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Abstract 

Evidence of dysfunctional visual processing in schizophrenia patients has been noted in all 

stages of the visual processing pathway.  The iterative nature of vision- with hierarchical 

feedforward signals, modulating feedback signals, and horizontal intracortical 

connections- makes it difficult to pinpoint exact loci that are driving these deficits.  This 

dissertation uses several contextual modulation paradigms in an effort to isolate and 

explain the nature of disruptions in iterative visual processing in schizophrenia. 

Chapter 1 provides an overview of visual processing dysfunctions in schizophrenia, and 

examines a variety of mechanisms that may play a role.  These include neurotransmitters, 

magnocellular versus parvocellular processing streams, abnormal local connections, and 

abnormal long-range feedback connections.  These are presented in the context of several 

theoretical perspectives of visual neuroscience.  Chapter 2 provides functional magnetic 

resonance imaging data from a fractured ambiguous object task that probes the role of high-

level qualities in primary visual cortex activation and interregional connectivity, and how 

these may be disrupted in psychosis.  Chapter 3 introduces a computational model that 

attempts to fit parameters to psychophysical data to isolate disrupted mechanisms in 

schizophrenia.  This model focuses on the role of gain control and segmentation of center 

and surround stimuli in a tilt illusion paradigm.   

Chapter 4 presents previous work, examining the modulatory effect of the NMDA receptor 

agonist d-cycoserine on conditioned fear generalization.  This work was done in healthy 

controls as a step in expanding our knowledge of the function of d-cycloserine in increasing 

specificity and efficacy in the fear learning process.   

  



iv 
 

Table of Contents 

 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

List of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Chapter 1- Iterative Visual Processing in Schizophrenia. . . . . . . . . . . . . . . . . . . . . . . . 8 

Chapter 2- Visual Connectivity During Meaningful Object Presentation in Psychosis  

and Healthy Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Chapter 3- Computational Modeling of the Tilt Illusion in Schizophrenia Patients and 

First-Degree Relatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Chapter 4- Modulation of the Neural Correlates of Conditioned Fear Generalization 

  by D-cycloserine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

  



v 
 

List of Tables 

 

Table 2-1 Demographic and Clinical Data . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 39 

Table 4-1 ROIs Used in Functional Analysis . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .74 

  



vi 
 

List of Figures 

 

Figure 2-1 Fractured Ambiguous Object Task Stimuli . . . . . . . . . . . . . . . . . .. . . . . . . . 40 

Figure 2-2 Explanation of gPPI Analysis . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 43 

Figure 2-3 GLM Results . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Figure 2-4 gPPI Results . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

Figure 3-1 Tilt Illusion Stimuli . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 57 

Figure 3-2 Computational Model Results . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .60 

Figure 4-1 Results of Behavioral Fear Generalization . . . . . . . . . . . . . . . . . .. . . . . . . .72 

Figure 4-2 Functional Magnetic Resonance Imaging Generalization Results . . . . . . . .77 

  



vii 
 

List of Equations 

 

Equation 3-1 . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .. . .. . . . . . .57 

Equation 3-2 . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .. . .. . . . . . .58 

Equation 3-3 . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .. . .. . . . . . .58 

Equation 3-4 . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .. . .. . . . . . .59



8 
 

Chapter 1: Iterative Visual Processing in Schizophrenia 

Relationships between schizophrenia and vision have been noted in the scientific 

literature since at least the 1950s.  Two phenomena were observed during this decade: the 

first was that schizophrenia did not occur in people suffering from congenital blindness 

(Chevigny & Braverman, 1950).  The second was that qualitative descriptions of living 

with schizophrenia often included some sort visual perception problem, such as this 

explanation of fragmented percepts: “I have to put things together in my head.  If I look at 

my watch, I see the watch, watchstrap, face, hands, and so on, then I have got to put them 

together to get it into one piece”. (Chapman, 1966, as cited in Silverstein and Keane, 2011).  

 Early research on vision in schizophrenia patients was primarily focused on 

comparing the visual abilities of these “functional” brain disorders versus those with 

“organic” brain disorders, essentially, schizophrenia versus dementia.  The earliest studies 

were done using paradigms that targeted the ability to distinguish rapidly presented flashes 

of light, and observed a difference between functional and organic groups, but not between 

the functional group and healthy controls (Irvine, 1954; King, 1962).  Studies on perception 

of apparent motion, on the other hand, found schizophrenia patients and “organics” more 

similar in their deficits, and was at the time proposed as a diagnostic tool for research 

purposes (Deabler & Saucer, 1956; Saucer, 1958).  Color discrimination was also a topic 

of interest, with some studies finding higher rates of color vision disorders in the 

schizophrenia population (Meduri, 1969; Pevzner, 1969).  In the 1960s, the study of visual 

deficits in schizophrenia patients expanded exponentially, driven primarily by studies of 

visual evoked potentials (VEP), the measurement of electrical responses over the occipital 

cortex in response to visual stimuli.  The VEP literature consistently found a decrease in 
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VEP amplitude in response to paired flashes in schizophrenia patients as compared to non-

psychiatric controls, and that VEP responses were often correlated with symptomatology 

and drug treatment (Heninger & Speck, 1966; Ishikawa, 1968; Shagass & Schwartz, 1965; 

Speck, Dim, & Mercer, 1966) These findings taken together confirmed the qualitative 

reports of visual disturbances in the disorder, and drove an extensive body of research into 

the exact nature and mechanisms of these perceptual dysfunctions(Uhlhaas & Silverstein, 

2005). 

Deficits in High-Level Visual Processing 

 The end goal of vision is to be able to recognize and interact with the world around 

us.  To this end, high-level facial and object recognition can be important measures of 

overall functioning of the visual system.  Facial processing theories suggest that subjects 

must be able to identify individual facial features, such as the eyes, lips, hairline, and nose, 

and then integrate these features with correct spatial information to get an accurate holistic 

representation of a face(Diamond & Carey, 1986).  This process requires the ability to 

group individual elements correctly, which may be impaired in schizophrenia (Joshua & 

Rossell, 2009; Shin et al., 2008; Steven M. Silverstein & Keane, 2011) Deficits are also 

observed in the ability to detect a face in a line drawing or other crowded stimuli, which 

may also reflect this difficulty in perceptually grouping features(Chen, Norton, McBain, 

Ongur, & Heckers, 2009; Chen, Norton, & Ongur, 2008; McBain, Norton, & Chen, 2010) 

though it may also partially reflect more cognitive processes like visual search.  This 

behavioral finding is supported by ERP studies examining the N170 component, which has 

been associated with early structural encoding of faces.  Data have consistently shown that 

N170 amplitudes are smaller and latencies are longer in patient groups, which is suggestive 
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of less response and slower processing times (Feuerriegel, Churches, Hofmann, & Keage, 

2015; Herrmann, Ellgring, & Fallgatter, 2004; Lynn & Salisbury, 2008; McCleery et al., 

2015; Onitsuka et al., 2009; Zheng et al., 2016).  Magnetic resonance imaging studies of 

face processing in schizophrenia have primarily focused on the fusiform gyrus, where 

reports are conflicted.  Studies report no difference in fusiform gyrus activation when 

viewing emotionally neutral face stimuli(Quintana et al., 2011; Yoon, D’Esposito, & 

Carter, 2006), but do demonstrate differences when faces are degraded.  Schizophrenia 

patients have higher activations to degraded face in the fusiform gyrus that may be due to 

the region having to work harder to overcome integration deficits or poorer signaling from 

earlier visual areas(S. M. Silverstein et al., 2010). 

Facial processing is a subcategory of object processing, which is also dysfunctional 

in schizophrenia patients.  Studies have indicated that patients are not necessarily less 

accurate at recognizing ojects, but require more information to make an accurate 

determination.  This finding is associated with a reduced NCl component (an EEG 

component observed over the lateral occipital complex associated with perceptual closure) 

as well as reduced P1 over both the dorsal and ventral visual streams, suggestive of both 

early and late stage deficits (Doniger, Foxe, Murray, Higgins, & Javitt, 2002).  Relatives 

of schizophrenia patients seem to demonstrate similar P1 deficits over the midline dorsal 

region and bilaterally over LOC during biological object recognition tasks (Yeap et al., 

2006).  Correlates of these deficits have been noted in fMRI studies, where patients have 

demonstrated smaller activations in the dorsal visual stream that seem to result in reduced 

activations in the prefrontal cortex, as well as smaller activations in the ventral stream that 

are correlated with scores on behavioral measures of perceptual grouping (Sehatpour et al., 
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2010).  In an attempt to further tease apart deficits, Calderone et al. used high and low 

spatial frequency objects in an fMRI experiment.  This study found preferential responding 

to high spatial frequency objects in the precuneus and right superior temporal gyrus in 

patients, opposite the pattern observed in controls, and the disappearance of a difference 

between stimuli types for patients in the dorsolateral prefrontal cortex and left caudate 

(2012).  These results taken together are indicative of deficient object processing that 

begins earlier than object oriented regions of the brain, and that simply studying high-level 

vision is not enough to understand what is driving visual deficits in schizophrenia.   

Deficits in the Magnocellular Visual Processing Stream 

 As both object and face processing are high-level visual processing skills, it is likely 

that deficits in these abilities are driven by dysfunctional processing upstream.  One 

important distinction is whether these deficits are precipitated by dysfunctions in basic 

feature coding, poor responding in a single visual area, or in more complex signaling within 

and between parts of the visual system.   

 Dysfunctions in feature coding seem to be related both to the specific stimulus 

feature being encoded, as well as the visual pathway processing it.  There are two main 

visual processing streams, though the two do experience overlap.  Both start in the retina, 

synapse in the lateral geniculate nucleus (LGN), project to different layers of early visual 

cortex, and then through higher visual areas.  The magnocellular pathway derives its name 

from the large cell bodies characteristic of the LGN neurons that signal low spatial 

frequency, color-blind, low-contrast information relatively quickly.  This pathway tends to 

capture movement, onset/offset stimulus information, and big picture stimulus 

organization.  It primarily projects to the dorsal visual stream, supporting eye movements, 
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attentional modulation, motion perception, and motor guidance and integration for the 

purposes of locating visual information in space (Steinman, Steinman, & Lehmkuhle, 

1997). The parvocellular pathway, on the other hand, has small LGN cell bodies and 

processes high spatial frequency information and color information much more slowly than 

the magnocellular pathway.  It projects mainly to the ventral stream, which is specialized 

for object recognition and processes information about orientation, size, contours, form, 

objects, and faces (Jeffries, Killian, & Pezaris, 2014).      

Several studies have suggested that perception of magnocellularly biased stimuli is 

more disrupted in schizophrenia than parvocellularly biased stimuli.  Behaviorally, 

schizophrenia patients perform more poorly on spatial frequency tasks biased to the 

magnocellular pathway(Kéri, Kelemen, Benedek, & Janka, 2004).  These results are 

supported by deficient ERP generation when the spatial frequency of stimuli is designed to 

activate the magnocellular pathway, but intact processing of high spatial frequency stimuli 

that activate the parvocellular pathway (Butler et al., 2007; Dias, Butler, Hoptman, & Javitt, 

2011).  MRI results suggest that while there may not be any differences in BOLD activation 

magnitude between patients and controls in the visual cortex, the spatial area responding 

to low spatial frequency stimuli is reduced in schizophrenia, while the number of voxels 

responding to high spatial frequency stimuli are comparable between the two groups 

(Martínez et al., 2008).  In the case of luminance tasks, again schizophrenia patients do not 

exhibit any ERP differences from controls if the stimuli are designed to preferentially 

activate the parvocellular visual processing pathway, but do show disrupted processing in 

the case of magnocellularly biased stimuli (Butler et al., 2001) 



13 
 

Contrast determination, on the other hand, appears to be disrupted regardless of the 

design of the stimuli.  Psychophysical experiments reveal that patients need a larger 

difference between contrast levels for the difference to be noticeable (Calderone et al., 

2013; Cimmer et al., 2006; Dakin, Carlin, & Hemsley, 2005; M.-P. Schallmo, Sponheim, 

& Olman, 2015).  These reports are supported by MRI findings that during a contrast 

discrimination task, a smaller area of the occipital cortex was recruited in patients than in 

controls, regardless of whether the contrast stimuli were biased toward magnocellular or 

parvocellular processing (Calderone et al., 2013).   

These results suggest that visual deficits are not inherent to basic feature processing.  

There is a compelling body of evidence indicating that the magnocellular system may be 

selectively dysfunctional in schizophrenia, but this does not seem to hold true for contrast 

discrimination tasks.  These contrast discrimination deficits are observable across a range 

of contrasts, which is inconsistent with the magnocellular deficit theory.  One caveat to this 

body of research is that it can be difficult to observe neurological correlates of 

magnocellular processing, particularly early in the stream, because of the distribution of 

magnocellularly and parvocellularly biased neurons.  Most MRI studies do not have the 

resolution to discern magno- vs parvocellular layers in the early visual system, and EEG is 

limited to simply observing slow versus fast responses with very coarse spatial resolution. 

Deficits in Iterative Processing 

 Visual processing in general relies on the ability to integrate feedforward signals 

from early visual areas to higher visual areas, feedback signals from higher to lower areas, 

and horizontal signals from within the same visual area.  This results in recurrent 

processing loops, in which information from one area of the visual system can modulate 
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neural responding in both higher and lower visual regions; the modulated responses are 

then communicated back to other areas in an iterative process (Lamme & Roelfsema, 

2000).  This process allows for increased efficiency and the ability to combine information 

from across multiple receptive fields (Rao & Ballard, 1999).  The feed forward signals 

would typically be driven by stimulation of the classical receptive field, while feedback 

and horizontal connections may be driven by a variety of potential factors.   

A general deficit in prediction in schizophrenia may be related to dysfunctions in 

the recurrent processing stream.  Predictive coding theories suggest that the visual system 

is able to learn statistical regularities of the natural world.  Higher visual areas 

communicate predictions about stimuli to lower visual areas, allowing the lower areas to 

essentially disregard any information that confirms those predictions, and focus processing 

power on information that is in conflict with them (Rao and Ballard, 1999).  In this case, 

early visual neurons would not be responding to the image intensity, but rather to the 

difference between the expected value and the actual value.  Models of predictive coding 

account for a hierarchical model where each stage predicts the response of the one before 

it, not after.  The prediction error is then sent forward to higher visual areas to improve the 

prediction.  These stages are occurring concurrently, which results in an iterative loop of 

feedforward and feedback responses.  It has been argued that this type of coding scheme 

increases efficiency of visual processing, particularly in early areas, and can explain a 

variety of visual phenomena.  Contextual modulation could be the result of feedback 

signaling expecting the surround to be similar to the central stimulus, which would provide 

an explanation for facilitation when the center and surround are very different, and 

suppression when the center and the surround are very similar (Spratling, 2011).    Reduced 
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activity in early visual cortex for coherent shapes and contours as compared to random 

patterns could be the result of higher visual areas indicating that that is the expected 

grouping of stimuli (Rao & Ballard, 1999). 

Predictive coding is not necessarily confined to the visual system Several studies 

have noted alterations in the mismatch negativity (MMN) ERP component, a component 

related to an unexpected stimulus in a sequence (Lee et al., 2017; Rentzsch, Shen, Jockers-

Scherübl, Gallinat, & Neuhaus, 2015; Wacongne, 2016).  MMN aberrations are indicative 

of impaired predictions about what comes next, or weak signaling of the prediction error.  

Either of these could result in disrupting the iterative prediction loop, either by affecting 

the feedback connections signaling the prediction, or just the feedforward projections 

coding for the error.  Some researchers have noted attenuation of neural response in the 

ventral striatum to reward prediction error and exaggerated responses to predictable events, 

and have suggested that these aberrations may be related to the anhedonia observed in 

schizophrenia (Choi, Lee, Ku, Yoon, & Kim, 2014; Deserno, Heinz, & Schlagenhauf, 

2016; Dowd, Frank, Collins, Gold, & Barch, 2016; Morris et al., 2012; Shergill et al., 

2014).  Patients with schizophrenia also tend to exhibit disturbances in sense of agency, or 

the awareness of generating and executing one’s own movements.  Sense of agency tasks 

have revealed that inadequate or delayed predictions may be correlated with task 

performance (Hughes, Desantis, & Waszak, 2013; Koreki et al., 2015; Maeda et al., 2013).  

It has also been hypothesized that impaired prediction ability may play a role in positive 

symptoms.  For example, in the case of auditory hallucinations, there is a reduction in 

prediction error signaling response in the auditory cortex, particularly during silence, that 

was associated with severity of auditory verbal hallucinations (Fletcher & Frith, 2009; 
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Griffiths, Langdon, Le Pelley, & Coltheart, 2014; Horga, Schatz, Abi-Dargham, & 

Peterson, 2014).  Models have proposed that this might be due to recursive feedback from 

the prefrontal cortex to the auditory cortex that develops vague probability into an explicit 

percept (Nazimek, Hunter, & Woodruff, 2012).  This body of research suggests that deficits 

in prediction and prediction error coding are likely a global dysfunction in schizophrenia. 

Other proposals for the function of feedback connections include providing 

information about attentional allocation (Reynolds & Heeger, 2009), homogeneity of 

stimuli (Coen-Cagli, Kohn, & Schwartz, 2015), and the probability that stimuli will be 

grouped together (Schwartz, Sejnowski, & Dayan, 2009).  Computational models can be 

used to explain the behavior of both single neurons and populations of neurons and allow 

for the prediction of responses given certain properties of the stimulus and the neurons of 

interest.  By quantifying and reducing neural responding to the output of a series of 

equations, it becomes easier to understand the effects of a number of different inputs on 

neural activity, due to the ability to manipulate multiple inputs systematically.  Theoretical 

models, then, allow for an intermediary step between data ascertained from overly 

simplified experimental paradigms and neural responses to the natural environment.  A 

neurophysiobiologically plausible model can test the hypothesis that perturbation of a 

single neural mechanism can result in the range of contextual modulation deficits 

demonstrated behaviorally.  

 Most models that account for contextual effects in early visual cortex incorporate 

some form of divisive normalization, dividing the response of a neuron by the summation 

of the responses of neighboring or similar neurons (Heeger, 1992).  Schwartz et al. (2009) 

proposed one such model to attempt to explain orientation surround effects, specifically in 
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the tilt illusion, using high-level center-surround segmentation as a regulating factor for 

gain control.  In this model, a center neural unit has a linear tuning represented by an 

idealized Gaussian tuning curve and a nonlinear divisive gain control that is determined by 

similarly oriented filters in both the center and the surround. Overall strength of the gain 

control pool is set by an additive constant; the degree to which surround filters are included 

in the divisive gain control pool is modulated by the probability that the center and the 

surround are grouped (a prior developed from natural scene statistics). Perceived 

orientation is predicted from the population of neurons representing the center stimulus, 

using a population vector decoding scheme.   

Reynolds and Heeger propose a model that accounts for three different neuronal 

receptive fields: a) a “stimulation field” that accounts only for the specificity of neuron’s 

orientation and spatial preferences, b) a “suppressive field” that accounts for the features 

and positions that contribute to suppression when presented simultaneously with a 

preferred stimulus, and c) an “attention field” that accounts for the effects of attention 

(2009).  The model suggests that the stimulus drive is multiplied by the attention field, 

essentially retuning the population response.  This combined stimulus drive and attentional 

field is then divided by the suppressive drive plus a constant representing the neuron’s 

contrast gain, effectively normalizing the response, to account for the output firing rate.  

Attention, then, modulates both stimulation and suppression of neurons.  Parameters that 

effect the output in the model include stimulus size relative to the sizes of both the 

stimulation and suppression fields, features of the stimulus, and features and size of the 

attentional field.  This function is mediated by a parameter representing the response gain, 

which dictates the maximum potential response.  This model predicts that by altering 
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attention field and stimulus size, the effect of attention will shift from response gain to 

contrast gain.  It also predicts that attention modulates surround suppression, attention 

effects will be strongest for high contrasts, and that attention may play a role in determining 

response latency (Reynolds and Heeger, 2009).   

 An alternative model by Coen-Cagli et al. takes a standard normalization model 

and adds a factor accounting for whether a neuron interprets an image to be homogenous 

or heterogenous (2015).  In the basic model they adapted, response to an image is 

determined by drive to the receptive field divided by a denominator that includes the 

strength of the receptive field normalization pool multiplied by the drive to the 

normalization pool, as well as the strength of the surround normalization pool multiplied 

by the drive to the surround normalization pool.  Other parameters include relationships 

between the drive and the spiking rate.  The additional factor added by Coen-Cagli amounts 

to a binary gating parameter on the surround that is determined by the probability that a 

neuron infers the center and surround to be homogenous or heterogenous, as determined 

by training on natural image statistics.   

It seems likely that the most accurate model is some combination of all of these, 

probably with an even more complex set of modulating parameters.  In these models, 

feedforward connections are represented by the output response, intracortical, lateral 

connections are captured in the strength of the gain pool, and feedback connections are 

determined by probability of grouping in the Schwartz model, the attention field in the 

Reynolds and Heeger model, and the inference of homogenous and heterogenous in the 

Coen-Cagli model.  Probability of grouping and inference of homogeneity can both be 

viewed as the high-level predictions that are incorporated into predictive coding, thus, 
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while these models are not directly represented in terms of iterative processing, they in fact 

are consistent with this hypothesis.  Below is an exploration of visual task performance in 

schizophrenia, with a focus on how these data are explainable by dysfunctions in recurrent 

processing. 

 Surround suppression.  The discovery of extra-classical receptive fields (ecRF) 

by Hubel and Wiesel (1968) brought with it the revelation that the context a stimulus exists 

in can modulate neuronal response to that stimulus in early visual processing.  An ecRF is 

a region immediately proximal to a classical receptive field that elicits no response when 

stimulated on its own, but can modulate the response of a cRF when stimulated together.  

More recent size tuning experiments have offered more support for the ecRF by 

demonstrating that the maximal response is elicited when a stimulus fills the cRF, but when 

the stimulus is expanded to fill the cRF and extend into the the ecRF, response diminishes 

(Angelucci et al., 2002; DeAngelis, Anzai, Ohzawa, & Freeman, 1995).  

The amount of this response suppression is dependent on qualities of the stimulus 

and the surround.  Surround suppression is typically stronger when the orientation of 

patterns the surround is similar to the orientation of the center (Cannon & Fullenkamp, 

1991; Cavanaugh, Bair, & Movshon, 2002; DeAngelis et al., 1995; McDonald, Mannion, 

Goddard, & Clifford, 2010; Williams, Singh, & Smith, 2003; Xing & Heeger, 2000).  

However, the rules for predicting the interaction between center and surround are complex, 

depending on the relative contrasts of center and surround (Cavanaugh et al., 2002; Yu, 

Ponomarev, & Davis, 2004), the location of the stimuli in the visual field (Polat & Sagi, 

2007), the particular tuning of the neuron (Alitto & Usrey, 2004), and proximity of the 

surround to the center (Shushruth et al., 2012; Williams et al., 2003; Yu et al., 2004).  
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A modern view of surround suppression effects in V1 is that the result from the 

concerted effort of 1) feed-forward influences from the lateral geniculate nucleus, 

(Angelucci & Bullier, 2003; DeAngelis et al., 1995; Nassi, Lomber, & Born, 2013; Ozeki, 

Finn, Schaffer, Miller, & Ferster, 2009; Shushruth et al., 2012), 2) divisive gain control, an 

inhibitory mechanism in which the response of orientation-selective units in V1 is 

normalized by the pooled activity of similar units (Schwartz et al., 2009), and 3) tuned 

inhibitory mechanisms that are regulated by 4) cortico-cortical projections from both 

higher visual areas and horizontal projections from other areas of V1 potentially tied to γ-

amino butyric acid (GABA) (Atallah, Bruns, Carandini, & Scanziani, 2012; Ma et al., 

2010; Nienborg et al., 2013; Yoon et al., 2010). 

In general, patients tend to display less contextual modulation across a variety of 

different stimuli (Chen et al., 2008; Michael-Paul Schallmo, Sponheim, & Olman, 2013; 

Seymour et al., 2013; Tibber et al., 2013).  Weaker surround suppression during contrast 

discrimination tasks in patients with schizophrenia has been observed in several different 

paradigms (Dakin et al., 2005; Dias et al., 2011; Seymour et al., 2013; Tibber et al., 2013; 

Yang et al., 2013; Yoon et al., 2009).  Current literature on whether patients also experience 

weaker suppression in other visual domains such a luminance and motion is mixed, with 

some evidence for increased surround suppression (Chen et al., 2008), and others finding 

no effect (Tibber et al., 2013; Yang et al., 2013). 

Most evidence seems to implicate cortical processing as the origin of these 

dysfunctions (Dakin et al., 2005; Dias et al., 2011; Seymour et al., 2013; Tibber et al., 

2013; Yoon et al., 2009), although the exact timing of cortical dysfunctions is unclear.  

Early hypotheses suggested that V1 was the likely locus of abnormality given that this is 



21 
 

the first cortical area that is selective for orientation (DeAngelis et al., 1994).  In patients 

with schizophrenia, fMRI studies have shown suppression of BOLD signal to parallel 

surrounds in V1 but not higher visual areas (Seymour et al., 2013).  Psychophysical 

evidence of deficits in orientation dependent surround suppression but not luminance 

dependent suppression supports this hypothesis, given that orientation is initially encoded 

in and fed forward from V1, while luminance, while a modulator of V1 activity, is not 

generative of V1 signals  (Yoon et al., 2009; Yang et al., 2013).   It may be that these 

dysfunctions are related to more general deficits in inhibitory mechanisms, particularly 

local inhibition (Yoon et al., 2009).  Imaging results suggest that inhibitory neural signals 

in V1 are disrupted in schizophrenia, which could affect either local inhibition or feedback 

from higher visual areas (Seymour et al., 2013).  

Surround suppression deficits could also be explained by feedback projections 

carrying information related to whether the center and surround are part of the same 

stimulus.  This could be related to homogeneity as modeled by Coen-Cagli (2015), 

probability of grouping as modeled by Schwartz (2009), or prediction based on natural 

image statistics (Spratling, 2012).  In the first two cases, weakening the feedback signal in 

patients with schizophrenia would result in an increased likelihood of viewing the center 

and the surround as separate entities, which would result in less interaction, particularly in 

the form of lateral inhibition, between neurons.  In the case of a lack of prediction 

information, none of the response to the center would be subtracted based on redundancies 

with the surround.   

 Tilt illusion.  Surround suppression falls under a much broader category of 

contextual modulation.  One psychophysical task that can be used to probe surround 
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suppression is the tilt illusion, where an oriented grating target stimulus is presented 

surrounded by an offset grating (Blakemore, Carpenter, & Georgeson, 1970; Gibson, 

1937).  Generally, when the difference in orientation between a center grating and a 

surrounding grating is small, the orientation of the center is perceived as tilting away from 

the surround (repulsion) in what is known as the direct tilt illusion.  When the difference 

between the center orientation and surrounding orientation is large, the center is perceived 

at tilting toward the orientation of the surround (attraction), in the indirect tilt illusion.  

Similarly to surround suppression tasks, contrast and proximity of the central and 

surrounding gratings can mediate the magnitude of the illusion (Durant & Clifford, 2006; 

Georgeson, 1973; Qiu, Burton, Kersten, & Olman, 2016; Tolhurst & Thompson, 1975).     

Given the findings of reduced surround suppression, it seems likely that similar 

deficits would be observed in patients with schizophrenia during the tilt illusion, since the 

two phenomena have a significant overlap in explanation. However, that does not currently 

seem to be the case.  Two studies have found no significant differences in the magnitude 

of tilt repulsion between patients and healthy controls (Yang et al., 2013; Tibber et al., 

2013).  One of these studies did report a positive correlation between magnitude of tilt 

repulsion and duration of illness and symptom severity, which seems counterintuitive given 

that patient populations tend to experience less contextual modulation (Yang et al., 2013); 

however, Tibber et al. found no correlation with symptom severity.   

The results of studies of the tilt illusion in schizophrenia patients make it difficult 

to postulate a mechanism for why these results may conflict with surround suppression 

data.  More data is needed in order to deepen our understanding of the nature of the tilt 

illusion in schizophrenia before many compelling conclusions can be drawn. 
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Backward masking.  Backward masking involves the rapid presentation of two 

visual stimuli so that the subject is only aware of the second presentation.  Schizophrenia 

patients have been found to require a longer interstimulus interval (ISI) between the two 

stimuli presentations than healthy controls do to detect the target (Skottun & Skoyles, 2010; 

Sponheim, Sass, Noukki, & Hegeman, 2013).  Because backward masking ISIs are 

typically on the order of milliseconds, it is thought to rely on mechanisms of the very 

earliest stages of visual processing (Fahrenfort, Scholte, & Lamme, 2007).  Longer ISIs 

observed in patients with schizophrenia, then, are suggestive of disrupted or slower early 

visual processing.  While there may be some correlation between longer ISI times and the 

presence of negative, but not positive, symptoms, these deficits are also observed in 

remitted patients, suggesting that they are likely more trait markers of schizophrenia than 

state (M. F. Green & Nuechterlein, 1999; M. F. Green, Wynn, Breitmeyer, Mathis, & 

Nuechterlein, 2011; McClure, 2001). 

EEG recordings have suggested that masking impairs an intermediate stage of 

processing during which signals are being sent back towards early visual cortex, after 

features have already been detected by V1, suggesting that reentrant processing is 

necessary for visual awareness (Fahrenfort et al., 2007).  Backward masking’s reliance on 

feedback connections may be critical to understanding visual processing deficits in 

schizophrenia, given the substantial body of evidence suggesting that masking is disrupted 

in the disorder.  Studies using fMRI have suggested that these deficits may be mediated in 

part by deficient activity and connections involving the lateral occipital complex (LOC) ( 

Green et al., 2009).  Green et al. (2005) interpret LOC’s role in backward masking as being 

the first location in the processing chain where there are neurons that prefer the target 
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stimulus over the mask stimulus and that neurons are integrating information over a 

relatively extended temporal window.  This results in two stimuli with a slightly 

asynchronous offset being treated as being presented simultaneously.  This does not, 

however, rule out potential upstream dysfunctions before signals arrive in LOC. 

Others have suggested that rather than a deficit in LOC, backward masking 

performance may be driven by generally weak enhancement of target processing that 

occurs across brain systems in schizophrenia patients, hinging on impaired attentional 

performance (Herzog, Roinishvili, Chkonia, & Brand, 2013).  Still others have associated 

backward masking deficits with a failure to establish cortical oscillations between 30 Hz 

and 70 Hz in the visual cortex (Green & Nuechterlein, 1999).  Although backward masking 

was one of the earlier visual dysfunctions studied in schizophrenia, there is more research 

to be done to both narrow down the potential locus of these dysfunctions as well as relate 

them to other visual processing impairments.     

By altering features of the target stimuli and mask, researchers have probed the 

different roles of magno- and parvocellular processing in backward masking.  A substantial 

body of literature exists that, once again, suggests magnocellularly driven deficits in 

backward masking (Butler et al., 2001; Cadenhead, 2002; Michael F. Green et al., 2009),  

though there may be some parvocellular dysfunction as well (Butler et al., 2001).  

However, given the crosstalk between the two pathways, parvocellular disruption may also 

be related magnocellular disruptions, particularly slower signaling of feedback from higher 

visual areas.  These results may also not be related to specific visual pathway at all; as 

poorer detection occurs across a variety of time points in patient groups, it may actually be 
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reflective of slower visual signaling in general, both feedforward and feedback (Skottun & 

Skoyles, 2010). 

Contour integration.   Contour integration also relies on the iterative nature of 

visual processing, as it necessitates spatially integrating stimuli that activate neighboring 

receptive fields to detect edges and coherent lines.   This process relies on recurrent 

processing both for local feature integration and global scene perception (Kovács, 1996; 

Pettet, 1999).  Depending on the arrangement of elements in a scene, early visual cortical 

responses may be either facilitated or suppressed in the presence of coherent contours 

(Altmann, Bülthoff, & Kourtzi, 2003; Dumoulin & Hess, 2006; Hansen & Neumann, 2008; 

Kapadia, Ito, Gilbert, & Westheimer, 1995; Qiu et al., 2016; Roelfsema, Lamme, & 

Spekreijse, 2004).  In a strictly hierarchical, feedforward model, feature processing in V1 

should react identically to the local features of the stimulus regardless of global 

arrangement, and so one explanation is that feedback from areas that are interpreting the 

image as a whole is modulating responses in V1.  Another possible explanation is that 

horizontal connections within V1 link neurons with a similar orientation preference, 

resulting in the ability to incorporate information from a much larger area than a single 

neuron’s receptive field (Angelucci et al., 2002; Gilbert, 1992; Malach et al., 1995). 

  Patients with schizophrenia require elements to be spaced closer to each other in 

order to detect a contour than do healthy controls (Uhlhaas, Phillips, & Silverstein, 2005), 

however, patients are not proportionally worse at detecting contours made up of either 

closely spaced or distantly spaced elements (Keane et al., 2012).  Patients are also less 

adept at detecting contours on a background of random noise (Robol et al., 2013).  When 

a background is made up of elements nearly parallel to those in the contour, however, there 
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is less of a reduction in performance than is seen in controls, as would be consistent with 

impaired contextual modulation.  There is some evidence that these deficits may be 

specifically related to the presence of disorganized (Silverstein, Kovács, Corry, & Valone, 

2000; Uhlhaas et al., 2005), though other work suggests that performance on contour 

integration tasks does not improve over time, and therefore may not be related to 

symptomatology (Feigenson, Keane, Roché, & Silverstein, 2014). 

The behavioral results suggest that the neural dysfunction underlying contour 

integration deficits are primarily in local inhibitory connections.  Observed deficits with 

small gaps between elements that do not proportionally increase with distance suggest that 

dysfunctions are primarily due to these short-range connections as opposed to longer-range 

faciliatory interactions (Keane et al., 2012).  Robol et al.’s results also suggest inhibitory 

deficits, as the near-parallel background does not suppress the ability to identify a contour 

as much in patient groups as it does in healthy controls, suggesting a reduction in the 

suppression of central stimuli that is normally seen when surrounded by parallel flankers 

(2013).  This, however, is in conflict with imaging results, which do not find a difference 

between patient groups and controls in early visual cortex during these tasks, but do see 

increased activity in the lateral occipital complex and superior parietal lobule in patients 

(Steven M. Silverstein et al., 2015).  This is indicative of reduced efficiency in processing 

global form in schizophrenia, which would suggest that contour integration deficits may 

hinge on feedback signaling.  Another potential option is a feedforward deficit not related 

to activity in early visual areas but to the integrity of connections, resulting in the LOC 

having to work harder to make sense of the communication, but little work has been done 

in connectivity analyses of the visual system with schizophrenia patients. 
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    Amodal perception.  Amodal perception describes the ability to discern a 

whole object with only partial sensory information.  These tasks include shape 

discrimination tasks, illusory contour tasks, Mooney face tasks, and figure-ground 

separation tasks, which all depend on interpreting fragmented parts of a perceptual object 

as an integrated unit distinct from a surround.  While these tasks have some things in 

common with contour integration, amodal perception may require the use of prior 

knowledge about stimuli or the environment in order to assign meaning or coherent shape 

to a stimulus.      

Like contour integration, amodal perception also involves both the integration of 

information from neighboring receptive fields in early visual cortex as well as feedback 

about global information from higher visual areas (Kourtzi, Tolias, Altmann, Augath, & 

Logothetis, 2003; Murray, Schrater, & Kersten, 2004; Scholte, Jolij, Fahrenfort, & Lamme, 

2008; Supèr, Spekreijse, & Lamme, 2001; Wokke, Vandenbroucke, Scholte, & Lamme, 

2013; Yoshino et al., 2006).  Early visual areas tend to have less of a response to completed 

shapes than to simple Gabor patches, suggesting that there is some coding of global form 

in V1 in addition to local features (Murray, Kersten, Olshausen, Schrater, & Woods, 2002).  

LOC activity, on the other hand, is increased during the processing of completed shapes as 

compared to randomly oriented stimuli.  One interpretation to link these data is that 

increased LOC activity is fed back to V1 to modulate early visual activity.  Support for the 

importance of recurrent processing in amodal perception is furthered by the results of MEG 

studies, in which it has been observed that when a TMS pulse is applied in an early time 

epoch over LOC, but not V1/V2, overall task performance decreases.  A pulse during a 

later, intermediate time period over V1/V2, but not LOC, also disrupts performance 
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(Wokke et al., 2013).  Electrophysiological studies in monkeys and EEG studies in humans 

both indicate that in figure-ground separation tasks, V1 activity is identical for both the 

figure and the ground until about 90ms after stimulus onset.  At this point, neural 

responding in V1 is lower for the background than the figure (Super et al., 2001; Scholte 

et al., 2008).  These data taken together suggest that there is essential processing happening 

in higher visual areas that is modulating V1 response. 

These amodal perception tasks are disrupted in schizophrenia patients.  In a 

Kanizsa Square illusory contour task, where “pac men” shapes are oriented in such a way 

that the removed wedges are suggestive of a square, patients have a higher threshold for an 

illusory contour as opposed to a fragmented condition.  When combined with performance 

impairments in response to distractor lines that are indistinguishable from healthy controls, 

these data are suggestive of a difficulty incorporating illusory contours into shape 

perception (Keane, Erlikhman, Kastner, Paterno, & Silverstein, 2014).  During these 

illusory shape tasks, patients tend to exhibit a smaller difference of early gamma 

oscillations in occipital regions to shapes versus fragmented stimuli than do healthy 

controls, suggesting that they treat the two conditions more similarly (Spencer, 2008).  In 

studies examining visually evoked potentials, patients have delayed and decreased N150 

amplitude over the occipital cortex, representing a slower and less accurate response to 

global stimuli (Johnson, Lowery, Kohler, & Turetsky, 2005).  On a Mooney face task, 

which involves perceptual grouping of fragments based on Gestalt principles, 

schizophrenia patients perform more poorly, have slower reaction times, and display 

disrupted synchrony of beta, but not gamma, oscillations (Uhlhaas & Singer, 2006).  

Amodal perception deficits have also been noted to correlate with the presence of 
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disorganized symptoms (Keane et al., 2014) and positive symptoms (Uhlhaas & Singer, 

2006) and may increase with longer illness duration (Keane, Paterno, Kastner, & 

Silverstein, 2016) 

These dysfunctions in amodal perception are consistent with impaired long-range 

connectivity between higher visual areas and early visual areas.  Results showing a 

decrease in ability to detect illusory shapes but not an illusory contour suggest that earlier 

processing responsible for forming contours may be primarily intact, but the ability to 

integrate those contours into a global form is disrupted, a skill that would conceivably be 

driven by feedback information about the global distribution of stimuli, suggest that later 

processing is disrupted in schizophrenia (Keane et al., 2014).  There have not been many 

imaging studies performed specifically with these higher level perceptual grouping tasks 

in schizophrenia patients, so this is an area that would be a valuable area to dedicate future 

research studies.   

The general deficit of predictive coding in schizophrenia may be related to these 

recurrent processing dysfunctions.  Predictive coding theories suggest that the visual 

system is able to learn statistical regularities of the natural world.  Higher visual areas 

communicate predictions about stimuli to lower visual areas, allowing the lower areas to 

essentially disregard any information that confirms those predictions, and focus processing 

power on information that is in conflict with them (Rao and Ballard, 1999).  In this case, 

early visual neurons would not be responding to the image intensity, but rather to the 

difference between the expected value and the actual value.  Models of predictive coding 

account for a hierarchical model where each stage predicts the response of the one before 

it, not after.  The prediction error is then sent forward to higher visual areas to improve the 
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prediction.  These stages are occurring concurrently, which results in an iterative loop of 

feedforward and feedback responses.  It has been argued that this type of coding scheme 

increases efficiency of visual processing, particularly in early areas, and can explain a 

variety of visual phenomena.  Contextual modulation could be the result of feedback 

signaling expecting the surround to be similar to the central stimulus, which would provide 

an explanation for facilitation when the center and surround are very different, and 

suppression when the center and the surround are very similar (Spratling, 2012).    Reduced 

activity in early visual cortex for coherent shapes and contours as compared to random 

patterns could be the result of higher visual areas indicating that that is the expected 

grouping of stimuli (Rao and Ballard, 1999). 

In the case of iterative processing, this probability of grouping, based either on 

prediction or stimulus features, corresponds to the strength of inhibitory connections which 

set the effective gain, while feedback projections correspond to top-down signals 

(Fogelson, Litvak, Peled, Fernandez-del-Olmo, & Friston, 2014).  Dynamic causal 

modeling studies show that schizophrenia patients have stronger backward connectivity, 

particularly between the infertemporal region and V5, as well as from V5 to V1, that 

accounts for abnormal gain control by not modulating synaptic efficacy (Dima, Dietrich, 

Dillo, & Emrich, 2010; Fogelson et al., 2014).  The attenuation of context effects that are 

reliant on recurrent processing may be accounted for by this lack of modulation.   

An inability to modulate recurrent inhibitory connections could potentially be 

related to concentration of the inhibitory neurotransmitter γ-amino butyric acid (GABA).  

Reduced GABA has been noted in the visual cortex of patients (Yoon et al., 2010).  

consistent with the reduction of cortical GABA across the brain (Goto et al., 2009).  GABA 
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is critical for both short-range, horizontal projections and long-range, feedback projections 

in the case of center-surround interactions.  Reductions in GABA, therefore, can contribute 

to explaining impaired surround suppression, and indeed, GABA levels correlate with the 

amount of suppression experienced (Yoon et al., 2010).  GABA has also been implicated 

in neuronal selectivity to orientation, which would suggest that reduced GABA may lead 

to the broadened tuning curves that may be associated with schizophrenia (Edden, 

Muthukumaraswamy, Freeman, & Singh, 2009; Katzner, Busse, & Carandini, 2011) 

Upstream of GABA, glutamate, specifically modulated by the N-methyl-D-

aspartate (NMDA) receptor, has also been proposed to play a role in schizophrenia. It is 

claimed to more fully account for both positive and negative symptoms (Daniel C. Javitt, 

2010).  When an NMDA antagonist is introduced to the LGN, reductions in neuronal gain 

occur that are similar to reductions observed in schizophrenia patients, suggesting that there 

may be an NMDA driven glutamatergic deficit in schizophrenia ( Butler et al., 2003; Kwon, 

Nelson, Toth, & Sur, 1992).  In the visual cortex, Cavus et al. reported impaired cortical 

plasticity that may be driven by a reduction in NMDA receptors (2012).  Javitt has proposed 

that glutamate disruptions in schizophrenia are responsible for GABA-ergic effects (2010).   

Implications 

Despite perceptual deficits not necessarily being outwardly observable or 

diagnostic symptoms of schizophrenia, studying them offers the potential findings that may 

be critical to furthering our understanding the disorder.  For example, several studies have 

found that these deficits may be related to symptomatology of the disease.  Contour 

integration has been found not only to be impaired in schizophrenia patients as compared 

to controls, but the magnitude of impairments, measured both behaviorally and with event 
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related potentials (ERPs) as a proxy for neural activity, is correlated with disorganized 

symptoms (Butler et al., 2013; Silverstein et al., 2000; SSilverstein & Keane, 2011).  

Disorganized symptoms include inappropriate affect, non-constructive behavior, and 

disorganized thought and speech.  ERP deficits in the detection of the Mooney Face illusion 

have been correlated with negative symptoms of schizophrenia (Uhlhaas & Singer, 2006), 

as have deficits in contour detection (Walter L. Slaghuis, 2004).  This category of 

symptoms includes flat affect, anhedonia, alogia, and social withdrawal.  Spencer et al. has 

correlated deficits in the Kanizsa Square illusion with positive symptoms, such as 

hallucinations and delusions (2004).  Although there are inconsistencies in the groups of 

symptoms that segregate with visual deficits, it seems likely that there are some tenable 

relationships between measured impairments and symptomatology.  These inconsistencies 

may be due to task differences; for example, perhaps early stage visual processing deficits 

are more related to negative symptoms, while more intermediate stages are related to 

disorganized symptoms.  Given these potential relationships, research into visual 

perceptual anomalies may provide more insight into the biological action responsible for 

clinical symptoms. This is of particular interest as psychopathology research moves more 

toward the Research Domain Criteria (RDoC) approach of describing mental disorders as 

a continuum of both symptoms and biological markers.  The RDoC approach is well-

tailored to schizophrenia, given the variety of phenotypic expressions of the disorder, as 

well as the spectrum of related disorders, and has the potential to greatly improve diagnosis 

and treatment.   

Visual deficits have, in fact, been proposed not just as a correlate of positive 

symptoms, but as an underlying mechanism of visual hallucinations.  It has been suggested 
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that dysfunctions in connectivity between sensory areas may result in the inability to make 

high level predictions about the nature of the visual environment.  This information might 

then be incorrectly filled in by areas higher in the sensory processing stream, resulting in 

misperceptions or hallucinations (Fletcher & Frith, 2009; Sterzer, Mishara, Voss, & Heinz, 

2016).  As hallucinations are not limited to the visual domain, this hypothesis becomes 

more compelling when other sensory modalities are considered; it would make sense that 

all hallucinations would have a similar underpinning.  There are correlates of these deficits 

in the auditory system, including acoustic separation (Coffman, Haigh, Murphy, & 

Salisbury, 2016), auditory pattern perception (Coffman et al., 2016), auditory subcortical 

suppression (Lavigne, Menon, & Woodward, 2016), and mismatch negativity (Bodatsch et 

al., 2011), so this interpretation may be worth further exploration. 

Perhaps one of the most compelling reasons for studying visual processing in 

schizophrenia patients is that dysfunctions in this system may be exemplars of more general 

dysfunctions in schizophrenia.  Patients experience major global cognitive deficits, many 

of which occur in high level processing in frontal regions of the brain (Schaefer, 

Giangrande, Weinberger, & Dickinson, 2013), but these deficits may be difficult to 

characterize neurally given the relative complexity of higher cortical areas. The visual 

system, on the other hand, currently contains the most thoroughly described neuronal 

networks in the brain (Felleman & Van Essen, 1991).  Overall, its organization is relatively 

straightforward compared to many other areas of the cortex.  Understanding neural function 

in the canonical architecture of the visual system may elucidate mechanisms that can be 

generalized to more frontal brain processes (Butler et al., 2008; Phillips and Silverstein, 

2013; Yoon et al., 2013).   
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For example, many have theorized that patients with schizophrenia have general 

deficits when it comes to the ability to make predictions, on both a neuronal and behavioral 

level.  An inability to integrate and update predictions have been postulated as a mechanism 

for hallucinations, by allowing for inappropriate inferences about what is occurring in the 

gap between actual stimuli and expected stimuli (Adams, Stephan, Brown, Frith, & Friston, 

2013; Fletcher & Frith, 2009; Horga et al., 2014; Sterzer et al., 2016).  Predictive coding 

errors could also account for the observed mismatch negativity deficits, because if a patient 

fails to anticipate the next item in a sequence of stimuli, they will not have as dramatic of 

a response to an unexpected stimulus (Bodatsch et al., 2011; Rentzsch et al., 2015; 

Wacongne, 2016).  Prediction errors may also play a role in observed general attentional 

deficits by making it more difficult to disregard stimuli that are in keeping with expected 

patterns, resulting in the need for divided attention focusing on more things (Feldman & 

Friston, 2010).  Problems with reward prediction may lead to generalized learning deficits, 

as diminishing feedback about whether an outcome is what was expected can slow the 

process of determining whether a learned stimulus-outcome pairing is correct (Reinen et 

al., 2014).  Reduced “sense of agency” observed in schizophrenia may be due to longer 

latencies between prediction of an outcome of an intentional act and the observable effect 

(Koreki et al., 2015).  Studying prediction error in the visual system may provide 

information about a deficit that is consistent across modalities and provide a better 

understanding of the underlying nature of the disorder. 

Contextual modulation deficits occur in schizophrenia patients across a wide range 

of visual tasks.  Weaker surround suppression during contrast discrimination tasks in 

patients with schizophrenia, meaning that patients perceive the center stimulus more 
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accurately, has been observed in several different paradigms (Dakin, et al., 2005; Yoon, et 

al., 2009; Dias et al., 2011; TIbber et al., 2013; Seymour et al., 2013, Yang et al., 2013). 

Like prediction errors, contextual modulation deficits are not limited to the visual domain, 

but appear in more cognitively driven tasks as well.  These deficits are observed in working 

memory tasks (MacDonald et al., 2005), inhibition-related tasks (Cohen, Barch, Carter, & 

Servan-Schreiber, 1999), social cognition (Baez et al., 2013), and reward learning (Reinen 

et al., 2014).  Recent computational modeling efforts are able to explain working memory 

deficits in terms of local inhibition between tuned neural populations(Murray et al., 2014); 

the similarity between the working memory model and the perceptual contextual 

modulation model supports the hypothesis that alteration of a single neural mechanism can 

produce a number of different behavioral effects associated with schizophrenia. 

Finally, visual processing deficits may be of particular importance, because a large 

number of studies have suggested that similar deficits occur in unaffected first-degree 

relatives of schizophrenia patients (Avsar et al., 2011; Bedwell, Brown, & Miller, 2003; 

Chkonia et al., 2010; Davenport, Sponheim, & Stanwyck, 2006; Force, Venables, & 

Sponheim, 2008; Kéri et al., 2004; Niendam et al., 2014; Michael-Paul Schallmo et al., 

2013; Sponheim et al., 2013).  This opens visual deficits up as a potential biomarker for 

schizophrenia, or potentially an endophenotype (Gottesman & Gould, 2003).  Further 

research must be done in order to determine which visual skills may have both sensitivity 

and specificity for identifying remitted patients, active patients, and first-degree relatives 

so that they may be targets for future studies into genetic vulnerabilities for schizophrenia. 
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Chapter 2: Visual Connectivity During Meaningful Object Presentation in Psychosis 

and Healthy Controls 

The range of observed visual deficits in schizophrenia (SZ) span the entirety of the 

processing stream, from the retina to high-level vision (Silverstein & Rosen, 2015; 

Silverstein & Thompson, 2015)These deficits have been associated with negative 

symptoms (Ulhaas et al., 2006; Slaghuis et al., 2004), disorganized symptoms (Silverstein 

et al, 2000; Silverstein and Keane, 2011; Butler et al., 2013), and have been proposed as a 

potential underlying mechanism of hallucinations and positive symptoms (Spencer et al, 

2004; Fletcher and Frith, 2009; Sterzer et al., 2016).  There is substantial evidence that 

perceptual grouping tasks, which invoke the ability to extract coherent shapes from a 

meaningless background, are disrupted in SZ (Uhlhaas and Silverstein, 2005; Silverstein 

and Keane, 2011).  In patient groups, performance on these tasks correlates with the 

presence of disorganized symptoms (Keane et al., 2014), and appear to increase with illness 

duration (Keane et al., 2016), which suggests that these may be an interesting target for 

seeking to understand more about the nature of symptoms in the disorder. 

 Perceptual grouping tasks rely on the ability to integrate information from 

neighboring receptive fields in early visual areas as well as information about global 

organization from higher-level areas (Kourtzi et al., 2003; Murray et al; 2004; Scholte et 

al, 2008; Super et al, 2001; Wokke et al, 203; Yoshino et al, 2006). These tasks include 

figure-ground segmentation, illusory shapes and contours, and shape discrimination tasks.   

A system that only relied on a traditional feedforward hierarchical model of visual 

processing would result in identical V1 responses to similar features, regardless of whether 

they were presented individually or as part of a coherent global arrangement.  Imaging data 
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suggest that this is not the case; in fact, blood oxygen level dependent (BOLD) response in 

V1 to stimuli that belong to a completed object is smaller than the response to ungrouped 

stimuli with the same receptive field properties (Murray et al., 2002).  On the other hand, 

the high level lateral occipital complex (LOC) shows increased activity to completed 

objects as opposed to simple stimuli (Malach et al., 1995).  Data in both humans and 

monkeys suggest that early neural activity in the occipital cortex is identical for both figure 

and ground stimuli, but starts to deviate around 90ms after stimulus onset, and are 

subsequently lower for the ground than the figure, which would be consistent with 

feedback from a higher area modulating V1 response (Super et al., 2001; Scholte et al., 

2008).  This idea of feedback modulating early visual response is further supported 

evidence that deactivating higher visual areas such as V5 or LO early in the visual 

processing timeline reduces the response to the stimuli in V1 (Hupé et al., 1998; Pascual-

Leone & Walsh, 2001; Wokke et al., 2013).  

These results suggest the presence of three different types of connections: 1) 

horizontal connections within V1 linking neurons with proximal receptive fields and 

similar orientation preferences, resulting in the ability to incorporate information from a 

much larger area than a single neuron’s receptive field; 2) feedforward connections from 

early visual areas to higher visual areas, consistent with a hierarchical model of visual 

process, and 3) feedback from higher visual areas to early visual areas interpreting the 

organization of the image as a whole (Gilbert, 1992; Malach et al., 1993; Angelucci et al., 

2002).  

This type of perceptual grouping has primarily been probed in SZ patients with 

illusory contour and shape tasks.  While performing these tasks, patients tend to display 
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both a delayed and decreased N150 amplitude over the occipital cortex (Johnson et al., 

2005), a visually evoked potential component generated in the deep layers of the parietal 

cortex (Di Russo, Martínez, Sereno, Pitzalis, & Hillyard, 2002)  This represents a slower 

and less accurate response to globally biased stimuli that could conceivably be driven by 

disruptions in any of the three previously mentioned types of connections.  Patients also 

display a smaller difference in gamma oscillations in the occipital region to shapes versus 

fragmented stimuli than do healthy controls (Spencer, 2008).  This is suggestive of SZ 

patients not incorporating global form information as efficiently as do healthy controls.   

This hypothesis is further supported by behavioral results that indicate that patients have 

impairments similar to those of controls when distractor lines are presented near the 

illusory figure, indicating that their ability to form illusory contours is relatively intact.  

They did, however, have higher thresholds on the illusory condition as compared to a 

fragmented condition, revealing a difficulty with using illusory contours to understand 

global form (Keane et al., 2014).   

The pattern of these deficits is consistent with the presence of recurrent processing 

deficits.  A delayed and decreased N150 VEP component could be reflective of weaker or 

slower feedback signals being incorporated into early visual representations (Johnson et 

al., 2005).  Smaller differences in neural oscillations between contours and fragmented 

conditions are indicative of a failure to properly modulate early responses to coherent 

stimuli by not taking global properties into account and treating them more like fragmented 

stimuli (Spencer, 2008).  Keane and colleague’s results suggest that local feature 

processing may be relatively intact, while feedback about global form is disrupted (2014).  

In a Mooney Face task, which relies on grouping fragmented parts into a coherent whole 
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based on Gestalt principles, schizophrenia patients have poorer performance, slower 

reaction times, and disrupted neural synchrony of beta oscillations.  These results further 

support the idea of impaired long-range connectivity (Uhlhaas and Singer, 2006).     

Given the observed relationship between deficits in perceptual grouping tasks and 

symptomatology in SZ, we included both bipolar (BP) and SZ patients to determine 

whether the observed deficits were related to diagnosis or psychotic symptoms.  In order 

explore the nature of feedforward, feedback, and local connections during perceptual 

grouping tasks and attempt to localize dysfunctions, we presented these patients with 

fragmented ambiguous objects during a functional magnetic resonance scanning session.  

We performed both a general linear model analysis as well as a generalized 

psychophysiological interaction connectivity analysis to explore disruptions in the 

relationships between brain areas during visual processing tasks in patients with psychosis.   

Methods 

Participants 

Thirty-four stable outpatients with a diagnosis of schizophrenia, schizoaffective 

disorder, or bipolar disorder and fifteen age- and sex-matched healthy controls  were 

recruited through the Minneapolis VA, Craigslist, and the community.  Experimental 

protocols were approved by the University of Minnesota and Minneapolis VA Institutional 

Review Boards, and all participants signed a statement of informed consent and were 

monetarily compensated for their time.  Exclusion criteria included English as a second 

language, mental retardation, current alcohol or drug dependence, current or past central 

nervous system condition, history of electroconvulsive therapy, history of head injury with 
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skull fracture or substantial loss of consciousness, age under 18 or over 60, and all standard 

MRI contraindications.  All participants had normal or corrected to normal vision. 

Participants were administered the Weschler Adult Intelligence Scale III 

Vocabulary, Digit Symbol, Block Design, and Digit Span subtests to estimate IQ.  The 

Brief Psychotic Rating Scale (BPRS) was administered as a measure of psychiatric 

symptomatology, as well as the Sensory Gating Inventory (SGI) as a measure of perceptual 

experiences.  Controls were also administered the Schizotypal Personality Questionnaire.  

Diagnostic category was determined by a doctoral level clinical psychologist.  There was 

no significant difference between schizophrenia patients and controls on age or IQ.  

Demographic and clinical data are presented in Table 1. 

Group Age IQ Education 

(Years) 

BPRS 

Total 

BPRS 

Negative 

Symptoms 

BPRS 

Positive 

Symptoms 

SGI 

Perceptual 

Modulation 

Schizophrenia m=46.16 

SD= 9.96 

m=99.75 

SD=14.5 

m=13.67 

SD=2.18 

m=40.42 

SD=9.27 

m=3.92 

SD=1.08 

m=8.08 

SD=3.65 

m=1.66 

SD=0.98 

Bipolar m=48.92 

SD=10.40 

m=98.72 

SD=13.65 

m=14.92 

SD=2.61 

m=37.75 

SD=9.81 

m=3.75 

SD=1.71 

m= 5.17 

SD= 1.47 

m=1.81 

SD=1.43 

Control m=48.1 

SD=9.09 

m=111 

SD =6 

m=15.33 

SD=1 

m=25.71 

SD=1.4 

m=3 

SD=0 

m=4 

SD=0 

m=.70 

SD=.86 

 

Table 1- Demographic and clinical information for schizophrenia, bipolar, and control groups.  IQ was 

estimated by score on the vocabulary, digit symbol, block design, and digit span subtests on the WAIS-III.  

Only scores of the Perceptual Modulation subscale of the Sensory Gating Inventory were used for this 

analysis.   

Stimuli 
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Stimuli were presented using PsychoPy software on an iMac running Mac 10.9.  

Images were 324x324 pixels in size.  Images of objects were converted into abstract 

outlines of seven pixel long, discontinuous line segments using a computational model that 

emulated neural responses in V1.  Orientation of the line segment at a given point in the 

outline was determined by a winner take all approach of orientation driven neural 

responding at that point.  These outlines were set against a background of parallel seven 

pixel line segments.  The 126 images that were most frequently identified as being 

recognizable objects by a separate group of healthy college students were labeled as the 

“meaningful” condition, while 126 images that were frequently reported to be 

unrecognizable objects were labeled “meaningless” (Figure 1).  Meaningful and 

meaningless stimuli were matched in terms of number of line segments as well as mean 

orientation across the group of stimuli.     

A.      B. 

    

Figure 1. A- Example of meaningful stimulus.  B- Example of meaningless stimulus.  All stimuli were created 

by transforming pictures obtained from image databases into 7 pixel long oriented line segments based on a 

model of neuronal responding in V1.  Orientation of a line segment at any given point was determined by a 

winner-take-all approach of orientation driven responding. 
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fMRI 

Stimuli were presented with a NEC NP4100 projector with a resolution of 1024 x 

768 pixels and a refresh rate of 60 Hz back-projected onto a translucent screen placed inside 

the scanner bore.  Stimuli were viewed through a mirror placed over the observer’s eyes, 

mounted on the head coil.  Viewing distance was 112 cm, with the region images were 

presented in subtending 8° of visual angle.  The mean luminance of the projector was 110 

cd/m2.   

Functional MRI data were collected using a 3T Siemens PRISMA system 

(Siemens, Erlangen, Germany) equipped with a 32-channel head coil.  Whole brain EPI 

data were acquired with a field of view of 208 mm and a matrix size of 88 x 88, resulting 

in an in-plane resolution of 2.4 mm isotropic.  Sixty slices were collected with a 2.4 mm 

slice thickness.  Echo time (TE) was 30 ms, repetition time (TR) was 1.5 s, and flip angle 

was 75°.  Datasets were collected in the transverse direction.  One T1-weighted anatomical 

image (MP-RAGE) with 1 mm isotropic resolution was also collected sagitally for 

anatomical reference. 

A scanning session consisted of a total of seven functional runs; however, six of 

these scans were performed to collect data for other studies, and so only one run will be 

analyzed here.  Other scans will be analyzed elsewhere.  Each twelve second block 

contained 8, 1.5 s presentations of either meaningful stimuli, meaningless stimuli, or rest 

periods presented in random order.  Subjects were asked to press one button if the shape 

on the screen was “tall and skinny” and another button if the shape on the screen was “short 

and fat” in order to divest them from trying to actively determine image meaning.  
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Behavioral responses were reported using a fiber-optic button box (Current Designs,  

Philadelphia, PA) 

Preprocessing 

Functional data with was preprocessed using Analysis of Functional NeuroImages 

software (AFNI; Cox, 1996), with the first EPI collected in the anterior-posterior direction 

used as a reference volume.  The motion corrected data were unwarped using AFNI’s 

3dQwarp function with an EPI collected in the posterior-anterior direction used as 

reference.  EPIs were aligned to the anatomical scan using AFNI’s 3dAllineate and 

spatially smoothed (FWHM = 2 mm).   

Analysis of Functional Data 

Functional data analysis was conducted using a general linear model via AFNI’s 

3dDeconvolve function.  The BOLD response was modeled using the BLOCK function in 

3dDeconvolve.  The a priori LOC ROIs were defined by the group level contrast across all 

participants between meaningful stimuli and meaningless stimuli with a voxelwise 

probability of p=.001 and a clusterwise probability of p=.01.  The individual a priori V1 

ROIs were defined in two steps.  First, an all-visual-activity mask was created by 

thresholding the contrast of stimulus presentation (regardless of meaning) with baseline by 

a voxelwise probability of p=.01 and clusterwise probability of p=.05.  This was then 

limited by a calcarine mask.  Average beta weights were calculated in these ROIs for 

statistical purposes.  

Connectivity analysis 
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Generalized psychophysiological Interactions (gPPI) was used to estimate 

interregional connectivity based on the correlation between a priori seed regions and the 

variance in other cortical areas with a GLM analysis (Cisler, Bush, & Steele, 2014; 

McLaren, Ries, Xu, & Johnson, 2012).  The effects identified by the original GLM 

performed above were subtracted out of the functional data, leaving a residual dataset.  A 

PPI term was generated to serve as a regressor in a GLM.  This term was created by 

estimating the physiological response in a seed region by deconvolving the time series from 

that seed region with its estimated hemodynamic response function (HRF).  This estimation 

of physiological response was multiplied by the event code, resulting in the PPI term.  This 

term was convolved with the estimated HRF response resulting in a regressor at the level 

of hemodynamic response that could be compared to the residual data from the original 

GLM analysis.  See Figure 2 for an explanation of this analysis.  Seed regions included the 

left LOC, right LOC, and the voxels in an anatomically and functionally defined V1 region 

active during the task as described above.  Correlated cortical activations were thresholded 

at a voxelwise probability of p=.01 and a clusterwise probability of p<.05.   
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Figure 2. A- The time seed series was deconvolved with an estimated hemodynamic response function. B- 

The physiological response from A was multiplied by the seed physiological series by the condition code for 

each condition. C- This interaction was reconvolved with the estimated HRF. D- The BOLD interaction of 

this terms was compared with the residual time series from other ROIs.  (Qiu et al., 2016) 

Results 

 After subjects were excluded due to not performing the task, not foveating on the 

stimuli, or having no visual response, analyses were performed with twenty five 

schizophrenia, schizoaffective, and bipolar patients and ten healthy controls.  As expected, 
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patients demonstrated elevations in measures of clinical symptoms.  There was a significant 

difference between diagnostic group on the total score of the Brief Psychotic Rating Scale 

(F(2)=13.654, p=.003), driven by differences between both patient groups and the controls 

(SZ and CTRL-p=.003; BP and CTRL- p=.016).  There was also a significant difference 

on the Positive symptom subscale of the BPRS (F(2)=7.254, p=.003) due to differences 

between the schizophrenia group and the other two (SZ and BP- p=.019; SZ and CTRL- 

p=.005).  No other clinical measures revealed a significant difference between groups.  

Clinical results are summarized in Table 1. 

A contrast between meaningful and meaningless stimuli across all groups revealed 

two statistically significant clusters representing the right and left lateral occipital 

complexes along with their corresponding fusiform gyri, hereafter referred to as LO+ 

(voxelwise probability- p= .001, F= 3.921; clusterwise probability- p< .01).  These clusters 

were used as ROIs for the group analysis as well as seeds for the psychophysiological (PPI) 

analysis.  In a repeated measures ANOVA, there was no main effect of diagnosis (rLO+- 

F(2)=.424, p=.658, lLO+- F(2)=1.662, p=.206) or significant interaction between average 

BOLD signal change across meaning condition and diagnosis for either the right LO+ 

(F(2)=.559, p=.577) or left LO+ (F(2)=.640, p=.534).   

 Across all participants, there was a significantly larger BOLD response in the V1 

ROI to meaningful stimuli than meaningless stimuli, consistent with previous research 

(F(1)=4.413, p=.044) (Qiu et al., 2016; Altmann et al, 2003; Kapadia et al, 1995; 

Roelfsema et al., 2004; Ban et al., 2006).  However, the repeated measures ANOVA did 

not reveal a main effect of group (F(2) = .239, p=.789) or a significant interaction effect 
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between stimulus condition and diagnostic group (F(2)=.224, p=.80).  See Figure 3 for 

ROIs used in this analysis. 

A. 

B. 

C. 
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Figure 3. A- Right and left LOC ROIs as determined by a contrast of meaningful and meaningless stimuli.  

B- A sample V1 ROI created by intersecting areas that were active in an individual subject during 

presentation of visual stimuli regardless of meaning category with an anatomically defined Brodmann area 

17 mask.  C- BOLD signal change across groups for each ROI and stimulus condition. All ROIs are 

statistically significant across meaning category, but there are no group differences or meaning x group 

interactions.  Error bars represent standard error. 

We also correlated the magnitude of the difference between BOLD response in V1 

and the bilateral LO+ to meaningful and meaningful stimuli with clinical measures.  There 

were no significant correlations between difference magnitudes and clinical 

symptomatology.    

 In the psychophysiological interaction (PPI) analysis, the V1 ROI was used as seed 

regions in the determination of interregional connectivity.  Two clusters showed significant 

differences in correlation with the V1 seed region during presentation of different stimulus 

categories, one in the right LO+ (voxelwise probability p=.01, clusterwise probability 

p=.04) and one in the medial frontal gyrus (voxelwise probability p=.01, clusterwise 

probability p=.08).  In a repeated measures ANOVA, the right LO+ region demonstrated a 

negative correlation with V1 activity for meaningful stimuli and a positive correlation with 

V1 for meaningless stimuli (F(1)=25.977; p<.001), but there were no differences between 

diagnostic groups (F(2)=.130, p=.878,).  The medial frontal region demonstrated the 

opposite pattern, with a positive correlation with activity in V1 for meaningful stimuli and 

a negative correlation with meaningless stimuli (F(1)=20.402, p<0.001), but no main effect 

of group (F(2)=.483, p=.641,) or meaning by group interaction (F(2)=.377, p= .689).  See 

Figure 4 for PPI ROIs used.   
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A. 

B.  

C. 

 

Figure 4. A- Right LOC ROI generated by gPPI analysis using V1 as a seed region.  B-Medial frontal ROI 

generated by gPPI analysis using V1 as a seed region.  C- BOLD signal change across groups in the 
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identified ROIs.  Both ROIs are statistically significant across meaning category, but there are no group 

differences or meaning x group interactions.  Error bars represent standard error. 

Discussion 

 The results of this study did not reveal a significant effect of diagnostic category on 

BOLD responses in the right LO+, left LO+, or V1 in response to meaningful and 

meaningless stimuli presentations.  It did, however, identify two regions that had variable 

correlations with V1 activity depending on stimulus meaning.      

 Increased BOLD signal in V1 to meaningful stimuli as compared to meaningless 

stimuli, as noted in this study, is consistent with previous studies (Qiu et al., 2016; Altmann 

et al, 2003; Kapadia et al, 1995; Roelfsema et al., 2004; Ban et al., 2006).  This pattern of 

facilitation seems to be specific to objects that are embedded in background clutter, as our 

stimuli were (Qiu et al., 2016).  This is potentially inconsistent with a predictive coding 

model in which higher visual areas specialized for object recognition use prior knowledge 

to infer characteristics of a stimulus, and then use those predictions in early visual areas to 

disregard expected inputs (Mumford, 1992; Murray et al., 2004; Rao & Ballard, 1999).  If 

those predictions are being used to enhance the figure and suppress the background, 

however, it could result in an increase in V1 activation to meaningful stimuli if meaning 

helps determine the extent of figure-ground segregation.  Most previous research in early 

response differences contrasts stimuli that either can or cannot be segmented from the 

background, as opposed to this study, in which both meaningful and meaningless 

conditions had strong segmentation cues, so it is difficult to compare our results with 

previous studies.  Our results may reflect a mechanism by which V1 extracts more specific 

or detailed feature information in order to identify an object in background clutter than 
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when presented with a coherent shape that is non-recognizable.  No significant difference 

in V1 activation between patient and control groups is also consistent with previous 

research (Silverstein et al., 2015).   

 Previous studies that have suggested differences in the lateral occipital complex in 

schizophrenia patients have primarily relied on measures of perceptual closure (Doniger et 

al., 2002; Harvey et al., 2011), contour integration (Silverstein et al., 2015), or backward 

masking and visual awareness (Green et al., 2009), all of which rely more on the processing 

of shape as opposed to the processing of meaning.  One study by Wynn et al. did use objects 

and scrambled objects as their stimuli, a task far more reliant on object recognition or 

identification, and found no differences in magnitude of LO+ activation between 

schizophrenia patients and controls (2008).  These results suggest that dysfunctions in LO+ 

in schizophrenia may be more related to processing coherent global form than extracting 

meaning from those forms.   

A lack of statistically significant group differences in any of our analyses has a few 

possible explanations.  The first is simply insufficient sample size.  Several analyses were 

suggestive of developing trends in the correlations between symptom clusters, so it is 

possible that with a larger group of subjects or recruiting specifically for variability in 

symptoms, we may be able to capture differences that segregate not with diagnostic 

category, but with symptom severity.  For example, a trend toward negative correlations 

existed in the relationship between BOLD activations to both meaningful and meaningless 

stimuli in the right LO+ ROI and score on the perceptual modulation index of the Sensory 

Gating Inventory.  There was also a trend toward a negative correlation between the gPPI 

BOLD activations in the medial frontal cluster for meaningless stimuli and severity of 
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perceptual modulation symptoms, as well as a small positive correlation between 

magnitude of difference in the gPPI BOLD activation in this area and these symptoms.  

These results indicate that it may be of more value to study symptomatology as opposed to 

diagnosis.  There is currently a conflicting body of evidence regarding which symptom 

clusters are most highly related to visual deficits, with some evidence pointing toward 

negative symptoms (Ulhaas and Singer, 2006; Slaghuis et al., 2004) some pointing toward 

disorganized symptoms (Silverstein et al, 2000; Silverstein and Keane, 2011; Butler et al., 

2013) and somewhat fewer studies suggesting a relationship with positive symptoms 

(Spencer et al, 2004; Fletcher and Frith, 2009; Sterzer et al., 2016).  These inconsistent 

results indicate that the relationship between visual processing and cross-diagnostic 

symptomatology may be an interesting one for further exploration.   

The results from the generalized PPI analysis can be interpreted as indicating what 

brain areas are differentially correlated with the seed region during presentation of one 

stimulus type as compared to the other.  It is not reflective of which areas are generally 

correlated with the seed regions across all conditions.  When V1 was used as the seed 

region, two areas displayed differential coupling: the right LO+ and a cluster in the medial 

frontal cortex.  The right LO+ was negatively correlated with V1 activity for meaningful 

stimuli, but positively correlated with V1 when the participant was viewing meaningless 

stimuli.  This analysis does not allow for determinations of directionality, so it is possible 

that this is due to either weaker feedforward signals or feedback signals, or potentially both.  

This may be reflective of less need for frequent revision of a prediction formed by the right 

LO+ when the stimulus is clearly recognizable. 
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The identified medial frontal cluster is roughly consistent with Brodmann area 9, 

which has a large range of proposed functions.  In this case, the correlation between activity 

was positive between this cluster and V1 for meaningful stimuli and negative for 

meaningless stimuli.  Previous research has suggested that this area may play a role in 

overriding automatic responses (Kübler, Dixon, & Garavan, 2006).  It may be that subjects 

are experiencing more need to suppress an automatic response of identifying the object 

when it is clearly recognizable in order to respond correctly to the shape features they are 

being asked to attend to, while automatic recognition or naming is not as prevalent when 

the stimuli are meaningless.  This area has also been proposed to play a role in error 

detection (Chevrier, Noseworthy, & Schachar, 2007), so it may be involved in comparing 

predictions about stimuli to feature information coded by V1, though the directionality of 

the relationship conflicts with the theory of less prediction updating occurring for 

meaningful stimuli as proposed above.  The area’s potential role in working memory 

(Pochon et al., 2002; Raye, Johnson, Mitchell, Reeder, & Greene, 2002; Zhang, Leung, & 

Johnson, 2003) and spatial memory (Leung, Gore, & Goldman-Rakic, 2002; Slotnick & 

Moo, 2006) may also be related to predictive coding errors by holding the template that 

predictions are being compared to.  Again, the direction of this relationship would suggest 

that stronger signaling is occurring between the medial frontal cortex and V1 for 

meaningful stimuli, which would be indicative of more comparisons and updating to the 

template in this condition.   

Given the possible implications of the relationships between these areas identified 

by the gPPI analysis. the lack of between group differences in these regions is potentially 

in conflict with the idea of impaired feedback signaling in schizophrenia patients.  
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However, these gPPI ROIs were identified by whole brain analyses, so any areas where a 

between group difference had a large enough magnitude to cancel out when collapsing 

across groups would not be identified.  Also, given our sample sizes, any small effects will 

be difficult to identify.  The task that we asked participants to respond to, whether a shape 

was short and fat or tall and skinny, might have resulted in eye movements around the 

image, despite a fixation mark, which likely diluted the strength of activations in 

retinotopically organized regions like V1.   

The results of this study suggest that greater understanding of visual processing 

abnormalities in psychosis may be found in studies of symptomatology as opposed to 

diagnosis.  As such, it may be of value in the future to intentionally recruit participants that 

represent a range of behaviors or scores on symptom evaluations.  It is also clear that there 

is a dearth of evidence examining object meaning beyond coherent shapes, with only one 

previous study that we know of looking at differences between objects and scrambled 

objects.  Finally, the generalized PPI analysis done in this study has interesting implications 

for the general nature of iterative processing in vision, suggesting that this method of 

analysis may be a fruitful and important avenue in  future studies of the visual system.  
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Chapter 3- Computational Modeling of the Tilt Illusion in Schizophrenia Patients and 

First-Degree Relatives 

A substantial body of evidence indicates deficits in contextual modulation, a 

phenomenon in which response to a stimulus is somehow altered by other stimuli presented 

simultaneously or in close temporal proximity, in patients with schizophrenia (SZ).  These 

deficits are observed across a range of both cognitive and sensory processing tasks, 

including working memory tasks (Macdonald, 2005), inhibition-related tasks (Cohen et al., 

1999), social cognition (Baez et al., 2013), reward learning (Reinen et al., 2014), and vision 

(Dakin et al., 2005; Yoon et al., 2009; Dias et al., 2011; TIbber et al., 2013; Seymour et al., 

2013, Yang et al., 2013; Schallmo et al., 2013).  It may be that a single mechanism related 

to an inability to incorporate information from context underlies this group of deficits in 

SZ.  In the visual domain, contextual modulation deficits in schizophrenia patients have 

been observed when manipulating contrast (Dakin et al., 2005; Schallmo et al., 2013; Yang 

et al., 2013; Tibber et al., 2013), orientation (Schallmo et al., 2013; Seymour et al., 2013; 

Yoon et al., 2009), and size (Tibber et al., 2013). Similar impairments, though typically not 

quite as severe, have also been observed in the first-degree relatives of SZ patients, 

suggesting that visual processing dysfunctions, and contextual modulation in particular, 

may represent a genetic vulnerability to the disorder (Avsar et al., 2011; Bedwell et al., 

2003; Chkonia et al., 2010; Keri et al. 2005).    

Visual contextual modulation often results in visual illusions, manifestations of 

contextual information altering our perceptions to no longer accurately reflect the physical 

properties of a stimulus.  For example, when a center stimulus and a surround have only 

slightly offset orientations, the orientation of the center seems to be tilted away from the 

surround; when the two orientations are considerably different, the center orientation seems 
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to tilt toward the surround.  This phenomenon is known as the tilt illusion, and has long 

been studied both behaviorally (Goddard, Clifford, & Solomon, 2008; Wenderoth & 

Johnstone, 1988; Westheimer, 1990) and neurally (Cavanaugh et al., 2002; Levitt & Lund, 

1997; Li, Thier, & Wehrhahn, 2000; Sengpiel, Sen, & Blakemore, 1997).  There is evidence 

that changes in tuning curves of individual orientation-selective neurons of the early visual 

system in presence of a surround may be driving this bias, but the underlying mechanism 

of these tuning curve shifts is currently unclear (Blakemore et al., 1970; Blakemore & 

Tobin, 1972; Clifford, Wenderoth, & Spehar, 2000; Gilbert & Wiesel, 1990; Schwartz, 

Hsu, & Dayan, 2007). 

Most models for the tilt illusion incorporate some form of divisive normalization, 

an inhibitory mechanism in which the response of units in V1 is normalized by the pooled 

activity of similar units (Heeger, 1992).  This inhibition occurs through local, horizontal 

connections within V1, though the strength of the gain pool may be determined by other 

factors.  Divisive normalization accounts for the non-linear response patterns of neurons in 

early visual cortex by rescaling the input by the shared response of a neuronal population 

(Carandini & Heeger, 2012).  

Models have also proposed some sort of long-range feedback signal from higher 

areas of the visual cortex.  Schwartz et al. suggest that this signal functions to provide 

information on the probability that the center and the surround should be grouped and 

interpreted as a single element, which would affect the gain control pool by setting the gain 

control of the center and the surround to be the same (single element) or different (different 

elements) (2009).  Reynolds and Heeger also included a long-range feedback term that 

determines gain control strength, but in their model it is determined by attentional resources 
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directed to an element.  Typically attention is more focused at a central, foveal target than 

at the periphery, which would set different gain control parameters for center and surround 

(2012).  Coen-Cagli et al.’s long-range feedback is related to the degree to which the center 

and the surround are perceived to be homogenous and helps define a flexible normalization 

model (2015).   

These models offer a robust way of study orientation related contextual modulation 

deficits in schizophrenia.  Traditional psychophysical and imaging experiments make it 

difficult to segregate the locus of abnormal responses; it is difficult to determine what 

atypical responses are being driven by long-range feedback from other areas of the visual 

system, strength of gain control driven by local inhibitory connections, or differences in 

tuning curve width.  Computational modeling provides the ability to manipulate a variety 

of parameters in order to determine which ones are more likely to be driving observed 

deficits. 

In schizophrenia, the canonical architecture of V1 allows for the study of not only 

visual processing deficits, but potentially generalized deficits that occur across domains.  

For example, contextual modulation is disrupted in the visual system in addition to a variety 

of more cognitive processing, suggesting that there may be some shared mechanism to 

these impairments.  Models that are developed or applied in the visual system may be 

applicable to other areas of the brain and used to increase our understanding of neuronal 

variations in the disorder.  

We fit an adapted version of Schwartz et al.’s computational model describing tilt 

biases as a function of grouping probability of the center and the surround.  This model 

was fit to data collected from SZ patients, their first-degree relatives, and controls in an 
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effort to localize the disruptions occurring in SZ during orientation driven contextual 

modulation.   

Methods 

Thirty-three SZ patients, 21 first-degree relatives of schizophrenia patients, and 25 

controls completed the experiment.  Experimental protocols were approved by the 

University of Minnesota and Minneapolis VA Institutional Review Boards, and all 

participants signed a statement of informed consent and were monetarily compensated for 

their time.  Exclusion criteria included English as a second language, mental retardation, 

current alcohol or drug dependence, current or past central nervous system condition, 

history of electroconvulsive therapy, history of head injury with skull fracture or substantial 

loss of consciousness, and age under 18 or over 60.  All participants had normal or 

corrected to normal vision.  Diagnostic category was determined by a doctoral level clinical 

psychologist. 

Visual stimuli were generated using PsychoPy software (Peirce, 2007) and were 

presented on a high-resolution monitor (1280x1024 pixels, 60 Hz refresh rate, NEC 

MultiSync LCD 2190 uxi, NEC Corporation, Tokyo, Japan) connected to a Mac Mini 

(Apple, Inc., Cupertino, CA). Observers were seated 62 cm from the monitor.  Subjects 

indicated their responses on a keyboard.   

Procedures 

Stimuli were presented in the center of the visual field, and subjects were asked to 

indicate via keyboard whether the orientation of the central grating was tilted clockwise or 

counterclockwise with respect to vertical.  Presentation duration was 250 ms, and the 
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subject advanced to the next trial manually with a button response.  Visual fixation was 

directed to the center of the screen with a fixation cross at all times. 

Stimuli consisted of circular center gratings surrounded by a grated annulus (Figure 

1).  The relative orientations between the center and surround gratings varied between 0 

and 90 degrees.  The center grating had a diameter of 1° of visual angle, while the annulus 

grating had a diameter of 3°.  Both gratings had a spatial frequency of 2 cycles per degree.   

Figure 1. Stimuli examples for the tilt illusion task.  Offset between center orientation and surround 

orientation varied between 0 and 90 degrees.  Participants were asked to indicate whether the center grating 

was oriented to the left or right of vertical.   

 Subjective vertical was determined by manipulating the orientation of the center 

grating based on a double-staircase method.  This method allowed for an estimate of bias 

from vertical.  For each presentation of seven relative orientations, the psychophysically 

measured subjective vertical was compared to the subjective vertical obtained from the no 

surround condition, subtracting out the subject’s inherent bias from true vertical.  This 

difference was used as a measurement of the bias for a given orientation. 

Data from each orientation for each diagnostic group were fit to a modified Schwartz model 

in an attempt to highlight parameters with different model estimates.  This model accounts 
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for the role of divisive normalization and segmentation of the center and surround stimuli 

in determining the strength of modulation of the surround on perception of the center 

orientation.  The estimate of the normalized neural response of the center is calculated by 

𝐸(𝑔𝑐𝑖|𝑙𝑐𝑖, 𝑙𝑠𝑖) =
𝑙𝑐𝑖

√𝑙
∙
𝐵(

𝑛
2 −

1
2 , 𝑙)

𝐵(
𝑛
2 − 1, 𝑙)

 

The second term in this equation is a modified Bessel function of the second kind, a 

solution for a differential equation that functions as a constant of proportionality in this 

equation.  lci is a filter response of the central detector tuned to a preferred orientation ϕci 

with a tuning curve width of ω. 

𝑙𝑐𝑖 = exp⁡(
−(𝜙𝑐𝑖 − 𝜃𝑐)

2

2𝜔2⁄ ) 

lsi is the response to the surround stimuli with an orientation of 𝜃𝑠. 

 

𝑙𝑠𝑖 = exp⁡(
−(𝜙𝑐𝑖 − 𝜃𝑠)

2

2𝜔2⁄ ) 

 

l represents the divisive normalization factor 

𝑙 = √𝑙𝑐𝑖
2 + (𝑛 − 1)𝑙𝑠𝑖

2 + 𝑘 

where n represents the strength of the surround’s influence on the gain pool and k is an 

additive constant that represents the strength of gain control in the absence of any 

modulating factors. 

The segmentation factor is determined by  

𝑝[𝑔] =
1

√2𝜋𝜎2
exp⁡(−𝑔2 2𝜎2⁄ ) 
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Where σ2 is a function of λ, which controls the steepness of the probability a neuron will 

assign a stimulus and surround to the same perceptual group. 

Results 

Seventeen participants were excluded on the basis of demonstrating no 

psychophysical tilt curves (SZ=3, SZR = 6, CTRL = 8).  Although there were no significant 

differences between the magnitude of tilt repulsion bias (p>.176), there are differences in 

the shape of the curve between groups.  Tilt bias reached a maximum at 15 degrees offset 

for the SZR group (mean = 3.09°), but peaked at 30 degrees for the SZ and CTRL groups 

(mean = 3.40°; mean = 2.87°).  SZ and SZR groups also displayed more of a peak at the 

maximum tilt bias, while CTRL demonstrated more of a plateau pattern.  All three groups 

displayed maximum tilt attraction at a 75 degree offset between center and surround 

orientation (Figure 2A).  

The computational model of the tilt illusion proposed by Schwartz et al. (2009) 

relies on two groups of components to characterize center/surround interactions: 

probability of segmentation and divisive normalization.  Probability of segmentation is 

determined by the relative orientations of the center and surround, which contributes to 

whether the center and surround are co-assigned to the same gain control pool.  The divisive 

normalization term is comprised of several factors, including baseline strength of gain 

control, the relative sizes of the center and surround, and the tuning curve width.   

Given that our experiment collected only seven points of data, we reduced the 

number of parameters in Schwartz’s model in order to be able to fit the data.  The stimulus 

properties were fixed and the same tuning curve width was assigned to both the center and 
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surround to represent orientation coding in V1.  We allowed four free parameters to find 

the best fit of this model to describe our data.  Three contributed to setting the divisive 

normalization curve and one contributed to segmentation probability. See Figure 2B for 

model estimations.   

There was a significant between groups difference for λ, the parameter representing 

how sensitive to orientation the grouping term is (p<.001, F=11.96).  This group difference 

was driven by the SZR group.   Although the one-way ANOVA was not statistically 

significant, the k parameter, representing the baseline level of gain control, did significantly 

deviate from the control subject parameters for the SZ group (Figure 2C).   

 

Figure 2. A- Actual tilt bias curves obtained from the psychophysical experiment.  Colors represent 

diagnostic group.  B- The predicted response curves for each group using the computational model described 

above.  C- The estimates for each free parameter in the model.  The-x axis represents the average fit 

parameters of the control group, while the y-axis represents the average fit parameters for the SZR and SZ 

groups.  The dotted line indicates where parameter estimates are the same across groups; points that deviate 

from the line are parameters that have different estimated values for one of the clinical groups and controls.   

Discussion 
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In order to understand mechanisms driving deficits in contextual modulation in 

schizophrenia patients, we applied a modified version of the Schwartz model to foveal tilt 

illusion data in patients, first-degree relatives, and controls.  The SZR group was 

significantly more sensitive to orientation when determining the probability of grouping 

than either the SZ patients or the controls.  The schizophrenia group deviated from the 

estimates of the control and SZR groups on the k parameter, an additive constant 

representing the general strength of divisive normalization.   

The difference in the k parameter suggests that SZ patients experience a lower 

baseline level of divisive normalization, which is consistent with previous findings (Barch 

et al., 2012; Butler & Javitt, 2005; Slaghuis, 1998).  Deficits in this stage may be indicative 

of dysfunctions in either the lateral geniculate nucleus or the input layer of V1 (Webb et 

al., 2005).  Two main theories have been proposed for impaired gain control in 

schizophrenia: magnocellular visual pathway impairments and neurotransmitter 

imbalances.  Visual processing deficits in SZ have been particularly noted with stimuli that 

bias processing toward the magnocellular pathway (Bedwell et al., 2003; Calderone et al., 

2013; Martínez et al., 2008), which often carries information about low spatial frequency, 

low contrast, large stimuli (Steinman et al., 1997), though other results conflict with these 

findings (Skottun & Skoyles, 2007). Given the high contrast of our stimuli (70%), it is 

reasonable to assume that the magnocellular pathway would be saturated in this case and 

results are driven primarily by the high contrast, high spatial frequency parvocellular 

pathway (Jeffries et al., 2014). Neurons in the parvocellular pathway experience less gain 

control than to magnocellular neurons (Butler, Silverstein, & Dakin, 2008), so one potential 

interpretation of these data is that healthy controls are still experiencing magnocellularly 
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driven gain control due to cross-talk between the pathways, while under-responsive 

magnocellular pathways in SZ patients are influencing gain control less. 

Lower baseline divisive normalization could also potentially be driven by disrupted 

neurotransmitter systems.  N-methyl d-aspartate (NMDA), a glutamatergic receptor, has 

been implicated in gain control by enhancing both responses to isolated visual stimuli as 

well as lateral inhibition (Daw, Stein, & Fox, 1993).  Introduction of an NMDA antagonist 

produces response curves very similar to those in SZ patients (Butler et al., 2007; Butler & 

Javitt, 2005; Fox, Sato, & Daw, 1990; Kwon et al., 1992).  NMDA has consistently been 

proposed to be disrupted in SZ patients, with evidence stemming from NMDA receptor 

antagonist studies in animals (Bygrave et al., 2016; Javitt & Frusciante, 1997; Javitt, 

Jayachandra, Lindsley, Specht, & Schroeder, 2000; Newcomer et al., 1999; Olney, 

Newcomer, & Farber, 1999) and ketamine challenge studies in humans (Corlett, Honey, & 

Fletcher, 2016; de la Salle et al., 2016; Ebert, Haussleiter, Juckel, Brüne, & Roser, 2012; 

Powers, Gancsos, Finn, Morgan, & Corlett, 2015).  Introduction of NMDA antagonists 

also results in downstream disruptions in in the inhibitory neurotransmitter γ-Aminobutyric 

acid (GABA) (Marsden, Beattie, Friedenthal, & Carroll, 2007; Xue et al., 2011), which has 

been shown to mediate lateral inhibition in contextual modulation (Cavanaugh et al., 2002; 

Meese, Summers, Holmes, & Wallis, 2007; Schwabe, Obermayer, Angelucci, & Bressloff, 

2006).   Reduced GABA has been noted in the visual system of SZ patients (Yoon et al., 

2010).  Parvalbumin-positive (PV+) GABAergic neurons appear to modulate early, un-

tuned suppression, while Somatostatin-positive (SO+) neurons play more of a role in later-

stage, specifically turned modulation (Adesnik, Bruns, Taniguchi, Huang, & Scanziani, 
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2012; Ma et al., 2010).  A general deficit in gain control would likely be due to the effects 

of the untuned PV+ neurons.   

Visual processing deficits have been suggested as an endophenotype of 

schizophrenia, a heritable biomarker that segregates with illness and has a higher rate 

within affected families (Gottesman; Keri 2006).  The parameter estimates from this 

experiment, specifically the λ parameter is consistent with a large body of evidence 

proposing impairments in family members of patients (Avsar et al., 2011; Bedwell et al., 

2003; Chkonia et al., 2010; Green, Nuechterlein, & Breitmeyer, 1997; Green, Nuechterlein, 

Breitmeyer, & Mintz, 2006). These results are indicative that generally deficient divisive 

normalization might represent a genetic vulnerability to SZ.   

Because we collapsed the term for width of the tuning curves for the center and the 

surround into a single parameter, this model is only appropriate for responses originating 

in V1, where the widths of tuning curves are more consistent.  If responses are originating 

from more mid-level or high-level areas, this model will fail to capture those nuances.  The 

design of the stimuli, specifically keeping contrast stable between the center and the 

surround, means that the only segmentation cues being provided are those derived from 

orientation differences.  Segmentation cues play a role in determining the probability of 

grouping term in the Schwartz model, which is conceivably at least partially driven by top-

down mechanisms.  Perceptual grouping has been shown to be disrupted in SZ (Johnson et 

al., 2005; Keane et al., 2014; Uhlhaas & Silverstein, 2005), however, there was no 

significant difference for the segmentation term between patients and controls.  It is 

possible that solely using orientation as a segmentation cue was no enough to drive this 

effect; using contrast manipulations or depth cues to strengthen segmentation cues may 
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result in more opportunities to capture this difference (Qiu, Kersten, & Olman, 2013).  

There was a significant difference between first-degree relatives and the other two groups, 

suggesting that visual feedback signals might function as a biomarker of schizophrenia.  

Other models of contextual modulation have proposed alternative functions for feedback 

signaling, including homogeneity (Coen-Cagli et al., 2015) and attention (Reynolds and 

Heeger, 1999).  There is a possibility that using segmentation cues to drive the feedback 

signaling may not be the most effective way of feedback differences.   

In conclusion, the results from this study indicate that the overall strength of the 

gain control pool is weaker in patients with schizophrenia and their first-degree relatives.  

Functionally, this may manifest in reduced contextual modulation in these groups, and 

potentially explain a variety of observed dysfunctions across cognitive domains.  These 

dysfunctions also offer potential as an endophenotype of schizophrenia, and further 

research should be done to characterize the effect in family members.   
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Chapter 4- Modulation of the Neural Correlates of Conditioned Fear Generalization 

by D-cycloserine 

The generalization of classically conditioned fear, a phenomenon in which fear 

responses conditioned to one stimulus paired with an aversive outcome are extended to a 

range of similar stimuli, is a normative response to fearful situations that is seen to be an 

adaptive mechanism of avoiding potentially dangerous situations (Armony et al., 1997).  

Recent studies have begun to elucidate some of the neural mechanisms associated with fear 

generalization.  Gradients of reactivity formed by BOLD responses to a conditioned danger 

cue, a conditioned safety cue, and parametrically varying intermediary stimuli, have been 

observed in the bilateral anterior insula, the dorsomedial prefrontal cortex, the right middle 

frontal gyrus, thalamus, anterior cingulate cortex, bilateral ventral hippocamus, 

ventromedial prefrontal cortex, and precuneus (Dunsmoor et al., 2011; Greenberg et al., 

2013; Lissek et al., 2014).  Similar gradients have also been observed in skin conductance 

response, startle magnitude, and behavioral anxiety ratings (Lissek et al, 2008; Dunsmoor 

et al., 2009).   

  Although fear generalization is adaptive, overgeneralization of conditioned fear 

to safe stimuli can be pathological and has been associated with panic disorder (Lissek et 

al., 2010), generalized anxiety disorder (Lissek et al., 2014; Greenberg et al., 2013), and 

posttraumatic stress disorder (Morey et al., 2015; Kasckurkin et al., 2017).  Given this 

association, reducing overgeneralization of conditioned fear could be a potentially viable 

target of novel treatments for anxiety disorders.  This type of treatment would not 

necessarily reduce fear to a specific threat cue, but would potentially reduce fear to a broad 

range of resembling stimuli.   
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Because overgeneralization of conditioned fear is a maladaptive form of learning, 

modulating the learning process may prove to be a fruitful avenue of research.  On a 

synaptic level, learning is dependent on the N-methyl-D-aspertate receptor (NMDAR), a 

glutamatergic receptor that plays a vital role in synaptic plasticity (Collingridge, 1987).  

One pharmacological compound used to modulate NMDA-mediated learning is D-

cycloserine, a partial agonist of the NMDAR glycine site that functions as a cognitive 

enhancer.  DCS has been used to augment exposure therapy by facilitating learning during 

exposure sessions (Ressler et al., 2004; Guastella et al., 2007).  In animals, it has been 

shown to increase fear learning if given just prior to acquisition, as well as reducing 

generalization of classical conditioning (Thompson and Disterhoft, 1997).   

We applied a validated fMRI paradigm for the assessment of generalized 

conditioned fear, and tested the effects of DCS on behavioral and neural indices of 

generalization in healthy controls.  Specifically, we administered DCS just prior to 

acquisition of conditioned fear, and assessed the drug’s effects on generalization of 

conditioned fear 24 hours later. We hypothesized that the cognitive enhancing properties 

of D-cycloserine would strengthen acquisition of fear-conditioning, resulting in a decrease 

in fear generalization errors as measured both behaviorally and neurally.   

   

Methods 

Participants 

 Seventy-seven healthy college students (54 female) were recruited from the 

University of Minnesota’s Research Experience Program participant pool and reimbursed 

for their time.  The mean age was 21.5 (SD= 2.46), and the sample was 77.2% Caucasian.  
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Prior to testing, participants gave written informed consent that had been approved by the 

University of Minnesota IRB.  Exclusion criteria for this study included (1) current Axis-I 

psychiatric diagnosis, as determined by self-report, (2) past diagnosis of an anxiety or 

depressive disorder, (3) currently taking any psychoactive medications or medications 

affecting central nervous system function, (4) medical condition that would increase risk, 

or conflict with the aims of the study, (5) pregnancy, (6) use of alcohol within the previous 

24 hours, and (7) any standard magnetic resonance exclusions.    

Generalization Paradigm 

This study employed a version of a validated fMRI paradigm that has previously 

been used to study fear generalization and is described in detail elsewhere (Lissek et al, 

2014). 

Stimuli and trial structure 

Five checkerboard textured counterphase-flickering (10 Hz) rings of parametrically 

increasing size, and one “V-shaped” stimulus of the same counterphase-flickering type 

served as conditioned stimuli (CS+, CS-) and generalization stimuli (GSs). Such stimuli 

were designed to activate the calcarine sulcus along a continuum of visual eccentricity 

(e.g., Murray et al., 2006) as part of a longer-range goal to use this generalization paradigm 

to retinotopically map representations of CSs and GSs in sensory cortex. Important for the 

purposes of the current paper is the size and shape of these stimuli rather than their 

retinotopic-mapping characteristics, as retinotopy was unsuccessful in this study. 

The current paradigm included one CS+ and the following two CS-: 1) either the 

largest or smallest ring— referred to as the oCS-, and 2) a “V” shaped stimulus—referred 
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to as the vCS-. Though all subjects were conditioned with the same vCS-, the oCS- was 

the largest ring for 50% of subjects and the smallest ring for the remaining half. Subjects 

for whom the oCS- was the largest ring were conditioned with the smallest ring as CS+ 

and vice versa. The three intermediately-sized rings served as GSs (i.e., GS1, GS2, GS3) 

and formed a continuum-of-size between the CS+ and oCS- with GS3, GS2, and GS1 

demarcating the GS with most to least similarity to the CS+ regardless of CS+ size. The 

vCS- was included to test the degree to which conditioned generalization occurss to all 

“ringed” stimuli following reinforcement of the ring-shaped CS+. That is, heightened 

activations in fear-related brain areas to all sized rings, relative to the v-shaped vCS-, would 

be identified as neural correlates of this broader form of generalization to all circular 

stimuli. Furthermore, the inclusion of the vCS- allows for an assessment of brain responses 

to the CS+ (vs. vCS-) that are independent of putative generalization effects to all ringed 

stimuli. Such an assessment is important because brain activations to the CS+ will be used 

as functional regions of interest in which to test gradients of fear generalization, and should 

thus be orthogonal to the generalization process. The CS+ versus vCS- contrast provides 

such an index of conditioning that is independent of generalization effects. 

All CSs and GSs were presented for 4 s on a rear-projection viewing screen mounted 

at the foot of the scanner. Inter-trial-intervals for CSs and GSs were either 2.4- or 4.8-s, 

during which time participants focused their gaze on crosshairs in the center of the screen. 

The unconditioned stimulus (US) was a 100-ms electric shock (3-5mA) delivered to the 

right ankle. Prior to the start of the experiment, a sample shock procedure was performed 

during which participants received between 1-3 sample shocks, and a level of shock rated 

by participants as being ‘highly uncomfortable or mildly painful’ was established. 
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Behavioral Ratings 

Throughout testing, a behavioral task developed to maintain visual gaze at the center 

of the visual field (Schwartz et al., 2005) was applied. This task consists of a string of 

colored crosshairs (blue, yellow, red, green, purple) presented serially for a duration of 800 

ms each in a quasi-random order in the center of the viewing screen during 4 s presentation 

of CSs/GSs (5 crosshairs per stimulus). Participants were instructed to continuously 

monitor the stream of colored crosshairs and rate their perceived level of risk for shock as 

quickly as possible following each red-cross using a 3 button, fiber optic, response pad 

(Lumina LP-404 by Cedrus), where 0 = ‘no risk’, 1 = ‘moderate risk’, and 2 = ‘high risk’.  

Risk ratings were recorded with Presentation software (Neurobehavioral Systems). For half 

of CS/GS trials, 1 of 5 crosshairs was red, and the remaining trials included no red 

crosshairs. Additionally, on reinforced CS+ trials, the red crosshair never appeared in the 

fourth or fifth position to avoid interference from shock on behavioral responses. Finally, 

self-reported anxiety to CS+, oCS-, and vCS- were retrospectively assessed following pre-

acquisition, acquisition, and generalization sequences using 10-point Likert scales.  

Design 

The generalization paradigm included three phases: 1) pre-acquisition— 

 consisting of 20 trials of each stimulus type (CS+, GS1, GS2, GS3, oCS-, vCS-) all 

presented in the absence of any shock US; 2) acquisition— including 15 CS+, 15  oCS-, 

and 15 vCS-, with 12 of 15 CS+ co-terminating with shock (80% reinforcement schedule); 

and 3) generalization test— including 20 trials of each stimulus type (unreinforced CS+, 

GS1, GS2, GS3, oCS-, vCS-), and an additional 10 CS+ co-terminating with shock (33% 

reinforcement schedule) to prevent extinction of the conditioned response during the 
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generalization sequence, while leaving 20 unreinforced CS+ to index responses 

uninfluenced by the shock US. Trials for all 3 phases of the study were arranged in quasi-

random order such that no more than two stimuli of the same class occurred consecutively. 

An additional constraint for the generalization sequence was the arrangement of trials into 

6 blocks of 13 trials (2 unreinforced CS+, 1 reinforced CS+, 2 oCS-, 2 vCS-, 2 GS1, 2 GS2, 

2 GS3) to ensure an even distribution of trial types throughout runs.  

fMRI Data Acquisition 

A 3T Siemens TRIO system equipped with a twelve-channel receive-only head coil 

was used to acquire functional T2*-weighted echo-planar images (EPIs) depicting the 

BOLD contrast (TR: 2300 ms, TE: 23 ms, flip: 90°). Whole-brain acquisitions consisted 

of 36 sagittally-oriented slices of 1.5 mm thickness and 1.5x1.5mm2 in-plane resolution 

(matrix: 128×128, FOV: 22 cm). High-resolution T1-weighted magnetization-prepared 

rapid acquisition gradient-echo sequences (MP-RAGE) were obtained to serve as 

anatomical reference. Head movement was limited with foam pads during data acquisition. 

Procedure 

Upon arrival, participants were given either a 250 mg dose of DCS, a 500 mg dose 

of DCS, or a placebo, determined randomly.  Experimenters were also blind to which 

condition each participant was in.  After being given DCS, 90 minutes elapsed in order to 

allow the DCS to reach peak levels in the blood by the time the fear acquisition stage of 

the experiment had begun (van Berckel et al., 1997).  Participants were not instructed of 

the CS/US contingency but were told they might learn to predict the shock if they attend 

to the presented stimuli. Shock electrodes were then attached and a shock workup 

procedure was completed. Participants next practiced using the button box to respond to 
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red crosshairs appearing both at the center of CSs and GSs. Participants were then placed 

in the magnet. Structural scans were acquired followed by the pre-acquisition and 

acquisition EPI runs.  Twenty-four hours later, participants returned and completed EPI 

runs during the generalization test, in order to assess the effect of DCS on memory 

consolidation.  Participants rated their anxiety responses to CS+, oCS-, and vCS- after 

preacquisition, acquisition, and generalization scans.  

fMRI Data Analysis 

Image analysis was completed with Analysis of Functional Neural Images (AFNI) 

software (Cox, 1996). Echo-planar time series data was time corrected, registered, spatially 

smoothed (FWHM= 4 mm), normalized, and concatenated. During individual-level 

analyses, functional activation maps were computed by regressing each voxel’s fMRI 

response time-course onto an ideal response function consisting of a Gamma-variate 

function convolved with the time-series of each of 6 stimulus types  (i.e., vCS-, oCS-, GS1, 

GS2, GS3, unreinforced CS+) at pre-acquisition and generalization test separately. The 

acquisition phase was used to condition participants to CS+, oCS-, and vCS- and was not 

intended for image analysis due to the majority of CS+ trials being contaminated by US 

administrations, and because such data were not critical for testing central hypotheses of 

interest. Modeled as covariates of no interest were baseline drift, participant-specific 

movement, response time course (button presses), and the time-course of shock delivery. 

Subjects (n=7) with more than 3.0 mm of head motion in any dimension from one EPI 

brain volume to the next were removed.  

 Group-level analyses of generalization-test data were completed in two stages. 

First, brain areas sensitive to the conditioning manipulation were identified as functional 
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regions of interest (fROI). Specifically, whole brain analyses of the contrast between 

responses to the 20 unreinforced CS+ versus the 20 vCS- were conducted using a voxelwise 

probability of p ≤ .00001 and a cluster probability of p ≤ .05. A stringent voxelwise 

probability was necessary to achieve adequate demarcation between clusters. The 

probability of obtaining clusters of a particular size was estimated with the AFNI program 

AlphaSim. The vCS- rather than oCS- was contrasted against unreinforced CS+ because 

the CS+ versus vCS- contrast, but not CS+ versus oCS-, yields a measure of conditioning 

independent of fear generalization that may occur to all circular stimuli. In the second stage, 

beta weights averaged across voxels within these fROIs were plotted across conditioned 

and generalization stimuli and analyzed for effects of generalization as well as interactions 

between group and generalization. Such analyses began with one-way, repeated measures 

ANOVAs with 5 levels (oCS-, GS1, GS2, GS3, unreinforced CS+). fROIs significantly 

instantiating generalization gradients were then subjected to 3 (Group: 250 mg, 500 mg, 

placebo) x 5 (Stimulus-type) repeated measure ANOVAs. 

Results 

Pre-acquisition:  Neither the main effects of stimulus type and group membership 

nor the Group x Stimulus-type interaction were significant for either risk rating (p-values 

> .499) or retrospective ratings of anxiety (p-values > .214). 

Acquisition:  Successful acquisition of conditioned fear was evidenced by increases 

in online ratings of risk to CS+ (M= 1.56, SD= .41) versus either oCS- (M= .34, SD = .41) 

or vCS- (M=.34, SD=.39 ), p-values <.001.  Online risk ratings did not differ between oCS- 

and vCS- (p= .966), but there was a trend toward a difference in retrospective anxiety (p = 
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.072).  No Group x Stimulus-type interactions were found for online risk ratings or 

retrospective anxiety (p-values >.389).   

Generalization:  Online risk ratings and retrospective anxiety continued to be 

greater to CS+ versus both oCS- and vCS- (all p-values < .001), demonstrating the 

persistence of conditioned fear during the generalization sequence.  Additionally, 

generalization of conditioned fear was evidenced by main effects of stimulus type in 

placebo (p=.028), 250 mg DCS (p= .058), and 500 mg DCS (p=.037) groups, all deriving 

from downward gradients of perceived risk as the presented stimulus differentiated from 

CS+.  There were also no significant Group x Stimulus-type interactions for online risk 

ratings (p= .905), when looking at each group separately or when collapsing across drug 

group and defining group as drug versus placebo (p=.695).  The interaction was at the trend 

level for retrospective anxiety (p=.065) and became significant when collapsing across 

drug group (p=.015) (Figure 1). 
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Figure 1- Online risk ratings to each stimulus size, by drug group.  Error bars represent 

standard error. 

Functional regions of interest (fROIs). Table 1 lists brain regions that were 

differentially activated to CS+ versus vCS- at voxelwise probability of p=.00001 and 

cluster probability of p=.05.  A stringent voxelwise probability was necessary to achieve 

adequate discrimination between clusters. These areas served as fROIs within which linear 

and quadratic components of generalization gradients were tested both before and after 

acquisition training. 

Pre-acquisition: Prior to conditioning, no fROIs showed a significant main effect 

of group (p values > .213), or a significant Group x Stimulus-type interaction (p-values > 

.07).   

Generalization test. Twenty-four hours after acquisition, BOLD activations in 

several fROI’s fell along linear and/or quadratic generalization gradients, with strongest 

responding to CS+ and gradual decreases to GS3, GS2, GS1, oCS-, and vCS-.  Replicating 

previous findings (Lissek et al, 2014; Kazckurkin et al, 2017), positive generalization 

gradients were found in the bilateral anterior insula, bilateral middle frontal gyrus 

(Brodmann area 32), bilateral fusiform gyrus, and right superior frontal gyrus.  Also found 

were fROIs falling along negative gradients with strongest responding to the oCS- and 

degraded reactivity to GS1, GS2, GS3, and CS+.  Replicating past findings, the negative 

linear and/or quadratic gradients were instantiated in the vmPFC, dmPFC and left 

precuneus (Brodmann area 30).   
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Group effects at generalization. Next, the fifteen largest fROIs displaying 

significant linear gradients, as well as those selected a priori were subjected to further 

analysis to determine any group differences (Table 1).  None of the fROIs revealed a main 

effect of group membership on average beta value regardless of whether each group was 

considered separately (p >.277) or collapsed across the drug condition (p >.328).  No fROIs 

had significant group x stimulus type interactions (p> .327).  When considering the 

magnitude of difference between GS4 and CS- as a measure of generalization of elevated 

fear responding to the first approximation of the CS+, there are no significant group 

differences (p> .334).  When using a comparison of the average response to all ring shaped 

generalization stimuli to the V shape stimuli to capture any elevated responding to all ring 

shapes, there was a significant group difference in the left middle occipital gyrus (p= .040), 

and a trends toward a group difference in the right inferior frontal gyrus (p=.068).  We also 

considered the amount that the generalization gradient departed from a linear slope 

between CS+ and CS-, where the larger the departure, the less generalization the subject 

experienced, because it is indicative of a faster drop off than would be expected between 

the CS+ and CS- assuming that equal reduction in fear occurred between each 

approximation.  Statistically significant group differences in this measure were found in 

Brodmann area 22 (p= .032) and the right inferior frontal gyrus (p= .004).  Both of these 

significant results were driven primarily by differences between the 500 mg DCS group 

and the other two.   

Brain Region Direction Volume 

(voxels) 
X-

coordinate 

Y-

coordinate 

Z-

coordinate 

dmPFC/SMA 

(BA 6) 

CS+ > 

CS- 

1570 -9.0 -24.0 +25.0 

Posterior 

Cingulate 

CS+ < 

CS- 

1460 -10.5 +42.0 +1.0 
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vmPFC CS+ < 

CS- 

1221 +0.0 -36.0 -14.0 

Right anterior 

insula 

CS+ > 

CS- 

1189 -40.5 -19.5 -8.0 

Left anterior 

insula 

CS+ > 

CS- 

1070 +30.0 -18.0 -5.0 

Right caudate CS+ > 

CS- 

307 -15.0 +1.5 -2.0 

Left STG CS+ > 

CS- 

298 +51.0 -6.0 +2.5 

Thalamus CS+ > 

CS- 

286 -4.5 +27.0 -5.0 

Left 

SFG(BA9) 

CS+ < 

CS- 

256 +7.5 -54.0 +28.0 

Right middle 

occipital gyrus 

(BA 37) 

CS+ < 

CS- 

243 -52.5 +58.5 -11.0 

Left MTG CS+ < 

CS- 

236 +48.0 +60.0 +20.5 

Left inferior 

temporal gyrus 

CS+ < 

CS- 

216 +48.0 +72.0 -3.5 

Right inferior 

temporal gyrus 

(BA 9) 

CS+ > 

CS- 

164 -42.0 -10.5 +20.5 

Left cuneus 

(BA19) 

CS+ < 

CS- 

144 +28.5 +81.0 +22.0 

Left superior 

frontal gyrus 

CS+ < 

CS- 

124 +16.5 -28.5 +44.5 

Left 

Hippocampus 

CS+ < 

CS- 

90 +16.5 +13.5 -20.0 

Table 1- The fifteen largest ROIs and a priori ROIs.   
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generalization gradients observed in other studies of fear generalization (for reviews, see 

Kalish, 1969; Mackintosh, 1974; Honing and Urciuoli, 1981).  

 Collapsing across groups revealed similar gradients in the BOLD signal in the 

bilateral anterior insula, consistent with previous studies (Dunsmoor et al., 2011; 

Greenberg et al., 2013b; Lissek et al, 2014; Kazcurkin et al., 2017).  The insula has been 

implicated in fear conditioning, anticipatory responses, and salience evaluation (Lovero et 

al., 2009; Menon and Uddin, 2010; Nitschke et al., 2006; Paulus & Stein, 2006).  These 

results suggest that fear generalization is associated with higher levels of anticipation, 

stimulus salience, fear processing, and interoceptive awareness of fear to stimuli 

resembling the CS+.   Similar gradients are seen in the dmPFC, which is again consistent 

with previous studies, and may be indicative of heightened threat-appraisal or expression 

of negative emotion to the nearby approximations (Etkin et al., 2011).  Given the location 

of the BOLD activation gradients in the dmPFC, it may also be related to the supplementary 

motor area, and may suggest the preparation for an escape-related motor response (Lissek 

et al., 2014; Schaefer et al., 2014).   

 Negative gradients in BOLD activation were seen in the left hippocampus, again 

consistent with previous research (Lissek et al, 2014; Dunsmoor et al., 2011; Kazcurkin et 

al., 2017, Greenberg et al., 2013b).  The hippocampus has been suggested to play a role in 

schematic matching, which in this case would be necessary to discriminate CS+ from CS- 

(O'Reilly & Rudy, 2001; Otto & Eichenbaum, 1992; Sanders et al., 2005).  Negative 

gradients in this area suggest that less pattern separation is needed the more similar the 

stimulus is to the CS+.  Negative gradients were also observed in the vmPFC, consistent 

with previous findings (Lissek et al., 2014; Kazcurkin et al., 2017; Greenberg et al., 2013).  
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The vmPFC has long been thought to be associated with the inhibition of fear responses, 

particularly evident in terms of extinction learning (Milad et al., 2007; Phelps et al., 2004; 

Schiller et al., 2008).  This negative gradient was indicative of a deactivation of BOLD 

response to the CS+, as opposed to elevated responding to the CS-, suggesting reduction 

in baseline levels of inhibition when the subject was feeling more at risk for shock.   

 Current results suggest that there are no group differences in generalized 

conditioned fear between DCS and placebo groups when DCS is given to healthy controls 

prior to acquisition.  The lack of group differences may be related to a differential effect of 

DCS on fear acquisition versus fear extinction.  The vast majority of studies identifying 

effects of DCS on fear learning, particularly in humans, have focused on the role of DCS 

in heightening and strengthening extinction learning.  It may be that during fear acquisition, 

DCS may have no effect or actually increase fear responding due to increased learning 

(Hoffman, 2014).  There is a general dearth of research on the effects of DCS on fear 

learning when given at acquisition.  Several studies in animals have shown increases in 

fear learning, contextual learning, and associative learning in animals (Quartermain et al., 

1994; Monahan et al., 1989; Land and Riccio, 1999).  These increases in learning may only 

be evident within a few hours of training, and therefore would not still be apparent at the 

24 hour time point (Steele et al., 1996).  In human subjects, DCS given prior to acquisition 

has been shown to improve hippocampal-dependent declarative memory, but there has not 

been much exploration of the effect on fear acquisition (Onur et al., 2010).  It is also 

possible that by performing this study in healthy controls, there was not enough variability 

in subjects’ anxiety level to the CS+ post-conditioning to be able to see an effect of DCS.  

Indeed, other studies looking at the effect of DCS on extinction learning in healthy 
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populations have found no significant effects (Bailey et al., 2007; Guastella et al., 2007).  

Finally, given that some results seem to be trending toward significance, it may be that 

there is simply a small effect size that interfered with the ability to capture significant 

differences given our sample size.  Given that the group differences in the departure from 

linear were driven primarily by the 500 mg DCS group, it is possible that higher doses may 

be necessary to see a result; however, this seems unlikely considering that differences in 

therapy outcomes between drug and placebo groups have been observed in previous studies 

with dosages as low as 50 mg.  It follows that our selected dosages of 250 mg and 500 mg 

should have been enough to see differences if they exist (Ressler, 2004).  The similarities 

between our results and other studies on the neural correlates of the generalization of 

conditioned fear suggest that the paradigm, study parameters, and analysis are valid and 

replicable.  Future studies on the effect of DCS on fear generalization should attempt to 

tease apart some of these potential explanations for our results, beginning with looking at 

the effects on the generalization of fear extinction, and whether there is an effect in anxiety 

populations.   
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