

PGE, Au, AND Ag CONTENTS OF Cu-Ni SULFIDES FOUND AT THE BASE OF THE DULUTH COMPLEX, NORTHEASTERN MINNESOTA

By

Penelope Morton* and Steven A. Hauck

October 1987 Technical Report NRRI/GMIN-TR-87/04

Natural Resources Research Institute University of Minnesota Duluth 5013 Miller Trunk Highway Duluth, MN 55811-1442

*Geology Department University of Minnesota Duluth Duluth MN 55812 This publication is accessible from the home page of the Economic Geology Group of the Center for Applied Research and Technology Development at the Natural Resources Research Institute, University of Minnesota, Duluth (<u>http://www.nrri.umn.edu/egg</u>) as a PDF file readable with Adobe Acrobat 6.0.

Date of release: October 1987

Recommended Citation

Morton, P., and Hauck, S.A., 1987, PGE, Au, and Ag Contents of Cu-Ni Sulfides Found at the Base of the Duluth Complex, Northeastern Minnesota: University of Minnesota Duluth, Natural Resources Research Institute, Technical Report NRRI/GMIN-TR-87/04, 81 p.

Natural Resources Research Institute University of Minnesota, Duluth 5013 Miller Trunk Highway Duluth, MN 55811-1442 Telephone: 218-720-4272 Fax: 218-720-4329 e-mail: <u>shauck@nrri.umn.edu</u>

Web site: <u>http://www.nrri.umn.edu/egg</u>

©1987 by the Regents of the University of Minnesota

All rights reserved.

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age marital status, disability, public assistance status, veteran status, or sexual orientation.

PGE, Au and Ag Contents of Cu-Ni Sulfides Found at the Base of the Duluth Complex, Northeastern Minnesota

> Penelope Morton* Steven A. Hauck

October 1987

Technical Report NRRI/GMIN-TR-87-04

Natural Resources Research Institute University of Minnesota, Duluth 3151 Miller Trunk Highway Duluth, Minnesota 55811 *Geology Department University of Minnesota, Duluth Duluth, Minnesota 55812

ABSTRACT

Large resources of Cu-Ni sulfides are found in troctolitic and gabbroic rocks at the base of the Duluth Complex in St. Louis and Lake Counties of northeastern Minnesota. Analysis of unpublished mining company data shows that there is a substantial reserve of PGE, Au and Ag associated with these sulfides. Weighted averages for combined Pt and Pd values vary as follows: 105 ppb in Water Hen, 278 ppb in Dunka Pit, 378 ppb in Minnamax, 570 ppb in Maturi, 651 ppb in Spruce Road to a high of 1259 ppb in Dunka Road. Au values vary from a low of 63 ppb in the Water Hen to a high of 137 ppb in the Spruce Road. Ag values vary from 1.22 ppm in Dunka Road to 3.8 ppm in the Minnamax deposit. Because recovery of PGE in copper-nickel flotation concentrates is very poor (usually less than 50%), these values add less than \$5.00 to the ore.

Even though these PGE and Au values are associated with the Cu-Ni sulfides, it appears that absolute values cannot be correlated with Cu, Ni and/or S contents. If sulfide values are below 0.2 wt %, then there are no appreciable PGE values. This is true for all deposits. However, if Pt+Pd/S is plotted against Cu/S, all samples with high PGE contents appear to be related to samples with high Cu/S contents. Ag values, on the other hand, show a good correlation with absolute Cu content: r=+0.75 for all deposits and r=+0.86 for Minnamax data.

The largest data base comes from the Minnamax deposit where metal values are further separated into Basal and Cloud zones. Basal zone sulfides are those that occur in the lowest 300 feet of the Duluth Complex. Cloud zone sulfides occur several hundred feet above the base of the Complex. In general, Basal zone sulfides consist of both massive and

i

disseminated types, whereas Cloud zone sulfides are disseminated. At Minnamax, the weighted average sulfur content is 0.38% in the Cloud zone versus 2.78% in the Basal zone. The corresponding combined Pt and Pd values are, respectively, 192 and 396 ppb. Even though the absolute content in the Cloud zone is less, there is a higher metal to sulfur ratio than in the Basal zone, indicating an enrichment in PGE. This is also true for Cu and Ni contents. Ag contents, on the other hand, do not show this relationship. They are related to the absolute Cu content of the ore at Minnamax.

Detailed studies of two anomalous samples, one from Water Hen and the other from Dunka Road, have identified some interesting minerals. PGE bearing minerals were only identified at Dunka Road. At Water Hen the following minerals were identified by using a reflecting microscope as well as a scanning electron microscope equipped with an EDS system: bornite, chalcopyrite, pentlandite (Ni rich), maucherite, sphalerite (pure ZnS) as inclusions in bornite, native Ag as a cross-cutting veinlet in maucherite, niccolite, parkerite (Ni3Bi2S2), native Bi, and tentatively tetradymite (Bi2Te2S). Previous work by U.S. Steel identified the following minerals in the anomalous zone at Dunka Road: pyrrhotite, chalcopyrite, pentlandite, violarite, froodite (PdBi2), michenerite (PdTeBi), native Gold (Au, Ag), native Bi, and an unknown mineral composed of Pd, Sb and Bi. Textures within both of the samples indicate that pentlandite is being replaced by chalcopyrite and bornite at Water Hen and by violarite, chalcopyrite and the Au and Pd minerals at These minerals appear to have been concentrated by later Dunka Road. secondary copper rich fluids and are not part of the initial formation of Cu-Ni sulfides.

ii

Table of Contents

BACKGROUND	1
ACKNOWLEDGEMENTS	3
GEOLOGICAL BACKGROUND	4
GEOLOGY OF THE HOYT LAKESKAWISHIWI AREA	7
South Kawishiwi Intrusion	7
Partridge River Troctolite	8
Water Hen Intrusion	9
DESCRIPTION OF SULFIDE DEPOSITS	10
Spruce Road and Maturi Deposits	10
Dunka Pit (Dunka River area)	12
Minnamax	13
Dunka Road Deposit	17
Wyman Creek	18
Water Hen Cu-Ni-Ti Deposit	20
PGE CHARACTERISTICS OF SULFIDE DEPOSITS OF THE DULUTH COMPLEX	21
Review and Introduction	21
Presentation of Results	22
Mean and Median Values	25
Concentrate Values	37
Minnamax Deposit	39
General	39
Comparison of Basal and Cloud Zone Sulfides	42
ANOMALOUS SAMPLES	54
Geochemistry and Reassaying	54
Water Hen	58

Mineralogy of Water Hen Samples	58
Dunka Road Deposit	60
CONCLUSIONS	61
REFERENCES	63
APPENDIX	68

List of Figures

Figure 1:	Spot Values of Precious Metals	2
Figure 2:	Location of Cu-Ni deposits in the Duluth	
	Complex, N.E. Minnesota	5
Figure 3:	Location of drill holes studied in theses	
	of the Minnamax Deposit	14
Figure 4:	Distribution of Cu/Cu+Ni ratios in Cu-Ni	
	sulfide deposits of the Duluth Complex	26
Figure 5:	Distribution of Pt+Pd contents of Cu-Ni	
	sulfide deposits of the Duluth Complex	27
Figure 6:	Distribution of Pt/Pt+Pd ratios in Cu-Ni	
	sulfide deposits of the Duluth Complex	28
Figure 7:	Distribution of Ag contents in Cu-Ni	
	sulfide deposits of the Duluth Complex	29
Figure 8:	Comparison of Ag contents in Minnamax	
	Basal zone with other Cu-Ni sulfide deposits	
	including the Cloud zone	30
Figure 9:	Correlation of Cu and Ag contents for	
	Cu-Ni sulfide deposits	31
Figure 10:	Distribution of Co contents in the Cu-Ni	
	sulfide deposits of the Duluth Complex	32
Figure 11:	Pt and Pd contents versus %Cu in concentrate	33
Figure 12:	Pt and Pd contents versus %Ni in concentrate	34
Figure 13:	Pt versus Pd contents in concentrate	35
Figure 14:	Distribution of the Cu/Cu+Ni ratio at Minnamax	43
Figure 15:	Distribution of the Pt/Pt+Pd ratio at Minnamax	44
Figure 16:	Distribution of Ni/S at Minnamax	45

v

Figure 17:	Distribution of Cu/S at Minnamax	46
Figure 18:	Ni/S versus Cu/S for Basal and Cloud zones	47
Figure 19:	Distribution of Pt+Pd/(100xS) at Minnamax	48
Figure 20:	Pt+Pd/S versus Cu/S for Basal and Cloud zones	49
Figure 21:	Distribution of Ag/S at Minnamax	50
Figure 22:	Ag/S versus Cu/S for Basal and Cloud zones	51
Figure 23:	Ag versus %Cu for Basal and Cloud zones	52

List of Tables

Table 1:	Published Cu-Ni grades and tonnages for Cu-Ni	
	deposits in the Duluth Complex	11
Table 2:	List of theses written on the Cu-Ni Sulfides	
	at the base of the Duluth Complex in St. Louis	
	and Lake counties	15
Table 3:	Weighted averages of metals in Cu-Ni sulfide	
	deposits of the Duluth Complex	23
Table 4:	Median values of metals in Cu-Ni sulfide deposits	
	of the Duluth Complex	24
Table 5:	Average metal contents of concentrates	24
Table 6:	Weighted average metal values in the Minnamax deposit	40
Table 7:	Comparison of pre-1969 data with that of Dahlberg, 1987	41
Table 8:	Analyses of samples from the Water Hen deposit	56
Table 9:	Analyses of samples from Wyman Creek and Dunka Road	
	deposits	57

vii

List of Tables in Appendix

A NAME AND ADDRESS OF TAXABLE

Table A1:	Data Collected From U.S. Steel's Dunka Road Deposit	69
Table A2:	Data Collected From U.S. Steel's Wyman Creek Deposit,	
	U.S. Steel	70
Table A3:	Data From the Dunka Pit Area	71
Table A4:	Data Collected From the Water Hen Deposit	72
Table A5:	List of Holes for Which There Are Precious Metal Data	
	at Minnamax	73
Table A6:	PGE Data From Minnamax Analyzed at University of Toronto	74
Table A7:	Pt, Pd, Cr, and Ag Contents of the Cloud Zone Sulfides	75
Table A8:	Baseline Data From the Tiger Boy and Bathtub Deposits,	
	Minnamax	76
Table A9:	Pt, Pd, Au and Ag Data Collected Pre 1969 at Minnamax	77
Table A10:	Analyses of Concentrates, Heads, Tailings and Recovery,	
	Dunka Road Deposit	78
Table All:	Concentrate Values for INCO's Spruce Road Deposit	79
Table A12:	Values of Metals in Concentrates from Minnamax	80

List of Figures in Appendix

Figure A1:	Rock Classification Scheme	81
Figure A2:	Drill Hole Locations at Dunka Road Cu-Ni Deposit	82
Figure A3:	Drill Hole Locations at Wyman Creek Cu-Ni Deposit	83
Figure A4:	Drill Hole Locations at Water Hen Cu-Ni-Ti Deposit	84
Figure A5:	Drill Hole Locations at Minnamax With PGM Values	85

BACKGROUND

During the last few years, there has been a worldwide increase in demand for Platinum Group Elements (PGE) in the autocatalyst and electronics industries, for investment, and for jewelry. This increased demand pushed prices of Pt, Pd, Rh to values greater than \$600.00/oz for Pt, \$140/oz for Pd, and \$1400.00/oz for Rh in September of 1986. During 1987, prices for Pt and Pd have been maintained at greater than \$500.00 and \$120.00 per ounce respectively (Figure 1). According to Johnson Matthey (1987), the supply and demand for Pt and Pd in 1986 was as follows:

		Pt		Pd	
		1000 oz	8	1000 oz	010
SUPPLY	Ζ				
	S. Africa	2350	83	1020	34
	Canada	150	5.3	200	7
	USSR	290	10.2	1660	56
	Others	40	1.4	90	3
	Total	2830		2970	
DEMANI	0				
	W. Europe	480	17	540	18
	Japan	1010	35	1270	43
	N.A.	1190	42	960	32.4
	Others	170	6	190	6.4
	Total	2850		2960	

This high demand for PGE is met primarily by S. Africa and the U.S.S.R. The United States has relied almost virtually on imports (approximately 7% of PGE are recycled) and until 1987 there was no producer of PGE (Stillwater was brought into production in early 1987 and the first refined metal will be available in August, 1987).

Figure 1: Spot Values of Precious Metals

Because of the upward trend in prices of PGE as well as the need for finding domestic sources of these metals, the NRRI undertook a review and compilation of the existing data on PGE, Au, and Ag, and Co values in the Cu-Ni sulfide bodies that are located toward the base of the Duluth Complex in St. Louis and Lake Counties of NE Minnesota (Listerud and Meineke, 1977). It was hoped that these data would provide a sound base for either renewed exploration for PGE associated with Cu-Ni sulfides or, lead to the actual selection of smaller, higher grade, economically mineable Cu-Ni deposits. As the first phase of this on-going project, active and inactive companies were approached for permission to access their private files so that their data could be compiled and published in a technical report. This report would then serve as a data base for all companies interested in this area. Samples and drill hole intersections with anomalous PGE values are currently being investigated by relogging core, sampling and reassay. This report, the first in a series on this project, represents both a review of the geology of the deposits as well as a compilation of company data. Preliminary results on the mineralogy of anomalous samples are also presented.

ACKNOWLEDGEMENTS

We would like to thank the following companies for access to their data. They are as follows: Kennecott BP Minerals for data from the Minnamax deposit, U.S. Steel for the Dunka Road and Wyman Creek deposits, Hanna Mining for the Maturi Deposit, and Westmont Mining and American Shield for the Water Hen deposit. The Minnesota DNR in Hibbing was also very helpful in locating open file reports on these deposits.

GEOLOGICAL BACKGROUND

The Duluth Complex consists of dominantly mafic igneous rocks of Keweenawan Age (1.1 b.y.) that are exposed in an arcuate body extending from Duluth north toward Ely, and from there north-eastward toward Hovland, Mn. (Figure 2). In the west from Duluth to Hoyt Lakes, the base of the Complex is in sharp contact with Middle Precambrian (1.7 b.y.) slates and greywackes of the Thomson and Virginia Formations and, in some cases, the Biwabik Iron Formation. From Ely northeastward, the footwall rocks of the Complex are Archean (2.7 b.y.) greenstones and granitic The northernmost basal contact is with Middle Precambrian slates rocks. and greywackes of the Rove Formation. The upper contact of the Complex, though not well defined, is with medium to fine-grained, extrusive rocks of the North Shore Volcanic Group. Rock types in the upper part of the Complex appear to be gradational to the volcanics, and therefore, the "upper contact" of the complex appears to be arbitrary in places and subject to revision (Weiblen and Morey, 1975).

In general, rocks of the Duluth Complex are divided into an older anorthositic series and a younger troctolitic series (after Taylor, 1964; Weiblen and Morey, 1980). From Duluth to Ely troctolitic rocks are found at the base of the Complex with anorthositic rocks exposed to the east and northeast (Bonnichsen, 1972a). The troctolitic series consists of troctolite, augite troctolite and troctolitic gabbro (Figure A1). Olivine and plagioclase appear to be contemporaneous and earlier than pyroxene and oxides. Anorthositic series rocks, however, are composed dominantly of gabbroic anorthosite and troctolitic anorthosite (Figure A1). In general, the mafic minerals in these rocks are later than the plagioclase (Bonnichsen, 1972a).

CT

Figure 2. Location of Cu-Ni Deposits in the Duluth Complex, N.E. Minnesota.

47.45

Within the troctolitic series rocks exposed at the base of the Duluth Complex are numerous segregations of Cu-Ni sulfides. These Cu-Ni sulfides occur in what is known as the "basal zone" (lowermost several hundred feet) of the Duluth Complex. The vast majority of the sulfide is disseminated but massive and semi-massive ore is locally present (Listerud and Meineke, 1977). The sulfide minerals occur in several large deposits in the Hoyt Lakes--Kawishiwi Lakes area (Figure 2) and from north to south these deposits are: Spruce Road, Maturi, Dunka Pit, Minnamax (also known as Babbitt (Ripley and Alawi, 1986), Dunka Road, and Wyman Creek. There are also Cu-Ni sulfides associated with the Water Hen Intrusion located between Hoyt Lakes and Duluth.

GEOLOGY OF THE HOYT LAKES - KAWISHIWI AREA

Bedrock geology of the Hoyt Lakes-Kawishiwi area (Figure 2) has been described by Weiblen and Cooper (1977) and Morey and Cooper (1977). Most of the rocks exposed in the area belong to the troctolitic series and have been divided by various workers into the Bald Eagle intrusion (Weiblen, 1965), the South Kawishiwi intrusion (Green et al., 1966; Phinney, 1969), the Railroad troctolite, the Powerline Gabbro and Partridge River troctolite (Bonnichsen, 1974). Other troctolitic rocks are unsubdivided.

All of the sulfide deposits occur in the basal zone of the S. Kawishiwi intrusion, the Partridge River troctolite, undivided troctolite and/or the Water Hen intrusion (Mainwaring, 1975). These intrusions are described separately.

South Kawishiwi Intrusion (SKI)

According to Foose and Weiblen (1986), the SKI is composed mostly of plagioclase-olivine cumulates containing minor (less than 10%) interstitial augite, oxides or biotite. Modal layering is not common and generally not traceable for more than 300 feet. From drill hole analysis, three major lithologic zones are recognized: 1) older granitic footwall rocks, 2) basal zone sulfide-bearing rocks and 3) generally sulfide-free troctolite with interlayered anorthosite. The sulfide free rocks consist of sequences of troctolite and anorthosite which form cyclic units in which the crystallization of plagioclase is followed by plagioclase and olivine. It is thought that the crystallization of these rocks occurred

in a magma chamber that was continuously being replenished by compositionally similar liquids. The sulfide-bearing zone, however, consists of a mixture of troctolite, picrite, dunite, anorthosite, oxides and hornfels throughout which sulfides are disseminated.

Partridge River Troctolite (PRT)

Bonnichsen (1974) used the term PRT to designate troctolitic rocks exposed near Hoyt Lakes and south of the Reserve Mining Company. Because of extensive glacial deposits, exposures are limited and much of the following description comes from workers studying drill core (e.g., Boucher, 1975; Molling, 1979; Tyson and Chang, 1984; Al-Alawi, 1985; Chalokwu, 1985; Chalokwu and Grant, 1987; Mills, in prep). Rock types present in the core are olivine gabbro, augite troctolite, troctolite and anorthositic troctolite. Anorthosites are rare. There does not seem to be a sulfide bearing and a sulfide free unit as mapped in the SKI. Rather sulfide mineralization is concentrated in the lower 300 feet of the basal zone just above the footwall Virginia Formation, and at about 600 feet above the base of the intrusion (Cloud zone sulfides after Watowich, 1978). It is also disseminated (< 0.5 volume %) in the upper parts of the intrusion (Ripley and Alawi, 1986).

The intrusion itself has been divided into various units by different authors. Grant and Molling (1981) have divided the intrusion into three major units based on trace element and petrochemical differences. Tyson and Chang (1984) studied four drill cores from the Minnamax deposit and described five units based on textural and modal analyses. Ripley and Alawi (1986) divide the intrusion into 3 units on the basis of sulfide

content, whereas Chalokwu and Grant (1987) divide it into 4 units on the basis of mineral and rock geochemistry. At present, no correlation between authors' works has been made and at best, it can be said that the Partridge River troctolite is heterogeneous.

Water Hen Intrusion

The Water Hen intrusion consists of a small (2 x 1 Mi.) steeply-dipping, somewhat flattened cylindrical body composed of layers of coarse-grained mafic and ultramafic rocks which have intruded the base of the Duluth Complex (Figure 2). Rock types include feldspar-bearing dunite, peridotite, ilmenite-rich (up to 30%) peridotite, melatroctolite, troctolite, gabbro and anorthosite (Mainwaring, 1975; Mainwaring and Naldrett, 1977). Footwall rocks belong to the troctolitic series which may or may not be part of the Partridge River troctolite. Cu-Ni sulfides are concentrated in the basal dunite, at the base of mineral graded units, and as disseminations in peridotite which contains graphite and recrystallized xenoliths of country rock.

DESCRIPTION OF SULFIDE DEPOSITS

Of those deposits listed above, we were able to obtain detailed, composite, and concentrate analyses from Minnamax, Dunka Road and Water Hen; composite analyses from Maturi and Spruce Road; and previously published analyses of Erie's Dunka Pit and concentrate from INCO's Spruce Road deposit (INCO, 1975). A review of the geology and mineralogy of each of the larger deposits is described below.

Spruce Road and Maturi Deposits

Descriptions of these deposits are taken from INCO's 1975 Open File Report to the DNR, Wager et al. (1969), and Foose and Weiblen (1986). According to INCO geologists, the bulk of the sulfide mineralization at the Spruce Road and Maturi deposits is confined to the narrow basal zone of the S. Kawishiwi intrusion. contact Overall there are approximately 2.9 billion short tons of low grade (>0.5% Cu, >0.15% Ni) ore (Listerud and Meineke, 1977) in these two areas (Table 1). The basal zone is characterized by subtle to well-defined layering, considerable local variability in texture and modal mineralogy as well as numerous fine-grained inclusions of hornfels. In detail, the basal contact zone consists of an assemblage of troctolite, olivine gabbro, norite, picrite, and gabbroic and anorthositic pegmatite. In places picrite alternates with normal troctolite causing a conspicuous layering. These layers are not continuous over any appreciable distance.

Inclusions are ubiquitous in the intrusive rocks throughout this basal zone. In order of abundance they are: 1) light to medium grey hornfels

Deposit	Short ton	Gra %Cu	de Ca %Ni	u/Cu+Ni	Reference
Spruce Road	273 m.t.	0.46	0.17	0.73	Open File Report 1975
	700 m.t.	>0.5		0.73	Listerud and Meineke, 1977
Maturi Area	2.2 b.t.	>0.5		0.76	
Minnamax	419 m.t.	0.54	0.13	0.81	Watowich et al., 1981
	800 m.t.	>0.5		0.80	Listerud and Meineke, 1977
Dunka Road	300 m.t.	>0.5		0.76	

Table 1: Published Cu-Ni grades and tonnages for Cu-Ni deposits in the Duluth Complex

of sedimentary origin, 2) blocks of well-banded Biwabik Iron Formation which appear to have lateral dimensions of several hundred feet and 3) recrystallized olivine-rich gabbro and troctolite. Olivine in the last inclusion type is the dominant mafic mineral and occurs with a granular and/or poikiloblastic texture. At Maturi, inclusions with granular olivine are the most prevalent. Where the percentage of inclusions exceeds 30%, the term Spruce breccia has been used by INCO geologists.

According to Wager et al. (1969), the distribution of sulfides in the basal zone appears to be largely independent of rock type. The principal sulfide minerals in order of abundance are pyrrhotite, chalcopyrite, cubanite, and pentlandite. Minor minerals include violarite, pyrite, bornite, covellite, digenite, chalcocite, tenorite, cuprite, native Cu, mackinawite and sphalerite. These sulfides occur as disseminated interstitial aggregates and, to a minor extent, as inclusions in feldspar, biotite, amphibole and pyroxene. According to Foose and Weiblen (1986), they also occur as sulfide-silicate intergrowths and as fine-grained sulfide veinlets.

Chalcopyrite is the dominant copper sulfide. Cubanite, where present, occurs as lamellae and irregular intergrowths in chalcopyrite. Relative

proportions vary but the ratio of chalcopyrite to cubanite is higher at Spruce Road than at Maturi. Pentlandite, the dominant nickel mineral, occurs either as granular areas or as small exsolution blades and flames in pyrrhotite. In some cases, it is altered to violarite. According to Wager et al. (1969), the ratio of pyrrhotite to pentlandite is higher at Spruce Road than at Maturi. The Cu/Cu+Ni ratio is consistently close to 0.75 in the mineralized zone but ratios from 0.67 to 0.87 have been noted in pegmatitic zones. According to Listerud and Meineke (1977), the average Cu/Cu+Ni ratio varies from 0.73 at Spruce Road to 0.76 at Maturi.

Dunka Pit (Dunka River area)

Sulfides occur in the Dunka River area in the north end of the Erie Mining pit and north and east of the pit (Figure 2). These sulfide zones have been penetrated by numerous drill holes from various mining companies. Host rocks belong to the South Kawishiwi intrusion. Footwall rocks in the area consist of Giants Range granite in the northern part of the area and Biwabik Iron Formation in the area of the Erie Pit. Bonnichsen (1972 a,b) looked at four Newmont drill holes as well as as a series of holes drilled just north of the Erie pit. Fukui (1976) concentrated on one of the Newmont holes (NM-5).

Sulfides are confined to the basal unit of the S. Kawishiwi intrusion where they occur as fine disseminations or locally in the footwall contact zone as massive accumulations. Minerals in order of abundance are pyrrhotite, chalcopyrite, pentlandite and cubanite. Sulfide stringers also penetrate the footwall granitic rocks and here the sulfides consist of chalcopyrite and bornite with very little pyrrhotite. Pentlandite is

replaced by millerite, and sphalerite is common. From Cu-Ni assays plotted on Figure V-47 of Bonnichsen (1972a), the estimated Cu/Cu+Ni ratio is 0.72. Sulfide mineral percentages were not tabulated in either of these studies.

Minnamax

The Minnamax deposit (also called the Babbitt deposit) consists of approximately 800 m.t. of > 0.5% Cu (Table 1). The deposit is located in the basal rocks of the Partridge River troctolite (Figure 2). According to estimates from mine geologists (Watowich et al., 1981), there were 419 m.t. of reserves for their mining plan. Numerous theses and studies have been concerned with the distribution and genesis of sulfides within the Minnamax deposit (Table 2). The drill holes listed are those on which the main parts of the theses were based (for location see Figure 3). Other workers include (Watowich, 1978; Ripley and Al-Jassar, 1987; Ripley and Alawi, 1986; Boucher, 1975; Pasteris, 1984; and Tyson and Chang, 1984). For a good review of the deposit, the reader is referred to Ripley and Alawi (1986).

At Minnamax, footwall rocks are composed of Virginia Formation. Although xenoliths of iron formation are not uncommon within the Minnamax deposit, the Biwabik Iron Formation is not in direct contact with igneous rocks of the Partridge River troctolite in this area. Two major sulfide zones have been identified: 1) Basal zone mineralization which varies from massive to disseminated in texture occurs at the base of the complex (up to 300 feet thick) and 2) Cloud zone (Watowich, 1978; Ryan, 1984; Mills, in prep.) mineralization which is disseminated and occurs

10.00

Table 2: List of Theses* Written on the Cu-Ni Sulfides at the Base of the Duluth Complex in St. Louis and Lake Counties

Deposit Reference		Drill Holes Studied	Degree
Dunka Pit	Fukui,1976	NM-5 (NM-7,NM-9,NM-11+ 128) 128 from Minnamax	M.S.
Minnamax			
Tiger Boy	Al-Alawi, 1985	136,156,189,379,146+ underground	Ph.D.
Tiger Boy	Al-Jassar,1985	136, 146, 156, 189, 214, 221, 379 + underground	Ph.D.
Tiger Boy	Chalukwu, 1985	221	Ph.D.
Tiger Boy + Bathtub	Davidson, 1979	73,162,316,232,402,406	M.S.
Tiger Boy	Hardyman, 1969	61	M.S.
Tiger Boy	Fellows, 1976	128	M.S.
Tiger Boy	Matlack, 1980	A, B, C, D, drifts	M.S.
Bathtub	Mills, in prep.	82, 363	M.S.
Tiger Boy	Molling, 1979	295	M.S.
Tiger Boy	Ryan, 1984	132	M.S.
Bathtub	Tyson, 1979	297,304,364,91+ others	Ph.D.
Dunka Road	Ingemansen, 1985	26069	B.S.
	Rao, 1981	26082,26056,26081	Ph.D.
Water Hen	Mainwaring, 1975	CN-7, SL-2, CN-11	Ph.D.
Wyman	Churchill, 1978	17700+ samples from Minnamax and INCO	M.S.

* Theses documenting metamorphism of hornfels and country rocks have not been included.

approximately 500 to 600 feet above the base of the intrusion. In both areas there are a large number of inclusions (Virginia Formation and mafic hornfels).

While the Minnamax deposit was leased by AMAX, their geologists (Watowich, 1978) gave different names to parts of the ore body: Tiger Boy; Local Boy, a rich massive sulfide zone of the Tiger Boy; Up Dip Tiger Boy; Southwest Extension; Bathtub; and Up Dip Bathtub (Figure 3). Cloud zone sulfides are present in all of these areas. Of the theses written, the bulk are concerned with Tiger and Local Boy basal mineralization.

Only Ryan (1984) deals specifically with Cloud zone sulfides, whereas Al-Alawi (1985), Tyson (1979), and Mills (in prep.) deal with both Cloud zone and Basal zone sulfides.

Sulfide mineralization at Minnamax is locally massive to semi-massive. AMAX defined approximately 3 to 6 million tons of 3.0% Cu and 0.6% Ni (Listerud and Meineke, 1977) in the vicinity of the shaft (Figure 3). Here the sulfide minerals in order of abundance are: pyrrhotite=cubanite>> chalcopyrite>pentlandite. The overall Cu/Cu+Ni ratio of the semi-massive zone is 0.83 (Listerud and Meineke, 1977). Other textural types found throughout the Basal zone include disseminated and interstitial, filling interstices between plagioclase laths; connecting veins of sulfides between interstices; copper rich veinlets which cross-cut silicates; and simplectic intergrowths of monomineralic sulfide with silicates.

In the Basal zone mineralization, the overall ratio of cubanite to chalcopyrite is 2:1 (6:1 in semi-massive) and according to Al-Alawi (1985), where the volume per cent of sulfides is greater than 6%, cubanite is the dominant copper sulfide. According to Matlack (1980), in the area of underground Cu-rich ore, the veins that connect interstices are composed dominantly of pyrrhotite and cubanite with minor chalcopyrite and pentlandite whereas veins that cross-cut hornfels of Virginia Formation or in the formation itself are composed of chalcopyrite and cubanite with minor pyrrhotite, pentlandite and bornite. He also documents late stage veins composed of chalcopyrite, bornite, chalcocite, quartz and calcite with rare laumontite.

Tyson (1979) describes the same kinds of sulfide textures and minerals. He also recognized troilite, and valleriite in the Basal zone.

He states that sulfide veinlets are dominantly composed of chalcopyrite. Other minerals that have been recognized by a variety of workers are: talnakhite, native Cu, digenite, mackinawite, sphalerite, violarite, covellite, tenorite, graphite, ilmenite and magnetite.

In comparing the Cloud and Basal zones, even though there are less sulfides in the Cloud zone overall (Ripley and Alawi, 1986), the relative abundance of copper and nickel sulfides is higher than in the Basal zone. Tyson (1979) states that chalcopyrite is the dominant copper sulfide in the Cloud zone, whereas Al-Alawi (1985) says that chalcopyrite equals cubanite in abundance. Electron microprobe analyses of pentlandite and pyrrhotite confirm that they are both richer in Ni within the Cloud zone, suggesting a different magma as a source for the Ni (Al-Alawi, 1985; Ripley and Alawi, 1986). Overall, the average Cu/Cu+Ni ratio of the Cloud zone sulfides from drill hole 132 is 0.77 (Ryan, 1984) compared to 0.8 for the deposit overall and 0.83 for the semi-massive ore.

Dunka Road Deposit

The Dunka Road deposit is owned by U.S. Steel and is situated at the base of the Partridge River troctolite southwest of the Minnamax deposit (Figure 2). According to Listerud and Meineke (1977), there are over 300 m.t. of ore with greater than 0.5% Cu and an overall Cu/Cu+Ni ratio of 0.76. Ripley (1981), however, quotes a Cu/Cu+Ni ratio of greater than 0.86. Descriptions of this deposit come from U.S. Steel reports, Rao (1981), Ripley (1981) and Rao and Ripley (1983).

Footwall rocks within the area are Virginia Formation and xenoliths of sedimentary hornfels are found at the base of the troctolite sequence and

are also found higher up in the sequence. Ripley and Rao (1983) suggest that the Virginia Formation was the footwall for a series of troctolitic pulses intruded one below the other. A Cu-Ni sulfide zone exists at the base of each of three possible intrusive pulses.

Rock types within these three intrusions vary from norite at the base to troctolite, anorthositic troctolite, gabbro, olivine gabbro and picrite. Overall, troctolites are the most common with plagioclase and olivine occurring as cumulate grains. Interstitial minerals include ortho- and clinopyroxene, ilmenite, spinel, biotite and locally sulfides. Biotite increases in abundance toward the base of the intrusion.

Sulfides are concentrated in areas of inclusions. The two most common textures for these sulfide minerals are: 1) interstitial between subhedral grains of plagioclase and olivine, and 2) as ragged aggregates in intimate association with biotite and/or ilmenite. According to Ripley (1981), irregular sulfides associated with biotite constitute about 50 to 60 per cent of the sulfide accumulation. In order of abundance the sulfide minerals are pyrrhotite (55%), chalcopyrite (32%), cubanite (10%), pentlandite (3%) and minor bornite (Rao, 1981). In the upper zones of sulfide mineralization, chalcopyrite is the dominant sulfide mineral (much the same as at Minnamax).

Wyman Creek

The Wyman Creek area, owned by U.S. Steel, is located just east of Hoyt Lakes (Figure 2). Footwall rocks are composed of Virginia Formation and the only studies to date on this deposit have been done by U.S. Steel geologists and Churchill (1978). Churchill studied samples from drill hole 17700 which penetrates the base of the contact zone between the Duluth Complex and the Virginia Formation (Figure A3). This drill hole intercepts only 220 feet of the Complex and, therefore, cannot be considered representative of rocks or sulfide mineralization in the area.

From preliminary logging of core by Dean Peterson (this project, August 1987), it appears that the bulk of the Duluth Complex in this area consists of olivine gabbro, pyroxene-bearing troctolite and troctolite. Other rock types include picrite, anorthosite, and anorthositic gabbro. Sulfides are disseminated throughout, usually interstitial and are related to hornfelsic inclusions. Sulfides are also concentrated in pegmatitic portions of the rock types.

In drill hole 26144 there are two sulfide zones: one occurring from 250 to 383 feet in depth and one from 700 to 780 feet at the base of the intrusive rocks. The Cu/Cu+Ni ratio for the upper unit is 0.62 whereas that of the lower is 0.73. This might well suggest at least two pulses of magma: the lower being intruded beneath the other as suggested at Dunka Road by Rao and Ripley (1983).

According to Churchill (1978), sulfides are found in two areas of drill hole 17700: 1) at 28 to 128 feet and 2) from 200 to 222 feet in depth. The latter sits just above the contact with the Virginia Formation. Overall there appears to be about 2 per cent sulfides in these zones. Within the sulfide zones the relative abundance of sulfide minerals is as follows: pyrrhotite (60-80%), cubanite and chalcopyrite (20-40%), pentlandite (2-12%) and bornite (1%).

Water Hen Cu-Ni-Ti Deposit

The Water Hen Cu-Ni sulfides differ from those deposits described above because they occur within an ilmenite-rich mafic to ultramafic body which has intruded troctolitic series rocks at the base of the Duluth Complex. This deposit has been described by Mainwaring (1975) and Mainwaring and Naldrett (1977). The Water Hen intrusion itself consists of cyclical units of mineral-graded layers varying from dunite at their bases through troctolites to anorthosites at their tops. Xenoliths of underlying Virginia Formation are found in the lower third of the intrusion. The Cu-Ni sulfides occur either as massive and disseminated ores associated with dunites, both at the base of the intrusion and in zones forming the base of individual units, or secondly, as disseminations in peridotite containing graphite and recrystallized xenoliths. Texturally the sulfides fill voids between olivine and ilmenite grains.

Sulfide mineralogy is similar to that found in the Cu-Ni sulfides associated with troctolites. Major minerals are pyrrhotite, pentlandite, cubanite, chalcopyrite, and mackinawite. Minor minerals include arsenopyrite, maucherite, sphalerite and galena. Secondary minerals are bravoite, violarite, and marcasite. The overall Cu/Cu+Ni ratio of the sulfides is 0.66 but the grade is considerably less than 0.5% copper. Sulfides are generally absent in footwall troctolites (Mainwaring, 1975) although they do occur in late stage pyroxenite dikes which cross-cut the footwall rocks.

PGE CHARACTERISTICS OF SULFIDE DEPOSITS OF THE DULUTH COMPLEX

Review and Introduction

Magmatic sulfide deposits fall into two main categories with respect to their PGE content: 1) those in which the PGE are the principal products extracted from the ore, and 2) those in which Ni and Cu are the most important products and the PGE are by-products (Naldrett and Duke, 1980). The former includes deposits such as those of the Merensky Reef of the Bushveld Complex and the JM reef of the Stillwater Complex, whereas the latter includes Ni-Cu deposits that are associated with a variety of mafic and ultramafic rock types. Naldrett and Duke (1980) maintain that over 95% of all known Ni-Cu sulfide ores in this latter category fall into one of the following petrotectonic settings:

1. Setting I, noritic rocks associated with an astrobleme. The only known occurrence is the Sudbury Mining Camp in Ontario, Canada.

2. Setting II, intrusive equivalents of flood basalts associated with intracontinental rifting. Noril'sk camp of Siberia, Duluth Complex and the Crystal Lake Gabbro (Postle et al., 1986) are important examples of this deposit type.

3. Setting III, rocks emplaced during early stages of formation of Precambrian greenstone belts. These may be associated with tholeiitic lavas, e.g., Pechanga Ni camp, USSR or komatiitic lavas and intrusions, particularly the more ultramafic variety, e.g., Kambalda camp of Western Australia.

4. Setting IV, Synorogenic tholeiitic intrusions of Phanerozoic belts, e.g., Rana deposit, Norway.

Of these, the Duluth Complex falls within Setting II. Naldrett and Duke (1980) maintain, that any supply of PGE from the Duluth Complex would be tied directly to the mining of Cu and Ni. They estimate a total reserves for the Duluth Complex (based on a reserve of 8 billion kilograms of Ni) to be 544,000 kg Pt and 1,808,000 kg Pd. These are 1/3 the reserves for Noril'sk.

Since the publication of the above paper, there have been several studies about the distribution of PGE within Cu-Ni sulfides of the Duluth Complex (Watowich et al., 1981; Ryan and Weiblen; 1984; Tyson and Bonnichsen, 1986; Ripley and McMahon, 1987, Weiblen et al., 1987; Morton, 1987). Also, there are high PGE values in oxide-rich rocks in drill holes DU-15 and DU-9 of the Birch Lake area in the basal zone of the South Kawishiwi intrusion (Sabelin et al., 1986; Dahlberg and Gladen, 1987). Here the PGE appear to be related to Cr spinels rather than sulfides and their distribution is not considered in this report.

As stated before, this project was undertaken to compile unpublished company data on the distribution of PGE in the hopes of adding to the meager data base and perhaps, delineating PGE rich areas within the Cu-Ni sulfides. The rest of this report deals with company data.

Presentation of Results

All individual data for deposits are listed in separate tables (Al to A12) within the Appendix. Drill Hole location maps (Figures A2-A5) are also found in the Appendix. These describe locations of holes for which there are assay data. Where known, rock types are included in these tables. Weighted mean and median values for all of the deposits are presented in Tables 3 and 4 and average concentrate values in Table 5. It should be noted that data presented in Tables 3 - 5 come from a very small percentage of available core, usually less than 1%. For purposes of

Table 3: Weighted averages of metals in Cu-Ni sulfide deposits of the Duluth Complex

DEPOSIT	# of samples	Total feet	%Cu	%N i	%S	Pt (ppb)	Pd (ppb)	Pt+Pd (ppb)	Ag (ppm)	Au (ppb)	Pt+Pd +Au (ppb)	Cu/ Cu+Ni	Pt/ Pt+Pd
Dunka Road	30	425.5	0.71	0.24	1.67	256	1003	1259	1.22	125	1385	0.73	0.21
Wyman Creek	16	134	0.71	0.30	2.57	•		•	3.52^		3835^	0.62	
Water Hen	42	801.5	0.32	0.15	na	*	*	105	2.59	63	174	0.66	*
Dunka (Erie)												
Pit	8	40	0.47	0.19	na	107	171	278	na	na	na	0.69	0.33
Minnamax													
ALL	194	4442	0.98	0.22	2.52	148	277	378	3.82	*	*	0.78	0.30
Cloud	45	445	0.28	0.08	0.38	49	143	192	0.72	na	na	0.71	0.35
Basal	149	3997	1.06	0.23	2.78	157	290	396	4.12	66	489	0.80	0.30
Spruce Road	1 1	89	0.70	0.25	1.19	342	308	651	na	137	788	0.74	0.53
Maturi	2	425	0.66	0.24	1.21	308	262	570	na	91	661	0.73	0.54

not complete
na not analyzed
not reliable

	%Cu	%Ni	%S	%Co	Ag (ppm)	Au (ppb)	Pt (ppb)	Pd (ppb)	Pt+Pd (ppb)	Cu/ Cu+Ni	Pt/ Pt+Pd	Co/ Co+Ni
Minnamax												
ALL	0.80	0.17	1.22	0.03	3.08	17	50	140	180	0.81	0.26	0.07
Cloud	0.25	0.07	0.31	•	0.60		35	90	140	0.77	0.26	
Pre-1969	1.05	0.20	2.23	0.04	4.79	17	•	•	205	0.83	0.20	0.09
U of T	0.91	0.21	1.98	0.01		30	60	110	140	0.81	0.21	0.06
Baseline	0.69	0.16	1.08	•	3.50	•	55	160	215	0.82	0.25	-
Basal	0.90	0.19	1.66	0.03	4.00	17	60	155	200	0.82	0.29	0.07
Water Hen	0.25	0.12		0.04	0.17	17			103	0.65		0.15
(Erie) Dunka Pit	0.45	0.17		0.02			120	170	290	0.66	0.28	0.09
Dunka Road	0,83	0.27	1.20		0.03	68	342	856	1164	0.76	0.25	
Wyman	0.45	0.20	2.60		4.28					0.67		-

Table 4: Median values of metals in Cu-Ni sulfide deposits of the Duluth Complex

Table 5: Average metal contents of concentrates

	Cu %	Ni %	Co %	Fe %	s %	Pt (ppb)	Pd (ppb)	Ag (ppm)	Au (ppb)	Cu/ Cu+Ni	Pt/ Pt+Pd
Minnamax	13.71	2.56	0.15	33.71	26.73	820	2151	47.5	783	0.84	0.28
Dunka Road	5.11	1.41	0.04		7.89	1176	5245	21*	514	0.78	0.19
Spruce Road	12.5	2.85	0.12	27.6	21.1	1045	4019	41.60	1242	0.81	0.21

* estimate only from heads

simplicity, whenever the term mean is used, it refers to the weighted average. Histograms of data from the deposits as a whole are shown in Figures 4 through 13. Because there is a wealth of data from the Minnamax deposit, a separate section is devoted strictly to distribution of sulfides and PGE in the Minnamax deposit with particular reference to Cloud and Basal zones.

Mean and Median Values

Because the data in Tables 3 and 4 were compiled only from holes that were analyzed for Pt, Pd, Au and/or Ag, it may be that Cu, Ni, Co and S contents are not representative of the whole Cu-Ni sulfide deposit. For example, the Cu-Ni grades might be slightly different from published values. The Cu/Cu+Ni ratios are not very different from previously published values (see previous section) with the exception of the Dunka Road deposit (Figure 4). The Cu/Cu+Ni ratio has a mean of 0.73 and a median value of 0.76 (Tables 3 and 4). This agrees with Listerud and Meineke's (1977) estimate, but not with Ripley's (1981).

Mean values of combined Pt and Pd vary from a low of 105 ppb in the Water Hen to a high of 1259 ppb in the Dunka Road deposit (Table 3). Median values are somewhat lower, 103 and 1164 ppb respectively (Table 4). Because the distribution is highly positively skewed (Figure 5) and highly anomalous samples increase the mean considerably, for purposes of comparison, medians (and histograms) give a better representation of background data. Because analyses from Spruce Road and Maturi (Table 3) are composite, no medians can be calculated for these footages.

The data suggest that the Dunka Road deposit is much richer in Pd and slightly richer in Pt than the other deposits listed in Tables 3 and 4.

Figure 4: Distribution of Cu/Cu+Ni ratios in Cu-Ni sulfide deposits of the Duluth Complex

Figure 5: Distribution of Pt+Pd contents in Cu-Ni sulfide deposits of the Duluth Complex

Figure 6: Distribution of Pt/Pt+Pd ratios in Cu-Ni sulfide deposits of the Duluth Complex

Figure 7: Distribution of Ag contents in Cu-Ni sulfide deposits of the Duluth Complex

Figure 8: Comparison of Ag contents in Minnamax Basal zone with other Cu-Ni sulfide deposits including the Cloud zone.

Figure 9: Correlation of Cu and Ag contents for Cu-Ni sulfide deposits

Figure 10: Distribution of Co contents in the Cu-Ni sulfide deposits of the Duluth Complex

-

Figure 11: Pt and Pd contents versus %Cu in concentrate

Figure 12: Pt and Pd contents versus %Ni in concentrate

The majority of these samples (Table A1) come from an area in the Dunka Road deposit (Figure A2) where palladium minerals have been identified (this study and U.S. Steel) and may not be representative of the whole deposit. Ripley and Al-Jassar (1987) state that "copper grades and concentrations of PGE appear to be greater within the Babbitt (Minnamax) deposit" (pg. 88) in comparison to Dunka Raod. Certainly this is born out for Cu but not so by PGE in this study.

Within all the deposits there is no correlation between Cu, Ni and/or S contents with total PGE content. It does appear, however, that to get any PGE values, there must be at least 0.2 wt % S in the rocks. But, as the per cent of Cu-Ni sulfides increases, the amount of PGE does not necessarily increase. This is also discussed in the section on the Minnamax deposit.

The mean ratio of Pt/Pt+Pd (Table 3) varies from a low of 0.21 in Dunka Road to highs of 0.53 and 0.54 at Spruce Road and Maturi. Values from Minnamax and Dunka (Erie) Pit average about 0.30. The median values, however, are lower and do not appear to vary significantly among deposits (Figure 6). Not enough data exist from the Spruce Road and Maturi deposits to calculate medians. Data from DDH 34872 in the vicinity of Spruce Road (Dahlberg, 1987) yield an average ratio of 0.21. This is vastly different from the mean of 0.53 reported in Table 3.

Average silver contents vary from less than 1 ppm in the Cloud zone of Minnamax to about 4 ppm in the Minnamax Basal zone and Wyman Creek (Table 3). The distribution of Ag contents is shown in Figure 7. All Minnamax data are combined, as well as data from Wyman Creek and Dunka Road (U.S. Steel). The vast majority of the values are less than 8 ppm. There are some samples that assay greater than 20 ppm Ag: hole 26010 (115.5 -118.5 feet) in the Dunka Road deposit (Table A1), S1-1 (680-683 feet) in the

Water Hen deposit (Table A4) and drill holes 60 (1731-1735 feet), 105 (1842-1855 feet) and 116 (1680-1698 feet) in the Minnamax deposit (Table A9). Three of these samples are also anomalous in PGE and Au (see Appendix). If Ag contents are grouped into those from the Basal zone at Minnamax and those from all other deposits (including Cloud zone), there appears to be two different distributions of Ag content (Figure 8): one in the Minnamax Basal zone with a median of approximately 4 ppm and a second with a skewed distribution with the bulk of the samples less than or equal to 1 ppm. This may be a reflection of the richer Cu content of the Minnamax Basal zone, because overall, there is a good correlation (r= 0.75) between Cu and Ag contents for all of the deposits (Figure 9), or it may also reflect different initial Ag contents of sulfides and/or magma (see section on Minnamax).

Co content, where analyzed, is low, usually much less than 0.05 wt. % (Table 4). The median Co/Co+Ni ratio varies from 0.07 at Minnamax to 0.15 at Water Hen (0.1 to 0.19 for mean). The distribution of Co is shown on Figure 10. Minnamax exhibits the most variance, probably because it reflects the greatest number of samples. Water Hen does have higher Co contents than other deposits, just as it has a relatively higher Ni concentration.

Concentrate Values

Average values of Pt, Pd, Ag and Au in Cu-Ni concentrates from Minnamax, Dunka Road and Spruce Road are listed in Table 5. Individual analyses from different concentrates are presented in Tables AlO, All, and Al2. Those analyses from Minnamax and Dunka Road are from company files whereas those from Spruce Road are from INCO (1975) or from Lawyer, et al. (1975). These values support the contention that Pd (not necessarily Pt) is enriched in the Dunka Road deposit.

The Cu/Cu+Ni ratio of the concentrate is slightly higher than in the heads for each of the deposits because overall recovery is better for Cu than Ni (Watowich et al., 1981 and this study), around 90% for Cu and 70% for Ni. Co recoveries are very low however, about 30 to 35% (Watowich et al., 1981; Table A10 this study). It has been suggested that Co, as well as occurring in pyrrhotite and pentlandite, may also exist in discrete Co-bearing phases that are not separated by the concentrating methods (Ryan and Weiblen, 1984).

Recovery for Pt and Pd is estimated to be 50 to 60% by Watowich et al. (1981) whereas U.S. Steel estimates it to be < 50% (Table AlO). Plots of Pt and Pd versus %Cu and %Ni in the concentrates are shown in Figures 11 and 12. The PGE values show a decrease in content with Cu content, and an increase with Ni content, especially in Minnamax ores, suggesting that they may be preferentially concentrated in a Ni concentrate. No correlations of PGE content with %S in the concentrates was observed. Au and Ag content do not correlate with Cu or Ni content.

A plot of Pt versus Pd (Figure 13) indicates that Pt and Pd contents are highly correlated (r=0.78) which shows that at least they appear to occur together in the concentrate. It is interesting to note that the correlation coefficient for Pt vs Pd in the head values and drill core analyses is only 0.17 (0.5 if two very anomalous samples are deleted) which may be a reflection of the overall inhomogeneity of the samples. It may be, however, that Pt and Pd are not necessarily found together in the ore and during the concentrating process, only those PGE found together are liberated. Not enough is understood about the mineralogy of PGE in these deposits to answer this question properly.

Minnamax Deposit

General

By far the largest amount of data listed in the Appendix comes from the Minnamax deposit largely because AMAX geologists (Stan Watowich in particular) were interested in ascertaining whether in fact there might be some anomalous areas with respect to Pt and Pd within the deposit. The data presented in Table 6 have been divided several ways:

1. "All" represents weighted averages of all analyses.

2. "Pre-1969" are all analyses done prior to 1969. They were separated out because: a) it was not known if the data were reliable, and b) they all come from early holes drilled throughout the central part of the deposit (Figure A5)

3. "Cloud" represents analyses only performed on Cloud zone sulfides.

4. "Baseline" represents analyses performed every ten feet through two representative drill holes through the Tiger Boy and Bathtub ore bodies.

5. "U of T core" (University of Toronto) are samples from the Basal zone of Minnamax sent to A. J. Naldrett at the University of Toronto. These are analyses published by Naldrett and Duke (1980). They have further been subdivided into the Tiger Boy, Bathtub, and SW extension ore bodies.

6. "U of T Drift" are samples sent to A. J. Naldrett and are from the more copper rich Local Boy deposit located near the shaft.

All individual data for these divisions are listed in separate tables in the appendix (Tables A5 though A9).

Table 6: Weighted average metal values in the Minnamax Deposit

	# of	Total	Cu	Ni	Co	S	Pt	Pd	Pt+Pd	Ag	Au	Cu/	Pt/
5	samples	feet	%	%	%	%	(ppb)	(ppb)	(ppb)	(ppm)	(ppb)	Cu+Ni	Pt+Pd
ALL	194	4441.7	0.98	0.22	0.03	2.52	148	277	378	3.82	66	0.78	0.30
Pre 1969	61	1777.2	1.22	0.26	0.04	3.86	*	*	340	4.61	89	0.80	*
Cloud	45	445	0.28	0.08	na	0.38	49	143	192	0.72	na	0.71	0.35
Baseline	63	630	0.79	0.17	na	1.28	81	196	276	3.76	na	0.80	0.28
Bathtub 296	44	440	0.68	0.16	na	1.07	89	193	282	3.40	na	0.80	0.32
Tiger Boy 254	4 19	190	1.07	0.20	na	1.77	61	202	263	4.59	na	0.82	0.18
U of T core	16	1589.5	1.00	0.22	0.01	2.22	193	304	497	na	60	0.81	0.29
Bathtub	5	531	1.14	0.24	0.01	1.97	326	186	512	na	61	0.82	0.34
Tiger Boy	7	662	0.98	0.22	0.01	2.55	72	175	247	na	46	0.82	0.30
SW extension	4	397	0.86	0.20	0.01	2.01	118	579	696	na	75	0.81	0.17
U of T drift	9	+	4.16	1.11	0.07	14.77	155	239	394	na	180	0.76	0.42
					+ -	urah cam		v					
					nan	not analy	vzed	.,					

* not available

Baseline values for combined Pt and Pd for the Minnamax ore bodies are 282 ppb for Bathtub and 263 ppb for Tiger Boy. These numbers compare favorably with that of Ripley and McMahon's (1987) value of 244 ppb. Values from the pre-1969 and U of T's data are slightly higher (340 to 497 ppb). When the medians are compared (Table 4), these numbers decrease to 205 ppb for pre-1969 and 140 ppb for U of T. It appears, therefore, that these higher weighted means are due to a few anomalous samples. Indeed one sample from drill hole 60 (Table A9) has 14,000 ppb combined Pt and Pd.

As a check on the validity of some of the old analyses, it is of interest to note that Dahlberg (1987) reanalyzed some intersections from the B1-AMAX drill hole (Tables 7 and A9). The mean from Dahlberg's data is 602 ppb versus 805 ppb for the pre-1969. Considering there is a difference in the amount of core analyzed over the section, this is in remarkable agreement.

Table 7: Comparison of pre-1969 data with that of Dahlberg, 1987

	%Cu	%N i	%Co	%S	Pt	Pd	Pt+Pd	Au	Ag	Cu/	Pt/	Co/
					(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	Cu+Ni	Pt+Pd	Co+Ni
BA - 1	0.56	0.07	0.01	0.76	130	640	770	76	<5	0.89	0.17	0.13
	0.4	0.028	0.007	0.39	100	480	580	52	<5	0.93	0.17	0.20
	0.63	0.043	0.009	0.67	90	430	520	52	<5	0.94	0.17	0.17
	0.42	0.024	0.008	0.71	100	350	450	48	<5	0.95	0.22	0.25
	0.51	0.058	0.01	0.94	120	430	550	72	<5	0.90	0.22	0.15
	0.44	0.051	0.01	0.94	80	350	430	38	<5	0.90	0.19	0.16
	0.46	0.052	0.009	0.84	80	760	840	49	<5	0.90	0.10	0.15
	0.47	0.09	0.01	1.04	170	750	920	83	<5	0.84	0.18	0.10
	0.41	0.053	0.01	0.79	70	330	400	22	<5	0.89	0.18	0.16
	0.46	0.086	0.014	1.41	100	460	560	42	5	0.84	0.18	0.14
average												
2635-2726	0.48	0.06	0.010	0.85	104	498	602	53	1	0.90	0.18	0.16
рге-1969												
2590-2660	0.23	0.09		0.38			596	48	5	0.73		
2660-2720	0.48	0.15		0.56			1048	55	5	0.77		

In comparing the samples analyzed by the University of Toronto, it can be shown that the more Cu and S rich samples from the drifts are not higher in PGE contents (Table 6). However, Au content is higher in the massive sulfide from the drifts and this is due to one anomalous sample. Similarly, the mean value of 326 ppb Pt in Bathtub is due to one sample with 1,900 ppb Pt (Table A6). If one compares the baseline values with those from U of T, it seems that Tiger Boy compares favorably (263 ppb vs 247 ppb Pt+Pd respectively), whereas Bathtub does not. If we disregard the one anomalous Pt value in Bathtub, the weighted average for combined Pt+Pd drops to 212 ppb (vs. 512 ppb in Table 6). This is not that different from the 282 ppb reported for baseline Bathtub. Samples taken from SW Extension are slightly higher in PGE (mean of 696 ppb combined Pt and Pd versus 247 ppb in Tiger Boy and 282 ppb in Bathtub). This has yet to be documented by further analysis.

If the basal Minnamax data are used in one data base (not including Cloud zone data) and a log normal distribution for combined Pt and Pd contents in the Cu-Ni sulfides is assumed, the threshold value for anomalous samples can be calculated. From these data, the log mean is 215 ppb (very close to the median of 200 ppb, Table 4) and the threshold value is 1,155 ppb at the 95% confidence interval. This means that any samples listed in Tables A6, A8, and A9 with Pt+Pd values > 1,155 ppb are considered anomalous. If Cloud zone data are included in this analysis, then the threshold is increased to 1,253 ppb.

Comparison of Basal and Cloud Zone Sulfides

The Cu/Cu+Ni ratio of sulfide from the Cloud zone has a mean of 0.71 and median of 0.77 (Tables 3 and 4). This indicates that it has a negatively skewed distribution as shown in Figure 14. The median value is a better estimate of the background. The corresponding Cu/Cu+Ni ratio of sulfides from the Basal zone is 0.82 (Table 4). This may well indicate that sulfides from the Cloud zone separated from a magma of slightly different composition than those from the Basal zone (Rajamani and Naldrett, 1978). The Pt/Pt+Pd ratio is approximately the same for each of the data sets (0.25, Figure 15).

Weighted means for Cu, Ni and S contents of Basal and Cloud zone sulfides in the Minnamax deposit are considerably higher within the Basal zone (Table 3). The same can be said for Pt, Pd and Ag contents (no Au values are available for Cloud zone). Therefore, to compare metal contents between the two zones, the individual metal value has been divided by its corresponding S content and these are plotted in histograms and scattergrams for comparison (Figures 16-23).

Dugan

Figure 16:

all all a

100

Distribution of Ni/S at Minnamax

Number of Samples

Distribution of Pt+Pd/100xS

Figure 19: Distribution of Pt+Pd/100xS at Minnamax

Figure 22: Ag/S versus Cu/S for Basal and Cloud zones

The distributions of Ni/S and Cu/S are shown in Figures 16 and 17. From these diagrams it can be seen that the relative amounts of Ni and Cu are much higher in the Cloud zone sulfides compared to the Basal zone sulfides. Ni/S versus Cu/S content is plotted in Figure 18. For Basal zone sulfides, there is a good correlation between Ni/S and Cu/S contents. For the Cloud zone, however, the Ni/S ratio does not seem to vary in any systematic manner with the Cu/S ratio. This does not argue well for Cloud zone sulfides having separated from a single magma. For if this were the case, we would expect a more consistent variation between Cu and Ni (Rajamani and Naldrett, 1978).

The distribution of the ratio of combined Pt+Pd/(100 x %S) is shown on Figure 19. Even though the median value of combined Pt+Pd is 140 ppb for Cloud zone versus 200 ppb for the Basal zone (Table 4), it can be seen that the ratio of Pt+Pd/S is much higher and much more variable in Cloud zone sulfides than in the Basal zone of Minnamax. This was also noted by Tyson and Bonnichsen (1986). Pt+Pd/S versus Cu/S is plotted on Figure 20 for both Basal and Cloud zone sulfides. There appears to be a relative increase in Pt+Pd/S with Cu/S for those samples that have a high Cu/S ratio, even for those from the Basal zone. With more data, this might make a useful tool for estimating PGE content of Cu-Ni sulfides.

It was initially believed that Ag contents were also enriched in the Cloud zone relative to sulfide content (Morton, 1987). However, upon further inspection (Figures 21-23), it can be seen that when Ag/S contents are plotted, Ag is depleted in the Cloud zone relative to the Basal zone (Figure 21). A plot of Ag/S versus Cu/S (Figure 22) shows that with an increase in Cu/S, there is no increase in Ag content for the Cloud zone. Ag content appears to be directly related to the absolute Cu content

(Figure 23; r=0.85 for the Basal zone data and 0.89 for the Cloud zone data) and not to the overall sulfide content or the metal/sulfide ratio.

ANOMALOUS SAMPLES

Geochemistry and Reassaying

As a part of the first phase of this project, the decision was made to reassay, where possible, any samples having anomalous PGE contents. Samples were also reassayed to determine whether or not there was a "pathfinder" suite of elements that might indicate the geochemical presence of PGE mineralization. Platinum group minerals consist of sulfides, arsenides, bismuthenides, tellurides and native elements or As, Bi and Te plus Sb, Pb, Se, Sn contents have been found alloys. enriched over background in samples with high PGE content from the a) the Bushveld Complex, b) Noril'sk copper-nickel following areas: deposit, c) the Stillwater Complex, and d) the Sudbury copper-nickel deposits (Cabri and LaFlamme, 1976; Genkin and Evstigneeva, 1986; Stumpfl and Tarkian, 1976). In all cases, these elements, along with Cu, Ni, Ag, Au and PGE content seem to indicate secondary enrichments in a fluid or residual phase. In addition, chlorine may also be enriched as an indicator of fluid movement (Ballhaus and Stumpfl, 1986). The chlorine can be an indicator of alteration and may indicate areas within the sulfide deposits where there has been remobilization of sulfides and, perhaps, concentration of PGE content. Similarly, the presence of graphite may be an indication of the deposition of platinum group elements (Ballhaus and Stumpfl, 1985).

Because few data exist on the distribution of this "pathfinder" suite of elements in the Cu-Ni sulfide deposits of the Duluth Complex, and that Pt-Ni arsenides have been reported by Ryan and Weiblen (1984) in the Minnamax deposit, this reassaying program was designed to be a pilot study to determine the presence and concentration of As, Sb, Bi, C, Cl, Pb, Se, Sn and Te associated with PGE, Au, and Ag concentrations. The data in Tables 8 and 9 illustrate the increased concentration of some of these elements with PGEs, Au, and Ag, as well as other metals, e.g., increased Mo with high C (see Table 9). The next phase of this study will be a more systematic examination of the distribution of these elements.

Of all the samples previously analyzed by the companies (Tables A1 to A9), only three samples were highly anomalous with respect to PGE: one each from the Water Hen, Dunka Road and Minnamax deposits. (There was also a highly anomalous sample taken from the Local Boy, Minnamax deposit and analyzed by INCO that contained greater than 14 ppm combined Pt and No specific location can be given for this sample.) Similarly, Pd. several samples from the Wyman Creek deposit had preliminary fire assay analyses that looked promising. Upon reanalysis of some samples from it was determined that the preliminary results were Wyman Creek, misleading at best. Follow up work to date has concentrated on the Water Hen and Dunka Road deposits with preliminary logging and sampling of Wyman Creek core (August, 1987). No Minnamax core was sampled and/or Analyses of samples from the Water Hen, Wyman Creek and one reassaved. sample from the Dunka Road deposit are presented in Tables 8 and 9. One sample from Wyman Creek has 8 ppm Ag and also has the highest Au, Pd, As, However, due to the analytical uncertainties cited Te and Bi values. above, these results will not be discussed further.

Hole	Footage	Analyst	%Cu	%Ni	%S	Ag ppm	As ppm	Au ppb	Bi ppm
SL-11	696-704	Chemex	0.4	0.28	6.48	0.5	59	40	0.2
SL-11	729-737	Chemex	0.68	0.26	2.83	2.8	700	100	4.2
SL-26	953	Chemex	0.38	0.13	1.75	3.5	90	105	4.7
SL-13	1101-1102	Bondar-Clegg	>2%	0.24	4.55	12.1	27	240	16
<u>Hole</u>	Footage	Analyst	%C	Cd ppm	Cl pp	m Cop	om Crpp	n Moppm	Pb ppr
SL-11	696-704	Chemex	0.04		<80	27	5		2
SL-11	729-737	Chemex	0.02		<80) 15	7		13
SL-26	953	Chemex	0.14		<80) 7	В		13
SL-13	1101-1102	Bondar-Clegg	0.09	15	426	5 15	6 285	2	57

Table 8: Analyses of samples from the Water Hen Deposit

Hole	Footage	Analyst	Pd ppb	Pt ppb	Sb ppm	Se ppm	Te ppm	Rock Type
SL-11	696-704	Chemex	130	40	0.4		<0.05	орх
SL-11	729-737	Chemex	360	160	28		0.13	орх
SL-26	953	Chemex	204	80	1.8		0.25	орх
SL-13	1101-1102	Bondar-Clegg	300	240	6	14	2.2	орх

Table 9: Analyses of Samples from Wyman Creek and Dunka Road Deposits

							CAREA							
ELEME	ASSAY LAB	(1) DH#26133 905'-911'	(2) DH#25144 315'-325'	(3) DH#25144 762'-170'	(4) DH#26144 770'-177'	(5) DH#26125 1204'-1214'	(6) DH#26132 47'-67'	(7) DH#26132 87'-67'	(8) DH#25136 62'-72'	(9) DH#25136 72'-02'	(10) DH#26144 309'-316'	(11) DH#26144 325'-336'	(12) DH826144 741'-751'	(1) DH#25010 115.5'-118
He.3 (USS Cu Chemex Bon-Cleg	0.08	0.25 0.30 0.3061	2.30 2.33 >2.0000	1.12 1.06 1.0697	0.39	0.23	0.40	0.31	0.36	0.40	0.23	1.00	\$.64 >2.0000
We.2 /	USS Chenex Bon-Cleg	0.06	0.12 0.09 0.1162	0.47 0.40 0.4250	0.85 0.71 0.6861	0.09	0.09	0.13	0.11	0.11	0.21	0.10	0.16	0.64
Wt.\$ 1	USS Chemex Bon-Clegs	0.194	2.13 2.320 2.15	2.61 6.770 7.65	6.56 9.250 10.52	1.200	0.293	0.500	• 1.310	1.500	6.100	2.270	1.890	11.99 12.15
-	Chenes Bon-Clege	0.1	0.1 1.0	7.4	3.4	1.2	0.5	1.4	1.0	1.2	0.3	0.5	4.5	15.0
P75 A.	Chenex Bon-Clegg	12	24 8	100 85	44 31	44	20	60	70	20	14	•	60	1350
P73 P1	Chenex Bon-Clegg	30 <15	60 <15	\$0 <15	\$0 <15	40	10	80	45	25	-(5	60	130	150
PP8 P6	Chenex Bon-Clegg	82 4	84 10	208 190	128 140	*	80	132	84	62	42	46	112 .	8800
OZ. Pt+Pd+	USS Cheesex Au Bon-Cl.	0.004	0.005	8.010 9.008	0.006	0.005	0.003	0.000	0.006	e .003	0.002	6.003	6.009	0.325 . 0.300
Nt.\$ C	Chemex Bon-Clegg	0.07	0.06	1.57 2.15	2.71 3.02	0.05	0.14	0.16	0.07	0.05 ·	0.06	0.07	0.09	0.32
	Chenes Bon-Clegg	113 137	132 162	196 246	273	#	•	101	148	111	240	129	87	336
PPH AS	Chevex Bon-Clegg	1	5 15	35 33	34 55	•	i		1	•	3	2	10	250
PTH 50	Cheves Bon-Clegg	1.8	0.2 T	0.6 11	0.4 ci	·	0.2	· •.i		0.2	0.2	. 9.2	0.4	22
	Chever Son-Clegg	0.1 cz	0.2 cz	1.2	8.5 C	0.4	0.1	i .1	e.a	0.3	9.1	0.1	1.2	12
	Cheers Bon-Clegg	12 17	2	29	21 26	•	1	•	3		•	1,		247
PTH Sn	Chever Son-Clegg	3	1	4	ł	•	1	•	1	1	1	1	1	16
PPR C1	Cheves Bon-Clegg	\$390 \$36	<100 241	<200	<200	650	-200	280	1160	580	-10	<60	<60	<200
PPH Te	Chever Bon-Clegg	40.05 8.03	8.13	8.63 8.70	48.05	0.13	49.05	4.05 <u>.</u>	-0.05	- 8.13	-0.05	-9.05	e.'13	1.70
	Bon-Clegg	41	-1	*	-				1.5					
	Ben-Clegg	đ	28	14	21									25
	Bon-Clegg	91	104	170	186									285
	uss	1300		-										
	Bon-Clegg	178		18	*									622
	Bon-Clegg									· •			-	21
Here Ti	ten-Clenn				-									et
-	Ben-Clean	180	41	73	67									
	USS Clogg	27.1	19.3 9.47	23.4	25.9									>10.00
	uss	22.1												

Water Hen

Sample SL-1 (680-683) was taken from a late-stage orthopyroxenite dike that cross-cuts Virginia Formation toward the base of the Water Hen intrusion. It contains greater than 3 ppm combined Au, Pt and Pd and up to 44 ppm Ag along with 4.44% Cu and 0.69% Ni (Table A4). The Cu and Ni values are considerably higher than any other assays in Water Hen rocks (Bill Ulland, personal communication, 1987). This sample has subsequently been reanalyzed by American Shield (personal communication) and has been confirmed.

To see if any other pyroxenite dikes as well as sulfur and oxide rich peridotites were anomalous in PGE, four samples were sent in for analysis and analyses are presented in Table 8. Of these SL-11 (729-737) and SL-13 (1101-1102) both have combined Pt+Pd values greater than 500 ppb. Even though these contents are not "ore grade", they are considerably higher than background values at Water Hen. Both samples are from pyroxenite dikes. The former sample is from coarse rejects and represents both dike material and peridotite, whereas the latter is just dike material. Within the sample from SL-13, other elements that are anomalous are: Ag, Au, Bi, Cl, Se and Te.

Mineralogy of Water Hen Samples

In hand specimen, the main copper minerals in the anomalous section of SL-1 were primarily bornite and chalcopyrite, and several polished sections are made of a sample from 681 feet. Preliminary analyses were made of the minerals using a scanning electron microscope (SEM) equipped with a Tracor Northern 2000 energy dispersive system (EDS) and using a semi-quantitative analysis (SSQ) computer program. Analyses were done by C. A. Beckman at NRRI's Coleraine Laboratory. The sample contains approximately 8% interstitial sulfides and arsenides. The sulfide (and arsenide) minerals in order of abundance are chalcopyrite (4%), bornite (2-3%), maucherite (0.5-1%), and pentlandite (0.5%). Other minor minerals include sphalerite (pure ZnS); native Ag, as a cross-cutting veinlet through maucherite; niccolite; parkerite (an anisotropic white mineral that contains Bi, Ni and S); and tentatively, tetradymite (soft, anisotropic yellow mineral which contains Bi, Te and S) as an inclusion in parkerite. No Pt or Pd minerals were identified.

Chalcopyrite and bornite are commonly intergrown, showing exsolution textures. They occur as 0.5 to 1 mm composite grains filling the spaces between fine-grained (1mm) subhedral orthopyroxene (Fs₇₁). Pentlandite occurs as inclusions in chalcopyrite and shows replacement by chalcopyrite along cleavage traces. Maucherite occurs as separate interstitial grains filling voids between orthopyroxene. Parkerite occurs with maucherite, generally at grain boundaries. It is easily recognizable by its color, anisotropism, twinning and Bi spectra. Sphalerite usually occurs as small inclusions in bornite.

After identification of the above minerals, several other dikes were sampled for polished section analysis. After looking at sections from five different pyroxenite dikes, two periods of sulfide mineralization have been recognized: the first is composed of pyrrhotite, chalcopyrite, cubanite and some pentlandite which is the basic mineralization in the Water Hen deposit; the second consists of late stage chalcopyrite (shows cross-cutting relationships with other oxides, sulfides and silicates), bornite, maucherite, native bismuth, niccolite, parkerite, native Ag and

tetradymite. The later stage is generally enriched in Cu, Ni, As, Bi, Ag and Te. This petrographic work is on-going and core is presently being logged and sampled for both petrographic and chemical analysis.

Dunka Road Deposit

Reports from U.S. Steel indicated that a sample from DDH 26010 (115.5 to 118.5 feet) was highly anomalous in Pd, Au and Ag (Table A1). This analysis has subsequently been confirmed (Table 9). The sample comes from a zone with approximately 50% sulfides that is associated with a gabbroic pegmatite composed of 25% plagioclase, 20% pyroxene, 5% oxides and 50% sulfides (this study, 1987). The upper contact is gradational with white, highly altered, medium to coarse-grained gabbro. Alteration minerals include kaolinite(?) and sericite after plagioclase, chlorite after pyroxene and numerous cross-cutting veins of natrolite and analcime. The latter two zeolites were identified by X-ray diffraction (this study, 1987). The lower contact is gradational with a medium-grained, pyroxene-bearing troctolite that is locally altered to chlorite.

Previous work by Pete Niles of U.S. Steel (now with NRRI) has identified numerous unusual minerals as well as chalcopyrite, pentlandite, violarite and pyrrhotite within the sulfide zone. They are: froodite (PdBi₂), michenerite (PdTeBi), gold (Au, Ag), native Bi, and an unknown mineral composed of Pd, Sb and Bi. Textures in the ore minerals indicate that pentlandite is being replaced by violarite, chalcopyrite and the Au, Ag, Pd-bearing minerals which may indicate that these concentrations of PGE are due to later mineralizing fluids. Certainly the amount of alteration in the rocks warrants further research. Work will be focussed on samples from this area during the coming year.

CONCLUSIONS

Large tonnages of Cu-Ni sulfides are located at the base of the Duluth Complex from the Hoyt-Lakes to Kawishiwi Lakes area of northeastern Minnesota. These large resources have background PGE contents associated with them that, if mined for Cu-Ni, would add a few dollars to the value of the ore. Background values for combined Pt and Pd vary from a low of 105 ppb in the Water Hen to a high of 1,259 ppb in the Dunka Road deposit (103 ppb to 1,164 ppb for median). The Pt/Pt+Pd ratio of these deposits average around 0.21 for Dunka to 0.30 for Minnamax. Data for Spruce Road and Maturi are too meager to make a real estimate of the ratio. Recovery copper-nickel flotation concentration tests has been of PGE in consistently below 50% at Spruce Road (INCO), Minnamax and at Dunka Road. This means the added dollar value at today's prices would be as follows: Dunka Road, \$4.55; Spruce Road, \$4.65; Minnamax, \$2.89 and Waterhen, \$1.16. Even though there are large resources of PGE, they are not economically viable by themselves, and do not add much to the value of the Cu-Ni ore. However, smaller tonnage, higher grade Cu-Ni-PGE-Au-Ag-Co ore bodies could be economical.

The number of anomalous samples is very low. Even though core have not consistently been analyzed for enriched PGE, one might expect a few more anomalous samples than three, each one being in a different deposit. It does not look promising to find a large area within the Cu-Ni sulfide deposits that could be mined for PGE alone. On the other hand, a smaller Cu-Ni-PGE-Au-Ag-Co deposit could be successfully mined.

Because a few anomalous samples have been found, the best course of action is to study both their geological setting and their mineralogy, not only to their relation to the Cu-Ni sulfide deposits, but perhaps to
structure, alteration, and rock types as well. Two of the samples appear to be the result of secondary Cu, PGE enrichment and, therefore, if localized areas of alteration (such as around the anomalous sample at Dunka Road) can be delineated and shown to be related to PGE mineralization, then there is a much better chance of locating other areas of PGE enrichment. These local enriched PGE areas would add additional metal value to a smaller tonnage, higher grade Cu-Ni ore body. One of the goals of this program is to identify smaller Cu-Ni-PGE-Au-Ag ore deposits/zones that would be economical to mine due to the increase in the total metal value per ton of ore.

The data collected for this report suggest that samples with high Cu/S ratios are apt to have higher Pt+Pd/S ratios than background. If Cu/S ratios for the existing Cu-Ni sulfide deposits were delineated and samples taken from those areas with high Cu/S (even if %Cu is not too high) and assayed, more anomalous samples might be found.

REFERENCES

- Al-Alawi, J.A., 1985, Petrography, sulfide mineralogy and distribution, mass transfer and chemical evolution of the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota; Unpubl. Ph.D. thesis, Indiana Univ., Bloomington, Indiana, 350 pp.
- Al-Jassar, T.J., 1985, Oxygen isotope systematics of the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota: Unpubl. Ph.D. thesis, Indiana Univ., Bloomington, Indiana, 131 pp.
- Ballhaus, C.G. and Stumpfl, E.F., 1985, Occurrence and petrological significance of graphite in the Upper Critical Zone, western Bushveld Complex, South Africa: Earth Planet. Sci. Letters, v. 74, p. 58-68.
- Ballhaus, C.G. and Stumpfl, E.F., 1986, Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions: Contrib. Mineral. Petrol., v. 94, p. 193-204.
- Bonnichsen, B., 1972a, Southern part of the Duluth Complex, <u>in</u> Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geol. Survey, p. 361-388.
- Bonnichsen, B., 1972b, Sulfide minerals in the Duluth Complex, <u>in</u> Sims, P.K., and Morey, G.B., eds., Geology of Minnesota: A centennial volume: Minnesota Geol. Survey, p. 388-393.
- Bonnichsen, B., 1974, Copper and nickel resources in the Duluth Complex, northeastern Minnesota: Minnesota Geol. Survey, IR-10, 24 pp.
- Boucher, M.L., 1975, Copper-nickel mineralization in a drill core from the Duluth Complex of northern Minnesota: U.S. Bureau of Mines Rept. of Invest. 8084, 55 pp.
- Cabri, L.J. and LaFlamme, J.H.G., 1976, The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbury area, Ontario: Econ. Geol., v. 71, p. 1159-1195.
- Chalokwu, C.I., 1985, A geochemical, petrological and compositional study of the Partridge River intrusion, Duluth Complex, Minnesota: Unpubl. Ph.D. thesis, Miami University, Oxford, Ohio, 230 pp.
- Chalokwu, C.I. and Grant, N.K., 1987, Reequilibration of olivine with trapped liquid in the Duluth Complex, Minnesota: Geology, v. 15, p. 71-74.
- Churchill, R.K., 1978, A geochemical and petrological investigation of the Cu-Ni sulfide genesis in the Duluth Complex, Minnesota: Unpubl. M.S. thesis, University of Minnesota, Minneapolis, Minnesota, 101 pp.
- Dahlberg, E.H., 1987, Drill core evaluation for platinum group mineral potential of the basal zone of the Duluth Complex: Minnesota Department of Natural Resources, Div. of Minerals, Report 255, 60 pp.

- Dahlberg, E. H. and Gladen, L.W., 1987, Comparison of oxide cumulates in the Birch Lake area of the Duluth Complex with PGE deposits: Abstr. Geol. Soc. America, v. 19, no. 4, p. 195.
- Davidson, E.L., 1979, The relationships between the petrology, mineralogy, and sulfide mineralization in a portion of the Duluth Complex, Minnesota: Unpubl. M.S. thesis, Univ. of Wisconsin-Madison, Madison, Wisconsin, 70 pp.
- Fellows, S.N., 1976, Description and interpretation of the petrology of a portion of a drill core from the Duluth Complex near Babbitt, Minnesota: Unpubl. M.S. thesis, Cornell University, Ithaca, New York, 149 pp.
- Foose, M.P. and Weiblen, P.W., 1986, The physical and chemical setting and textural and compositional characteristics of sulfide ores from the South Kawishiwi intrusion, Duluth Complex, Minnesota, U.S.A.: Proc. 27th Int. Geol. Congress (Moscow), Special Copper Symposium, Springer-Verlag, New York, p. 8-24.
- Fukui, L.M., 1976, The mineralogy and petrology of the South Kawishiwi intrusion, Duluth Complex, Minnesota: Unpubl. M.S. thesis, University of Illinois, Chicago, Illinois, 110 pp.
- Genkin, A.D. and Evstigneeva, T.L., 1986, Associations of platinum-group minerals of the Noril'sk copper-nickel sulfide ores: Econ. Geol., v. 81, p. 1203-1212.
- Grant, N.K., and Molling, P.A., 1981, A strontium isotope and trace element profile through the Partridge River troctolite, Duluth Complex, Minnesota: Contrib. Mineral. Petrol., v. 77, p. 296-305.
- Green, J.C., Phinney, W.C. and Weiblen, P.W., 1966, Gabbro Lake Quadrangle, Lake County, Minnesota: Minn. Geol. Surv. Misc. Map M-2.
- Hardyman, R.H., 1969, The petrography of a section of the basal Duluth Complex, St. Louis County, northeastern Minnesota: Unpubl. M.S. thesis, University of Minnesota, Minneapolis, Minnesota, 132 pp.
- INCO, 1975, Description of operating concepts required to establish preoperational monitoring for INCO's proposed Spruce Road project: Open File Report, DNR, Hibbing, Minnesota.
- Ingemansen, D.B., 1985, A trace element study of the contact relationships between the Partridge River troctolite and the Virginia Formation, Dunka Road deposit, northeastern Minnesota: Unpubl. B.S. thesis, Carleton College, Northfield, Minnesota, 29 pp.
- Johnson Matthey, 1987, Platinum: Johnson Matthey Public Ltd. Co., London England, 63 pp.
- Lawver, J.E., Wiegel R.L., and Schulz, N.F., 1975, Mineral beneficiation studies and an economic evaluation of Minnesota copper-nickel deposit from the Duluth Gabbro: Minerals Resource Research Center, Minneapolis, Minnesota, Final report to USEM.

- Listerud, W.H., and Meineke, D.G., 1977, Mineral resources of a portion of the Duluth Complex and adjacent rocks in St. Louis and Lake Counties, northeastern Minnesota: Minnesota Department of Natural Resources, Div. of Minerals, Hibbing, Mn., Report 93, 49 pp.
- Mainwaring, P.R., 1975, The petrology of a sulfide-bearing layered intrusion at the base of the Duluth Complex, St. Louis County, Minnesota: Unpubl. Ph.D thesis, University of Toronto, Toronto, Canada, 251 pp.
- Mainwaring, P.R., and Naldrett, A.J., 1977, Country rock assimilation and genesis of Cu-Ni sulfides in the Water Hen intrusion, Duluth Complex, Minnesota: Econ. Geol., v. 72, p. 1269-1284.
- Matlack, W.F., 1980, Geology and sulfide mineralization of the Duluth Complex-Virginia Formation contact, Minnamax deposit, St. Louis Country, Minnesota: Unpubl. M.S. thesis, University of Minnesota, Duluth, Minnesota, 90 pp.
- Mills, S.J., (in prep.), Comparison of Cloud zone and Basal zone mineralization at the Minnamax deposit: Unpubl. M.S. thesis, University of Minnesota, Duluth, Minnesota.
- Molling, P.A., 1979, Petrology of a drill core (DDH 295) from the Partridge River troctolite of the Duluth Complex, Minnesota: Unpubl. M.S. thesis, Miami University, Oxford, Ohio, 150 pp.
- Morey, G.B., and Cooper, R.W., 1977, Bedrock geology of the Hoyt Lakes-Kawishiwi area, St. Louis and Lake counties, northeastern Minnesota: Minnesota Geological Survey, open-file map, 1:48,000.
- Morton, P., 1987, PGE characteristics of sulfide-bearing troctolitic rocks from the Hoyt Lakes-Kawishiwi area, northeastern Minnesota: Abstr. Geol. Soc. America, v. 19, no. 4, p. 235.
- Naldrett, A.J., and Duke, J.M., 1980, Platinum metals in magmatic sulfide ores: Science, v. 208, p. 1417-1424.
- Pasteris, J.D., 1984, Further interpretation of the Cu-Fe-Ni sulfide mineralization in the Duluth Complex, northeastern Minnesota: Canadian Mineralogist, v. 22, p. 39-53.
- Phinney, W.C., 1969, The Duluth Complex in the Gabbro Lake quadrangle, Minnesota: Minnesota Geological Survey, Rpt. of Inv. 9, 20 pp.
- Postle, J.T., Roscoe, W.E., Watanabe, R.Y., and Martin, P.S., 1986, Review of platinum group element deposits in Ontario: Mineral Policy Background Paper No. 24: Ministry of Northern Development and Mines, Toronto, Ontario, 87 pp.
- Rajamani, V. and Naldrett, A.J., 1978, Partitioning of Fe, Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits: Econ. Geol., v. 73, p. 82-93.

- Rao, B.V., 1981, Petrogenesis of sulfides in the Dunka Road copper-nickel deposit, Duluth Complex, Minnesota with special reference to the role of contamination by country rock: Unpubl. Ph.D thesis, Indiana University, Bloomington, Indiana, 372 pp.
- Rao, B.V., and Ripley, E.M., 1983, Petrochemical studies of the Dunka Road Cu-Ni deposit, Duluth Complex, Minnesota: Econ. Geol., v. 78, p. 1222-1238.
- Ripley, E.M., 1981, Sulfur isotopic studies of the Dunka Road Cu-Ni deposit, Duluth Complex, Minnesota: Econ. Geol., v. 76, p. 610-620.
- Ripley E.M., and Al-Jassar, T.J., 1987, Sulfur and oxygen isotope studies of melt-country rock interaction, Babbitt Cu-Ni deposit, Duluth Complex, Minnesota: Econ. Geol., v. 82, p. 87-107.
- Ripley E.M., and Alawi, J., 1986, Sulfide mineralogy and chemical evolution of the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota: Canadian Mineralogist, v. 24. p. 347-368.
- Ripley E.M., McMahon, B., and Andrews, M., 1987, Distribution of PGE at the Babbitt Cu-Ni deposit, Duluth Complex, Minnesota: Abstr. Geol. Soc. America, v. 19, no. 4, p. 240.
- Ryan, P.J., and Weiblen, P.W., 1984, Pt and Ni arsenide minerals in the Duluth Complex: 30th Annual Institute on Lake Superior Geology, Wausau, Wisconsin, p. 58-60.
- Ryan, R.M., 1984, Chemical, isotopic, and petrographic study of the sulfides in the Duluth Complex Cloud zone: Unpubl. M.S. thesis, Indiana Univ., Bloomington, Indiana, 88 pp.
- Sabelin, T., Iwasaki, I., and Reid, K.J., 1986, Platinum group minerals in the Duluth Complex and their beneficiation behaviors: Proceedings 59th Annual Meeting, Minnesota Section AIME, 12 pp.
- Stumpfl, E.F. and Tarkian, M., 1976, Platinum genesis: new mineralogical evidence: Econ. Geol., v. 71, p. 1451-1460.
- Taylor, R.B., 1964, Geology of the Duluth gabbro complex near Duluth, Minnesota: Minnesota Geological Survey Bull., v. 44, p. 1-63.
- Tyson, R.M., 1979, The mineralogy and petrology of the Partridge River troctolite in the Babbitt-Hoyt Lakes region of the Duluth Complex, northeastern Minnesota: Unpubl. Ph.D thesis, Miami University, Oxford, Ohio, 179 pp.
- Tyson, R.M. and Bonnichsen, B., 1986, Platinum group elements, nickel and copper in the Ely-Hoyt Lakes region of the Duluth Complex: SME Fall Meeting, Sept. 1986., St. Louis, Missouri, 13 pp.
- Tyson, R.M., and Chang, L.L.Y., 1984, The petrology and sulfide mineralization of the Partridge River troctolite, Duluth Complex, Minnesota: Canadian Mineralogist, v. 22, p. 23-38.

- Wager, R.E., Alcock, R., and Phinney, W.C., 1969, A comparison of the copper-nickel deposits of Sudbury and Duluth gabbro basins: 13th Annual Mining Symposium, 42nd Ann. Meeting, Minnesota Section, AIME, p. 95-96.
- Watowich, S.N., 1978, A preliminary geological view of the Minnamax copper-nickel deposit in the Duluth gabbro at the Minnamax Project: <u>in</u> Graven, L.K., compiler, Productivity in Lake Superior mining (39th Proceedings, Annual Minnesota Mining Symposium), Minneapolis, University of Minnesota, p. 19.1-19.11.
- Watowich, S.N., Malcolm, J.B., and Parker, P.D., 1981, A review of the Duluth Gabbro Complex of Minnesota as a domestic source of critical and strategic metals: SME-AIME Fall Meeting, Denver, Colorado, 9 pp.
- Weiblen, P.W., 1965, A funnel-shaped gabbro-troctolite intrusion in the Duluth Complex, Lake County, Minnesota: Unpubl. Ph.D thesis, University of Minnesota, Minneapolis, Minnesota, 155 pp.
- Weiblen, P.W., and Cooper, G.B., 1977, Bedrock geology of the Hoyt Lakes-Kawishiwi Area: Minnesota Geological Survey, Open File Report, 30 pp.
- Weiblen, P.W. and Morey, G.B., 1975, The Duluth Complex A petrologic and tectonic summary: Duluth Mining Symposium, p. 72-95.
- Weiblen, P.W., and Morey, G.B., 1980, A summary of the stratigraphy, petrology and structure of the Duluth Complex: American Journal of Science, v. 280, p. 88-133.
- Weiblen, P.W., Saini-Eidukat, B., Mullenmeister, E., and Iwasaki, I., 1987, Stratigraphic, structural, and chemical controls on the Pt group element mineralization in the Duluth Complex: Abstr. Geol. Soc. America, v. 19, no. 4, p. 251.

APPENDIX

Additional Tables and Figures

Table A1: Data Collected From U.S. Steel's Dunka Road Deposit

DUNKA ROAD

DOH	From	То	Feet	\$Cu	32N i	\$S	\$Co	Pt (ppb)	Pd (ppb)	Pt+Pd (ppb)	Au (ppb)	Ag (ppm)	Cu/ Cu+Ni	Pt/ Pt+Pd	\$Po
26030	686	725	40	0.64	0.19	1.47	0.017	205	719	925	68		0.77	0.22	1.78
26033	960	980	20	0.83	0.23	1.11	0.012	274	1404	1678	68		0.78	0.16	0.16
26044	67	122	55	0.47	0.17	0.90	0.010	171	1027	1199	68		0.73	0.14	0.74
26044	67	122	55	0.47	0.17	0.90	0.009	171	1027	1199	68		0.73	0.14	0.74
26044	107	117	10	0.64	0.20	1.00	0.009	205	959	1164	68		0.75	0.18	0.45
26045	7	24.5	17.5	0.49	0.15	0.57	0.009	411	1062	1473	68		0.77	0.28	-0.17
25047	518	558	40	0.55	0.35	0.77	0.017	342	1507	1849	103		0.61	0.19	-0.30
26010	115.5	118.5	3	5.64	0.64	11.99		514	8904	9418	1712	25.00	0.90	0.05	15.66
26010	280	282	2	1.00	0.65	14.44		171	342	514	3	0.03	0.51	0.33	35.21
26011	115	123	8	0.72	0.29	7.80		3	171	175	3	0.03	0.71	0.02	18.68
26011	127	133	6	0.85	0.57	21.68		3	171	175	3	0.03	0.60	0.02	55.70
26015	351	361	10	0.80	0.19	0.90		342	1027	1370	342	4.11	0.81	0.25	-0.23
26015	361	371	10	0.87	0.25	0.96		171	514	685	171	0.34	0.78	0.25	-0.41
26017	715	725	10	1.10	0.34	1.34		342	856	1199	3	0.03	0.75	0.29	-0.24
26017	725	735	10	1.04	0.28	1.43		342	685	1027	342	0.03	0.79	0.33	0.33
26018	398	401	3	0.83	0.56	7.04		171	171	342	342	4.11	0.60	0.50	15.60
25021	384	394	10	0.90	0.27	1.27		342	685	1027	342	0.03	0.77	0.33	0.31
25021	394	404	10	0.97	0.28	1.56		342	856	1199	3	0.03	0.78	0.29	0.88
26026	315	325	10	1.02	0.21	1.20		514	856	1370	171	0.03	0.83	0.38	-0.07
26026	325	335	10	0.98	0.33	1.46		342	856	1199	171	0.03	0.75	0.29	0.45
26025	495	505	10	0.95	0.24	1.55		171	514	685	171	4.11	0.80	0.25	1.01
26030	686	696	10	0.87	0.24	1.16		342	685	1027	342	0.03	0.78	0.33	Q.15
26031	825	829	3	1.25	0.69	7.29		171	342	514	. 3	0.03	0.64	0.33	14.79
26033	960	970	10	1.00	0.27	1.09		342	1199	1541	3	0.03	0.79	0.22	-0.47
26033	970	980	10	0.73	0.22	0.92		342	685	1027	342	0.03	0.77	0.33	-0.06
26121	1580	1590	10	0.64	0.25	0.88						5.58	0.72		0.01
26121	1590	1600	10	0.76	0.31	1.11						8.70	0.71		0.15
26121	1600	1607	7	0.80	0.28	1.20						9.11	0.74		0.36
26121	1607	1615	8	0.05	0.12	0.12						5.82	0.33		-0.14
26121	1615	1623	8	0.13	0.10	0.27						5.10	0.57		0.13
	Su	1.1	475 5												
	Ave	erage	14.18	0.93	0.30	3.18	0.012	270	1089	1359	200	2.12	0.72	0.24	5.37
	Wt	avg		0.71	0.24	1.67	0.007	256	1003	1259	125	1.22	0.73	0.21	
	Sto	1		0.91	0.16	4.87	0.003	128	1633	1701	334	5.75	0.10	0.11	12.30
	Wt	std		0.49	0.20	1.78	0.016	217	1146	1342	103	2.52	0.71	0.16	

\$Po (pyrrhotite) is estimated by assuming that all sulfur is present only in chalcopyrite, pentlandite and pyrrhotite. Table A2: Data Collected From the Wyman Creek Deposit, U.S. Steel

DOH	From	То	Feet	\$Cu	% N i	\$ 5	Pt (ppb)	Pd (ppb)	Pt+Pd (ppb)	Ag (ppm)	Cu/ Cu+Ni	Pt/ Pt+Pd	\$Po
26126	842	852	10				120	31	151			0.80	
26126	852	860	8				188	24	212			0.89	
26133	855	865	10										
26133	875	885	10							4.38			
26133	905	911	6							4.08			
26133	911	919	8							4.93			
26144	294	299	5	0.90	0.48	3.84				1.13	0.65		6.82
26144	299	304	5	0.82	0.41	3.80				1.13	0.67		7.11
26144	304	309	5	0.45	0.39	3.45				4.28	0.54		7.23
26144	309	315	6	0.33	0.20	2.60					0.62		5.71
26144	315	325	10	0.28	0.12	2.13				3.25	0.70		4.77
26144	751	762	11	0.27	0.07	0.53				3.56	0.79		0.53
26144	762	770	8	2.30	0.47	2.61				5.72	0.83		-0.40
26144	770	777	7	1.12	0.85	6.56				5.92	0.57		12.74
26144	777	782	5	0.40	0.14	0.91				4.59	0.74		1.03
26145	108	118	10	0.40	0.19	1.52				1.54	0.68		2.58
			Average	0.73	0.33	2.80	154	27	182	3.71	0.68	0.84	4.81
			Std	0.59	0.23	1.66	34	3	31	1.59	0.09	0.05	3.79
			Wt. av	0.71	0.30	2.57				3.52	0.69		
			Std	0.66	0.21	1.48				1.86	0.28		

Table A3: Data From the Dunka Pit Area

PICKANDS MATHER

- damain

Hole	From	То	Feet	\$Cu	\$N1	\$Co	Pt (ppb)	Pd (ppb)	Pt+Pd (ppb)	Cu/ Cu+Ni	Pt/ Pt+Pd	Co/ Co+N1	Rock Type
D-9	935	940		0.50	0.15	0.02	240	85	125	0 77	0.74	0.09	E G. Melatroctolite
D-10	390	395	5	0.69	0.35	0.01	100	155	255	0.55	0.39	0.03	F.G. Melatroctolite
D-11	538	543	5	0.18	0.09	0.01	200	260	460	0.66	0.43	0.12	F.G. Melatroctolite
D-12	632	637	5	0.95	0.24	0.02	120	305	425	0.80	0.28	0.06	Melatroctolite to feldspathic dunite
D-12	686	691	5	0.32	0.19	0.02	70	225	295	0.63	0.24	0.09	Melatroctolite to feldspathic dunite
D-12	907	912	5	0.59	0.27	0.02	120	170	290	0.69	0.41	0.07	F.G. Melatroctolite with minor inclusions
D-12	1189	1194	5	0.40	0.17	0.02	1	165	166	0.70	0.01	0.09	F.G. Troctolite with inclusions common
D-13	265	271	5	0.10	0.06	0.01	1	5	6	0.61	0.17	0.12	Hornfels
AVER	AGE			0.47	0.19	0.01	107	171	278	0.59	0.33	0.09	했었지? 한 것은 것은 것이 가슴을 망망했다.
STD				0.25	0.09	0.00	80	89	134	0.06	0.20	0.02	

1.411.014.1416.4416.4416

Table A4: Data Collected From the Water Hen Deposit

DOH	From	То	Feet	\$Cu	\$N i	\$Co	Pt (ppb)	Pd (ppb)	Pt+Pd (ppb)	Au (ppb)	Ag (ppm)	Pt+Pd+Au (ppb)	Cu/ Cu+Ni	Co/ Co+Ni	Rock Type
	205	176	20	0.24	0.00	0.04			17	142	1.03	360	0.74	0.32	Banded Dunite
CN-1	395	445	30	0 18	0.09	0.04			17	17	0.17	34	0.67	0.31	Oxide Dunite
CN-1	425	435	30	0 21	0.08	0.04			17	17	0.17	34	0.71	0.32	Oxide Dunite
CN-1	486	515	29	0.27	0.09	0.04			103	17	0.17	120	0.75	0.31	Oxide Dunite
CN-1	515	545	30	0.23	0.10	0.04			171	17	0.17	188	0.70	0.29	Oxide Dunite
CN-1	545	575	30	0.41	0.14	0.04			274	17	0.17	291	0.75	0.22	Oxide Dunite
CN-1	635	665	30	0.19	0.11	0.05			68	17	0.17	86	0.63	0.31	Massive Sulfide
CN-1	665	695	30	0.26	0.14	0.06			68	17	0.17	85	0.64	0.29	Massive Sulfide
CN-1	695	730	35	0.14	0.15	0.03			17	17	1.00	34	0.47	0.16	Hornfels and Iroctolite
CN-1	730	765	35	0.12	0.18	0.02			17	17	0.17	34	0.40	0.10	Troctolite
CN-1	765	785	20	0.19	0.11	0.04			17	1	1.00	18	0.63	0.27	Troctolite
CN-1	785	805	20	0.42	0.24	0.06			103	17	0.17	120	0.61	0.24	Troctolite
CN-1	805	845	40	0.27	0.16	0.05		•	17	17	0.17	34	0.54	0.25	Saprolite
CN-2	40.5	50	9.5	0.14	0.12	0.07		0	101	17	0.17	120	0.69	0.24	Ox Br Po Dunite
CN-2	70	90	20	0.25	0.09	0.03	č	č	17	17	0.01	34	0.74	0.25	Gabbro Hornfels 67-80 Po-Ox-Dunite
			26	0.05	0.03	0 01			1		0.17	2	0.64	0.25	Hornfels
CN-2	115	150	25	0.14	0.05	0.02			17	1	0.01	18	0.73	0.28	Hnfs + Pd
CN-2	150	185	35	0.13	0.04	0.01			17	1.0	0.17	18	0.76	0.20	Hornfels
CN-1	80	105	25	0	0.04	0.07			103	17	0.58	120	10000		Dunite
CN-3	105	130	25			0.08			205	17	1.03	223			Dunite
CN-3	130	155	25			0.02			68	17	0.58	86			Troctolite
CN-3	155	190	35			0.04			17	17	0.17	34			Troctolite
CN-3	190	220	30			0.02			68	17	0.17	86			Troctolite
CN-3	220	260	40			0.01			103	17	0.17	120			Hornfels
CN-3	260	300	40			0.01			17	17	0.34	34			Troctolite
CN-3	300	325	25			0.02			137	17	0.17	154			Dunite
CN-7	1145	1168	23				<30	<20	1			1			UX DUNITE + Troc Anortho
51 -5	330	340	10	N.A.	N.A.	0.02						0	1.2.1		Troctolite
SL-1	370	450	80	0.60	0.24	0.03	0	205	205	342	4.08	548	0.71	0.12	Ox Pd and Ox Dunite
SL-1	680	683	3	4.44	0.69	0.08	1027	1370	2397	1027	44.18	3425	0.87	0.10	Maric dike
SL-10	530	580	50	0.13	0.07	0.03	0	205	205	17	4.08	223	0.65	0.31	Oxide Dunite
SL-11	485	515	30	0.25	0.15	0.09	0	137	137	1	3.42	138	0.62	0.35	Gride Re Recidetite
SL-11	696	737	41	0.54	0.30	0.05	0	103	103	17	16.10	120	0.04	0.15	Galde Fo Fel luotite
SL-11	710	715	5	0.54	0.38	0.06	0	0	1				0.59	0.12	
SL-11	715	720	5	0.74	0.51	0.07	0	103	103				0.57	0.12	
SL-11	720	. 725	5	0.69	0.53	0.07	177	205	205			1 · · · ·	0.69	0.13	a
SL-11	725	730	2	0.55	0.25	0.04	131	205	205				0.77	0.07	
SL-11	730	737	-	0.53	0.16	0.01		0	1				0.63	0.10	Troctolite/Gabbro
SL-11	746	750		0.18	0.10	0.01	ő	0	1				0.64	0.07	Troctolite/Gabbro
51-11	750	755	5	0.31	0.11	0.01	ō	0	1				0.74	0.09	Mixed Troc/Gabbro
51-11	755	765	10	0.19	0.08	0.01	0	0	1				0.70	0.12	Hixed Troc/Gabbro
51 -11	765	775	10	0.36	0.12	0.01	68	0	68				0.75	0.07	Mixed Troc/Gabbro
SL-13	400	410	10	0.42	0.13		0	103	103				0.76		Hornfels
SL-13	480	490	10	0.18	0.14		0	68	68				0.56		Peridotite
SL-13	490	500	10	0.20	0.11		0	103	103				0.65		Pyroxenite
SL-13	500	510	10	0.17	0.14		0	103	103				0.54		Pyroxenite
SL-13	520	530	10	0.24	.0.12		0	103	103				0.67		Peridotite
SL-13	530	540	10	0.25	0.12		0	68	68				0.60		Dunite
SL-13	540	550	10	0.48	0.24		0	137	137				0.65		Dunite
SL-13	550	560	10	0.50	0.27		242	103	103				0.61		Sulfide Rich Peridotite
SL-13	560	570	10	0.33	0.10			0					0.62		Pegmatitic Troctolite
SL-13	570	500	10	0.19	0,10		0	0	100				0.66		Troctolite
56-13	580	390	10	4.15	0.10			100	-						
				0.38	0.17	0.04	54	128	132	67	2.52	207	0.66	0.20	
	S	td		0.63	0.13	0.02	196	248	325	190	8.02	571	0.08	0.09	
				-					10.00		and the second	160			
	W	Aver	age.	0.30	0.15	0.04			35	224	8 97	345			
	5			0.14	0.15	0.01									

Table A5: List of Holes for Which There Are Precious Metal Data at Minnamax

MINNAMAX

1 233 15934 UPOIP DATIVUS AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 3 1955 2 2005 4.000E TIGERBOY AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1955 5 2005 4.000E TIGERBOY AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1959 7 9025 4.998E UPOIP TIGERBOY AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1959 21 9005 0.00 BATTUB AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1959 22 9075 15974 BATTUB AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1959 23 10955 15974 BATTUB AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1959 24 10955 53334 1001P BATTUB AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1959 23 23075 63334 1011P AA,AU,CD,CHOTOT SUGDBUY ASSAY OFFICE 1950 23 23075 63144 BATTUB AA,AU,CD,PHOTOT SUGDBUY ASSAY OFFICE 1950	DOH	N-S	E-W	DEPOSIT	ELEMENTS	LABORATORY	# of Samples	DATE
3 4178 31982 UPDIP TIGEBODY AGLAUC, PORTOT SUDBERY ASSAY OFFICE 1 1956 6 6465 BOZE BATHTUB AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 1 1956 7 9025 4398 UPDIP TIGEBOY AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 3 1957 10 9055 0.02 BATHTUB AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 3 1953 21 1955, 55 1957H BATHTUB AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 1 1959 22 1953, 53 197H BATHTUB AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 1 1959 23 1935, 3181H BATHTUB AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 1 1959 24 1935, 3381H BATHTUB AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 1 1959 25 2035 301H BATHTUB AGLAUC, CPRITOT SUDBERY ASSAY OFFICE 1 1959 35 2035 1071H		2220	15000		AC ALL CO PONTOT	SUDBURY ASSAY DEETCE	3	1959
3 3.000 3.000 2.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.000 3.000 7.0		2335	10995	UPDIP BAIHIUS	AG, AU, CO, PONTOT	SUDDURY ASSAT OFFICE	.1	1058
S 2463 240 2402 240 2407 240 2407 240 2507 240 2507 241 25	3	4178	31905	UPDIP TIGERBUT	AG, AU, CO, PGMTOT	SUDBURT ASSAT OFFICE		1058
s dess Bodz Buillion Au AL, CD, PHRIDI 22 8955 2.400H UPOIP BATHTUB AG, AL, CD, PHRIDI SUBBURY ASSAY OFFICE 1 1959 24 1695.55 1597H BATHTUB AG, AL, CD, PHRIDI SUBBURY ASSAY OFFICE 1 1959 25 2025 4.007H BUTTUB AG, AL, CD, PHRIDI SUBBURY ASSAY OFFICE 1 1959 26 253 253 1125 4.002 TIGERBOY AG, AL, CD, PHRIDI SUBBURY ASSAY OFFICE 1 1959 33 1125 4.002 TIGERBOY AG, AL, CD, PHRIDI SUBBURY ASSAY OFFICE 1 1959 34 23075 5533M BATHTUB AG, AL, CD, PHRIDI SUBBURY ASSAY OFFICE 1 1959 35 21275 7532A BATHTUB AG, AL, CD, PHRIDI SUBBURY ASSAY OFFICE 1 1957 36 35955 302	5	2005	4400E	TIGERBOY	AG, AU, CO, PGMTUT	SUDBURT ASSAT OFFICE	· · · · · ·	1950
7 9025 4.3986 DPTOT TICERBOY AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 3 1939 12 9035 15384 UPOTP PATHTUB AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1939 24 16955 15384 UPOTP PATHTUB AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1959 25 2025 44074 UPOTP PATHTUB AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1959 26 955 3231814 BATHTUB AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1959 21 15355 31814 BATHTUB AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1950 32 2035 46014 DPOTP TICERBOY AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1950 33 21375 10314 BATHTUB AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1950 34 21375 10314 BATHTUB AG, AU, CO, PRHOT SUBBURY ASSAY OFFICE 1 1950	6	646S	802E	BATHTUB	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	1	1959
11 9005 0.0E BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 3 1959 22 8035 2300 UPICIP BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1959 23 8037 15374 UPICIP BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1959 24 8955 31314 BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1959 25 16955 31314 BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1959 34 2375 66334 BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1960 34 2375 66334 BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1960 34 2375 66334 BATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1960 3435 24714 UPICIP HATHTUB AG,AU,CO,PHOTOT SUDBURY ASSAY OFFICE 1 1961 34368 34714	7	902S	4398E	UPDIP TIGERBOY	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	5	1959
22 8955 2400H UPDIP BATHTUB AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 1 959 24 1635.55 1597H BATHTUB AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 1 959 25 9555 1201H BATHTUB AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 1 959 25 9555 1101H BATHTUB AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 3 959 33 17125 4603E TIGERBOY AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 3 1960 34 22115 5330 1101ERBOY AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 1 1959 36 22105 3201H BATHTUB AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 1 1957 36 3585 3061H SATHTUB AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 1 1957 37 12175 TS124 BATHTUB AG,AU,CO,PHOT SUDBURY ASSAY OFFICE 1 1956 38 3958 <td< td=""><td>17</td><td>900S</td><td>0.0E</td><td>BATHTUB</td><td>AG, AU, CO, PGMTOT</td><td>SUDBURY ASSAY OFFICE</td><td>3</td><td>1959</td></td<>	17	900S	0.0E	BATHTUB	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	3	1959
22 8875 1598H UPDIP RATHUB 4G,AU,CO,RCHOT SUBBURY ASSAY OFFICE 4 1959 24 1685, 55 1571H BATHUB AG,AU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1953 25 2025 4007H UPDIP BATHUB AG,AU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1953 25 355 3001H AGAU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1953 26 2575 4601E UPDIP TIGERBOY AG,AU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1950 36 2505 3201H BATHUB AG,AU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1950 36 3505 301H BATHUB AG,AU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1956 36 3505 301H SHETRISTOR AG,AU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1957 21275 7532H BATHUB AG,AU,CO,RCHOT SUBBURY ASSAY OFFICE 1 1956 21275 7532H BATHUB A	22	8955	2400W	UPDIP BATHTUB	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	1	1959
24 1955.55 1597H BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1959 25 2025 4407H UPOID F BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1959 26 955 31053 31054 UPID F BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1959 31 10355 4001E UPID F BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1959 32 2105 3201H BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1950 34 2175 7522H BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1950 35 2105 3201H BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1957 36 2175 7522H BATHTUB AG,AU,CO, PROTOT SUBBURY ASSAY OFFICE 1 1956 3717 15574 OTTISDE AREA 2M, PR, PA,O,CO SWASTKA 1 1957 35 <td>23</td> <td>8975</td> <td>1598W</td> <td>UPDIP BATHTUB</td> <td>AG, AU, CO, PGMTOT</td> <td>SUDBURY ASSAY OFFICE</td> <td>4</td> <td>1959</td>	23	8975	1598W	UPDIP BATHTUB	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	4	1959
25 2025 4407M UPDIP BATHTUB AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1959 26 955 200M UPDIP BATHTUB AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 3 1955 21 1125 4031E TIGERBOY AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1959 31 1125 4031E HORIP TICERBOY AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1950 32 2015 2010M BATHTUB AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1950 33 1712 400 2000S 4012M EAG,AU,PT,PO,CO SMASTIKA 1 1957 34005 2017M SIX EFKISTON AG,AU,PT,PO,CO SMASTIKA 1 1957 353 25105 4201M CLOUD PT,PO,AG BONDAR CLEGG 1 1959 363 25475 1657M CUTSIDE AREA PT,PO,AG BONDAR CLEGG 5 1979 30 17055 4037M	24	1695.55	1597W	BATHTUB	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	1	1959
26 955 3203M UPDIP BATHIUB AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1959 33 17125 4603E TIGERBOY AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 2 1950 34 2375 5533M BATHIUB AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1950 35 2035 4501E UPDIP TIGERBOY AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1950 36 20165 3201M BATHIUB AG,AU,CP,PORTOT SUBBURY ASSAY OFFICE 1 1957 37 21275 7532H BATHIUB AG,AU,PT,PO,CO SMASTIKA 2 1957 363 35965 3047H SH EXTENSION AG,AU,PT,PO,CO SMASTIKA 1 1957 362 21075 1537H CUUDD PT,PO,AG BONDAR CLEGG 1 1957 362 24775 1637H CLOUD PT,PO,AG BONDAR CLEGG 1 1957 362 30535 1725H	25	2025	4407W	UPDIP BATHTUB	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	1	1959
22 1935 3181M BATHTUB AG,AU,C, PARTOT SUBBURY ASSAY OFFICE 3 1950 34 23375 5633M BATHTUB AG,AU,C, C, PARTOT SUBBURY ASSAY OFFICE 2 1950 35 2035 4001E UPOLP TIGERBOY AG,AU,C, C, PARTOT SUBBURY ASSAY OFFICE 2 1950 36 2035 2010H BATHTUB AG,AU,C, C, PARTOT SUBBURY ASSAY OFFICE 2 1950 36 2035 4010L UPOLP BATHTUB AG,AU,C, C, PARTOT SUBBURY ASSAY OFFICE 2 1950 36 2175 75224 EUTSTORARA AG,AU,F, TP,O,CO SWASTIKA 1 1957 36 2175 75224 EUTSTORARA AG,AU,F, TP,O,CO SWASTIKA 1 1957 36 2175 1557M 0UTSTORARA AG,AU,F, TP,O,CO SWASTIKA 1 1957 36 21755 2410H CLOUD PT,PD,AG BONDAR CLEGG 1 1979 37 1565 23047E	26	955	3203W	UPDIP BATHTUB	AG, AU, CO, PGMTOT	SUDBURY ASSAY OFFICE	1	1959
31 17125 4002E TIGERBOY AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 2 1960 35 2035 4001E UPDIP TIGERBOY AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1950 39 25106 3201H BATHTUB AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1950 40 9005 4012H UPDIP BATHTUB AG,AU,CO,PORTOT SUBBURY ASSAY OFFICE 1 1950 57 21275 7532H BATHTUB AG,AU,PT,PO,CO SHASTIKA 1 1957 58 3565 3047H SI EVENSION AG,AU,PT,PO,CO SHASTIKA 1 1957 51 21050 21015 AREA AG,AU,PT,PO,CO SHASTIKA 1 1957 52 21051 21014 CLOUD PT,PD,AG BOMAR CLEGG 5 1979 51 17054 4037H CLOUD PT,PD,AG BOMAR CLEGG 3 1979 51 17054 4037H CLOUD <td< td=""><td>29</td><td>16955</td><td>3181W</td><td>BATHTUB</td><td>AG.AU.CO.PGMTOT</td><td>SUDBURY ASSAY OFFICE</td><td>3</td><td>1959</td></td<>	29	16955	3181W	BATHTUB	AG.AU.CO.PGMTOT	SUDBURY ASSAY OFFICE	3	1959
34 23975 56334 BATHTUB AGLAU,CO.PENTOT SUBBUTY ASSAY OFFICE 3 950 35 20305 40014 UPOLP BATHTUB AGLAU,CO.PENTOT SUBBUTY ASSAY OFFICE 1 1959 36 20305 4014 UPOLP BATHTUB AGLAU,CO.PENTOT SUBBUTY ASSAY OFFICE 1 1950 40 0005 40124 UPOLP BATHTUB AGLAU,CO.PENTOT SUBBUTY ASSAY OFFICE 1 1950 51 21275 75324 BATHTUB AGLAU,PT.PO.CO SMASTIKA 2 1957 52 21275 75324 BATHTUB AGLAU,PT.PO.CO SMASTIKA 2 1957 53 24074 CLOUD PT.PO.AG BOMDAR CLEGG 1 1957 54 24075 1517 CLOUD PT.PO.AG BOMDAR CLEGG 3 1971 55 24704 CLOUD PT.PO.AG BOMDAR CLEGG 3 1979 56 2535 17254 CLOUD PT.PO.AG BOMDAR CLEGG	33	17125	4803F	TIGERBOY	AG. AU. CO. POMTOT	SUDBURY ASSAY OFFICE	2	1960
35 2015 2016 2010 Parture Ad., AU, CD, Portor SUDBURY ASSAV OFFICE 1 1959 36 25105 32011 BATHTUB AG, AU, CD, PORTOR SUDBURY ASSAV OFFICE 1 1960 40 CLOUD PT, PD, AG BONDAR CLEGG 2 1979 57 21275 T5324 BATHTUB AG, AU, CD, PORTOR SUDBURY ASSAV OFFICE 1 1960 58 35955 30471 SK ETENSION AG, AU, PT, PD, CO SKASTIKA 2 1997 60 36475 87E CUTSIDE AREA AG, AU, PT, PD, CO SKASTIKA 1 1997 81 21005 24144 CLOUD PT, PD, AG BONDAR CLEGG 1 1919 91 1105 24014 CLOUD PT, PD, AG BONDAR CLEGG 4 1979 92 1055 54255 3226E LOCAL BOY AU, AD, PT, PD, CD SKANECOTT 1 1971 105 56455 3027E <t< td=""><td>34</td><td>23975</td><td>5633W</td><td>BATHTUB</td><td>AG AU CO POMTOT</td><td>SUDBURY ASSAY OFFICE</td><td>3</td><td>1960</td></t<>	34	23975	5633W	BATHTUB	AG AU CO POMTOT	SUDBURY ASSAY OFFICE	3	1960
35 2033 32014 UDATITUB ALALCO, PONTOT SUDDUP ASSAY OFFICE 1 1 30 9005 40124 UDIP BATHTUB ALALCO, PONTOT SUDDUP ASSAY OFFICE 1	35	20315	49015	HEDTE TICEPROY	AC ALL CO PONTOT	SUDBURY ASSAY OFFICE		1959
33 23105 32018 Description Anylot, Function Subcomp account of the second of	35	2035	4001E	DEDIF TIGERBOT	AG, AU, CO, PONTOT	CUDDURY ACCAY OFFICE		1050
40 9005 4012H 0001P PAINUS AU, AU, CU, FURIL SUBDERT ASSA DUFILE 1 1 1 57 21375 TS CLOUTB AT, PD, CO SWASTIKA 1 1357 58 21375 FE OUTSIDE AREA AG, AU, PT, PD, CO SWASTIKA 1 1957 50 35475 BTE OUTSIDE AREA AG, AU, PT, PD, CO SWASTIKA 1 1957 51 21005 21414 CLOUD PT, PD, AG BONDAR CLEGG 1 1979 90 11105 2401H CLOUD PT, PD, AG BONDAR CLEGG 3 1979 91 11055 4037H CLOUD PT, PD, AG BONDAR CLEGG 3 1979 92 25235 22240H CLOUD PT, PD, AG BONDAR CLEGG 3 1971 1002 24951 1725K CLOUD PT, PD, AG BONDAR CLEGG 2 1971 103 56053 2047E CLOUD PT	39	25105	32014	BATHTUB	AG, AU, CO, PGMIUI	SUDBURT ASSAT OFFICE	-	1060
40 CLOUD PT, PD, AG BUNDAR CLEUG 2 19:9 57 21275 T5324 BATTUB JON AG, AU, PT, PD, CO SMASTIKA 1 19:07 58 35965 3047H SK EXTENSION AG, AU, PT, PD, CO SMASTIKA 1 19:07 50 36473 BTE OUTSIDE AREA AG, AU, PT, PD, CO SMASTIKA 1 19:07 50 31473 STE OUTSIDE AREA AG, AU, PT, PD, CO SMASTIKA 1 19:37 51 210055 4037H CLOUD PT, PD, AG BONDAR CLEGG 5 19:97 52 22335 22420H CLOUD PT, PD, AG BONDAR CLEGG 3 19:97 56 3035 1725H CLOUD PT, PD, AG BONDAR CLEGG 3 19:97 100 24395 107E BATHTUB CO, SUNI KENRECOTT 19:17 103 16685 431174 CLOUD PT, PD, CO SMASTIKA 3 19:56 <	40	9005	4012W	UPDIP BATHTUB	AG, AU, CO, PGMIOI	SUDBURT ASSAT UFFICE	1	1900
57 21275 7532M BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1997 60 36475 87E QUISIDE AREA AG,AU,PT,PD,CO SWASTIKA 1 1997 78 21005 3207H CLUUD PT,PD,AG BONDAR CLEGG 1 1997 82 21005 22114H CLUUD PT,PD,AG BONDAR CLEGG 1 1997 90 17105 201H CLUUD PT,PD,AG BONDAR CLEGG 1 1999 91 17054 421H CLUUD PT,PD,AG BONDAR CLEGG 1 1999 92 25335 2420H CLUUD PT,PD,AG BONDAR CLEGG 1 1997 100 24998 107E BOUDB CT,PD,AG BONDAR CLEGG 1 1997 103 56255 3228E LOCAL BOY ZM,PA,G,AS KENHECOTT 3 1966 116 5405 3047E LOCAL BOY AG,AU,PT,PD,CO SWASTIKA 3 1969 117 47305 14306 QUTSIDE AREA ZM,PA,G,AS	40		1 Sec. 19. 2	CLOUD	PT,PD,AG	BONDAR CLEGG	2	19/9
58 35565 3047H SH EXTENSION AG, AU, PT, PD, CO SHASTIKA 2 1957 60 36475 BTE OUTSIDE AREA AG, AU, PT, PD, CO SHASTIKA 1 1957 78 21005 3207H CLOUD PT, PD, AG BONDAR CLEGG 1 1979 85 24175 1657M OUTSIDE AREA ZN, PB, AG, AS KENNECOTT 5 1971 90 17105 2401H CLOUD PT, PD, AG BONDAR CLEGG 4 1979 91 17055 4037H CLOUD PT, PD, AG BONDAR CLEGG 3 1979 92 25235 2420H CLOUD PT, PD, AG BONDAR CLEGG 3 1979 100 24995 107E BATHTUB CO, SULNI KENNECOTT 1971 103 16665 A617M CLOUD PT, PD, AG BONDAR CLEGG 2 1779 104 B5405 3047E LOCAL BOY AL, AU, PT, PD, CO SHASTIKA	57	21275	7532W	BATHTUB	AG, AU, PT, PD, CO	SWASTIKA	1	1967
60 36475 87E OUTSIDE AREA AG, AU, PT, PD, CO SNASTIKA 1 1997 82 21005 221144 CLOUD PT, PD, AG BONDAR CLEGG 4 1979 82 21005 221144 CLOUD PT, PD, AG BONDAR CLEGG 4 1979 90 17105 24014 CLOUD PT, PD, AG BONDAR CLEGG 4 1979 91 17055 40174 CLOUD PT, PD, AG BONDAR CLEGG 4 1979 92 25235 24204 CLOUD PT, PD, AG BONDAR CLEGG 3 1979 100 24995 107E BATHTUB CO, SULNI KENNECOTT 4 1971 103 16565 4617M CLOUD PT, PD, AG BONDAR CLEGG 2 1979 105 56255 3228E LOCAL BOY ZN, PB, AG, AS KENNECOTT 3 1966 117 47305 14490E OUTSIDE AREA ZN, PB, AG, AS KENNECOTT	58	3596S	3047W	SW EXTENSION	AG, AU, PT, PD, CO	SWASTIKA	2	1967
T8 21005 3207H CLUUD PT,PD,AG BONAR CLEGG 1 1979 82 21005 2414H CLUUD PT,PD,AG BONAR CLEGG 4 1979 85 24775 1657M OUTSIDE AREA ZN,PB,AG,AS KENNECOTT 5 1971 90 17105 2401H CLUUD PT,PD,AG BONAR CLEGG 4 1979 91 17055 4037M CLUUD PT,PD,AG BONAR CLEGG 4 1979 92 25235 2420H CLUUD PT,PD,AG BONAR CLEGG 1 1979 100 24995 107E BATHTUB CO,SUNI KENNECOTT 1 1971 103 16685 4617M CLOUD PT,PD,AG BONAR CLEGG 2 1979 116 54005 3047E LOCAL BOY ZM,AG,AS KENNECOTT 1 1971 117 4705 1490E OTTS EARAR ZM,PG,AG,AS SKENNECOTT 1 1979 </td <td>60</td> <td>36475</td> <td>87E</td> <td>OUTSIDE AREA</td> <td>AG, AU, PT, PD, CO</td> <td>SWASTIKA</td> <td>1</td> <td>1967</td>	60	36475	87E	OUTSIDE AREA	AG, AU, PT, PD, CO	SWASTIKA	1	1967
82 2100S 2414H CLOUD PT,PD,AG BONDAR CLEGG 4 1971 90 1710S 2401H CLOUD PT,PD,AG,BAS,K EKENKCOTT 5 1971 90 1710S 2401H CLOUD PT,PD,AG BONDAR CLEGG 5 1971 91 170S 4037H CLOUD PT,PD,AG BONDAR CLEGG 3 1979 92 2523S 2420H CLOUD PT,PD,AG BONDAR CLEGG 3 1979 100 2499S 107E BATHTUB CO.SULNI KENECOTT 4 1971 103 16685 4317H CLOUD PT,PD,AG BONDAR CLEGG 2 1979 105 552SS 3228E LOCAL BOY ZN,PS,AG,AS KENECOTT 3 1968 116 5540S 3047E LOCAL BOY GA,PT,PD,CO SMASTIKA 3 1963 117 4730S 1490E OUTSIDE AREA ZN,PS,AG,SS SUNECOTT 1 <t< td=""><td>78</td><td>21005</td><td>3207W</td><td>CLOUD</td><td>PT, PD, AG</td><td>BONDAR CLEGG</td><td>1</td><td>1979</td></t<>	78	21005	3207W	CLOUD	PT, PD, AG	BONDAR CLEGG	1	1979
85 24.775 1657H OUTSIDE AREA ZN,PB,AG,AS KENNECOTT 5 1971 90 17105 2401H CLOUD PT,PD,AG BONDAR CLEGG 5 1979 91 17055 4037H CLOUD PT,PD,AG BONDAR CLEGG 3 1979 92 25235 2420H CLOUD PT,PD,AG BONDAR CLEGG 3 1971 100 24995 107E BATHUB CO,SULNI KENNECOTT 4 1971 100 24995 107E BATHUB CO,SULNI KENNECOTT 4 1971 105 56255 3228E LOCAL BOY AG,AJ,PT,PD,CO SMASTIXA 3 1968 116 55405 30ATE LOCAL BOY AG,AJ,PT,PD,CO SMASTIXA 3 1968 117 47305 1490E OUSTIDE AREA ZN,PB,AG,AS KENNECOTT 1 1971 113 55805 5075E LOCAL BOY AG,AJ,PT,PD,CO SMASTIXA	82	21005	2414W	CLOUD	PT.PD.AG	BONDAR CLEGG	4	1979
S0 TT 105 2401H CLOUD PT,PD,AG BONDAR CLEGG 5 1979 91 TT 1055 403TH CLOUD PT,PD,AG BONDAR CLEGG 3 1979 92 25235 2420H CLOUD PT,PD,AG BONDAR CLEGG 3 1979 96 36335 TT25H CLOUD PT,PD,AG BONDAR CLEGG 4 1979 100 24995 107E BATHTUB CQ,SULNI KENNECOTT 1911 103 15685 431TH CLOUD PT,PD,AG BONDAR CLEGG 2 1979 103 15685 3047E LOCAL BOY AX,AP,PT,PD,CO SKENNECOTT 3 1969 1116 55405 3047E LOCAL BOY AG,AU,PT,PD,CO SKENNECOTT 1 1971 122 55265 5575E OUTSIDE AREA ZN,PB,AG,AS KENNECOTT 1 1971 133 5210.75 2424.3E LOCAL BOY ZN,PB,AG,AS KENNECOTT 1	85	24775	1657W	OUTSIDE AREA	7N.PB.AG.AS	KENNECOTT	5	1971
St Tross 4 asym CLOUD FT, PD, AG BONDAR CLEGG 4 1979 92 22233 24204 CLOUD PT, PD, AG BONDAR CLEGG 3 1979 96 35935 17254 CLOUD PT, PD, AG BONDAR CLEGG 4 1979 100 249935 107E BATHTUB CO, SULNI KENMAR CLEGG 4 1971 103 16863 481TH CLOUD PT, PD, AG, AS BENMAR CLEGG 4 1971 103 16863 481TH CLOUD PT, PD, AG, AS BENMAR CLEGG 4 1971 103 16863 304TE LOCAL BOY AJ, AJ, PT, PD, CO SMASTIKAT 3 1965 116 55405 304TE LOCAL BOY AJ, AJ, PT, PD, CO SMASTIKAT 3 1961 119 56805 4005L LOCAL BOY AJ, PT, PD, CO SMASTIKAT 3 1969 122 56285 5755E OUTSIDE AREA ZN, PB, AG, AS	00	17105	2401	CLOUD	PT PD AG	BONDAR CI EGG	5	1979
91 1033 L001 PT,PD,AG BONDAR CLEGG 1 96 36933 1725W CLOUD PT,PD,AG BONDAR CLEGG 4 1975 96 36933 1725W CLOUD PT,PD,AG BONDAR CLEGG 2 1971 103 16685 4817W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 103 16685 4817W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 103 16685 4817W CLOUL PT,PD,AG BONDAR CLEGG 2 1979 104 AG,AD,PT,PD,CO SMASTIKA 3 1968 40.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	30	17105	402714	CLOUD	PT PD AC	BONDAR CLEGG		1979
92 25235 2420M CLOUD PT,PD,AG BONDAR CLEGG 3 1979 100 24995 107E BATHTUB CO,SULNI KENRCOTT 1971 103 16685 481TW CLOUD PT,PD,AG BONDAR CLEGG 2 1979 105 55255 3228E LOCAL BOY ZN,PP,AG,AS KENRCOTT 4 1971 106 55405 3047E LOCAL BOY ZN,PP,AG,AS KENRCOTT 3 1968 116 55405 3047E LOCAL BOY AU,AC,PT,PD,CO SMASTIKA 4 1976 119 55805 4000E LOCAL BOY AU,A,PT,PO,CO SMASTIKA 3 1969 122 55285 575E OUTSIDE AREA ZN,PP,AG,AS KENNECOTT 1 1971 130 56095 24245 LOCAL BOY ZN,PP,AG,AS KENNECOTT 1 1971 1316 51955 3621E TIGER BOY AL,PP,PA,CO SMASTIKA 3 1959 213 24245 4414.9E TIGERBOY ALL POH + AU	91	17055	40374	CLOUD	PT, PU, AG	BONDAR CLEGG	-	1070
96 36933 1725H CLOUD PT,PD,AG BONDAR CLEGG 4 1971 100 16685 481TH CLOUD PT,PD,AG BONDAR CLEGG 2 1371 103 16685 481TH CLOUD PT,PD,AG BONDAR CLEGG 2 1379 105 55253 3228E LOCAL BOY ZN,PP,AG,AS KENNECOTT 4 1371 105 55405 304TE LOCAL BOY ZN,PP,AG,CS KENNECOTT 3 1968 117 47305 1400E DUTSIDE AREA ZN,PP,AG,AS KENNECOTT 1 1971 120 56285 5575E OUTSIDE AREA ZN,PP,AG,AS KENNECOTT 1 1971 130 56095 2425E LOCAL BOY AG,AU,PT,PD,CO SMASTIKA 3 1969 1326 5895 4309E LOCAL BOY AG,AU,PT,PD,CO SMASTIKA 3 1969 1331 5410.5 4414.9E LOCAL BOY AG,AU,PT,PD,CO SMASTI	92	25235	2420W	CLOUD	PT,PD,AG	BONDAR CLEGG	3	1919
100 24995 107E BATHTUB CO, SULNI KENNECOTT 1971 103 16685 481TW CLOUD PT, PD, AG BONDAR CLEGG 2 1879 105 56255 3228E LOCAL BOY ZN, PB, AG, AS BONDAR CLEGG 2 1879 116 55405 3047E LOCAL BOY AG, AU, PT, PD, CO SMASTIKA 3 1968 117 47305 1490E OUTSIDE AREA ZN, PB, AG, AS, SULNI KENNECOTT 1 1971 119 55895 4800E LOCAL BOY AG, AU, PT, PD, CO SMASTIKA 3 1969 122 55285 575E CUTSIDE AREA ZN, PB, AG, AS KENNECOTT 1 1971 130 5510,75 2424.5E LOCAL BOY ZN, PB, AG, AS KENNECOTT 1 1971 136 51955 3621E TIGERBOY ALL PGH + AU U OF T 1 1979 214 2494,55 4414.9E TIGERBOY ALL PGH + AU	96	36935	1725W	CLOUD	PT,PD,AG	BONDAR CLEGG	4	1979.
103 16685 4017M CLOUD PT,PD,AG BONDAR CLEGG 2 1379 105 55255 3228E LOCAL BOY ZN,PB,AG,AS KENNECOTT 4 1371 105 55405 3047E LOCAL BOY AV,PB,AG,AS KENNECOTT 3 1956 116 55405 3047E LOCAL BOY AG,AU,PT,PD,CO KENNECOTT 1 1371 117 47305 1490E OUTSIDE AREA ZN,PB,AG,AS KENNECOTT 1 1371 119 55895 4800E LOCAL BOY AG,AU,PT,PD,CO SWASTIKA 3 1959 122 56285 5575E OUTSIDE AREA ZN,PB,AG,AS KENNECOTT 1 1971 130 56093 2428E LOCAL BOY ZA,AJ,PT,PD,CO SWASTIKA 3 1965 1313 5210.75 2424.0E LOCAL BOY ZN,PB,AG,AS KENNECOTT 1 1971 216 2891.55 404H Cloub PT,PD,AG BONDAR CLEGG 1 1979 224 2894.55 414.9E	100	24995	107E	BATHTUB	CO, SULNI	KENNECOTT		1971
105 56255 3228E LOCAL BOY ZN, PB, AG, AS KENNECOTT 4 1971 116 55405 3047E LOCAL BOY AU, AG, PT, PD, CO SMASTIKA 3 1968 117 47305 1490E OUTSIDE AREA ZN, PB, AG, AS, SULNI KENNECOTT 1 1971 119 55895 4800E LOCAL BOY AG, AU, PT, PO, CO SMASTIKA 3 1959 122 55895 OUTSIDE AREA ZN, PB, AG, AS KENNECOTT 1 1971 130 55095 2424.5E LOCAL BOY AG, AU, PT, PO, CO SMASTIKA 3 1959 131 5510.7S 2424.5E LOCAL BOY ZN, PB, AG, AS KENNECOTT 1 1971 136 51995 3621E TIGERBOY ZN, PB, AG, AS KENNECOTT 1 1979 214 2494.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 294.5S 4414.9E TIGERBOY ALL PGH	103	16685	4817W	CLOUD	PT,PD,AG	BONDAR CLEGG	2	1979
AU,AG, PT, PD, CO SHASTIKA 3 1958 116 55405 3047E LOCAL BOY AG,AU,PT,PD,CO KENNECOTT 3 1958 117 47305 1490E OUTSIDE AREA ZN,PB,AG,AS,SULNI KENNECOTT 1 1971 119 55895 4800E LOCAL BOY AG,AU,PT,PD,CO SHASTIKA 3 1969 122 56285 5575E OUTSIDE AREA ZN,PB,AG,AS KENNECOTT 1 1971 130 56095 2425E LOCAL BOY ZN,PB,AG,AS KENNECOTT 1 1979 136 51995 3621E TIGERBOY ALL PGH + AU U OF T 1 1979 211 24865 4799E TIGERBOY ALL PGH + AU U OF T 1 1979 224 2984.55 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 234 2894.55 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 <td< td=""><td>105</td><td>5625S</td><td>3228E</td><td>LOCAL BOY</td><td>ZN, PB, AG, AS</td><td>KENNECOTT</td><td>4</td><td>1971</td></td<>	105	5625S	3228E	LOCAL BOY	ZN, PB, AG, AS	KENNECOTT	4	1971
AU_AG, PT, PD, CO KENNECOTT 3 1956 116 55405 3047E LOCAL BOY AG_AU, PT, PD, CO SHASTIKA 4 1956 117 47305 1490E OUTSIDE AREA ZN, PB, AG, AS, SULNI KENNECOTT 1 1971 122 55285 5575E OUTSIDE AREA ZN, PB, AG, AS KENNECOTT 1 1971 130 56095 2425E LOCAL BOY AG, AU, PT, PD, CO SHASTIKA 3 1969 133 5210.7S 244.3E LOCAL BOY AG, AU, PT, PD, CO SHASTIKA 3 1959 134 51995 3621E TIGERBOY ALL PGH + AU U OF T 1 1971 216 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 403.8E TIGERBOY ALL PGH + AU U OF T 2 1979					AU, AG, PT, PD, CO	SWASTIKA	3	1968
116 55405 3047E LOCAL BOY AG, AU, PT, PD, CO SMASTIKA 4 1956 117 4T305 1490E OUTSIDE AREA ZN, PB, AG, AS, SULNI KENNECOTT 1 1971 119 55895 400E LOCAL BOY AG, AU, PT, PD, CO SMASTIKA 3 1959 120 56095 2425E LOCAL BOY AG, AU, PT, PD, CO SMASTIKA 3 1959 130 56095 2425E LOCAL BOY ZN, PB, AG, AS KENNECOTT 1 1971 136 51995 3621E TIGERBOY ALL PGH + AU U 0 F T 1 1979 222 45965 4799E TIGERBOY ALL PGH + AU U 0 F T 1 1979 231 34485 2014.44 ClOUD PT, PD, AG BONDAR CLEGG 18 1979 242 2894.55 414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.55 3012.4 <td< td=""><td></td><td></td><td></td><td></td><td>AU.AG.PT.PD.CO</td><td>KENNECOTT</td><td>3</td><td>1968</td></td<>					AU.AG.PT.PD.CO	KENNECOTT	3	1968
117 4T305 1490E OUTSTDE AREA ZN, PB, AG, AS, SULNI KENNECOTT 1 1971 119 55895 4800E LOCAL BOY AG, AU, PT, PD, CO SHASTIKA 3 1969 120 56285 5575E OUTSIDE AREA ZN, PB, AG, AS KENNECOTT 1 1971 130 56095 2425E LOCAL BOY AG, AU, PT, PD, CO SKASTIKA 3 1969 133 5210.75 2424.3E LOCAL BOY ZN, PB, AG, AS KENNECOTT 1 1971 216 2891.55 804W CLOUD PT, PD, AG BONDAR CLEGG 1 1979 211 34485 2470E TIGERBOY ALL PGH + AU U OF T 1 1979 214 2894.5S 414.95 TIGERBOY ALL PGH + AU U OF T 1 1979 213 34465 2470E TIGERBOY ALL PGH + AU U OF T 1 1979 214 2894.5S 414.95 TIGERBOY ALL PGH + AU U OF T 1 1979 256 3600.15 40	116	55405	3047E	LOCAL BOY	AG, AU, PT, PD, CO	SWASTIKA	4	1968
119 55895 4800E LOCAL BOY AG,AU,PT,PD,CO SHASTIKA 3 1969 122 56285 5575E UUTSIDE AREA ZN,PB,AG,AS KENNECOTT 1 1971 130 56095 2425E LOCAL BOY ZN,PB,AG,AS KENNECOTT 1 1971 136 51995 3621E TIGER BOY ZN,PB,AG,AS KENNECOTT 1 1971 136 51995 3621E TIGERBOY ALL PGH + AU U O F T 1 1979 222 45955 4799E TIGERBOY ALL PGH + AU U O F T 1 1979 231 3445S 2470E TIGERBOY ALL PGH + AU U O F T 1 1979 254 2894.5S 414.9E TIGERBOY ALL PGH + AU U O F T 1 1979 268 3600.15 4003.8E TIGERBOY ALL PGH + AU U O F T 2 1379 266 2419.8S 358.7N BATHUB PT,PD,AG BONDAR CLEGG 3 1979 266 2419.8S 358.7N BATHUB <td>117</td> <td>47305</td> <td>1490F</td> <td>OUTSIDE AREA</td> <td>TN. PR. AG. AS. SULNI</td> <td>KENNECOTT</td> <td>1</td> <td>1971</td>	117	47305	1490F	OUTSIDE AREA	TN. PR. AG. AS. SULNI	KENNECOTT	1	1971
112 55835 20000 COAL BOY 20,70,71,70,50 DOMAR ALL 1 130 55285 5575E OUTSIDE AREA ZN,PB,AG,AS KENNECOTT 1 1371 130 55205 2424,3E LOCAL BOY ZN,PB,AG,AS KENNECOTT 1 1371 136 51995 3221E TIGER BOY ZN,PB,AG,AS KENNECOTT 1 1371 216 2891,55 804M CLOUD PT,PO,AG BONDAR CLEGG 1 1379 231 34485 2470E TIGERBOY ALL PGH + AU U OF T 1 1379 234 2894.55 414.9E TIGERBOY ALL PGH + AU U OF T 1 1379 243 284.25 2014.4M CLOUD P PT,PD,AG BONDAR CLEGG 18 1375 256 2104.55 1584.2E SH EXTENSION ALL PGH + AU U OF T 2 1379 263 1299.25 3201.2M CLOUD P PT,PD,AG BONDAR CLEGG 3 1379 256 2419.85 358.7M BATHTUB <t< td=""><td>110</td><td>FEGOS</td><td>49005</td><td>LOCAL BOX</td><td>AC AU PT PD CO</td><td>SWASTIKA</td><td>3</td><td>1969</td></t<>	110	FEGOS	49005	LOCAL BOX	AC AU PT PD CO	SWASTIKA	3	1969
122 56255 53752 001510E ALCA 21,75,40,AS 121,75,40,AS 131,75,40,AS 131,75,74,40,AS 131,75,74,75,74,40,AS 131,75,74,74,74,40,AS 131,75,75,75,74,74,74,74,74,74,74,74,74,74,74,74,74,	119	55695	40000	CUTCIDE ADEA	TH DD AC AS	VENNECOTT	1	1971
130 56095 2424.3E LUCAL BOY AG,AD,PJ,PU,CU SMASTIAA 3 130 133 5210.7S 2424.3E LUCAL BOY ZN,PB,AG,AS KENNECOTT 1 1971 136 51995 3621E TIGER BOY ZN,PB,AG,AS KENNECOTT 1 1971 216 2891.5S 404H CLOUD PT,PD,AG BONDAR CLEGG 1 1979 211 34485 2470E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY PT,PD,AG BONDAR CLEGG 18 1976 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 268 3600.1S 1584.2E SM EXTENSION ALL PGH + AU U OF T 2 1979 256 2419.8S 358.7H <t< td=""><td>122</td><td>56285</td><td>DDIDE</td><td>UUISIDE AREA</td><td>ZN, PB, AG, AS</td><td>REARECOTT</td><td></td><td>1050</td></t<>	122	56285	DDIDE	UUISIDE AREA	ZN, PB, AG, AS	REARECOTT		1050
133 5210.75 242.3E LOCAL BOY 2N,PB,AG,AS KENNECUT 1 1371 136 5199S 3621E TIGERBOY ALL PGH + AU U OF T 1 1379 221 3485 4799E TIGERBOY ALL PGH + AU U OF T 1 1379 221 34485 2470E TIGERBOY ALL PGH + AU U OF T 1 1379 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1379 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1379 263 1228.6S 2014.4H CLOUD P PT,PD,AG BONDAR CLEGG 3 1379 268 3600.1S 403.8E TIGERBOY ALL PGH + AU U OF T 2 1979 264 219.4S 358.7H BATHTUB ALL PGH + AU U OF T 2 1979 265 219.8S 358.7H BATHTUB PT,PD,AG BONDAR CLEGG 1 1379 304 2844.5S 2021.2H CLOUD	130	56095	2425E	LOCAL BOY	AG, AU, PT, PU, CU	SWASTIKA	3	1903
136 51995 3621E TIGER BOY 2N,PB,AG,AS KENNECDIT 1 1971 216 2891.5S 804M CLOUD PT,PD,AG BONDAR CLEGG 1 1979 222 4596S 4799E TIGERBOY ALL PGH + AU U OF T 1 1979 231 3448S 2470E TIGERBOY ALL PGH + AU U OF T 1 1979 234 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 256 2014.4M CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 256 2419.8S 358.7M BATHTUB PT,PD,AG BONDAR CLEGG 42 1979 266 2419.8S 358.7M BATHTUB PT,PD,AG BONDAR CLEGG 42 1979 266 2419.8S 358.7M BATHTUB PT,PD,AG BONDAR CLEGG 42	133	5210.75	2424.3E	LOCAL BOY	ZN, PB, AG, AS	KENNECOTT		19/1
216 2891.5S 804H CLOUD PT,PD,AG BONDAR CLEGG 1 1979 222 4596S 4799E TIGERBOY ALL PGH + AU U OF T 1 1979 231 3448S 2470E TIGERBOY ALL PGH + AU U OF T 1 1979 254 294.5S 4114.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 294.5S 414.9E TIGERBOY PT,PD,AG BONDAR CLEGG 18 1976 263 1228.6S 2014.4H CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 264 1299.2S 3201.2H CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 265 6403.5S 1584.2E SH EXTENSION ALL PGH + AU U OF T 2 1979 266 2419.8S 358.7H BATHTUB PL,PO,AG BONDAR CLEGG 42 1979 304 244.6S 2001.3H CLOUD PT,PD,AG BONDAR CLE	136	51995	3621E	TIGER BOY	ZN, PB, AG, AS	KENNECOTT	1	1971
222 4596S 4799E TIGERBOY ALL PGH + AU U OF T 1 1979 231 3448S 2470E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 263 1228.6S 2014.4H CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 268 3600.1S 4003.8E TIGERBOY ALL PGH + AU U OF T 2 1979 295 6403.5S 1584.2E SH EXTENSION ALL PGH + AU U OF T 2 1979 296 2419.8S 358.7H BATHTUB ALL PGH + AU U OF T 2 1979 204 2844.5S 2001.2H CLOUD PT,PD,AG BONDAR CLEGG 1 1979 313 244.6S 3607.4E TIGERBO	216	2891.55	804W	CLOUD	PT,PD,AG	BONDAR CLEGG	1	19/9
231 34485 2470E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY ALL PGH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY PT,PD,AG BONDAR CLEGG 18 1979 254 2894.5S 4414.9E TIGERBOY PT,PD,AG BONDAR CLEGG 3 1979 268 3600.1S 4003.8E TIGERBOY ALL PGH + AU U OF T 1 1979 289 1299.2S 3201.2W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 296 2419.8S 358.7W BATHTUB ALL PGH + AU U OF T 2 1979 304 2844.5S 2024.2W CLOUD PT,PD,AG BONDAR CLEGG 42 1979 304 2844.5S 2001.2W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 304 2844.5S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 305 4802.8S 2403.1W SM	222	45965	4799E	TIGERBOY	ALL PGM + AU	UOFT	1	1979
254 284.5S 4414.9E TIGERBOY ALL PCH + AU U OF T 1 1979 254 2894.5S 4414.9E TIGERBOY PT,PD,AG BONDAR CLEGG 18 1976 268 3600.1S 4003.8E TIGERBOY ALL PCH + AU U OF T 1 1979 268 3600.1S 4003.8E TIGERBOY ALL PCH + AU U OF T 1 1979 291 1299.2S 3201.2W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 295 6403.5S 1584.2E SK EXTENSION ALL PCH + AU U OF T 2 1979 296 2419.8S 358.7W BATHTUB PT,PD,AG BONDAR CLEGG 42 1979 204 2844.5S 2024.2W CLOUD PT,PD,AG BONDAR CLEGG 1 1979 313 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 4 1979 356 4802.8S 2403.1W SM EXTENSION ALL PCH + AU U OF T 1 1979 361 6015.2S 814M	231	34485	2470E	TIGERBOY	ALL PGH + AU	UOFT	1	1979
254 2894.5S 4414.9E TIGERBOY PT,PD,AG BONDAR CLEGG 18 1976 268 3600.1S 4003.8E TIGERBOY ALL PGH + AU U OF T 1 1979 289 1299.2S 3201.2W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 289 1299.2S 3201.2W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 295 6403.5S 1584.2E SW EXTENSION ALL PGH + AU U OF T 2 1979 296 2419.8S 358.7H BATHTUB ALL PGH + AU U OF T 2 1979 304 2844.5S 2024.2W CLOUD PT,PD,AG BONDAR CLEGG 42 1979 304 2844.6S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 42 1979 304 2844.6S 3607.4E TIGERBOY ALL PGH + AU U OF T 1 1979 315 1998.4S 2001.3W CLOUD PT,PD,AG <	254	2894.55	4414.9E	TIGERBOY	ALL PGM + AU	U OF T	1	1979
263 1228.6S 2014.4W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 268 3600.1S 4003.8E TIGERBOY ALL PCH + AU U OF T 1 1979 289 1299.2S 3201.2W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 295 6403.5S 1584.2E SW EXTENSION ALL PCH + AU U OF T 2 1979 296 2419.8S 358.7W BATHTUB PT,PD,AG BONDAR CLEGG 42 1979 304 2246.5S 2001.2W CLOUD PT,PD,AG BONDAR CLEGG 42 1979 307 2406.5S 2001.2W CLOUD PT,PD,AG BONDAR CLEGG 1 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 4 1979 313 244.6S 3607.4E TIGERBOY ALL PCH + AU U OF T 1 1979 361 6015.2S 814H SH EXTENSION ALL PCH + AU	254	2894.55	4414.9E	TIGERBOY	PT, PD, AG	BONDAR CLEGG	18	1976
268 3600.15 4003.8E TIGERBOY ALL PGH + AU U OF T 1 1979 289 1299.2S 3201.2W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 295 6403.5S 1584.2E SW EXTENSION ALL PGH + AU U OF T 2 1979 296 2419.8S 358.7W BATHTUB ALL PGH + AU U OF T 2 1979 296 2419.8S 358.7W BATHTUB PT,PD,AG BONDAR CLEGG 42 1979 304 2844.5S 2024.2W CLOUD PT,PD,AG BONDAR CLEGG 1 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BOND	263	1228.65	2014.4W	CLOUD P	PT.PD.AG	BONDAR CLEGG	3	1979
289 1299.25 3201.2W CLOUD P PT,PD,AG BONDAR CLEGG 3 1979 295 6403.5S 1584.2E SH EXTENSION ALL PGH + AU U OF T 2 1979 296 2419.8S 358.7H BATHTUB ALL PGH + AU U OF T 2 1979 296 2419.8S 358.7H BATHTUB PT,PO,AG BONDAR CLEGG 42 1979 304 2844.5S 2024.2W CLOUD PT,PO,AG BONDAR CLEGG 1 1979 307 2406.5S 2001.2W CLOUD PT,PO,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 4 1979 313 244.6S 3607.4E TIGERBOY ALL PGH + AU U OF T 1 1979 356 4802.8S 2403.1W SW EXTENSION ALL PGH + AU U OF T 1 1979 361 6015.2S 814H SW EXTENSION ALL PGH + AU	268	3600.15	4003.8E	TIGERBOY	ALL PGM + AU	UOFT	1	1979
295 6403.55 1584.2E SW EXTENSION ALL PGM + AU U OF T 2 1979 296 2419.8S 358.7W BATHTUB ALL PGM + AU U OF T 2 1979 304 2844.5S 2024.2W CLOUD PT,PD,AG BONDAR CLEGG 42 1979 304 2844.5S 2024.2W CLOUD PT,PD,AG BONDAR CLEGG 1 1979 307 2406.5S 2001.2W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 4 1979 356 4802.8S 2403.1W SW EXTENSION ALL PGM + AU U OF T 1 1979 361 6015.2S 814H SW EXTENSION ALL PGM + AU U OF T 1 1979 363 1992.6S 2798W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 364 2395.7S 2791.1W BATHTUB ALL PGM + AU U OF T 1 1979 366 302.2S 2798.8W B	280	1200 25	3201 24	CLOUD P	PT PD AG	BONDAR CLEGG	3	1979
296 2419.85 358.7H BATHTUB ALL FOR + AU U OF T 2 100-12 296 2419.85 358.7H BATHTUB ALL PGH + AU U OF T 2 1979 304 2844.5S 2024.2H CLOUD PT,PD,AG BONDAR CLEGG 42 1979 307 2406.5S 2001.2H CLOUD PT,PD,AG BONDAR CLEGG 4 1979 316 1998.4S 2001.3H CLOUD PT,PD,AG BONDAR CLEGG 4 1979 333 244.6S 3607.4E TIGERBOY ALL PGH + AU U OF T 1 1979 361 6015.2S 814H SH EXTENSION ALL PGH + AU U OF T 1 1979 361 6015.2S 814H SH EXTENSION ALL PGH + AU U OF T 1 1979 364 2395.7S 2791.1H BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2798.8H BATHTUB ALL PGH + AU U O	205	6403 55	1694 25	SW EXTENSION	ALL PON + ALL	U OF T	2	1979
296 2419.85 356.7M BATHTUB PT.PD.AG BONDAR CLEGG 42 1979 304 2844.55 2024.2M CLOUD PT.PD.AG BONDAR CLEGG 42 1979 307 2406.55 2001.2M CLOUD PT.PD.AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3M CLOUD PT.PD.AG BONDAR CLEGG 4 1979 333 244.6S 3607.4E TIGERBOY ALL PGM + AU U OF T 1 1979 356 4802.8S 2403.1M SW EXTENSION ALL PGM + AU U OF T 1 1979 361 6015.2S 814M SW EXTENSION ALL PGM + AU U OF T 1 1979 364 2395.7S 2798.0K BATHTUB ALL PGM + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGM + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGM + AU U OF T 1 1979 372 1181.5S 2799.2M CL	295	6403.55	1304.25	BATUTUS	ALL POR + AU	UOFT	2	1979
296 2419.85 358.7M BAIHTUB PT,PD,AG BONDAR CLEGG 42 1979 304 2844.55 2024.2H CLOUD PT,PD,AG BONDAR CLEGG 1 1979 307 2406.55 2001.2H CLOUD PT,PD,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3H CLOUD PT,PD,AG BONDAR CLEGG 4 1979 333 244.6S 3607.4E TIGERBOY ALL PGH + AU U OF T 1 1979 356 4802.8S 2403.1H SH EXTENSION ALL PGH + AU U OF T 1 1979 361 6015.2S 814H SH EXTENSION ALL PGH + AU U OF T 1 1979 364 2395.7S 2791.1H BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2798.8H BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2799.2H CLOUD PT,PO,AG BONDAR	296	2419.85	356.74	BATUTUS	BT DO AC	BONDAR CLEGG	42	1979
304 2844.55 2024.2H CLOUD PT,PD,AG BUNDAR CLEUG 1 1979 307 2406.5S 2001.2H CLOUD PT,PD,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3H CLOUD PT,PD,AG BONDAR CLEGG 4 1979 333 244.6S 3607.4E TIGERBOY ALL PGH + AU U OF T 1 1979 356 4802.8S 2403.1H SH EXTENSION ALL PGH + AU U OF T 1 1979 361 6015.2S 814H SH EXTENSION ALL PGH + AU U OF T 1 1979 364 2395.7S 2798W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 366 302.3S 2798.W BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2798.W BATHTUB ALL PGH + AU U OF T 1 1979 369 1631.2S 2000.4H BATHTUB ALL PGH + AU U OF T 1 1979 372 1181.5S 2799.2H CLOUD <td>296</td> <td>2419.85</td> <td>358.7W</td> <td>BATHTUB</td> <td>PT, PD, AG</td> <td>BONDAR CLEGG</td> <td></td> <td>1070</td>	296	2419.85	358.7W	BATHTUB	PT, PD, AG	BONDAR CLEGG		1070
307 2406.55 2001.2W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 4 1979 333 244.6S 3607.4E TIGERBOY ALL PGH + AU U OF T 1 1979 356 4802.8S 2403.1W SW EXTENSION ALL PGH + AU U OF T 1 1979 361 6015.2S 814W SW EXTENSION ALL PGH + AU U OF T 1 1979 363 1992.6S 2798W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 364 2395.7S 2791.1W BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGH + AU U OF T 1 1979 372 1181.5S 2799.2W CLOUD PT,PO,AG BONDAR CLEGG 2 1979 381 11915 2814.1E TIGER BOY ALL PGH + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER	304	2844.55	2024.2W	CLOUD	PT,PU,AG	BUNDAR CLEGG		1070
316 1998.4S 2001.3W CLOUD PT,PD,AG BONDAR CLEGG 4 1979 333 244.6S 3607.4E TIGERBOY ALL PGH + AU U OF T 1 1979 356 4802.8S 2403.1W SW EXTENSION ALL PGH + AU U OF T 1 1979 361 6015.2S 814W SW EXTENSION ALL PGH + AU U OF T 1 1979 363 1992.6S 2798W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 364 2395.7S 2791.1W BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGH + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER B	307	2406.55	2001.2W	CLOUD	PT,PD,AG	BONDAR CLEGG	3	19/9
333 244.6S 3607.4E TIGERBOY ALL PGN + AU U OF T 1 1979 356 4802.8S 2403.1W SW EXTENSION ALL PGN + AU U OF T 1 1979 361 6015.2S 814W SW EXTENSION ALL PGN + AU U OF T 1 1979 363 1992.6S 2798W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 364 2395.7S 2791.1W BATHTUB ALL PGN + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGM + AU U OF T 1 1979 366 302.3S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGM + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGM + AU U OF T 1 1979 BI AMAX 0UTSIDE AREA AU,AG,PT,PD	316	1998.4S	2001.3W	CLOUD	PT, PD, AG	BONDAR CLEGG		1979
356 4802.8S 2403.1W SH EXTENSION ALL PGM + AU U OF T 1 1979 361 6015.2S 814H SH EXTENSION ALL PGM + AU U OF T 1 1979 363 1992.6S 2798H CLOUD PT,PD,AG BONDAR CLEGG 3 1979 364 2395.7S 2791.1W BATHTUB ALL PGH + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGH + AU U OF T 1 1979 369 1631.2S 2000.4W BATHTUB ALL PGH + AU U OF T 1 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGH + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGM + AU U OF T 1 1979 BI AMAX 0UTSIDE AREA AU,AG,PT,PD SMASTIKA 3 <t< td=""><td>333</td><td>244.65</td><td>3607.4E</td><td>TIGERBOY</td><td>ALL PGM + AU</td><td>U OF T</td><td>1</td><td>1979</td></t<>	333	244.65	3607.4E	TIGERBOY	ALL PGM + AU	U OF T	1	1979
361 6015.2S 814H SW EXTENSION ALL PGN + AU U OF T 1 1979 363 1992.6S 2798W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 364 2395.7S 2791.1W BATHTUB ALL PGN + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGN + AU U OF T 1 1979 369 1631.2S 2000.4W BATHTUB ALL PGH + AU U OF T 1 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGM + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGM + AU U OF T 1 1979 BI AMAX 0UTSIDE AREA AU,AG,PT,PD SMASTIKA 3 1967 65225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1	356	4802.85	2403.1W	SW EXTENSION	ALL PGH + AU	U OF T	1	1979
363 1992.6S 2798W CLOUD PT,PD,AG BONDAR CLEGG 3 1979 364 2395.7S 2791.1W BATHTUB ALL PGM + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGM + AU U OF T 1 1979 369 1631.2S 2000.4W BATHTUB ALL PGM + AU U OF T 1 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGM + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGM + AU U OF T 1 1979 BI AMAX 0UTSIDE AREA AU,AG,PT,PD SMASTIKA 3 1967 66225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SMASTIKA 1 1967 0RIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOT	361	6015.25	814W	SW EXTENSION	ALL PGH + AU	U OF T	1	1979
364 2395.7S 2791.1W BATHTUB ALL PGN + AU U OF T 1 1979 366 302.3S 2798.8W BATHTUB ALL PGN + AU U OF T 1 1979 369 1631.2S 2000.4W BATHTUB ALL PGM + AU U OF T 1 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGM + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGM + AU U OF T 1 1979 BI AMAX OUTSIDE AREA AU,AG,PT,PD SHASTIKA 3 1967 66225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SHASTIKA 1 1967 0RIFT TIGER BOY ALL PGM + AU U OF T 9 1967 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P AG,AU,PT,PD,CO SHASTIKA 1 1967	363	1992.65	2798W	CLOUD	PT.PD.AG	BONDAR CLEGG	3	1979
366 302.3S 2798.8W BATHTUB ALL PGH + AU U OF T 1 1979 369 1631.2S 2000.4W BATHTUB ALL PGH + AU U OF T 1 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGH + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGH + AU U OF T 1 1979 BI AMAX OUTSIDE AREA AU,AG,PT,PD SWASTIKA 3 1967 66225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1967 DRIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P ALL PGM + AU U OF T 9 1979	364	2395.75	2791.1W	BATHTUB	ALL PGH + AU	U OF T	1	1979
369 1631.2S 2000.4W BATHTUB ALL PGH + AU U OF T 1 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGH + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGH + AU U OF T 1 1979 BI AMAX OUTSIDE AREA AU,AG,PT,PD SWASTIKA 3 1967 65225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1967 0RIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P AG,AU,PT,PD,CO SWASTIKA 1 1967	366	302 35	2798 84	BATHTUB	ALL PGH + AU	UOFT	1	1979
309 1031.23 2000.14 DAIL 00 PT,PD,AG BONDAR CLEGG 2 1979 372 1181.5S 2799.2W CLOUD PT,PD,AG BONDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGM + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGM + AU U OF T 1 1979 BI AMAX OUTSIDE AREA AU,AG,PT,PD SMASTIKA 3 1967 65225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SMASTIKA 1 1967 0RIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P ALL PGM + AU U OF T 9 1979	360	1611 30	2000 44	BATHTUB	ALL PON + ALL	U OF T	1	1979
372 1181.55 2799.2W CLUUU FT,PD,AG BORDAR CLEGG 2 1979 381 1191S 2814.1E TIGER BOY ALL PGM + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGM + AU U OF T 1 1979 BI AMAX OUTSIDE AREA AU,AG,PT,PD SMASTIKA 3 1967 65225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1967 0RIFT TIGER BOY ALL PGM + AU U OF T 3 1967 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P ALL PGM + AU U OF T 9 1979	369	1031.25	2000.48	CLOUD.	BT DD AC	BONDAR CI FOG	2	1979
381 11915 2814.1E TIGER BOY ALL PGH + AU U OF T 1 1979 390 1210.2S 5205.7E TIGER BOY ALL PGH + AU U OF T 1 1979 BI AMAX OUTSIDE AREA AU,AG,PT,PD SHASTIKA 3 1967 66225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1967 0RIFT TIGER BOY ALL PGH + AU U OF T 3 1967 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P ALL PGH + AU U OF T 9 1979	372	1181.55	2799.2W	CLOUD	P1, P0, A0	IL OF T		1979
3901210.2S5205.7ETIGER BOY UTSIDE AREAALL PGM + AUU OF T11979BI AMAXOUTSIDE AREAAU,AG,PT,PDSMASTIKA31967 OCHS AND GOLDEN3196766225650S6100WUPDIP BATHTUB TIGER BOYAG,AU,PT,PD,COSMASTIKA11967 OF T1DRIFTTIGER BOYALL PGM + AUU OF T91979NOTE:CLOUD ARE BATHTUB EXCEPT MARKED WITH P	381	11915	2814.1E	TIGER BOY	ALL PGM + AU		1000	1070
BI AMAX OUTSIDE AREA AU,AG,PT,PD SMASTIKA 3 1967 66225 6505 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SMASTIKA 3 1967 0CHS AND GOLDEN 3 1967 0RIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P ACL PGM + AU U OF T 9 1979	390	1210.25	5205.7E	TIGER BOY	ALL PGM + AU			1067
66225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1967 DRIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P MARKED WITH P 1 1979	BI AMAX	1		OUTSIDE AREA	AU, AG, PT, PD	SWASTIKA	3	1901
OCHS AND GOLDEN 3 1967 66225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1967 DRIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P						KENNECOTT	3	1301
66225 650S 6100W UPDIP BATHTUB AG,AU,PT,PD,CO SWASTIKA 1 1967 DRIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P						OCHS AND GOLDEN	3	1967
DRIFT TIGER BOY ALL PGM + AU U OF T 9 1979 NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P	66225	6505	6100W	UPDIP BATHTUB	AG, AU, PT, PD, CO	SWASTIKA	1	1967
NOTE: CLOUD ARE BATHTUB EXCEPT MARKED WITH P	DRIFT			TIGER BOY	ALL PGM + AU	UOFT	9	1979
	NOTE :	CLOUD ARE	BATHTUB EXC	EPT MARKED WITH P				

Table A6: PGE Data from Minnamax Analyzed at University of Toronto

Area	Hole.	From	То	Feet	#of amp. 1r interva	\$Cu 1	\$N1	\$Co	¥S	Pt (ppb)	Pd (ppb)	Pt+Pd (ppb)	Rh (ppb)	Ru (ppb)	Ir (ppb)	Os (ppb)	Au (ppb)	Cu/ Cu+Ni	Pt/ Pt+Pd	Co/ Co+N1	\$Po
Bathtub	366	245	305	60	3.6	0.76	0.12	0.01	1.36	20	40	60	2.4	0.6	0.8	0	13	0.86	0.33	0.10	1.32
Bathtub	364	1525	1606	81	4.8	1.45	0.32	0.02	3.44	1900	260	2160	12	5	4	2	110	0.82	0.88	0.05	4.61
Bathtub	369	1305	1445	140	8.4	1.75	0.34	0.02	2.86	20	41	61	2.5	6	0.7	0.2	11	0.84	0.33	0.05	2.14
Bathtub	296	1287	1457	170	10	0.77	0.18	0.01	1.01	60	310	370	7.9	5	3	0	110	0.81	0.16	0.06	0.18
Bathtub	296	1517	1597	80	4.8	0.84	0.20	0.01	1.40	60	210	270	6.9	8	2	0	34	0.81	0.22	0.06	1.01
Tigerboy	231	1754	1884	130	7.8	0.80	0.14		1.58									0.85			1.76
Tigerboy	268	1955	2045	90	5.4	0.89	0.24	0.02	1.98	60	230	290	4.5	0.3	1.7	2	23	0.79	0.21	0.06	2.36
Tigerboy	222	1793.4	1865	71.5	2.1	0.96	0.35		7.27									0.73			16.40
Tigerboy	254	1773	1923	150	9	1.31	0.24		2.10									0.85			1.52
Tigerboy	381	325	375	50	3	0.99	0.20	0.01	0.93	200	250	450	10	10	6	6	80	0.83	0.44	0.05	0.00
Tigerboy	333	545	615	70	4.2	0.80	0.14	0.01	1.74	25	110	135	2.5	0	0.8	0	30	0.83	0.19	0.08	2.20
Tigerboy	390	1235	1335	100	4.8	0.91	0.27	0.02	2.99	25	67	92	6	5	2	0	42	0.77	0.27	0.07	5.00
S.W. Ex	356	1400	1545	145	8.7	0.98	0.21	0.01	1.56	160	830	990	19	20	4	0	80	0.81	0.16	0.05	1.28
S.W. EX	361	2054	2105.9	51.9	1.5	1.16	0.38	0.01	4.67	50	310	360	25	20	3	1	42	0.75	0.14	0.03	8.64
S.W. EX	232	1375	1435	60	3.0	0.75	0.18	0.01	1.10	140	620	760	1.4	6	3	7	100	0.81	0.18	0.06	0.48
Daife A	295	2032	2235	140	8.4	0.11	0.14	0.01	1.87	90	400	490	1.1	7	3	3	72	0.85	0.18	0.07	2.64
Drift A	200			1.18		2.40	2.38	0.13	18.04	60	80	140	45	42	16	0	35	0.51	0.43	0.05	36.58
Drift A	1174					3.45	0.78	0.14	19.40	250	54	59	20	67	11	11	23	0.82	0.08	0.15	41.71
Deift B	025					1.42	0.24	0.02	2.50	250	520	110	8	0	1	0	120	0.86	0.32	0.06	2.54
Drift B	925					1.00	0.21	0.02	2.13	360	290	650	10	0	2	2	62	0.83	0.55	0.08	2.54
Drift B	1267			1. 10.1		1.45	1.82	0.08	34.59	100	130	230	110	72	40	10	17	0.44	0.43	0.04	86.29
Delft C	1201			10.0213		0.53	0.10	0.01	1.10	60	49	109	3	2	1	0.1	4	0.77	0.55	0.07	1.31
Delft D	200			1.000		0.00	2.45	0.12	20.80	100	260	360	21	21	15	0	51	0.77	0.28	0.05	28.86
Deift D	310			1		14.00	1.45	0.07	24.12	60	21	81	31	2	0	0	4	0.91	0.74	0.05	21.52
UTITED	343			1		4.35	0.40	0.03	10.02	400	150	1150	1	0		1	1300	0.90	0.35	0.05	14.28
				Hean		2.13	0.54	0.04	6.83	191	265	456	16	14	6	2	107	0.79	0.34	0.06	11.49
				Std		3.02	0.68	0.04	8.93	387	228	482	23	20	8	3	263	0.10	0.20	0.02	19.14
			Mean	n Batht	UD	1.11	0.23	0.01	2.01	412	172	584	6	5	2	0	56	0.83	0.39	0.06	1.85
			Std	Batht	tub	0.41	0.08	0.00	0.96	744	112	797	4	2	1	1	45	0.02	0.26	0.02	1.52
			Mear	n Tiger	boy	0.95	0.23	0.01	2.66	78	164	242	6	4	3	2	44	0.81	0.28	0.06	4.18
			Std	Tiger	boy	0.16	0.07	0.00	1.97	72	78	141	3	4	2	2	22	0.04	0.10	0.01	5.18
			Mear	N SW EX	(t	0.89	0.23	0.01	2.30	110	540	650	12	13	3	3	74	0.80	0.17	0.05	3.26
			Std	SW EX		0.16	0.09	0.00	1.40	43	202	244	11	7	0	3	21	0.03	0.02	0.02	3.20
			Mean	n Drift	1. A. A.	4.16	1.11	0.07	14.77	155	239	394	29	24	11	3	180	0.76	0.42	0.07	26.18
			Std	Drift	•	4.34	0.88	0.05	10.88	136	235	359	31	28	11	4	398	0.16	0.18	0.03	25.54
		Sum	1589.5	Ht A	/g	1.00	0.22	0.011	2.22	193	304	497					60	0.814	0.28	0.061	
				Wt St	td	0.55	0.11	0.006	1.24	398	314	523					51			0.001	

1

+ grab samples only

74

Table A7: Pt, Pd, Cr, and Ag Contents of the Cloud Zone Sulfides

-

•

I

Hole	From	То	Feet	\$Cu	\$N i	t s	Cr (ppm)	Ag (ppm)	Pt (ppb)	Pd (ppb)	Pd+Pt (ppb)	Cu/ Cu+Ni	Pt/ Pt+Pd	\$Po
91	131	136	5	0.62	0.13	0.68	3300	2.6	270	750	1020	0.83	0.26	-0.18
91	136	149	13	0.05	0.03	0.13	700	0.0	10	30	40	0.63	0.25	0.14
91	157	167	10	0.10	0.04	0.11	2400	0.2	45	70	115	0.71	0.39	-0.08
91	425	435	10	0.03	0.08	0.02	300	0.0	10	20	30	0.27	0.33	-0.23
304	498	508	10	0.07	0.08	0.19	200	0.0	5	0	5	0.47	1.00	0.12
316	45	55	10	0.16	0.05	0.21	1800	0.4	20	70	90	0.76	0.22	0.01
316	175	185	10	0.28	0.08	0.38	900	0.7	45	95	140	0.78	0.32	0.06
316	205	215	10	0.16	0.04	0.19	400	0.1	15	50	65	0.80	0.23	-0.02
316	215	225	10	0.03	0.06	0.07	400	0.0	5	0	5	0.33	1.00	-0.04
307	224	239	15	0.08	0.04	0.13	400	0.1	30	45	75	0.67	0.40	0.03
307	411	420	9	0.25	0.17	0.42	1200	0.3	15	80	95	0.60	0.16	0.03
307	735	745	10	0.06	0.04	0.11	500	0.0	5	0	5	0.50	1.00	0.03
263	55	65	10	0.28	0.10	1.16	400	0.6	85	75	160	0.74	0.53	2.15
263	75	85	10	0.06	0.02	0.20	200	0.0	5	0	5	0.75	1.00	0.33
263	115	125	10	0.22	0.07	0.33	900	0.5	35	130	165	0.76	0.21	0.12
96	108	115	7	0.28	0.06	0.25	500	0.7	25	150	175	0.82	0.14	-0.24
96	125	135	10	0.22	0.06	0.29	100	0.7	60	200	260	0.79	0.23	0.03
96	135	139	4	0.10	0.04	0.36	300	0.1	0	15	15	0.71	0.00	0.61
96	139	145	6	0.67	0.16	0.83	700	2.0	155	725	880	0.81	0.18	0.01
92	118	125	7	0.30	0.07	0.29	500	.0.4	70	245	315	0.81	0.22	-0.21
92	381	396	15	0.06	0.07	0.07	1400	0.0	10	15	25	0.46	0.40	-0.15
92	634	640	6	0.30	0.07	0.43	900	0.8	230	570	800	0.81	0.29	0.17
90	98	112	14	0.07	0.06	0.09	700	0.0	20	65	85	0.54	0.24	-0.10
90	488	502	14	0.06	0.06	0.08	500	0.0	5	20	25	0.50	0.20	-0.10
90	511	514	3	0.98	0.17	1.13	900	2.0	195	770	965	0.85	0.20	-0.05
90	514	518	4	0.24	0.07	0.24	1400	0.7	30	60	90	0.77	0.33	-0.18
90	535	541	6	0.16	0.11	0.23	700	0.0	45	125	170	0.59	0.26	-0.09
82	237	248	11	0.31	0.07	0.31	400	0.0	50	90	140	0.82	0.35	-0.19
82	525	539	14	0.16	0.09	0.23	600	0.8	10	35	45	0.64	0.22	-0.04
82	595	607	12	0.44	0.11	0.70	500	1.3	15	00	15	0.80	0.20	0.42
82	655	665	10	0.25	0.06	0.29	400	0.6	25	120	145	0.81	0.17	-0.05
363	205.5	218	12.5	0.80	0.13	0.81	2700	1.7	90	200	290	0.86	0.31	-0.32
363	298	310	12	0.93	0.10	0.68	400	4.9	50	140	190	0.90	0.26	-0.96
363	310	319	9	0.49	0.10	0.61	2200	1.4	60	130	190	0.83	0.32	0.00
372	119	134	15	0.67	0.14	1.15	2100	2.1	155	505	660	0.83	0.23	0.94
372	651	652	11	0.31	0.08	0.48	2100	0.8	65	55	120	0.79	0.54	0.20
78	381	390	9	0.04	0.03	0.03	1600	0.0		15	20	0.57	0.25	-0.10
289	215	225	10	0.20	0.05	0.23	300	. 0.3	35	125	160	0.80	0.22	-0.05
289	225	235	10	0.45	0.12	0.64	600	1.1	85	445	530	0.79	0.16	0.18
289	745	755	10	0.34	0.10	0.50	200	1.1	50	120	170	0.11	0.29	0.18
103	115	119		0.32	0.12	0.39	300	0.7	175	400	5/5	0.73	0.30	-0.12
103	119	128		0.53	0.18	0.68	800	1.5	175	405	115	0.75	0.27	-0.00
216	355	369	14	0.34	0.11	0.36	400	0.8	25	30	115	0.70	1.00	-0.23
40	44	52.5	8.5	0.21	0.06	0.52	2500	0.4	10	200	10	0.10	0.10	0.03
40	90	106	10	0.34	0.08	0.64	1300	1.0	10	300	370	0.01	0.19	0.01
		Total	445	0.29	0.08	0.40	017	0.74	5.0	170	228	0.72	0.35	0.07
		Aren eye			0.00	a versioner								
		Std		0.23	0.04	0.29	776	0.91	65	209	270	0.14	0.25	0.43
		Wt. Avg.	e generale e	0.28	0.08	0.38		0.72	49	143	192	0.71	0.35	

Table A8: Baseline Data From the Tiger Boy and Bathtub Deposits, Minnamax

1

1. . . W

10

2

.

Hole	From	То	Feet	\$Cu	\$N1	\$ S	Pt (pob)	Pd (pph)	Pt+Pd (pob)	Ag (nom)	Cu/ Cu+Ni	Pt/ Pt+Pd	\$Po
Tiger	Boy						(ppo)	(pps)	APP-1	(PP=1			
254	1753	1763	10	0.20	0.06	0.40	0	135	135	1.8	0.769	0.000	0.39
254	1763	1773	10	0.19	0.07	0.37	0	60	60	1.9	0.731	0.000	0.31
254	1773	1783	10	0.88	0.18	0.99	135	195	330	3.2	0.830	0.409	-0.18
254	1783	1793	10	1.88	0.24	2.09	90	275	365	7.9	0.887	0.247	-0.08
254	1793	1803	10	1.24	0.23	1.50	90	570	660	5.6	0.844	0.136	0.10
254	1803	1813	10	1.82	0.30	2.16	125	220	345	5.6	0.858	0.362	0.00
254	1813	1823	10	1.67	0.28	2.19	170	370	540	4.5	0.856	0.315	0.00
254	1823	1833	10	1.32	0.21	1.59	30	295	325	7.6	0.863	0.092	0.17
254	1833	1843	10	1.47	0.26	2.17	170	240	410	5.0	0.850	0.415	1.22
254	1843	1853	10	1.23	0.33	1.96	75	200	275	4.8	0.788	0.273	0.00
254	1853	1863	10	1.14	0.19	1.44	1-1-1-1-2-2	1.			0.857		0.31
254	1863	1873	10	1.01	0.23	1.81	35	195	230	5.1	0.815	0.152	1.59
254	1873	1883	10	0.87	0 18	1.54	15	115	130	3.3	0.829	0.115	1.36
254	1883	1893	10	1.18	0.22	2 22	25	190	215	5.1	0.843	0.116	2.27
254	1893	1903	10	1 58	0.21	2.79	25	205	230	7.0	0.883	0.109	2.75
254	1903	1913	10	1 18	0.22	3.05	25	135	160	5.0	0.863	0.156	3.99
254	1013	1077	10	0.97	0.25	4 06	0	60	60	4.0	0.789	0.000	7.80
254	1077	1923	10	0.31	0.05	1.05	90	155	245	3.0	0.838	0.367	1.90
254	1923	1933	10	0.07	0.00	0.22		15	15	1.2	0.500	0.000	0.53
Basha	1933	1343	10	0.02	0.02	0.23		1.5			0.000	0.000	
Bathtu	1067	1077		0.02	0.04	0.04	•			11	0 333	0.000	-0.05
290	1207	1211	10	0.02	0.04	0.04		40	40	11	0 667	0.000	-0.08
290	1211	1207	10	0.00	0.03	0.00		205	280	1.5	0 925	0 250	0.04
296	1287	1297	10	0.00	0.14	0.81	30	205	300	4.5	0.707	0.250	0.02
296	1297	1307	10	0.63	0.15	0.79					0.797	0 211	0.02
296	1307	1317	10	0.92	0.24	1.19	180	675	855	4.3	0.793	0.211	-0.47
296	1317	1327	10	1.05	0.25	1.12	170	610	780	4.0	0.808	0.210	-0.47
296	1327	1337	10	0.63	0.16	0.73	180	275	455	3.0	0.797	0.396	-0.15
296	1337	1347	10	1.03	0.21	1.23	290	445	735	4.8	0.831	0.395	-0.01
296	1347	1357	10	0.90	0.22	1.12	140	285	425	3.4	0.804	0.329	0.02
296	1357	1367	10	0.61	0.15	0.77	75	240	315	2.8	0.803	0.238	0.04
296	1367	1377	10	0.87	0.18	1.08	80	215	295	3.9	0.829	0.271	0.10
296	1377	1387	10	1.33	0.27	1.56	80	520	600	6.0	0.831	0.133	-0.09
296	1387	1397	10	0.72	0.14	0.89	80	160	240	2.8	0.837	0.333	0.09
296	1397	1407	10	0.82	0.17	1.11	135	445	580	3.4	0.828	0.233	0.34
296	1407	1417	10	0.65	0.16	0.91	40	170	210	3.7	0.802	0.190	0.29
296	1417	1427	10	0.85	0.18	1.22	75	105	180	5.0	0.825	0.417	0.54
296	1427	1437	10	0.46	0.08	0.66	15	65	80	2.7	0.852	0.188	0.33
206	1437	1447	10	0.82	0.15	1.28	20	335	355	3.9	0.837	0.056	0.84
296	1447	1457	10	1.36	0.27	2.01	50	245	295	4.4	0.834	0.169	1.06
206	1457	1457	10	0 47	0 11	0.71	30	195	225	3.3	0.810	0.133	0.37
206	1467	1477	10	0.14	0.04	0.17	20	10	40	1.7	0 778	0.750	-0.02
290	1407	1407	10	0.55	0.12	0.11	35	175	150	2.4	0 921	0 210	0 75
290	14//	1407	10	0.55	0.12	0.94	35	125	100	2.4	0.021	0.446	1 67
296	1487	1497	10	0.47	0.16	1.23	145	180	325	3.5	0.740	0.440	0.57
296	1497	1507	10	0.68	0.17	1.05	40	140	100	4.0	0.000	0.222	0.37
296	1507	1517	10	0.45	0.11	0.69	40	00	105	3.0	0.804	0.301	0.5/
296	1517	1527	10	0.70	0.17	1.06	50	30	145	3.1.	0.805	0.345	1.00
296	1527	1537	10	0.69	0.17	1.25	175	195	370	3.0	0.802	0.4/3	1.09
296	1537	1547	10	0.61	0.15	1.07	70	110	180	3.1	0.803	0.389	0.00
296	1547	1557	10	0.68	0.17	1.07	75	180	255	4.0	0.800	0.294	0.02
296	1557	1567	10	0.60	0.13	0.93	75	120	195		0.822	0.305	0.50
296	1567	1577	10	0.67	0.14	0.92	705	185	890	3.2	0.027	0.792	1.63
296	1577	1587	10	0.65	0.15	1.39	30	105	135	4.0	0.813	0.222	1.03
296	1587	1597	10	0.64	0.14	0.95	55	160	215	3.1	0.821	0.256	0.40
296	1597	1607	10	0.44	0.11	0.73	30	150	180	2.8	0.800	0.167	0.51
296	1607	1617	10	0.72	0.11 .	1.13	55	140	195	4.5	0.867	0.282	0.83
296	1617	1627	10	0.42	0.14	0.66	70	195	265	2.7	0.750	0.264	0.00
296	1627	1637	10	0.28	0.06	0.44	25	60	85	2.3	0.824	0.294	0.28
296	1637	1647	10	0.58	0.11	0.99	65	130	195	4.0	0.841	0.333	0.83
296	1647	165,7	10	1.45	0.43	2.92	55	145	200	4.3	0.771	0.275	0.00
296	1657	1667	. 10	1.40	0.26	2.19					0.843		1.47
296	1667	1677	10	0.95	0.23	2.67	45	155	200	4.7	0.805	0.225	0.00
296	1677	1687	10	0.52	0.14	1.08	80	25	105	2.7	0.788	0.762	0.00
296	1687	1697	10	0.41	0.11	1.66	30	65	95	2.3	0.788	0.316	3.14
296	1697	1707	10	0.14	0.05	0.56	15	0	15	1.3	0.737	1.000	1.02
Hean	296			0.68	0.16	1.07	89	193	282	3.40	0.80	0.32	0.45
S.D.	296			0.322	0.072	0.559	113	151	217	1.046	0.078	0.199	0.035
Hean	254			1.07	0.20	1.77	61 57	202	263	4.59	0.82	0.18	1.29
a.u.	434			0.000	0.004	0.321		144		1.00	0.00	0.10	0 70
Mean S.D.	254 & 254 &	296 296		.79	0.17	1.28 0.762	81 100	143	202	1.458	0.80	0.193	1.230

Table A9: Pt, Pd, Au and Ag Data Collected Pre 1969 at Minnamax

Hole	From	То	Feet	\$Cu	\$Ni	\$ 5	\$Co	Pt+Pd (ppb)	Au (ppb)	Ag (ppm)	Cu/ Cu+Ni	Pt/ Pt+Pd	Co/ Co+Ni	Po wt
1	110	135	25	0.43	0.14	3.22	0.02	68	17	1.37	0.75		0.12	7.29
1	135	160	25	0.56	0.18	4.02	0.03	171	17	2.40	0.76		0.14	9.02
1	160	195	35	0.86	0.18	3.05	0.04	342	17	5.82	0.83		0.18	5.53
3	230	245	15	1.06	0.14	1.79	0.00	137	342	6.16	0.88		0.00	1.63
5	410	445	35	2.28	0.21	2.79	0.00	1164	685	12.67	0.92		0.00	0.82
6	245	260	15	1.29	0.35	2.82	0.04	34	342	4.79	0.79		0.10	3.28
7	735	775	40	0.54	0.15	1.98	0.05	103	17	1.37	0.78		0.25	3.55
7	775	815	40	0.67	0.14	1.41	0.09	137	17	2.40	0.83		0.40	1.64
7	815	855	40	0.92	0.17	1.97	0.08	103	17	3.08	0.85		0.32	2.43
7	855	895	40	0.74	0.17	1.61	0.08	68	17	3.08	0.81		0.32	1.94
7	895	935	40	0.29	0.10	3.91	0.04	68	17	2.05	0.74		0.28	9.00
17	130	150	20	1.14	0.28	1.75	0.03	753	685	5.14	0.80		0.10	1.73
17	460	485	25	1.05	0.21	1.88	0.05	103	17	4.45	0.03		0.22	1.49
. 17	485	510	25	1.04	0.19	1.10	0.04	137	17	4.45	0.83		0.10	18 07
22	985	995	10	1.24	0.21	8.08	0.07	205	17	1.00	0.02		0.20	-0.34
23	650	670	20	1.74	0.20	2 61	0.05	205	17	0.75	0.81		0.14	1.44
23	670	705	20	0.58	0.30	0.07	0.00	59	17	3.08	0.80		0.25	0.67
23	804	020	26	0.96	0.15	1 94	0.05	137	17	4 79	0.85		0.24	2.55
24	1300	1340	40	1.20	0.34	1.73	0.01	137	17	6.16	0.78		0.03	0.55
25	370	405	35	1.48	0.18	2 42	0.01	240	17	4.79	0.89		0.05	2.08
25	235	260	25	1.21	0.21	2.23	0.02	103	17	4.11	0.85		0.09	2.23
29	1420	1450	30	1.02	0.24	1.55	0.02	103	17	3.42	0.81		0.08	0.82
29	1480	1500	20	1.11	0.25	1.72	0.02	205	171	2.74	0.82		0.07	1.01
29	1600	1630	30	1.17	0.20	1.78	0.01	240	171	3.77	0.85		0.05	1.13
33	490	505	15	1.19	0.19	1.63	0.01	1233	171	8.22	0.86		0.05	0.69
33	1525	1550	25	0.96	0.32	5.58	0.03	34	17	5.14	0.75		0.09	11.83
34	1730	1755	25	0.81	0.20	1.57	0.01	68	17	. 3.77	0.81		0.05	J.56
34	1755	1775	20	1.25	0.26	2.53	0.00	137	171	5.14	0.83		0.00	2.83
34	1775	1810	35	0.85	0.22	5.36	0.01	103	17	3.77	0.80		0.04	11.81
35	310	340	30	0.84	0.59	15.27	0.07	68	17	1.37	0.59		0.11	38.08
39	1540	1560	20	0.91	0.17	1.80	0.03	0	17	3.77	0.84		0.15	2.01
39	1560	1580	20	1.49	0.24	2.50	0.04	0	17	5.48	0.86		0.14	2.14
40	690	710	20	0.77	0.19	1.06	0.01	548	171	5.48	0.81		0.05	.0.30
57	741.7	761	19.3	1.79	0.85	22.03	0.09	137	0	3.42	0.68	0.00	0.10	53.35
58	1373	1389	16	1.14	0.20	3.75	0.02	137	0	5.48	0.85	0.00	0.09	6.63
58	1433	1440.9	7.9	2.20	1.49	17.08	0.07	342	171	5.82	0.60	0.10	0.04	36.99
60	1731.4	1735.4	4	6.04	0.34	6.49	0.04	14041	685	23.29	0.95	0.90	0.11	0.21
66225	1028	1065	37	1.02	0.20	1.57	0.01	205	0	6.85	0.84	0.00	0.05	0.97
130	1686	1688.5	2.5	2.86	0.85	27.88	0.07	137	0	2.23	0.77	0.25	0.08	66.44
130	1703.5	1710	6.5	5.78	1.13	16.07	0.05	514	171	10.96	0.84	0.13	0.04	25.22
130	1710	1717	1	4.44	1.57	21.04	0.07	479	171	13.70	0.74	0.07	0.04	41.45
60	1550	1010	60	0.37	0.08	1.15				1.60	0.83			1.94
60	1394	1400	00	1.03	0.20	1.41				3.90	0.83			0.50
85	520	720	100	0.00	0.04	0.24				0.28	0.65			0.33
	330	400	70	0.00	0.04	0.05				0.22	0.39			-0.05
105	1773	1793	20	5.19	0.70	9.94	0 03	651	342	14 73	0.88	0.21	0.04	11.13
105	1793	1842	49	1.39	0.25	2.77	0.03	308	171	5.82	0.85	0.44	0.07	3.12
105	1842	1855	13	4.86	1 04	15 25	0.06	1257	171	25 34	0.82	0.70	0.05	25 75
105	1803	1834	31	0.75	0.12	1.84	0.00			2 3	0.86	0.10	0.05	2.66
116	1650	1650	10	1.11	0.18	1.18	0.01	205	171	9.25	0.85	0.33	0.05	-0.29
116	1660	1680	20	13.19	0.68	14.45	0.04	856	514	19.86	0.95	0.20	0.06	1.43
116	1680	1698.3	18.3	13.55	1.83	22.85	0.08	1164	171	30.14	0.88	0.26	0.04	20.53
116	1698.3	1715	16.7	1.30	0.08	7.04	0.03	308	0	4.79	0.94	0.33	0.27	15.52
119	1853	1885	32	1.58	0.70	19.27	0.10	68	0	2.40	0.69	0.50	0.13	46.73
119	1885	1919	34	1.62	1.40	24.78	0.12	34	0	1.71	0.54	0.00	0.08	59.95
119	1919	1931	12	0.85	0.44	9.30	0.08	34	0	0.68	0.66	0.00	0.15	22.05
BI-AMA	2590	2660	70	0.23	0.09	0.38		548	48	5.14	0.73	0.31		0.17
BI-AMA	2660	2720	60	0.48	0.15	0.56		993	55	5.14	0.77	0.17		-0.15
BI-AMA	2740	2790	50	0.24	0.08	0.43		428	34	5.14	0.74	0.20		0.30
	Total	1777		1.70	0.11	10 A 14								0.7-
	Std			2.49	0.40	7.08	0.03	1866	174	5.86	0.10	0.23	0.09	15.87
	Wt. Avg			1.22	0.25	3.86	0.04	340	89	4.61				
	Std			1.53	0.26	5.12	0.03	437	133	3.82				

Table A10: Analyses of Concentrates, Heads, Tailings and Recovery, Dunka Road

DOH	From	To	Feet	\$Cu	\$N 1	\$5	\$Co	Pt (ppb)	Pd (ppb)	Pt+P	d Au) (ppb)	Rh (ppb)	Cu/ Cu+N1	Pt/ Pt+Pd	\$Po	Comments
Vende																
26030	686	776	40		0.10	1 47		205							2	
26033	000	980	20	0.04	0.19	1.47	0.017	205	719	925	68	1	0.77	0.22	1.78	Med. grade, high FeS, C, alter
25044	67	122	55	0.03	0.23	0.00	0.012	2144	1404	1678	68	10	0.78	0.16	0.16	High grade, low FeS
26044	67	122	55	0.47	0.17	0.90	0.010	171	1027	1199	68	7	0.73	0.14	0.74	Typical sample
26044	107	117	10	0.41	0.17	1.00	0.009	171	1027	1199	68	0	0.73	0.14	0.74	Typical sample
26045	7	25	18	0.40	0.15	0.67	0.009	205	959	1164	68	7	0.76	0.18	0.46	Medium grade, high Mg-olivine
26047	518	558	40	0.45	0.15	0.57	0.009	411	1062	1473	68	10	0.77	0.28	-0.17	Similar to 26044
Bulk #	2	330		0.55	0.35	0.77	0.017	154	651	1849	103	10	0.61	0.19	-0.30	High Ni, low FeS, Mg-olivine
Concer	trate															
26030	686	726	40	2 67	0 70	6 16	0.046	377	1040							
26033	0.00	980	20	8 16	1 80	10 00	0.046	311	1849	2226	103	21	0.79	0.17	7.73	
26044	67	122	55	3 58	1 01	6 06	0.036	1438	10411	11849	856	123	0.82	0.12	2.95	
26044	67	122	55	3.50	1 01	6.06	0.034	1100	2945	3938	171	55	0.78	0.25	6.61	그 바다 이번 것에서 한 것이 많이 많이 많이 했다.
26044	107	117	10	7.10	1.77	10 72	0 025	1201	3333	1303	719	79	0.78	0.16	6.61	Shorter grindmore Pd liberat
26045	7	25	18	5.72	1.30	6.60	0.023	2055	8125	4023	411	55	0.80	0.28	5.25	
26047	518	558	40	4.97	2.31	6.84	0.034	1473	3073	5445	925	110	0.81	0.20	-1.04	
A-4 cc	mposite		12	201			0.000	925	5308	6233		00	0.00	0.21	-0.88	
A-2 cc	mposite							1644	7260	8904				0.15		
C-4 co	mposite							856	4075	4932				0.10		
C-2 Cc	mposite						1.	1164	5753	6918	2160			0 17		
Bulk #	12						10. Ju	685	3459	4144	目書			0.17		
Averag	10			5.11	1.41	7.89	0.035	1176	5245	6421	514	75	0.78	0.19	3.89	
Tailir	as										12		·			
26030	685	726	40	0.05	0.05	0.14					-48-					
26033	960	980	20	0.04	0.06	0.05	11.				지금문		0.30		-0.14	
26044	67	122	55	0.04	0.05	0.06	11				112		0.43		-0.08	
26044	67	122	55	0.04	0.05	0.05	10.18				18		0.43		-0.08	
26044	107	117	10	0.05	0.05	0.11	1.19						0.47		0.00	
26045	7	25	18	0.04	0.05	0.05	· · · · · · · · · · · · · · · · · · ·				- 12-		0.41		-0.10	
26047	518	558	40	0.03	0.12	0.05					12		0.19		-0.23	
Recove	ry						- 11				1					
				\$Cu	%N1	\$5	\$Co	Pt	Pd		Au	R	1			
26030	686	725	40	92.2	81.1	92.6	47.6	32.2	45.2		26.0	53	0			
26033	960	980	20	95.2	75.6	95.3	29.9	52.4	73.9		125.0	120	0			
26044	67	122	55	92.5	72.1	94.0	27.3	46.6	23.0		20.0	65	.0			
26044	67	122	55	92.5	72.1	94.0		45.2	38.7		67.0	74	.0			
26044	107	117	10	93.0	74.3	89.9	29.4	66.8	36.4		63.0	84	0			
26045	7	25	18	93.4	69.3	92.7	29.7	39.3	62.3		106.0	84				,
26047	518	558	40	95.5	69.9	93.8	23.8	48.4	29.8		45.0	97	.0			
	-															
	Average	a .		33.1	12.2	32.2	20.0	49.8	44.0	1	71.0	87	.3			

Table All: Concentrate Values for Inco's Spruce Road Deposit

Inco Spruce Road

								Meta1	s/Ton					
	Tons	\$Cu	% N1	\$Co	\$Fe	\$ 5 (Cu/ Cu+Ni	Ag (ppm)	Au (ppb)	Pt (ppb)	Pd (ppb)	Rh (ppb)	Pt/ Pt+Pd	Reference
Ore	13440000	0.46	0.17				0.73				1.1.2.1		1.100	
Concentrate Tailings	410000 13030000	13.26 0.057	3.62				0.79 0.48	29.5	860	1203	3408		0.26	Open File DNR 1975
Composite		10	2.2	0.11	26.1	18.3	0.82	37.7	1370	1233	4110	103	0.23	3.4.2.2.2 Aug. 26, 1975 USBM
Composite		14.4	3.1	0.14	29.1	24	0.82	51.4	1370	1027	4384	68	0.19	3.4.2.2.2 Aug. 26, 1975 USBM
Composite		12.2	2.5	0.12	27.5	21.1	0.83	47.9	1370	719	4178	103	0.15	3.4.2.2.2 Aug. 26, 1975 USBM
Average		12.46	2.855	0.123	27.56	21.13	0.814	41.62	1242	1045	4019	91.33	0.207	

Table A12: Values of Metals in Concentrates from Minnamax

÷.

-

Deposit	Composite	Cu	\$ Ni	\$Co	\$Fe	\$ 5	\$C	Ag (ppm)	Au (ppb)	Pt (ppb)	Pd (ppb)	Rh (ppb)	Ru (ppb)	Cu/ Cu+Ni	Co/ Co+Ni	Pt/ Pt+Pd
Blend	Blend	13.70	2.50	0.16	33.70	26.90	2.10	53.1	205	582	2055	72	137	0.85	0.06	0.22
Blend	LON PO/Cb Diss	16.34	2.94	0.14	33.31	27.46	0.94	60.6	199	651	2260	79	137	0.85	0.04	0.22
Blend	High Po/Cb Diss	9.02	2.42	0.19	34.92	25.00	5.35	29.5	178	445	1541	62	137	0.79	0.07	0.22
Blend	Semi massive	15.44	3.02	0.14	39.70	31.30	3.35	72.3	271	651	2808	123	274	0.84	0.04	0.19
Tiger Boy	Disseminated	13.80	2.60					41.4	925	822	1781			0.84		0.32
Bathtub	Disseminated	17.20	2.78					51.7	1062	1027	2329			0.86		0.31
UP-dip		13.80	2.21					42.5	856	1062	1644			0.86		0.39
Local Boy	Disseminated	11.20	2.45							856	2500			0.82		0.26
Bathtub	Disseminated	14.70	2.78							993	2842			0.84		0.26
Bulk		14.00	3.00					42.1	1473	1610	3801	16		0.82		0.30
Bulk	Minimum	12.00	2.00	0.11	35.00	27.00	3.00	41.8	380	1130	1470			0.86	0.05	0.43
Bulk	Maximum	14.00	2.50	0.11	40.00	30.00	5.00	41.8	380	1130	1470			0.85	0.04	0.43
Bulk	Disseminated	14.90	2.14	0.12	36.27	27.10	1.39	51.4	685	753	1473			0.87	0.05	0.34
Bathtub	Test 317	15.90	2.74	0.11	30.80	24.20	1.45	55.1	1062	616	2295			0.85	0.04	0.21
Partridge	4,5,66	11.20	2.10	0.14	27.60	21.60	5.73	41.1	479	377	1473			0.84	0.06	0.20
Partridge	4,5,66							43.8	856	685	1849					0.27
Tiger Boy	No. 2							45.2	959	651	2123					0.23
Bathtub	No. 3		•					52.1	1164	753	2877					0.21
Local Boy	Disseminated	11.10	2.46		28.50					1233	3733			0.82		0.25
Bathtub	Disseminated	14.70	2.84		31.00					342	582			0.84		0.37
	145			0.20				38.7	410	820	2020					0.29
	152			0.30				58.4	450	920	2530					0.27
	606			0.12				39.7	2880	750	2020					0.27
	Average	13.71	2.56	0.15	33.71	26.73	3.15	47.49	783	820	2151	70.27	171.2	0.84	0.05	0.28
	Std	2.10	0.31	0.05	3.88	2.75	1.73	9.53	616	288	728	34.44	59.32	0.02	0.01	ð.07
Cu Conc	Select #8	20.10	1.60							514	1747		194	0.93		0.23
Ni Conc	Select #8	2.69	10.50						100	1438	7534			0.20		0.16
Cu Conc	Bulk #8	20.70	1.36					60.3	411	411	1678			0.94		0.20
N1 Conc	Bulk #8	3.50	9.80	Sec. Sec.	1	0 2400 00		76.4	68	2911	14384			0.26		0.17
Cu Conc	Minimum	20.00	0.25	0.03	34.00	32.00	2.00	48.0	600	650	620			0.99	0.09	0.51
Cu Conc	Maximum	21.00	0.30	0.03	37.00	35.00	3.00	48.0	600	650	620			0.99	0.08	0.51
Cu-Ni Com	c Minimum	3.00	4.00	0.40	35.00	30.00	2.00	55.0	720	2190	4460			0.43	0.09	0.33
Cu-Ni Cone	c Maximum	6.00	8.00	0.40	39.00	33.00	3.00	55.0	720	2190	4460			0.43	0.05	0.33
Cu Conc	Cu Conc	20.80	0.27	0.03	36.30	32.80	-3.00	48	600	650	620			0.99	0.08	0.51
Heads	PDU AFA										220			0.85	0 00	0 23
Tiger Boy	DOU254	1.31	0.24			2.10		5.1		80	210			0.81	0.00	0.27
Bathtub	UUN296	0.73	0.17			1.10		3.0		-	212		*	0.01	0.00	
White Meta	1	62.40	12.90					167.8	5137	6336	15068	68		0.83	0.00	0.30

100

1

Figure A1. Rock Classification Scheme

BASE LINE Z 0000 14,400 MINNAMAX COPPER-NICKEL DEPOSIT Figure A5. Drill Bole Locations at Minnamax With PGM Values. S 2,400 N 9,600 S 2,400 S DINIT-TANK 7200 S 4,800 Shaft Drin SERPENTINE P 0 12,000 E 23 2 Outline of Ore body Pt, Pd, TOTAL PGM 82 me Baseline Grid Beetlen Corners 9,600 E n 00 £., × TIGER BOY 7,200 E B 202 N 53 2 85 4,800 E 6 R LOCAL BOY ñ. e³³³ e⁵ --Scale 20 ~ 182.0 2,400 E 9 8.84C UP DIP EXTENSION 30 S BASE LINE S 3 SOUTHWEST 192.0 5 ×. ST. TR. 2,400 ¥ 8²⁶ 8³⁶⁶ 78 8363 30 1.1 3 2 5 E. 16 12. 4,800 W Cal. BUIC SGREET 1 3 BATHTUB 85 30 7,200 W 6.

