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Bayesian Forecasting of Prepayment Rates for
Individual Pools of Mortgages

Ivilina Popova∗, Elmira Popova† and Edward I. George‡

Abstract. This paper proposes a novel approach for modeling prepayment rates
of individual pools of mortgages. The model incorporates the empirical evidence
that prepayment is past dependent via Bayesian methodology. There are many
factors that influence the prepayment behavior and for many of them there is
no available (or impossible to gather) information. We implement this issue by
creating a Bayesian mixture model and construct a Markov Chain Monte Carlo
algorithm to estimate the parameters. We assess the model on a data set from
the Bloomberg Database. Our results show that the burnout effect is a significant
variable for explaining normal prepayment activities. This result does not hold
when prepayment is triggered by non-pool dependent events. We show how to use
the new model to compute prices for Mortgage Backed Securities. Monte Carlo
simulation is the traditional method for obtaining such prices and the proposed
model can be easily incorporated within simulation pricing framework. Prices for
standard Pass-Throughs are obtained using simulation.
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1 Introduction

Purchasing a house usually involves obtaining a loan (mortgage) originated by a financial
institution. Any standard mortgage monthly payment consists of scheduled interest
and principal. The borrower is also allowed to include additional payment toward the
principal or early payoff of the whole mortgage. Refinancing of the mortgage is an
example involving such a prepayment. The issuer of the mortgage usually sells the
mortgages to another financial institution that pools them together and issues new
securities, commonly known as mortgage backed securities (MBS). The MBS market is
one of the largest bond markets in the United States (At the end of the second quarter
of 2004 the outstanding stock of residential MBS in the United States was $4.3 trillion.)
The buyers of such structured products would like to know in advance the size of the
incoming prepayments (if any). Improved forecasts of the prepayments would help them
to better price such products.

One possible prepayment model is obtained by acting as if the borrower held a call
option on the loan with exercise price equal to the outstanding balance (i.e. it is a time
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varying strike). Under optimal exercising conditions a mortgage can thus be priced as
a callable bond. One would expect that the holder will prepay when the refinancing
rate falls below the mortgage rate. However, the empirical evidence shows very different
behavior, Dunn and McConnell (1981), that does not support such a model. It has been
documented that homeowners often prepay when it is not optimal to do so and vice
versa.

Recent literature attempts to model this partially “irrational” behavior. Prepayment
activities can be classified as either interest rate related or non-interest rate related.
Interest rate related activities (optimal prepayment) occur when the homeowners act
in order to minimize the market value of the loan, whereas non-interest rate activities
(suboptimal prepayments) occur for personal reasons of the borrowers, such as divorce,
job change, etc.

Two approaches have been considered for modeling prepayments. Downing et al.
(2005) characterize them as reduced-form and structural models. The structural ap-
proach assumes that mortgage termination is the optimal response of a rational borrower
to changes in the values of variables like interest rates, housing prices, etc. It was first
pioneered by Dunn and McConnell (1981) who introduced a model based on standard
contingent claim pricing theory. In their model, prices of mortgage backed securities
and prepayment behavior are determined together. They assume the Cox interest rate
model, Cox et al. (1985), and introduce suboptimal prepayments as a Poisson events.
Using a non-arbitrage argument, they derive a partial differential equation that can be
solved numerically for the price of the security. Suboptimal prepayment behavior was
first documented in their study. Other well-known structural models include Timmis
(1985), Dunn and Spatt (2005), and Stanton (1995). Stanton (1995) presents a model
that extends the option-theoretic approach. He models the transaction costs faced by
mortgage holders and assumes that prepayment decisions occur at discrete times. This
produces prepayment behavior that is consistent with the so-called burnout effect and
usually occurs after the mortgages start to mature. If the interest rates decrease and
percentage of the underlying loans fail to prepay constitutes the burnout. In other
words, the borrowers who did not refinance during this interest rate drop period are less
likely to do so if the interest rates drop again.

The reduced-form approach is empirical, mainly based on historical information. In
the reduced-form approach, mortgage prepayment is modeled as a function of a set of
variables that might influence the mortgage termination. Schwartz and Torous (1989)
model the prepayment rate as a function of explanatory variables such as seasonality,
burnout, difference between the contracting and re-financing rates, and speed of pre-
payment. Again, using a standard arbitrage argument they derive a partial differential
equation that the MBS need to satisfy. Other well-known reduced-form models include
Deng et al. (2000) and Deng and Quigley (2002).

Wall Street firms mainly use reduced-form models. Richard and Roll (1989) describe
the prepayment model used by Goldman Sachs. Under their model, the conditional
prepayment rate is determined by a product of functions of four important factors:
refinancing incentive, age of the mortgage, seasonality and burnout. A non-linear least
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squares optimization procedure is used to estimate the model parameters.

The reduced form approach is flexible and can closely mimic the historical data,
however its out-of-sample performance can be weak. In comparison, the structural
approach tends to perform well in out-of-sample settings since the main assumption is
that mortgage prepayment arises from borrowers’ optimizing behavior. However, due to
the significant constraints on the relation between prepayments and the state variables,
the model predictions diverge from the observed market prices.

All of the existing models (reduced-form and structural) estimate the prepayment
function by using the information from all pools in the sample. In other words, they
assume that all the pools manifest similar prepayment behavior. Stanton (1996) inves-
tigates the problem of predicting the prepayment for individual pools of mortgages. He
reports that in 1,000 GNMA mortgage pools over a six and one-half year period, the
unobservable heterogeneity is statistically significant. This could lead to very different
prices of MBS backed by different pools. One of the latest models used by Wall Street
firms (BlackRock) predicts individual pool prepayment rates based on detailed infor-
mation about individual loans in the pools. Deng et al. (2005) use new heterogeneity-
corrected 3-stage maximum likelihood specification to estimate the prepayment behavior
of loan-level data from the Los Angeles metropolitan area.

Our contribution to the existing literature comes in several ways. First, we model
the prepayment behavior on an individual pool level. Such modeling is important since
the MBS and any other structured products are backed by individual pools of mortgages
that exhibit very different prepayment behavior. Second, we use the Bayesian approach
for parameter estimation. We believe this is the first article that uses such methodology.
Our model incorporates the empirical evidence that prepayment is past dependent via
Bayesian methodology. There are many factors that influence the prepayment behavior
and for many of them there is no available (or impossible to gather) information. We
implement this issue by creating a Bayesian mixture model and construct a Markov
Chain Monte Carlo algorithm to estimate the parameters. We assess the model on a
data set from the Bloomberg Database. We also show how to use the new model to com-
pute prices for Mortgage Backed Securities. Monte Carlo simulation is the traditional
method for obtaining such prices and the proposed model can be easily incorporated
within simulation pricing framework. Prices for standard Pass-Throughs are obtained
using simulation. In addition, we perform a very large numerical study by applying
the Bayesian methodology to a set of 74 pools of data. In this process we observed
several phenomena that (we believe) will be of interest to the statistical computation
community.

The article is organized as follows. Section 2 describes the nature of the raw data
and how the final data set is constructed. Section 3 describes the statistical prepayment
model, Section 4 presents the empirical results, Section 5 shows how to use the model
and price mortgage backed securities, and Section 6 concludes.
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2 Prepayment Data Description

We consider historical data for 74 pools of mortgages, split between issues of Fred-
die Mac (a stockholder-owned corporation chartered by the US Congress to increase the
supply of money that mortgage lenders can make available to homebuyers and multifam-
ily investors.) and Ginnie Mae (the US Government National Mortgage Association.)
To ensure homogeneity of the data, we exclusively focused on 30-year fixed-rate single-
family 8% rate mortgages. For these pools, Bloomberg provided general and monthly
pool information consisting of: issue date, maturity date, original amount, historical
monthly prepayment (as percentage PSA). PSA stands for the Public Securities Asso-
ciation convention which assumes that 0.2% of the principal is paid in the first month,
then increases by 0.2% for the following 29 months, and flattens at 6% until maturity.
The PSA standard benchmark was introduced in 1985. It is not a model of prepayment
but used as a benchmark in industry. Figure 1 shows the prepayment rates for 100%
PSA.

We chose pools with original amounts of at least $1 million. The age of these
mortgages varies from 5 to 25 years, and consequently, the number of data points for
each pool from 60 to 300. Tables 1 and 2 show the CUSIPs (a security identifier as
defined by the Committee on Uniform Securities Identification Procedure) of the pools,
their initiation date, initial dollar amount and current age (in months).

The average age for Freddie Mac pools is 122 months and the average initial dollar
amount is approximately $9 million. The average age for Ginnie Mae pools is 300
months and the average initial dollar amount is approximately $3 million. In addition
to the information provided by Bloomberg, we gathered historical long (30 year Treasury
Bond) and short term (3 month Treasury Bill) interest rates from Federal Reserve Bank
(2006).

The construction of the data set consists of several steps. For illustration purposes
consider the mortgage pool with CUSIP 31340AC82. On July 1, 1984, Bloomberg
reported that the prepayment activity for this pool is 300 PSA. As of the reporting
date, the age of the mortgage pool was 7 months. The reported prepayment 300 PSA
means that PSA(historical) = 300

100 = 3% of PSA(standard), where PSA(standard) =
6%× 7

30 = 1.4%. Multiplying the two rates gives the actual historical prepayment rate.
This annual rate is known as the Conditional Prepayment Rate (CPR) and is used to
measure the speed of prepayments. For our example, the conditional prepayment rate
(CPR) is:

CPR = PSA(standard) · PSA(historical) = 1.4%× 3% = 4.2%

Given the annual CPR we can estimate the Single Monthly Mortality (SMM) rate.
This measure assumes that there is a constant probability that the mortgage will be
prepaid following the next month’s scheduled payments. Given the definition of SMM,
we can write that the probability the mortgage will survive a month is 1− SMM . For
a period of one year, the probability of survival is (1 − SMM)12. This is equal to
1− CPR. So, knowing the CPR we get the single monthly mortality rate as SMM =
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1− (1− CPR)
1
12 .

Now we have all the ingredients to construct the monthly cash flows for the mortgage
pools1. First, we compute the monthly payment, MP 2, and the interest payment, IP 3:
For t = 0, . . . , 360

MP =
FaceV alue

[
0.08
12

] [
1 + 0.08

12

]t[
1 + 0.08

12

]t − 1

and

IP = FaceV alue

[
0.08
12

]

Thus, the scheduled principal payment at time t is obtained by subtracting the in-
terest payments from the total mortgage payments: SP = MP−IP . The nonscheduled
prepayment (NPP) is computed by multiplying the reduced face value of the pool by
the single monthly mortality rate: NPP = SMM(FaceV alue − SP ), and the actual
payment AP = SP + NNP . In our analysis we model the actual payment APt (in
dollars) for each mortgage pool at the end of month t.

To assess the general structure of the data and to identify the presence of multi-
modality we used kernel density estimation, see Silverman (1981). We entered as an
input the natural logarithm of the actual monthly payments for all 74 pools of mort-
gages. The produced density estimators revealed that the majority of the mortgage
pools have at least 2 modes.

Figures 2– 5 show 8 such densities (all 74 densities are available upon request.) As
we model the total payment from a pool the kernel density estimators are based on the
N monthly total payments from that pool. The observed multimodality is intuitively
reasonable - it seems likely that there are borrowers who prepay small amounts each
month, as well as borrowers who prepay the whole mortgage. Indeed, there are probably
certain events such as job loss, refinancing or house selling that trigger such “small” or
“large” prepayment behavior. If we knew these events and could gather data associated
with them, then we might be able to predict the next month prepayment. However, up
to now, there is no research regarding such events, their existence and data availability.

3 A Bayesian Prepayment Model

We now proceed to propose and implement a model for yt = ln(APt), the logarithm
of the total money paid at the end of month t, for each of the 74 mortgage pools. As
potential predictors for this model, we consider the following set of covariates which
were found by Schwartz and Torous (1989) to be useful for modeling the prepayment

1For detailed numerical examples regarding constructing monthly mortgage cash flows see Chapter
9 of Sundaresan (1997)

2Equation 9.1, page 363 from Sundaresan (1997).
3Equation 9.4, page 364 from Sundaresan (1997).
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(or hazard) function4 in a proportional hazards model for the time until prepayment of
a mortgage:

• xt1 = the difference between the mortgage rate and the short term interest rate

• xt2 = (xt1)3

• xt3 captures the burnout effect - it is the logarithm of the ratio of the dollar
amount of the pool i outstanding at time t, to the pool’s principal which would
prevail at t in the absence of prepayments

• xt4 models the seasonality effect. It equals 1 for the months of May, June, July,
and August, and 0 otherwise.

• xt5 is the spread (difference) between the long and short term interest rates.

Although it would seem natural to consider a single regression of yt on xt1, xt2, xt3,
xt4, and xt5 above, density plots of yt such as those in Figures 2 – 5 suggest that the
yt distributions are multimodal, with at least two main groups of “small” and “large”
prepayers. To account for this multimodality, we allow for several regression functions
by considering a mixture of regressions of yt = ln(APt) on xt1, xt2, xt3, xt4, xt5, (see
Hurn et al. 2003, for an alternative presentation). More precisely, for each mortgage
pool, we model yt, t = 1, . . . , N as realizations of independent draws from a k-component
normal mixture

f(yt) =
k∑
j=1

pjfj(yt |µtj , wj), (1)

where pj is the probability that yt belongs to component j, fj(· |µtj , wj) is the density
function of a normal distribution with mean µtj and precision5 wj , and

µtj =
5∑
l=0

βjlxtl (2)

with xt0 ≡ 1.

To fit and draw inference from this model, we take a Bayesian approach by as-
signing prior distributions to all the unknown parameters: the regression coefficients
β = (β1, . . . , βk) where βj = [βj0, . . . , βj5], the precision parameters w = (w1, . . . , wk)
and the component assignment probabilities p = (p1, . . . , pk). For (β,w), we assign the

improper default prior π(β,w) =
(∏k

j=1 wj

)−1

for w1, . . . , wk > 0. For p = (p1, . . . , pk),
we assign a Dirichlet(α1, . . . , αk) distribution with the default choice αj ≡ 0.5.

For posterior calculation, we use a Gibbs sampler (Gelfand and Smith 1991) to sim-
ulate a Markov chain sample of parameter values from the full posterior π(θ | y), where

4Their prepayment function at time t is the probability that a prepayment occurs at time t +4t
given that no prepayment occurred by time t.

5Precision = 1/V ariance
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θ = (β,w, p) and y = (y1, . . . , yN ). For a mixture model such as (1), implementation of
the Gibbs sampler is well known to be facilitated by the introduction of latent variables
for component membership of all the yt values, Diebolt and Robert (1994). More pre-
cisely, let zt = (zt1, zt2, . . . , ztk) denote the vector of 0’s and a single 1, i.e. ztj ∈ {0, 1}
and

∑k
j=1 ztj = 1, such that ztj = 1⇔ yt was a draw from the density fj of component

j. Note that apriori P (ztj = 1) = pj . By considering zt as missing data, the density
under (1) of the completed data (yt, zt) can be expressed as

k∏
j=1

[pjfj(yt |µtj , wj)]ztj , t = 1, . . . , N.

Letting z = (z1, . . . , zN ) be the full component identification vector for y, Gibbs
sampling is easily obtained by starting with initial value θ(0) and then simply it-
erating between the conditional posteriors π(z(m) | θ(m−1), y) and π(θ(m) | z(m), y) for
m = 1, . . . ,M . We now proceed to describe how we sample from each of these condi-
tional posteriors.

To sample from π(z | θ, y), set the component ztj of zt equal to 1 (and the other
components to 0) with probability

p∗j =
pj fj (yt | θj)∑k
j=1 pj fj (yt | θj)

, j = 1, . . . , k,

independently for t = 1, . . . , N .

To describe sampling from π(θ | z, y), note that

π(θ | z, y) = π(p | z, y)π(w | z, y)π(β |w, z, y)

so it suffices to sample from each of these. Beginning with p and letting nj be the
number of y values assigned to component j by z, p is simply obtained from

p ∼ Dirichlet (n1 + α, . . . , nk + αk) .

To describe sampling w and then β we first need some notation. Let yj be the
subvector of y whose nj values have been assigned to component j by z. Let Xj be
the corresponding matrix whose nj rows xt = (xt0, . . . , xt5) have also been assigned to
component j by z. Let β̂j = (X ′jXj)−1X ′jyj be the least squares estimate of βj , and let
s2
j = 1

nj−6 ||yj −Xj β̂j ||2 be the usual unbiased estimate of the variance of fj . Based on
these statistics, each component of w is independently obtained from

wj ∼ Gamma
(
nj − 6

2
,
nj − 6

2
ŝ2
j

)
and then given this choice of w, each component of β is independently obtained from

βj ∼ Normal (β̂j , (wjX ′jXj)−1).
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We remark to be able to maintain the propriety of the posterior distributions we
include a condition in our algorithm where we reject a simulation step m if the number
of data points in each of the clusters is less than or equal to 6.

4 Empirical Results

We implemented the above MCMC algorithm in C++ on a 2.40GHz Pentium using the
uniform random number generator written by Lecuyer (2006) and non uniform random
number algorithms from Devroye (1986). For each model and each pool, the length of
our simulation runs was 5000. We estimated two models: the first one with two mixture
components and the second one with three mixture components.

4.1 Model 1: Two Mixtures

For the two component mixture model, Figures 6, 7, 8, and 9 show the actual simulated
points for w1, w2, β10, and β20 for one of the mortgage pools. Based on the observed
patterns of the simulated values, we dropped the first 1000 simulated values to eliminate
the initial transient period, and used only the last 4000 simulated values for estimation
and inference. We observed similar patterns and did the same with the remaining 73
pools of mortgages. For each pool, we used the average of the MCMC sample values to
approximate the posterior mean estimates of the parameters, and their 95% posterior
probability interval estimates.

Table 3 shows our results for all Freddie Mac pools and Tables 5 and 6 show our
results for all Ginnie Mae pools. We reported only those parameters with probability
intervals not covering zero for at least 50% of the pools. For Freddie Mac the relevant
parameters are β10, β20 and β23, where β10 and β20 are the intercepts and β23 is the
variable measuring the burnout effect. For Ginnie Mae the parameters are β10, β13, β20

and β23, where β10 and β20 are the intercepts and β13 and β23 measure the burnout
effect.

Note that most of the coefficients for β13 and β23 are negative and the corresponding
probability intervals do not include zero. This result is very intuitive since as the prepaid
amount increases, a prepayment becomes less likely. There are only two Freddie Mac
pools that have positive burnout coefficients. After examining their prepayment history
we observed that the prepayment activity increased as the burnout effect increased, so
the results are consistent with the historical prepayment behavior.

Table 7 summarizes the results from Tables 3, 5, and 6. We report the average
parameter values across all pools. For Ginnie Mae pools the average burnout coeffi-
cient for the first cluster is −0.62 and for the second cluster is −1.23 with an average
probability of 42% of choosing cluster one and 58% of choosing cluster two. The corre-
sponding results for the Freddie Mac pools are −0.94 for the burnout coefficient of the
second cluster with an average probability of 48% of choosing cluster one and 52% of
choosing cluster 2. The common theme here is that the coefficient is “more negative”
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for the distribution that occurs more often, which represents the “normal prepayment
behavior”. For normal prepayment activities it is to be expected that the prepayment
will decrease as the principal amount left in the pool decreases. In contrast, the second
distribution represents prepayment that are out-of-the-norm, they can be triggered by
non-pool related variables such as selling the house, moving, bankruptcy, etc.

Based on the posterior mean parameter estimates, we are able to gauge the forecast
quality for each of the pools and for all pools together. Figure 10 compares the actual
prepayment with the forecasted prepayment for one of the mortgage pools.

The lower and upper solid curves are
∑5
l=0 β̃1lxtl and

∑5
l=0 β̃2lxtl respectively, where

β̃1l and β̃2l are the parameter posterior mean estimates. The model will forecast an
“average” prepayment with probability p̂1 and a “high” prepayment with probability
p̂2. Here p̂1 and p̂2 are the posterior mean estimates of the parameters p1 and p2. To
compute the associated error (residual) for each point, we calculate it’s distance to the
weighted average of the upper and lower curves (the middle line).

4.2 Comparison with Model 2: Three Mixtures Model

Following the steps presented in §3 we estimated the model with three components
for each of the 74 mortgage pools. For comparison with the previous two component
model, we calculated Bayes factors for each pool using the methodology described by
Kass and Raftery (1995). The null hypothesis is that the data are coming from the two
components mixture model vs the alternative of three components mixture. We sampled
from the posterior distributions and computed the harmonic mean of the likelihood
values, (see Kass and Raftery 1995, equation 11). The Bayes factor (B10) is simply the
ratio of the estimated likelihoods. Table 8 shows the results for all 74 mortgage pools.
The tables contain two columns for the Bayes factor - one that is the ratio defined above
(B10), and the second one is 2 logB10. Kass and Raftery (1995) recommend the second
one since it is on the same scale as the likelihood ratio test statistics. They also discuss
the proper threshold to be used for rejection of the null hypothesis. The default value
is 150 (first recommended by Jeffreys in 1961) but they argue that if this is to be used
as a forensic evidence on a criminal trial then the threshold has to be at least 1000.

As a threshold for B10 to reject the null hypothesis, we used the threshold of 150,
and found that 6 out of the 74 pools reject the null hypothesis of a two component
mixture model. We obtained the same result using 2 logB10 and a threshold of 10.

One might also consider goodness-of-fit tests using the approach described by
Robert and Rousseau (2007). The null hypothesis is H0 : Y ∼ Fθ for an unknown θ,
i.e. there exists θ such that Fθ(Y ) ∼ U(0, 1). We illustrate this approach by applying
it to one of the pools. We used the average expected posterior value for each parameter
across the data set and estimated the cumulative probabilities for both models. The
Kolmogorov-Smirnov statistic for the two component model equals to 0.15 comparing
to 0.55 for the three component model. We cannot reject the null hypothesis at 1% level
of significance for the two component model but we reject it for the three component
model. Figure 11 shows the fitted and the Uniform(0,1) cumulative probabilities for the
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two component model.

5 Pricing Mortgage Backed Securities

Mortgage backed securities are usually priced by Monte Carlo simulation. First, a sam-
ple path for the interest rates is generated by using some model explaining the dynamic
behavior of the interest rates. Each month, expected prepayments are calculated from
the current yield curve and the prepayment model. These prepayments determine the
expected cash flows to the holder of the MBS and the cash flows are discounted to
time zero to obtain a sample value of the MBS. An estimate of the price of the MBS is
obtained by performing many simulation runs.

We will use as an example Mortgage-Pass-Through securities. They are the simplest
form of MBS. A pass-through represents a share of the underlying mortgage pool. The
cash flows generated by the pool are passed on to the security holders on a pro-rata
basis. They are delivered monthly and consist of three components - interest payment,
scheduled principal payment and prepayment.

We will price a pass-through security by making the following assumption: there are
200 units of the pass-through backed by a pool. For example, if we assume that the
value of the pool is $100 million, each unit amounts to $500,000 and is entitled to 0.5%
of the cash flows.

In the United States, there are two types of pass-throughs: agency and non-agency
pass-throughs. Agency pass-throughs are issued by Ginnie Mae, Freddie Mac and Fannie
Mae. We will use one of the Freddie Mac pools for our illustration, in particular pool
with CUSIP 31340CEJ2. The initial amount of the pool is $93,073,150 and the pool
has 250 months left till maturity. The assumption is that there are 200 units of the
pass-through on pool 31340CEJ2, resulting in a 0.5% claim of the cash flow for every
unit.

In order to generate paths for the interest rates we will simulate from one factor
Cox et al. (1985) model for the dynamics of the short term interest rate:

dr = a(b− r)dt+ σ(t, T )
√
rdW (3)

This model belongs to the class of equilibrium models and is one of the standards in
interest rates modeling. Here the short rate is mean-reverting and the process for the
rates is always non-negative. Cox, Ingersoll and Ross show that the bond prices have
the following form:

P (t, T ) = A(t, T )e−B(t,T )r(t) (4)

where, P (t, T ) is the price of a pure discount bond at time t that matures at time T .
Also,

B(t, T ) =
2(eγ(T−t) − 1)

(γ + a)(eγ(T−t) − 1) + 2γ
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and

A(t, T ) = [
2γe(a+γ)(T−t)/2

(γ + a)(eγ(T−t) − 1) + 2γ
]2ab/σ

2

with γ =
√
a2 + 2σ2. The long rate is given by:

R(t, T ) =
1

T − t
[lnA(t, T ) +B(t, T )r(t)]

We can see that the long rate is linearly dependent on r(t). This means that the value
of r(t) determines the level of the term structure at time t.

For simulation purposes we chose the following values of the parameters: a = 8%, b =
8%, σ = 2%, r(0) = 8%. Figure 6 shows 10 simulated short rate paths.

Along each path we can compute the corresponding long rate and use the simulated
covariates to compute an estimated prepayment from the Bayesian model. Since there
are 250 months till maturity we simulated 250 months of data. Figure 12 shows that
the range of the simulated rates is quite wide, from 1% to 20%. At every point along
the simulated path we used the covariates and produced the corresponding prepayment
amount based on the mixture model. Figure 13 shows the historical prepayment for the
pool as well as 10 simulated prepayment paths.

The final price of the Pass-Through is computed by discounting the actual pool
payment along the simulated paths. Based on 1, 000 simulation runs the price of 1 unit
of the Pass-Through on Pool 31340CEJ2 is $131, 054.05.

6 Conclusion

In this paper, we have proposed using two or three component normal regression mix-
ture models to describe the apparent multimodal distribution of prepayments within
mortgage pools over time. Distinct linear regression functions of observed covariates
are used to model the means of the components. We consider a model where the mix-
ture probabilities are constrained to be fixed over time. To fit this multiparameter
nonlinear model, we take a Bayesian statistical approach where the uncertainty about
all the unknown parameters is described by prior distributions. For this setup, a Markov
Chain Monte Carlo algorithm is constructed and used to carry out all the computations.
Empirical results show that the fixed mixture weight model appears to fit the observed
data reasonably well. We also show how to use the new model to compute prices for
mortgage backed securities. Monte Carlo simulation is the traditional method for ob-
taining such prices and the proposed model can be easily incorporated within simulation
pricing framework.

We feel that our model is a good start towards the modeling of the individual pool
prepayment rate process. Naturally, the extent to which this model can be effective
depends on the quality of the available covariates. More and better covariate informa-
tion will likely lead to better fits and forecasts. Another future direction for potential
improvements will be to consider elaborations to larger models that can exploit infor-
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mation across similar mortgage pools. One such elaboration would be a hierarchical
Bayes model that treats the parameters of each pool as a sample from a superpopu-
lation model. Such an elaboration would be particularly natural given the Bayesian
treatment we have here considered.
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Table 1: Data summary, Ginnie Mae
CUSIP Origination Date Initial Amount Age in months
362027BX1 1/1/1973 $ 5,388,014.99 308
362027JP0 1/1/1973 $ 2,303,787.79 308
362027J47 1/1/1973 $ 2,156,245.31 308
362027KB9 1/1/1973 $ 1,994,981.34 308
362026VD5 2/1/1973 $ 4,057,248.04 304
362027RC0 4/1/1973 $ 4,199,561.59 305
362027R55 4/1/1973 $ 1,709,405.67 305
362027SS4 4/1/1973 $ 3,203,047.00 305
362027UJ1 6/1/1973 $ 3,040,361.00 304
362027UK8 6/1/1973 $ 3,812,288.98 304
362027V76 7/1/1973 $ 2,818,570.48 303
362027FQ2 11/1/1973 $ 2,249,925.76 298
362027HZ0 11/1/1973 $ 2,029,476.62 299
362027KW3 11/1/1973 $ 2,015,190.05 299
362027N26 11/1/1973 $ 3,642,915.05 299
3620274Q4 11/1/1973 $ 2,001,116.95 297
362028A77 11/1/1973 $ 2,020,035.56 298
362028BT8 11/1/1973 $ 2,007,416.51 299
362028FM9 11/1/1973 $ 5,000,616.25 299
362027HS6 12/1/1973 $ 2,020,564.41 298
362027QY3 12/1/1973 $ 2,010,207.98 296
362027T95 12/1/1973 $ 7,912,679.24 298
3620274L5 12/1/1973 $ 2,015,578.53 298
3620274N1 12/1/1973 $ 2,194,180.55 298
3620276T6 12/1/1973 $ 3,011,643.62 298
362028AZ5 12/1/1973 $ 5,000,764.88 298
362028BX9 12/1/1973 $ 2,008,693.49 298
362028DY5 12/1/1973 $ 5,009,615.27 298
362028EQ1 12/1/1973 $ 10,234,823.28 298
362028FB3 12/1/1973 $ 4,021,388.17 297
362028F31 12/1/1973 $ 2,000,630.91 296
362028HB1 12/1/1973 $ 2,014,895.05 298
362028HU9 12/1/1973 $ 2,000,041.48 298
362028JF0 12/1/1973 $ 2,499,138.92 298
362028JK9 12/1/1973 $ 4,017,510.77 297
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Table 2: Data summary, Freddie Mac
CUSIP Origination Date Initial Amount Age in months
31340B5T2 12/1/1988 $4,022,391.00 118
31340B5Y1 12/1/1988 $3,425,491.00 118
31340CBW6 11/1/1992 $33,317,099.00 71
31340CB55 5/1/1993 $9,342,593.00 65
31340CEJ2 9/1/1989 $93,073,150.00 109
31340CEL7 9/1/1989 $1,199,680.00 109
31340CER4 9/1/1989 $4,111,316.00 109
31340CE60 10/1/1989 $1,312,970.00 108
31340CFR3 12/1/1989 $3,012,953.00 106
31340CBK2 11/1/1991 $33,884,130.00 83
31340CBL0 12/1/1991 $12,484,193.00 82
31340CBP1 1/1/1992 $14,765,342.00 81
31340CBR7 2/1/1992 $5,805,280.00 80
31340CBS5 2/1/1992 $9,970,966.00 80
31340CBA4 7/1/1989 $20,690,305.00 111
31340CBG1 9/1/1991 $20,843,194.00 85
31340CBJ5 10/1/1991 $28,367,731.00 84
31340CAH0 3/1/1989 $1,068,345.00 115
31340CAJ6 3/1/1989 $4,053,510.00 115
31340CAN7 3/1/1989 $3,157,634.00 115
31340B6B0 1/1/1989 $3,029,407.00 117
31340B6J3 1/1/1989 $1,000,811.00 117
31340B6V6 2/1/1989 $1,198,354.00 116
31340B7L7 2/1/1989 $1,472,666.00 116
31340CAA5 2/1/1989 $1,007,985.00 116
31340CAC1 2/1/1989 $1,234,631.00 116
31340CAF4 3/1/1989 $1,711,867.00 115
31340B5P0 12/1/1988 $1,209,824.00 118
31340B5H8 12/1/1988 $2,191,105.00 118
31340AEU1 7/1/1984 $3,924,740.00 170
31340AEL1 6/1/1984 $3,328,475.00 171
31340AD40 4/1/1984 $1,687,252.00 173
31340ADW8 3/1/1984 $2,856,860.00 174
31340ADH1 1/1/1984 $9,493,396.00 174
31340ADG3 1/1/1984 $8,615,957.00 176
31340ADF5 1/1/1984 $1,081,768.00 176
31340ADC2 12/1/1983 $1,031,959.00 177
31340AC82 12/1/1983 $1,443,159.00 177
31340ABB6 9/1/1983 $1,354,125.00 180
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Table 3: Results from two component model, Freddie Mac. Here LPB stands for the
left probability bound, and RPB for the right probability bound

β10 β20

CUSIP Avg SD LPB RPB Avg SD LPB RPB
31340abb6 9.66 0.05 9.57 9.75 10.87 0.08 10.72 11.02
31340ac82 9.29 0.11 9.07 9.50 11.40 0.45 10.52 12.28
31340ad40 9.95 0.19 9.57 10.33 9.88 0.21 9.48 10.28
31340adc2 9.13 0.96 7.26 11.01 9.24 0.39 8.48 10.00
31340adf5 9.46 0.29 8.90 10.03 9.92 0.43 9.08 10.77
31340adg3 11.19 0.05 11.09 11.29 11.78 0.14 11.50 12.06
31340adh1 11.59 0.14 11.31 11.86 11.15 0.19 10.77 11.53
31340adw8 9.90 0.14 9.63 10.17 11.40 0.33 10.75 12.05
31340ael1 10.13 0.40 9.34 10.92 11.27 0.35 10.58 11.96
31340aeu1 10.33 0.04 10.25 10.42 11.01 0.03 10.95 11.08
31340b5h8 9.77 0.05 9.67 9.87 11.09 0.31 10.47 11.70
31340b5p0 9.62 0.13 9.37 9.88 9.26 0.12 9.02 9.51
31340b5t2 10.98 0.42 10.15 11.81 10.59 0.49 9.62 11.55
31340b5v7 10.10 0.08 9.95 10.25 1.50 3.34 -5.05 8.05
31340b5y1 10.17 0.10 9.98 10.35 10.40 0.26 9.89 10.91
31340b6b0 10.06 0.09 9.90 10.23 10.21 0.34 9.55 10.88
31340b6j3 8.96 0.10 8.77 9.15 8.00 0.55 6.92 9.09
31340b6v6 9.27 0.09 9.10 9.44 9.72 0.31 9.11 10.32
31340b7l7 9.36 0.08 9.20 9.51 10.86 0.45 9.98 11.73
31340caa5 8.82 0.05 8.72 8.91 9.57 0.16 9.25 9.88
31340cac1 9.31 0.08 9.16 9.46 10.50 3.54 3.56 17.45
31340caf4 9.60 0.24 9.12 10.08 10.09 0.66 8.80 11.37
31340cah0 9.07 0.12 8.85 9.30 8.95 0.53 7.91 9.98
31340caj6 10.47 0.12 10.24 10.71 11.01 0.12 10.76 11.25
31340can7 10.25 0.07 10.11 10.39 10.81 0.10 10.61 11.01
31340cb55 11.06 0.20 10.68 11.45 13.41 1.18 11.09 15.73
31340cba4 12.31 0.21 11.89 12.72 12.15 0.16 11.85 12.46
31340cbg1 10.61 0.53 9.57 11.65 13.31 0.30 12.71 13.90
31340cbj5 11.20 0.75 9.74 12.67 13.00 0.28 12.44 13.55
31340cbk2 11.64 0.82 10.04 13.24 12.34 0.31 11.73 12.94
31340cbl0 11.46 0.93 9.63 13.29 11.60 0.47 10.68 12.51
31340cbp1 9.36 0.83 7.73 11.00 13.26 0.53 12.22 14.31
31340cbr7 9.62 1.02 7.61 11.63 11.19 0.28 10.63 11.75
31340cbs5 12.21 0.58 11.06 13.35 11.41 0.27 10.87 11.94

31340cbw6 13.11 0.43 12.27 13.95 13.09 0.43 12.24 13.94
31340ce60 9.17 0.56 8.08 10.26 9.30 0.98 7.38 11.22
31340cej2 13.34 0.15 13.03 13.64 13.44 0.19 13.06 13.82
31340cel7 9.14 0.11 8.92 9.35 3.03 3.84 -4.50 10.57
31340cer4 10.40 0.08 10.25 10.55 10.67 0.22 10.24 11.10
31340cfr3 9.56 0.30 8.96 10.16 11.51 0.92 9.71 13.32
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Table 4: Table 3 cont.
β23

CUSIP Avg SD LPB RPB
31340abb6 -1.26 0.03 -1.32 -1.20
31340ac82 -0.81 0.24 -1.28 -0.33
31340ad40 -1.58 0.16 -1.89 -1.28
31340adc2 -1.21 0.53 -2.25 -0.16
31340adf5 -1.81 0.36 -2.50 -1.11
31340adg3 -0.81 0.11 -1.02 -0.59
31340adh1 -1.03 0.12 -1.27 -0.79
31340adw8 -1.26 0.07 -1.40 -1.11
31340ael1 -1.22 0.09 -1.39 -1.05
31340aeu1 -1.25 0.05 -1.36 -1.14
31340b5h8 -0.56 0.14 -0.84 -0.27
31340b5p0 -1.77 0.70 -3.14 -0.39
31340b5t2 -0.84 0.47 -1.75 0.07
31340b5v7 3.26 0.35 2.57 3.94
31340b5y1 -1.58 0.34 -2.26 -0.91
31340b6b0 -1.14 0.10 -1.34 -0.94
31340b6j3 -1.15 0.40 -1.94 -0.36
31340b6v6 -1.28 0.23 -1.73 -0.83
31340b7l7 -1.03 0.28 -1.57 -0.49
31340caa5 -1.93 0.10 -2.14 -1.73
31340cac1 1.02 0.49 0.06 1.99
31340caf4 -1.38 0.25 -1.88 -0.88
31340cah0 -1.76 0.31 -2.36 -1.16
31340caj6 -0.66 0.13 -0.92 -0.40
31340can7 -1.17 0.44 -2.03 -0.32
31340cb55 -1.45 0.08 -1.60 -1.30
31340cba4 -0.82 0.17 -1.15 -0.49
31340cbg1 -1.23 0.10 -1.43 -1.03
31340cbj5 -1.13 0.08 -1.28 -0.98
31340cbk2 -1.18 0.09 -1.36 -0.99
31340cbl0 -0.97 0.14 -1.24 -0.70
31340cbp1 -1.38 0.12 -1.62 -1.15
31340cbr7 -1.12 0.12 -1.35 -0.89
31340cbs5 -1.27 0.15 -1.57 -0.97

31340cbw6 -1.25 0.13 -1.50 -1.01
31340ce60 -1.15 0.18 -1.49 -0.80
31340cej2 -1.14 0.20 -1.53 -0.76
31340cel7 4.75 0.11 4.52 4.97
31340cer4 -1.26 0.13 -1.51 -1.01
31340cfr3 -2.72 0.72 -4.14 -1.30
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Table 5: Results from two component model, Ginnie Mae. Here LPB stands for the left
probability bound, and RPB for the right probability bound

β10 β13

CUSIP Avg SD LPB RPB Avg SD LPB RPB
362026yj9 9.39 0.41 8.58 10.20 -0.73 0.45 -1.62 0.15
3620274l5 9.65 0.10 9.46 9.83 -0.94 0.05 -1.04 -0.83
3620274n1 9.74 0.02 9.70 9.77 -0.94 0.02 -0.97 -0.90
3620274q4 10.11 0.05 10.01 10.20 -0.24 0.08 -0.39 -0.09
3620276t6 11.14 0.25 10.64 11.63 -0.67 0.16 -0.99 -0.35
362027bx1 11.38 0.04 11.30 11.46 -0.76 0.03 -0.82 -0.70
362027fq2 9.85 0.11 9.63 10.08 -0.69 0.35 -1.37 -0.01
362027hs6 9.72 0.22 9.29 10.15 0.28 1.32 -2.30 2.87
362027hz0 10.81 0.06 10.70 10.93 -0.58 0.05 -0.68 -0.49
362027j47 10.63 0.04 10.55 10.70 -0.87 0.02 -0.90 -0.83
362027jp0 10.46 0.04 10.39 10.54 -0.67 0.04 -0.76 -0.58
362027kb9 10.49 0.03 10.44 10.55 -0.77 0.03 -0.83 -0.72
362027ke3 8.60 0.11 8.39 8.81 -0.75 1.84 -4.36 2.85
362027kw3 9.61 0.02 9.58 9.65 -0.93 0.02 -0.96 -0.89
362027n26 11.19 0.04 11.12 11.26 -0.88 0.03 -0.95 -0.82
362027qy3 9.77 0.16 9.46 10.08 -0.26 0.54 -1.31 0.80
362027r55 9.89 0.09 9.72 10.06 -0.73 0.25 -1.21 -0.25
362027rc0 11.22 0.03 11.17 11.27 -0.75 0.02 -0.80 -0.71
362027ss4 10.77 0.02 10.73 10.81 -0.61 0.04 -0.68 -0.54
362027t95 11.58 0.03 11.52 11.63 -0.93 0.05 -1.02 -0.84
362027uj1 10.91 0.03 10.84 10.97 -0.90 0.04 -0.98 -0.83
362027uk8 11.22 0.16 10.91 11.52 -0.84 0.09 -1.02 -0.65
362027v76 10.74 0.05 10.65 10.84 -0.70 0.04 -0.77 -0.63
362028af9 9.54 0.11 9.32 9.76 1.40 1.16 -0.88 3.68
362028az5 11.30 0.16 10.98 11.62 -0.72 0.34 -1.39 -0.06
362028bt8 10.72 0.17 10.37 11.06 -0.59 0.10 -0.79 -0.39
362028bx9 10.99 0.09 10.81 11.16 -0.65 0.08 -0.80 -0.49
362028dy5 10.72 0.11 10.50 10.93 -0.35 0.49 -1.32 0.62
362028eq1 12.19 0.03 12.13 12.24 -1.18 0.05 -1.29 -1.08
362028f31 9.79 0.37 9.07 10.51 -0.39 0.60 -1.57 0.79
362028fb3 10.64 0.08 10.48 10.79 -0.26 0.20 -0.66 0.13
362028fm9 11.32 0.12 11.08 11.57 -0.71 0.22 -1.14 -0.29
362028hb1 11.02 0.05 10.92 11.13 -0.88 0.04 -0.97 -0.80
362028hu9 9.63 0.03 9.58 9.69 -0.95 0.02 -0.98 -0.92
362028jf0 10.81 0.05 10.71 10.92 -0.49 0.05 -0.59 -0.39
362028jk9 10.47 0.03 10.41 10.52 -0.65 0.06 -0.78 -0.53
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Table 6: Table 5 cont.
β20 β23

CUSIP Avg SD LPB RPB Avg SD LPB RPB
362026yj9 8.76 0.18 8.41 9.12 -0.71 0.06 -0.83 -0.60
3620274l5 10.75 0.14 10.48 11.03 -0.53 0.08 -0.68 -0.37
3620274n1 10.67 0.04 10.58 10.76 -0.75 0.04 -0.83 -0.68
3620274q4 10.11 0.05 10.02 10.20 -1.52 0.05 -1.62 -1.43
3620276t6 10.09 0.16 9.77 10.41 -0.97 0.08 -1.13 -0.81
362027bx1 10.85 0.03 10.78 10.91 -0.93 0.04 -1.00 -0.85
362027fq2 10.46 0.29 9.90 11.02 -1.14 0.29 -1.72 -0.57
362027hs6 10.09 0.57 8.98 11.20 -1.20 0.34 -1.86 -0.54
362027hz0 9.61 0.03 9.56 9.66 -0.92 0.02 -0.95 -0.88
362027j47 9.93 0.04 9.85 10.01 -1.11 0.02 -1.15 -1.06
362027jp0 9.78 0.02 9.73 9.83 -0.78 0.02 -0.82 -0.75
362027kb9 9.64 0.01 9.61 9.67 -0.76 0.02 -0.79 -0.73
362027ke3 10.01 0.67 8.69 11.33 -3.10 0.91 -4.88 -1.31
362027kw3 10.74 0.03 10.67 10.80 -0.99 0.02 -1.03 -0.94
362027n26 10.35 0.03 10.30 10.40 -1.03 0.02 -1.06 -1.00
362027qy3 9.98 0.31 9.38 10.57 -1.30 0.28 -1.84 -0.76
362027r55 8.69 0.41 7.88 9.49 -0.38 0.26 -0.89 0.13
362027rc0 10.50 0.02 10.46 10.54 -0.81 0.01 -0.84 -0.78
362027ss4 9.96 0.02 9.92 10.00 -0.63 0.01 -0.66 -0.60
362027t95 11.06 0.02 11.02 11.10 -0.98 0.02 -1.02 -0.94
362027uj1 10.49 0.02 10.44 10.53 -1.45 0.04 -1.53 -1.37
362027uk8 10.50 0.05 10.40 10.59 -0.93 0.03 -0.98 -0.87
362027v76 10.11 0.02 10.07 10.15 -0.89 0.01 -0.90 -0.87
362028af9 10.85 0.24 10.38 11.31 -7.79 1.69 -11.10 -4.48
362028az5 10.64 0.10 10.45 10.83 -1.02 0.09 -1.19 -0.85
362028bt8 9.66 0.09 9.48 9.85 -0.97 0.03 -1.04 -0.91
362028bx9 9.64 0.02 9.60 9.68 -0.96 0.02 -1.00 -0.92
362028dy5 11.32 0.16 11.02 11.63 -1.46 0.12 -1.70 -1.22
362028eq1 11.49 0.02 11.45 11.52 -1.07 0.02 -1.11 -1.04
362028f31 10.18 0.38 9.43 10.92 -1.25 0.15 -1.55 -0.96
362028fb3 11.27 0.12 11.03 11.51 -1.53 0.06 -1.66 -1.41
362028fm9 10.60 0.07 10.46 10.74 -0.95 0.03 -1.01 -0.90
362028hb1 9.55 0.02 9.52 9.58 -0.76 0.01 -0.79 -0.74
362028hu9 10.65 0.04 10.57 10.72 -0.50 0.03 -0.56 -0.44
362028jf0 9.87 0.04 9.79 9.94 -0.92 0.02 -0.97 -0.88
362028jk9 11.33 0.04 11.25 11.41 -1.34 0.02 -1.38 -1.31



412 Bayesian prepayment rates

Table 7: Results from two component model, summary
Ginnie Mae Pools
Parameter Average LPB RPB
β10 10.50 10.31 10.69
β13 -0.62 -1.11 -0.13
β20 10.28 10.04 10.53
β23 -1.23 -1.50 -0.96

Freddie Mac Pools
Parameter Average LPB RPB
β10 10.27 9.69 10.84
β20 10.58 9.39 11.77
β23 -0.94 -1.38 -0.50
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Table 8: Bayes Factor
CUSIP B10 2 logB10 CUSIP B10 2 logB10

362026VD5 1.78E-01 -3.45 31340ABB6 4.75E+23 109.04
3620274L5 4.37E-04 -15.47 31340AC82 1.04E-02 -9.14
3620274N1 3.57E-03 -11.27 31340AD40 5.82E-01 -1.08
3620274Q4 2.62E-02 -7.28 31340ADC2 6.82E-03 -9.98
3620276T6 1.32E-03 -13.26 31340ADF5 2.00E-02 -7.83
362027BX1 7.90E-02 -5.08 31340ADG3 4.15E-02 -6.37
362027FQ2 1.14E-01 -4.35 31340ADH1 4.57E-02 -6.17
362027HS6 1.95E-02 -7.88 31340ADW8 3.54E+00 2.53
362027HZ0 7.27E-03 -9.85 31340AEL1 3.91E-02 -6.48
362027J47 1.07E-01 -4.47 31340AEU1 2.96E-01 -2.43
362027JP0 1.83E-02 -8.00 31340B5H8 8.16E-02 -5.01
362027KB9 1.87E-02 -7.96 31340B5P0 4.80E-01 -1.47
362027KW3 3.19E-03 -11.50 31340B5T2 1.04E-02 -9.14
362027N26 2.56E-03 -11.94 31340B5Y1 2.57E-01 -2.72
362027QY3 3.33E+00 2.40 31340B6B0 1.33E-01 -4.03
362027R55 4.74E-01 -1.49 31340B6J3 1.20E-01 -4.23
362027RC0 7.12E-04 -14.49 31340B6V6 2.13E-01 -3.09
362027SS4 1.53E-02 -8.36 31340B7L7 1.06E-01 -4.49
362027T95 1.31E+03 14.36 31340CAA5 2.94E+48 223.21
362027UJ1 3.47E-02 -6.72 31340CAC1 4.06E-01 -1.80
362027UK8 5.24E-03 -10.50 31340CAF4 1.43E-01 -3.88
362027V76 2.88E-02 -7.09 31340CAH0 4.29E-01 -1.69
362028A77 1.68E-01 -3.57 31340CAJ6 3.92E-02 -6.48
362028AZ5 3.61E+03 16.38 31340CAN7 5.23E-02 -5.90
362028BT8 4.55E-04 -15.39 31340CB55 3.81E-01 -1.93
362028BX9 5.94E-03 -10.25 31340CBA4 6.61E-02 -5.43
362028DY5 8.07E+01 8.78 31340CBG1 3.22E-02 -6.87
362028EQ1 1.78E-02 -8.05 31340CBJ5 9.66E-03 -9.28
362028F31 8.50E-01 -0.32 31340CBK2 5.89E-02 -5.66
362028FB3 3.44E-01 -2.13 31340CBL0 1.54E-02 -8.35
362028FM9 1.95E-03 -12.48 31340CBP1 6.19E-01 -0.96
362028HB1 3.61E-03 -11.25 31340CBR7 9.31E-02 -4.75
362028HU9 5.64E-02 -5.75 31340CBS5 1.74E-02 -8.10
362028JF0 5.10E-03 -10.56 31340CBW6 1.17E-02 -8.90
362028JK9 6.18E+03 17.46 31340CE60 5.18E-01 -1.32
31340CEJ2 3.45E-01 -2.13 31340CER4 1.24E-01 -4.18
31340CEL7 1.98E-01 -3.24 31340CFR3 2.07E+07 33.69
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Figure 1: PSA Prepayment Conventions
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Figure 2: Kernel density plots. The horizontal axis is yt = ln(APt), the logarithm of
the total money paid at the end of month t. The number below the horizontal axis is
the pool CUSIP identifier.
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Figure 3: Kernel density plots cont.
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Figure 4: Kernel density plots cont.
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Figure 5: Kernel density plots cont.
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Figure 6: Actual simulated points for ω1 for one of the mortgage pools for the two
component model
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Figure 7: Actual simulated points for ω2 for one of the mortgage pools for the two
component model
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Figure 8: Actual simulated points for β10 for one of the mortgage pools for the two
component model
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Figure 9: Actual simulated points for β20 for one of the mortgage pools for the two
component model
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Figure 10: Actual vs forecasted prepayment for one of the mortgage pools for the
two component model. PredictionFirstCluster is the estimated prepayment using the
expected posterior parameters of the first mixture component. PredictionSecondCluster
is the estimated prepayment using the expected posterior parameters of the second
mixture component. PredictionWithMixture is the estimated prepayment using the
weighted estimated prepayments from both components.
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Figure 11: Fitted and uniform(0,1) cumulative probabilities for the two component
model
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Figure 12: Paths of simulated short rates
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Price of one unit of MBS 
based on 1000 paths is 

$131,054.05 at the end of 
109th Month

Figure 13: Freddie Mac pool 31340CEJ2. Initial pool amount is $93,073,150. 1 Unit
MBS = 0.5% claim on the cash flow from the pool.


