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Abstract 

The role of oral bacteria in the dissolution of dental enamel and dentin that can result in 

carious lesions has long been solely ascribed to metabolic acid production. However, 

other microbial processes may also influence tooth dissolution.  Recently, bacteria that 

accumulate polyphosphate in marine sediments have been shown to dynamically 

influence the solubility of phosphatic minerals. Here we show, using microscopy and 

genomic databases, that dental plaque and caries lesions, all contain abundant 

polyphosphate-accumulating bacteria.  

Using a culture of the model organism, Lactobacillus rhamnosus, a known 

polyphosphate-accumulating bacteria that is known to inhabit advanced caries lesions, we 

show that polyphosphate accumulation can lead to undersaturated conditions with respect 

to hydroxyapatite under some, but not all, oral cavity conditions. Samples of L. 

rhamnosus grown in various environmental conditions, including exposure to changing 

oxygenation conditions, input/removal of organics and trace nutrients, were collected 

over a course of 24 hours and stained with 4',6-diamidino-2-phenylindole (DAPI) to 

confirm/deny the presence of poly-p in the cells. A comparison of changes in 

extracellular inorganic phosphate between cultures grown under conditions that result in 

polyP accumulation vs conditions that did not, was used a a means of measuring the 

phosphate fluctuation that was likely contributed by intracellular phosphate 

accumulation. 

We suggest, through an extrapolation from our model organism results, that 

polyphosphate-accumulating bacteria, which we observed to be ubiquitous in oral fluids, 
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have a similar influence on the solubility of minerals that comprise the tooth structure. 

These results suggest that the generation of undersaturated conditions by polyphosphate-

accumulating bacteria constitutes a new potential mechanism of tooth dissolution that 

may augment the effects of metabolic acid production. 
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Introduction: 

Dental caries is becoming an increasingly serious public health issue among the 

general public and a challenging endeavor within the dental community1. Early childhood 

caries, in particular, can have negative impacts on overall quality of life and oral health2,3. 

A complete mechanistic understanding of dental decay remains elusive due to the 

complexity and diversity of the microbial communities that populate oral biofilms and the 

dynamic microenvironmental conditions of the oral cavity4–7. It has long been believed 

that the colonization and proliferation of aciduric/acidogenic bacteria in dental plaque is 

the primary etiology for the initiation and development of carious lesions5,6,8,9. However, 

the localized ionic saturation state of oral fluids with respect to the thermodynamic 

solubility product of dental mineral phases: principally controlled by the concentration of 

calcium (Ca2+) and phosphate (PO4
3-) ions, also influences mineral solubility and the 

likelihood of enamel dissolution at the tooth/plaque interface or within existing caries 

lesions10,11. Ion exchange between salivary fluids and the tooth surface has widely been 

accepted as a “chemical” pathway by which Ca2+ and PO4
3- is modulated by human-

induced, dietary, and non-microbial factors in the oral cavity12. Here, we provide 

evidence in support of the novel hypothesis that certain oral bacteria may play a 

considerable role in dynamically modulating the ion concentrations of PO4
3-, and thus the 

saturation state/solubility of calcium phosphate minerals at the tooth/plaque interface, 

through intracellular polyphosphate (polyP) accumulation. The capacity of certain oral 

bacteria to accumulate substantial amounts of polyP, while maintaining an etiological 

relevance in carious environments (i.e. tolerating low pH), may affect the saturation state 
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of the fluids in contact with the tooth interface and result in dissolution and perhaps later 

remineralization of apatite group minerals. 

Polyphosphate-accumulating bacteria (PAB) are microorganisms that, under 

specific environmental conditions, accumulate substantial intracellular inclusions of 

polyphosphate. Polyphosphates are linear polymers of orthophosphate residues linked by 

high energy phosphoanyhydride bonds. Polyphosphate has long been known to be 

associated with the ability of certain microbes to resist physical and chemical stressors, as 

well as provide an alternative source of energy under unfavorable or variable 

environmental conditions13–16. The metabolic processes of PAB have been extensively 

investigated in environmental systems such as enhanced-removal of phosphorus from 

wastewater and marine calcium phosphate mineral deposits that are thought to be 

mediated by polyphosphate-accumulating bacteria17–20. It has been demonstrated that 

PAB are capable of modulating the ionic constituents in equilibrium with apatite-group 

minerals in pore waters and subsequently altering the saturation state of the surrounding 

fluids resulting in microenvironments that are thermodynamically favorable for mineral 

precipitation19,21–24.  The study of metabolic processes of PAB in these systems have 

achieved a new paradigm in our understanding of the modulation of PO4
3- and Ca2+ 

activities and their relationship to the solubility of calcium phosphate minerals - but until 

now, these findings have not been applied to the oral environment where biofilms of 

bacteria also form biofilms in plaque and saliva that undergoes chemical exchange with 

the calcium phosphate minerals that comprise the inorganic portion of the vertebrate 

tooth. 
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Unrecognized factors such as dietary nutrient sources, continued organic acid 

exposure, and oxygenation conditions may initiate bacterial polyP uptake and reduce (or 

increase) localized concentrations of Ca2+ and PO4
3-. The uptake and subsequent release of 

inclusions of polyP may significantly alter the saturation chemistry of the fluids 

surrounding the tooth surface by shifting the chemical equilibrium and result in 

dissolution of apatite-group minerals in the form of dental caries or perhaps the 

precipitation of apatite-group minerals as calculus (mineralized plaque).   

The oral microbiome is a dynamic and diverse community that develops under a 

wide variety of environmental conditions. Although oral biofilm research has spanned 

over a hundred years, little work has been done to investigate the role microbes may play 

as dynamic mediators of ion concentrations. The current and widely accepted model of 

the caries process is based on the ability of cariogenic plaque microbiota to establish and 

thrive in low pH environments in which the metabolic production of mixed acids 

contributes to enamel demineralization5,6,8,9. Although localized acid production in 

cariogenic biofilms undoubtedly impacts mineral solubility, biological influence on 

chemical saturation of Ca2+ and PO4
3- may present an additional component to the 

development and rapid progression of carious lesions. In order to address several 

different facets of the hypothesis that PAB may be affecting localized chemical saturation 

in the oral cavity, we employed the analysis of genomic databases, the direct clinical 

examination of plaque, saliva, and dentinal lesions, and we developed a defined in vitro 

single-species model of L. rhamnosus to assess and examine polyphosphate metabolisms 
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under constrained environmental conditions and ascertain how these metabolisms might 

contribute to PO4
3- modulation and mineral dissolution in the oral cavity. 

 

Materials & Methods: 

Genomic Identification of Candidate Isolates: 

        Candidate isolates of oral bacteria that are known polyphosphate accumulators 

and/or possess the genetic potential to accumulate polyphosphate intracellularly (e.g., 

ppk1, ppk2, ppx) are listed in Table 1. These organisms were identified by searching the 

literature and the metadata of genomic databases for oral isolates to include DOE’s 

Integrated Microbial Genome (IMG/M)25 and the Human Oral Microbiome Database 

(HOMD)26.  Our gene search focused on genomes publically available in IMG/M.  

Annotated genes and gene motifs (pfam, COG, KOG) were detected using the “all 

functions” search and when available, peer-reviewed studies were utilized in the 

interpretation of genetic potential.  For a broader perspective of the clades found 

commonly in the oral microbiome, we include analyses of all genomes available within 

these clades.  Lactobacillus rhamnosus, an organism that is known to accumulate 

polyphosphate in environments outside the oral cavity, and is also often associated with 

the progression of dental caries27,28, was selected to be employed in a single species 

model in order to understand how polyP metabolism may relate to its development and 

survival under carious conditions as well as its potential contribution to altering mineral 

saturation conditions with respect to hydroxyapatite in dental enamel and dentin. 

 



 

 5 

In Vitro Culturing of Lactobacillus rhamnosus: 

Lactobacillus rhamnosus ATCC 7469 DSM 20021, obtained from the USDA 

Agricultural Research Station Culture Collection was used in our single species model to 

assess polyphosphate metabolic potential in a caries-associated organism. Specifically, 

growing L. rhamnosus under conditions that allow it to accumulate polyphosphate vs. 

those that do not, allowed us to quantify PO4
3- uptake specific to polyphosphate that we 

can then use to make theoretical predictions about the possible magnitude of saturation 

state changes that fluctuations in intracellular polyP accumulation may have on oral 

saturation state chemistry. Two semi-defined mediums, designed to mimic a commercial 

Lactobacillus growth medium (BD Difco Lactobacilli MRS Broth), were developed 

containing the following (g/L): 20 D-(+)-Glucose Monohydrate, 99%; 10 peptone type 1; 

5 yeast extract; 5 sodium acetate; 0.1 MgSO4; 2 K2HPO4; 0.05 MnSO4 • H2O; 1mL 

Tween 80. The second semi-defined medium, designated “Mn-” contained the same 

chemical proportions of the medium described above (“standard Mn+”) , with the 

exception of MnSO4 • H2O, which was removed from the medium all together. Triplicate 

cultures of L. rhamnosus (starting inoculum adjusted to 0.2 OD) were cultivated in an 

aerobic environment for 24 hours at 37°C with orbital shaking at 90 rpm.  One milliliter 

of culture was collected from each replicate every three hours, optical density readings 

were collected and samples were centrifuged at 10,000 g for 10 min at 4°C. The 

supernatant was transferred to a separate centrifuge tube for further chemical analysis and 

the cell pellet was resuspended in one milliliter of 50% ethanol for fluorescence 

microscopic examination after staining for polyphosphate (as described below). After 
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testing for its suitability to preserve polyphosphate granules (as opposed to other 

chemical fixatives like 4% paraformaldehyde), ethanol fixation was used to keep cellular 

structures intact and metabolisms inert. All samples were stored at -20°C until analyses 

were conducted. 

Plaque and Dentin Sampling/Collection: 

          Plaque samples were collected from male or female children between ages 4-18 

years old who satisfied one of the following inclusion criteria: (1) oral health with an 

absence of dental caries or hardened dental plaque, (2) dental caries or recent history of 

dental caries, (3) hardened dental plaque with an absence of dental caries. The process of 

collecting the dental plaque followed Institutional Review Board (IRB) procedures at the 

University of Minnesota (IRB#1507M75441). Plaque samples consisted of two separate 

samples collected from the anterior and posterior dentition using a sterile dental scaler. 

Two samples were taken from 30 patients for a total of 60 samples. 

Prior to the appointment, subjects were expected to have fasted one hour prior to 

sampling as well as refrained from brushing their teeth the morning of sampling. Each 

sample was placed into separate test tubes containing 1 mL of 50% ethanol. The test 

tubes were immediately placed into ice for transport and stored at -20° C for future 

microscopic analysis. Three dentin samples were collected from extracted teeth that were 

to be discarded as pathologic waste. Once the teeth were extracted, gross debris 

consisting of heme, remnants of PDL/gingival attachments, and any granulomatous tissue 

was removed chairside with 2x2 cotton gauze. Dentin was extracted from each of the 

carious teeth with sterile hand instrumentation under a Biosafety Cabinet Class II/Type 
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A2. The dentin samples were immediately stained for microscopic visualization and the 

extracted teeth were placed into individual tubes containing 50% ethanol. 

Polyphosphate Identification via Fluorescence Microscopy: 

DAPI (4’,6-diamidino-2-phenylindole) is a fluorescent stain used to detect various 

cellular macromolecules in living or dead cells. While DAPI binds to both polyp and 

DNA, the corresponding complexes, polyP-DAPI complex and the DNA-DAPI complex 

have a distinct emission spectrum (461-nm and 525-nm) when excited by 360-nm light.  

To resolve the poly-P-DAPI complex, custom band-pass filters (Chroma), were employed 

(DNA-DAPI excitation/emission (nm) 345/455 and polyp-DAPI excitation/emission 

(nm) 415/550).This emission wavelength shift results in the emission of a distinct yellow 

color that can be used to differentiate the polyP-DAPI complex from the DNA-DAPI 

complex29. Nine samples of L. rhamnosus, collected every three hours over the course of 

a 24 hour period, as well as 60 plaque and three dentin samples, were collected and fixed 

for staining. Each ethanol fixed sample was placed in a designated well on a Teflon-

printed microscope slide and allowed to air-dry until the cells were adhered to the slide. 

Eight microliters of 5 µg/mL DAPI was pipetted onto each sample containing well and 

left to incubate in the dark for 30 minutes in a hybridization chamber. After incubation, 

the slide was rinsed and air-dried prior to adding Vectashield (H-1000, Vector 

Laboratories) and a coverslip for microscopic visualization. Microscopic images were 

taken with an Olympus BX61 fluorescence microscope equipped with an XM10 CCD 

camera and cellSens Dimensions Imaging Software (Version 1.13). 
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Confocal Spectral Imaging: 

 Confocal spectral imaging was employed using a Nikon A1 spectral confocal 

microscope. The system is mounted on a Nikon Ti2000E inverted fluorescence 

microscope with DIC optics. NIS elements imaging software was employed for 

acquisition and analysis. Ethanol-fixed oral biofilm samples were stained with DAPI and 

analyzed with a standard polyp emission wavelength (433.6 nm/bandwidth 109.7 nm) 

and DNA emission wavelength (461.0 nm/bandwidth 98.0 nm).  

Inorganic Phosphate Quantification: 

        An inorganic phosphate quantification method from Hansen and Koroleff (1999) 

was adapted to assess the influence of polyphosphate accumulation on the Pi 

concentration in the extracellular medium in our model organism, L. rhamnosus. In order 

to quantify intracellular polyphosphate accumulation, the supernatant of our L. 

rhamnosus cultures were analyzed spectrophotometrically. In the presence of inorganic 

phosphate, two reagents, ascorbic acid and a mixed reagent composed of ammonium 

heptamolybdate tetrahydrate (NH4)6Mo7O24 • 4H2O, potassium antimony tartrate 

K(SbO)C4H4O6, and sulfuric acid, yield a phosphomolybdate heteropoly acid complex, 

resulting in the appearance of a blueish solution. The intensity of the blue complex is 

directly proportional to the amount of inorganic phosphate present in the sample. 

In order to account for the amount of phosphate that would have been utilized from the 

media for purposes other than polyphosphate accumulation, our semi-defined medium 

was modified to inhibit cellular polyphosphate accumulation while maintaining similar 

cell densities to those of the polyphosphate-accumulating culture. Cell counts of the 
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triplicate replicates were used to normalize the slightly different cell densities between 

the two culture types when calculating phosphate change/cell. 

Geochemical Analysis and Saturation Calculations: 

        To assess the potential impact cellular polyphosphate accumulation/release has on 

enamel mineral solubility (i.e. hydroxyapatite), we employed WEB-PHREEQ: Aqueous 

Geochemical Modeling30 (version 2) to evaluate chemical saturation state fluctuations in 

response to increasing and decreasing phosphate concentrations. A range of salivary 

phosphate and calcium concentrations (mmol/L) reported in the literature31 were used as 

a series of arbitrary starting values in determining chemical saturation of hydroxyapatite 

in response to fluctuating pH and phosphate concentrations. Net polyphosphate 

accumulation (0.9075 mmol/L), as previously determined from our L. rhamnosus model, 

was subtracted and added to literature reported phosphate values to assess saturation 

index fluctuations during our maximum observed cellular polyphosphate accumulation 

and release. 

 

Results: 
 

 Genome and literature survey:   

Through literature and database reviews we were able to identify candidate PAB 

that inhabit the dental environment. The main enzymes responsible for synthesizing 

polyP and subsequently hydrolyzing polyP in bacteria are polyphosphate kinase (ppk1, 

ppk2) and exopolyphosphatase (ppx) respectively15,27,32.  We included in our study lesser 

known and studied genes known for hydrolyzing polyP when supported by published in 

situ studies, (Table 1). In general, the genetic potential to accumulate polyphosphate was 
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found broadly across the oral microbiome. However, it was notably absent within the 

Streptococci (positive for 27 non-oral isolated out of 2337 genomes) to include the 

genome of S. sorbrinus SL-1 ATCC 33478 which was reported to accumulate polyP33. 

However, other caries associated clades more strongly demonstrated the genetic potential 

to accumulate polyphosphate, such as Propionibacterium (n = 159/162), Lactobacillus (n 

= 491/685), Rothia (n=11/11), Actinomyces (n=38/38), and Bifidobacterium (274/274). 

Polyphosphate Visualization via Fluorescence Microscopy: 

Our preliminary results demonstrate that plaque (Figure 1a), dentinal lesions 

(Figure 1c), and our model organism, L. rhamnosus (Figure 2), contain abundant 

intracellular polyphosphate inclusions that can be visualized with DAPI. Figure 1b 

illustrates our capability to resolve polyP inclusions using spectral-scanning confocal 

microscopy. Binding of polyP to DAPI, shifts its peak emission wavelength from 475 to 

525 nm (excitation at 360 nm), resulting in the DAPI-polyphosphate complex to appear 

yellow and inclusions can be observed as discrete yellow spheres within the cell (Figure 

1b)34. We found that the dental plaque samples of all 30 patients (60 samples in total) 

contained polyphosphate inclusion bodies in a morphologically diverse, and spatially 

heterogeneous oral biofilms. Staining of dentinal lesions, from three extracted teeth, also 

revealed abundant polyphosphate inclusion bodies. The bacterial morphotypes in the 

dental plaque samples include long filamentous organisms as well as small cocci and 

bacillus shaped microbiota. However, the morphologic diversity of the dentin samples 

appears to be less than that of the dental plaque, primarily consisting of small cocci and 

bacillus shaped organisms with a distinct absence of filamentous bacteria.  
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Polyphosphate Accumulation in Lactobacillus rhamnosus: 

Lactobacillus rhamnosus is one of several caries-associated organisms that we 

have identified to obtain the genes necessary for polyphosphate accumulation and 

hydrolysis and because of this genetic potential, as well as its relevance in the dental 

community, has been selected as a model organism to manipulate and observe 

polyphosphate metabolisms in response to nutritional limitations and dynamic 

environmental conditions27. Using our semi-defined growth media, we cultured L. 

rhamnosus capable of accumulating polyphosphate within a 24 hour period. 

Polyphosphate accumulation was always observed under high cell density (OD >2). In 

Lactobacillus cultures, as cell density increases, pH decreases, and polyphosphate 

accumulation was initiated under moderate to low pH conditions (less than 5.5 and 

greater than 3.5). Through a series of experiments that vary specific nutrients in our semi-

defined media, we determined that the relative concentration of manganese (Mn2+) plays 

an important and complex role in the regulation of bacterial polyP metabolism. Standard 

MRS Broth concentrations of manganese (0.05 g/l) result in substantial intracellular 

polyP accumulation, while the depletion and/or omission of manganese yields cells 

devoid of polyP inclusion bodies. In L. rhamnosus, treatments that excluded the 0.05 g/l 

manganese (“Mn-”) reduced polyP accumulation and overall cell density, while 

maintaining growth rates comparable to that of the “standard Mn+” media, suggesting 

manganese is essential to initiate an appropriate stress response when environmental 

conditions become unfavorable  
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Colorimetric Inorganic Phosphate Quantification: 

By developing a media that enables us to grow L. rhamnosus under conditions 

that allow for polyP accumulation versus conditions that do not, we were able to 

spectrophotometrically quantify the relative concentration of phosphorus from our media 

that is being incorporated as intracellular polyP inclusions.  Using an ascorbic acid assay, 

modified by Hansen and Koroleff (1999), we compared the supernatant of our L. 

rhamnosus cultures to that of a known set of phosphate standards to quantify the 

depletion of total inorganic phosphate at various periods of incubation. 

        Since bacteria use phosphate for a variety of different purposes other than 

polyphosphate accumulation, it is important to take into consideration the quantity of 

phosphorus necessary for cell growth. Figure 3 illustrates inorganic phosphate change, 

over the course of 24 hours, between our “Mn-” Mn2+ medium (negative polyP 

accumulation) and “standard Mn+” Mn2+ medium (positive polyP accumulation). L. 

rhamnosus grown under conditions that allow for polyP accumulation (“standard 

Mn+”)show a decrease in media PO4
3- concentrations of approximately 1.3 mmol/L after 

18 hours incubation. L. rhamnosus grown in “Mn-“ media, i.e. Mn2+ limited conditions, 

that prevent polyP accumulation, show a decrease of approximately 0.38 mmol/L PO4
3- 

after 18 hours incubation. We make the assumption that, most, if not all, of the difference 

in the total PO4
3- concentration results from Pi uptake and storage in the cells as the 

intracellular polyP granules that we observe by DAPI staining. Since the cell densities 

between the two mediums were similar, with the “Mn-” culture being slightly lower, the 

concentration of phosphate was adjusted to reflect equal cell density among the two 
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mediums, assuming polyphosphate accumulation would be comparable amongst 

individual cells. Using this assumption, we calculate a maximum net change of 

phosphate, via polyphosphate accumulation, in L. rhamnosus to be approximately 0.9075 

mmol/L after 18 hours incubation. If polyP-accumulating bacteria in plaque or dentinal 

lesions are accumulating similar amounts of polyP as our model organism, L. rhamnosus, 

is capable of accumulating, then it is very likely that oral biofilms are capable of 

influencing the saturation chemistry of the saliva/mineral interface through the 

metabolism of polyphosphate. To assess the potential impact polyphosphate 

accumulation and/or release may have on mineral solubility, we used the geochemical 

modeling program, WEB-PHREEQ, in order to calculate changes that would result in 

supersaturated or undersaturated conditions with respect to the apatite group mineral, 

hydroxyapatite. 

Chemical Saturation in Response to Polyphosphate Accumulation and Release: 

        One of the primary factors in demineralization and remineralization of 

hydroxyapatite in dental enamel or dentin, is the saturation state of saliva with respect to 

its primary ionic constituents, calcium and phosphate35. Despite the fact that saliva is 

generally supersaturated with these components35,36, some individuals experience 

extensive mineral dissolution while others accumulate dental calculus (mineralized 

plaque). The saturation of hydroxyapatite is characterized by its solubility product (Ksp) 

and the concentrations of its components ions (IAP)37. The saturation state of the mineral 

(Ω) is in equilibrium when the quotient of IAP/Ksp=1, meaning that the system has the 

same rate of dissolution and precipitation. When Ω > 1, the solution is supersaturated and 
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precipitation is favored. When Ω < 1, the solution is undersaturated and mineral 

dissolution is favored. 

        Figure 4 illustrates mineral saturation state vs. pH for three different salivary 

concentrations of calcium and phosphate reported by Larsen et al. (1999).  Using our 

calculated concentration of accumulated polyphosphate, from our ascorbate assay, we 

adjusted the salivary phosphate concentrations by subtracting the calculated value of 

0.9075 mmol/L phosphate, from three reported literature values ranging from 12.6 to 2 

mmol/L phosphate. When salivary calcium and phosphate concentrations are high (i.e. 

4.2 and 12.6 mmol/L respectively), the impact on saturation state resulting from our 

assumed phosphate drawdown of 0.9075 mmol/L is minimal. However, when calcium 

and phosphate concentrations in the saliva are relatively low (i.e. 1.1 and 2.0 mmol/L 

respectively), a drawdown of 0.9075 mmol/L phosphate can have a sizable effect on 

mineral solubility. If this magnitude of change were to occur in saliva at a pH of 5.85 

(assuming a stable calcium concentration of 1.0 mmol/L and an initial phosphate 

concentration of 2.0 mmol/L) then the system would go from saturated with respect to 

hydroxyapatite (Ω=~1) in which neither precipitation nor dissolution are favored, to 

undersaturated (Ω=~0.48), a condition that thermodynamically favors mineral 

dissolution. 
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Discussion: 
 

Cariogenic activity of oral biofilms is a dynamic and multi-factorial disease 

whose etiology is largely based on the ability of the bacterial community to produce acid 

and survive in decreasing pH conditions4. Tooth enamel, primarily composed of 

hydroxyapatite (Ca5(PO4)3(OH)), is highly susceptible to demineralization from 

prolonged exposure to organic acids, by-products of bacterial carbohydrate fermentation8. 

Streptococcus mutans was established early on as a key player in the caries process, and 

remains a focus of investigation due to its acidogenic and aciduric properties4,38. 

However, recent studies have shown that, although S. mutans is an early colonizer of 

dentinal lesions, it is part of a larger consortia of cariogenic bacteria that thrive in low pH 

conditions as a result of frequent carbohydrate exposure5,8,9. Recent developments in 

community characterization using 16S rRNA gene based amplicon sequencing and 

metagenomics has made it possible to identify and study the microbiota associated with 

cariogenic plaque. Along with S. mutans, cariogenic plaque is comprised of a community 

of diverse microbial species including Rothia, Actinomyces, Bifidobacterium spp., 

Lactobacilli, and other non-mutans streptococci4,5,39–41.  Among the microbiota identified 

as key players in the development of carious lesions, several clades possess the genetic 

potential to accumulate polyphosphate. In most of the caries associated clades the 

capacity to accumulate polyphosphate has been demonstrated. Whether strains of 

Streptococci, in particular S. mutans, has the capacity to accumulate polyphosphate by a 

yet to identified genetic pathway remains to be explored. Regardless, the capacity to 

accumulate and release polyphosphate appears in many cases to be highly variable within 
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a clade down to the species level and may contribute to the phenotypic variability within 

caries microbiomes resulting in the modulation of disease progression. 

Our preliminary DAPI staining of 60 plaque, three carious dentin, and 60 saliva 

samples demonstrates that PAB are ubiquitous in the oral cavity (n=123/123). Even 

though many of the organisms we observed containing accumulations of polyP in the oral 

cavity may not be associated with the development and progression of dental caries (i.e. 

certain plaque and salivary microbiota), the mere presence of heterogeneous dense 

assemblages of PAB in the oral community conceivably introduces a new paradigm in 

the realm of dental disease and oral microbial ecology. PAB present in our clinical 

samples of dentinal lesions provide intriguing evidence that polyphosphate accumulation 

may play a role in Pi modulation between bacteria and dental enamel. Since we were 

unable to identify which species of PAB were present within these dentinal lesions, we 

utilized in vitro culturing of L. rhamnosus to determine if polyP accumulation may have 

an effect on the saturation state of the surrounding fluids in an environment where PAB 

are well established. 

Lactobacillus is a major genus of lactic acid bacteria (LAB) that inhabits human 

mucosal surfaces and lowers environmental pH via production of lactic acid during 

carbohydrate fermentation27,42. L. rhamnosus is a gram-positive, facultative anaerobe that 

produces, as well as thrives in, acidic environments (pH < 5) and also possesses the 

genetic potential to accumulate and hydrolyze intracellular polyphosphate27. Due to its 

association with the progression of dental caries, as well as its capability of accumulating 

considerable quantities of intracellular polyP, L. rhamnosus is a realistic model organism 
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for studying polyphosphate metabolic processes potentially associated with fluctuating 

PO4
3- concentrations in the oral cavity.  

Preliminary PO4
3- quantification results demonstrates that L. rhamnosus 

accumulates clinically relevant concentrations of polyphosphate that could result in 

changes in saturation state to the surrounding oral environment in situations where PO4
3- 

concentrations are depleted at the tooth/biofilm interface. L. rhamnosus grown under 

conditions that allow for polyP accumulation (“standard Mn+”) show a decrease in media 

PO4
3- concentrations of approximately 1.3 mmol/L after 18 hours incubation. L. 

rhamnosus grown under “Mn-” Mn2+ conditions, that prevent polyP accumulation, show 

a decrease of approximately 0.38 mmol/L PO4
3- after 18 hours incubation. We suspect the 

difference in the total PO4
3- concentration results from Pi uptake and storage in the cells 

as the intracellular polyP accumulation that we observe in that culture via DAPI-staining 

and microscopy. Initially thought to serve as an alternative energy reservoir, the presence 

of intracellular polyP has been directly linked to physiological processes such as 

mobility, biofilm development, quorum sensing, and response to various environmental 

stressors15,43.  In a scenario where nutrient availability is limited, pH is relatively acidic, 

and oxygen levels are depleted, bacteria such as L. rhamnosus may exist as opportunists 

that establish themselves in an exclusive ecological niche in which their polyphosphate 

metabolisms may provide a competitive edge amongst other oral microbiota. Carious 

lesions that had initially demineralized from exposure to mixed organic acids may 

become even more susceptible to mineral loss as aciduric/acidogenic PAB, such as L. 

rhamnosus, establish themselves in the vicinity of dissolution. As tooth enamel 
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demineralizes, PAB may increase dissolution by further disrupting the chemical balance 

of Ca2+ and PO4
3- by accumulating Pi from the dissolved enamel thus creating a run-away 

demineralization environment (Figure 5).  

        The sequestration of PO4
3- by PAB has the potential to alter the chemical 

conditions of the oral environment that promote mineral dissolution under certain 

conditions in the mouth, leading to dental decay. Alternatively, the concentrated release 

of PO4
3- from PAB could lead to the precipitation of dental calculus (mineralized dental 

plaque) under a different set of oral microenvironmental conditions. These ions can also 

be incorporated into various other phases of apatite such as fluorapatite (Ca5(PO4)3F) and 

carbonate-hydroxyapatite (Ca5(PO4,CO3)3(OH)). These substitutions are common in the 

oral cavity and vary from individual-to-individual, as well as from tooth-to-tooth. 

 Mineral solubility may increase or decrease depending on the substitutions in the lattice 

structure37. In order to assess the magnitude of the impact PAB metabolisms may have on 

the saturation chemistry of the saliva/mineral interface, we need to develop a 

comprehensive understanding of PAB in the oral environment and how this group of 

bacteria responds to the dynamic ecosystem of the oral cavity. The conditions in which 

PAB accumulate and hydrolyze polyP in oral biofilms have yet to be identified but are 

likely associated with the ability of certain microbiota to respond and adapt to nutrient 

and physio-chemical stressors. Identification and clinical assessments of PAB in oral 

biofilms will aid us in understanding their potential influence on saturation chemistry and 

mineral solubility in the oral environment as well as aid in our ability to treat oral 

diseases that remain poorly understood. 
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Figures:  

Figure 1: Preliminary staining of clinical samples with DAPI (4',6-diamidino-2-

phenylindole). Fluorescence microscopic examination demonstrates that plaque (a,b) and 

dentinal lesions (c) contain abundant, morphologically diverse, and spatially 

heterogeneous bacteria that accumulate polyP that can be stained with DAPI (yellow 

dots).  
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 25 

 
Figure 2: Polyphosphate accumulation in L. rhamnosus in response to nutritional 

limitations. (a) L. rhamnosus cultured in “Mn-”growth media for 21 hours exhibited no 

accumulation of polyP. (b)While L. rhamnosus cultured in “standard Mn+” growth media 

for 21 hours were replete with inclusions of polyphosphate (yellow spheres). 
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Figure 3: Inorganic Phosphate Quantification using the oral isolate L. rhamnosus. 

Preliminary results growing L. rhamnosus under conditions that allow for polyP 

accumulation (red curve) show a decrease in media Pi of approximately 1.3 mmol/L at 18 

hours. L. rhamnosus grown under “Mn-” Mn2+ conditions that prevent polyP 

accumulation (blue curve) represents a decrease in media Pi of approximately 0.4 

mmol/L.  Initial media Pi concentration (dashed line) is approximately 10.8 mmol/L. 
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Figure 4: Theoretical shift in relative saturation of salivary fluids in response to bacterial 

polyphosphate accumulation. Solid lines represent literature derived salivary 

concentrations of PO4
3- and Ca2+. High PO4

3- and Ca2+ values of 12.6 mmol/L and 4.2 

mmol/L, respectively (black curve), medium PO4
3- and Ca2+ values of 7.3 mmol/L and 

2.65 mmol/L respectively (red curve), and low PO4
3- and Ca2+ values of 2.0 mmol/L and 

1.1 mmol/L respectively (blue curve). Corresponding dashed lines represent a shift in 

relative saturation in response to polyphosphate accumulation of approximately 0.9075 

mmol/L PO4
3-, as determined by our single species growth model of L. rhamnosus. 

Relative saturation equilibrium (Ω=1) is represented by the solid horizontal line. 
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Figure 5: Our results suggest that Polyphosphate accumulating bacteria taking up 

inorganic phosphate to synthesize poly-P potentially resulting in undersaturated 

conditions that lead to mineral dissolution and caries progression Polyphosphate-

accumulating bacteria may also acquire PO4
3- from acid-induced dissolution of the 

enamel.   
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Appendix: 

Annotated Genetic Potential: 
ppk1 + ppx/surE/GppA phosphatase and/or ppk1/2 + ppgk 
 

Legend: 
D = Demonstrated in clade (see references), otherwise not determined. 
+ = Potentially positive for polyp accumulation 
- = Likely negative for polyp accumulation 
 

Phylum Genus Genome 
Percentage  

Actinobacteria 
 
 
 
 

 

+ 

Actinobaculum n=5/7 

Actinomyces n=38/68 (D) 

Alloscardovia n=3/3 

Atopobium n=1/17 

Bifidobacterium n=274/274 (D) 

Corynebacterium n=246/246 (D) 

Gardnerella n=39/39 

Olsenella n=7/11 

Parascardovia n=3/3 

Propionibacterium n= 159/162 (D) 

Rothia n= 11/11 (D) 

Scardovia n=2/2 

- 
Aggregatibacter n=0/34 

Bacteroides 
 
 

+ 

Capnocytophaga n=30/30 

Prevotella n=18/165 

Porphyromonas n=70/70 (D) 

Tannerella n=11/13 

Betaproteobacteria 
 

+ 

Kingella n=48/48 

Lautropia n=1/1 

Neisseria n= 394/395 (D) 

Chloroflexi + 
Unclassified 
Bacterium 

n=6/31 

Epsilonproteobacteria + 
Campylobacter n = 510/544 (D) 

Firmicutes + 
Dialister n=4/4 

Enterococcus n=7/801 
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Firmicutes Ctd.  
 
+ 
 
 
 
 
- 

Fructobacillus n=1/4 

Johnsonella n=1/1 

Lachnospiraceae n=48/77 

Lactobacillus n=491/685 (D) 

Lysinibacillus n=43/45 

Megasphaera n=16/16 

Mogibacterium n=2/2 

Oribacterium n=1/13 

Peptoniphilus n=12/17 

Selenomonas n=7/36 

Staphylococcus n=394/5268 

Veillonella n=23/30 

Abiotrophia n=0/1 

Bulleidia n=0/1 

Centipeda n=0/1 

Eubacterium n=0/56 

Filifactor n=0/1 

Gemella n=0/8 

Parvimonas n=0/5 

Peptoanaerobacter n=0/4 

Shuttleworthia n=0/2 

Solobacterium n=0/2 

Streptococcus n=27/2337 

Fusobacteria 
 

- 
Fusobacterium n=2/88 

Leptotrichia n=0/14 

Gammaproteobacteria 
 

+ 

 

- 

Endozoicomonas n=8/8 

Enterobacter n=276/278 (D) 

Klebsiella n=865/870 

Haemophilus n=0/144 

Spirochetes 
 

+ 
Treponema n=23/69 

Table 1: Genus level associated polyphosphate accumulating genetic potential32,33,44–52. 

 

 

 


