → B† = Q−1

d B∗Qψ

C†: φ∗QφCψ = φ∗
(
C†
)∗
Qψψ → C† = Q−1

ψ C∗Qφ

The full derivation of B† and C† is left as an exercise to the reader.

B.2 Eigenvalues vs. Singular Values

Eigenvalues and singular values are important mathematical properties of dynamical

operators. Proper understanding of the basic concepts is necessary when considering
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modal and nonmodal analysis of linear global operators. This section is dedicated

to explaining in brief the similarities and differences between eigenvalues and singular

values. Only square matrices will be considered in this section in hopes of keeping the

discussion relatively simple.

B.2.1 Eigenvalues and Eigenvectors

An eigenvector and eigenvalue of a square matrix A can be defined as a scalar λ and a

nonzero vector x such that;

Ax = λx

When the matrix describes a transformation from one vector space onto itself, the

eigenvalue can play an important roll in describing the behavior of a vector undergoing

this transformation. Additionally, as seen above, there is no requirement that the

eigenvector be normalized.

Furthermore, we can rewrite the original eigenvalue equation as

(A− λI)x = 0, x 6= 0.

The above equation implies that (A− λI) is singular and thus;

det (A− λI) = 0.

This expression now only relates the matrix and its eigenvalue through the determinant.

This is known as the characteristic equation or characteristic polynomial of A.

B.3 Non-normal Matrices

Recall that any matrix may be decomposed into unitary matrices and a diagonal of

corresponding amplifications of each unitary vector via the singular value decomposition

(SVD) as,
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A = UΣV ∗

Taking the product of A with its adjoint A† yields an eigenvalue problem for output

modes,

AA† = (UΣV ∗) (UΣV ∗)†

= (UΣV ∗) (V ΣU∗)

= UΣV ∗V ΣU∗

= UΣΣU∗

Noting that U and V are unitary matricies and the product of each with their

complex conjugate transpose results in the identity matrix. After right multiplying the

above by U we get,

AA†U = UΣΣ

For each eigenvector of the resulting eigensystem we can write,

AA†ui = σ2ui

Similarly we can write the reverse as,

A†Avi = σ2vi

which yields the input modes. This allows us to solve for input and output distur-

bances using similar methodologies as those imposed in modal analysis.
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B.4 Input-Output Analysis

The following section shows the mathematical formulation of input-output analysis for

dynamical systems. This section derives and explains how to perform input-output

analysis using a linear system theory approach.

B.4.1 Mathematical Formulation

Consider a dynamical system defined by,

ψt = Aψ(t)

where, ψt = ∂ψ(t)
∂t is the evolution of our field, A is our propagator operator, and ψ(t)

is our field at time t. Now suppose we wish to add forced disturbances to our state

space with a time dependent forcing function d with the goal to observe some measured

output of our field ψ. We can define two equations,

ψt = Aψ + Bd

φ = Cψ

where, B transforms input disturbances into the state-space, φ is our desired mea-

sured quantity with C being the transformation of our state-space variables to our

output.

Let us assume a modal form of our state space ψ, forcing inputs d, and output field

φ

ψ(x, y, z, t) = ψ̂(x, y, z)Exp [iωt]

d(t) = d̂(iω)Exp [iωt]

φ(t) = φ̂(iω)Exp [iωt]
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The resulting state-space and output equations becomes,

iωψ̂ = Aψ̂ + Bd̂(iω)

↓

(iωI − A) ψ̂ = Bd̂

and,

φ̂(iω) = Cψ̂(iω)

where I is the identity matrix.

If we combine these two equations we end up with,

φ̂ = C (iωI − A)−1 Bd̂

which is one equation for output variables φ based on our state-space resolvent

(iωI − A)−1, and our input forcing function d̂. The term C (iωI − A)−1 B can be

thought of as a single operator taking inputs d̂ and mapping them to outputs φ̂. This

is known as the transfer function H,

H(iω) = C (iωI − A)−1 B

which is the mapping from our input-space to our output space,

H(iω) : Sd → Sφ

Whereas the H† is defined as,

H†(iω) = B†
(
−iωI − A†

)−1
C†

or

H†(iω) = −B†
(

iωI +A†
)−1
C†
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and is the mapping from output-space to the input-space,

H†(iω) : SΦ → Sd

A formal definition of operators and their adjoint can be found in Appendix B.1.

Using the definition of adjoint operators and associate norms allows for the solution of

global modes associated to the transfer function H. Exploiting the mathematical char-

acteristics of non-normal matrices (see Appendix B.3,the composition of H(iω)H†(iω)

results in,

H(iω)H†(iω) =
(
C (iωI −A)−1B

)(
−B†

(
iωI +A†

)−1
C†
)

=
(
C (iωI −A)−1B

)(
−Q−1

d B∗Qψ

(
iωI +Q−1

ψ A∗Qψ

)−1
Q−1
ψ C∗Qφ

)
=
(
C (iωI −A)−1B

)(
−Q−1

d B∗QψQ
−1
ψ (iωI +A∗)−1QψQ

−1
ψ C∗Qφ

)
=
(
C (iωI −A)−1B

)(
−Q−1

d B∗ (iωI +A∗)−1C∗Qφ

)

Note that

H(iω) =
(
C (iωI −A)−1B

)
(B.1)

and

H∗(iω) =
(
B∗ (−iωI −A∗)−1C∗

)
(B.2)

Depending on the order in which we construct the inner product between the transfer

function H and its adjoint H† results in eigenvalue systems for input or output global

modes.

H(iω)H†(iω) = H(iω)Q−1
d H∗(iω)Qφ (B.3)
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H†(iω)H(iω) = H∗(iω)QφH(iω)Q−1
d (B.4)

The analysis is considered to be a nonmodal approach since the construction of

the either system (H†H or HH†) and the solution of which results in the eigenvalues

(which in this case are the squared singular values) for the state space operator A (the

global linear operator). Additionally, by augmenting the mapping matrices (B and C,

respectively), we are able to analyze the linear dynamics of the fluid system based on

componentwise inputs and outputs (i.e. forcing/response of individual fluid quantities

such as mass, momentum, or energy). This will result in a mechanism approach to the

stability of the system.



Appendix C

Comparison of Discretization

C.0.2 Discretization and Disturbance Form

We can either employ the finite volume formulation, linearize the equations, and then

assume a modal form for our disturbances, or we can linearize the equations about some

base state, assume a modal form for the disturbance, and then employ a finite volume

discretization. We shall take a moment to go over each implementation and discuss the

consequences of each.

Modal Form of Discretization

For the first case, we will first apply the finite volume formulation of the equations.

This is done by writing Eqn 3.1 in integral form.

∫
V

∂Ui
∂t

dV +

∫
V

∂Fi
∂xj

dV = 0 (C.1)
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Employing the divergence theorem will change the volume integral of the flux func-

tion into a surface integral. we get,

∫
V

∂Ui
∂t

dV +

∮
S
Fi · dS = 0 (C.2)

This represents changes in inside a volume over time are the results of fluxes across

its surface. We can now discretize the surface which changes the integral to a sum of

fluxes across faces of our computational cell. The volume integral for the time derivative

results in a volume average quantity U .

Vi
∂Ui
∂t

+
∑
faces

Fi · S = 0 (C.3)

Vi
∂Ūi
∂t

+ Vi
∂U ′i
∂t

+
∑
faces

Fi(Ū + U ′) · S = 0 (C.4)

Vi
∂Ūi
∂t

+ Vi
∂U ′i
∂t

+
∑
faces

[
Fi(Ū) +

∂F (U)

∂U
U ′
]
· S = 0 (C.5)
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Vi
∂U ′i
∂t

+
∑
faces

∂F (U)

∂U
U ′ · S = 0 (C.6)

Vi
∂U ′i
∂t

+
∑
faces

A U ′ · S = 0 (C.7)

Vi
∂U ′i
∂t

+
∑
faces

(
A+ U ′cl +A−U ′cr

)
· S = 0 (C.8)

Vi i ω Ûi +
∑
faces

(
A+ Ûi +A−Ûii

)
· S = 0 (C.9)

Discretization of Modal Form

The result of applying a modal assumption to the discretized equations resulted in the

following equation,

Vi i ω Ûi +
∑
faces

(
A+ Ûi +A−Ûii

)
· S = 0 (C.10)
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We can compare this result obtained by first assuming a modal form of the contin-

uous equations and then applying the finite volume discretization. For this approach,

we will first take the continuous equations and linearize them about some base state to

obtain our disturbance equations. This is done by expanding our equation into a base

state plus some small perturbation quantity, i.e U = Ū + U ′.

∂Ūi
∂t

+
∂U ′i
∂t

+
∂Fi(Ū + U ′)

∂xj
= 0 (C.11)

We can express F (Ū +U ′) via Taylor Series expansion about the base state. We will

neglect the nonlinear terms.

F (Ū + U ′) = F (Ū) +
∂F (Ū)

∂U
U ′ +O2 (C.12)

Performing similar expansion for the rest of the flux vectors we arrive at,

∂Ū

∂t
+
∂U ′

∂t
+
∂F (Ū)

∂xj
+

∂

∂xj

[
∂F (Ū)

∂U
U ′
]

= 0 (C.13)

Subtracting off the base state and rearranging results in linearized equation for dis-

turbances in compressible flows.
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∂U ′

∂t
+

∂

∂xj

[
∂F (Ū)

∂U
U ′
]

= 0 (C.14)

Assuming a modal form U = Û exp [σ] and replacing ∂F (Ū)
∂U = A′

i ω Û exp [σ] +
∂

∂xj

[
A′Û exp [σ]

]
= 0 (C.15)

∫
V

i ω Û exp [σ] dV +

∫
V

∂

∂xj

[
A′ Û exp [σ]

]
dV = 0 (C.16)

∫
V

i ω Û dV +

∫
V

∂

∂xj

[
A′ Û

]
dV = 0 (C.17)

V i ω Û +

∮
S

(
A′ Û

)
· dS = 0 (C.18)

V i ω Û +
∑
faces

(
A′ Û

)
· S = 0 (C.19)
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Vi i ω Ûi +
∑
faces

(
A+ Ûi +A−Ûii

)
· S = 0 (C.20)
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