
 

 

 

 

 

 

 

 

 

Copyright 

by 

Corey Michael Staller 

2018 

 

 

  



The Dissertation Committee for Corey Michael Staller Certifies that this is the 

approved version of the following Dissertation: 

 

 Electron Transport in Doped Semiconductor Nanocrystals 

 

 

 

 

Committee: 

 

 

 

 

 

Delia Milliron, Supervisor 

 

 

 

 

Deji Akinwande 

 

 

 

 

Brian Korgel 

 

 

 

 

C. Buddie Mullins 

 

 

 

 

 

  



Electron Transport in Doped Semiconductor Nanocrystals 

 

by 

Corey Michael Staller 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

December 2018 

 

 

 



 iv 

Acknowledgements 

The completion of a PhD is achieved through long hours, hard work, and being 

headstrong enough to keep pushing through a tidal wave of failure. This is sometimes 

mistakenly given as a credit to the individual who is newly minted as “doctor.” It is 

instead equally an achievement of the people with whom the individual has interacted. 

They might be a labmate that was accepting of the individual’s strong personality, a 

personal confidant that provided a hug on a bad day, or a one the many forms of mentors 

that taught the individual tools to be successful. Whatever I have achieved with the 

submission of this dissertation is thanks to the incredible people I have met along the 

way. 

I came to The University of Texas at Austin with the sole intent of working under 

Professor Delia Milliron. As such, I would like to start with a gracious thank you to 

Delia. I had the pleasure of interacting with Delia as her student, her teaching assistant, 

and her graduate student. I can unequivocally state that Delia embodied the epitome of an 

ideal professor in all aspects (although writing ten homework assignments as your 

teaching assistant sucks, I won’t hold that against you). Thank you for welcoming me 

early in my career and taking my omnipresent group meeting commentary seriously as I 

developed into a scientist. The trust you have in me to know my field and to solve 

difficult problems is truly humbling. I would be a shadow of the scientist I am today 

without the four years of tutelage from you and, yet, know there is still so much you 

could teach me. 

To the post-doctoral researchers I have worked with directly, Ajay, Byung Hyo, 

Gabriel, Omid, and Yang, thank you for teaching me and being a pleasure to interact 

with. Ajay, thank you for taking time to teach me your CZTS synthesis and for teaching 

me that sometimes it is OK to take minimal but sufficient notes, even if it frustrates 

others. Also, I’m sorry about that one time I broke your thermocouple finger in my first 

year. Byung Hyo, thank you for always being available to help me in lab and for teaching 

me your sol-gel infill procedure. Gabriel, thank you for being humble, witty, and 



 v 

personable. You make everyone around you better by providing an example of an 

amazing person and scientist. Omid, thank you for teaching me ALD, helping me expand 

my knowledge of depletion, and having interesting scientific discussion with me. Yang, 

thank you for constantly smiling and brightening the mood. It made the early years of 

graduate school tolerable. 

To the past graduate students I have interacted with, thank you for helpful 

feedback, interesting talks, and making tough times a little better. Amy, from one 

Midwesterner to another, thank you for making the group and Austin feel like home. You 

were always willing to inconvenience yourself to help others, reassured me to pay no 

mind to whatever was frustrating me, and were a good friend. Evan, thank you for your 

constant guidance, acting as a second adviser and lab manager, and taking time to help 

me when you did not really want to or need to. I will never forget you telling me in my 

first year to never treat a technique or phenomenon as a black box. Ankit, thank you for 

endless amounts of talking about science and not getting frustrated when your long 

deposition was met with “wait… what?” You are a great coworker, coauthor, and friend. 

Clay, thank you for being the nicest person on planet earth and a humble, thorough, and 

incredibly intelligent scientist. I have never been more lost than when you brought up 

high level quantum physics, like, every group meeting. Rob, thank you for giving me 

critical feedback despite your hatred of transport, caring strongly about helping labmates’ 

science, constantly trying to make me be social, and reassurances of the normalcy of 

imposter syndrome. Our too long and often way too late League of Legends sessions 

were a blast. Gary, Gary, Gary, what is there to say about ole Gare-bear? Gary, thank you 

for teaching me how to discuss science fluently and efficiently, constantly pushing me to 

explain my argument better, and endless philosophic discussions about any topic 

imaginable. I can, with full honesty, say you must be the most intelligent person I have 

ever met, neurotic as hell, but intelligent. You are going to do something incredible with 

your time on Earth and I look forward to watching it happen.  

To the current graduate students I have interacted with, thank you for good times 

and good lessons. Sungyeon, thank you for having endless grit, silently managing the lab, 



 vi 

doing anything for anybody at any time, and still managing to be a caring father and 

husband. You are the most underappreciated member of our lab. Camila, thank you for 

growing to appreciate my sometimes brash personality, exchanging feedback with me, 

sharing those lab management burdens with Sungyeon, and doing high level science 

while grinding through grant proposals. Shin, thank you for being the most over the top 

person in the Milliron lab. You seamlessly mix a high level understanding of synthesis 

and materials chemistry with crazy conspiracies and aspirations(?) of industrial military 

complex riches. You’re a national treasure. Never change. Lauren, thank you for your 

strong emphasis on physical and mental health in group meeting and assistance in making 

the Milliron lab a safe place to work. Young Stephen, I wanted so badly to omit you ala 

Gary, but I could not bring myself to do such a thing. As such: Young Stephen, thank you 

for being a good colleague and friend. You are a critical thinker, a problem solver, and 

reliable person. You have earned every right to relinquish the moniker “Young Stephen” 

as you’re everything a PI could want in a senior member. Therefore: Stephen, I hope that 

you never forget that you are a true LSPR expert, high quality scientist, and a, in your 

words, “gosh damn” phenomenal person. Manny, thank you for adventuring into a new 

project with me (and not holding it against me for having to pull out of the project), 

watching my dogs at a moment’s notice, and being a chill goofball. I hope you develop 

your confidence and learn to venture self-assuredly into topics that make you 

uncomfortable as you mature as a scientist. You are an expert of surface chemistry and 

assembling NCs. You have earned the right to be confident in your opinions. Dan and 

Natalie, thank you for being amazing friends. Thank you for the many drinks and 

increasingly pessimistic outlooks on science as the drinks piled up until we forgot we 

were graduate students and became just drunk folks at a bar (or, more often, Brennan’s 

house). You are truly awesome and caring people. Brennan, thank you for being my best 

friend in graduate school. You project nothing but positive feelings, are interested in 

nothing more than making those you care about happy, and never waver in being there if 

I need you. I hope life finds a way to give you everything you deserve. Thank you for 

good times, good workouts, good beers, and good company.  



 vii 

To my collaborators, thank you for long talks and reliable results. Ben, thank you 

for always questioning my analysis to the benefit of us both, constructively accepting 

when we have disagreeing theories, and bending over backwards to bring us to a 

successful paper. Zack, thank you for prioritizing running my samples on the PPMS, 

always being up for a good discussion, and leaving an open invitation to future 

collaborations. My collaboration with Ben and Zack was the type of collaboration that 

makes other scientists jealous and moves science forward leaps and bounds. Katelyn, 

thank you for being understanding when things do not go forward smoothly and being on 

the ball with feedback. Elijah, thank you for your endless interest in discussing science 

and willingness to freely engage in collaboration. 

Before mentioning the folks I knew prior to UT, an interjection is necessary. If I 

have accomplished anything during my time at UT, it is meeting, interacting with, and 

working with some of the most amazing and brilliant people on this planet. I can walk 

away assured that, no matter what happens to my science, I will remember each of you 

and hold our interaction as an achievement. 

I would now like to thank my parents, Will and Stacey, and my brother, Derek. 

Thank you for unlimited amounts of support throughout my life and science career. You 

were given a giant task in consistently trying to teach me the importance of education and 

getting me to take school seriously. You supported me when I was devastated that every 

university rejected my application and Mizzou was the only school that accepted me. You 

continued to encourage me when I had academic success at Mizzou. You supported me 

when I decided I needed to attend graduate school because I needed to prove something 

to myself, even though it was a financially questionable decision. And finally, you were 

very understanding when graduate school meant I could not visit you often because I had 

to study for qualifiers or was too stressed out to leave work or needed to finish a paper 

before the New Year. I hope you can look back and say the, assuredly stressful, times of 

watching me do everything in my power to make bad choices were worth the person I 

have become. I am eternally grateful. 



 viii 

Finally, thank you to Camille. If I dared to aspire to properly thank you, I would 

need to write another dissertation titled “Why I am thankful for Camille” that would most 

assuredly rival this one in length. Thank you for taking a risk in engaging in a 

relationship with some guy that lived 3 hours away because we had undeniable 

chemistry. Thank you for supporting me for the past 6.5+ years. You were supportive 

when I didn’t respond to your texts because I was busy wrecking myself at library from 

9AM to 2AM for weeks at a time and when I could not see you for a month at a time 

because I was too busy to take a weekend off. Thank you for moving 900 miles to Austin, 

Texas with me to face adversity, nonstop stress, and endlessly missing your family. You 

have personally sacrificed more than anybody could reasonably ask of another person and 

never held it against me or my pursuit of science. I am nothing but proud to be with you. 

You are an amazingly caring, stunningly beautiful, supremely intelligent, and 

astoundingly thoughtful person. I hope I have made you feel proud, fulfilled, loved, and, 

most importantly, happy over the years and can continue to do so ad infinitum.  



 ix 

Abstract 

 

Electron Transport in Doped Semiconductor Nanocrystals 

 

Corey Michael Staller, PhD 

The University of Texas at Austin, 2018 

 

Supervisor:  Delia Milliron 

 

Electron transport through semiconductor nanocrystal (NC) systems is almost 

entirely understood by analogs to bulk science. The physics governing electron transport 

within NCs is entirely analogous to bulk semiconductors with extreme spatial constraints. 

In contrast, the physics of electrons conducting between NCs is understood through the 

physics of amorphous materials, granular metals, or bulk semiconductors, depending on 

the structure of the NC ensemble. Herein is an investigation of how dopant distribution 

engineering can be utilized to modulate near surface depletion in NC films. The 

dependence of NC film conductivity on dopant distribution is eliminated by surface 

passivation. A code to fit the optical absorption of colloidal NCs is developed to account 

for surface scattering, depletion, size heterogeneity, and dopant heterogeneity. This code 

is used to define the conduction within an individual NC. The intra-NC conduction is 

used as a metric to describe and define the phase diagram of NC film electron transport. 

Using the criteria developed here, we make metallic films in a controlled manner. 

This work illustrates an overview of bulk electron transport and an introduction of 

NC film electron transport in Chapter 1. These descriptions will then be used to 

investigate the powerful capability to engineer intra-NC dopant distribution to manipulate 

NC film conductivity in Chapter 2. The intra-NC conductance is then investigated using a 



 x 

novel code to fit the optical absorption of NCs in Chapter 3. With a deep understanding 

of intra-NC transport, the electron transport phase diagram is constructed in Chapter 4. 
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Chapter 1:  Introduction 

 

 

Much of the underlying physics that describes NC electron transport was 

previously established in or draws very heavily upon solid state physics models for 

crystalline and amorphous materials. A useful starting point for envisioning a NC system 

is such that the intra-NC dynamics are governed by crystalline transport equations under 

extreme geometric constrains while the inter-NC dynamics are governed by amorphous 

transport concepts and equations. For this reason, it is important to review conduction 

through bulk materials prior to examination of electron transport in nanocrystal (NC) 

systems. Rather than a complete review of crystalline transport, in the interest of brevity, 

this section will only discuss bulk metallic transport due to its relevance to the work 

presented. 
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CONDUCTION IN BULK MATERIALS 

Metallic Conduction 

 Metallic conduction throughout this work will be treated under the Drude model 

and the free electron approximation. This framework assumes conduction electrons act as 

a gas in which electrons are non-interacting, undergo diffuse (non-directional) scattering 

events instantaneously, and move ballistically between scattering events. The atoms, in 

contrast, are assumed to be stationary. The Drude conductivity, σ, is described by (1.1).
1
  

𝜎 =
𝑛𝑒𝑞

2𝜏

𝑚∗
 (1.1) 

where 𝑛𝑒 is the electron concentration, 𝑞 is the electron charge, 𝜏 is the relaxation time 

(time between scattering events), and 𝑚∗ is the effective electron mass. Examination of 

(1.1) shows two measureable properties (𝜎 & 𝑛), one universal constant (𝑞), and two 

immeasurable properties (𝜏 & 𝑚∗). The effective electron mass is defined through 

quantum mechanics to simply define the curvature of the conduction band and can thus 

be derived theoretically, leaving only the relaxation time as an unknown. Due to 

inadequacies of the Drude model to account for various scattering sources, the relaxation 

time has been defined in an ad hoc manner to explain various conduction phenomena. 

The relaxation time is defined by (1.2). 

𝜏 =
𝑙

𝑣𝐹
   (1.2) 

where 𝑙 is the mean free path of an electron and 𝑣𝐹 is the Fermi velocity defined by (1.3). 

𝑣𝐹 =
ℏ

𝑚∗
(3𝜋2 𝑛𝑒 )

1

3 (1.3) 

where ℏ is Planck’s constant. The Fermi velocity is the effective velocity affected on an 

electron in a material based on its momentum. Perhaps more intuitively, the mean free 

path is the distance an electron travels between scattering events in the material. There 

are many scattering sources in a given material, such as grain boundaries, impurities 

(ionized and neutral), electron-electron, electron-phonon, surfaces, etc. While it may 

seem overwhelming to sum each of these scattering sources to get a mean spacing, the 

empirical Mathhiessen’s rule provides a simple calculation (1.4). 
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1

𝑙
= ∑

1

𝑙𝑖
  (1.4) 

where 𝑙𝑖 is the mean free path accounting for only scattering source 𝑖. Matthiessen’s rule 

states that the effective mean free path and, thus, the conductivity is dominated by the 

scattering source with the shortest mean free path.  

The two defining characteristics of metallic electron transport are a finite 

resistivity at 0K and a positive trend of resistivity with temperature as shown in Figure 

1.1 for an Ag thin film.
1,2

 The finite resistivity at 0K comes as a result of metals 

exhibiting a non-thermally activated electron concentration. The positive slope of 

resistivity with temperature is due to electron-phonon scattering as the main scattering 

source for metallic materials at a constant electron concentration. Additionally, Figure 1.1 

shows the effect of surface scattering across a range of film thicknesses, illustrating the 

concept of Mathhiessen’s rule.  

  

 

 
Figure 1.1: Temperature dependent resistivity in thin Ag films shows finite 

resistivity at 0K and a positive trend of resistivity with temperature. 170nm thick Ag film 

(blue) is significantly more resistive than bulk films (black). Mathhiessen’s rule gives a 

strong dependence of resistivity on film thickness. Reproduced from ref 2. 
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Amorphous Conduction 

Amorphous materials are defined by a lack of long-range atomic order yielding 

dire electronic consequences. A typical metallic density of states is shown in Figure 1.2a 

compared to that of an amorphous material (Figure 1.2b).
3–5

 Amorphous materials have 

density of states that tail into the band gap caused by the short-range order present 

throughout the material, which on first inspection might seem to destroy the band gap and 

improve conduction. This is not the case, however, as these mid gap states are localized 

to these regions of order. This results in a mobility gap.
3
 The mobility edge defines the 

electron energy at which states are delocalized (above the mobility edge in the 

conduction band or below the mobility edge in the valence band). The shape of the 

density of states and the mobility edge energy depends on the degree of ordering within 

and the composition of the amorphous material. 

 

 
Figure 1.2: Density of states for metal (a) and amorphous (b) materials. States 

which would be forbidden in a crystalline material, such as within the band gap, are 

instead occupied in amorphous materials. These states are localized, however, and result 

in a mobility edge (c) that defines the energy of mobile carriers. 
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Localization of conduction electrons within the mobility gap has significant 

consequences for the mechanisms of electron transport. While electrons in a Drude 

system move ballistically between scattering events, localized electrons must overcome 

both a spatial barrier of distance, 𝑟𝑖𝑗, and an energetic barrier, 𝐸𝐴, to move (Figure 1.3).
6
 

Each energy well has some characteristic size, 𝑎, known as the electron localization 

length, and is simply defined as the inverse of the wavefunction decay rate. The 

wavefunction decay rate scales as the square root of the depth of the well (𝐸𝜇 − 𝐸𝐹). The 

phenomenon involved in the migration of electrons between these energy wells is an 

inelastic tunneling process referred to as hopping. The Miller-Abraham model (1.5) 

describes charge carrier hopping mechanisms.
7
 

𝜎 ∝ 𝐴𝑒𝑥𝑝 (−
2𝑟𝑖𝑗

𝑎
) 𝑒𝑥𝑝 (−

𝐸𝑖𝑗

𝑘𝐵𝑇
) (1.5) 

where 𝜎 is conductivity, 𝐴 is a material-dependent constant, 𝑟𝑖𝑗 is the distance between 

sites 𝑖 and 𝑗, 𝑎 is the inverse of the wavefunction decay rate (called the electron 

localization length), 𝐸𝑖𝑗 is the energetic barrier encountered moving from site 𝑖 to 𝑗, 𝑘𝐵 is 

the Boltzmann constant, and 𝑇 is temperature. The Miller-Abraham model is a 

multiplication of a thermal Boltzmann probability and a spatial tunnel junction 

probability. Conductivity in a hopping system is governed simply by the most probable 

electron transitions; that is, hops of the shortest distance for the lowest energetic penalty. 

 
Figure 1.3: Energy well diagram. Example of three NCs in series in E-x space shows 

varying well depths and spacing. 
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Consider the simplest case where each hop will be conducted between 

neighboring wells. Such a situation will occur when there is low variation in the energetic 

barrier or when the energetic barrier to hopping is small relative to thermal energy. The 

result is a substantial probability “penalty” for hops further than nearest neighbor without 

a significant benefit to thermal activation probability. This case is known as nearest 

neighbor hopping and its temperature dependence is described by (1.6).
5
 

𝜎 = 𝐵𝑒𝑥𝑝 (−
𝐸𝐴

𝑘𝐵𝑇
) (1.6) 

where 𝐵 is a constant and 𝐸𝐴 is the effective activation energy. In nearest neighbor 

hopping, the spatial component is combined into the temperature independent pre-

exponential constant. Thermally, this process varies as a simple Arrhenius activated 

process where the activation energy is nonspecific to any particular energetic barrier, 

rather a summation of all energy changes undergone by an electron during a given hop.  

Consider the case where the energetic barrier to hopping varies wildly or is 

significantly above thermal energy and the most probable hopping distance is not the 

nearest neighbor as that hop may have a low energetic probability. Instead, the electron 

loses favorability in the spatial probability to gain a heavy favorability in energetic 

probability by hopping beyond the nearest neighbor to a site of lower energetic cost. As 

temperature increases, the energetic benefits of hopping further become lessened relative 

to thermal energy and the average hop distance shortens. This situation is known as 

variable range hopping (VRH). The rate at which the average hop distance changes with 

temperature is dependent on the origin of the energetic barrier. 

There are two primary VRH mechanisms: Mott VRH and Efros-Shklovskii VRH, 

which differ in the energetic barrier origin and exhibit different thermal dependences. 

Mott VRH assumes that the density of states is constant throughout an energy range, 

𝐸𝐹 ± 𝐸𝐴. This is true when the only contribution to the energetic barrier is the difference 

in energy between the initial and final states of the electron. This assumption is valid for 

samples of large localization length or high dielectric constant as will be discussed later. 
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Mott VRH is a common conduction mechanism for amorphous intrinsic semiconductors 

such as Si and Ge. 

Mott VRH temperature dependence is described by (1.7a).
6
 

𝜎 = 𝐶𝑒𝑥𝑝 (−(
𝑇0
𝑚

𝑇
)
0.25

 ) (1.7a) 

where 𝐶 is a constant and the characteristic temperature, 𝑇0
𝑚, is 

𝑇0
𝑚 =

21.2

𝑘𝐵𝑔(𝐸𝐹)𝜉3
  (1.7b) 

where 𝑔(𝐸𝐹) is the density of states at the Fermi energy.  

In contrast to Mott VRH, Efros-Shklovskii VRH does not assume a constant 

density of states at the Fermi energy. Instead, conduction electrons must overcome a 

capacitive energetic barrier to move from site 𝑖 to 𝑗, known as charging energy. This, in 

effect, causes the density of states to bend about the Fermi energy where an electron at 

the Fermi energy cannot contribute to conduction. Density of states bending occurs in a 

charging energy dominated system and not a Mott system. In a charging energy 

dominated system, an electron may not be spontaneously added to an electron cloud 

without paying an energetic penalty. This results in zero density of states at the Fermi 

energy, known as a Coulomb gap.
8
 The density of states increases as energy squared 

about the Fermi energy as shown in Figure 1.4 Efros-Shklovskii VRH is a common 

conduction mechanism for amorphous doped semiconductors such as P:Ge. The non-

constant density of states near the Fermi energy gives rise to differing thermal 

dependence shown in (1.8a).  

𝜎 = 𝐷𝑒𝑥𝑝 (− (
(𝑇0
𝐸𝑆)

𝑇
)
0.5

) (1.8a) 

where 𝐷 is a constant and the characteristic temperature, 𝑇0
𝐸𝑆, is 

𝑇0
𝐸𝑆 =

(2.8𝑞2)

4𝜋 0𝜉𝑘𝐵
 (1.8b) 

where 휀 is the static dielectric constant and 휀0 is the permittivity of free space. 
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Figure 1.4: Density of states in the Efros-Shklovskii model. 

DOPED METAL OXIDES 

There is not a person in the world that has spent a day in a developed nation and 

not seen or interacted with a metal oxide. Metal oxides are ubiquitous in daily life due to 

the flexibility in physical properties they display. Metal oxides are used in catalytic, 

electronic, optical, and sensing applications. The assortment of applications incorporating 

metal oxides stems from exploitation of well-known defect chemistries. 

Defects in Metal Oxides 

Many types of defects are prominent in metal oxides. Of principle interest in this 

work are those that modulate conductivity through controlling electron concentration. 

The numerous defects in this category include intrinsic defects (metal/oxygen vacancies, 

metal/oxygen interstitials, and defect/interstitial clusters) and extrinsic defects (ionized 

dopants and neutral dopant clusters). This section will focus on those that are most 

common and consider indium oxide as a model system. The most prominent intrinsic 

defect is the oxygen vacancy (1.9).
9
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 𝑂𝑂
𝑥 →

1

2
𝑂2(𝑔) + 𝑉𝑂

•• + 2𝑒′ (1.9) 

Oxygen vacancy doped indium oxide films have electron concentrations ranging 

from 1E15 – 4E20 cm
-3

, representing oxygen vacancy densities of 5E14 – 2E20 cm
-3

 (0 

atomic% – 0 atomic% 𝑉𝑂
••).

9,10
 The electron concentration of an indium oxide film is 

largely influenced by the partial pressure of oxygen within which the material is exposed 

and the temperature of material synthesis or deposition. The upper end of electron 

concentration expands with the introduction of extrinsic aliovalent dopants. Indium oxide 

is accepting of a wide array of dopants such as Mn, Fe, Co, Sn, etc. Due to the relevance 

to later chapters, tin-doped indium oxide (Sn:In2O3, ITO) is examined here (1.10).
9
 

 𝑆𝑛𝑂2
𝐼𝑛2𝑂3
→   𝑆𝑛𝐼𝑛

• + 𝑂𝑂
𝑥 + 𝑒′ +

1

2
𝑂2(𝑔) (1.10) 

ITO films have electron concentrations up to 1.5E21 cm
-3

 at 10 atomic% Sn.
10

 

This high electron concentration is very high; however, when the density of Sn atoms at 

10 atomic% Sn (3E21 cm
-3

), the activation of dopants is only half.
9–11

 This is the result of 

a dopant compensation region of the Brouwer diagram for ITO. Below ~3 atomic% Sn 

dopant activation is very nearly unity. Above this, dopant activation decreases 

monotonically with each additional dopant. This results from the formation of neutral 

2𝑆𝑛𝐼𝑛
• 𝑂𝑖

′′ cluster formation (1.11).
9,12

 

 (2𝑆𝑛𝐼𝑛
• 𝑂𝑖

′′)𝑥 →
1

2
𝑂2(𝑔) + 2𝑆𝑛𝐼𝑛

• + 2𝑒′ (1.11) 

Though neutral defect clusters have a deleterious effect on the conductivity of 

ITO films, such defects do not override the enormous boost granted by higher electron 

concentration even with 50% activation at 10 atomic% Sn. As a result ITO films, 

ubiquitous in technologies today, are often 10 atomic% Sn. 

Transparent Conductive Oxides 

Transparent conductive oxide (TCO) films are implemented as the transparent 

electrode in electronic displays, solar cells, and electrochromic devices. Metal oxide films 

are the ideal material for transparent electrodes due to their high transparency and 

conductivity. Many metal oxides have band gaps well over 3 eV and do not exhibit other 
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absorption processes in the visible spectrum.
13

 Additionally, metal oxide conductivity can 

be tuned for specific applications by changing dopant concentration.
9,10,14

 The choice of 

material for TCOs is motivated by a cost-benefit analysis where ITO, while exhibiting 

very high conductivity, is expensive and aluminum-doped zinc oxide (AZO), while cost 

effective, exhibits a lower conductivity. Despite the higher cost of ITO, it dominates the 

TCO market.  

The primary advantage of ITO over other metal oxide TCOs is the higher upper 

limit of conductivity of 2E4 S/cm. This high upper limit does not come with an inability 

to achieve lower conductivity films, however. Highly oxygen vacancy doped indium 

oxide films exhibit electron mobility near 100 cm
2
/Vs and conductivity over 2E3 S/cm.

10
 

Electron mobility in ITO goes as ne
-2/3

.
9
 This causes highly doped ITO to exhibit 

conductivity 5x that of indium oxide despite having more than 10x higher electron 

concentration. Though manipulation of dopant concentration in ITO is a powerful 

technique for manipulating conductivity, the practicality of this approach is limited due to 

the deposition techniques typically used. 

ITO thin films are deposited using sputtering techniques in high vacuum. The 

benefits of such deposition techniques are the reproducibility and high conductivity. 

However, such vacuum deposition techniques require a sputtering target of the precise 

composition desired for the thin film. This makes using composition to control 

conductivity extremely cost prohibitive. The typical ITO film for TCO applications is 10 

mass% Sn ITO and the film conductivity is manipulated through the crystallite grain size 

of the film. This technique allows film conductivity to range from 1 to 1E4 S/cm. 

Electron conduction in ITO thin films proceeds through metallic transport (Figure 

1.5).
15

 The resistivity of ITO thin films increases linearly with temperature. This 

temperature dependence results from electron-phonon scattering, which increases linearly 

with temperature in ITO. The resistivity flattens out at low temperatures as resistivity is 

dominated by ionized impurity scattering. ITO sample resistivity of this form is 

indicative, though not a sufficient condition, of a metal. 
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Figure 1.5: Temperature dependent resistivity of a commercial ITO thin film 
shows metallic transport. Reproduced from ref 15. 

 

CHARGE TRANSPORT IN NANOCRYSTALS 

TCO thin films are of fundamental importance in the modern world due to their 

vast applications.
14,16

 These applications require high conductivity, which has 

traditionally been achieved through vacuum deposition of amorphous or crystalline doped 

metal oxide films. An effort to reduce manufacturing cost by moving away from vacuum 

deposition has motivated research on using films of colloidal nanocrystals (NCs) as TCO 

films.
16

 However, colloidal NCs are synthesized with long chain organic capping ligands 

resulting in spatial separations between neighboring NCs that act as tunneling barriers 

(Figure 1.6).
17–19

 Separation of NCs by ligands causes the localization of conduction 

electrons. Due to electron localization, much like amorphous semiconductors, electron 

transport proceeds through a hopping mechanism and is governed by the Miller-Abraham 

model. Inspection of (1.5) leads to two obvious routes to improve NC film conductivity – 

reducing the distance between sites and lowering the energetic cost of hopping.  
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Figure 1.6:  The charge transport dilemma is based on the spatial separation of 

electron clouds caused by insulating ligands. Reproduced from Ref 17. 

Varying Ligands 

Many efforts have focused on reducing the distance between NCs to improve 

electron transport through NC films. Initial work on colloidally synthesized NC films 

concentrated on exchanging the organic capping ligands used in synthesis with a variety 

of organic ligands of different lengths or bonding arrangements to modify inter-NC 

charge transfer or hopping.
18–21

 The effects of ligand length are most clearly illustrated in 

films of ligand-capped Au nanoparticles (NPs). Wuelfing et al. investigated the effect of 

thiol ligand length on ~2nm diameter Au NPs (Figure 1.7a).
22

 They find an exponential 

dependence of conductivity on ligand length down to C5 where the conductivity 

saturates. Several years later, Zabet-Khosousi et al. investigated the use of bifunctional 

thiol ligands to modulate conductivity of films of 5nm diameter Au NPs (Figure 1.7b).
23

 

The observed an abrupt metal-insulator transition (MIT) at C5. On the metallic side of the 

MIT conductivity showed no clear dependence on ligand length, illustrating a high 

degree of wavefunction overlap between NPs. 
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Figure 1.7:  Effect of ligand length on conductivity. Plot of conductivity at 70 (blue) 

and -60 °C (black) vs number of carbons in the alkanethiolate chains of Au NPs (1.5) (a). 

Resistance of thiol cross linked Au NP films at 200 K as a function of n (b). Reproduced 

from ref 22 (a) and 23 (b). 

 

The observations of ligand length influencing Au NP film conductivity were 

qualitatively reproduced in semiconductor NC films. Zarghami et al. investigated 

exchanging long oleate (C18) ligands with formic (C1), acetic (C2), and oxalic (C2, 

bicarbonate) ligands in situ in films of PbSe NCs.
19

 This work found a ~20x increase in 

film conductivity for formate-capped NCs compared to acetate-capped NCs. 

Interestingly, this study used C2 bicarbonate and C1 carbonate ligands and was unable to 

observe a MIT for semiconductor NCs. Semiconductor NC films with any ligands still in 

place are unable to access the MIT or achieve conductivity comparable to bulk materials. 

Various ligand stripping and decomposition reactions have been developed to 

improve the conductivity of NC films. Among these strategies is the decomposition of 

formate ligands. Garcia et al. used an in situ formic acid ligand exchange followed by 

annealing under inert conditions to yield a ligand-free NC film.
24

 Other strategies have 

been the use of colloidal ligand removal such as those developed by Dong et al.
25

 

Removal of ligands from NC surfaces often leads to several orders of magnitude increase 

in conductivity. While this strategy significantly improves film conductivity, removal of 

ligands exposes NC surfaces to adventitious chemical species, such as water that leads to 
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hydroxylation, forming surface states that are difficult to control and can be harmful to 

charge transport through NC films.  

 

Near Surface Depletion 

One method to improve conduction through NC films is to use atomic layer 

deposition (ALD) to cap bare NC arrays with metal oxides, such as alumina (Al2O3).
26–29

 

Specifically, Thimsen et al. found that ZnO NC films with alumina capping layers had 

conductivity eight orders of magnitude higher than that of bare films.
26

 Ephraim et al. 

investigated the cause of the significant conductivity improvement using in situ resistivity 

measurements of ZnO NC films under exposure to forming gas, a common reducing 

treatment.
27

 Forming gas exposed samples asymptotically approach the resistivity of 

alumina infilled films (Figure 1.8). This implies the significant film performance 

improvement following alumina deposition is due to the removal of adsorbed water 

species by trimethylaluminum, the precursor used during alumina ALD. These studies 

suggest that adsorbed water species play a direct role in affecting film conductivity but 

the mechanism by which adsorbed water species actually lead to reduced conductivity 

remained unexplored. Zandi and Agrawal et. al. reported that electrochemical modulation 

of optical absorption in tin-doped indium oxide (ITO) NC films can be explained by the 

formation of a depletion region near NC surfaces.
30,31

 We can therefore hypothesize that 

the enhanced electron transport in films whose surface hydroxyls have been eliminated is 

a result of alleviating depletion effects that were present due to the hydroxyl-associated 

surface states.  
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Figure 1.8:  Mechanism of alumina ALD improving conductivity is shown by a 

comparison of ALD-capped films and films exposed to forming gas at moderate 

temperatures. Reproduced from reference 27. 

 

METHODS 

This section is devoted to a detailed explanation of experimental methods and 

internal tricks that enable this work to be conducted. 

NC Synthesis 

ITO NCs were synthesized by modification of methods published by the 

Hutchison group.
32

 NCs were synthesized by adding 4.7 mmol of metal precursor 

(In(III)Acetate3 and Sn(IV)Acetate4) to 10 mL of oleic acid in a round bottom flask. This 

will be referred to as the precursor flask. The precursor flask is then put under vacuum 

and heated to 110°C for 1 hour with one pump/purge midway through the hour. The 

precursor flask is then put under nitrogen and heated to 150°C for 2 hours to generate In- 

and Sn-oleate. Concurrently, 12 mL of oleyl alcohol is put in a second round bottom 

flask, called the reaction flask. The reaction flask is put under vacuum and heated to 

150°C for 2 hours with one pump/purge midway through. The reaction flask is then 
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heated to 290°C under nitrogen. Once the In- and Sn-oleate reaction has finished, the 

contents of the precursor flask are pulled into a syringe for slow injection into the 

reaction flask. The injection rate is set to 0.2 mL/min and the injection volume depends 

on the desired core size. Following the injection the reaction flask is allowed to stay at 

290°C for 20 min before being cooled to room temperature.  

After the flask has cooled to below 70°C, there are two routes for washing the 

NCs dependent on whether the NCs will be shelled or not. If the NCs will not be shelled, 

the NCs are washed 5 times. In the first wash, 1 vol% oleylamine is added to the NC 

solution followed by 100 vol% ethanol. The solution is centrifuged at 9000 RPM for 5 

min, supernatant is disposed, and the NCs are dispersed in hexane. For all following NC 

washing steps, when solutions are crashed, ethanol is added until the solution just turns 

an opaque milky color. In the second and third wash, 1 vol% oleylamine and 1 vol% oleic 

acid is added to the hexane solution and the solution is crashed with ethanol followed by 

centrifugation at 7500 RPM for 5 min and NC are dispersed in hexane. In the fourth and 

fifth wash, the hexane solution is crashed with ethanol and centrifuged at 7500 RPM for 5 

min and NCs are dispersed in hexane. Finally, without the addition of ethanol, the 

solution is centrifuged at 5000 RPM for 5 min and the supernatant is retained. If the NCs 

will be shelled, the NC cores are washed 3 times. In the first wash, 100 vol% ethanol is 

added followed by centrifugation at 9000 RPM. NC cores are dispersed in hexane. In the 

second and third wash, NC cores are crashed using ethanol followed by centrifugation at 

7500 RPM for 5 min before dispersion in hexane. Finally, without the addition of 

ethanol, the solution is centrifuged at 5000 RPM for 5 min and the supernatant is 

retained. 

For shelling, the NC core dispersion in hexane is added to the reaction flask with 

oleyl alcohol. The reaction flask is put under vacuum with the temperature controller set 

to 25°C to remove hexane. Once bubbling stops, the synthesis is conducted in an 

identical manner as the core synthesis with volume of reaction mixture injected dictating 

shell thickness. These NCs are then washed in accordance with the above paragraph. 
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NC Film Spincoating 

NC film quality is highly dependent on the treatment of substrates and dispersions 

prior to spincoating. Film substrates, 2x2cm Si or 1.5x1.5cm quartz for this work, were 

cleaned by submersion in solvent and 30min sonication in the order of chloroform, 

acetone, isopropanol (IPA), and toluene (if using nonpolar dispersions). The substrates 

are stored in IPA (polar solvents) or toluene (nonpolar solvents) for 24 hours or more 

before film deposition. NC films throughout this work were spincoated from a NC 

dispersion in a mixed solvent of 1:1 hexane:octane. To prepare this solution, ethanol was 

added to NC dispersions in hexane until the solution turns an opaque milky color and was 

centrifuged at 7500 RPM for 5 min. The supernatant is then discarded and centrifuge tube 

is held upside-down for the NCs to dry mildly before they are dispersed in 1:1 

hexane:octane to yield a NC loading of 50-60 mg/mL. The NC dispersion rests for 24 

hours prior to spincoating. 

The procedure of the NC film deposition plays the final role in determining film 

quality and thickness. NC dispersions were filter using a 0.2 μm syringe filter 

immediately prior to spincoating films. Each substrate was blow dried with nitrogen 

immediately before spincoating. 30-45 μL of the NC dispersion were pipetted onto the 

substrate and the spincoater was started. The spincoating program for all films in this 

work was the following: 0s ramp to 1000 RPM for 60s followed by 0s ramp to 4000 

RPM for 30s. The thickness of the films is NC radius dependent, ranging from 70nm for 

5nm diameter NCs to 180nm for 20nm diameter NCs. Films were treated with either a 

formic acid (Chapter 2) or ammonium hydroxide (Chapter 4) ligand exchange and anneal 

at 300°C or 200°C, respectively, for an hour. 

Atomic Layer Deposition 

The atomic layer deposition (ALD) presented throughout this work functions on 

the propagation of surface hydroxyls. This necessitates a high degree of consistency in 

sample treatment prior to ALD. Samples that underwent the formic acid ligand exchange 
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and decomposition were stored in air for at least 3 weeks while the samples that 

underwent the ammonium hydroxide ligand exchange were stored in a vacuum desiccator 

immediately following the anneal. Each of these conditions result in the full 

hydroxylation of NC surfaces and yields a consistent substrate for ALD. ALD was 

conducted in a Cambridge Nanotech Savannah S100 atomic layer deposition chamber. 

Alumina ALD procedure – Samples are stabilized at 180°C under flowing 

nitrogen at 0.5 Torr for 10 min followed by a 0.1s water pulse. Each cycle of alumina 

ALD consists of a 0.1s pulse of trimethylaluminum (TMA), a 30s purge, a 0.1s pulse of 

water, and a 30s purge. This procedure yields 0.11nm alumina per cycles. 

Indium oxide ALD procedure – The indium precursor, cyclopentadienylindium(I) 

(indium-cp), tube is heated to 70°C. Samples are stabilized at 180°C under flowing 

nitrogen at 0.5 Torr for 10 min followed by simultaneous 0.1s water and 0.15s ozone 

pulses. Each cycle of indium oxide ALD consists of a 5s pulse of indium-cp, a 30s purge, 

simultaneous 0.1s water and 0.15s ozone pulses, and a 30s purge. This procedure yields 

0.15nm indium oxide per cycles. 

Solution Spectroscopy of NC Dispersion 

When measuring solution spectra of NC dispersions, NC stability is highly 

important for ensuring measurements represent only a summation of individual particles 

and prevention of NC deposition. Highly stable NC solutions were prepared in 0.5 

mg/mL oleic acid in tetrachloroethylene (TCE). To prepare this solution, ethanol was 

added to NC dispersions in hexane until the solution turns an opaque milky color and was 

centrifuged at 7500 RPM for 5 min. The supernatant is then discarded and centrifuge tube 

is held upside-down for the NCs to dry mildly before they are dispersed in 0.5 mg/mL 

oleic acid in TCE to yield a 20 mg/mL stock solution. The NC dispersion rests for 24 

hours prior to measurement.  

The stock solution was centrifuged at 6000 RPM immediately before 

measurements. Each measurement is conducted by diluting the stock solution into 0.5 

mg/mL oleic acid in TCE using mass ratio to determine dilution factor. The liquid cell 
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was rinsed three times with the solution to be measured before being filled. Fourier-

transform infrared (FTIR, Bruker) spectroscopy measurements were taken from 450 cm-1 

to 6500 cm-1 after a 10 min sample chamber purge under 8 SCCM flowing nitrogen. The 

sample was transferred to the UV-vis-NIR (Cary, Cary series Agilent) and measurements 

were taken from 3031 cm-1 to 37000 cm-1. The following dilution was made while this 

measurement was taking place. Due to limitations of the FTIR source, only data below 

5000 cm-1 is trusted. Overlap of FTIR and Cary data between 3500 cm-1 and 4500 cm-1 

is ensured and the data series are stitched together during data analysis. 

When measuring solution spectra of NC dispersions, NC stability is highly 

important for ensuring measurements represent only a summation of individual particles 

and prevention of NC deposition. Highly stable NC solutions were prepared in 0.5 

mg/mL oleic acid in tetrachloroethylene (TCE). To prepare this solution, ethanol was 

added to NC dispersions in hexane until the solution turns an opaque milky color and was 

centrifuged at 7500 RPM for 5 min. The supernatant is then discarded and centrifuge tube 

is held upside-down for the NCs to dry mildly before they are dispersed in 0.5 mg/mL 

oleic acid in TCE to yield a 20 mg/mL stock solution. The NC dispersion rests for 24 

hours prior to measurement.  

The stock solution was centrifuged at 6000 RPM immediately before 

measurements. Each measurement is conducted by diluting the stock solution into 0.5 

mg/mL oleic acid in TCE using mass ratio to determine dilution factor. The liquid cell 

was rinsed three times with the solution to be measured before being filled. Fourier-

transform infrared (FTIR, Bruker) spectroscopy measurements were taken from 450 cm-1 

to 6500 cm-1 after a 10 min sample chamber purge under 8 SCCM flowing nitrogen. The 

sample was transferred to the UV-vis-NIR (Cary, Cary series Agilent) and measurements 

were taken from 3031 cm-1 to 37000 cm-1. The following dilution was made while this 

measurement was taking place. Due to limitations of the FTIR source, only data below 

5000 cm-1 is trusted. Overlap of FTIR and Cary data between 3500 cm-1 and 4500 cm-1 

is ensured and the data series are stitched together during data analysis. 
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Conductivity Measurements 

Before discussing details of taking conductivity measurements, there are a few 

important considerations. All electronic measurements in this work were conducted on 

samples on quartz, as the substrate must be sufficiently insulating and chemically inert 

such that its effects on conductivity and film properties may be completely ignored. One 

issue with measuring a spincoated film is thickness variations near the film edge. A 

uniform film thickness square is scribed in the center of the sample to isolate this 

measurement area from the edges. Finally, for particularly resistive samples, thin slices of 

indium wire may be pressed onto the corners of the sample area to improve electronic 

contact between probes and sample. 

Room temperature conductivity measurements were collected on an Ecopia Hall 

Effect measurement system (HMS-5000) in the 4-point probe Van der Pauw geometry. 

Four gold spring-clip contacts (A, B, C, D) were placed directly on the corners of a film. 

The system runs eight measurements: I(AB)_V(CD), -I(AB)_-V(CD), I(BC)_V(DA), -

I(BC)_-V(DA), I(CD)_V(AB), -I(CD)_-V(AB), I(DA)_V(BC), -I(DA)_-V(BC) where 

I(WX) are the current source electrodes and V(YZ) are the voltage measurement 

electrodes. The measured voltages are plugged into the Van der Pauw (1.12). 

𝜎−1 = 𝜌 =
𝜋𝑡𝑠

2 ln(2)
(
𝑓1((𝑉(𝐶𝐷))−(−𝑉(𝐶𝐷))+(𝑉(𝐷𝐴))−(−𝑉(𝐷𝐴)))

4𝐼
+
𝑓2((𝑉(𝐴𝐵))−(−𝑉(𝐴𝐵))+(𝑉(𝐵𝐶))−(−𝑉(𝐵𝐶)))

4𝐼
) (1.12) 

where 𝑡𝑠 is the film thickness, 𝑓1 and 𝑓2 are geometric correction factors, and 𝐼 is the 

current used for all measurements. The constants 𝑓𝑖 are defined by (1.13) and (1.14). 

𝑄1 =
(𝑉(𝐶𝐷))−(−𝑉(𝐶𝐷))

(𝑉(𝐷𝐴))−(−𝑉(𝐷𝐴))
 (1.13a) 

𝑄1 =
(𝑉(𝐴𝐵))−(−𝑉(𝐴𝐵))

(𝑉(𝐵𝐶))−(−𝑉(𝐵𝐶))
 (1.13b) 

𝑄𝑖−1

𝑄𝑖+1
=

𝑓𝑖

0.693
𝑎𝑟𝑐 cosh(

𝑒𝑥𝑝(−
0.693

𝑓𝑖
)

2
) (1.14) 

Solving (1.14) for 𝑓𝑖 corrects for non-ideal sample geometries (differing from a perfect 

square). This allows the Van der Pauw geometry to be accurate for any shape sample of 

uniform thickness. 



 21 

Temperature dependent conductivity measurements were done on a Quantum 

Design Physical Properties Measurement System. Rather than simply scribing the 

measured sample to isolate the center, the sample is broken to a size below 1x1cm. The 

sample is wired using XX gauge copper wire to indium leads as shown in Figure 1.12. 

This configuration allows resistance measurements in perpendicular directions, such that 

the entire sample is characterized. Current was swept from 1 to 10 μA  in 3 μA 

increments was applied through adjacent corners of the sample and the voltage measured 

on the other two corners. A second measurement is made in the perpendicular direction. 

The conductance values for the two configurations were then used to compute the sheet 

conductance numerically using (1.15). 

exp(−𝜋𝑅1𝑡𝑠𝜎) + exp(−𝜋𝑅2𝑡𝑠𝜎) = 1 (1.15) 

where 𝑅𝑖 is the resistance in a direction and 𝜎 is the film conductivity. Conductivity data 

is collected between 2K and 300K in both the cooling and warming directions. The 

conductivity vs T curve was compared with the cool down curve to ensure no time 

dependence on conductivity. The temperature was held at each temperature set point 

during the IV sweep. 

Ellipsometric Porosimetry Measurements 

Spectroscopic ellipsometry data was obtained using a J. A. Woollam M-2000 

Spectroscopic Ellipsometer DI from 193 nm to 1690 nm. The J. A. Woollam 

Environment Cell was used to change the relative partial pressure of toluene while 

collecting ellipsometry data to monitor changes in film optical constants as the medium 

dielectric is modulated in a controlled manner. The angle of incident light was fixed at 

70° relative to the sample, which corresponds to a normal incidence with respect to the 

cell window. Optical constants were obtained by fitting spectroscopic ellipsometry data 

over the spectral range of 400 nm to 1000 nm in CompleteEASE software and 

approximating the film as a Cauchy oscillator. The Lorentz-Lorentz equation was used to 

calculate the volume of toluene in film pores as a function of toluene partial pressure, 



 22 

which was fed into an effective medium approximation. Evolution of film optical 

constants with toluene partial pressure was fit for film porosity. 

X-ray diffraction (XRD) measurements 

XRD patterns of ITO NC films were collected on a Rigaku Miniflex 600 

diffractometer using Cu Kα radiation. Films were identical to those imaged by SEM. NCs 

were sized using the Debye-Scherrer equation, 𝑡 =
𝜆

𝛽 cos(𝜃)
, where 𝑡 is the NC diameter, 𝜆 

is the x-ray wavelength (0.15418 nm), 𝛽 is the full-width at half-max (FWHM) of the 

XRD peak, and 𝜃 is the Bragg angle of the XRD peak. The FWHM is corrected for 

instrumental broadening by, 𝛽 = (𝑤exp
2 − 𝑤𝑖𝑛𝑠

2 )
1

2, where 𝑤𝑒𝑥𝑝 is the experimental XRD 

peak FWHM and 𝑤𝑖𝑛𝑠 is the instrumental broadening as measured from the FWHM of 

LaB6. 

X-ray photoelectron spectroscopy (XPS) measurements 

XPS was conducted on Kratos x-ray photoelectron spectrometer – axis ultra DLD 

using Al Kα x-ray source. Samples were identical to those imaged by SEM. XPS spectra 

were calibrated to the C 1s peak at 284.8 eV. Analysis was done using CasaXPS 

software. Near surface dopant concentration was assessed by calculating the ratio of Sn 

3d peak area to the total metal peak area. 

Scanning electron microscopy (SEM) and scanning transmission electron 

microscopy (STEM) measurements 

SEM and STEM images were taken with a Hitachi S-5500. Samples for STEM 

measurements were drop cast on copper TEM grids with carbon supports (400 mesh, 

TedPella). NCs were sized by image analysis (shown below). Samples for top-down and 

cross-section film SEM were prepared by spin coating ITO NC dispersions in a mixed 
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solvent of 1:1 hexane:octane on undoped silicon substrates and processed as discussed in 

main text.  

Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) measurements 

The overall tin dopant concentration and volume fraction of ITO NCs were 

characterized by ICP-AES on a Varian 720-ES ICP Optical Emission Spectrometer. NCs 

were digested with neat aqua regia and allowed to rest for 24-48 hr before dilution to 2 

vol%. The volume fraction of ITO was calculated from the concentration of In and Sn in 

the analyte using an assumed stoichiometry of (In+Sn)2O3 and density of 7140mg/mL. 
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Chapter 2: Tuning Nanocrystal Surface Depletion by Controlling 

Dopant Distribution as a Route Toward Enhanced Film Conductivity 

 

 

This chapter text and figures have been adapted with permission from reference 29, 

Copyright © 2018, Nano Letters. Written in collaboration with Zachary Robinson, Ankit 

Agrawal, Stephen Gibbs, Benjamin Greenberg, Sebastien Lounis, Uwe Kortshagen, and 

Delia Milliron. My contributions include experimental design, synthesis of most samples, 

characterization (XRD, XPS, optical, STEM, SEM, etc) of all samples, variable 

temperature conductivity measurements of several samples, variable temperature data 

analysis, and principle draft author. 

 

 

Electron conduction through bare metal oxide nanocrystal (NC) films is hindered 

by surface depletion regions resulting from the presence of surface states. We control the 

radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate 

the NC depletion width. We find in films of ITO NCs of equal overall dopant 

concentration that those with dopant-enriched surfaces show decreased depletion width 

and increased conductivity. Variable temperature conductivity data shows electron 

localization length increases and associated depletion width decreases monotonically 

with increased density of dopants near the NC surface. We calculate band profiles for 

NCs of differing radial dopant distributions and, in agreement with variable temperature 

conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths 

and longer localization lengths than those with dopant-enriched cores. Following 

amelioration of NC surface depletion by atomic layer deposition of alumina, all films of 

equal overall dopant concentration have similar conductivity. Variable temperature 

conductivity measurements on alumina-capped films indicate all films behave as granular 

metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface 

depletion region, which directly increases the electron localization length and 

conductivity of NC films. 
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SPATIALLY LIMITED ELECTRON TRANSPORT 

Transparent conductive oxide (TCO) thin films are of fundamental importance in 

the modern world due to their vast application in optoelectronic devices such as displays, 

solar cells, and electrochromic windows.
14,16

 These applications require high 

conductivity, which has traditionally been achieved through vacuum deposition of 

amorphous or crystalline doped metal oxide films.
16

 An effort to reduce manufacturing 

cost by moving away from vacuum deposition has motivated research on using films of 

colloidal nanocrystals (NCs) as TCO films. However, colloidal NCs are synthesized with 

long chain organic capping ligands resulting in spatial separations between neighboring 

NCs that act as tunneling barriers.
17–19

 Carrier conduction in these systems occurs 

through a hopping mechanism, which is described by the Miller-Abraham model (1.5). 

𝜎 ∝ 𝐴𝑒𝑥𝑝 (−
2𝑟𝑖𝑗

𝑎
)  𝑒𝑥𝑝 (−

𝐸𝑖𝑗

𝑘𝐵𝑇
) (1.5) 

where 𝜎 is conductivity, 𝐴 is a material-dependent constant, 𝑟𝑖𝑗 is the distance between 

sites 𝑖 and 𝑗, 𝑎 is the inverse of the wavefunction decay rate (called the electron 

localization length), 𝐸𝑖𝑗 is the energetic barrier encountered moving from site 𝑖 to 𝑗, 𝑘𝐵 is 

the Boltzmann constant, and 𝑇 is temperature.
7
 Inspection of (1.5) leads to two obvious 

routes to improve NC film conductivity – reducing the distance between sites and 

lowering the energetic cost of hopping.
33,34

  

Many efforts have focused on reducing the distance between NCs to improve 

electron transport through NC films. Initial work on colloidally synthesized NC films 

concentrated on exchanging the organic capping ligands used in synthesis with a variety 

of organic and inorganic ligands of different lengths or bonding arrangements to modify 

inter-NC charge transfer or hopping.
18–21

 However, NC films with any ligands still in 

place are often too resistive to be suitable for device applications. Various ligand 

stripping and decomposition reactions have been developed to improve the conductivity 

of NC films.
19,24

 Removal of ligands from NC surfaces often leads to several orders of 

magnitude increase in conductivity. While this strategy significantly improves film 

conductivity, removal of ligands exposes NC surfaces to adventitious chemical species, 
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such as water that leads to hydroxylation, forming surface states that are difficult to 

control and can be harmful to charge transport through NC films.  

One method to improve conduction through NC films is to use atomic layer 

deposition (ALD) to cap bare NC arrays with metal oxides, such as alumina (Al2O3).
26–

28,35,36
 Specifically, Thimsen et al. found that ZnO NC films with alumina capping layers 

had conductivity eight orders of magnitude higher than that of bare films.
26

 This approach 

was later elaborated upon by Ephraim et al., who explained that the significant film 

performance improvement following alumina deposition is due to the removal of 

adsorbed water species by trimethylaluminum, the precursor used during alumina ALD.
27

 

These studies suggest that adsorbed water species play a direct role in affecting film 

conductivity but the mechanism by which adsorbed water species actually lead to reduced 

conductivity remains unexplored.
26,37

 Recently, Zandi and Agrawal et. al. reported that 

electrochemical modulation of optical absorption in tin-doped indium oxide (ITO) NC 

films can be explained by the formation of a depletion region near NC surfaces.
37

 We can 

therefore hypothesize that the enhanced electron transport in films whose surface 

hydroxyls have been eliminated is a result of alleviating depletion effects that were 

present due to the hydroxyl-associated surface states. Here we examine the role that 

depletion plays in inhibiting charge transport, and we study how the properties of NCs 

and their surfaces can be tuned to reduce depletion effects and improve transport. 

Specifically, we report the influence of the intra-NC dopant distribution on 

conductivity of ITO NC films. Films comprised of NCs of similar size and overall tin 

concentration show a marked difference in film conductivity when the radial dopant 

distribution is manipulated. Bare NC films of a given overall dopant concentration 

exhibit higher conductivity, larger electron localization length, and lower contact 

resistance when dopant concentration is high near the NC surface. The dependence of 

electronic properties on dopant distribution is understood by examining how the intra-NC 

band profile is altered by dopant segregation in the presence of a depletion region near 

the NC surface. Following alumina ALD, films display comparable conductivity and 

contact resistance, independent of NC dopant profile, confirming that depletion-related 
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resistance plays a dominant role in differentiating the electronic behavior of bare NC 

films of differing intra-NC dopant profiles. 

EXPERIMENTAL PROCEDURES 

ITO NCs were synthesized using a two-step method adapted from the slow 

growth methods developed by Jansons et. al.
32

 The dopant distribution was controlled by 

synthesizing ITO NC cores of a desired dopant concentration, which then undergo a 

washing procedure before reintroduction to a reaction flask for shell growth of desired 

dopant concentration and shell thickness (Section 1.4). This synthetic method leads to 

highly controlled core and shell sizes and low size polydispersity. Core and overall 

particle sizes were measured by Scherrer analysis of the ITO (222) XRD peak and 

validated by scanning transmission electron microscopy (Figures 2.1, 2.2, 2.3). Dopant 

incorporation was quantified by elemental analysis using inductively coupled plasma-

atomic emission spectroscopy (ICP-AES) for overall Sn dopant concentration and X-ray 

photoelectron spectroscopy (XPS) with an Al Kα source (1486.7 eV) to assess the near-

surface Sn dopant concentration (Figure 2.4). Al Kα source energy corresponds to a 

photoelectron escape depth of about 1.5 nm.
38

 



 28 

 
Figure 2.1: Scanning transmission electron microscopy (STEM) images of overall 

ITO NCs (a) and cores (b) for Core8 (i), Core5 (ii), Core4 (iii), Uniform (iv), Shell4 (v), 

Shell5 (vi), Shell8A (vii), and Shell8B (viii). Scale bars represent 300nm (a) and 100nm 

(b). 

 



 29 

 
Figure 2.2: Overall ITO NC crystal structure. All samples show agreement with 

bixbyite ITO reference (sticks shown above along x-axis). 

 
Figure 2.3: (222) XRD peaks of ITO NC cores (a) and overall ITO NCs (b). NC sizes 

were assessed by Scherrer analysis. 
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Figure 2.4: X-ray photoelectron spectroscopy (XPS) of C 1s (a), O 1s (b), In 3d (c), 

and Sn 3d (d) peaks for ITO NC films. 

 

Colloidal NCs were spin-coated from a concentrated dispersion in a mixed 

solvent of hexane and octane (1:1) onto silicon and quartz substrates, yielding 

approximately 100 nm thick films. To enhance electron transport, the organic ligands 

used in colloidal NC synthesis were removed by an in situ ligand displacement with 

formic acid followed by a 60 minute anneal at 300°C in flowing nitrogen gas to 

decompose and desorb the remaining organic matter.
24

 Ligand removal was verified by 

Fourier-transform infrared spectroscopy (Figure 2.5). The resulting films were highly 

transparent at visible wavelengths (Figure 2.6). Scanning electron microscopy (SEM) 

images show densely packed films with direct contact between NCs and minimal 
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cracking (Figure 2.7). Porosity of NC films prepared on silicon substrates was determined 

using ellipsometric porosimetry (EP) with toluene as the dielectric contrast solvent. EP 

data from 400 nm to 1000 nm wavelength was fit using software provided by JA 

Woollam and yielded consistent volume fractions between 0.72 and 0.78 for all films 

(Figure 2.8).   

 

 
Figure 2.5: Ligand exchange and removal tracked by Fourier-transform infrared 

(FTIR) spectroscopy. The removal of ligands was verified using FTIR spectroscopy. 

The native ligands (oleic acid and oleylamine) have long carbon chains which show a 

strong C-H stretch absorption in the infrared. The C-H stretch absorption can be seen to 

shrink significantly following the formic acid soak and is removed completely following 

annealing for 1 hour at 300°C. 
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Figure 2.6: Bare ITO NC film optical transparency. All measured films show a wide 

transparency window across the visible range. 
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Figure 2.7: Bare NC film on silicon SEM cross-section (a) and top-down (b) for Core8 

(i), Core5 (ii), Core4 (iii), Uniform (iv), Shell4 (v), Shell5 (vi), Shell8A (vii) and Shell8B 

(viii). Scale bars represent 100nm for cross-section and 500nm for top-down. 
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Figure 2.8: Ellipsometric porosimetry (EP) data and analysis of Shell8. EP data was 

collected from 0.02 to 0.9 relative solvent pressure with toluene as the solvent. Samples 

were cycled twice to ensure samples were not altered as a result of solvent exposure. 

Evolution of Psi with time (relative solvent pressure) (a), initial Psi and Delta with fits 

(dashed line) (b). Relative solvent volume as a function of solvent pressure (c). The 

maximum relative solvent volume is the sample porosity as shown by the dashed line. 
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To understand the influence of dopant distribution on film electronic properties 

when surface depletion is suppressed, bare NC films were capped with 40 ALD cycles of 

alumina deposition to passivate NC surfaces. Deposition was carried out in a Savannah 

ALD chamber using previously reported methods.
27

 Trimethylaluminum was used as the 

aluminum precursor and deposition was carried out at 180°C. These conditions 

correspond to a growth rate of about 0.11 nm per ALD cycle.
26

 SEM and time-of-flight 

secondary ion mass spectrometry (TOF-SIMS) showed 40 cycles of alumina deposition 

penetrated through the full film thickness and resulted in nearly complete infilling of NC 

films and deposition of a thin overlayer on the films (Figure 2.9 & 2.10). A similar 

approach was used by Ephraim et. al., who reported that deposition of alumina on surface 

segregated ITO NC films by ALD removes adsorbed water species and yields conductive 

ITO-alumina composites.
27

 



 36 

 
Figure 2.9: Alumina-capped NC film on silicon SEM cross-section (a) and top-down 

(b) for Core8 (i), Core5 (ii), Core4 (iii) Uniform (iv), Shell4 (v), Shell5 (vi), Shell8A 

(vii), and Shell8B (viii). Scale bars represent 100nm for cross-section and 500nm for top-

down. 
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Figure 2.10: Alumina deposition penetration profile. Alumina deposition can be seen 

to permeate through the full film thickness by time-of-flight secondary ion mass 

spectrometry (TOF-SIMS). TOF-SIMS shows alumina fully permeates the NC film, as 

seen by Al2O3 tracking well with In2O3 as a function of sputtering time up to the onset of 

the silicon substrate, as well as forming an overlayer on top of the NC film. 

 

To minimize aberrations in data, all analyses were conducted on samples that 

were exposed to ambient lab air for at least 23 days (Figure 2.11). Room temperature 

conductivity measurements were collected on an Ecopia Hall Effect measurement system 

(HMS-5000) in the 4-point probe Van der Pauw geometry. Gold spring-clip contacts 

were placed directly on the films and edge effects were minimized by isolating a uniform 

square region in the center of the film using a diamond scribe. Variable temperature 

conductivity measurements were conducted in a Physical Property Measurement System 

(PPMS) from as low as 2 K up to 300 K in both decreasing and increasing temperature 

directions. Ohmic contact was established using indium solder pads. Bare and alumina-

capped NC film room temperature conductivity data represents an average over 6 

samples and 2 samples, respectively. 
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Figure 2.11: Bare ITO NC air sensitivity. The resistivity of bare ITO NC films is 

highly sensitive to ambient air exposure. The air sensitivity of metal oxide NC film 

resistivity is attributed to adsorbed water species at the NC surface.
26,27

 This can cause 

otherwise identical films to display significantly different resistivity data due to different 

air exposure times. 

 

Poisson’s equation was solved numerically for spherical nanocrystals with a given 

radial dopant profile and surface potential, ES, using a finite element method. The charge 

density at any point inside the nanocrystal is made up of mobile electrons and immobile 

ionized impurity centers. Here, we have shown the potentials used to solve the Poisson’s 

equation (Figure 2.12). EF is the Fermi energy level, ECB is the conduction band minima, 

EVB is the valence band maxima, EI is the reference potential and center of the band gap.  
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Figure 2.12: Band profile of Core5 under non-equilibrium (i), flat band (ii), and surface 

depleted (iii) conditions. The non-equilibrium case shows the band profile and Fermi 

level before the equilibration of the Fermi level. The flat band case shows the core-shell 

equilibrium band profile with passivated surfaces, i.e. the surface potential is equal to the 

Fermi level of the shell species). The surface depleted case is the result of imposing a 

surface potential 0.2 eV below the flat band potential of indium oxide on case (ii). 

Here, we adapted the dimensionless form of Poisson’s equation derived by 

Seiwatz and Green
39

 to solve numerically for a spherical nanoparticle in Cartesian 

coordinates as, 

∇2𝑢 = −
𝑒2𝜌

0𝑘𝐵𝑇
 (2.1) 

The non-dimensional potential is defined as, 𝑢 =
𝐸𝐹−𝐸𝐼

𝑘𝐵𝑇
, and 𝑘𝐵 is the Boltzmann constant 

and 𝑇 is temperature. 휀0 is the vacuum permittivity, 휀 is the static dielectric constant, and 

𝜌 is the charge density.  

𝜌 = {𝜌𝐷(𝑟) − 𝜌𝐴(𝑟) + 𝑝(𝑟) − 𝑛(𝑟)}  (2.2) 

where, 𝜌𝐷(𝑟) is the radially changing donor dopant density, 𝜌𝐴(𝑟) is the acceptor dopant 

density, 𝑝(𝑟) is hole density, 𝑛(𝑟) is electron density. Here, since we only have 

aliovalent donor dopants, 𝜌𝐴(𝑟) = 0. 

 

The free electron concentration in the parabolic conduction band is equal to,  

𝑛(𝑟) = 4𝜋 (
2𝑚𝑒𝑘𝐵𝑇

ℎ2
)

3

2
(𝐹1

2

(𝑢 − 𝑤𝐶,𝐼(𝑟)))  (2.3) 

where 𝐹1
2

(𝜂) = ∫
𝑥
(
1
2
)
𝑑𝑥

1+exp(𝑥−𝜂)

∞

0
 and 𝑤𝐶,𝐼 =

𝐸𝐶𝐵(𝑟)−𝐸𝐼

𝑘𝐵𝑇
 

 Similarly, hole concentration in the parabolic valence band is equal to  
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𝑝(𝑟) = 4𝜋 (
2𝑚ℎ𝑘𝐵𝑇

ℎ2
)

3

2
(𝐹1

2

(𝑤𝑉,𝐼(𝑟) − 𝑢)) (2.4) 

where 𝑤𝑉,𝐼 =
𝐸𝑉𝐵(𝑟)−𝐸𝐼

𝑘𝐵𝑇
 

If the donor energy level is ED, the activated dopant concentration can be expressed as,  

𝜌𝐷(𝑟) =
𝑁𝐷(𝑟)

1+2exp(𝑢−𝑤𝐷,𝐼)
 (2.5) 

where 𝑤𝐷,𝐼 =
𝐸𝐷(𝑟)−𝐸𝐼

𝑘𝐵𝑇
 

Substituting all the individual terms into (2.1) 

∇2𝑢 = −
𝑒2

0𝑘𝐵𝑇
{

𝑁𝐷(𝑟)

1+2exp(𝑢−𝑤𝐷,𝐼)
+ 4𝜋 (

2𝑚ℎ𝑘𝐵𝑇

ℎ2
)

3

2
(𝐹1

2

(𝑤𝑉,𝐼(𝑟) − 𝑢)) − 4𝜋 (
2𝑚𝑒𝑘𝐵𝑇

ℎ2
)

3

2
(𝐹1

2

(𝑢 − 𝑤𝐶,𝐼(𝑟)))} (2.6) 

with the boundary condition, 

𝑢 = 𝑢𝑠𝑢𝑟𝑓 =
𝐸𝑠𝑢𝑟𝑓−𝐸𝐼

𝑘𝐵𝑇
  (2.7) 

Poisson’s equation (2.6) was solved in COMSOL using a finite element scheme. 

BARE NC FILMS 

To investigate the role that dopant distribution plays in conductivity of ITO films, 

it was necessary to synthesize a series of NCs with similar size and overall dopant 

concentration (two properties that are known to affect conductivity)
40–42

 but with 

variations in the radial profile of dopants. More specifically, thanks to unprecedented size 

and dopant incorporation control afforded by the synthetic methods advanced by Janson 

et al,
32

 we varied the density of dopants radially within each NC while keeping the 

overall dopant concentration and NC diameter nearly constant at 3 at% and 20 nm, 

respectively. The eight samples investigated here are uniformly-doped (Uniform), core-

doped with an undoped shell:4 at% core (Core4), 5 at% core (Core5), and 8 at% core 

(Core8), and shell-doped with an undoped core: 4 at% shell (Shell4), 5 at% shell (Shell5), 

8 at% shell (Shell8A), and 8 at% shell at 2.5 at% overall (Shell8B).  NC sizes and dopant 

profile are summarized in Table 2.1: Discrepancies between nominal shell dopant 

concentration and that measured by XPS may be due to moderate redistribution of Sn 

during NC synthesis. However, the near-surface Sn concentration observed by XPS is 
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unaffected by the ligand removal and annealing processes (Figure 2.13 and Table 2.2). 

Despite this, comparing tin content by XPS and ICP-AES shows significant dopant 

segregation for all core-shell samples and a clear trend of increasing near-surface dopant 

concentration from Core8 to Shell8A.  

Table 2.1: ITO NC core-shell structure.  

Sample 
Dopant 

Distribution 

Core 

Diameter 

(nm) 

Overall 

Diameter 

(nm) 

at% Sn 

by ICP-

AES 

at% Sn 

by 

XPS 

Core8 Core-doped 14.4 20.8 3.3±0.2 2.2 

Core5 Core-doped 16.5 20.8 3.1±0.3 2.4 

Core4 Core-doped 16.3 19.0 2.7±0.1 2.4 

Uniform Uniform 16.6 20.2 3.0±0.1 3.9 

Shell4 Surface-doped 16.4 24.7 3.2±0.1 5.3 

Shell5 Surface-doped 15.1 20.7 3.1±0.2 6.5 

Shell8A Surface-doped 16.6 22.1 3.3±0.1 6.8 

Shell8B Surface-doped 16.8 19.8 2.5±0.1 6.3 

Core and overall NC sizes by Scherrer analysis, overall tin dopant concentration by ICP-

AES and near surface tin dopant concentration by XPS. 

 

 
Figure 2.13: Film processing XPS. XPS of In 3d (a) and Sn 3d (b) peaks for a Shell5 

NC film as deposited, after 30 minute formic acid soak, and after 1 hour anneal at 300°C.  
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Table 2.2: Near surface tin density during film processing.  

Processing Step Near surface tin 

density (at%) 

As deposited 6.4 

After formic acid soak 6.5 

After 300°C anneal 6.5 

XPS analysis shows no significant redistribution of tin during film processing. Numbers 

presented are calculated using XPS data shown in Figure 2.12. 

 

We measure conductivity of bare films following prolonged ambient lab air 

exposure to minimize variations in surface chemistry from sample to sample. Bare film 

conductivity is shown in Figure 2.14. Conductivity of all samples of equal overall dopant 

concentration shows an exponential dependence on the near-surface dopant 

concentration. Core8 and Core5 exhibit the lowest average conductivity of the series at 

0.154 S-cm
-1

 and 0.168 S-cm
-1

, respectively. As dopants are placed closer to the surface, 

the conductivity more than doubles upon reaching uniform distribution, where the 

measured conductivity was 0.343 S-cm
-1

. Finally, Shell5 and Shell8A show the highest 

conductivity of the series at 0.901 S-cm
-1

 and 1.11 S-cm
-1

, respectively, representing a 

nearly nine-time increase from the lowest conductivity sample, Core8. We note that while 

Shell8B has a high dopant concentration on the surface, it shows a significantly lower 

conductivity than expected based on the trend observed for the four other samples. One 

possible explanation for this deviation may be Shell8B having a significantly lower 

overall dopant concentration. This explanation is supported by Shell8A having an 

increased overall dopant concentration, with only modest changes to NC size and near 

surface dopant density, the conductivity increases nearly an order of magnitude and 

follows the predicted trend. However the material-dependent constant, 𝐴, in the Miller-

Abraham model and its dependence on dopant concentration are highly uncertain.
6,42–44

 

We refrain from analyzing the room temperature conductivity of bare films of Shell8B 

for this reason. 
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Figure 2.14: Film conductivity. Room temperature conductivity for bare ITO NC films 

of equal overall dopant concentration shows an exponential dependence on the near 

surface dopant concentration, as measured by XPS. This dependence is not observed in 

the room temperature conductivity of alumina-capped ITO NC films. Dashed line shows 

an exponential fit of bare film conductivity. The blue point represents Shell8B, which 

was not included in the fit. 

 

Comparing room temperature conductivity of films is useful in determining the 

optimal material for a device, but gives little insight into the differences in electron 

transport physics underlying these differences. Analysis of the underlying physics 

requires films to be viewed as a random resistor network composed of randomly 

positioned bonds, i.e. conduction pathways, each with a finite resistance, 𝑅𝑏𝑜𝑛𝑑. For NC 

films with much lower conductivity than their bulk analogue, bond resistance is 

approximately equal to the contact resistance, 𝑅𝐶, which describes the tunneling 

resistance between NCs,
16

 and is calculated from the links and nodes model in three 

dimensions as 

𝑅𝐶 ≈ 𝑅𝑏𝑜𝑛𝑑 =
(𝜑−𝜑0)

1.9

2𝜎𝑟0
 (2.8) 

where 𝜎 is the film conductivity, 𝜑 is the NC volume fraction, 𝜑0 is the percolation 

threshold, and 𝑟0 is the NC radius.
45,46

 We assume the percolation threshold to be that of 

randomly packed spheres, approximately 0.2.
47

 Inter-NC contact resistances are reported 
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in Table 2.3. When 𝑅𝐶 is greater than the critical tunneling resistance, which is 

determined by the ratio of charging energy to the mean energy spacing in a single grain, a 

material behaves as an insulator and conduction is dominated by a hopping mechanism.
48

  

Table 2.3: Localization length and contact resistance.  

 Bare Alumina-capped 

Sample 

Simulated 

Localization 

Length (nm) 

Localization 

Length (nm) 

Contact 

Resistance 

(kΩ) 

Simulated 

Localization 

Length (nm) 

Metallic 

Grain 

Size (nm) 

Contact 

Resistance 

(kΩ) 

Core8 18.2 18.2±1.2 1206±248 ≥ 20.8 25.0±0.4 19.9±0.2 

Core5 19.2 18.1±1.1 787±118 ≥ 20.8 22.0±0.4 19.2±0.2 

Core4 18.3 16.9±1.6 524±98 ≥ 19.0 19.4±0.7 14.1±0.2 

Uniform 19.8 18.5±1.1 443±111 ≥ 20.2 22.1±0.4 20.8±0.1 

Shell4 ≥ 24.7 35.0±2.8 288±55 ≥ 24.7 22.7±0.5 25.3±0.2 

Shell5 20.6 21.8±1.9 158±24 ≥ 20.7 22.7±0.5 19.8±0.2 

Shell8A ≥ 21.5 33.8±2.4 121±28 ≥ 21.5 22.8±0.5 21.8±0.3 

Shell8B ≥ 19.8 25.1±1.5 1040±106 ≥ 19.8 24.9±0.7 24.0±0.3 

Bare films: localization length determined by carrier concentration profile simulations, 

localization length determined by ES-VRH-GD fits, and contact resistance found using 

the links and nodes model. Alumina-capped films: localization length determined by 

carrier concentration profile simulations and metallic grain size and contact resistance 

found by granular metal fits. Fitted parameter error corresponds to a 99.5% confidence 

interval. 

 

The critical tunneling resistance defines the maximum tunneling resistance for a 

granular film to exhibit metallic (or granular metal) conduction. If the tunneling 

resistance between two NCs is greater than the critical tunneling resistance, the film is 

expected to behave as an insulator and conduction will proceed through a hopping 

mechanism. The critical tunneling resistance in units of 𝑒2/ℏ, where 𝑒 is the electron 

charge and ℏ is Planck’s constant, is defined by  

𝑅𝑏𝑜𝑛𝑑
𝐶 =

6𝜋

ln(
𝐸𝐶
𝛿
)
  (2.9) 

Charging energy 

𝐸𝐶 =
𝑒2

2𝜋 𝑐 0𝛼
 (2.10) 

where 휀0 is the permittivity of vacuum, and 𝛼 is the grain diameter 
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Effective dielectric constant  

휀𝑐 =
𝜋

2
휀𝑚 (

2𝜖

𝜋 𝑚
)

2

5
= 1.99 (2.11) 

where 휀𝑚 is the dielectric constant of the medium (1 for air) and 𝜖 is the dielectric 

constant of the NC (9) 

The mean energy spacing in a single grain  

𝛿 = (𝑔𝐸𝐹𝑉𝑁𝐶)
−1

 (2.12) 

where 𝑉𝑁𝐶 is the NC volume 

The density of states at the Fermi level 

𝑔𝐸𝐹 =
3
1
3𝑚𝑒

∗𝑛𝑒

1
3

ℏ2𝜋
4
3

  (2.13) 

where 𝑚𝑒
∗  is the effective mass of an electron (0.4𝑚𝑒 for ITO) and 𝑛𝑒 is the electron 

concentration. 

We assume complete dopant activation such that electron concentration is defined 

by (3E20)*(at% Sn overall) where 3E20 is the density of indium atoms in ITO. Values 

from these calculations and experimental bond resistance are shown in Table 2.4.  𝑅𝐶 is 

well above the critical tunneling resistance for all NC films indicating that electrons must 

hop between NCs. 
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Table 2.4: Critical bond resistance.  

Sample 𝛼 
(nm) 

𝑛𝑒  
(cm

-3
) 

𝑔𝐸𝐹   

(J
-1

m
-3

) 

𝛿 (J) 𝐸𝐶 (J) 𝑅𝑏𝑜𝑛𝑑
𝐶  

(kΩ) 
𝑅𝑏𝑜𝑛𝑑
𝐸𝑥𝑝

 (kΩ) 

Core8 20.8 9.90E+20 1.02E+46 2.08E-23 1.11E-20 38.82 1206 

Core5 20.8 9.30E+20 1.00E+46 2.12E-23 1.11E-20 38.95 787 

Core4 19 8.10E+20 9.57E+45 2.91E-23 1.22E-20 40.41 524 

Uniform 19.4 9.00E+20 9.91E+45 2.64E-23 1.19E-20 39.90 443 

Shell4 24.7 9.60E+20 1.01E+46 1.25E-23 9.37E-21 36.86 288 

Shell5 20.6 9.30E+20 1.00E+46 2.18E-23 1.12E-20 39.07 158 

Shell8A 21.5 9.90E+20 1.02E+46 1.88E-23 1.08E-20 38.41 159 

Shell8B 19.8 7.50E+20 9.32E+45 2.64E-23 1.17E-20 40.04 1040 

𝛼 is the grain (NC) diameter, 𝑛𝑒 is the electron concentration, 𝑔𝐸𝐹 is the density of states 

at the Fermi level, 𝛿 is the mean energy spacing, 𝐸𝐶 is the charging energy, 𝑅𝑏𝑜𝑛𝑑
𝐶  is the 

critical bond resistance, 𝑅𝑏𝑜𝑛𝑑
𝐸𝑥𝑝

 are calculated bond resistances from experimental values. 

 

In films with no necking between NCs, 𝑅𝐶 is primarily defined by a tunneling 

junction with resistance proportional to exp (𝑠 √2𝑚∗𝑈0 ℏ⁄ ) where 𝑠 is the barrier width, 

𝑈0 is barrier height, 𝑚∗ is the effective mass of an electron (0.4me for ITO), and ℏ is 

Planck’s constant.
42

 We use the magnitude of 𝑅𝐶 as a metric to estimate the tunneling 

width. The barrier height, equal to the work function at the NC surface, is determined by 

the surface state energy due to Fermi level pinning and is assumed to be equal for all 

samples. One should note that this analysis is a simple estimate as the tunneling 

resistance has a pre-exponential factor that may have a dependence on overall dopant 

concentration or dopant distribution. However, it is clear from the order of magnitude 

difference in 𝑅𝐶 between Shell8A and Core8 that NC dopant distribution significantly 

affects the tunneling barrier. 

We performed variable temperature conductivity measurements on the bare NC 

films to gain further insight on how intra-NC dopant profiles influence the inter-NC 

tunneling junctions (Figure 2.15a). Conductivity increases monotonically with increasing 

temperature for all films, characteristic of electrons conducting through a hopping 

mechanism. The temperature dependence of conductivity in an electron hopping regime 

is described by  
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𝜎(𝑇) = 𝜎0 ∗ exp (−(
𝑇0

𝑇
)
𝑚

) (2.14) 

where 𝜎0 is treated as a material-dependent constant, 𝑇0 is a characteristic temperature, 

and 𝑚 depends on the specific hopping mechanism.
6
 Zabrodskii analysis indicates 𝑚 

values of nearly 0.78 for all bare samples we measured (Figure 2.16).
49

 Atypical values 

of 𝑚 (those other than 0.25, 0.5, or 1) were investigated by Houtepen et. al. and were 

explained by thermal broadening of energy levels within the density-of-states.
50

 This 

broadening depends on the temperature dependence of heat capacity for the active 

material. While Houtepen et. al. assumed a constant heat capacity and found an m-value 

of 0.66, we used a power law fit to the ITO heat capacity (𝐶𝑝 ∝ 𝐶𝑇
𝑝) to capture this 

temperature dependence in the model. Starting from the general form (2.15).  

𝑔(𝐸) = 𝑔0 exp (−
(𝐸−𝐸0)

2

2𝑘𝐵𝑇2𝐶𝑉(𝑇)
) (2.15) 

A materials heat capacity is temperature dependent for temperatures below its Debye 

temperature, θD, (for ITO, θD=1000K)
51

. If the heat capacity of approximated as a power-

law in temperature where Cp=C*T
p
, the tunneling rate is given by (2.16). 

𝛤 ∝ exp (−
2𝑅

𝑎
−
∆𝐸2(1+𝑝)

4𝑘𝐵𝑇𝑝+2𝐶
) (2.17) 

where ΔE is the energetic barrier to hopping, a is the electron localization length, and R is 

the hopping distance, given by (2.18). 

𝑅 =
𝐴

∆𝐸𝑛
 (2.18) 

where A and n are constants that depend on the hopping mechanism. By plugging (2.18) 

into (2.17) and maximizing Γ with respect to ΔE, we find the most optimal energetic 

barrier (2.19) and hopping distance (2.20) as a function of temperature. 

∆𝐸𝑜𝑝𝑡 = (
4𝐴𝑛𝐶𝑘𝐵𝑇

2+𝑝

𝑎(1+𝑝)
)

1

2+𝑛
 (2.19) 

𝑅𝑜𝑝𝑡 = 𝐴(
𝑎(1+𝑝)

4𝐴𝑛𝐶𝑘𝐵𝑇2+𝑝
)

𝑛

2+𝑛
 (2.20) 

Plugging (2.19) & (2.20) into (2.17) yields the general expression for hopping in systems 

with a Gaussian broadening of energy levels (2.21). 
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𝛤 ∝ exp(− (
(1+𝑝)𝑛𝐴2(2+𝑛)2+𝑛

𝑎24𝑛𝑘𝐵
𝑛𝐶𝑛𝑛𝑛𝑇𝑝𝑛+2𝑛

)

1

2+𝑛
)  (2.21) 

For (𝑛 = 1 & 𝐴 =
𝑒2

4𝜋 0
) and p = 0.34 (Figure 2.17), Efros-Shklovskii variable-

range hopping with a Gaussian dispersion of energy levels (ES-VRH-GD) to have an 𝑚 

value of 0.78. The ES-VRH-GD characteristic temperature in this regime is then defined 

as 

𝑇0 = (
3.15𝑒4

4𝜋2 2𝑘𝐵𝐶𝑎2
)

1

3
 (2.22) 

where 𝐶 ≈ 27 is the heat capacity power-law coefficient for ITO, 𝑒 is the electron 

charge, 휀 is the dielectric constant of the film, and 𝑎 is the electron localization length. 

The film effective dielectric constant was calculated using methods developed by Reich 

and Shklovskii.
52

 Here, the electron localization length defines the diameter of a sphere 

within which mobile electrons are confined at 0K. Fits to variable temperature data and 

the corresponding localization lengths are reported in Figure 2.15b and Table 2.3, 

respectively. Fitting error is reported in Table 2.5. 
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Figure 2.15: Temperature dependence of electron transport in bare (a, b) and 

alumina-capped (c, d) ITO NC films. Conductivity v. Temperature (a) and Efros-

Shklovskii variable range hopping with a Gaussian dispersion of energy levels fit for bare 

ITO NC films (b). Conductivity v. Temperature (c) and granular metal conduction 

mechanism for alumina-capped ITO NC films (d). Markers indicate experimental data 

and lines show fits to ES-VRH-GD (b) and the granular metal (d) conduction 

mechanisms. 
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Figure 2.16: Zabrodskii analysis shows slopes near 0.78 for all samples measured. 

Exact values found are 0.78 (Core8), 0.78 (Core5), 0.78 (Core4), 0.78 (Uniform), 0.79 

(Shell4), 0.75 (Shell5), 0.78 (Shell8A), and 0.70 (Shell8B). This indicates a temperature 

dependence of 𝜎 ∝ exp (−𝑇−0.78).49
  

 

 
Figure 2.17: ITO heat capacity. Markers indicate data taken from Ref 6 and dashed line 

shows a power-law fit from ~40K to ~300K.
53
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Variable temperature conductivity data was fit using a 99.5% confidence interval to 

determine error in calculated values. Error propagation was calculated in following 

manner. 

For a functional form 𝐴 = exp(𝐵) the mean value of A, 𝜇𝐴, and the standard deviation of 

A, 𝜎𝐴, can be calculated by: 

𝜇𝐴 = exp(𝜇𝐵)  (2.23a) 

𝜎𝐴 = |𝜇𝐴 ∗ 𝜎𝐵|  (2.23b) 

For a functional form 𝐴 = 𝑥𝐵𝑏 

𝜇𝐴 = 𝑥 ∗ (𝜇𝐵)
𝑏 (2.24a) 

𝜎𝐴 = |𝜇𝐴 ∗ 𝑏 ∗ (
𝜎𝐵

𝜇𝐵
)|  (2.24b) 

Table 2.5: Bare film variable temperature conductivity fitting error.  

Sample 𝝈𝟎 (S/cm) 𝑻𝟎 (K) 𝒂 (nm) 

Core8 0.53 ± 0.02 68.9 ± 1.5 18.2 ± 1.2 

Core5 0.44 ± 0.02 69.1 ± 1.4 18.1 ± 1.1 

Core4 0.53 ± 0.02 72.4 ± 2.2 16.9 ± 1.6 

Uniform 0.96 ± 0.04 68.1 ± 1.4 18.5 ± 1.1 

Shell4 0.90 ± 0.03 44.5 ± 1.2 35.0 ± 2.8 

Shell5 0.89 ± 0.05 61.0 ± 1.7 21.8 ± 1.9 

Shell8A 0.52 ± 0.02 45.5 ± 1.1 33.8 ± 2.4 

Shell8B 0.64 ± 0.02 55.5 ± 1.1 25.1 ± 1.5 

The mean and standard deviation for 𝜎0 was calculated using (2.23a,b) from fitted values 

of 𝑙𝑛(𝜎0). The mean and standard deviation for 𝑇0 was calculated using (2.24a,b) from 

fitted values of 𝑇0
0.78. The mean and standard deviation for 𝑎 was calculated using 

(2.24a,b) from fitted values of 𝑇0. 
 

ES-VRH-GD fits to variable temperature conductivity data indicate the electron 

localization length increases as dopants move toward the surface. Core8 NC films exhibit 

a localization length nearly 3 nm smaller than the NC diameter while Shell4, Shell8A, 

and Shell8B show some degree of delocalization of electrons beyond the size of the NCs. 

The monotonic growth of localization length with increasing overall dopant concentration 

has been established as a signature of approaching the metal-insulator-transition in NC 

films.
36,42,45

 Interestingly, despite having the lowest overall dopant concentration, Shell8B 
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shows a longer localization length than the core-doped and uniformly doped samples 

measured here. Previously, studies of the connection between localization and dopant 

concentration considered only films of uniformly doped NCs and those with passivated 

surfaces. Here we reveal that the more relevant property for bare NC films is the 

concentration of dopants in the near surface region. This is because greater (lesser) 

dopant density at the surface reduces (increases) the effects of surface depletion. Thus, 

films of low overall dopant concentration NCs can be engineered to produce a large 

localization length by controlling the dopant distribution. 

To further understand the trend of localization length with changing dopant 

distribution, we simulated the band profiles within isolated ITO NCs with radially 

controlled dopant distribution in the presence of surface states that are approximated to 

be 0.2 eV below the conduction band minimum of indium oxide (Figure 2.18). The trends 

are qualitatively accurate throughout a range of surface state energies (Figure 2.19).
37

 In 

uniformly-doped ITO NCs (Figure 2.18ci), the band profile is easily understood as a 

radial depletion region near the NC surface. When dopants are segregated, the band 

profile becomes significantly more complex. Tin dopants decrease the electronic band 

gap of indium oxide while also increasing the optical band gap due to state filling, i.e. the 

Burstein-Moss effect.
54,55

 This means that in addition to band bending at the surface, 

band bending will occur near the interface of doped and undoped regions within the NC. 

In core-doped ITO NCs (Figure 2.18a,bi), a relatively low density of charged defects near 

the surface results in a wide depletion region that extends to the doped core. In contrast, 

surface-doped ITO NCs (Figure 2.18d,ei) have a high density of charged defects near the 

surface, resulting in a sharper, narrower depletion region, which we have correlated with 

an expanded localization length in films fabricated from these NCs. 
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Figure 2.18: Simulated band profiles. Intra-NC band profile for Core8 (a), Core5 (b), 

Core4 (c), Uniform (d), Shell4 (e), Shell5 (f), and Shell8 (g) with a surface potential 0.2 

eV below the flat band potential of indium oxide (a-e i) and equal to the flat band 

potential of the shell species (a-e ii). The latter represents the absence of surface-state 

induced depletion. In all cases, the horizontal dashed line is the Fermi level and the blue 

shaded region indicates the region of enriched dopants. R = 0 denotes the center of a NC 

and maximum |R| denotes the surface. 

 

 
Figure 2.19: Band profiles under various surface potentials. Intra-NC band (i) and 

radial electron concentration (ii) profiles for Core8 (a), Core5 (b), Core4 (c), Uniform (d), 

Shell4 (e), Shell5 (f), and Shell8 (g) with a surface potential 0.3 eV below (red), 0.2 eV 

below (orange), 0 eV above (blue), 0.2 eV above (black) the flat band potential of indium 

oxide. The horizontal dashed line is the Fermi level (i) or critical carrier concentration 

(ii). In all cases, the blue shaded region indicates the region of enriched dopants. R = 0 

denotes the center of a NC and maximum |R| denotes the surface. For all simulations 

showing a surface state below the flat band potential of indium oxide the absolute surface 

state energy does not change the qualitative interpretation of the data. This range of 

surface state energy is consistent with literature values of surface hydroxyls, ranging 

from 0.1 to 1 eV below the indium oxide conduction band minimum.
26,37

 

 

We simulated electron concentration profiles to visualize how these band profiles 

influence the electron localization length for each dopant distribution in a NC-NC 

tunneling junction (Figure 2.20a-e). The electron localization length is defined here as the 

diameter of a sphere containing all space with an electron concentration of greater than 
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10
25

 m
-3

, the critical electron concentration for metallic behavior in ITO according to the 

Mott criterion.
3
 Using this definition, we examine the electron localization compression 

due to depletion, which is simply the difference between the physical diameter of the NC 

and the electron localization length. As shown in Figure 2.20a,b,c, the extended surface 

depletion region in core-doped samples leads to significant localization length shrinkage 

in Core8, Core5, Core4 of 2.6 nm, 1.6 nm, and 0.7 nm, respectively. For uniform dopant 

distribution (Figure 2.20d), the localization length is compressed only slightly, about 0.4 

nm. Finally, when the majority of dopants are near the surface (Figure 2.20e,f,g), the 

localization volume is approximately the size of the NC with Shell5 having 0.1 nm 

compression and Shell4 and Shell8 being fully delocalized within the NC. Shell4 

achieves full delocalization while Shell5 does not due to the larger diameter of Shell4. 

The definition of electron localization length in our simulations is simplified by ignoring 

wavefunction decay beyond the metallic region of the NC. Despite this, the trend 

observed in simulations is mirrored in localization lengths determined by analysis of 

variable temperature conductivity data (Table 2.3). Without considering wavefunction 

decay beyond the physical NC dimensions our simulation cannot describe electron 

localization lengths greater than the NC diameter; however, the simulated intra-NC 

electron concentration profiles for Shell4 and Shell8 agree with the possibility for 

electron delocalization outside of the NC, as suggested by the experimental variable 

temperature conductivity data. 
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Figure 2.20: Simulated electron concentration profiles. Radial electron concentration 

profile for Core8 (a), Core5 (b), Core4 (c), Uniform (d), Shell4 (e), Shell5 (f), and Shell8 

(g) with a surface potential 0.2 eV below the flat band potential of indium oxide (Black) 

and equal to the flat band potential of the shell species (Purple). Vertical dashed line is 

where neighboring NCs touch and horizontal dashed line is the critical carrier 

concentration. In all cases, the blue shaded region indicates the region of enriched 

dopants. R = 0 denotes the center of a NC and maximum |R| denotes the surface. 
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The importance of the localization length and its magnitude relative to the NC 

size is apparent as we return to analyze the limiting factors in achieving high conductivity 

NC films. The contact resistance, analyzed as a tunneling junction, is 

𝑅𝐶 ∝ exp(𝑠 √2𝑚∗𝑈0 ℏ⁄ ). Again, 𝑠 defines the separation between the edges of electron 

localization volumes. Using a simple model of two NCs in contact at a point, and 

electronically connected by a tunnel junction due to depletion, s is simply the electron 

localization compression discussed above (Figure 2.20). From our analysis, as the dopant 

profile moves toward the surface, there is monotonic decrease in s. This diminished 

barrier width implies a decrease in contact resistance, in agreement with experimental 

results for Core8 through Shell8A. 

ALUMINA-CAPPED FILMS 

Following alumina deposition, the conductivity of all films increased significantly 

as shown in Figure 2.14. All capped-NC films exhibit nearly identical conductivity. We 

performed variable temperature conductivity measurements on NC films after alumina 

capping to gain insight on electron transport barriers (Figure 2.15c). While conductivity 

of alumina-capped films increases monotonically with increasing temperature for all 

films, conductivity is consistent with a logarithmic dependence on temperature. 

Conduction of this type has been observed in granular ITO thin films and is ascribed to a 

granular metal conduction mechanism.
51,56,57

 We note that while hopping conduction is a 

description of electrons overcoming a Coulombic blockage by undergoing hops of 

thermally varying distances, the granular metal conduction model describes the 

competition between Coulombic barriers and NC-NC coupling. Granular metal 

conduction depends on the grain (NC) size and the degree of coupling, reflected in 

tunneling conductance between neighboring NCs, rather than the electron localization 

length. The temperature dependence of conductivity in granular metals is described by 

𝜎 = 𝜎0 (1 +
1

2𝜋𝑔𝑇𝑑
ln (

𝑘𝐵𝑇

𝑔𝑇𝐸𝐶
))  (2.25) 
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where 𝜎0 = 𝑔𝑇 (
2𝑒2

ℏ
)𝛼2−𝑑, 𝑔𝑇 is the non-dimensional tunneling conductance between 

grains, 𝛼 is the grain diameter, 𝑑 is the system dimensionality, and 𝐸𝐶 =
𝑒2

2𝜋 𝛼
 is the 

charging energy of a grain.
48,56

 Metallic grain size and tunneling conductance were 

calculated from the slope and intercept, respectively, of 𝜎 vs ln (T) as shown in Figure 

2.15d. Metallic grain size and tunneling conductance are reported in Table 2.3. Fitting 

constants and error are reported in Table 2.6.  

Table 2.6: Alumina-capped film variable temperature conductivity fitting error.  

Sample A (S/cm*ln(K)) 𝑹𝑪 (kΩ) B (S/cm/ln(K)) 𝜶 (nm) 

Core8 17.2 ± 0.2 20.0 ± 0.2 3.28 ± 0.06 25.0 ± 0.4 

Core5 20.6 ± 0.2 19.2 ± 0.1 3.72 ± 0.07 22.0 ± 0.4 

Core4 40.6 ± 0.5 14.1 ± 0.2 4.22 ± 0.14 19.4 ± 0.7 

Uniform 17.2 ± 0.2 20.8 ± 0.1 3.71 ± 0.06 22.1 ± 0.4 

Shell4 10.0 ± 0.3 25.2 ± 0.2 3.61 ± 0.08 22.7 ± 0.5 

Shell5 18.8 ± 0.3 19.8 ± 0.2 3.61 ± 0.08 22.7 ± 0.5 

Shell8A 3.7 ± 0.3 31.8 ± 0.3 3.6 ± 0.1 22.8 ± 0.5 

Shell8B 10.9 ± 0.3 24.0 ± 0.3 3.30 ± 0.09 24.9 ± 0.7 

The mean and standard deviation for 𝛼 was calculated using S14a,b from fitted values of 

B. The mean of 𝑅𝐶 was solved for numerical from fitted values of A and calculated 

values of 𝛼.  The standard deviation of 𝑅𝐶 was then determined by solving for 𝑅𝐶 using 

each permutation of  A and 𝛼 mean values and plus/minus their standard deviations and 

then taking the standard deviation of those 9 values. 

 

There are three criteria for the granular metal conduction model to be valid:
56,58

 

1. The intra-grain conductance is greater than the tunneling conductance (𝑔0 ≫ 𝑔𝑇) 

2. The tunneling conductance is greater than the critical tunneling conductance (𝑔𝑇 > 𝑔𝑇
𝐶) 

3. Must be in the high temperature limit to ignore quantum effects (𝑇 > 𝑔𝑇𝛿) 

Each of these criterion is addressed following equations presented by Beloborodov et. 

al.
56

 

 

1.  𝑔0 > 𝑔𝑇 

The intra-grain conductance in units of 𝑒2/ℏ is defined by 

𝑔0 =
𝐸𝑇ℎ

𝛿
 (2.26) 
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Thouless energy 

𝐸𝑇ℎ =
4ℏ𝐷0

𝛼2
 (2.27) 

Classical diffusion coefficient  

𝐷0 =
𝑣𝐹
2𝜏

𝑑
  (2.28) 

where d is grain dimensionality (3 here) 

Fermi velocity 

𝑣𝐹 =
ℏ

𝑚𝑒
∗ (3𝜋

2𝑛𝑒)
1

3 (2.29) 

Taking the mean free path of an electron to be approximately the diameter of a single 

grain,  

𝜏 =
𝛼

𝑣𝐹
  (2.30) 

Plugging (2.30) into (2.28), 

𝐷0 =
𝑣𝐹𝛼

𝑑
 (2.31) 

Values from these calculations and tunneling conductance are shown in Table 2.7. 

Table 2.7: Intra-NC and tunneling conductance.  

Sample 𝑣𝐹 (m/s) 𝐷0 (m
2
/s) 𝐸𝑇ℎ (J) 𝑔0 (𝑒

2/ℏ) 𝑔𝑇  (𝑒
2/ℏ)  

Core8 8.93E+05 6.19E-03 3.81E-20 1837 0.651 

Core5 8.74E+05 6.06E-03 3.73E-20 1762 0.676 

Core4 8.35E+05 5.29E-03 3.90E-20 1341 0.915 

Uniform 8.65E+05 5.59E-03 3.96E-20 1500 0.623 

Shell4 8.84E+05 7.27E-03 3.18E-20 2538 0.512 

Shell5 8.74E+05 6.00E-03 3.77E-20 1729 0.654 

Shell8A 8.93E+05 6.40E-03 3.69E-20 1963 0.407 

Shell8B 8.14E+05 5.37E-03 3.65E-20 1384 0.539 

𝑣𝐹 is the Fermi velocity, 𝐷0 is the classical diffusion coefficient for electrons, 𝐸𝑇ℎ is the 

Thouless energy, 𝑔0 is the intra-NC conductance, and 𝑔𝑇 is the tunneling conductance 

from the granular metal fit. 
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Tunneling conductance is much lower than intra-grain conductance for all measured 

samples. This criteria shows that tunneling between grains in the rate limiting step in 

electron conduction through these films. 

 

2. (𝑔𝑇 > 𝑔𝑇
𝐶) 

The critical tunneling conductance in units of 𝑒2/ℏ is defined by 

𝑔𝑇
𝐶 =

ln (
𝐸𝐶
𝛿
)

6𝜋
=

1

𝑅𝑏𝑜𝑛𝑑
𝐶  

Using (2.9) – (2.13) with 휀𝑚 = 9 for alumina, 𝑔𝑇
𝐶 and 𝑔𝑇 are shown in Table 2.8. 

Table 2.8: Critical and experimental tunneling conductance.  

Sample 𝑔𝑇
𝐶  (𝑒2/ℏ) 𝑔𝑇 (𝑒

2/ℏ) 

Core8 0.265 0.651 

Core5 0.264 0.676 

Core4 0.252 0.915 

Uniform 0.256 0.623 

Shell4 0.283 0.512 

Shell5 0.263 0.654 

Shell8A 0.268 0.407 

Shell8B 0.255 0.539 

𝑔𝑇
𝐶 is the critical tunneling conductance and 𝑔𝑇 is the tunneling conductance from the 

granular metal fit. 

 

All samples measured show tunneling conductance well above the critical tunneling 

conductance. The critical tunneling conductance defines the criterion for a material to 

behave as a metal. 

 

3. (𝑇 > 𝑔𝑇𝛿) 

Using equations (2.12) and (2.13) as well as experimental 𝑔𝑇, 𝑔𝑇𝛿 is shown in Table 2.9. 
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Table 2.9: Quantum temperature upper limit. 

Sample 𝑔𝑇𝛿 (K) 

Core8 0.978243503 

Core5 1.037151399 

Core4 1.929305428 

Uniform 1.19146053 

Shell4 0.464919533 

Shell5 1.033654454 

Shell8A 0.553859376 

Shell8B 1.030478677 

 

Temperature 𝑔𝑇𝛿 defines the temperature above which quantum effects no longer 

significantly influence electron physics in a material. All fits in this work were done at or 

above 2K. Therefore, we do not expect significant quantum effects. 

 

The grain size in ITO NC films with alumina capping does not show a clear 

dependence on dopant distribution as localization length did in bare films, but rather 

becomes approximately equal to the NC diameter for all samples based on granular metal 

fits of variable temperature conductivity data. Simulated band profiles for passivated 

surface ITO NCs (Figure 2.19a-eii) show the electron concentration exceeds the critical 

value throughout the NCs despite the presence of the core-shell interface band bending. 

Shell- and uniformly-doped NCs (Figure 2.19c,d,eii) show a flat band on the surface 

while in core-doped NCs the accumulation region from the core has not yet reached flat 

band at the NC surface (Figure 2.19a,bii). Examination of electron concentration profiles 

(Figure 2.20) provides an explanation for the experimental observation that grain size 

does not show a clear dependence of dopant distribution. As shown in the figure, the 

localization length expands upon passivation of the surface, eliminating the separation 

between electron localization volumes (Figure 2.20). NC localization volumes are now 

metallic spheres touching via point contacts, which have a significantly lower contact 

resistance due to a decreased tunneling barrier width. Dopant profile dependence is 

observed in neither grain size nor contact resistance following surface passivation by 

ALD.   
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In conclusion, dopant distribution within NCs was shown to be an effective means 

to influence the electronic properties of bare ITO NC films (including overall 

conductivity, contact resistance, and electron localization length) at a constant overall tin 

concentration. These effects were understood based largely on the variations dopant 

distribution effected on the near-surface depletion layer. The model typically used to 

analyze variable temperature conductivity assumes full dopant ionization and uniform 

electron distribution within NCs, which is obviously not a fully physical description of 

our materials. However, no established theories describing electron conduction through 

NC films explicitly incorporate the potential for dopant segregation or intra-NC band 

bending. The assumptions of uniform electron distribution and full dopant ionization 

create some uncertainty in the meaning of the ES-VRH-GD derived localization length. 

However, considering the localization lengths derived from simulated electron 

concentration profiles agree well with the values derived from these fits to the 

experimental data suggests that any error caused by these assumptions is small compared 

to the influence of dopant segregation on transport properties. Conclusions drawn here 

should be viewed as a general case for doped semiconductors in the presence of surface 

states as our simulations and their interpretations are applicable across a range of 

systems.  

We have examined the influence of dopant distribution within ITO NCs on the 

conductivity of NC films while also considering the presence of surface defects and the 

potential to passivate surface defects using ALD. Intra-NC dopant distribution plays a 

strong role in determining macroscopically observable electronic properties, such as film 

conductivity, and microscopic electronic properties, such as localization length and 

contact resistance, of bare NC films. The influence of dopant distribution on the 

properties listed above is the result of modulating surface depletion as these effects are 

eliminated following the deposition of alumina. These experimental results were 

supported by simulations of intra-NC band profiles, which showed identical trends in 

electron localization and its implications on contact resistance. Dopant distribution 

engineering offers a promising route through surface modification to improve the 
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conductivity of NC films for device applications. Using intra-NC dopant distribution to 

tune surface depletion additionally creates interesting new avenues of study regarding 

phenomena and applications that depend on the interaction between the conduction 

electrons and the surrounding environments such as electrochromic devices, plasmonics 

materials, sensors, and catalysts. 
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Chapter 3: Influence of Surface Scattering on Optical Extinction 

Properties of Semiconductor Nanocrystals 

 

 

This chapter text and figures have been adapted with permission from an in preparation 

work written in collaboration with Ankit Agrawal, Stephen Gibbs, Camila Saez, Robert 

Johns, and Delia Milliron. C.M.S. wrote the HEDA model, synthesized, characterized 

(SEM and ICP-AES), measured and fit optical extinction of ITO NCs. A.A. assisted in 

conceptualizing and writing the HEDA model. S.L.G. developed colloidal NC optical 

measurement techniques. C.A.S.C. conducted and analyzed SAXS measurements. R.W.J. 

assisted in experimental design and contributed intellectually. D.J.M. provided overall 

guidance. C.M.S. and D.J.M. wrote the manuscript with critical input from all the 

authors. 

 

 

The optical extinction coefficient of localized surface plasmon resonance (LSPR) 

in doped semiconductor nanocrystals (NCs) is determined by free charge carrier 

concentration and the mechanisms for damping the oscillation of those free carriers. We 

investigate the extinction coefficient of tin-doped indium oxide (ITO) NCs through size 

and dopant concentration series and find extinction coefficients as high as 51.5 μm
-1

 in 

the near infrared for 8 atomic% Sn 20 nm diameter ITO NCs. We develop a new fitting 

procedure for the optical extinction of an ensemble of well-dispersed NCs that accounts 

for NC size heterogeneity, electron concentration heterogeneity, surface scattering, and 

near-surface electron depletion. This heterogeneous ensemble Drude approximation 

(HEDA) model utilizes the same number of variables as previous models and fits data as 

well or better while using inputs and fitting parameters that are described by physical 

phenomena. The model improves the understanding of free carrier motion in doped 

semiconductor NCs by more accurately extracting carrier concentration and carrier 

damping. The HEDA model captures individual NC optical properties and their 

contributions to the ensemble spectra. We find the extinction coefficient of an average 

NC varies linearly with a ratio of electron concentration to damping. 
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INTRODUCTION 

Metal nanoparticles (NPs) and semiconductor nanocrystals (NCs) with high free 

charge carrier concentration are widely studied for their unique optical properties. Of 

principal importance is their strong, frequency-dependent polarizability arising from the 

oscillation of free charge carriers in response to incident electromagnetic radiation, 

otherwise known as a localized surface plasmon resonance (LSPR). The efficient 

extinction of incident radiation by nanoscale materials makes plasmonic NCs ideal 

candidates for use in electrochromic windows
24,59,60

, sensors
61

, and photothermal 

theranostics.
62–64

 In contrast to metal NPs, doped semiconductor NCs derive free charge 

carriers from charge-compensated crystal defects. Consequently, doped semiconductors 

have carrier concentrations orders of magnitude lower than metals, placing the LSPR 

frequency (ωLSPR) in the infrared (IR). The carrier concentration can easily be modulated 

in two ways: (1) synthetically through tuning dopant concentration and (2) post-

synthetically by imposing an electrochemical bias or through photoelectrochemical 

charging. Unable to significantly modulate carrier concentration, metal NP LSPR 

frequency is primarily tuned by manipulating particle size and geometry.
65

 The capability 

of tuning carrier concentration in semiconductor NCs IR LSPR tunability across a range 

of NC sizes, while Au NPs require sizes >200 nm or complex geometries to achieve IR 

absorption.
65,66

 While several studies have investigated Au NP absorption coefficients, 

doped semiconductor NC absorption coefficients, particularly for doped metal oxides, are 

not yet established.
67,68

 The applications mentioned above require high absorption 

coefficient materials to be feasible and given that doped metal oxide NCs show promise 

as strong IR absorbers, it is important to quantitatively investigate their optical extinction 

properties. 

The far-field extinction spectrum of an ensemble of plasmonic NCs is influenced 

by a variety of factors. Of principal importance are damping processes that broaden the 

LSPR of individual NCs, broadening due to ensemble NC heterogeneity (heterogeneous 

broadening), and electron concentration. Individual NC damping is a direct measure of 

the electron mobility within a NC, which is dependent on the electron mean free path. 
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The mean free path has been proposed to be dominated by surface scattering in 

nanostructures with one or more dimensions smaller than the bulk mean free path. 

Wokaun et al. observed damping proportional to surface scattering in Ag NPs, which 

depends on electron concentration and NC radius.
69

 The presence of surface scattering 

further necessitates accounting for near-surface depletion regions, which effectively 

shrink the volume accessible to conduction electrons. Zandi et al. and Agrawal et al. 

observed a strong effect of near-surface depletion regions on the optical properties of ITO 

NC films and dispersions.
30,31

 Failure to account for near-surface depletion when fitting 

and interpreting LSPR spectra leads to an underestimation of damping within a NC due to 

an overestimate of volume accessible by conduction electrons. 

Current optical models frequently convolute individual NC damping and 

heterogeneous broadening into a single damping term, leading to misinterpretation of 

material electronic properties. Despite the rather narrow size distributions achieved by 

recent synthetic developments, size polydispersity is still often nearly 10%.
29,32

 A size 

distribution within an ensemble of NCs causes a distribution of intra-NC electron 

mobility due to variations in surface scattering, resulting in heterogeneous peak 

broadening. Additionally, Lounis et al. observed decreased dopant activation in ITO NCs 

in samples with dopant-enriched surfaces, indicating a decrease in dopant activation in 

the near-surface region.
11

 The fraction of NC volume in the near-surface region shrinks 

monotonically as NC size increases. As a result, size polydispersity also creates free 

carrier concentration polydispersity within a population of NCs. Johns et al. showed 

striking variability in absorption peak energy and linewidth of single NC absorption 

spectra in populations of aluminum-doped zinc oxide and ITO NCs.
70

 These results 

support the existence of significant carrier concentration polydispersity even among a 

group of NCs synthesized in the same batch, which results in heterogeneous broadening. 

Although many factors have been identified which influence the absorption spectrum of 

doped semiconductor NCs, a quantitative, physics-based model that captures each of 

these contributions has not yet been published. 
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Herein, we investigate the influence of NC size and dopant concentration on the 

extinction peak energy, lineshape, and extinction coefficient for doped semiconductor 

NCs. We use ITO NCs of varying dopant concentrations and sizes as a model system. 

Using quantitative analysis of optical spectra, we find the ITO NC extinction coefficient 

correlates strongly with NC size and dopant concentration. We suggest these correlations 

result from changes in electron concentration and damping due to differences in dopant 

activation, surface scattering, and near-surface depletion. We present a model for fitting 

optical spectra of NC ensembles that captures the effects of surface scattering, depletion 

near the NC surface, and heterogeneity in size and electron concentration. This procedure 

uses only well-known material constants and routinely measured NC physical properties 

to fit for a distribution of NC properties that cannot be easily measured directly, namely 

carrier concentration, carrier concentration polydispersity, and near-surface depletion 

width. We find the extinction coefficient of an average NC varies with a ratio between 

electron concentration and damping and the previously used model, the simple Drude 

model, underestimates the optical conductivity of NCs due to convoluting individual NC 

damping and heterogeneous broadening contributions. Finally, by analyzing the far-field 

response as a sum of contributions from individual NCs, the ensemble fit enables analysis 

of physical properties for the average NC within an ensemble. 

THEORY 

The Beer-Lambert Law defines the efficiency with which a material extinguishes 

light of a particular wavelength. The Beer-Lambert Law is considered from two 

perspectives. The first is within a homogeneous framework, represented as 

𝐴 =
𝜖𝑓𝑉𝑙

ln(10)
  (3.1) 

where A is the measured extinction in base 10 log scale, also referred to as optical density 

(OD), 𝑓𝑉 is the volume fraction of the absorbing material, 𝑙 is the pathlength through the 

sample, 𝑙𝑛(10) is included to convert extinction to natural log scale, and 𝜖 is the 

extinction coefficient (μm
-1

). The homogeneous extinction framework implicitly averages 
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the extinction contributions of all NCs in the dispersion, yielding an effective extinction 

coefficient for a given distribution of NC sizes and dopant concentrations. The Beer-

Lambert Law is capable of characterizing intra-NC electronic transport properties by 

modifications accounting for three phenomena: near-surface depletion, size 

polydispersity, and electron concentration polydispersity.   

Metal oxide surfaces are passivated by adsorbed water species, including surface 

hydroxyls, that create a density of electronic states near the NC surface. For ITO, the 

surface states are within the optical band gap and result in a decreased electron 

concentration near the NC surface, known as a depletion region (Figure 3.1ai). Due to the 

buildup of electrostatic potential, depletion regions near the NC surface decrease the 

fraction of the NC volume accessible to conduction electrons, 𝑓𝑒 (Figure 3.1aii). The 

radius of the spherical volume accessible to conduction electrons is 𝑓𝑒
1/3
𝑟𝑁𝐶, where 𝑟𝑁𝐶 is 

the physical NC radius. This decreased radius is referred to as the electron accessible 

radius. Aside from decreasing the volume accessible to electrons, near-surface depletion 

creates a pseudo core-shell geometry where the NC is composed of a plasmonic core with 

an electron-deficient dielectric shell. This geometry requires a modification to the 

dielectric function of these materials to successfully model their optical response. 
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Figure 3.1: Theoretical concepts. NC with surface depletion band profile (ai) and 

schematic (aii), damping due to surface scattering, bulk scattering, and total scattering 

(b), and NC surface dopant compensation schematic (ci) and fractional activation (cii). 

 

The LSPR line width of a single spherical NC is described by the damping 

constant, which is the rate at which conduction electrons scatter. While damping is often 

used as a fitting parameter, it can be calculated from the Drude conductivity as 

𝛤 =
(3𝜋2)

1
3ℏ

𝑚𝑒
∗ 𝑛𝑒

1

3 (
1

𝑙𝑀𝐹𝑃
)  (3.2) 

where ℏ is Planck’s constant, 𝑚𝑒
∗  is the effective electron mass, 𝑛𝑒 is the electron 

concentration, and 𝑙𝑀𝐹𝑃 is the electron mean free path. For NCs of radius comparable to 

the material bulk mean free path, surface scattering influences the overall mean free path 

of NC conduction electrons. Surface scattering is included in the mean free path using an 

assumption of surface scattering being a specular scattering event and applying 

Matthiessen’s rule as
71

 

1

𝑙𝑀𝐹𝑃
= (

1

4

3
𝑟𝑁𝐶𝑓𝑒

1
3

+
1

𝑙𝑏𝑢𝑙𝑘
) (3.3) 

where 𝑙𝑏𝑢𝑙𝑘 is the bulk mean free path (17 nm for ITO).
10

 Surface damping contribution, 

bulk damping contribution, and total damping are plotted against the electron accessible 

radius for a range of electron concentrations in Figure 3.1b. Inspection of the total 

damping curve shows the dominance of surface scattering when the electron accessible 
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radius is smaller than the bulk mean free path. Surface scattering becomes negligible at 

150 nm, roughly 10x the bulk mean free path. The size-sensitivity of surface damping, 

particularly below 10 nm radius, and typical  NC size polydispersity of about 10% 

emphasizes the need to account for NC size polydispersity when extracting NC properties 

for ensemble LSPR spectra.  

Dopants in the near surface region of NCs and thin films exhibit a lower 

activation, which has strong implications for electron concentration.
11

 We assume, at 

modest dopant concentrations, full activation of dopants outside of the near-surface 

region. The thickness of the deactivation layer is assumed to be 0.5 nm, half of an ITO 

unit cell, as shown in Figure 3.1ci.
9
 Again, note the size-sensitivity of the fraction of 

activated dopants, 𝑓𝐴, in a uniformly doped NC for NCs of radius less than 10 nm (Figure 

3.1cii). In NC populations of non-uniform size, dopant activation variations result in 

electron concentration heterogeneity. When measuring the optical response of an 

ensemble of NCs, both size polydispersity and carrier concentration variability will 

contribute to heterogeneous broadening of the LSPR peak. When not considered, 

heterogeneous broadening will obscure the values for carrier concentration and carrier 

damping deduced from the peak width. An alternative framework for the Beer-Lambert 

law is derived to take both near-surface depletion and NC heterogeneity into account. The 

new model is termed the Heterogeneous Ensemble Drude Approximation (HEDA). 

We model size heterogeneity and electron concentration heterogeneity using 

Gaussian distributions, requiring modifications to existing optical models. To do this, we 

construct a two-parameter probability density function with a 41x41 data point mesh. The 

extinction of each of the 1600 points is probability-weighted and summed to give the 

ensemble extinction. The complex dielectric function, 휀𝑁𝐶,𝑖𝑗(𝜔), of each spherical 

electron cloud with radius, 𝑟𝑖, and electron concentration, 𝑛𝑒,𝑗, is expressed using the 

Drude-Lorentz model 

휀𝑁𝐶,𝑖𝑗(𝜔) = 휀∞ −
𝜔𝑝,𝑗
2

𝜔2+𝑖𝜔𝛤𝑖𝑗
   (3.4) 
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where 휀∞ is the material high-frequency dielectric constant, 𝛤𝑖𝑗 is the damping constant, 

and 𝜔𝑝,𝑗 is the plasma frequency. The damping constant, 𝛤𝑖𝑗, is defined using (3.2) and 

(3.3) as 

𝛤𝑖𝑗 =
(3𝜋2)

1
3ℏ

𝑚𝑒
∗ 𝑛

𝑒,𝑗

1

3 (
1

4

3
𝑟𝑁𝐶,𝑖𝑓𝑒

1
3

+
1

𝑙𝑏𝑢𝑙𝑘
)   (3.5) 

where ℏ is Planck’s constant, 𝑚𝑒
∗  is the effective electron mass, and  𝑛𝑒,𝑗 is the electron 

concentration. NC surfaces are relevant scattering sources and taken into consideration 

for NC radii less than 10 times the bulk electron mean free path as shown in Figure 3.1b. 

𝜔𝑝,𝑗 is defined as 

𝜔𝑝,𝑗 = √
𝑞2𝑛𝑒,𝑗

0𝑚𝑒
∗   (3.6) 

where 𝑞 is the electron charge and 휀0 is the permittivity of vacuum. The presence of 

depletion near NC surfaces necessitates a core-shell model where the shell has a non-

degenerate carrier concentration. The core-shell model utilizes a Maxwell-Garnett 

effective medium approximation (EMA) to define the dielectric function of a core-shell 

NC, 휀𝑐𝑠,𝑖𝑗, as 

휀𝑐𝑠,𝑖𝑗(𝜔) = 휀𝑠ℎ𝑒𝑙𝑙 (
( 𝑁𝐶,𝑖𝑗+2 𝑠ℎ𝑒𝑙𝑙)+2𝑓𝑒( 𝑁𝐶,𝑖𝑗− 𝑠ℎ𝑒𝑙𝑙)

( 𝑁𝐶,𝑖𝑗+2 𝑠ℎ𝑒𝑙𝑙)−𝑓𝑒( 𝑁𝐶,𝑖𝑗− 𝑠ℎ𝑒𝑙𝑙)
)   (3.7) 

where 휀𝑠ℎ𝑒𝑙𝑙 is the dielectric function of the depleted shell. It is noted that the EMA 

converges to 휀𝑁𝐶,𝑖𝑗(𝜔) when𝑓𝑒 = 1 and is therefore a general solution. In systems of non-

interacting spheres the absorption cross section of a given particle, 𝜎𝑖𝑗, is defined by Mie 

theory as 

𝜎𝑎𝑏𝑠,𝑖𝑗(𝜔) = 8𝜋
2𝑟𝑁𝐶,𝑖
3 𝜔√휀𝑚𝐼𝑚𝑎𝑔 {

𝑐𝑠,𝑖𝑗(𝜔)− 𝑚

𝑐𝑠,𝑖𝑗(𝜔)+2 𝑚
}   (3.8) 

where 휀𝑚 is the dielectric constant of the medium. For NCs smaller than 5% the 

wavelength of exciting light, scattering is negligible and extinction is assumed to be 

entirely due to absorption.
72

 This assumption holds up to at least 150 nm diameter for 

ITO nanocrystals. Finally, the absorption cross section of all particles is then plugged into 

the heterogeneous Beer-Lambert law,  
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𝐴 =
𝑓𝑉𝑙

ln(10)𝑉
∑ ∑ (𝜎𝑎𝑏𝑠,𝑖𝑗(𝜔)𝑝𝑛𝑒,𝑗𝑝𝑟𝑖∆𝑛𝑒∆𝑟)

𝑛
𝑗

𝑚
𝑖    (3.9) 

where 𝑝𝑛𝑒,𝑗 and 𝑝𝑟𝑁𝐶,𝑖 are the probabilities of 𝑛𝑒,𝑗 and 𝑟𝑁𝐶,𝑖, respectively, ∆𝑛𝑒 and ∆𝑟 are 

the step sizes for 𝑛𝑒 and 𝑟, respectively, and 𝑉 is the probability normalized volume of a 

NC, defined as 

𝑉 = ∑ ∑ (
4

3
𝜋𝑟𝑁𝐶,𝑖

3 𝑝𝑛𝑒,𝑗𝑝𝑟𝑁𝐶,𝑖∆𝑛𝑒∆𝑟)
𝑛
𝑗

𝑚
𝑖   (3.10) 

Simulations of quantitative single NC extinction spectra using Equations (3.4)-(3.10) 

with varying electron concentration, size, and near-surface depletion are shown in Figure 

3.2. 

 



 72 

 
Figure 3.2: Simulated LSPR spectra with varying electron concentration (a), NC radius 

(b), electron concentration with a calculated depletion using a linear fit to Figure 5d (c), 

radius with a calculated electron concentration using a 0.5 nm surface deactivation layer 

(d), and depletion (e) and LSPR peak extinction coefficient v. a ratio of electron 

concentration to damping.  
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Figure 3.3: Dopant activation v. non-surface dopant concentration. 

 

EXPERIMENTAL PROCEDURES 

ITO NCs of varying dopant concentration and size were synthesized using 

adaptations of the slow injection method developed by Jansons et al.
32

 This synthetic 

method leads to low polydispersity and highly controlled NC sizes and dopant 

concentration. The NC dopant concentration and size were varied by altering the molar 

concentration of tin and indium in the precursor solution and altering the injection 

volume, respectively. Overall NC size and size polydispersity were measured by small-

angle x-ray scattering (SAXS) and verified by scanning transmission electron microscopy 

(STEM) image analysis (Figure 3.4 – 3.6). Overall dopant incorporation was quantified 

by elemental analysis using inductively coupled plasma-atomic emission spectroscopy 

(ICP-AES). 
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Figure 3.4: Scanning transmission electron microscopy (STEM) images of 20nm 

0at% (a), 1at% (b), 3at% (c), 4.5at% (d), 5at% (e), 6.5at% (f), and 8at% (g) ITO NCs and 

8nm (h), 9nm (i), 13nm (j), 14nm (k), and 16nm (l) 5at% ITO NCs. Scale bars represent 

200nm. 
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Figure 3.5: Doping series small-angle x-ray scattering. 
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Figure 3.6: Size series small-angle x-ray scattering.  
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Stock NC dispersions for optical measurements were prepared in a solution of 1.8 

mM oleic acid in tetrachloroethylene (TCE). Dilute dispersions in 1.8 mM oleic acid in 

TCE were prepared from stock solutions immediately before optical measurement and 

dilution factors were calculated using mass fractions of stock to total solution for each 

sample. Optical measurements were taken on dilute dispersions in a 0.5 mm pathlength 

liquid cell (Buck Scientific) with KBr windows using Fourier transform infrared (FTIR) 

spectroscopy (Bruker Vertex 70) and UV-vis-NIR (Agilent Cary series) spectrometers. 

All spectra were taken in transmission mode and are reported as extinction. NC volume 

fraction was determined using ICP-AES measurements of stock solutions. Fits to optical 

extinction spectra were conducted using a MATLAB code (Appendix I). 

To investigate the optical extinction coefficient of ITO NCs, optical spectra were 

taken of NC dispersions at various NC volume fractions. Figure 7a shows a 

representative dilution series at 5 different dilution factors ranging from 840x to 160x 

relative to the stock solution. Accurate application of Mie theory requires the absence of 

NC-NC interactions such as NC-NC coupling or aggregation. This condition can be 

tested by varying the volume fraction of NCs in solution and inspecting extinction spectra 

for any response other than a linear dependence of OD on NC concentration across all 

wavelengths. This criterion is validated in two ways. First, when normalized, spectra of 

all dilutions overlap nearly perfectly (Figure 7b). Second, the peak extinction at ωLSPR is 

plotted against NC volume fraction and shown to be linear (Figure 7c). The extinction 

coefficient is calculated from the slope of that line. 
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Figure 3.7: Extinction coefficient dilution series (a), normalized dilution spectra (b), 

and linear fit to extinction v. NC volume fraction at LSPR peak maximum (c) for 6.5 

atomic% Sn doped 20nm ITO.  

EXTINCTION COEFFICIENT OF ITO NCS 

Two series were prepared to investigate the role of NC size and dopant 

concentration in the optical properties of ITO NCs: a size series from 8 to 20 nm diameter 

at 5 atomic% Sn and a doping series from 0 atomic% Sn to 8 atomic% Sn at 20 nm 

diameter. For each sample, the extinction coefficient at ωLSPR was extracted from a linear 

fit of a series of dilution measurements as described previously. While the extinction 

coefficient is not useful for probing the physics of systems with heterogeneous 

broadening, it is a critical engineering parameter for the applications previously 

mentioned.   

Figure 3.8a shows the quantitative extinction spectrum of each sample in the 

dopant series. Increasing dopant concentration causes a significant blue shift and 

increased intensity of the ITO LSPR peak as expected for an increase in carrier 

concentration. Inspection of Figure 3.8b shows an approximately linear relationship 

between extinction coefficient and dopant concentration up to about 5 atomic% Sn. The 

saturation or significant slowing of the trend with further doping is understood by a 

dopant compensation region in the Brouwer diagram of ITO above 5 atomic% Sn 
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wherein it becomes favorable for the positive charge associated with Sn defect is 

compensated by forming a neutral defect cluster with a nearby oxygen interstitial.
9,12

 The 

linear increase of extinction coefficient with dopant concentration can be ascribed to 

proportionally increasing electron concentration. This interpretation is supported by an 

increase of the optical band gap with dopant concentration, consistent with increasing 

electron concentration increasing, i.e. the Burstein-Moss effect (Figure 3.9). 

 

 
Figure 3.8: Dopant concentration series LSPR extinction spectra normalized to 

extinction coefficient (a), extinction coefficient and LSPR peak energy v. dopant 

concentration, 𝑛𝑑, (b), and LSPR peak full-width at half-maximum (FWHM) v. dopant 

concentration (c). 
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Figure 3.9: Tauc plot of ITO NCs showing optical bandgap widening with increasing 

dopant concentration (a) and NC radius (b). 

 

LSPR peak energy rapidly increases with dopant concentration under 4.5 

atomic% Sn before beginning to saturate, consistent with increased electron 

concentration. In the absence of near-surface depletion regions, the LSPR peak energy is 

expected to blue shift proportional with the square root of electron concentration. 

However, an increase in surface depletion width insulates the free electron core from the 

host dielectric with an electron-deficient, high dielectric, insulating shell. This change in 

dielectric surroundings means that increasing depletion width causes an LSPR red shift, 
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and thus complicates the relationship between carrier concentration and LSPR peak 

frequency. This observation agrees with observations above that increasing dopant 

concentration primarily increases the electron concentration. Dopant concentration has a 

significant effect on LSPR peak width (Figure 3.8c). The LSPR peak full-width at half-

maximum (FWHM) trends upward with increased dopant concentration. This trend is 

consistent with increased electron concentration at a constant NC radius leading to 

increased damping according to (3.2). However, FWHM is not sufficient to describe 

damping physics as it contains contributions from single NC damping and heterogeneous 

broadening. 

 

 
Figure 3.10: Size series LSPR extinction spectra normalized to extinction coefficient (a), 

extinction coefficient and LSPR peak energy v. activated dopant concentration (b), and 

LSPR peak full-width at half-maximum (FWHM) v. theoretical total damping (c). The 

orange (b) and purple (c) data points refer to the 13nm sample. 

 

Figure 3.10a shows the quantitative extinction spectrum of each sample in the size 

series. Dopant activation is expected to be a function of purely size for dopant 

concentrations below ~5 atomic% Sn as shown in Figure 3.1cii. Due to this, dopant 

activation could be assumed constant for the dopant concentration series throughout the 

range of modest dopant concentration. For the size series the activated dopant 

concentration is defined as 𝑛𝑑𝑓𝐴 where 𝑛𝑑 is the dopant concentration by ICP-AES. 

Extinction coefficient trends approximately linearly with the activated dopant 

concentration (Figure 3.10b). This correlation is attributed, in part, to an increase of 

electron concentration at increased NC size and is supported by an increase of the optical 

band gap with NC radius at constant 5 at% Sn (Figure 3.9). 
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LSPR peak energy trends upward with activated dopant concentration. This is 

expected due to electron concentration increasing with NC radius, though this trend is 

still convoluted with changes to the near-surface depletion region volume fraction due 

NC size. NC radius is seen to have a strong effect on LSPR peak width (Figure 3.10c). 

The LSPR FWHM trends toward larger values as NC radius becomes smaller. The size 

effect on dopant activation convolutes the effect of decreasing mean free path due to 

surface scattering. Interestingly, smaller NCs have a lower expected electron 

concentration yet exhibit significantly larger values of FWHM. This is consistent with 

damping becoming surface scattering dominated, though it fails to capture heterogeneous 

broadening due to the size polydispersity of these samples, which ranges from 5% to 

12%. 

The extinction coefficients at the LSPR peak of ITO NCs reported here range 

from 4.5 μm
-1

 at 1300 cm
-1

 for 20 nm undoped indium oxide NCs to 51.5 μm
-1

 at 5289 

cm
-1

 for 20 nm 8 atomic% Sn ITO NCs. It is interesting to compare the extinction 

coefficient of ITO NCs to Au nanostructures of similar size or peak energy. The highest 

extinction coefficient here, 51.5 μm
-1

, is exceptionally high when compared to Au 

nanostructures with IR resonance, which exhibit an extinction coefficient of 22.7 μm
-1

 at 

8620 cm
-1

.
65

 These Au nanostructures exhibit an extinction coefficient lower than that of 

20 nm 3 atomic% Sn ITO NCs. Remarkably, the 20 nm 8 atomic% Sn ITO NCs have 

extinction coefficient quite close to 20 nm spherical Au NPs (74.2 μm
-1

) despite having a 

peak nearly 14000 cm
-1

 lower in energy. The observations shown above require 

heterogeneous broadening to be accounted for to explore the underlying physics behind 

them. 

EXTRACTING RELIABLE MATERIAL PARAMETERS WITH THE HEDA MODEL 

The previous section exemplifies the type of conclusions that can be drawn from 

ensemble measurements of plasmonic NCs. General trends in extinction with size and 

doping can be determined, but their interpretation in terms of fundamental material 

properties is clouded by the contributions of size and carrier concentration polydisperity. 
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By fitting the extinction spectra with a model that accounts for heterogeneity, the 

behavior of free electrons in degenerately doped ITO NCs becomes more clear. Doping 

and size series optical extinction spectra were fit and analyzed using a novel fitting 

procedure that accounts for surface scattering, near-surface depletion, and heterogeneity. 

Previous simple Drude approximation (SDA) model fitting procedures require the input 

of pathlength and material constants that are used to fit for volume fraction, damping 

constant, and plasma frequency. These fitting procedures often yield a volume fraction 

that is not physically reconcilable with the known characteristics of the measured sample, 

but instead is a sort of correction factor used to simply scale the fitted extinction 

intensity. The model presented here, in addition to the basic inputs above, requires the 

input of the NC radius mean value, radius standard deviation, and measured volume 

fraction. The fitting procedure outputs are the electron concentration mean value and 

standard deviation and the non-depleted volume fraction. This represents an identical 

number of fit variables to previous SDA fitting procedures, but provides far richer and 

more accurate information regarding the properties of the NC ensemble. 

Fitting with the HEDA model is compared to the SDA model using volume 

fraction as a fitting parameter, and to the SDA with volume fraction fixed to the directly 

measured value. An example of fits to experimental data using the three models is shown 

in Figure 3.11a and all fitted spectra are shown in Figure 3.12 and are summarized for the 

dopant concentration (Table 3.1) and NC size (Table 3.2) series. Comparing the fits in 

Figure 5a reveals shortfalls of the SDA model: the inability to fit proper peak shape, peak 

intensity, and converge on the measured volume fraction consistently. The SDA 

overestimates peak intensity and finds volume fractions lower than measured 

experimentally in almost every case. These discrepancies arise because the SDA does not 

account for near-surface depletion and the associated core-shell EMA, and it convolutes 

heterogeneous broadening and single NC damping as a single damping term. When the 

volume fraction is fixed to the measured value, the damping tends to increase and the 

plasma frequency red shifts as the fit attempts to decrease peak intensity, resulting in 

poor fits as shown in Figure 3.11a. 
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Figure 3.11: Fitting extinction spectra. Simple Drude Approximation (SDA) with a 

floating NC volume fraction, SDA with measured NC loading, and heterogeneous Drude 

(HEDA) fits to extinction data for 5atomic% 8 nm ITO (a), average NC (black) and 

ensemble (red) extinction coefficient dependence on plasma frequency and damping (b), 

SDA damping constant compared to the HEDA-derived damping (c), and near-surface 

depletion width versus electron concentration (d). 
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Figure 3.12: Optical extinction fits with simple Drude approximation (SDA) with a 

floating NC loading, SDA with measured NC loading, and heterogeneous Drude model 

for 20nm 0at% (a), 1at% (b), 3at% (c), 4.5at% (d), 5at% (e), 6.5at% (f), and 8at% (g) 

ITO NCs and 8nm (h), 9nm (i), 13nm (j), 14nm (k), and 16nm (l) 5at% ITO NCs. 
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Table 3.1: Dopant concentration series optical extinction fit parameters.  

 

Table 3.2: NC size series optical extinction fit parameters. 

Sample Details 

At% Sn 5.42 5.54 5.03 5.36 5.03 4.97 

μr (nm) 4.32 4.55 6.89 7.11 7.97 10.19 

σr (nm) 0.49 0.46 0.85 0.57 0.54 0.94 

fv from ICP 6.06E-05 5.05E-05 3.30E-05 3.35E-05 2.12E-05 7.72E-06 

SDA w/ 

Floating fv 

fv 3.07E-05 3.65E-05 2.70E-05 2.80E-05 2.02E-05 7.47E-06 

wp (cm
-1

) 12305 13932 13204 15261 14159 13995 

Damping 

(cm
-1

) 

1398 1419 1359 1037 1022 890 

ne (cm
-3

) 6.8E+20 8.7E+20 7.8E+20 1.0E+21 9.0E+20 8.7E+20 

SDA w/  

Fixed fv 

wp (cm
-1

) 11035 13622 13055 15196 14143 13965 

Damping 

(cm
-1

) 

2683 1936 1632 1232 1072 970 

ne (cm
-3

) 5.4E+20 8.3E+20 7.6E+20 1.0E+21 8.9E+20 8.7E+20 

Heterogeneous 

Model 

μne (cm
-3

) 3.6E+20 6.4E+20 5.9E+20 8.8E+20 8.2E+20 8.3E+20 

σne (cm
-3

) 3.3E+19 5.4E+19 1.1E+20 3.8E+19 7.0E+19 9.3E+19 

dep 0.25 0.46 0.52 0.61 0.78 0.90 

Calculated Heterogeneous 

Damping(cm
-1

) 

1433 1405 957 1021 868 754 

 

Sample Details 

At% Sn 0 1.07 2.97 4.45 6.13 7.68 

μr (nm) 10.40 9.60 10.23 9.97 9.64 9.89 

σr (nm) 0.58 0.89 0.63 0.91 1.17 1.19 

fv from ICP 2.44E-04 6.44E-05 5.43E-05 3.30E-05 2.98E-05 3.27E-05 

SDA w/ 

Floating fv 

fv 1.90E-04 6.07E-05 5.37E-05 3.28E-05 3.48E-05 3.43E-05 

wp (cm
-1

) 3831 8234 11777 14469 15236 15950 

Damping 

(cm
-1

) 

667 1065 1138 1060 1360 1229 

ne (cm
-3

) 6.6E+19 3.0E+20 6.2E+20 9.3E+20 1.0E+21 1.1E+21 

SDA w/  

Fixed fv 

wp (cm
-1

) 3691 8199 11771 14468 15294 15963 

Damping 

(cm
-1

) 

835 1126 1149 1064 1189 1178 

ne (cm
-3

) 6.1E+19 3.0E+20 6.2E+20 9.3E+20 1.0E+21 1.1E+21 

Heterogeneous 

Model 

μne (cm
-3

) 4.2E+19 2.5E+20 5.5E+20 8.6E+20 1.0E+21 1.1E+21 

σne (cm
-3

) 1.8E+19 7.6E+19 1.1E+20 9.9E+19 1.7E+20 1.5E+20 

dep 0.44 0.62 0.77 0.80 0.99 0.90 

Calculated Heterogeneous 

Damping (cm
-1

) 

307 539 645 718 776 798 
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In addition to an improved fit quality afforded by the HEDA model, it also 

enables the analysis of the properties of the average NC in an ensemble by deconvoluting 

heterogeneous and homogeneous broadening. The absorption of the average NC in 

dispersion is simulated using the mean value electron concentration, size, and near-

surface depletion derived from HEDA fitting (Figure 3.13). Figure 3.11b shows the 

extinction coefficient at LSPR peak of an average NC in the measured series and the 

ensembles. Single NC absorption exhibits a significantly higher extinction coefficient 

than the corresponding ensemble. This difference arises due to the distribution of peak 

locations, intensities, and widths that broaden the absorption peak of the ensemble and 

reducing the peak intensity. Additionally, the extinction coefficient of an average NC 

increases with a ratio of electron concentration to damping multiplied by the free electron 

volume fraction. This trend is in agreement with the analytical solution of Mie theory at 

the LSPR peak and the simulations conducted in Figure 3.2. This relationship reveals the 

key to achieving high absorbing NC ensembles in the IR as monodisperse NCs of large 

radius and high dopant concentration. 

 



 88 

 
Figure 3.13: Average NC LSPR absorption spectra compared to ensemble 

absorption. Average NC absorption coefficient (solid) is higher and shows a narrower 

lineshape than ensemble absorption coefficient (dashed). 

 

 

Starting from the Drude-Lorentz dielectric function, 

휀𝑁𝐶(𝜔) = 휀∞ −
𝜔𝑝
2

𝜔2+𝑖𝜔𝛤
  (3.11) 

The NC dielectric function can described as a summation of the real and imaginary parts 

of the dielectric function 

휀𝑁𝐶(𝜔) = 휀1(𝜔) + 𝑖휀2(𝜔)  (3.12) 

Where 

휀1(𝜔) = 휀∞ −
𝜔𝑝
2

𝜔2+𝛤2
  (3.13a) 

and 

휀2(𝜔) =
𝜔𝑝
2𝛤

𝜔(𝜔2+𝛤2)
  (3.13b) 

Plugging the dielectric function into the Mie Theory absorption coefficient 
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𝜖𝑁𝐶 =
𝜎

𝑉𝑁𝐶
= 6𝜋𝜔√휀𝑚𝐼𝑚𝑎𝑔 {

𝑁𝐶(𝜔)− 𝑚

𝑁𝐶(𝜔)+2 𝑚
} = 6𝜋𝜔√휀𝑚𝐼𝑚𝑎𝑔 {

1(𝜔)+𝑖 2(𝜔)− 𝑚

1(𝜔)+𝑖 2(𝜔)+2 𝑚
} (3.14) 

The LSPR condition is defined by 

휀1(𝜔) = −2휀𝑚  (3.15) 

Plugging (3.15) in (3.14) 

𝜖𝑁𝐶 = 6𝜋𝜔𝐿𝑆𝑃𝑅√휀𝑚𝐼𝑚𝑎𝑔 {
𝑖 2−3 𝑚

𝑖 2
}  (3.16) 

(3.16) simplifies to 

𝜖𝑁𝐶 = 18𝜋𝜔𝐿𝑆𝑃𝑅√휀𝑚
𝑚

2
 (3.17) 

The imaginary part of the dielectric is solved for as 

휀1 = 휀∞ −
𝜔𝑝
2

𝜔𝐿𝑆𝑃𝑅2+𝛤2
= −2휀𝑚 →

𝜔𝑝
2

𝜔𝐿𝑆𝑃𝑅2+𝛤2
= 휀∞ + 2휀𝑚 (3.18a) 

휀2(𝜔) =
𝜔𝑝
2𝛤

𝜔𝐿𝑆𝑃𝑅(𝜔𝐿𝑆𝑃𝑅2+𝛤2)
= (

𝛤

𝜔𝐿𝑆𝑃𝑅
) (

𝜔𝑝
2

𝜔𝐿𝑆𝑃𝑅2+𝛤2
) = (

𝛤

𝜔𝐿𝑆𝑃𝑅
) (휀∞ + 2휀𝑚) (3.18b) 

Plugging (3.18b) into (3.17) 

𝜖𝑁𝐶 = 18𝜋휀𝑚

3

2 𝜔𝐿𝑆𝑃𝑅
2

𝛤
  (3.19) 

The relationship between 𝜔𝐿𝑆𝑃𝑅 and 𝜔𝑝 is found by 

휀1 = 휀∞ −
𝜔𝑝
2

𝜔𝐿𝑆𝑃𝑅2+𝛤2
= −2휀𝑚 → 𝜔𝐿𝑆𝑃𝑅

2 =
𝜔𝑝
2

∞+2 𝑚
− 𝛤2  (3.10) 

Finally, plugging (3.10) into (3.9) 

𝜖𝑁𝐶 = 18𝜋휀𝑚

3

2 (
𝜔𝑝
2

𝛤( ∞+2 𝑚)
− 𝛤)  (3.11) 

It is clear from (3.11) that when 𝜔𝑝 ≫ 𝛤, 𝜖𝑁𝐶 ∝
𝜔𝑝
2

𝛤
∝ 𝑛𝑒

2

3 ∗ (
1

17
+

1

4

3
𝑟𝑁𝐶𝑓𝑒

1
3

)

−1

 

 

Fitting LSPR ensemble absorption with SDA is a common method for assessing 

the conductivity or mobility of electrons within NCs. These properties are calculated 

from the fitted electron concentration and damping constant. While the SDA-derived 

electron concentration does not differ significantly from the average electron 

concentration found by fitting with HEDA model, simulating absorption spectra of 
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average NCs reveals that single NCs exhibit a significantly reduced linewidth than the 

associated ensemble. Using SDA to represent the apparent damping of the ensemble and 

HEDA model to represent the average NC, Figure 5c shows a comparison of ensemble 

and single NC damping. The SDA damping is 12-110% higher than the damping of an 

average NC in the samples fit using the HEDA model. The overestimate of damping by 

the SDA results from the assumption of each NC being identical, artificially broadening 

the LSPR when that assumption fails. The overestimation of damping results in 

misleadingly low conductivity and mobility within the NCs and inhibits meaningful 

interpretation of these material properties.  

One potential source of error for the HEDA model is non-physical fit parameter 

correlations. While the HEDA model has an identical number of free parameters as the 

SDA, it contains multiple broadening parameters (specifically, 𝑓𝑒 and 𝜎𝑛𝑒). The depletion 

width of a semiconductor with a depleted surface is expected to be dependent on the 

ionized dopant concentration. Figure (3.11d) shows the depletion width, 𝑊𝑑 =

𝑟𝑁𝐶(1 − 𝑓𝑒)
1

3, decreases with the electron concentration of NCs in the dispersion, as 

expected. Electron concentration is considered to be representative of the ionized dopant 

concentration here. The second fitted broadening parameter, 𝜎𝑛𝑒, shows no correlation 

with the non-depleted volume fraction (Figure 3.14). This independence of the two 

primary broadening factors indicates the HEDA model is robust. 
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Figure 3.14: Deconvolution of optical parameters. Plasmonic volume fraction (HEDA 

model fit 𝑓𝑒), which determines homogeneous broadening, and heterogeneous broadening 

(HEDA model fit electron concentration polydispersity, 𝜎𝑛𝑒) parameters show no 

correlation. 

 

In conclusion, NC dopant concentration and size were shown to play a prominent 

role in determining LSPR peak location, lineshape, and intensity. These effects are 

understood based on surface dopant compensation, surface scattering, and near-surface 

depletion. These effects were analyzed using a novel fitting procedure to account for NC 

size and electron concentration heterogeneity and near-surface depletion, presenting a 

powerful for characterizing electronic properties of NCs that are not easily measured. The 

HEDA model showed a strong correlation between electron concentration and extinction 

coefficient for ITO NCs. These results should be viewed as generally valid for doped 

semiconductor NCs at sizes comparable to the material bulk mean free path. 

We have examined the influence of NC size and dopant concentration on the 

LSPR of ITO NCs. NC extinction coefficient and LSPR peak position were shown to 

correlate with dopant concentration and NC size. This was understood by surface dopant 

compensation resulting in a lower dopant activation for smaller NCs. LSPR peak width 
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was shown to be determined by single NC damping and heterogeneous broadening. In the 

size regime investigated here single NC damping is dominated by surface scattering and 

heterogeneous broadening results from NC to NC variations in size and electron 

concentration. These results were bulwarked by a novel LSPR peak fitting procedure, 

accounting for surface scattering, heterogeneity, and near surface depletion without 

adding fitting variables to previous models. This study indicates synthesizing large and 

highly doped semiconductor NCs offers a powerful method for achieving narrow and 

high extinction coefficient LSPR in the infrared, a necessary characteristic for 

electrochromic devices, sensors, and local heating applications. 
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Chapter 4: Mapping the Electron Transport Phase Diagram for Doped 

Semiconductor Nanocrystal Films  

 

 

This chapter text and figures have been adapted with permission from an in preparation 

work written in collaboration with Gary Ong, Stephen Gibbs, and Delia Milliron. C.M.S. 

designed the experiments, developed the scientific theories presented, synthesized and 

prepared the samples, characterized the samples (XRD, XPS, optical, STEM, SEM, etc) 

of all samples, variable temperature conductivity measurements, variable temperature 

data analysis, and principle draft author. G.O. developed the ligand removal procedure. 

S.G. assisted in theory development. D.M. provided overall guidance. 

 

 

The phase diagram of doped semiconductor nanocrystal (NC) film transport 

mechanisms is determined by a combination of NC size, electron concentration, and 

contact radius. We investigate the phase diagram using tin-doped indium oxide (ITO) NC 

films of various size NCs, electron concentration, and contact radius and achieve 3 

distinct conduction mechanisms. We find NC films with low contact conductance 

conduct electrons through a hopping mechanism. NC films with contact conductance 

above a critical value conduct electrons through a granular metal mechanism. The 

transition from hopping to granular metal is known as the MIT and is independent of NC 

size. Finally, when the contact conductance is comparable to the intra-NC conductance, 

the NC film behaves as a metallic film. The transition from granular metal to metallic 

film is found to be independent of electron concentration.  
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INTRODUCTION 

Nanocrystal (NC) derived transparent conductive oxide (TCO) films are 

investigated for use in solar cells, displays, and electrochromic windows.
14,16

 These 

applications require highly conductive TCO films to be practical, which has traditionally 

been the shortfall of NC films.
17–19

 Efforts to increase NC film conductivity include 

exchanging native synthetic ligands for shorter organic or inorganic ligands, ligand 

removal, dopant distribution engineering, sintering NCs, and atomic layer deposition 

(ALD).
18–21,26,29,36,45

 While removing native ligands results in a large increase in NC film 

conductivity, the NC surface is left open to adventitious water species. Adsorbed water 

species cause the formation of a near surface depletion region, electronically separating 

neighboring NCs.
26,29

 Near surface depletion regions can be alleviated through deposition 

of alumina by ALD.
26,29

 Despite these advancements in methods for achieving highly 

conductive NC films, NC films do not exhibit conductivity comparable to that of their 

thin film analogs and often do not conduct electrons through the same mechanism as thin 

films. 

Commercially available doped semiconductor thin films transport electrons 

through a metallic conduction mechanism. These films display a nonzero conductivity at 

0K and have a negative slope of conductivity with respect to temperature. In contrast, NC 

films frequently exhibit thermally activated electron transport with a positive slope of 

conductivity with respect to temperature and zero conductivity at 0K. The electron 

transport properties of NC films are indicative of an insulator. Significant effort has 

focused on defining the criteria at which NC films undergo a metal-insulator transition 

(MIT).
36,42,45

 The most common route on the frontier of this field is the sintering of 

neighboring NCs to increase inter-NC conductance. During such sintering processes, NCs 

fuse through a necking process that defines the electron transport between NCs. 

Electron conductance through a metallic circular constriction, known as contact 

conductance,  𝑔𝑐, is defined quasiclassically by the Sharvin equation
73

 as 

𝑔𝑐 =
𝑘𝐹
2𝑟𝑐
2

4
 (4.1) 
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where 𝑘𝐹 is the fermi wavevector and 𝑟𝑐 is the radius of contact between neighboring 

NCs. The Fermi wavevector is defined as 

𝑘𝐹 = (3𝜋
2𝑛𝑒)

1

3 (4.2) 

where 𝑛𝑒 is the electron concentration. Chen et al. proposed NC films undergo an MIT 

when the contact conductance is greater than unity.
42

 For NCs in intimate contact, this 

criterion simplifies to 

𝑘𝐹𝑟𝑐 ≥ 2 (4.3) 

The criterion presented by Chen et al. intuitively requires a contact radius at least twice 

the size an electron at the Fermi energy.  

Several studies have investigated the above criterion by varying contact radius 

and electron concentration. Chen et al. initially investigated the influence of increasing 

phosphorous dopant concentration in 7-8nm silicon NCs and found a monotonic increase 

of electron concentration and electron localization length.
42

 Lanigan and Thimsen utilized 

atomic layer deposition to effectively sinter neighboring zinc oxide (ZnO) NCs together 

as a method for controlling contact radius from 0.6nm to over 3.5nm.
45

 Lanigan and 

Thimsen found 7nm ZnO NC films with contact radii greater than 3nm to have a nonzero 

conductivity at 0K. Greenberg et al. used intense light pulses before and after atomic 

layer deposition of alumina to independently vary contact radius and electron 

concentration in films of 10nm ZnO NCs.
36

 The latter two studies achieved the criterion 

proposed by Chen et al., but were unable to observe the classic thin film behavior of 

resistivity positively trending with temperature. Herein we investigate the MIT of NC 

films as it relates to NC size, electron concentration, and contact radius. 

Specifically, we develop a phase diagram for the MIT of doped semiconductor 

NCs by using ITO NCs as a model system. The contact radius between neighboring NCs 

is varied using atomic layer deposition of indium oxide (IO) and conductivity of ITO NC 

films and inter-NC contact conductance are found to increase with 𝑘𝐹
2𝑟𝑐
2, as expected by 

the Sharvin equation. We develop novel MIT criteria to describe the NC electron 

transport phase space, which contains two transitions: an insulator to granular metal 
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transition (MIT) that occurs when contact conductance is above a critical value (ln (
𝐸𝐶

𝛿
) /

6𝜋 in 3D) and a granular metal to metallic transport transition when contact conductance 

is greater than intra-NC conductance. Based on these criteria, we show a clear transition 

from hopping conduction to granular metal conduction, defined as the MIT, and further, a 

transition to classical metal transport.  

EXPERIMENTAL PROCEDURES 

ITO NCs were synthesized using a method adapted from the slow growth 

methods developed by Jansons et. al.
32

 This synthetic method yielded NCs of low size 

polydispersity as sized by small-angle x-ray scattering (SAXS) and validated by scanning 

transmission electron microscopy. Dopant incorporation was quantified by elemental 

analysis using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for 

overall Sn dopant concentration. 

Colloidal NCs were spin-coated from a concentrated dispersion in a mixed 

solvent of 1:1 hexane:octane onto silicon and quartz substrates, yielding approximately 

100-200 nm thick films. To expose the NC surface for chemical treatment, the organic 

ligands used in colloidal synthesis were removed by an in situ ligand displacement with 

0.1M ammonium hydroxide in acetonitrile. Ligand exchanges of x-type to x-type nature 

are well known to be achievable through mass action. Ligand removal was verified by 

Fourier-transform infrared spectroscopy. The resulting films are comprised of densely 

packed hydroxyl-capped ITO NCs with direct contacts between NCs and minimal 

cracking (Figure 4.1a). Porosity of NC films prepared on silicon substrates was 

determined using ellipsometric porosimetry (EP) with toluene as the dielectric contrast 

solvent. EP data from 400 nm to 1000 nm wavelength was fit using software provided by 

JA Woollam and yielded consistent volume fractions between 0.72 and 0.78 for all films 

before ALD. 
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Figure 4.1: NC film SEM cross-section for 20nm 0 atomic% Sn ITO NCs following 0 

(a), 8 (b), 16 (c), 24 (d), 30 (e), and 40 (f) cycles of IO ALD. Scale bars represent 100nm. 

 

Contact radius was varied using 0-40 IO ALD cycles to effectively sinter 

neighboring NCs. Deposition was carried out in a Savannah ALD chamber using 

previously reported methods. Cyclopentadienylindium was used as the indium precursor 

and deposition was carried out at 180°C. These conditions correspond to a growth rate of 

about 0.15 nm per ALD cycle.
74

 EP measurements of each sample yield porosity in 

agreement with the porosity expected with this growth rate using a spherical pore model. 

SEM images of ITO NC films following IO ALD show NCs become increasingly 

sintered (Figure 4.1b-f). Scherrer analysis of the ITO (222) XRD peak show a gradual 

increase to NC size, as expected for epitaxial growth of IO of ITO NCs. To understand 

the influence of contact radius, dopant concentration, and NC size on film electronic 

properties when surface depletion is suppressed, all films were capped with 40 ALD 

cycles of alumina deposition to passivate NC surfaces in accordance with previous 

literature.
26,27,29,45

 A similar approach was use Lanigan and Thimsen who reported using 
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ZnO ALD on ZnO NCs to modify contact radius and alumina ALD to passivate film 

surfaces.  

Room temperature conductivity measurements were collected on an Ecopia Hall 

Effect measurement system (HMS-5000) in the 4-point probe Van der Pauw geometry. 

Gold spring-clip contacts were placed directly on the films and edge effects were 

minimized by isolating a uniform square region in the center of the film using a diamond 

scribe. Variable temperature conductivity measurements were conducted in a Physical 

Property Measurement System (PPMS) from as low as 2 K up to 300 K in both 

decreasing and increasing temperature directions. Ohmic contact was established using 

indium solder pads. 

RESULTS 

To investigate the Chen criterion for MIT of doped semiconductor NC films, it 

was necessary to synthesize a series of NCs with precise size and dopant concentration to 

control electron concentration. Specifically, using adaptations of synthetic methods 

advanced by Jansons et al, 20nm ITO NCs with 0, 3, and 5 atomic% Sn and 15nm ITO 

NCs with 3 atomic% Sn were synthesized. NC electron concentration was assessed by 

fitting the localized surface plasmon resonance (LSPR) optical extinction spectrum with 

the heterogeneous Drude model developed by Staller et al. Details of each sample are 

summarized in Table 4.1. Following deposition of NC films, native ligands on NC 

surfaces were displaced with hydroxyls in situ to decrease inter-NC distance and create a 

reactive surface for ALD. Inter-NC contact radius was varied using indium oxide ALD. 

Electron concentration of NCs without IO ALD were assumed to be equal to those of 

colloidal NCs and IO filled samples electron concentration was calculated from the 

volume fraction of conductive material before and after IO ALD as measured by EP.  

Finally, film surfaces were passivated using alumina ALD to remove remaining adsorbed 

water species.  
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Table 4.1: ITO NCs.  

Sample name NC radius (nm) Dopant concentration 

(at% Sn) 

Electron concentration 

(cm
-3

) 

0_20 10.0±1.6 0 4.2E19 

3_20 10.2±0.6 2.96±0.01 5.5E20 

5_20 10.2±0.9 4.97±0.01 8.3E20 

3_15 7.5±0.6 

(approx.) 

3 (approx.) 5.5E20 (approx.) 

 

Room temperature conductivity is plotted against the Chen criterion in Figure 4.2. 

Film conductivity increases approximately with (𝑘𝐹𝑟𝑐)
2 as expected by the Sharvin 

equation. The 0 atomic% Sn NC series increased from 19.0 S/cm at 1 nm contact to 155.0 

S/cm at 9.6 nm contact. The 3 atomic% Sn NC series increased from 9.4 S/cm at 1 nm 

contact to 247.5 S/cm at 4.2 nm contact. The 5 atomic% Sn NC series increased from 

14.0 S/cm at 1 nm contact to 450.0 S/cm at 5.3 nm contact. The striking increase in film 

conductivity requires a more thorough examination to uncover the underlying physics. 

 
Figure 4.2: Film conductivity. Room temperature conductivity and contact conductance 

for Sn ITO NC films across a range of Chen criterion values. 

 

Examination of the physics governing electron transport through an ensemble of 

NCs requires films to be viewed as a random resistor network composed of inter-NC 

resistors with conductance, 𝑔𝐶, and intra-NC resistors with conductance, 𝑔𝑁𝐶. The 
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conductance of an electron moving for the center of NC i to the center of NC j, known as 

bond resistance, 𝑔𝑏𝑜𝑛𝑑, is calculated from the links and nodes model
45,46

 as 

1

𝑔𝑏𝑜𝑛𝑑
=

1

𝑔𝐶
+

1

𝑔𝑁𝐶
=
𝑞2(𝜑−𝜑0)

1.9

ℎ𝑟𝑁𝐶𝜎
 (4.4) 

where  𝜎 is the ensemble conductivity, 𝜑 is the film porosity, and 𝜑0 is the percolation 

threshold. The percolation threshold for random close packed spheres is 0.2.
29,47

 The 

intra-NC conductance is defined using surface damping function discussed in Chapter 3 

as 

𝑔𝑁𝐶 =
𝑟𝑁𝐶𝑛𝑒

𝑚𝑒
∗𝛤
=
2𝑟𝑁𝐶𝜋

1
3𝑛𝑒

2
3

3
1
3

(
1

𝑙𝑀𝐹𝑃
+

1

𝑟𝑁𝐶
+
1

𝑟𝑐
) (4.5) 

where 𝑚𝑒
∗  is the effective electron mass, 𝛤 is the scattering frequency, 𝑙𝑀𝐹𝑃 is the bulk 

mean free path, 𝑟𝑐 is the contact radius. For samples with no IO ALD, the contact radius 

is defined by a tunneling junction contact, known as a b-contact. For this case, the contact 

radius is √2𝑟𝑁𝐶𝑏 where 𝑟𝑁𝐶 is the NC radius and 𝑏 is the wavefunction decay rate, which 

depends on the material work function. Using the work function of alumina (4.7 eV), the 

b-contact radius of 20nm NCs is approximately 1nm. Given a contact conductance, the 

radius of contact between neighboring NCs can be calculated using the Sharvin equation 

as 

𝑟𝑐 = √
4𝑔𝐶

𝑘𝐹
2  (4.6) 

Figure 2 shows the relationship between contact conductance and contact radius 

for the samples presented here. Contact conductance mirrors the trends with contact 

radius observed in conductivity. The Chen criterion is based on the concept that a NC 

network will exhibit metallic conduction when 𝑔𝐶 > 𝑔𝑄 where 𝑔𝑄 is the quantum 

resistance, unity. The contact conductance is above the quantum conductance for nearly 

all samples presented here, implying they are metallic under the Chen criterion. Variable 

temperature conductivity measurements of each sample are made to investigate the 

presence of metallic transport (Figure 4.3). 
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Figure 4.3: Variable Temperature Conductivity Data.  

 

Figure 4.3a-c shows the presence of multiple conduction mechanisms across the 

measured temperature range. Of principal interest, all but one sample meet the Chen 

criterion and show a nonzero conductivity at 0K, though all of the measured samples 

maintain an increasing conductivity with temperature at low and intermediate 

temperatures. Across all sample series, the temperature dependence of conductivity 

flattens with increasing contact radius. This is indicative of an increased electron 

localization length or tunneling conductance, consistent with Figure 4.2. 
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ANALYSIS AND DISCUSSION 

The insulating side of the NC film MIT has been thoroughly investigated by 

several groups. However, the metallic side of the MIT remains opaquely defined. In order 

to establish the metal-insulator phase diagram, the definition of a metal must be defined 

very specifically. Metals are somewhat dubiously defined; comments herein will use the 

following definitions: (1) a metal is strictly defined as a material that exhibits nonzero 

conductivity at 0K and (2) metallic conduction mechanism refers to a metal displaying 

decreasing conductivity with increasing temperature, i.e. a negative thermal coefficient of 

resistivity (TCR). The MIT refers to the interface of insulating behavior and metal as 

defined by (1). There are several reports of NC films exhibiting a nonzero conductivity at 

0K that maintain a negative TCR.  

Three distinct regimes for electron conduction through NC films are defined 

herein: insulator (𝑔𝐶 < 𝑔𝑇
𝑐 < 𝑔𝑁𝐶), metal (𝑔𝑁𝐶 > 𝑔𝐶 ≥ 𝑔𝑇

𝑐 ), and conventional metal 

(𝑔𝐶 > 𝑔𝑁𝐶). The inter-NC conductance is calculated from the Sharvin equation, which is 

considered valid unless neighboring contacts are defined by a b-contact and the critical 

tunneling conductance in 3D is defined by  

𝑔𝑇
𝑐 =

ln(
𝐸𝐶
𝛿
)

6𝜋
  (4.7) 

where 𝐸𝐶 =
𝑒2

2𝜋 𝛼
 is the charging energy of a grain and 𝛿 = (𝑔𝐸𝐹𝑉𝑁𝐶)

−1
 where 𝑔𝐸𝐹 is the 

density of states at the Fermi energy and 𝑉𝑁𝐶 is the NC volume. With these criteria, a NC 

electron transport phase diagram is constructed in Figure 4.4a for 20nm NCs at electron 

concentrations of 1E19, 1E20, and 1E21 cm
-3

. 
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Figure 4.4: NC Transport Phase Diagram.  

 

The NC transport phase diagram in Figure 4a illustrates the critical contact radius 

for the MIT depends on electron concentration. The critical contact radius at which the 

film shows metallic transport does not depend on electron concentration, as shown in 

Figure 4.4b. This results from (4.1) and (4.5) having the same electron concentration 

dependence. Interestingly, the critical contact radius does weakly depend on NC radius 

due to 𝑔𝑇
𝑐  containing a logarithmic dependence on NC size. In contrast, the critical 

contact radius at which the film shows metallic transport shows a quite significant 

dependence on NC size, resulting from the surface scattering dependence of 𝑔𝑁𝐶 (Figure 

4.4c). 
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For insulators, 𝑔𝐶 < 𝑔𝑇
𝑐 , electrons are localized to finite energetic wells of some 

characteristic size, 𝑎, defined by the inverse of the wavefunction decay rate. Migration of 

electrons between wells in such a system proceeds through an inelastic tunneling process 

referred to as hopping. Hopping transport is described by the general equation 

𝜎 = 𝜎∗ exp ((
𝑇0

𝑇
)
𝑚

) (4.8a) 

where 𝜎∗ is a material constant, 𝑇0 is the characteristic temperature, 𝑇 is the system 

temperature, and 𝑚 depends on the specific hopping mechanism. Zabrodskii analysis for 

insulating samples in this work shows 𝑚 = 0.78, corresponding to Efros-Shklovskii 

variable-range hopping with a Gaussian dispersion of energy levels (ES-VRH-GD). The 

ES-VRH-GD mechanism describes the thermal activation of electrons that are prohibited 

from motion due to a capacitive energy barrier known as charging energy. The ES-VRH-

GD characteristic temperature is then defined as 

𝑇0 = (
3.15𝑞4

4𝜋2 2𝑘𝐵𝐶𝑎2
)

1

3
 (4.8b) 

where 𝐶 ≈ 27 is the heat capacity power-law coefficient for ITO and 휀 is the dielectric 

constant of the film. The film effective dielectric constant was calculated using methods 

developed by Reich and Shklovskii. Here, the electron localization length, 𝑎, defines the 

diameter of a sphere within which mobile electrons are confined at 0K. Only one sample 

measured here meets the criterion of an insulator and shows ES-VRH-GD conduction. 

Variable temperature data for 15nm ITO NCs with 0x IO ALD and fits to ES-VRH-GD 

model are shown in Figure 4.5. The sample shows a localization length of 15.4nm, 

indicating that electrons are confined to individual NCs. 
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Figure 4.5: Efros-Shklovskii Variable Range Hopping Fit for 15nm 3 atomic% ITO 

NCs 

 

Near the MIT, 𝑔𝐶~𝑔𝑇
𝑐 , electrons become delocalized and may move through non-

hopping processes. ITO NC films with 𝑔𝐶 > 𝑔𝑇
𝑐  are observed to exhibit a granular metal 

conduction mechanism. While hopping processes describe the activation of electron 

migration through thermally overcoming spatial and energetic barriers to transport, 

granular metals are defined by the competition between NC-NC coupling and electron 

charging energy. The conductivity of granular metals at moderate temperatures is defined 

by 

𝜎 = 𝜎0 (1 +
1

2𝜋𝑔𝑇𝑑
ln (

𝑘𝐵𝑇

𝑔𝑇𝐸𝐶
))  (4.9) 

where 𝜎0 = 𝑔𝑇 (
2𝑒2

ℏ
)𝛼2−𝑑, 𝑔𝑇 is the non-dimensional tunneling conductance between 

grains, 𝛼 is the grain diameter, 𝑑 is the system dimensionality, and 𝐸𝐶 =
𝑒2

2𝜋 𝛼
 is the 

charging energy of a grain. Fits to granular metal conduction mechanisms are shown in 

Figure 4.6.  
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Figure 4.6: Granular Metal Fits.  

 

The granular metal conduction model accurately described electron conduction 

over some temperature interval in each sample measured.  Intercept and slope of 

conductivity vs ln(T) linear fits are used to calculate grain size and tunneling conduction. 

Interestingly, the grain size values for samples without IO ALD were equivalent to the 

NC size while after IO ALD, grain size ranged from 1nm to 4nm. This may indicate that 

conduction is limited by the NC size before IO ALD and the contact area after ALD, 

analogous to the Sharvin equation. The tunneling conductance for each sample is plotted 

in Figure 4.7. Tunneling conductance from the granular metal model is lower than those 

calculated from the links and nodes model across all samples. Interestingly, while the 

links and nodes model contact conductance follows the (𝑘𝐹𝑟𝑐)
2 trend expected from the 

Sharvin equation, the granular metal model tunneling conductance is instead linear with 

𝑘𝐹𝑟𝑐. 
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Figure 4.7: Granular Metal tunneling Conductance.  

 

The granular metal model is valid for 𝑇 > 𝛤 where 𝛤 =
𝑔𝑇𝛿

𝑘𝐵
 and 𝛿 = (𝑔𝐸𝐹𝑉𝑁𝐶)

−1
 

where 𝑔𝐸𝐹 is the density of states at the Fermi energy and 𝑉𝑁𝐶 is the NC volume. Below 

this temperature, the logarithmic temperature dependence is invalid and electron physics 

is dominated by electron motion on scales larger than a NC-NC junction. This conduction 

is referred to as a Fermi liquid and is described in 3D by 

𝜎 = 𝜎0 (1 +
1

2𝜋𝑔𝑇𝑑
ln (

𝑘𝐵𝛿

𝐸𝐶
) +

𝛼

12𝜋2𝑔𝑇
√
𝑇

𝛤
) (4.10) 

where 𝛼 ≈ 1.38. Fits to Fermi liquid conduction mechanisms are shown in Figure 4.8. 

The upper temperature for which the Fermi liquid model is valid increases with contact 

radius for each series. This is simply a result of increased tunneling conductance with 

increased contact radius. 
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Figure 4.8: Fermi Liquid Fits.  

 

Finally, when 𝑔𝐶~𝑔𝑁𝐶 the film conduction is limited by intra-NC conductance 

and the thermal dependence of conduction is metallic. From the links and nodes model, 

the conduction can be illustrated as an intra-NC resistor and inter-NC resistor in series. 

The thermal dependence of conductivity is a summation of inter- and intra-NC 

conduction and can be expected to depend most strongly on the most resistive 

component. The temperature dependence of the intra-NC resistor is expected to be 

similar to that of an ITO thin film, which is known to be 

𝜌 = 𝜌0(1 + 𝛼(∆𝑇)) (4.11) 

where 𝜌 is the film resistivity, 𝜌0 is the film resistivity at a reference temperature, 𝛼 is the 

TCR, and ∆𝑇 is the difference in temperature from the reference temperature. Accounting 

for resistors in series, the granular metal or Fermi liquid model fit is subtracted from film 
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resistivity to yield the measurable contribution from metallic conduction. Data and 

metallic conduction fits are shown in Figure 4.9. 

 
Figure 4.9: Metallic Transport.  

 

We have shown that the NC contact conductance, 𝑔𝐶, varies strongly with 𝑘𝐹𝑟𝑐 

and the phase diagram for NC transport has three dominant regimes. These regimes 

describe the MIT and the transition to metallic conduction. NC films with a contact 

conductance below the critical value (𝑔𝑇
𝑐 ) conduct electrons through a hopping 

mechanism. Upon increasing inter-NC conductance through increasing electron 

concentration or contact radius such that 𝑔𝐶 ≥ 𝑔𝑇
𝑐  the films undergo a MIT, processing 

nonzero conductivity at 0K and behaving as granular metals. Increasing the NC radius or 

contact radius such that 𝑔𝐶~𝑔𝑁𝐶 causes NC film conductivity to be limited by intra-NC 

conductance and thermal dependence becomes metallic. 
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Appendix I: Heterogeneous Model LSPR Fitting Code 

File 1: “Extended Drude Broadened Fit” 

%% Initialize global variables for fitting 

  

global epsilonNC epsilonSolvent pathLength 

epsilonNC=4.0;            % Dielectric background constant of nanocrystal (ITO=4) 

epsilonSolvent=1.505^2; % T   E Host/solvent Dielectric Consta 

lowFreqCutoff=3000;     % Low frequency cutoff for fitting in wavenumbers 

hiFreqCutoff=10000;      % High frequency cutoff for fitting in wavenumbers 

pathLength=0.05;       %Pathlength in cm 

  

%% Load data 

 

% The data should be in a text file named "spectrum_to_fit" and they should 

% be formatted so that wavenumbers are in the first column and absorption 

% values are in the second column 

sample_name='sg5_5nm_Dil5' 

spectrum=dlmread('sg5_5nm_Dil5.txt','\t',2,0); 

wavenumbers=spectrum(:,1);  %load regular frequency values in cm-1 

absorption=spectrum(  :,2);   %load absorption values 

  

 

%set limits of fitting and grab indices 

limits=find(wavenumbers>lowFreqCutoff&wavenumbers<hiFreqCutoff);   

reducedFrequency=wavenumbers(limits);  

reducedAbsorption=absorption(limits);%extract frequencies 

 

%% Drude Model (freqency independent damping) 

  

global n_point p 

  

n_point= 41 

  

% p -- a vector of pre parameters:  

%        p(1) -- radius stdev                 

%        p(2) -- radius mu_r 

%        p(3) -- volume fraction 

 

p = [1 2 3]; 
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%% Fitting 

 

options=optimoptions('lsqcurvefit','Algorithm','trust-region-

reflective','MaxFunEvals',1e20,'MaxIter',5e10,'TolFun',1e-14,'TolX',1e-15); 

op.Display='on';     

op.Plot=0; 

op.ErrorsUnknown=1;               %set this to 1 if measurement uncertainties are unknown 

op.MaxFunEvals=1e20; 

op.TolX=1e-20;                       %Smallest step tolerance 

op.TolFun=1e-20; 

op.MaxIter=1e20;                     %Maximum iterations possible 

 

               % ne   ne_stdev   dep 

LowerBound =  [1*10^24 1*10^23 1*10^24]; 

initialGuess= [4*10^26 4*10^25 10*10^26]; 

UpperBound =  [2*10^27 1*10^27 1*10^27]; 

disp('$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$') 

disp('Broadened Drude') 

 

paramsITO_ed=lsqcurvefit(@drude_broad_sol,initialGuess,reducedFrequency,reducedA

bsorption,LowerBound,UpperBound,options); 

ne_mu=paramsITO_ed(1) 

ne_sigma=paramsITO_ed(2) 

dep=paramsITO_ed(3)/10^27 

  

  

Predicted=drude_broad_sol(paramsITO_ed,reducedFrequency); 

sample_name_fit=strcat(sample_name,'_fit'); 

plot(reducedFrequency,reducedAbsorption,'b',reducedFrequency,Predicted,'r--') 

  

hold on 

 set(gca,'XDir','reverse') 

 set(gca,'box','on','xminortick','off','yminortick','off') 

  set(gca,'fontsize',12,'fontweight','bold','linewidth',1,'ticklength',[0.02 0.02]) 

   ylabel('Extinction') 

  xlabel('Wavenumber (cm^-^1)') 

 legend('OriginalSpectrum','Fit','Location','Best') 

  legend('Boxoff'); 
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File 2: “drude_broad_sol” 

 

function A=drude_broad_sol(a,omega) 

%This function is used to calculate the plasmonic absorbance spectrum of an ensemble of 

NCs 

%It uses a 2 dimensional probability distribution function and sums the normalized 

absorbance spectrum 

%of each element of the PDF which is distributed in damping constant and plasma 

frequency. 

%   Input variables 

%       omega -- frequency variable in cm^-1 

%           a -- a vector of fit parameters:  

%        a(1) -- plasma frequency expectation value cm^-1 mu_wp                (omega_p) 

%        a(2) -- plasma frequency standard deviation cm^-1 sigma_wp 

%        a(3) – volume fraction of mobile electrons fe 

% 

%         p -- a vector of fit parameters:  

       % p(1) -- sigma_r                 

%        p(2) -- mu_r 

%        p(3) -- volume fraction 

% Output variable 

% A -- absorbance of the layer 

  

global epsilonNC epsilonSolvent pathLength n_point lower_limit upper_limit p 

vol_frac=p(3); 

ravg=p(2); 

rstdev=p(1); 

l=17; 

 

nestdev=a(2); 

  

r_range=(linspace(ravg-3*rstdev,ravg+3*rstdev,n_point))'; 

ne_range=linspace(a(1)-3*nestdev,a(1)+3*nestdev,n_point); 

r_pdf=normpdf(r_range,ravg,rstdev)'; 

ne_pdf=normpdf(ne_range,a(1),nestdev); 

dep=a(3)*10^-27;  

 

abs_ensemble=zeros(length(omega),1); 

PD=zeros(n_point,n_point); 

T_PD=0; 

V=0; 

delr=(r_range(2)-r_range(1)); 

delne=(ne_range(2)-ne_range(1)); 
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gamma=(((1.055*10^-34)*(3*pi^2)^(1/3)/(0.4*9.11*10^-

31*3*10^10*2*pi)).*ne_range.^(1/3).*(1./(4/3*r_range*10^-9*dep^(1/3))+1/(l*10^-9))); 

 

omega_P=((ne_range)*(1.6*10^-19)^2/((8.85*10^-12)*(0.4*9.11*10^-

31))).^(1/2)/(3*10^10)/2/pi; 

 

omega_s=((10^24)*(1.6*10^-19)^2/((8.85*10^-12)*(0.4*9.11*10^-

31))).^(1/2)/(3*10^10)/2/pi; 

  

    for i = 1:n_point 

    for j =1:n_point 

                eshell=epsilonNC-omega_s^2./(omega.^2+1i*omega.*(gamma(i,j))); 

                epsilonParticle=epsilonNC-

omega_P(i)^2./(omega.^2+1i*omega.*(gamma(i,j))); 

                e_eff_particle=eshell.*(dep*(epsilonParticle+2*eshell)+2*(epsilonParticle-

eshell))./(dep*(epsilonParticle+2*eshell)-(epsilonParticle-eshell)); 

                sigA=4*r_range(j)^3*dep*2*pi^2*omega*sqrt(epsilonSolvent).*imag(( 

e_eff_particle-epsilonSolvent)./( e_eff_particle+2*epsilonSolvent)); 

                abs1=sigA; 

                absc(i,j,:)=abs1; 

                PD(i,j)=delr*delne*r_pdf(j)*ne_pdf(i); 

                abs_ensemble=abs_ensemble+PD(i,j)*abs1; % adding onto the total abs 

                T_PD=T_PD+PD(i,j);        %finding the total area of PDF for normalizing 

                V=V+4/3*pi()*r_range(j)^3*PD(i,j); 

    end 

    end 

T_PD; 

A=abs_ensemble*vol_frac*pathLength/(V*log(10)); 

end 
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