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Abstract 

A study of using an adaptive inverse dynamics control technique to a two-compartment 

modeled respiratory system. Based on the nonlinear respiratory model and desired 

respiratory volumes, the adaptive inverse dynamics control scheme consisting of a 

control law and an adaptation law is then applied. The control law has the structure of the 

two-compartment inverse dynamical model but uses estimates of the dynamics 

parameters in the computation of pressure applied to the lungs. The adaptation law uses 

the tracking error to compute the parameter estimates for the control law. The preliminary 

results indicate that the tracking errors can be improved if the parameter values 

associated with the adaptation law are properly chosen, and the performance is also 

robust despite relatively large deviations in the initial estimates of the system parameters. 
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Chapter 1 

Introduction 

1.1 Respiratory System 

1.1.1 Respiration 

Respiration is the trading of O2 and carbon dioxide between the environment and 

the body cells. In people, this procedure incorporates spark and termination, dispersion of 

O2 from alveoli to the blood and of carbon dioxide from the blood to the alveoli, and the 

vehicle of O2 to and carbon dioxide from the body cells by method for the circulatory 

framework. Breath is crucial to life as it supplies fuel (counting O2) and evacuates waste 

items (counting carbon dioxide) from the cells.   

 The body has moderately little limit for capacity of the respiratory gasses so the 

respiratory control framework must endeavor to supply O2 and uproot carbon dioxide at 

the rate at which the cells require. This segment manages the essential standards included 

in respiratory control, baby breath and the effect that changing body temperatures and 

warm control have on respiratory control. 

 

Fig 1 : Respiratory Model 
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1.1.2 Inhalation 

Inhalation is launched by the stomach and backed by the outer intercostal 

muscles. Typical resting breaths are 10 to 18 breaths every moment, with a period time of 

2 seconds. Amid vivacious inward breath (at rates surpassing 35 breaths every moment), 

or in approaching respiratory disappointment, embellishment muscles of breath are 

enlisted for backing.  

Under ordinary conditions, the stomach is the essential driver of inward breath. At the 

point when the stomach gets, the ribcage extends and the substance of the guts are moved 

descending. This outcome is a bigger thoracic volume and negative weight (concerning 

barometrical weight) inside the thorax. As the weight in the midsection falls, air moves 

into the directing zone. Here, the air is sifted, warmed, and humidified as it streams to the 

lungs. 

1.1.3 Exhalation 

Exhalation is a detached methodology; notwithstanding, dynamics or constrained 

exhalation is accomplished by the stomach and the inside intercostal muscles. Amid this 

procedure air is constrained or breathed out. The lungs have a characteristic flexibility, as 

they force from the stretch of inward breath; wind currents pull out until the weights in 

the midsection and the environment achieve harmony. Amid constrained exhalation, as 

when extinguishing a candle, expiratory muscles including the muscular strength and 

inward intercostal muscles create stomach and thoracic weight, which powers let some 

circulation into of the lungs. 

1.1.4 Gas exchange 

The significant capacity of the respiratory framework is gas trade between the 

outside environment and a life form's circulatory framework. In people and different well 

evolved creatures, this trade encourages roation of the blood with an associative 

evacuation of carbon dioxide and different vaporous metabolic squanders from the 

dissemination. As gas trade happens, the corrosive base equalization of the body is kept 

up as a major aspect of homeostasis. On the off chance that legitimate ventilation is not 

kept up, two contradicting conditions could happen: respiratory acidosis, an existence 

undermining condition, and respiratory alkalosis.  
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Upon inward breath, gas trade happens at the alveoli, the minor sacs which are the 

essential practical segment of the lungs. The alveolar dividers are to a great degree flimsy 

(approx. 0.2 micrometers). These dividers are made from a solitary layer of epithelial 

cells near to the aspiratory vessels which are made from a solitary layer of endothelial 

cells. The nearby vicinity of these two cell sorts permits porousness to gasses and, thus, 

gas trade. This entire instrument of gas trade is conveyed by the straightforward sensation 

of weight distinction. At the point when the pneumatic force is high inside the lungs, the 

air from lungs stream out. At the point when the pneumatic stress is low inside, then wind 

streams into the lungs.  

 

 

Fig 1.2: Schematic diagram of the human respiratory control system. 

Above figure shows the fundamental standards of the respiratory control 

framework. O2 noticeable all around is brought to, and carbon dioxide is expelled from 

the body cells through the lungs and the circulatory framework. The higher the 

ventilation rates of the lungs, the more prominent the amount of gas that is pumped into 

and out of the circling blood. The body cells change the gas fractional weights in the 

blood as they devour O2 and produce carbon dioxide at a rate relative to the cell 

metabolic rate. This is reliant on variables, for example, practice or hotness creation 

necessities of the body.  
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Chemoreceptor structures give data on the O2 and carbon dioxide incomplete 

weights in the blood and the carbon dioxide gas fractional weight in the cerebrospinal 

liquid (CSF) of the cerebrum. This data is passed on by afferent neural pathways to the 

respiratory control focus in the hypothalamus of the cerebrum, which modifies the 

ventilation of the lungs to keep up gas fractional weights at typical qualities. To a 

constrained degree respiratory gasses are released in the body. This gives a cradle to 

sudden unsettling influences to the gas fractional weights in the body which may happen, 

for instance, as an aftereffect of quick changes in the levels of activity. 

 Carbon dioxide is principally released in the body tissues and just a little amount 

is released in arrangement in the blood. On the other hand, little O2 is released in the 

body tissues yet noteworthy amounts are released in synthetic mix with hemoglobin in 

the blood. Albeit respiratory control structures a complete framework, it can't be viewed 

as autonomous of different frameworks inside the body. One framework that has a 

noteworthy bearing on breath is the cardiovascular framework. Should the metabolic rate 

of a specific organ build then, so as to encourage the extra requests put on the vehicle of 

metabolites to and from that organ, an increment in blood stream to that organ should 

likewise happen. This change in blood stream adjusts the progress of the respiratory 

framework. 
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Chapter 2 

Multi-compartment Respiratory System 

The lungs are especially powerless against intense discriminating diseases. Respiratory 

failure can come about not just from essential lung pathology, for example, pneumonia, 

additionally as an auxiliary result of heart disappointment or provocative ailment, for 

example, sepsis or trauma. At the point when this happens, it is fundamental to backing 

patients while the principal malady methodology is addressed. For illustration, a patient 

with pneumonia may require mechanical ventilation while the pneumonia is being dealt 

with anti-toxins, which will in the end adequately cure the disease. Since the lungs are 

vulnerable against discriminating disease and respiratory failure is regular, backing of 

patients with mechanical ventilation is exceptionally basic in the concentrated 

consideration unit.  

The objective of mechanical ventilation is to guarantee sufficient ventilation, which 

includes a greatness of gas trade that is prompts the coveted blood level of carbon dioxide 

(CO2), and satisfactory rotation, which includes a blood fixation of O2 that will guarantee 

organ capacity. Accomplishing these objectives is muddled by the way that mechanical 

ventilation can cause intense lung damage, either by expanding the lungs to inordinate 

volumes or by utilizing over the top weights to blow up the lungs. The test to mechanical 

ventilation is to produce the wanted blood levels of CO2 and O2 without bringing about 

additional intense lung harm. The soonest essential modes of ventilation can be ordered, 

nearly, as volume controlled alternately weight controlled. 

In volume-controlled ventilation, the lungs are expanded (by the mechanical ventilator) to 

a predefined volume and after that permitted to inactively collapse to the gauge volume. 

With the expanding accessibility of microchip innovation, it has been conceivable to plan 

mechanical ventilators that have control calculations which are more complex than basic 

volume or weight control. Cases are relative aid ventilation, versatile bolster ventilation, 

Brilliant Consideration ventilation, and neutrally balanced ventilation. In corresponding 

aid ventilation, the ventilator measures the quiet's volume and rate of inspiratory gas 

stream, and afterward applies weight bolster in extent to the quiet's inspiratory exertion. 
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In this mode of ventilation, roused O2 what's more, positive end-expiratory weight is 

physically balanced by the clinician. In versatile bolster ventilation, tidal volume and 

respiratory rate are naturally balanced.  

The quiet's respiratory example is measured point astute in time and bolstered back to the 

controller to give the obliged (target) tidal volume furthermore, persistent respiratory 

rate. Versatile bolster ventilation does not give nonstop control of moment ventilation, 

positive end-expiratory weight, and enlivened O2; these parameters need to be balanced 

physically. 

2.1 One-compartment and Two-compartment Linear Respiratory system 

The test to mechanical ventilation is to create the sought blood levels of carbon 

dioxide and O2 without creating additional intense lung damage. With the expanding 

accessibility of micro-chip innovation, it has been conceivable to outline incompletely 

mechanized mechanical ventilators with control calculations or giving volume or weight. 

The mechanical properties of the respiratory system are for inferred from estimations of 

weight and now at the air· way opening. Customarily, these estimations have been 

connected through a single compartment model of the respiratory framework. As of late, 

then again, there has been significant enthusiasm for demonstrating low recurrence 

respiratory mechanics regarding two compartments, since this gives a greatly improved 

portrayal of trial information.  

One sort of model records for local ventilation in homogeneities, genetic in the 

lung as far as two alveolar compartments. The other kind of model considers aspiratory 

ventilation to be homogeneous, while the tissues of the respiratory framework are 

displayed as being viscoelastic. In ordinary puppies, the fitting two-compartment model 

has been demonstrated to be the viscoelastic model. Because strange physiology, 

nonetheless, one must invoke a model having both viscoelastic tissues and ventilation in 

homogeneities. Extra trial information is needed to recognize such a model, and to 

evaluate these two phenomena. The procedure called converse displaying comprises first 

of concocting a model structure. The parameters of the model are then assessed to make 

the conduct of the model match an arrangement of test information as nearly as possible.  
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The parts of the model and their parameters ought to have sensible physiological 

partners. The little number of respiratory variables that can be measured (streams, 

volumes and weights, with a few refinements in regards to the level of their estimations) 

sets a point of confinement to the complexity of the models utilized and to the 

physiological translations that can be gotten from them picking between these two groups 

of models requires more data than is accessible in the connections between the amounts 

that are normally measured, in particular tracheal or trans pneumonic weight and tracheal 

flow. Although a solitary compartment model has been, and still is, broadly utilized as a 

part of respiratory physiology, two-compartment models give off an impression of being 

significantly more suitable in different circumstances.  

There are two physiologically unmistakable classes of two-compartment models 

of enthusiasm for respiratory mechanics, those considering gas redistribution between 

diverse lung districts and those considering inherent tissue properties. This model has 

gotten to be popular to the point that the mathematical statement administering its 

conduct is for the most part (and mistakenly) alluded to as the "mathematical statement of 

movement of the respiratory mechanics", as opposed to as the "comparison of movement 

of a solitary compartment straight model of the respiratory mechanics".  

This mathematical statement is 

P(t) = RV(t) + EV(t)          (1) 

where P is weight (as a rule aviation route opening weight or trans pulmonary weight), R 

is the resistance of the funnel to gas stream (V), E is the Elastance of the inflatable, V is 

the volume of the blow up over its casual volume, and t is time. Eq. 1 epitomizes various 

suppositions. Essential among these is that the respiratory framework carries on 

straightly, that will be that R is independent of V and E is free of volume. Another 

suspicion is that latency does not assume a huge part. This hypothesize is likely 

legitimate inside the scope of physiological breathing frequencies up to 2 Hz [8] and will 

be acknowledged in whatever remains of this paper 
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Fig 2.1: The single-compartment linear model of respiratory mechanics. 

During volume cycling, qualities for E and R can be found by fitting equation 1 to 

estimations of P, V and V utilizing various straight relapse or a related system, for 

example, the electrical subtraction strategy. Instinct recommends that a more detailed 

model than the one represented by equation above ought to give a superior portrayal of 

respiratory mechanical information. There are two general ways to deal with expanding 

the multifaceted nature of a model keeping in mind the end goal to more precisely portray 

an arrangement of information. One is to build the quantity of mechanical degrees of 

opportunity, that is, add more compartments the other is to make the current components 

of the model nonlinear, for example, by including a standard term to the parameter 

representing the airway resistance. The proper methodology relies on upon the 

information in question for case; a move which includes changing stream over a wide 

range may draw out the nonlinear impacts of a stream subordinate resistance, while a 

move which includes a scope of distinctive swaying frequencies at the same tidal volume 

may create conduct of an overwhelmingly multi-compartment nature. There is impressive 

test proof indicating the need of more than one compartment for depicting respiratory 

framework mechanics at low frequencies.  

A model of two or more compartments is needed, with the compartments having 

distinctive time-constants given by the degrees of the compartmental resistances to 

elastane’s. It has additionally been seen in canines that casual termination is not decently 
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depicted by a solitary exponential capacity, as Comparison 1 would foresee, however is 

greatly decently fitted by a twofold exponential capacity.  

 

 

Fig 2.2: Time-constants of the compartmental resistances  

Here again, one is constrained to conjure a two-compartment model with a quick and a 

moderate compartment. Comparative conclusions can be drawn from the time course of 

weight (tracheal, trans pulmonary or esophageal weight) that is seen after an end-

inspiratory impediment. On the off chance that the respiratory framework acted as a 

solitary compartment direct model, the weight ought to promptly drop to its static quality 

upon stream interference and stay settled from there on. Really, stream intrusion brings 

about a sudden drop in weight took after by a further moderate decay towards the static 

quality stream intrusion amid close results in the inverse impact with a beginning fast hop 

in weight being trailed by a further moderate rise. Only a model including a quick and 

moderate compartment can represent this sort of conduct as delineated in Fig 2.2. 
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Fig 2.3: Linear two-compartment model 

Linear two-compartment models of the respiratory system can be divided into two 

physiologically distinct types. One of these types, the gas redistribution model, ascribes 

the multi-compartment nature of the respiratory system to unevenness of gas distribution 

throughout the lungs. Two varieties of gas redistribution model have been proposed. The 

first, which we will call the parallel gas redistribution model, has dominated the literature 

since its introduction [8] and consists of a parallel arrangement of alveolar compartments 

connected by separate airways to the trachea (Fig 2.3).  

2.2 Non-Linear one and two compartment systems 

Respiratory failure, the lacking trade of carbon dioxide and O2 by the lungs, is a typical 

clinical issue in basic consideration drug, and patients with respiratory failure oftentimes 

oblige support with mechanical ventilation while the hidden reason is distinguished and 

treated. The objective of mechanical ventilation is to guarantee satisfactory ventilation, 

which includes a greatness of gas trade that prompts the sought blood level of carbon 

dioxide, and sufficient O2ation, which includes a blood centralization of O2 that will 

guarantee organ capacity. Attaining to these objectives is confounded by the way that 

mechanical ventilation can cause intense lung harm, either by swelling the lungs to 
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inordinate volumes or by utilizing extreme weights to swell the lungs. The test to 

mechanical ventilation is to create the sought blood levels of carbon dioxide and O2 

without bringing on additional intense lung damage.  

With the expanding accessibility of microchip innovation, it has been conceivable to plan 

in part robotized mechanical ventilators with control calculations for giving volume or 

weight control. More refined completely robotized model reference versatile control 

calculations for mechanical ventilation have likewise been as of late created. These 

calculations oblige a reference model for distinguishing a clinically conceivable breathing 

example. In any case, the respiratory lung models that have been introduced in the 

therapeutic and experimental writing have regularly expected homogenous lung capacity. 

Case in point, in similarity to a straightforward electrical circuit, the most well-known 

model has expected that the lungs be a solitary compartment described by its agreeability 

(the degree of compartment volume to weight) and the imperviousness to wind stream 

into the compartment. While a couple of specialists have considered two compartment 

models, mirroring the way that there are two lungs (right and left), there has been 

minimal enthusiasm for more models. 

Early take a shot at the optimality of respiratory control systems utilizing basic 

homogenous lung models managed the recurrence of relaxing. Specifically, the creation 

anticipated the recurrence of breathing by utilizing a base work-rate basis. This work 

includes a static improvement issue and expects that the wind current example is an 

altered sinusoidal capacity,the created optimality criteria for the forecast of the 

respiratory wind stream design with settled inspiratory and expiratory periods of a 

breathing cycle. These outcomes were reached out in by considering a two-level 

progressive model for the control of breathing, in which the more elevated amount 

standard decides values for the general control variables of the ideal wind stream 

example got from the lower-level criteria, and the lower-level criteria focus the wind 

current example with the respiratory parameters picked by minimizing the more elevated 

amount basis.  

Although the issue for distinguishing ideal respiratory examples has been tended to in the 

writing, the models on which these respiratory control instruments have been 
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distinguished are predicated on a solitary compartment lung model with consistent 

respiratory parameters. Then again, the lungs, particularly unhealthy lungs, are 

heterogeneous, both practically and anatomically, and are involved numerous subunits, or 

compartments, that contrast in their abilities for gas trade. Sensible models ought to 

consider this heterogeneity. Also, the imperviousness to gas stream and the consistence of 

the lung units are not consistent but instead shift with lung volume. This is especially 

valid for consistence. While more complex models involve more prominent many-sided 

quality, since the models are promptly introduced in the connection of dynamical 

frameworks hypothesis, advanced scientific apparatuses can be connected to their 

examination. Compartmental lung models are depicted by a state vector; whose segments 

are the volumes of the individual compartments.  

A key question that emerges in the thought of nonlinear multi-compartment models is 

whether trial information bolsters a complex model. This inquiry can be tended to by 

considering a relationship to pharmacokinetics. The most punctual pharmacokinetic 

models were commonly one-compartment models. This mirrored the difficulties of 

testing and medication examine. These models were satisfactory for measuring 

medication attitude on quite a while scale. Case in point, straightforward one-

compartment models were sufficient in depicting the aggregate leeway or volume of 

dissemination. On the other hand, for even open-circle control of medication focuses, the 

one compartment model was insufficient. More intricate models (two- and three-

compartment models) were required that represented dispersion and additionally end 

methods. 

So also, for versatile control of mechanical ventilation, that is, more exceptional 

controller architectures than basic volume- or weight controlled ventilation, more 

expound models are required, particularly when representing nonlinear agreeability and 

resistance and lung heterogeneity. Because pharmacokinetics, the control calculation 

must be as mind boggling as the information bolsters. This is additionally valid for 

control of mechanical ventilation. Stream and weight designs in the aviation route are not 

basic waveforms, although clinicians to date have demonstrated them thusly. There is 

extensive data installed in these waveforms. It is a simple errand to rearrange this system 
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to be consistent with the granularity of the information. The opposite methodology, not 

withstanding, is unrealistic without the improvement of a general structure.  

In this thesis, we augment the work to create ideal respiratory wind current examples 

utilizing a nonlinear multi-compartment model for a lung mechanics framework. (The use 

of the word ideal all through the thesis alludes to an ideal arrangement of the analytics of 

varieties issues tended to in the thesis and not an ideal breathing example in the feeling of 

respiratory physiology) First, we amplify the straight multi-compartment lung model 

given in to address framework model nonlinearities. Secondly, we broaden the execution 

functional grew in for the inspiratory and expiratory breathing cycles to infer an ideal 

wind current example utilizing established analytics of varieties strategies. Specifically, 

the physiological elucidation of the optimality criteria includes the minimization of work 

of breathing and lung volume quickening for the inspiratory breathing stage, and the 

minimization of the versatile potential vitality and fast wind stream rate changes for the 

expiratory breathing stage. Finally, we numerically incorporate the subsequent nonlinear 

two-point limit esteem issues to focus the ideal wind current examples over the 

inspiratory and expiratory breath. 

 The notation used here is standard. Specifically, denotes the set of nx1 real 

column vectors, and  denotes the set of nxm real matrices. For x Є  we write x ≥ 

≥ 0 ( resp., x>> 0) to indicate that every component of x is non-negative. In this case, we 

say that is a positive, respectively. Likewise, A Є is positive if every entry of A is 

positive. Furthermore, + and + denote the nonnegative and positive orthans of , 

that is, if x Є , then x Є + are equivalent, respectively, to x ≥ ≥ 0 and x >> 0. 

In this area, we develop the direct multi-compartment lung model of [6] to add to a 

nonlinear model for the element conduct of a multi-compartment respiratory framework 

because of a discretionary connected inspiratory weight. Here, we accept that the 

bronchial tree has a dichotomy building design, that is in every aviation route unit 

branches into two aviation route units of the ensuing era. What's more, we accept that the 

lung consistence is a nonlinear capacity of lung volume. 
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First, for simplicity of exposition, we consider a single-compartment lung model as 

shown in Figure 2.1. In this model, the lungs are represented as a single lung unit with 

nonlinear compliance c(x) connected to a pressure source by an airway unit with 

resistance (to airflow) of R. At time t=0, a driving pressure Pin(t) is applied to the opening 

of the parent airway, where Pin(t) is generated by the respiratory muscles or a mechanical 

ventilator. This pressure is applied over the time interval 0 ≤ t ≤ Tin, which is the 

inspiratory part of the breathing cycle. At time t = Tin, the applied airway pressure is 

released and expiration takes place passively, that is the external pressure Pex(t) is only 

the atmospheric pressure during the time interval where Tex is the duration of expiration. 

The state equation for inspiration (inflation of lung) is given by 

         (2) 

 

2.3 State Equations for a Two Compartment Lung Model 

The two-compartment model is of the form shown in Eq. (2) for a single-compartment 

model where x is the state variable representing volume. The only difference between this 

model and that of a two-compartment model, is that x in the model for the latter is a state 

vector with two components, one for each compartment. Note that two sets of state 

equations are required to completely describe the two-compartment lung model: one for 

the inspiratory phase, and one for the the expiratory phase. Also note that the pressure p 

appearing in the equations is a forcing function. Solving the state equations gives 

solutions for the compartmental volumes x for a given input pressure. The solutions do 

not provide compartmental pressures. The only way to obtain pressure is via the 

compliance c. 

The following points are important: 

 The equations are non-linear by the compliance c is a function of the volume x. 
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Furthermore, the compliance functions for inspiration and expiration are not the 

same. 

 The values of R, the airway resistance, are also different for inspiration and 

expiration. 

 Because of the non-linearity, the system does not have a transfer function, and 

therefore does not have an inverse. 

The significance of the above is that, first, simulation of the model is not trivial because 

of the need to switch between two models during simulation. The inspiration model is 

used during the inspiration phase. At the end of this phase the final volume reached in the 

solution becomes the initial value for the expiration model used in the expiration phase. 

Second, the non-linearity implies that adaptive inverse dynamics control could be 

implemented by using a neural network as a controller. However, it is not the intention 

with this thesis to design a controller at this level of complexity. 

2.4 State equations derived from two compartment lung model. 

 

Fig 2.4 State equation two compartment model 

 

Refer to Fig 2.4, the state equations for the two-compartment model can be expressed as 
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(3) 

In compact from (3) can be written as 

      (4) 

where e = [1,1]T  (T means the Transpose) 

State equations for the expiration can be expressed as 

  (4) 

which is equivalent to 

                                                             (5)  

Equations (3) and (5) above could be confusing since they are written in scalar notation 

instead of vector-matrix notation. They are given here using the correct notation to be 

consistent with common practice.  

For inspiration  in summary, the equations for a two-compartment model can be shown as 

 

and for expiration 

(6) 

 

 

 

(7) 
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It is important to keep in mind that the pressure Pin(t) is not a vector quantity. To see why 

this is so, refer to Fig. 2.4. There is only one input air passage, and this is where the 

external pressure is applied, either naturally by expansion of the chest, or by means of a 

mechanical respirator. There is no way to control the pressure individually in each lung 

airway to the compartments 1 and 2, unless by surgical intervention. However, it is 

necessary to provide pressure in vector form to facilitate matrix and vector multiplication. 

That is why it is necessary to introduce the vector e = [1 1]T. But the two pressure 

components are identical. 

 

2.5 Matlab Simulations 

The above equations are state space equations with the state variables x1, x2 being the 

compartment volumes. They do not provide compartment pressures. It should be obvious 

from the notation that 

 

 

2.5.1 Simulation 

The main MATLAB program is named lung model aic v0 1.m. There are two functions 

called by the program 

1. The function which sets up the right-hand side of the system of ODEs, 

lungodeRHS.m. 

2. The function which updates the output pressure pin(t), update Controller.m. 

 

 

 

(8) 

 

 

 

(9) 
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 2.5.2 Simulation variables 

The airway resistances and compliance polynomial coefficients are in the file named 

simvariables.mat. The variable names are self-explanatory. The air resistance default 

values may be used as they are, but should it be required to change the values, the new 

values must be defined in the MATLAB workspace.  

 

 2.5.3 Simulation time and simulation time step 

The simulation uses a fixed time step of 10ms. The total simulation time is the sum of all 

time steps. The time of a breathing cycle is also fixed at 5s, 3s for inspiration and 2s for 

expiration. The desired input pattern 

 

Figure 2.5 shows an example of a valid input pattern. When setting up new 

patterns, the following should be observed: 

 The number of data points in the vector should be exactly 501. 

 The first half of the vector, i.e., the inspiration part, must range over 1 to 250. 

 The second half of the vector, i.e., the expiration part, must range over 251 to 501. 

When the program is started, it prompts the user for the number of breathing cycles to be 

simulated. This value is then used by the program to join (concatenate) the input pattern 

repeatedly until it is equal in length to the result of the simulation. This allows the input 

pattern to be plotted over the model output for comparison purposes. Note that the output 

vector is a column vector with two elements, x1 and x2. These elements are added row-

wise to obtain the total lung volume at each time step. 
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Chapter 3 

Adaptive Inverse Dynamics Control 

We know that the two-compartment nonlinear system dynamics have the structure 

R ẋm + C xm = p. where p is our system input vector, so select p = Ra + C xm. This is 

the step we need to take to cancel the system nonlinearities. We don’t know the system 

dynamics perfectly, so we estimate them and make the input behave per p = R̂a + Ĉ xm. 

where R^ is the estimate od R and C^ is the estimate of Subject to the constraints on the 

input vector and the rate of convergence of the adaptation law, we know that when the 

estimate of the system dynamics is close to the true system dynamics, the closed-loop 

system will behave as ẋm = a. The rest of the derivation shows how to choose an a and 

an inverse adaptation scheme for our unique problem. 

3.1 Derivation 

Matrix notation is assumed throughout unless otherwise noted. Dimensions will be 

commented on for clarity in context. 

𝑅 �̇�𝑚 + 𝐶𝑥𝑚 = 𝑝                                                                                                            (10) 

Consider a nonlinear dynamical robotic system described as 

 

where q is the n×1 vector of robot joint coordinates, τ is the 𝑛 × 1 vector of applied joint 

torques (or forces). 𝐷(𝑞) is the 𝑛 × 𝑛 symmetric positive definite inertia matrix, 𝐶(𝑞,�̈�)�̇� is the 

𝑛 × 1 vector of centrifugal and Coriolis torques, and 𝑔(𝑞) is the 𝑛 × 1 vector of gravitational 

torques. 

 

where 𝑌(𝑞, �̇�, �̈�) is an 𝑛 × 𝑚 matrix of known functions, known as the repressor and  �̂� =

[�̂�1, �̂�2,………. �̂�m]T 
  is an m-dimensional vector of parameters. 

                                                      (11) 

               

     (12)            
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By substituting �̈� = 𝑎, the vector term a can be defined in terms of a given linear compensator K 

as 

 

with the tracking error 𝑒 = 𝑞 − 𝑞𝑑 , where 𝑞𝑑(𝑡) is an ndimensional vector of desired joint 

trajectories 

 

where 𝐼𝑛 is an 𝑛 𝑥 𝑛 identity matrix. 

 

If the gain matrices Kv and Kp are chosen as diagonal matrices with positive diagonal elements 

then the closed-loop system is linear, decoupled, and exponentially stable. 

                                          

where �̂� , �̂� , and 𝑔 are the estimates of D, C, and g, respectively. Assume that �̂� , �̂� and 𝑔 have 

the same functional form as D, C, and g with estimated parameters, then �̂�1, �̂�2,………. �̂�m then 

                                                                      (18) 

where  �̂� = [�̂�1, �̂�2,………. �̂�m]T 
 is the vector of the estimated parameters. Substituting (17) into 

(10) gives  

                                                  (19) 

                                        (13) 

           

        (14)            

      (15)            

      (16)            

   (17)            
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Adding and subtracting �̂�𝑞 ̈ on the left-hand side of (18) and using (19), we obtain 

                                     

 the error dynamics can be written as  

                                                            (21)                              

The system can further be expressed in the state-space form as 

 

Based on (17) and (16), we choose the update law 

                                                                       

where 𝛤 = 𝛤T > 0 and P is the unique, symmetric, positive definite solution to the Lyapunov 

equation 

 

Definitions and substitutions 

𝑅 = 𝐷(𝑞), �̈� = �̇�𝑚, �̇� = 𝑥𝑚, 𝜏 = 𝑝𝑇 [
1
1
] ≔ 𝑝 

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑔(𝑞) 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 0 

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑥𝑚 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑠𝑡𝑎𝑡𝑒𝑠.  𝑥 𝑖𝑠 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑜𝑟 𝑙𝑎𝑡𝑒𝑟 𝑢𝑠𝑒. 

Note that 𝑥𝑚 is used instead of separate state vectors 𝑥𝑖𝑛, 𝑥𝑒𝑥, because the lung 

compartments can only have one physical configuration at any given time. 𝑅 is the matrix 

𝑅𝑖𝑛 or 𝑅𝑒𝑥 as appropriate for a given time, this generalized 𝑅 is used for two reasons. 

(26) 

         (22) 
 
 
 
 

     (23) 
  
 
 

          
           (24)            

                                  (25)
            

                      (20)            
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Firstly, in the analysis, the entries in 𝑅 do not change the derivation in any material way. 

Secondly, 𝑅 is effectively a function of time (it is a function of the states which are 

nctions of time). As far as parameter convergence is concerned, this chain of causality 

doesn’t matter because adaptive inverse control does not need any auxiliary 

measurements to construct a stabilizing controller. Note that  

troughout, the appropriate time dependent model underlying 𝑅 depends on whether the 

compartment volume is expanding or contracting as follows: 

𝑅

= [
(𝑅0,1

𝑖𝑛 + 𝑅1,1
𝑖𝑛 )

ℎ(�̇�𝑚1,2
)
+ (𝑅0,1

𝑒𝑥 + 𝑅1,1
𝑒𝑥)

ℎ(−�̇�𝑚1,2
)

(𝑅0,1
𝑖𝑛 )

ℎ(�̇�𝑚1,2
)
+ (𝑅0,1

𝑒𝑥 )
ℎ(−�̇�𝑚1,2

)

(𝑅0,1
𝑖𝑛 )

ℎ(�̇�𝑚1,2
)
+ (𝑅0,1

𝑒𝑥 )
ℎ(−�̇�𝑚1,2

)
(𝑅0,1

𝑖𝑛 + 𝑅1,2
𝑖𝑛 )

ℎ(�̇�𝑚1,2
)
+ (𝑅0,1

𝑒𝑥 + 𝑅1,2
𝑒𝑥)

ℎ(−�̇�𝑚1,2
)
] 

Or at a given instance in time, we can simply write as 

𝑅 = [
𝑅0,1 + 𝑅1,1 𝑅0,1

𝑅0,1 𝑅0,1 + 𝑅1,2
] 

where ℎ denotes the Heaviside (unit step) function. This function is defined to be zero for 

non-positive inputs and one for strictly positive inputs. Hence, its use here is simply to 

switch the appropriate entries of the 𝑅 matrix depending on when we are in the 

“inspiration” or “expiration” mode of operation. Note that ℎ(�̇�𝑚) = 1 implies ℎ(−�̇�𝑚) =

0, and vice versa. Hence, we never have values for 𝑅𝑖𝑛 and 𝑅𝑒𝑥 mixing in any way. They 

are mutually exclusive events. The 1,2 subscript indicates that the simulation will look at 

one lung compartment or the other to see if it is expanding or contracting. Though the 

rates may differ, the signs for the rate of change of each lung compartment will always be 

the same. Hence it is immaterial which one we use in the expression. Only the simulation 

of the system will incorporate this detailed structure. Parameter estimators used in the 

simulation obviously won’t have access to such detailed structure, hence the simplified 

notation for the generalized 𝑅 matrix. 

Proceeding as in the paper provided, we identify the governing equation for the dynamics 

of the two-compartment respiratory system to be 

             (27) 



23 
 

𝑅 �̇�𝑚 + 𝐶𝑥𝑚 = 𝑝 

Note that it is required that the lung resistance matrix 𝑅 is a positive definite (PD) matrix 

(denoted 𝑅 > 0). Physically, we can see this will always be the case for this system 

because we know that by the Gershgorin Circle Theorem that 𝑅0,1, 𝑅1,1, 𝑅1,2 > 0, hence 

𝑅0,1 + 𝑅1,1 >  𝑅0,1 and 𝑅0,1 + 𝑅1,2 >  𝑅0,1.  

𝐶 is similarly defined with switching functions as in the definition for 𝑅 above. 𝐶 is 

where we introduce the compliance function, which is not assumed known throughout 

this derivation. Note that if the compliance function is perfectly known, this information 

can be incorporated to get even faster convergence rates for the remaining parameters. 

Assuming the compliance function is unknown provides a more general adaptive inverse 

dynamics control solution to the problem under study and eliminates the need to consider 

nonlinear effects directly. We can then similarly consider the compliance functions which 

change with the states to also be functions of time, and therefore we can converge to 

estimates on these in real time as they evolve without worrying about why they evolve 

that way. The key here is that we can find a representation of the system dynamics which 

explicitly shows how the dynamics are linear in the parameters. By using the property of 

linearity in the parameters, Eq.12 can be written as 

𝑅 �̇�𝑚 + 𝐶𝑥𝑚 = 𝑌(𝑥𝑚,�̇�𝑚)𝜃                                                                                        (28) 

After some calculation, 𝑌(𝑥𝑚, �̇�𝑚) and 𝜃 are determined to be 

𝑌(𝑥𝑚, �̇�𝑚) = [
�̇�𝑚1

+ �̇�𝑚2
�̇�𝑚1

0 𝑥𝑚1
0

�̇�𝑚1
+ �̇�𝑚2

0 �̇�𝑚2
0 𝑥𝑚2

]                        (29) 

𝜃 =

[
 
 
 
 
 
𝑅0,1 + 𝑅1,1

𝑅0,1

𝑅0,1 + 𝑅1,2

𝑐1
−1

𝑐2
−1 ]

 
 
 
 
 

                           (30) 
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  That is,  𝑅 �̇�𝑚 + 𝐶𝑥𝑚 = [
𝑅0,1 + 𝑅1,1 𝑅0,1

𝑅0,1 𝑅0,1 + 𝑅1,2
] [

�̇�𝑚1

�̇�𝑚2

]+ [

𝑥𝑚1

𝑐1
𝑥𝑚2

𝑐2

] 

= [
(𝑅0,1 + 𝑅1,1)�̇�𝑚1 + (𝑅0,1)�̇�𝑚2

+
𝑥𝑚1

𝑐1

(𝑅0,1)�̇�𝑚1
+ (𝑅0,1 + 𝑅1,2)�̇�𝑚2 +

𝑥𝑚2

𝑐2

] = 𝑌(𝑥𝑚,�̇�𝑚)𝜃                   (31)  

Then pull out the parameters as defined in the vector 𝜃 and the derivation for 𝑌 is 

complete. This will be used later when we construct an adaptive inverse dynamics 

controller that is guaranteed to provide a closed loop system that is stable in the sense of 

Lyapunov. 

Now we begin to consider the controller structure. 

In order to cancel out the nonlinearities inherent in this system we can select input 

pressure as 

                              𝑝 = 𝑅 𝑎 + 𝐶 𝑥𝑚                                          (32)    

Then it is apparent by comparing the control law above with the system dynamics that 

                 𝑎 = �̇�𝑚                                                                     (33) 

We then want to enforce 𝑎 specifically to be 

𝑎 ≔ �̇�𝑚
𝑑 − 𝐾(𝑠)𝑒, 𝑒 ≔ 𝑥𝑚 − 𝑥𝑚

𝑑                                  (34) 

where 𝑥𝑚
𝑑  is the desired compartment volume profile. Note that the constraints on 𝑝 

constrain the set of compartment volumes. Namely, the compartment volumes cannot be 

driven independently.  

We then use the above definition to work through the construction of an appropriate 

controller form 

�̇�𝑚 ≠ �̇�𝑚
𝑑  (these equations are in the Laplace domian) 

𝑎 = �̇�𝑚 = �̇�𝑚
𝑑 − 𝐾(𝑠)𝑒 ⟹ �̇�𝑚 − �̇�𝑚

𝑑 + 𝐾(𝑠)𝑒 = 0 ⟹ 𝑠𝐼2𝑒+ 𝐾(𝑠)𝑒 = 0  (35) 
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It is common practice in the field of control to mix time and frequency domain 

representations. The meaning should be clear from context that we are using frequency 

domain terms such as 𝑠 and 𝐾(𝑠) to act on (filter) time domain variables such as 𝑒. This 

may not seem intuitive to the reader, but if we construct a setup in Simulink which uses 

blocks to define frequency domain filters like 𝐾(𝑠) with the time domain variable 𝑒 as an 

input, the software will correctly interpret this so as to provide a filtered time domain 

signal at the output. This notation will continue to be used throughout this derivation due 

to its convenience and ease of implementation. 

Now select 

𝐾(𝑠) = 𝐾𝑃 ≔ 𝑘𝑃𝐼2        (36) 

where 𝐼2 is a 2 × 2 identity matrix and 𝑘𝑃 > 0. 

So finally we have the control law 

𝑝 = 𝑅(�̇�𝑚
𝑑 − 𝐾𝑃𝑒) + 𝐶 𝑥𝑚       (37) 

The above controller shown in Eq. 22 is only valid if we know the values for 𝑅 and 𝐶 

perfectly at all points in time. Namely, the above controller is technically just an inverse 

controller. To construct the adaptive inverse dynamics controller, we realize that there are 

parameters in 𝑅 and 𝐶 that we do not know, hence we need to estimate them. 

For this reason, we consider the “hat” indication to mean “the estimate of”, which gives 

us an estimate of the value of each parameter as the system evolves and the parameter 

updates are performed recursively over time according to an update law which we (the 

designers) must define. Typically, we want to design a controller with a control structure 

which is Lyapunov stable.  

Therefore, the adaptive inverse dynamics controller will actually be 

𝑝 = �̂� 𝑎 + �̂� 𝑥𝑚        (38) 
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Let “tilde” mean “the difference between the actual value and the estimated one”. That is, 

𝑅 − �̂� ≔ �̃� and 𝐶 − �̂� = �̃�  . This estimation error is, since we don’t know 𝑅 and C 

precisely 

�̃� �̇�𝑚 + �̃� 𝑥𝑚 = 𝑌(𝑥𝑚, �̇�𝑚)�̃� = �̂�(�̇� + 𝐾𝑃𝑒)     (39) 

Note that �̇̃� = �̇�. Since the parameter vector is constant. 

Now refer to Eq.13, we have 

𝑌(𝑥𝑚, �̇�𝑚)�̃� = �̂�(�̇� + 𝐾𝑃𝑒)       (40) 

⟹ (�̇� + 𝐾𝑃𝑒) = �̂�−1 𝑌 �̃� ∶=  Φ�̃� 

Now, we can define a generalized state 𝑥  

𝑥 = [
𝑒
�̇�
]         (41) 

And the associated dynamics system can be written as (‘0’ is a 2x2 0 matrix) 

�̇� = 𝐴𝑥 + 𝐵Φ�̃�, 𝐴 ≔ [
0 𝐼2

−𝐾𝑃 0
] , 𝐵 = [

0
𝐼2

]     (42) 

Based on the Lyapunov theory of stability, we can use this system to define a Lyapunov 

function which satisfies the Lyapunov stability properties for a proper choice of the 

parameter update law. In particular 

�̇̃� = −Γ−1ΦT𝐵𝑇𝑃𝑥                                    (43) 

Hence in the implementation, we will define the parameter update law to be �̇� = �̇̃�. 𝑃 is 

the unique PD solution to the Lyapunov equation 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄, where Q is a 4 × 4 

PD matrix. 

The matrix Γ is called the adaptation gain matrix. This matrix must be selected to be 

positive definite. A simple selection to ensure this matrix is positive definite would be 

Γ = diag(γ1, … , 𝛾5), γ1, … , 𝛾5 > 0. The adaptation gains are selected to achieve rapid 

but stable convergence. These essentially allow for tuning of the bandwidth of the 
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parameter update. In practical applications, it is best to keep these gains small to reduce 

unnecessary sensitivity to noise. During simulation, these gains will be adjusted to 

determine values that work well for the system under study. Without a specified cost 

function, we must appeal to a trial and error method to find a near-optimal selection of 

the adaptation gains. We can streamline this task by removing several degrees of freedom 

in the gain matrix. We select γ−1 = γ1 = ⋯ = 𝛾5 so that Γ = γ−1I5 and Γ−1 = γ I5 

We can pick up a 𝑃 matrix easily using Matlab for given numeric entries for 𝐾𝑃 and 𝑄, 

selected for performance. For example 

 

So to make the update law we need to choose as explicit as possible, let’s look one more 

time at the equation that is 

�̇̃� = −Γ−1ΦT𝐵𝑇𝑃𝑥      (44) 

We know this means 

�̇� = −Γ−1ΦT𝐵𝑇𝑃𝑥 = −Γ−1𝑌𝑇(�̂�−1)
𝑇
𝐵𝑇𝑃𝑥  (45) 

And by inserting the structure that we know, this update law can be written explicitly as 
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�̇�

=
−γ

(�̂�0,1 + �̂�1,1)(�̂�0,1 + �̂�1,2) − �̂�0,1
2

[
 
 
 
 
 
�̇�𝑚1

+ �̇�𝑚2
�̇�𝑚1

+ �̇�𝑚2

�̇�𝑚1
0

0 �̇�𝑚2

𝑥𝑚1
0

0 𝑥𝑚2 ]
 
 
 
 
 

[
�̂�0,1 + �̂�1,2 −�̂�0,1

−�̂�0,1 �̂�0,1 + �̂�1,1

] [0  𝐼2]𝑃𝑥 

=
−γ

�̂�0,1�̂�1,1 + �̂�0,1�̂�1,2 + �̂�1,1�̂�1,2

[
 
 
 
 
 
�̇�𝑚1

+ �̇�𝑚2
�̇�𝑚1

+ �̇�𝑚2

�̇�𝑚1
0

0 �̇�𝑚2

𝑥𝑚1
0

0 𝑥𝑚2 ]
 
 
 
 
 

[
�̂�0,1 + �̂�1,2 −�̂�0,1

−�̂�0,1 �̂�0,1 + �̂�1,1

] [0  𝐼2]𝑃𝑥  

=
−γ

�̂�0,1�̂�1,1+�̂�0,1�̂�1,2+�̂�1,1�̂�1,2

[
 
 
 
 
 
 
(�̂�1,2)(�̇�𝑚1

+ �̇�𝑚2
) (�̂�1,1)(�̇�𝑚1

+ �̇�𝑚2
)

(�̂�0,1 + �̂�1,2)�̇�𝑚1
(−�̂�0,1)�̇�𝑚1

(−�̂�0,1)�̇�𝑚2
(�̂�0,1 + �̂�1,1)�̇�𝑚2

(�̂�0,1 + �̂�1,2)𝑥𝑚1
(−�̂�0,1)𝑥𝑚1

(−�̂�0,1)𝑥𝑚2
(�̂�0,1 + �̂�1,1)𝑥𝑚2 ]

 
 
 
 
 
 

[0  𝐼2]𝑃𝑥               

(46) 

In summary, we have the system dynamics based on parameter estimates: 

𝑝 = �̂� 𝑎 + �̂� 𝑥𝑚         (47) 

We have defined a control structure for 𝑎 as 

𝑎 = �̇�𝑚 = �̇�𝑚
𝑑 − 𝐾𝑃𝑒                  (48) 

And the parameter update law 

�̇� = −Γ−1ΦT𝐵𝑇𝑃𝑥         (49) 

These in combination completely define the adaptive inverse dynamics control for the 

two-compartment respiratory system.  
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Chapter 4 

Simulation and Results 

 

 It is not necessary to use this model, but it provides an easy way to examine model 

behavior for various input pressure profiles and changes in parameter values (i.e., airflow 

resistance and compliance). This model can be either used for inspiration or expiration by 

merely changing the parameters and integrator initial values. Note that the above 

equations are state space equations with the state variables x being volume. They DO 

NOT provide compartment pressures. The only way to obtain pressure is via the non-

linear compliance functions. 
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4.1 Simulink model of the two-compartment lung model 
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The error is in terms of volume. The input pressure is the output of the controller. The 

input to the controller is the desired volume as well as the current volume. So we are not 

controlling the input pressure directly - the controller figures out what input pressure it 

needs to use to make the output volume match the desired output volume as closely as 

possible. 

Note that the controller is limited to making input pressures of the form p[1 1]T. This 

means that if the desired volume for compartment 1 is different than the desired volume 

for compartment 2, or if the R matrix makes it such that the volume in compartment 1 

will be greater or lesser than the volume for compartment 2 given equal input pressure, 

then the controller must decide as to how it will optimally match the actual output 

volume to the desired output volume 
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4.2 Simulink SCOPE Graphs: 
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4.3 Graphs  

Based on the desired volume pressures and the two-compartment model equation, the 

adaptive inversed dynamics control scheme is used to control the pressure parameters. 

The values of the inspiratory and expiratory lung resistance constants and compliances 

for the two-compartment lung model were taken from [9] and they are: 0,1 in R = 9 cm 

H2O/l/s, 1,1 in R = 1,2 in R = 16 cm H2O/l/s, 0,1 ex R = 18 cm H2O/l/s, 1,1 ex R = 1,2 ex 

R = 32 cm H2O/l/s. The expiratory resistance is assumed two times higher than the 

inspiratory resistance. The lung compliance is chosen to be 0.1 l/cm H2O. The inspiration 

duration time Tin = 2 s and the expiration time Tex = 3 s. The desired air pressures were 

taken. During the adaptive inverse dynamics control process, the total number of 

parameters to be estimated is five and Fig. 1 shows the three estimated parameters P2, P4 

and P6 over time during one breathing cycle. Figure 2 shows the tracking errors; for 

instance, e2 is the difference between the desired and actual pressures entering the 2nd 

compartment. Overall, the tracking errors are reasonably small.  
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Chapter 5 

Conclusions 

We have applied the adaptive inverse dynamics control method to a two-compartment 

respiratory system. The implementation of the control scheme consists of a control law 

and an adaptation law. The control law has the structure of the two–compartment inverse 

dynamics servo but uses estimates of the dynamics parameters in the computation of 

pressure applied to the lungs. The adaptation law uses the tracking error to compute the 

parameter estimates for the control law, stops updating a given parameter when it reaches 

its known bounds, and resumes updating as soon as the corresponding derivative changes 

sign. The advantage of using the inverse dynamics control method is that it formulates a 

globally convergent adaptive controller which does not require approximations such as 

local linearization, time-invariant, or decoupled dynamics to guarantee the tracking 

convergence. Simulations show that the tracking errors are acceptably small. The future 

work includes the robustness study of the control method to the multi-compartment 

model. 
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Adaptive Inverse Control Matlab Code 

%%%%    (generate .m file or copy and paste into MATLAB workspace)    %%%% 

clear all 

Rin01 = 1;Rin11 = .2;Rin12 = .4;Rex01 = 1;Rex11 = .2;Rex12 = .4;                                                     

% define Rin, Rex (these can be changed by any user) 

Rin = [Rin01+Rin11,Rin01;Rin01,Rin01+Rin12];Rex = 

[Rex01+Rex11,Rex01;Rex01,Rex01+Rex12];iRin=inv(Rin);iRex=inv(Rex); % put terms 

in matrix form (do not change) 

cin1 = @(xm1) 1/1;cin2 = @(xm2) 1/1;cex1 = @(xm1) 1/1;cex2 = @(xm2) 1/1;                                             

% define Cin, Cex (these are called function handles. user may change the 1/1 term to 

any function of the states) 

Cin =@(xm1,xm2) [cin1(xm1),0;0,cin2(xm2)];Cex =@(xm1,xm2) 

[cex1(xm1),0;0,cex2(xm2)];                                 % generate a few more function handles 

for future use (do not change) 

t_end = 100; t_step = .05;                                                                                            % 

define fixed simulation step and duration (user may change) 

t = [0:t_step:t_end]; siml = length(t);                                                                              % 

generate sim times (do not change) 

Q = eye(4);                                                                                                          % choose 

any positive definite 4x4 square matrix Q (user may change) 

Kp = 3*diag([0.9,1.1]);                                                                                              % set 

gain matrix (user may change) 

P = lyap([zeros(2,2), eye(2); -Kp, zeros(2,2)],-Q)*10 -̂15;                                                           

% calculate P (do not change) 
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gam = 100*eye(5);                                                                                                    % set 

adaptation gain (user may change) 

B = [zeros(2,2);eye(2)];                                                                                             % 

define B (do not change) 

Y =@(xm1,xm2,xm1_dot,xm2_dot) [(xm1_dot+xm2_dot), (xm1_dot), 0, xm1, 

0;(xm1_dot+xm2_dot), 0, (xm2_dot), 0, (xm2)];   % define Y as function handle (do not 

change) 

base_fun = (t(1:80).^2).*(heaviside(t(1:80))-heaviside(t(1:80)-1)) + (2- ((t(1:80)-

2).^2)).*(heaviside(t(1:80)-1)... % define a base function (repeating pattern) representing 

the desired system output (user may change. you may also override on line 20 to use any 

nonnegative signal) 

    -heaviside(t(1:80)-2)) + (4-t(1:80)).*(heaviside(t(1:80)-2)-heaviside(t(1:80)-4));                               

% 

for init_fun=1:siml                                                                                                  % repeat 

this pattern for the duration of the simulation (do not change) 

fun(init_fun) = base_fun(mod(init_fun,length(base_fun))+1);                                                          

% 

end                                                                                                                  %  

xm1d = fun;xm2d=fun;                                                                                                 % 

input tracking waveform (desired compartment volumes. user may change to any 

nonnegative function of time.) 

lb = 0.05; ub = 2;                                                                                                   % define 

lower and upper bounds for parameters (user may change, as long as lb = 'lower bound' > 

0) 

xm1 = 0; xm2 = xm1; theta([1:5],1)=[1,.1,.2,1,1]';theta_dot([1:5],1) = 

zeros([5,1]);theta([1:5],2)=theta([1:5],1);   % set ICs 

theta_dot([1:5],2)=theta_dot([1:5],1); xm1_dot(1) = 0; xm2_dot(1) = xm1_dot; pl=0; 

xm1l(1)=0;xm2l(1)=xm1l(1);        % 

e0([1:2],1) = [0;0];  e0_dot([1:2],1) = [0;0]; x_vec(1,[1:2])=[0,0];                                                 

% 

Y_filt = zeros([2,5]);                                                                                               % 
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for ti = 2:siml                                                                                                      % begin 

simulation (do not edit anything below this line) 

if ((xm1_dot+xm2_dot)>0)                                                                                             % 

detect inspiration or expiration mode based on expansion or contraction of lungs and 

switch to appropriate coefficients (this allows us to use any input signal without 

unnecessary constraints) 

R=Rin;iR=iRin; C = Cin(xm1,xm2);                                                                                     

% 

else                                                                                                                 % 

R=Rex;iR=iRex; C = Cex(xm1,xm2);                                                                                     

% 

end                                                                                                                  % 

R_hat = [(theta(1,ti-1)+theta(2,ti-1)),theta(1,ti-1);theta(1,ti-1),(theta(1,ti-1)+theta(3,ti-

1))];                   % generate model estimates based on most recent parameter estimates 

C_hat = diag([theta([4:5],ti-1)]);                                                                                   % 

lung_sys = c2d(ss(-R\C, iR, eye(2), zeros([2,2])),t_step);                                                           

% define lung system at each time step 

derivative_filter = c2d((tf([1 .1],[1 10])),t_step);                                                                 

% use stable derivative and integral implementations (these can only ever be 

approximated in software) 

integral_filter = c2d((tf([1 10],[1 .1])),t_step);                                                                   % 

est_lung_sys = c2d(ss(-R_hat\C_hat, inv(R_hat), eye(2), zeros([2,2])),t_step);                                       

% define estimated lung system based on model estimates at each time step 

p = -0.5*sum(R\C_hat*[xm1;xm2] + R\R_hat*[xm1;xm2]-

R\R_hat*[xm1d(ti);xm2d(ti)]);                                     % input pressure must be of the 

form p*[1 1]'. this condition is forced for all combinations of user defined lung volumes. 

x_vec(ti,[1:2]) = ((lung_sys.c)*((lung_sys.a)*[xm1;xm2] + (lung_sys.b)*[1;1]*p))'; xm1n 

= x_vec(ti,1); xm2n = x_vec(ti,2);        % compute actual system output 

est_x = (est_lung_sys.c)*((est_lung_sys.a)*[xm1;xm2] + (est_lung_sys.b)*[1;1]*p);                                                 

% compute estimated system output 
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xm1_dot(ti) = [1 0]*((lung_sys.a)*[xm1;xm2] + (lung_sys.b)*[1;1]*p);                                                              

% we could use the derivative filter here but stability is improved by using the actual 

derivative from the state equation   

xm2_dot(ti) = [0 1]*((est_lung_sys.a)*[xm1;xm2] + (est_lung_sys.b)*[1;1]*p);                                                      

% 

e0([1:2],ti) = [(xm1-est_x(1));(xm2-est_x(2))];                                                                                                                                           

% compute error  

e0_dot([1:2],ti) = -derivative_filter.den{1,1}(2)*e0_dot([1:2],ti-

1)+derivative_filter.num{1,1}(1)*e0([1:2],ti-

1)+derivative_filter.num{1,1}(2)*e0([1:2],ti);                             % approximate the time 

rate of change of error 

Y_filt = -

integral_filter.den{1,1}(2).*Y_filt+integral_filter.num{1,1}(1).*(Y(xm1,xm2,xm1_dot(ti

-1),xm2_dot(ti-

1)))+integral_filter.num{1,1}(2).*(Y(xm1n,xm2n,xm1_dot(ti),xm2_dot(ti)));  % use a 

Dynamics Parametric Equation (DPM) representation of Y for simulation stability 

theta_dot([1:5],ti) = -

(gam\Y_filt'*(inv(R_hat))'*B'*P*[e0(1,ti);e0(2,ti);e0_dot(1,ti);e0_dot(2,ti)]);                            

% implement the estimator per the algorithm provided 

theta(:,ti) = min(max(theta(:,ti-1) + theta_dot(:,ti),lb*ones([5,1])),ub*ones([5,1]));                                            

% update the parameter vector using 1D projection based on known upper and lower 

bounds 

xm1=xm1n;xm2=xm2n;                                                                                                                

% xm1n = 'xm1_new', xm1 and xm2 are used in some parts of the code for convenience, 

referring to the previous time step's state output) 

p_record(ti)=p;                                                                                                                   % 

record the control input signal for plotting purposes 

end                                                                                                                               % end 

simulation  

figure(1) 

plot(t,theta(1,:)) 

title('Parameter Estimate R_0_,_1') 
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ylabel('R_0_,_1 Estimate') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(2) 

plot(t,theta(2,:)) 

title('Parameter Estimate R_1_,_1') 

ylabel('R_1_,_1 Estimate') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(3) 

plot(t,theta(3,:)) 

title('Parameter Estimate R_1_,_2') 

ylabel('R_1_,_2 Estimate') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(4) 

plot(t,theta(4,:)) 

title('Parameter Estimate 1/c_1') 

ylabel('1/c_1 Estimate') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(5) 

plot(t,theta(5,:)) 

title('Parameter Estimate 1/c_2') 

ylabel('1/c_2 Estimate') 
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xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(6) 

plot(t(1:240),x_vec(1:240,1)) 

title('Lung Compartment 1 Volume (12 Seconds)') 

ylabel('x_1') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(7) 

plot(t,x_vec(:,1)) 

title('Lung Compartment 1 Volume (100 Seconds)') 

ylabel('x_1') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(8) 

plot(t(1:240),x_vec(1:240,2)) 

title('Lung Compartment 2 Volume (12 Seconds)') 

ylabel('x_2') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(9) 

plot(t,x_vec(:,2)) 

title('Lung Compartment 2 Volume (100 Seconds)') 

ylabel('x_2') 

xlabel('Time (Sec)') 
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set(gcf,'color','white') 

figure(10) 

plot(t(1:240),xm1d(1:240)) 

title('Desired Lung Compartment 1 Volume (12 Seconds)') 

ylabel('x_1^d') 

xlabel('Time (Sec)') 

ylim([-.5,2.5]) 

set(gcf,'color','white') 

figure(11) 

plot(t,xm1d) 

title('Desired Lung Compartment 1 Volume (100 Seconds)') 

ylabel('x_1^d') 

xlabel('Time (Sec)') 

ylim([-.5,2.5]) 

set(gcf,'color','white') 

figure(12) 

plot(t(1:240),xm2d(1:240)) 

title('Desired Lung Compartment 2 Volume (12 Seconds)') 

ylabel('x_2^d') 

xlabel('Time (Sec)') 

ylim([-.5,2.5]) 

set(gcf,'color','white') 

figure(13) 

plot(t,xm2d) 

title('Desired Lung Compartment 2 Volume (100 Seconds)') 
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ylabel('x_1^d') 

xlabel('Time (Sec)') 

ylim([-.5,2.5]) 

set(gcf,'color','white') 

figure(14) 

plot(t(1:240),0.5*p_record(1:240)) 

title('Input Pressure (12 Seconds)') 

ylabel('Normalized Input Pressure p') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(15) 

plot(t,0.5*p_record) 

title('Input Pressure (100 Seconds)') 

ylabel('Normalized Input Pressure p') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(16) 

plot(t(1:240),e0(1,[1:240])) 

title('Lung Compartment 1 Error (12 Seconds)') 

ylabel('e_1') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(17) 

plot(t,e0(1,:)) 

title('Lung Compartment 1 Error (100 Seconds)') 
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ylabel('e_1') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(18) 

plot(t(1:240),e0(2,[1:240])) 

title('Lung Compartment 2 Error (12 Seconds)') 

ylabel('e_2') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 

figure(19) 

plot(t,e0(2,:)) 

title('Lung Compartment 2 Error (100 Seconds)') 

ylabel('e_2') 

xlabel('Time (Sec)') 

set(gcf,'color','white') 


