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We use molecular simulation to study the ability of excess entropy scaling relationships to describe the
kinetic properties of a confined molecular system. We examine a model for a confined fluid consisting of
dumbbell-shaped molecules that interact with atomistically detailed pore walls via a Lennard-Jones potential.
We obtain kinetic, thermodynamic, and structural properties of the system at three wall-fluid interaction
strengths and over a temperature range that includes sub- and super-critical conditions. Four dynamic proper-
ties are considered: translational and rotational diffusivities, a characteristic relaxation time for rotational
motion, and a collective relaxation time stemming from analysis of the coherent intermediate scattering func-
tion. We carefully consider the reference state used to define the excess entropy of a confined fluid. Three
ideal-gas reference states are considered, with the cases differentiated by the extent to which one-body spatial
and orientational correlations are accounted for in the reference state. Our results indicate that a version of the
excess entropy that includes information related to the one-body correlations in a confined fluid serves as the
best scaling variable for dynamic properties. When adopting such a definition for the reference state, to a very
good approximation, bulk and confined data for a specified dynamic property at a given temperature collapse
onto a common curve when plotted against the excess entropy.
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I. INTRODUCTION

Confined fluids feature prominently in both nature and
technology. Examples include gases within membrane-based
separation devices, water passing through ion channels, liq-
uids in nanofluidic devices, and light gases in nanostructured
storage materials �e.g., decorated carbon nanotubes�. The be-
havior of fluids confined to such restricted environments can
differ significantly from the bulk. As a result, predicting the
influence of confinement on thermodynamic and transport
properties can be a challenging task. From an engineering
perspective, these properties are important for the efficient
design of devices. Recent studies suggest that excess entropy
scaling �1–6� serves as a valuable tool for predicting the
transport properties of confined fluids �7–13�. At their most
basic level, these scaling relationships establish a link be-
tween thermodynamic and kinetic properties of this impor-
tant class of systems, thereby providing a means to predict
one based upon knowledge of the other. Investigations fo-
cused on the effectiveness of this tool for describing the
properties of confined fluids have thus far been limited to
models with particles that interact with one another via
simple, spherically-symmetric �e.g., atomistic� pair potentials
�7–13�. In this work, we move toward an examination of
confined fluids of particles with intramolecular degrees of
freedom �e.g., molecular fluids� by studying the ability of
excess entropy scaling relations to capture the influence of
confinement on the kinetic properties of a model fluid con-
sisting of dumbbell-shaped particles.

Mittal et al. first examined the prospects of using excess
entropy scaling to describe the dynamics of confined fluids
�7�. They found that the relationship between self-diffusivity
and excess entropy for a collection of hard spherical particles
does not change substantially upon confinement of the fluid
within a slit pore. While both self diffusivity and excess en-
tropy were found to vary considerably with degree of con-
finement �i.e., the distance between the confining bound-
aries�, the relationship between the two quantities remained
approximately unchanged from that of the bulk fluid. They
recognized that establishment of this strong empirical corre-
lation afforded a means to estimate the variation in diffusiv-
ity upon confinement when provided information regarding
how the excess entropy changes with degree of confinement,
and vice versa. Subsequent studies �8–13� focused on mon-
atomic particles governed by a variety of interaction poten-
tials �e.g., hard-sphere, square-well, Lennard-Jones� confined
within various restrictive geometries �e.g., rectangular chan-
nel, cylindrical pore, strongly attractive walls, weakly attrac-
tive walls� all pointed to the same conclusion: to a good
approximation, upon confinement a fluid shows the same re-
lationship between diffusivity and excess entropy as the bulk
system at the specified temperature.

Excess-entropy scaling strategies have also been exam-
ined recently within the context of molecular fluids �14–22�.
Such fluids differ from atomistic systems in that they possess
rotational and intramolecular degrees of freedom. Initial
studies focused on identifying the most relevant scaling vari-
able for these systems. Given the additional relaxation modes
available to molecular fluids, one might question whether a
transport property associated with a particular type of motion
�e.g., translational self-diffusivity� scales with the component
of the excess entropy related to the intermolecular correla-
tions associated with those degrees of freedom �e.g., contri-
bution to the excess entropy related to center-of-mass corre-

*rchopra2@buffalo.edu
†truskett@che.utexas.edu
‡jerring@buffalo.edu

PHYSICAL REVIEW E 82, 041201 �2010�

1539-3755/2010/82�4�/041201�10� ©2010 The American Physical Society041201-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211344817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.82.041201


lations� or with the total �thermodynamic� excess entropy. A
number of studies �14–22� now provide substantial evidence
to suggest that the thermodynamic excess entropy correlates
strongest with kinetic properties. For example, we have ex-
amined the connections between several dynamic properties
and various measures of the excess entropy for a Lennard-
Jones dumbbell model �22�. We found that the translational
self-diffusivity, a collective relaxation time, and two mea-
sures of rotational mobility all correlate strongly with the
thermodynamic excess entropy over a wide range of state
conditions. Although contributions to the two-body excess
entropy associated with translational and orientational corre-
lations provided a reasonable description of the dynamic
properties in some cases, the thermodynamic excess entropy
proved to be the most effective scaling variable for all of the
aforementioned kinetic properties considered. Finally, we
note that identification of the total excess entropy, a well-
defined and relatively accessible thermodynamic quantity, as
the optimal scaling variable enhances the attractiveness of
entropy scaling as a tool for predicting dynamic quantities.

In this work, we study the connection between kinetic
properties and the thermodynamic excess entropy for a con-
fined dumbbell system. More specifically, we investigate the
aforementioned Lennard-Jones dumbbell model within a slit
pore defined by atomistically detailed substrates. We con-
sider two pore widths and three substrate-fluid interaction
strengths that span from a weak to a strong wall potential
relative to the fluid-fluid interaction. Four dynamic quantities
are examined: the translational diffusion coefficient, the ro-
tational diffusion coefficient, a relaxation time for rotational
motion, and a collective relaxation time. We first examine
issues related to the reference state used to define the excess
entropy. Our analysis focuses on how one-body correlations
should be managed. We find that a version of excess entropy
that includes information related to one-body correlations
within the confined fluid best captures the trends in the dy-
namics. When adopting such a definition for the reference
state, to a very good approximation, bulk and confined data
for a specified dynamic property at a given temperature col-
lapse onto a common curve when plotted against the thermo-
dynamic excess entropy. The calculations performed here
suggest that excess entropy scaling provides a convenient
means to capture the influence of confinement on the dy-
namic properties of simple molecular fluids.

The paper is organized as follows. In the following sec-
tions we describe the model examined in this work and the
molecular simulation methods used to compute thermody-
namic, structural, and kinetic properties of interest. Next, we
examine the sensitivity of excess entropy scaling strategies
to the choice for the reference state used to define excess
functions. Finally, we consider the feasibility of using excess
entropy scaling to describe the effect of confinement on a
wide range of kinetic properties.

II. MOLECULAR MODEL

The model system consists of a fluid of dumbbell-shaped
particles that interact with each other and with two parallel,
static atomistically detailed substrates via a truncated

Lennard-Jones potential. The energy of interaction uij be-
tween any two nonbonded interaction sites separated by a
distance r is given by

uij�r� = �uij
LJ�rij� for r � rij

c

0 for r � rij
c� , �1�

with

uij
LJ�r� = 4�ij���ij

r
	12

− ��ij

r
	6
 , �2�

where �ij and �ij are energy and size parameters, respec-
tively. The fluid-fluid �ff� and substrate-fluid �sf� interactions
are cutoff at distances of rff

c =rsf
c =2.5�ff. The characteristic

length scales of the ff and sf interactions are identical, �sf
=�ff. We work with characteristic energy scales of �sf /�ff
=0.2, 1.0, and 3.0, which we refer to as weak, moderate and
strong wall strengths, respectively. Substrate particles are ar-
ranged in an fcc lattice with a density of �=1.4142�ff

−3 and
the �100� plane is exposed to the fluid. The slit pore consists
of a lower substrate with the centers of particles within the
top layer positioned at z=0 and an upper substrate with the
centers of particles within the bottom layer positioned at z
=H. The top layer of the lower substrate and the bottom
layer of the upper substrate are aligned laterally �i.e., the
substrates are in registry with one another�. We work with a
dumbbell molecule that contains interaction sites separated
by a distance L=�ff and consider two slit pores with H
=5�ff and 10�ff. In what follows, all quantities are made
dimensionless using the characteristic energy and length
scales of the fluid-fluid interaction. For example, temperature
is reduced by �ff /k �k is Boltzmann’s constant�, distance by
�ff, entropy by k, and time by �m�ff

2 /�ff, where m is the mass
of a dumbbell molecule, which is set to unity in this work.

III. COMPUTATIONAL METHODS

A. Excess entropy

To calculate the excess entropy we first employ Monte
Carlo simulation to determine the entropy of a fluid contain-
ing N particles within a confined environment at temperature
T �7,23�. We then use information related to the structure of
this simulated fluid to compute the entropy of an ideal-gas
reference state. The difference between these two quantities
is the excess entropy. Simulations are conducted using a rect-
angular parallelepiped cell with periodic boundary condi-
tions applied in two of the three directions. The cell is closed
at each end in the nonperiodic direction with substrates of
cross-sectional area A separated by a distance H. We employ
a two-step process to determine the entropy at conditions of
interest. In the first step we obtain the density-dependence of
the entropy at relatively high temperature Th using grand
canonical transition matrix Monte Carlo simulation �GC-
TMMC� �24,25�. GC-TMMC simulations are conducted at
Th, volume V=AH, and activity �h=qh exp��h�h�, where �
=1 /T is the inverse temperature, � is the chemical potential,
and q represents the component of the molecular partition
function stemming from integration over momenta. The key
quantity extracted from the GC-TMMC simulation is the par-

CHOPRA, TRUSKETT, AND ERRINGTON PHYSICAL REVIEW E 82, 041201 �2010�

041201-2



ticle number probability distribution 	GC�N ;�h ,�h�.
In the second step we perform a canonical temperature

expanded ensemble transition matrix Monte Carlo simulation
�TE-TMMC� to evaluate the change in entropy with tem-
perature at constant density. A canonical temperature ex-
panded ensemble �21,22,26,27� consists of a collection of
subensembles that share the same particle number N and
volume V while possessing different temperatures. In this
work, we take the inverse temperature � as the order param-
eter and establish a set of subensembles that range from �min
to �max in increments of 
�. The key quantities extracted
from the TE-TMMC simulation are the inverse temperature
probability distribution 	TE�� ;N� and configurational en-
ergy U�� ,N�. Collectively, the GC-TMMC and TE-TMMC
simulations provide the configurational entropy at a given
inverse temperature � and particle number N of interest,

S��,N� = �U��,N� + ln�	GC�N;�h,�h�
	GC�0;�h,�h� 
 + ln� 	TE��;N�

	TE��h;N�

− N ln� �h

q
	 . �3�

For both the GC- and TE-TMMC simulations we used mul-
ticanonical sampling techniques �28� to uniformly sample the
density or temperature range of interest.

We now turn our attention toward the reference state used
to establish excess functions. In this work, we outline several
reasonable choices for the reference state and examine the
ability of the associated excess entropies to describe the dy-
namic properties of a confined fluid. We begin with a com-
monly used reference system for inhomogeneous fluids: an
ideal gas that possesses the same spatial and orientational
distribution as the real fluid at the temperature and particle
number of interest. This reference state accounts for one-
body correlations �single molecule spatial and orientational
correlations that stem from the potential field created by the
pore walls� within the ideal gas. For a rigid linear molecule
the ideal-gas configurational entropy is expressed as �29�

Sf
ig = −� drd�d���r,�,���ln�4

q
��r,�,��
 − 1� , �4�

where r provides the center of mass position vector, � is the
polar angle defined by the vector connecting the two dumb-
bell atoms of a molecule and the normal vector of the sub-
strate, � is the azimuthal angle in the plane parallel to the
substrates, ��r ,� ,�� provides the density distribution, and
the subscript “f” is used to distinguish this “full” calculation
of the ideal-gas configurational entropy from alternative ap-
proaches detailed below. To facilitate the entropy calculation,
we separate ��r ,� ,�� into a position-dependent density pro-
file ��r� and conditional orientational distribution function
��� ,� r� �29�,

��r,�,�� = ��r����,�r� , �5�

with ��� ,� r� normalized such that,

�
0

2

d��
−1

1

d cos ����,�r� = 1. �6�

We now express Sf
ig in terms of a translational contribution

St
ig and an orientational contribution So

ig �30�,

Sf
ig = St

ig + So
ig, �7�

with

St
ig = −� dr��r��ln���r�

q

 − 1� , �8�

and,

So
ig = −� dr��r�Sor�r� , �9�

with

Sor�r� = �
0

2

d��
−1

1

d cos ����,�r�ln�4���,�r�� .

�10�

Molecular center-of-mass positions and orientations are ex-
tracted from configurations taken from canonical Monte
Carlo simulations and used to populate a histogram
H�r , cos � ,��. The lateral position of a molecule �x ,y� is
mapped onto a single unit cell of the fcc crystal. Positions
and orientations are discretized with 
x=
y=a /40, where
a=1.4142 is the edge length of a fcc unit cell, 
z=0.02,

 cos �=0.1, and 
�=10°. Storage requirements are re-
duced by taking advantage of fourfold symmetry within the
100 face of the fcc crystal, twofold symmetry in the direction
normal to the surface, and twofold symmetry in the azi-
muthal angle �. The conditional distribution function
��� ,� r� is obtained by normalizing H�r , cos � ,�� such that
Eq. �6� is satisfied. The quantities Sor�r�, So

ig, and St
ig are then

computed via numerical integration of Eqs. �8�–�10�.
The separation of Sf

ig into positional and orientational en-
tropies leads to a second reasonable reference state: an ideal
gas that possesses the same center-of-mass spatial distribu-
tion as the real fluid at the temperature and particle number
of interest, but whose orientational distribution is uniform.
The relevant reference state entropy is then St

ig. This refer-
ence state includes one-body correlations associated with the
position of the dumbbell center-of-mass only.

The final and simplest reference state that we examine is
that of a completely uncorrelated ideal gas that occupies the
same volume as, and also has the same temperature and par-
ticle number as, the actual simulated confined fluid. This
reference state meets the minimal requirement of recognizing
the boundaries of the inhomogeneous fluid. One-body spatial
and orientational correlations are not accounted for. To de-
termine this accessible volume, we locate a dividing surface
via analysis of the laterally averaged segment density profile
�a�z� �31�. For each state point, we use �a�z� to deduce an
effective surface-fluid interaction potential �ueff�z�
=−ln��a�z�� and subsequently employ a “Boltzmann factor
criteria” �32–34� to determine the equivalent hard-core
length scale of this effective fluid-particle interaction. To
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implement this approach, one first separates the interaction
potential ueff�z� into repulsive u0

eff�z� and attractive u1
eff�z�

contributions. Here, we use the well-known Weeks-
Chandler-Andersen approach �35� to perform this division.
The effective hard-core diameter �sf

HS is then identified using
the expression, �u0

eff��sf
HS�=c, where c is a constant typically

set between 1 and 2. Based on the success of this approach
with c=1 to describe effective pore densities in an earlier
study �9�, we employ this value here as well. The hard-core
diameter is used to deduce the effective pore width Heff

sampled by fluid molecules. To be consistent with Eq. �4�,
Heff is obtained by considering the volume accessible to par-
ticle centers, which gives Heff=H−2�sf

HS �31�. The configu-
rational entropy of the uncorrelated ideal gas is then,

Su
ig = N�ln�qAHeff/N� + 1� . �11�

Below we examine how the ideal-gas configurational entro-
pies discussed above evolve with temperature, density, and
the strength of the substrate. We find it convenient to exam-
ine the evolution of these quantities relative to the configu-
rational entropy SV

ig=N�ln�qV /N�+1�, which corresponds to
that of an uncorrelated ideal gas that occupies the volume V
defined above. We also study correlations between dynamic
properties and various versions of the excess entropy Sx

ex

=S−Sx
ig, where x is one of f, t, or u.

B. Dynamic properties

We calculate the translational self-diffusivity Dt by fitting
the long-time behavior of the average mean-squared dis-
placement of the dumbbell center of mass using the Einstein
relation �36�,

lim
t→�

�
r��t�2� = 2dDtt , �12�

where 
r��t�=r��t�−r��0� corresponds to the displacement of a
center-of-mass at time t in the d periodic directions. We cal-
culate a rotational diffusivity using an approach introduced
by Kämmerer et al. �37� For a given molecule i, we first
define a normalized polarization vector p̂i�t� using the line
connecting the two atom centers of the dumbbell. Next, we
define a vector rotational displacement as

�� i�
t� = �
t

t+
t


�� i�t��dt�, �13�

where 
�� i�t�� is a vector with direction given by p̂i�t��
� p̂i�t�+dt�� and with magnitude given by 
�� i�t��
=cos−1�p̂i�t�� · p̂i�t�+dt���. We calculate the rotational diffu-
sivity Dr by fitting the long-time behavior of the rotational
mean square displacement,

lim
t→�

��� i�t�� − �� i�t�2� = 4Drt , �14�

where �� i�t�� and �� i�t� are vectors that define a trajectory in
three-dimensional space representing the accumulated rota-
tion of dumbbell i at times t� and t, respectively.

To complement the translational and rotational diffusion
coefficients we also evaluate a collective relaxation time and
dipole relaxation time. The collective relaxation time � is

defined as the time required for the normalized coherent
intermediate-scattering function F�q0 , t� to decay to a value
of e−1. The wave number q0 corresponds to the approximate
location of the first peak in the structure factor. The dipole
relaxation time �2 associated with the rotational motion of a
dumbbell is defined by the time required for the correlation
function �P2�cos ��t��� to decay to a value of e−1. P2 is the
second Legendre polynomial and ��t� is the angle defined by
the orientation vectors of a molecule at times t and zero.

C. Simulation details

We performed Monte Carlo �MC� and molecular-
dynamics �MD� simulations to acquire thermodynamic, ki-
netic, and structural data over the range of state conditions
defined by 1.0�T�5.0 and 0.2��=N /V�0.6. For the MC
simulations, we used boxes with interfacial areas of 10
�10 and 7�7 square unit cells for the H=5 and H=10
pores, respectively. These interfacial areas correspond to
simulation box volumes of V=1000 and 980, respectively.
For relatively low densities, we first completed a single GC-
TMMC simulation at Th=10 with ln �h=0, and subsequently
performed multiple TE-TMMC simulations over the inverse
temperature range T−1=0.1 to 1.0, with a subensemble spac-
ing of 
T−1=1.0�10−3. For relatively high densities, we
first completed a single GC-TMMC simulation at Th=100
with ln �h=0, and subsequently performed multiple TE-
TMMC simulations over the inverse temperature range T−1

=0.01 to 1.0. In this latter case, inverse temperature space
was separated into two intervals, with one TE-TMMC simu-
lation spanning T−1=0.01 to 0.1 with 
T−1=1.0�10−4 and
the second covering T−1=0.1 to 1.0 with 
T−1=1.0�10−3.

Molecular dynamics simulations were completed with the
GROMACS package �38–41�. We adjusted the number of
dumbbell molecules �N�500� and the size of the fcc lattice
structure to obtain a desired density while maintaining peri-
odic boundary conditions. The temperature was controlled
using a Nose-Hoover thermostat �42,43� and the system was
propagated using the velocity-Verlet method �44,45� with a
time step of 
t=2.0�10−3. The SHAKE algorithm �46� was
used to maintain the dumbbell bond length.

Statistical uncertainties were determined by performing
four independent sets of simulations. The standard deviation
of the results from the four simulation sets was taken as an
estimate of the statistical uncertainty.

IV. RESULTS AND DISCUSSION

We begin by establishing the phase behavior of the dumb-
bell model. GC-TMMC simulation �24� was used to deduce
the bulk liquid-vapor coexistence envelope and saturation
conditions at T=1.0 for the fluid confined within the various
pores studied here. The critical temperature of the bulk fluid
is approximately Tc=1.59. This estimate was obtained from a
curve fit with the scaling relation, �l−�v��Tc−T��, where �l
and �v are the saturated liquid and vapor densities, respec-
tively, and �=0.326 is a scaling exponent. Saturated densi-
ties of the bulk and confined fluids at T=1.0 are provided in
Table I. As is expected for confined fluids �47�, the saturated
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densities shift to higher values as the strength of the
substrate-fluid interaction increases. We did not use rigorous
methods to locate solid-liquid phase diagrams, however, data
from TE-TMMC simulations provided insight regarding the
location of these curves. The bulk system remained a fluid at
temperatures as low as T=1.0 for densities as high as �
=0.525. At �=0.550, 0.575, and 6.0, the bulk system crys-
tallized between T=1.0 and 2.0. For both the H=5 and 10
pores, the fluid appeared to crystallize between T=1.0 and
2.0 at �=0.500 and between T=2.0 and 5.0 at �=0.550, re-
gardless of substrate strength. Our simulations cover the
range from �=0.200 to the freezing region at T=2.0 and 5.0.
At T=1.0, we examine states beyond the saturated liquid
density of the liquid-vapor transition to densities in the vi-
cinity of the freezing transition. In some cases, we suspect
that data were collected within the �metastable� supercooled
liquid regime, as is common in simulations of dense fluids.
Again, accurate information regarding the freezing transition
is needed to clarify this issue.

The atomistic-level corrugation of the pore walls coupled
with the relatively small size of the pores studied here results
in strong spatial and orientational heterogeneities within the
fluid structure. Figure 1 shows the laterally averaged spatial
density profile ��z� at select conditions. Figures 1�a� and 1�b�
contrast fluid structure within the H=10 and H=5 pores. A
nearly spatially homogeneous fluid is obtained at the interior
of the H=10 pore to densities as high as ��0.45, whereas
the interior of the H=5 pore becomes spatially inhomoge-
neous at ��0.30. The density profiles presented in Fig. 1�c�
suggest that qualitative aspects of the fluid structure do not
change significantly with temperature. Increasing tempera-
ture simply dampens the strength of the oscillations in ��z�
while the period of these oscillations remains unchanged.
This is suspected for dense fluids of particles whose struc-
tural correlations are dominated by the repulsive part of the
pair potential. The general shape of ��z� also appears to be
preserved upon variation of the strength of the substrate-fluid
interaction �see Fig. 1�d��. In this case, the fluid structure
closest to the wall is impacted the most, with weaker walls
associated with a broader spatial distribution of molecules
near the substrate.

Figure 2 shows the lateral density profile ��x ,y� at z
=0.83 within the H=5 pore with �sf=1.0, T=2.0, and �
=0.450. The vertical distance corresponds to the position at
which ��z� first reaches a maximum. As a point of reference,
the vertical density profile ��z� for this system corresponds to

TABLE I. Liquid-vapor saturation properties at T=1.0.

H �sf �v �l

Bulk 0.001 0.392

5 0.2 0.004 0.265

5 1.0 0.041 0.293

5 3.0 0.227 0.314

10 0.2 0.002 0.319

10 1.0 0.105 0.350

10 3.0 0.194 0.381

FIG. 1. �Color online� Laterally averaged density profiles ��z�.
�a� H=10, �sf=1.0, and T=2.0. Curves from bottom to top �center
of the pore� correspond to �=0.2 �red�, 0.3 �green�, 0.4 �blue�, and
0.5 �brown�. �b� H=5, �sf=1.0, and T=2.0. Curves from bottom to
top �center of the pore� correspond to �=0.2 �red�, 0.3 �green�, 0.4
�blue�, and 0.5 �brown�. �c� H=5, �sf=1.0, and �=0.45. Curves
from bottom to top �center of the pore� correspond to T=5.0 �blue�,
2.0 �green�, and 1.0 �red�. �d� H=5, T=2.0, and �=0.45. Curves
from bottom to top �peaks closest to the wall� correspond to �sf

=0.2 �red�, 1.0 �green�, and 3.0 �blue�.

FIG. 2. �Color online� Lateral density profile ��x ,y� at z=0.83
for the H=5, �sf=1.0 pore at T=2.0, �=0.45. The figure spans one
square unit cell of the fcc lattice. The gray circle and quarter circles
show the location of atoms in the outermost layer of the 100 face of
the fcc crystal.
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the middle �green� curves presented in Figs. 1�c� and 1�d�.
The profile presented in Fig. 2 spans one square unit cell of
the fcc lattice, with the 100 face in contact with the fluid. The
distribution is highly localized, with the dumbbell centers of
mass preferentially adopting lateral positions corresponding
to the midpoints of lines connecting adjacent atoms in the
top layer of the fcc lattice. At these positions the vector de-
fined by the dumbbell intramolecular bond lies perpendicular
to the substrate normal and perpendicular to the aforemen-
tioned vector connecting adjacent atoms in the outermost
face of the fcc lattice. In terms of the �� ,�� notation outlined
above, the dumbbells adopt orientations characterized by
cos ��0 and �� /4 or ��3 /4. An example of the con-
ditional orientational distribution function ��� ,� r� with
x /a=y /a=0.25 and z=0.83 at the same state point noted
above is presented in Fig. 3. The spatial position selected
corresponds to the location of the maximum in the lower left
quadrant of the ��x ,y� profile shown in Fig. 2. Similar to the
��x ,y� profile, the ��� ,� r� distribution is highly localized.
The combined center of mass location and dumbbell orien-
tation places the dumbbell atoms at local depressions within
the 100 surface of the fcc crystal. This result is intuitively
expected. The distributions provided in Figs. 2 and 3 provide
quantitative representations of the strength of the one-body
dumbbell correlations.

Figure 4 provides ideal-gas configurational entropies for
the dumbbell fluid within the H=5 and 10 pores with �sf
=1.0 at T=2.0. For convenience, we plot the entropy differ-
ence 
sx

ig= �Sx
ig−SV

ig� /N. As the fluid density increases, the
one-body spatial and orientational distributions become pro-
gressively more localized and 
st

ig, 
so
ig, and 
sf

ig monotoni-
cally increase. In contrast, the accessible-volume-based 
su

ig

remains relatively constant with increasing density. For the
systems studied here, the orientational contribution 
so

ig is
larger than the translational term 
st

ig at almost all state con-
ditions. Although it is difficult to appreciate from Fig. 4, 
st

ig

exceeds 
so
ig at low density, where both quantities are rela-

tively small. The H=10 entropy differences 
sx
ig are small

relative to the H=5 values at similar fluid conditions. This
result is generally expected; as the surface to volume ratio
increases, the fraction of molecules influenced by the pore
walls increases, leading to larger one-body entropies on av-
erage.

We also include in Fig. 4 results from a segment-based
approach for computing the ideal-gas configurational en-
tropy. In this case, one uses the atomic density profiles �a�r�
to approximate the total one-body configurational entropy
�48–50�. More specifically, the ideal-gas configurational en-
tropy Sa

ig stems from a summation of integrals similar to that
presented in Eq. �8�, but featuring segment densities,

Sa
ig = −

1

n
�
j=1

n � dr� j�r��ln�� j�r�
q


 − 1� , �15�

where n is the number of segments within a molecule. Chan-
dler et al. explain �49� that this “extended-atom” approach is
expected to provide a good approximation to sf

ig for diatomic
molecules when the intramolecular bond length becomes
large. We find that 
sa

ig tracks 
sf
ig reasonably well, suggest-

ing that the atoms within a given molecule are largely seen
as independent entities by surrounding fluid molecules. This
result is perhaps not too surprising given the geometry of the
dumbbell model studied here.

The strong one-body spatial and orientational correlations
within the confined dumbbell fluid result in relatively large
differences in the various ideal-gas entropies. It follows that
the choice of reference state will have a significant impact on

FIG. 3. �Color online� Conditional orientational distribution
function ��cos � ,� r� at x /a=y /a=0.25 and z=0.83 for the H=5,
�sf=1.0 pore at T=2.0, �=0.45.

FIG. 4. �Color online� Ideal-gas entropies for the �a� H=5 and
�b� H=10 pores with �sf=1.0 at T=2.0. Symbols represent different
versions of the reference state entropy as denoted within the legend.
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the quality of excess entropy scaling predictions. Before ex-
amining the ability of the candidate excess entropies 
sx

ex to
describe the dynamics of the confined dumbbell fluid, we
provide some perspective regarding the magnitude of the
ideal-gas entropies provided in Fig. 4. All previous applica-
tions of excess entropy scaling to confined systems have fo-
cused on fluids described by spherically symmetric interac-
tion potentials �e.g., atomistic fluids� within pores defined by
smooth structureless walls �7–13�. Such systems are inhomo-
geneous in the direction normal to the substrate only. As a
result, the difference between sf

ig and su
ig is typically small. A

relevant example comes from the study of Mittal et al. �7�,
who examined the hard-sphere fluid confined by smooth hard
walls. For a pore width of five fluid diameters, the difference
sf

ig−su
ig evaluates to around −0.35 when the system is in the

vicinity of the freezing point. In contrast, this value ap-
proaches −5 under similar conditions for the dumbbell sys-
tem studied here. As we will see below, the relatively large
difference between sf

ig and su
ig for the dumbbell system will

help us to clarify the relevant reference state for predicting
dynamic properties.

Figure 5 provides the temperature and density dependence
of the translational and rotational diffusivities of the bulk and
confined dumbbell fluids. As expected, the mobility of the
molecules decreases with increasing density and decreasing
temperature. We also find that the diffusivities are sensitive
to the wall strength, with higher particle mobilities in the
pores with weaker walls. This observation indicates that den-

sity alone cannot be used to reliably predict the dynamic
properties of confined fluids. If one were to consider an ef-
fective density based upon the accessible volume, the corre-
lation with dynamic properties would generally improve, but
this strategy would help little in terms of collapsing data
obtained from pores with different wall strength due to the
relative insensitivity of accessible volume to wall strength.
Finally, we note that the translational and rotational diffusivi-
ties exhibit similar qualitative behavior.

We now examine the ability of the excess entropy to de-
scribe the kinetic properties of confined dumbbells. We first
focus on the sensitivity of the excess entropy scaling rela-
tions to the choice for the reference state. Figure 6 provides
Dt−sx

ex data for x=f, t, and u at T=5.0. Recall that the goal of
the excess entropy scaling strategy pursued here is to have
bulk and confined fluids exhibit the same Dt−sex relationship
at a given temperature. The excess entropy based upon the
uncorrelated ideal gas su

ex provides the best scaling variable.
Dt−su

ex data for all densities, pore widths, and wall strengths
considered collapse onto a common curve. The Dt−sf

ex and
Dt−st

ex correlations are noticeably weaker. From the perspec-
tive of using excess entropy scaling to predict the dynamic
properties of a confined fluid, the use of sf

ex or st
ex with the

bulk Dt−sex relationship leads to an overestimate for the mo-
bility of the confined fluid.

When constructing an excess entropy to describe the dy-
namic properties of a fluid one judiciously selects the refer-
ence state such that those correlations unimportant to a flu-
id’s dynamic behavior are removed from the thermodynamic

FIG. 5. �Color online� �a� translational and �b� rotational diffu-
sion coefficients. Symbols represent different pore width and wall
strength combinations as denoted within the legend. Solid lines rep-
resent the bulk fluid. Data are grouped from bottom to top as T
=1.0 �blue�, T=2.0 �black�, and T=5.0 �red�.

FIG. 6. �Color online� Relationship between translational diffu-
sivity and various versions of the excess entropy at T=5.0. Symbol
shape is consistent with the definition adopted in Fig. 5. Solid lines
represent the bulk fluid.

EXCESS-ENTROPY SCALING OF DYNAMICS FOR A… PHYSICAL REVIEW E 82, 041201 �2010�

041201-7



entropy. By selecting sf
ex as the relevant reference state en-

tropy, one is asserting that one-body correlations do not in-
fluence a fluid’s kinetic properties. The data provided in Fig.
6 suggest that these one-body correlations do indeed play an
important role in establishing a confined fluid’s dynamic be-
havior.

The excess entropy sf
ex has been adopted as the relevant

scaling variable in previous studies �7–13� focused on the
use of excess entropy scaling strategies for describing the
dynamics of confined fluids. However, as noted above, these
investigations focused on systems consisting of atomistic flu-
ids within pores defined by structureless walls, for which the
difference between sf

ex and su
ex is relatively small. We have

now re-examined some of these systems and have found that
su

ex consistently provides a superior scaling variable relative
to sf

ex. We again make a connection with the study of Mittal
et al. �7�, who examined the hard sphere fluid confined by
smooth hard walls. For this system, Dt−sf

ex data for the con-
fined fluid departed slightly from the bulk Dt−sex curve at
high densities, with the direction of the deviation from the
bulk curve consistent with that observed in Fig. 6 �see Fig. 1
of Ref. �7��. In contrast, we find �not shown� that Dt−su

ex data
for the same system remain strongly correlated over the en-
tire range of densities examined by Mittal et al. We plan to
systematically review our earlier work in which sf

ex was em-
ployed as the relevant scaling variable and report our find-
ings in a subsequent article.

From a practical perspective the su
ig reference state has

advantages over sf
ig. While both quantities are connected to

the fluid structure, su
ig is considerably easier to compute. Cal-

culation of sf
ex for the relatively simple diatomic molecules

featured here requires evaluation of a five-dimensional inte-
gral. For molecules with more complex topologies, calcula-
tion of the one-body contribution to the ideal-gas entropy is
not a trivial task �48–50�. In this case, approximate strategies
are often invoked to estimate the strength of the spatial and
orientational correlations that contribute to sf

ex. We found the
structure-based approach that was adopted here to determine
su

ig to be reasonably convenient and accurate. That being said,
other strategies may prove more appropriate for other sys-
tems. For example, one could deduce the accessible volume
from a test-particle insertion strategy. This approach may be
beneficial when working with irregularly shaped confining
environments.

Figure 7 shows the Dt−su
ex relationships at each of the

temperatures studied here. In general, Dt and su
ex are strongly

correlated. We find that, to a good approximation, the con-
fined fluid shows the same Dt−su

ex relationship as the bulk
fluid at a given temperature. The picture is less clear at high
density. Due to interference from the freezing transition, we
are unable to obtain bulk data that extends to −su

ex values as
large as those characteristic of the high-density confined
fluid. As a result, direct comparison of bulk and confined
Dt−su

ex data is not possible in this region. Further complica-
tion stems from curvature within the Dt−su

ex relations at high
−su

ex, which makes extrapolation of the curves difficult. We
note that many of the confined points that deviate from the
bulk curve are associated with a strong surface-fluid interac-
tion. Some of these cases �e.g., the H=5 and H=10 points
that lie well above the bulk curve at T=2.0� correspond to a

moderate density fluid that adopts a structure with most of
the particles strongly adsorbed to the pore walls and a few
particles in the interior of the pore.

Figure 8 provides the Dr−su
ex, �2−su

ex, and �−su
ex relation-

ships at each of the three temperatures studied here. We
again find that, to an excellent approximation, bulk and con-
fined data for a specified dynamic property at a given tem-
perature collapse onto a common curve when plotted against
su

ex. The data presented here suggest that the change in a
dynamic property upon confinement can be captured by
tracking the associated variation in su

ex and referencing the
bulk relationship for the dynamic property of interest and su

ex.

V. CONCLUSIONS

We have used molecular simulation to investigate issues
related to the application of entropy scaling techniques to
confined molecular systems. Molecular dynamics simulation
was used to obtain translational and rotational diffusion co-
efficients, a relaxation time associated with rotational mo-
tion, and a relaxation time intended to probe the collective
dynamics of the system. Free-energy-based Monte Carlo
simulation methods were used to calculate thermodynamic
properties of interest. Canonical Monte Carlo simulation was
used to acquire one-body spatial and orientational distribu-
tion functions for the confined fluid, which are necessary for
the computation of various ideal-gas configurational entro-
pies. Properties were collected for three pore wall strengths
over a range of temperatures that extends from the com-
pressed liquid regime to the fluid regime above the critical
temperature.

We found that the spatial and orientational distribution
functions characterizing the structure of the confined fluid
were highly localized at moderate and high fluid density. As

FIG. 7. �Color online� Relationship between translational diffu-
sivity and excess entropy. Symbol shape is consistent with the defi-
nition adopted in Fig. 5. Solid lines represent the bulk fluid. Data
are grouped from bottom to top as T=1.0 �blue�, T=2.0 �black�, and
T=5.0 �red�.
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a result, one-body contributions to the ideal-gas entropy were
large relative to systems that have been examined in previous
studies. This aspect of the dumbbell system enabled us to
carefully examine the ability of various excess entropies to

describe dynamic properties. We found that the optimal ref-
erence state was that of an uncorrelated ideal gas that occu-
pies the same volume as that accessible to the confined fluid
with full interactions present. When adopting this reference
state, the excess entropy accounts for one-body correlations
�as well as all higher-body correlations� within the confined
fluid. Our future plans include investigating the robustness of
this reference state by revisiting systems that have been stud-
ied previously as well as examining new model systems that
highlight differences between the states.

Our results suggest that excess entropy scaling strategies
can serve as a powerful tool for describing the dynamics of
confined molecular fluids. To an excellent approximation we
find that the effect of confinement on the translational and
rotational diffusivities as well as rotational and collective
relaxation times is captured by the thermodynamic excess
entropy. That being said, further studies are needed to iden-
tify the limitations of this approach. Investigations focused
on molecular systems with a broader range of interparticle
interactions, confining geometries, and/or compositions
would be welcome. For example, we are unaware of work
that has been completed with confined molecules possessing
substantial intramolecular degrees of freedom and/or com-
plex topologies.
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